
Qhull examples

David C. Sterratt

21st August 2019

This document presents examples of the geometry package functions which
implement functions using the Qhull library.

1 Convex hulls in 2D

1.1 Calling convhulln with one argument

With one argument, convhulln returns the indices of the points of the convex
hull.

> library(geometry)

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps)

> head(ch)

[,1] [,2]

[1,] 6 13

[2,] 6 5

[3,] 12 13

[4,] 7 5

[5,] 7 12

1.2 Calling convhulln with options

We can supply Qhull options to convhulln; in this case it returns an object
of class convhulln which is also a list. For example FA returns the generalised
area and

volume. Confusingly in 2D the generalised area is the length of the peri-
meter, and the generalised volume is the area.

> ps <-matrix(rnorm(30), , 2)

> ch <- convhulln(ps, options="FA")

> print(ch$area)

[1] 12.79967

1

http://www.qhull.org

> print(ch$vol)

[1] 10.10213

A convhulln object can also be plotted.

> plot(ch)

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

−2 −1 0 1

−
2

−
1

0
1

2
3

x$p[, 1]

x$
p[

, 2
]

We can also find the normals to the “facets” of the convex hull:

> ch <- convhulln(ps, options="n")

> head(ch$normals)

[,1] [,2] [,3]

[1,] -0.8114663 0.5843992 -1.7275682

[2,] -0.8771429 -0.4802295 -1.8874797

[3,] 0.8769988 0.4804926 -1.8189454

[4,] 0.8055050 0.5925889 -1.8746992

[5,] 0.7203090 -0.6936533 -0.9099997

[6,] 0.2017606 -0.9794349 -1.5655190

Here the first two columns and the x and y direction of the normal, and the
third column defines the position at which the face intersects that normal.

2

1.3 Testing if points are inside a convex hull with inhulln

The function inhulln can be used to test if points are inside a convex hull.
Here the function rbox is a handy way to create points at random locations.

> tp <- rbox(n=200, D=2, B=4)

> in_ch <- inhulln(ch, tp)

> plot(tp[!in_ch,], col="gray")

> points(tp[in_ch,], col="red")

> plot(ch, add=TRUE)

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

tp[!in_ch,][,1]

tp
[!i

n_
ch

,]
[,2

]

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 Delaunay triangulation in 2D

2.1 Calling delaunayn with one argument

With one argument, a set of points, delaunayn returns the indices of the points
at each vertex of each triangle in the triangulation.

> ps <- rbox(n=10, D=2)

> dt <- delaunayn(ps)

> head(dt)

[,1] [,2] [,3]

[1,] 1 5 8

3

[2,] 1 2 5

[3,] 1 7 8

[4,] 1 7 2

[5,] 10 7 2

[6,] 3 2 5

> trimesh(dt, ps)

> points(ps)

●

●

●

●

●

●

●

●

●

●

2.2 Calling delaunayn with options

We can supply Qhull options to delaunayn; in this case it returns an object
of class delaunayn which is also a list. For example Fa returns the generalised
area of each triangle. In 2D the generalised area is the actual area; in 3D it
would be the volume.

> dt2 <- delaunayn(ps, options="Fa")

> print(dt2$areas)

[1] 0.027952244 0.014686765 0.055981036 0.055535554 0.058641308 0.050707906

[7] 0.044630166 0.016678190 0.005817549 0.030981940 0.063236248

> dt2 <- delaunayn(ps, options="Fn")

> print(dt2$neighbours)

4

[[1]]

[1] 3 -9 11

[[2]]

[1] -9 4 3

[[3]]

[1] 1 2 5

[[4]]

[1] -21 2 5

[[5]]

[1] 6 3 4

[[6]]

[1] 5 7 -22

[[7]]

[1] 6 11 8

[[8]]

[1] -22 7 9

[[9]]

[1] -19 10 8

[[10]]

[1] -19 9 11

[[11]]

[1] 1 7 10

5

	Convex hulls in 2D
	Calling convhulln with one argument
	Calling convhulln with options
	Testing if points are inside a convex hull with inhulln

	Delaunay triangulation in 2D
	Calling delaunayn with one argument
	Calling delaunayn with options

