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Abstract 
Currently, there is no systematic breast cancer screening implemented for the urban Chinese population. 

However, as the incidence of breast cancer is rising, implementing screening might be a cost efficient way of 

reducing breast cancer mortality. In this study, the SiMRiSc breast cancer screening model has been adapted for 

the Chinese urban population, with the aim to assess the benefits and cost-effectiveness of implementing 

systematic breast cancer screening in the urban Chinese population. Literature research was conducted to 

deduce relevant model input parameters for the Chinese ethnicity. Also, the SiMRiSc model was modified and 

improved, and new tumor growth and survival models have been implemented. Then, the model was validated 

internally and externally. The results of different screening scenarios that have been simulated include the 

number of cancers detected and the incremental costs per life-year saved. These simulations suggest that the 

mortality can be reduced by implementing screening, as tumors will be detected at a significantly smaller size 

than without screening, giving an improved survival chance for women.  Starting early with screening, at age 30, 

seems to be cost-effective for the urban Chinese population, resulting in a cost of €2781 per life year gained. The 

robustness and uncertainty of the simulations have been analyzed by a sensitivity analysis, showing that the 

tumor volume doubling time is the greatest contributor to the uncertainty in the results, with the self-detection 

diameter second. Running simulations with 100000 women is deemed the minimum population size to keep 

statistical variance limited. Because SiMRiSc does not add pseudo-disease to the population, it is doubtful that 

overdiagnosis can be simulated with SiMRiSc. A suggestion has been given to implement stagnating tumors to 

the tumor growth model to allow for the simulation of overdiagnosed tumors. 
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The work presented in this master’s thesis is the result of a research at the department of 

Epidemiology of the University Medical Center Groningen, and is part of the Biomedical 

Engineering curriculum at the University of Groningen. This thesis is primarily aimed at my 

supervisors, but it is also a thorough description of the SiMRiSc breast cancer screening 

simulation model and the changes I’ve made to the software, so can be considered as a 

manual and guideline for future users of SiMRiSc. 

Many changes were made to the SiMRiSc code, up to the point where it can be called 

‘SiMRiSc 1.5’. While the underlying idea of the simulation has not changed, the code was 

completely overhauled including many bug- and performance-fixes. Still I am still far from 

satisfied with the quality of the code, and many parts of the program are still ‘spaghetti code’. 

My recommendation is that this is to be re-written by somebody with a stronger programming 

background to make the SiMRiSc codebase maintainable, less prone to bugs, more user-

friendly and useable for a long time in the future. 

The newly implemented tumor growth model, including the introduction of a ‘self-detected 

tumor distribution’ and a new tumor survival model consist of novel work, partly based on the 

work of James S. Michaelson, Ph.D. at the university Department of Pathology, 

Massachusetts General Hospital. Especially these parts I am very proud of. These parts 

might also have further applications in cancer epidemiology as the methods described might 

not only be applicable to breast cancer. 

I am grateful to prof. de Bock of the department of Epidemiology of the University Medical 

Center Groningen for providing a position at the UMCG to perform my master project. Also I 

would like to thank my primary supervisor, Dr. M. Greuter, for his supervision and positive 

feedback. 

Groningen, 

June 14, 2015  
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1. General Introduction 

1.1. Motivation 

Systematic mammographic breast cancer screening is implemented in most Western 

countries as a measure to reduce mortality. Diagnosing a tumor early and at a smaller size 

than when self-detected increases the survival chances for the women. However, the cost-

effectiveness of systematic screening and the optimal screening strategy depends on factors 

like breast-cancer incidence and breast density. 

While the incidence of breast-cancer among urban Chinese women is lower than among 

western women, the incidence is rising, due to a change in lifestyle, diet, birth control and 

other factors. [1] [2] As breast cancer cases diagnosed in Hong Kong have tripled from 1993 

to 2011, similar trends can be expected for urban Chinese women. [3] Figure 1 shows the 

number of new cases of breast cancer detected in Hong Kong from 2003 until 2012. The 

majority of the new cases are in the age-group 45-64. The same can be expected for urban 

Chinese cities. 

 

Figure 1. No. of new cases of breast cancer in Hong Kong, divided in age groups. In 2012 3508 new cases 
of breast cancer have been registered. 

[4]
  

1.2. Research aim 

The goal of this study is to assess the benefits and cost-efficiency of implementing 

systematic mammographic breast cancer screening in the urban Chinese population by 

using the SiMRiSc breast cancer screening model. 

1.3. The SiMRiSc model 

The SiMRiSc breast cancer screening model is a micro simulation written in C++. The 

SiMRiSc model has previously been used in studies for the Western population. [5] [6] [7] [8] 

In the simulation, women are simulated through their lifetime. Each woman in the simulation 

population is 'born' with a random chance on breast cancer, according to the breast cancer 

incidence curves. Also, life expectancy and breast density are determined randomly for each 

woman. If it is determined that a certain women will get a tumor during her lifetime, the tumor 
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volume doubling time and self-detection age distributions are also sampled to determine 

these parameters for the women. 

Then, different breast-cancer screening scenarios can be simulated, taking into account the 

mammographic sensitivity, exposure to (diagnostic) radiation, tumor growth and other 

parameters. A woman will be removed from the simulation if she dies of natural causes, if a 

tumor grows so large that it is self-detected, or if a tumor is detected by screening. The 

output of the model is given in number of cancers detected with the screening, number of 

interval cancers and cost of the screening and treatment (Figure 2). 

 

Figure 2. Simplified flow chart of the SiMRiSc model. A more detailed version is available in Appendix D. 

1.4. Ethics 

This research is original, unpublished, independent work by the author of this thesis. It is 

based on the SiMRiSc simulation software [5] [6] developed by the department of 

epidemiology of the University Medical Center Groningen. In this project, the SiMRiSc model 

was modified, improved, used with Chinese input parameters derived from literature and 

validated internally and externally. This project was done in collaboration with our research 

partner in Tianjin, China, which provided us with mammography and treatment costs data. 

1.4.1. Societal impact 

In Asian countries, breast cancers screening is only partly implemented and only a few 

studies are known on the benefit and risks of breast cancer screening in Asian women.  As 

the breast cancer incidence is rising rapidly in the Chinese urban areas, performing 

systematic screening might become cost-effective for the urban population. Performing 

screening simulations using the SiMRiSc software can help determine whether 

mammographic breast cancer screening is cost effective and what are the optimal screening 

parameters like the start age, end age and screening interval. This can help to reduce the 

mortality and lead to a fair and more efficient allocation of limited healthcare budget. 

1.4.2. Benefits and risks of mammographic screening 

The main benefit of mammographic screening is that mammographic screening can detect 

breast cancers before a lump can be felt by the women. This will lead to smaller diagnosed 

tumors and decreased mortality of breast cancer. 

However, mammographic screening can occasionally miss the detection of a tumor. This 

happens in approximately 13 to 35% of the cases (see paragraph 2.3.4), depending on the 
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breast density of the women. The cause of this is that the cancer might be obscured by 

dense tissue, or is in an area not easily imaged by mammography. The sensitivity of 

mammography is taken into account by the simulation software. 

Ionizing radiation from mammography will induce new tumors, and will offset the benefits of 

screening. This effect is taken into account for in the simulations.  

In this project, only the benefits in terms of life years saved are computed. However, even if 

a woman would survive both with and without screening, screening might still be able to 

detect a tumor when it is small enough to allow breast conserving surgery, while without 

screening this would not be the case. These effects are not simulated with the SiMRiSc 

software and the benefits of this are not visible in the analysis. 

On the other hand, overdiagnosis is a side effect of screening; screening might detect 

cancers that would otherwise have had no influence on the women if it was undetected. This 

might be the case if a woman with a screen-detected tumor has a very slow growing tumor 

and dies of other causes before the symptoms of the tumor would present themselves. This 

turns the particular women into a life-long cancer patient where this would not be the case 

without the mammographic screening and also leads to increased healthcare costs. The 

health-care cost of overdiagnoses is taken into account for, but the psychological effects for 

the women are not. 

A limited specificity of mammography will lead to false positives. The amount of false 

positives and the associated healthcare costs are computed by the simulation, however the 

psychological effect that a false positive has on women is not taken into account for when 

doing a cost effectiveness analysis. 

1.5. Outline 

The outline of this thesis is as follows. First, Chapter 2 discusses the implementation of the 

SiMRiSc model for the urban Chinese population, including the deduction of the SiMRiSc 

input parameters from literature and the implementation of new tumor growth and survival 

models in SiMRiSc. Then, in Chapter 3, the new model and input parameters are validated 

externally to hospital data from Hong Kong. In Chapter 4, different screening scenarios are 

simulated and assessed on cost effectiveness. The SiMRiSc model and the results are 

further analysed by the sensitivity analysis described in Chapter 5. Chapter 6 discusses 

overdiagnosis of tumors with screening. Chapter 7 presents further work, possible future 

improvements of SiMRiSc and the conclusions.  
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2. Implementing SiMRiSc for the urban Chinese population 

2.1. Introduction 

In this chapter, the adaptation and implementation of the SiMRiSc model for the urban 

Chinese population is presented. 

2.2. Materials and Methods 

The adaptation of SiMRiSc for the urban Chinese population is done by finding and inserting 

appropriate input parameters from literature. These values are mostly ethnicity specific, so 

are different from those that have been used for previous studies with SiMRiSc of the 

Western population. In addition, an error estimate for the parameters has to be calculated, 

as this is required for the sensitivity analysis (Chapter 5). 

The literature study was performed by looking up relevant data from China. Literature was 

hard to find, and for most parameters only one or two relevant sources could be found. Most 

detailed and best documented information was found for Hong Kong, so has been used as a 

source. If literature could not be found for China, other Southeast Asian sources were used, 

like from Japan. 

Then, to confirm that the model is working as expected, each of the input parameters is 

validated internally by comparing the output of SiMRiSc to the input data. Because this was 

not the case for the ‘tumor growth model’, this part of SiMRiSc has been completely re-

written to represent reality. The new version of the tumor growth model is described in 

paragraph 2.4 and makes use of 5 new input parameters: Lower threshold of mammography 

(diameter), tumor volume doubling time (mean and standard deviation) and a self-detection 

diameter (mean and standard deviation). Also, a new tumor survival model has been 

implemented into SiMRiSc, as is described in paragraph 2.5. 

2.3. Results 

Table 1 lists the parameters and their corresponding values that have been used for the 

implementation of the SiMRiSc model the urban Chinese population. These parameters and 

the deduction for the Southeast Asian ethnicity and/or literature source(s) of their values will 

be described in subsequent paragraphs of this chapter.  
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Table 1. Parameters and values of the SiMRiSc model, with 𝟏𝝈 confidence intervals. 

Parameter Value 

Life expectancy See Figure 3 

Breast cancer 
incidence rate 

Lifetime risk 8.35% ± 0.53% 

Mean age 57.73 years ± 0.552 

Spread 17.11 year ± 0.048 

Tumor induction 
model 

Dose per mammogram 3 mSv 

Probability of tumor induction 0.51 ± 0.32 

Tumor growth model 

Limit of clinical detection (diameter) 5 mm 

Tumor volume doubling 
time 

𝜇𝐷𝑇 5.159 ± 0.102 

𝜎𝐷𝑇 0.98 

Self-detection diameter 
𝜇𝑆𝐷 2.92 ± 0.043 

𝜎𝑆𝐷 0.66 

Tumor survival 
model 

a 0.00004475 ± 0.000004392 

b 1.85867 ± 0.0420 

c -0.271 ± 0.0101 

d 2.0167 ± 0.0366 

Distribution of breast 
densities 

BI-RADS density score 1 2 3 4 

Age < 50 11.80% 17.70% 51.00% 19.60% 

Age > 50 24.30% 31.90% 36.60% 7.10% 

Mammographic sensitivity 87% 84% 73% 65% 
 

The cost parameters used by the SiMRiSc model have been provided by the research 

partner in Tianjin, China and are listed in Table 2. 

Table 2. The cost parameters used by the SiMRiSc model, assuming 0.13 Euro per Yuan. 

Parameter Costs in Yuan Costs in € 

Mammogram 200 €26 

Treatment of tumor <20mm 41063 €5356 

20-50mm 52427 €6838 

>50mm 57735 €7531 

Biopsy costs 1200 €157 

 

2.3.1. Life expectancy 

Hong Kong has one of the highest female life expectancies of the world. The life expectancy 

of the female population is used to determine the natural death age of every women in the 

simulation population. Age and sex specific mortality rates have been published by the 

census and statistics department of Hong Kong. [9] Over 42000 deaths were reported in 2011 

and used to generate this data, giving a very small statistical error over this data. 

The cumulative age-specific mortality rate is shown in Figure 3, and compared to the data 

that has been used for SiMRiSc simulations on Dutch population. [10] It is to be noted that the 

women in Hong-Kong have a much higher life expectancy. 



8 
 

 

Figure 3. The cumulative death rate of females in Hong Kong, as published by the Hong Kong 
Department Census and Statistics, compared to data used for Dutch simulations. 

2.3.2. Breast cancer incidence rate 

The breast cancer incidence is used in SiMRiSc to ‘assign’ tumors to women from the 

population at a certain age, according to the breast cancer incidence probability. The breast 

cancer incidence rate that is implemented in SiMRiSc assumes a normal distributed breast 

cancer incidence as function of age. The probability density function is a Gaussian function 

normalized to the lifetime risk of developing breast cancer and has the form of: 

 
𝑝(𝑎) =

f

σ√2π
e

−1
2

(
a−μ

σ
)2

 (1) 

with the parameters shown in Table 3. 

Table 3. Breast cancer risk parameters. 

Parameter Description 

p Risk of acquiring breast cancer during that year 
a Women age 
f Lifetime risk 
σ Spread 
μ Mean 

 

The cumulative risk describes the total risk the women has to acquire breast cancer up until 

a certain age, and is the integral of the probability density function: 

𝐼𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒(𝑎) = ∫
𝑓

𝜎√2𝜋
𝑒

−1
2

(
𝑎−𝜇

𝜎
)2

𝑑𝑎
𝑎

0

 (2) 

Calculating the indefinite integral of this yields the lifetime risk. 

The values of f (total lifetime risk), σ (the spread) and μ (the mean) have been deduced from 

the breast cancer incidence rate for Hong Kong published by the Hong Kong Cancer 

Registry of the Hong Kong Hospital Authority. [4] Table 4 shows the calculated cumulative 

risk from the published data. 
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Table 4. Breast cancer risk (only invasive tumors) in Hong Kong in 2012 over 3508 registered cases. 
[3]

 At 
age 70 the risk is 1 in 16.1. The total lifetime risk is 1 in 12, or about 8.4%. 

Age Cumulative 
risks (one in) 

Cumulative risk [%] and 

1σ error estimate 

≤ 30 772.2 0.130 ± 0.022 
≤ 35 238.4 0.420 ± 0.043  
≤ 40 102.2 0.978 ± 0.072  
≤ 45 55.2 1.813 ± 0.11  
≤ 50 37.6 2.658 ± 0.14  
≤ 55 28.3 3.534 ± 0.18  
≤ 60 22.3 4.492 ± 0.23  
≤ 65 18.4 5.441 ± 0.29  
≤ 70 16.1 6.221 ± 0.35  
lifetime 12 8.355 ± 0.53  

 

The error interval has been calculated using counting statistics, assuming a count rate 

consistent with a Poisson distribution, using the number of cases detected in that age group. 

Figure 4 shows this data in graphical form, and it can be seen that it follows roughly the 

expected ‘S-shape’ of an integrated Normal curve. 

 

Figure 4. The cumulative breast cancer risk in Hong Kong, with error bars (1 σ). 

The differential of the cumulative incidence described the incidence rate, and this data 

roughly follows the expected normal distribution. This principle was used to curve-fit a 

Normal curve to the data, to determine the required parameters of Table 3 to be used in 

SiMRiSc. 

The peak of the incidence is the mean of the normal curve and is at 57.7 years. With the 

mean and total lifetime risk known, only one parameter (the standard deviation) of the 

normal distribution is unknown, and is found by making a fit. Curves were also fitted to points 

of the upper and lower confidence limits, yielding the upper and lower boundaries for the 

Normal-curve parameters. The resulting parameters are listed in Table 5 and compared to 

the parameters that have been found for the Netherlands by Zahn. [8] It can be concluded 
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that the lifetime risk on breast cancer is much lower for Hong Kong than for the Netherlands, 

and on average women in Hong Kong get breast cancer at an earlier age. 

Table 5. Parameters for the Hong Kong breast cancer incidence, with 1σ confidence interval and 
compared to the parameters of the Netherlands for reference. 

 HK NL 

f (lifetime risk) 0.0835 ±0.0053 0.21 
σ (the standard deviation)  17.11 ±0.048 20 
μ (the mean) 57.73 ±0.552 69.5 

 

 

Figure 5. Normal curves of the Hong Kong breast cancer incidence rate with 1σ upper and lower 
confidence limits. 

By taking the integral of the normal curves with the found parameters, the fitted data can be 

compared to the original data from Figure 4. At later ages the Gaussian fit is good, but at 

earlier ages there is a deviation due to the ‘side-lobe’ of the Gaussian function. This will lead 

to a small increased breast cancer incidence at earlier ages in the simulation. 
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Figure 6. Hong Kong cumulative breast cancer risk; fitted data compared to the input data. 

2.3.3. Radiation risk 

At low doses, statistical limitations make it difficult to evaluate cancer risk. The BEIR VII 

committee has developed risk estimates for exposure to low-dose, low-LET radiation to 

humans (mammography screening falls inside this regime), and concluded that a linear no-

threshold model is valid (Figure 7). Even a small amount of radiation can induce cancer, thus 

tumor induction due to mammographic radiation dose has to be accounted for in SiMRiSc. 

The tumor induction parameters are listed in Table 6 and these parameters have been taken 

from previous simulations [5] as no changes are expected for different ethnicities. 

 

Figure 7. Different models for tumor induction. According to the BEIR VII report 
[11]

, the linear no-
threshold model is valid. 

Table 6. The tumor induction parameters used in the SiMRiSc model. 
[5]

 

Dose per mammogram 3 mSv  ± 2 

Probability of tumor induction 0.51     ± 0.32 
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When screening annually from age 30 to age 70 (41 doses of 3mSv), the tumor risk 

increases from 8.3% to 9.0% (Figure 8). 

 

Figure 8. The cumulative tumor risk, with and without screening. 

2.3.4. Breast density, sensitivity and limit of mammographic detection 

The mammographic sensitivity determines the fraction of false negatives. Over 10% of the 

tumors are missed by the mammographic screening. 

Mammographic sensitivity decreases with increasing breast density; dense tissue can 

obscure the tumor. During the life of a woman, breast will become less dense. Sensitivity 

and age are thus related; younger women have a lower sensitivity. Breasts of Asian women 

are denser than western women, making the sensitivity also lower. [12] 

Table 7. Mammographic sensitivity for Asian women according to age and breast-density. 
[12]

 

Distribution of 
breast densities 

BI-RADS 
density 

1 2 3 4 

Age <50 11.80% 17.70% 51.00% 19.60% 
Age >50 24.30% 31.90% 36.60% 7.10% 

Mammography sensitivity 87% 84% 73% 65% 
 

 

Figure 9. Breast density distribution of Asian women according to age and breast density. 
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The median size at which breast tumors become detectable by mammography has been 

reported at 7mm by Michaelson et. al. [13] This limit is influenced by physical and human 

factors, and thus may vary from hospital to hospital. Because the mammographic sensitivity 

also depends on breast density; mammography is less capable of detecting invasive breast 

cancers in women with dense breasts. Therefore, mammography may be capable of 

detecting invasive breast cancers at slightly smaller sizes in older women than in younger 

women. 

The spread on the clinical detection limit is reported asymmetric around the mean: while 

7mm tumors are found approximately 50% of the time, 5mm tumors are found approximately 

35% of the time, 10mm tumors are found approximately 65% of the time and 15-mm tumors 

are found approximately 80% of the time. Tumors larger than 30mm appear never to be 

missed (Table 8). 

Table 8. Sensitivity according to tumor diameter. 

Tumor diameter Found approximately 

5mm 35% 
7mm 50% 
10mm 65% 
15mm 80% 
30mm 100% 

 

In the current implementation of SiMRiSc, the limit of mammographic detection and the 

sensitivity are implemented as separate fixed parameters. 5mm (slightly below the median 

reported by Michaelson et al.) has been used as the limit of mammographic detection. In 

reality however, the sensitivity is related to tumor size and breast density. A smaller tumor 

simply has a lower sensitivity associated to it. While the sensitivity will approach 0 rapidly for 

tumors <5mm diameter, there is no ‘hard’ limit of mammographic detection. It is possible for 

a future improvement of SiMRiSc this is implemented according to the work of Michaelson et 

al. [13], and sensitivity becomes one continuous function of tumor size and breast density, 

removing the need for the concept of a 'hard' limit of mammographic detection. 

2.4. Tumor growth model 

A new tumor growth model has been implemented in SiMRiSc that is based on exponential 

tumor growth. A tumor volume doubling time (TVDT) and self-detected tumor size are 

sampled for each woman randomly from log-normal distributions. From the TVDT and self-

detected tumor size, the detectable preclinical phase (the timeframe in which the tumor is 

potentially detectable with mammography) for each women is calculated. 

2.4.1. Doubling time and detectable preclinical phase 

The tumor growth model implemented in SiMRiSc is based on the exponential tumor growth 

model (Figure 11) proposed by Collins et al. [14] Assuming spherical tumors, the tumor 

volume 𝑉1 at time 𝑡1 starting at volume 𝑉0 at time 𝑡0 can be calculated as: 

 𝑉1 = 𝑉0 ∙ 2(𝑡1−𝑡0) 𝑡𝐷⁄  (3) 
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The tumor volume doubling time (𝑡𝐷) is expressed by [15]: 

 
𝑡𝐷 =

(𝑡1 − 𝑡0) ∙ 𝑙𝑛(2)

𝑙𝑛(𝑉1 𝑉0)⁄
 (4) 

where 𝑉0 and 𝑉1 are the tumor volumes at times 𝑡0 and 𝑡1 respectively. The time it takes for a 

tumor to grow from 𝑉0 to 𝑉1 can be calculated by solving equation 3 for (𝑡1 − 𝑡0): 

 
(𝑡1 − 𝑡0) = log2(

𝑉1

𝑉0
) ∙ 𝑡𝐷 =

𝑙𝑛(𝑉1 𝑉0)⁄

𝑙𝑛(2)
∙ 𝑡𝐷 (5) 

The ‘detectable preclinical phase’ is defined as the time period in which the cancer is 

potentially detectable on the mammogram (Figure 10); starting from when the tumor is large 

enough to be detected by mammography (limit of clinical detection) until the time that the 

tumor is found by the women through ‘self-detection’ because the tumor has grown so large 

that it is detected by palpation or symptoms. 

 

Figure 10.  Timeline showing different phases of the tumor during a person's lifetime. The detectable 
preclinical phase (DPCP) is the time between the lower threshold of detection and the time of self-
detection because of symptoms. CP is the critical point (eg. metastasis) of the tumor. Screening and 
detection need to have happened before this point to be effective. Figure from Obuchowski et al. 

[16]
 

Assumed is that invasive tumors with a diameter larger than 5mm may be detected on the 

mammogram. Then, for example for a woman that would self-detect a tumor at a diameter of 

20mm, the detectable preclinical phase can be calculated by using 𝑉0 = 65𝑚𝑚3 (equivalent 

of the volume of a 5mm diameter sphere) and 𝑉1 = 4189𝑚𝑚3 (equivalent of the volume of a 

20mm diameter sphere). 

If a woman would self-detect a tumor at a diameter 𝐷𝑠𝑑 = 20𝑚𝑚 and the detectable 

preclinical phase 𝑡𝑃𝐶 is defined in years and the doubling time is defined in days, there is a 

linear relationship between the tumor volume doubling time and detectable preclinical phase 

with constant 𝑎: 

 
𝑡𝑃𝐶 =

𝑙𝑛 (4188.79 65.45)⁄

𝑙𝑛(2) ∙ 365
𝑡𝐷 = 𝑎 ∙ 𝑡𝐷 ≈ 0.01644 𝑡𝐷 (6) 

Using this relationship, the detectable preclinical phase 𝑡𝑃𝐶 for 𝑡𝐷 = 174 𝑑𝑎𝑦𝑠 and 𝐷𝑠𝑑 =

20𝑚𝑚 is 2.86 year (Figure 11). 
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Figure 11. The exponential tumor growth model. The tumor diameter is calculated from the volume 
assuming spherical tumors. The detectable preclinical phase is the time it takes for a tumor to grow from 

5mm diameter to the self-detect diameter. This is, for example, approximately 2.86 year for 𝒕𝑫 = 174 days 

and 𝑫𝒔𝒅 = 20mm, or approximately 1.92 year for 𝒕𝑫 = 154 days and 𝑫𝒔𝒅 = 14mm. 

However, the parameters 𝑡𝐷 and 𝐷𝑠𝑑 will be different for each women, and are sampled in 

SiMRiSc from distributions, as will be described in the next 3 paragraphs. 

2.4.2. Doubling time distribution 

Some literature studies reporting data on breast tumor volume doubling times are listed in 

Table 9. The data from Peer et al [17] [18] has been used in previous studies to verify the 

SiMRiSc model for the Dutch population. For this research, data from a Japanese study 

(Kuroishi et al) [19] is used as this data is most relevant for the urban Chinese ethnicity. 

Table 9. A number of studies with estimates of the breast tumor volume doubling time. 
[20]

 

Reference Tumor Volume Doubling Time 

Peer et al 
[17]

 Geometric mean 80 days (age < 50) 

Peer et al 
[17]

 Geometric mean 157 days (age 50–70) 

Peer et al 
[17]

 Geometric mean 188 days (age > 70) 

Michaelson et al 
[20]

 Median 130 days 

Fournier et al 
[21]

 Geometric mean 225 days 

Lundgren 
[22]

 Mean 211 days 

Spratt et al 
[23]

 Median 260 days 

Kuroishi et al 
[19]

 Geometric mean 174 days 
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According to Kuroishi et al. [19] and Greuter et al. [5] the tumor volume doubling time exhibits 

approximately a log-normal distribution (Figure 12). 

 
Figure 12. Comparing Kuroishi et al to the binned 
analytical log-normal distribution with μDT = 5.16 
and σDT = 0.98. 

 
Figure 13. Log-normal probability density function 
f(x) of the tumor volume doubling time, with μ = 5.16 
and σ = 0.98. 

The probability density function of the log-normal distribution (Figure 13) is defined as: 

 
𝑓(𝑥) =

1

𝑥𝜎√2𝜋
𝑒−

1
2

(
ln(𝑥)−𝜇

𝜎
)2

 (7) 

where 𝜇 is the (arithmetic) mean and median of 𝑙𝑛 (𝑥), and 𝜎 is the standard deviation of 

𝑙𝑛(𝑥). The relation between 𝜇 and the geometric mean 𝑚𝑔 of the non-logarithmic data is: 

 𝑚𝑔 = 𝑒𝜇 (8) 

 𝜇 = 𝑙𝑛 (𝑚𝑔) (9) 

According to Kuroishi et al [19], the geometrical mean of the tumor volume doubling time 

𝑚𝑔𝐷𝑇 = 174  days. The mean 𝜇𝐷𝑇 of ln(𝑡𝐷) = 5.16 and the standard deviation 𝜎𝐷𝑇 of 

ln(𝑡𝐷) = 0.98. 

The data of the histogram provided by Kuroishi et al. can be compared to the analytical log-

normal distribution by binning the probability density function (Figure 12). Binning is done by 

integrating the probability density function over the start 𝑎 and end 𝑏 of the interval: 

 
𝑃(𝑎, 𝑏) = ∫

1

𝑥𝜎√2𝜋
𝑒−

1
2

(
ln(𝑥)−𝜇

𝜎
)2

𝑑𝑥
𝑏

𝑎

 (10) 

2.4.3. Detectable preclinical phase distribution 

Because of the linear relationship between the tumor volume doubling time and the 

detectable preclinical phase, the detectable preclinical phase will also exhibit a log-normal 

distribution. If the geometric mean of the tumor volume doubling time is 𝑚𝑔𝐷𝑇, then the 

geometric mean of the detectable preclinical phase 𝑚𝑔𝑃𝐶 can be expressed as: 

 𝑚𝑔𝑃𝐶 = 𝑎 ∙ 𝑚𝑔𝐷𝑇 (11) 

where 𝑎 is the constant between 𝑡𝑃𝐶 and 𝑡𝐷 from equation 6, assuming a fixed self-detect 

diameter of 20mm (this is not the case, as will be described in the next paragraph).  
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Then, by substituting into equation 9: 

 𝜇𝑃𝐶 = 𝑙 𝑛(𝑚𝑔𝑃𝐶) = 𝑙𝑛(𝑎 ∙ 𝑚𝑔𝐷𝑇) = 𝑙𝑛(𝑚𝑔𝐷𝑇) + 𝑙 𝑛(𝑎) =  𝜇𝐷𝑇 + 𝑙 𝑛(𝑎) (12) 

Thus, there is an offset of 𝑙𝑛(0.01644) ≈ −4.11 between 𝜇𝐷𝑇 and  𝜇𝑃𝐶. The geometric mean 

of the detectable preclinical phase using the doubling time mean reported by Kuroishi et al. 

is 2.86 year, resulting in  𝜇𝑃𝐶 = 1.05. Because the spread of the distribution does not change 

by the offset, the standard deviation of ln (𝑡𝐷) is the same as the standard deviation of 

ln (𝑡𝑃𝐶): 

 𝜎𝑃𝐶 = 𝜎𝐷𝑇 (13) 

2.4.4. Self-detection size distribution 

A study that determines the differences in breast cancer presentation was performed in the 

Hong Kong Sanatorium and Hospital centre was performed by Leung et al. [24] In this study, 

of the 702 patients with newly diagnosed primary breast cancer 80% of these new tumors 

were detected by self-discovery, while screening accounted for only 8% of the detected 

tumors. Self-detected tumors were found to be significantly larger than screen-detected 

tumors. 

A fit to and the distribution of self-detected tumor sizes exhibits approximately a log-normal 

distribution (Figure 14) with LN parameters 𝜇𝑆𝐷 = 2.92 and 𝜎𝑆𝐷 = 0.66. This distribution has 

been implemented into the SiMRiSc tumor growth model, and for every women with a tumor, 

a self-detect diameter will be sampled from this distribution using formula (17) and is used to 

calculate the detectable preclinical phase for that women through formula (6). 

 

Figure 14. Log-normal fit of the self-detected tumor sizes, with LN parameters µ=2.92 and σ=0.658. The 
literature source data, the analytic log-normal fit and the results generated by the SiMRiSc model confirm 
a good fit. 
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2.4.5. SiMRiSc parameters and spread 

The population size of the study of Kuroishi 𝑁 = 114 women. The standard error of the mean 

(95% confidence interval) is calculated using:  

 

𝑆𝐸𝑀 = 1.96 ∗ √
𝜇2

𝑁
= 31.9 𝑑𝑎𝑦𝑠 (14) 

Giving: 

 𝑈𝐶𝐿 = 173.6 + 31.9 = 205.5 𝑑𝑎𝑦𝑠 (15) 
 𝐿𝐶𝐿 = 173.6 − 31.9 = 141.7 𝑑𝑎𝑦𝑠 (16) 

for the upper and lower confidence levels of the mean of the tumor volume doubling time. 

These numbers are nearly the same as those reported by Kuroishi et al. in Table II. The 

spread in log-normal space can then be calculated by taking the natural logarithm of the 

UCL and LCL, resulting in Table 10 as the parameters. 

The same principle is applied to the self-detected tumor size parameter. With the larger 

sample size of Leung et al (586 cases) the resulting confidence interval is 0.084. 

Table 10. Parameters of the tumor growth model used in SiMRiSc. 

Limit of clinical detection (diameter) 5 mm 

Tumor volume 
doubling time 

𝜇𝐷𝑇 5.159 ± 0.2 

𝜎𝐷𝑇 0.98 

Self-detection 
diameter 

𝜇𝑆𝐷 2.92 ± 0.084 

𝜎𝑆𝐷 0.658 
 

Note that the sensitivity analysis of SiMRiSc requires the spread in 1𝜎 (~68%) interval 

figures, so the standard error has to be divided by 1.96. 

2.4.6. Internal validation 

The SiMRiSc model generates a tumor volume doubling time and a self-detect diameter for 

every women with a tumor by sampling from their corresponding log-normal distributions 

through [5]:  

 𝑡𝐷𝑇 = 𝑒𝜇𝐷𝑇+𝑍∙𝜎𝐷𝑇 

𝐷𝑆𝐷 = 𝑒𝜇𝑆𝐷+𝑍∙𝜎𝑆𝐷 

(17) 

(18) 

where Z are standard normal variables generated by a Box-Muller transform of a uniformly 

distributed random number. If we would set the spread 𝜎𝐷𝑇 to 0 and use a fixed self-

detection diameter, the algorithm generates only detectable preclinical phases of the 

geometric mean value, as expected, since 𝜇 = 𝑙𝑛 (𝑚𝑔) and 𝑒ln (𝑚𝑔) = 𝑚𝑔. 

The results of 1000 women generated by the SiMRiSc model show good agreement  to the 

results to the (transformed to detectable preclinical phase) data of Kuroishi et al and to a 

binned log-normal distribution with 𝜇𝐷𝑇 = 1.05 and 𝜎𝐷𝑇 = 0.98 (Figure 15) when using a fixed 

self-detect diameter of 20mm. When introducing the spread on the self-detection diameter, 

there is a clear shift towards shorter detectable preclinical phases, as can be expected as 

there will be women who will self-detect their tumor when it is still small (<10mm). 
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Figure 15. Comparing the detectable preclinical phases generated by SiMRiSc to the (transformed to 
detectable preclinical phase) data of Kuroishi et al and to a binned log-normal distribution with μ = 1.05 
and σ = 0.98. 

What is especially to be noted from these results is the wide distribution of the detectable 

preclinical phase. There are a fair amount of women with very short or very long detectable 

preclinical phases; ~1/4 women that develop a tumor will have a detectable preclinical phase 

> 4 year, and ~1/20 women will have a detectable preclinical phase even longer than 10 

years. 

Figure 16 shows the detectable preclinical phases created by the new tumor growth model 

compared to the method used by Peer et al. [17] [18] to estimate the detectable preclinical 

phase. 

 

Figure 16. Comparing the results of the detectable preclinical phase distribution of 1000 SiMRiSc women 
with the distribution using the method of Peer et al. Note that a negative detectable preclinical phase is 
actually possible if a women self-detects a tumor when smaller than <5mm (limit of clinical detection). 



20 
 

2.5. Tumor survival 

Once a tumor is found in SiMRiSc by screening or self-detection, the survival years for that 

woman is calculated. Survival chance was calculated in previous SiMRiSc versions as a 

function of tumor size grouped in only 3 categories; tumors grouped in categories of 0-

20mm, 20-50mm and >50mm diameter had an associated survival chance. To generate 

more accurate results, a new breast cancer survival chance has been modelled as a 2D 

function of tumor diameter at diagnosis versus years after diagnosis. This was done by 

extending the method of Michaelson et al. [25] for different times after diagnosis to obtain a 

continuous curve for all times after diagnosis. Kaplan-Meijer data of the Van Nuys Breast 

Center [25] was used for this approach and a 2D tumor survival chart was obtained (Figure 

17). 

 

Figure 17. Kaplan-Meier survival curves from the Van Nuys population 
[25]

 have been used as the source 
for the Tumor Survival model. 

It is possible to calculate survival chance as a function of tumor diameter only because of the 

fact that the fraction of women with lethal metastatic disease has been shown to have a 

strong correlation to primary tumor diameter. [26] Survival chance and tumor diameter are 

thus directly related. Also, survival data showed no difference in survival of women with 

clinically detected or mammographic detected tumors of the same size. 

Table 11 and Figure 18 shows the raw data of the Van Nuys population with the standard 

error (95% interval) on this data calculated using equation (19): 

 

𝑆𝐸 = 1.96 √
𝑝(1 − 𝑝)

𝑁
 (19) 

where N is the number of patients in that group. 

Table 11. Survival rates of the Van Nuys study. 

Tumor 
size (mm) 

Median 
size (mm) 

No.  
patients 

Fraction surviving 

15 years 12.5 years 10 years 7.5 year 5 years 

10-14 12 248 86%±4.3% 88%±4% 91%±3.6% 93%±3.2% 96%±2.4% 
15-19 17 222 72%±5.9% 81%±5.2% 82%±5.1% 86%±4.6% 91%±3.8% 
20-29 25 318 67%±5.2% 74%±4.8% 76%±4.7% 82%±4.2% 89%±3.4% 
30-49 39 222 46%±6.6% 54%±6.6% 58%±6.5% 64%±6.3% 74%±5.8% 
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Figure 18. Survival rates of the Van Nuys study in graphical form. 

Michaelson et al. [25] has shown the correlation between tumor size and survival can be 

described by equation (9): 

 F(D) = e−QDZ
 (20) 

where F is the survival chance at 15 years after diagnosis and D is the tumor diameter. Q 

and Z are constants, and are reported to be 0.0061 and 1.3276 respectively for Van Nuys 

data (for 15 years after diagnosis) and are found through curve fitting using equation (21). 

 − ln(𝐹) = 𝑄𝐷𝑍 (21) 

If the same process that Michaelson performed for 15 years after diagnosis is repeated for 

5,7.5,10 and 12.5 years on the Van Nuys data (Figure 19) fits of equation (21) can be made 

to obtain Q and Z parameters at different times after diagnosis (Table 12). This can also be 

done for the curves of the upper and lower confidence level of the data to obtain the 

uncertainty over Q and Z. 

 

Figure 19. Fitting Q and Z parameters for different times after diagnosis through formula (21). 
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Table 12. Q and Z parameters for the Van Nuys hospital data, for different times after tumor diagnosis. 

 5 years 7.5 years 10 years 12.5 years 15 years 

Q 0.00086 
±0.00110 

0.00206 
±0.00195 

0.00303 
±0.00246 

0.00508 
±0.00353 

0.00671 
±0.00411 

Z 1.583 
±0.376 

1.459 
±0.238 

1.419 
±0.196 

1.298 
±0.150 

1.298 
±0.134 

 

Q and Z can then be made into a continuous function (as a function of time after tumor 

diagnosis) by fitting a power function for Q and a logarithmic function for Z: 

 𝑄(𝑇) = 𝑎𝑇𝑏 

𝑍(𝑇) = 𝑐 ln 𝑇 + 𝑑 

(22) 

(23) 

where a, b, c and d are constants (Figure 20, Figure 21) and have the values: 

a 4.475 ∙ 10−5 ± 4.392 ∙ 10−5 

b 1.85867 ±  0.420 

c −0.271 ±  0.101 

d 2.0167 ±  0.366 

 

 
Figure 20. Fitting Q to a continuous power 
function. 

 
Figure 21. Fitting Z to a continuous logarithmic 
function. 

 

By substituting (22) and (23) back into equation (20), continuous 2D survival rate curves as 

function of tumor diameter at diagnosis and years after diagnosis can be created (equation 

(24), Figure 22): 

where D is the tumor diameter (at diagnosis) and T the time after diagnosis. This equation is 

solved numerically in SiMRiSc by using a bisection algorithm for the survival years. 

 𝐹(𝐷, 𝑇) = 𝑒−𝑄(𝑇)𝐷𝑍(𝑇)
 (24) 
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Figure 22. 2D Survival chance as function of years after diagnosis and primary tumor diameter at the 
moment of diagnosis, generated by formula (24). 

2.5.1. Validation of the tumor survival model 

Internal Validation 

The results of equation (20) and (24) can be compared to see if there is good 

correspondence after the fitting process (Figure 23). 

 

Figure 23. 15 year survival chance as function of tumor diameter. Comparing equation (20) with (24) (with 
T=15). There is only a very small deviation at large tumor diameters. 
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The survival rate curves can be internally validated by comparing it to the Kaplan-Meier 

survival curves and to the discrete data points of the Van Nuys hospital (Figure 24, Figure 

25, Table 13). 

 
Figure 24. Kaplan-Meier survival curves by the Van 
Nuys hospital. 

 
Figure 25. Survival rates generated by formula 
(24). This gives a good fit compared to the 
Kaplan-Meier curves by the Van Nuys hospital. 

 
Table 13. Comparison of tumor survival rates 15 years after diagnosis of the model with Van Nuys data. 

Tumor survival rate (15 years) Van Nuys Model 

12mm 88% 84.7% 
17mm 72% 77.1% 
25mm 67% 65.3% 
39mm 46% 47% 

 

External validation 

The survival curves have been compared to 4 different external sources, of which 2 are from 

Hong Kong (King et al. [27] and Kwong et al. [28]) and 2 from western countries (Tabar et al. [29, 

25] and the CBS [8]). Tabar et al. and King et al. provide only data points for discrete tumor 

diameters / stages and diameters after cancer diagnosis, while the Kwong et al. and the 

CBS sources provide continuous curves. 

Table 14. Comparison of tumor survival rates 13.3 years after diagnosis between data published by Tabar 
et al. 

[29, 25]
 (Sweden) and the model. 

Tumor survival rate (13.3 years) Tabar et al. Model 

12mm 87% 86.6% 
17mm 80% 79.6% 
25mm 55% 68.5% 
39mm 44% 50.7% 

 

Breast cancer is typically categorized by tumor stage. Stage I breast cancer are tumors with 

a size less than two centimeters and has not spread to surrounding lymph nodes or outside 

the breast. Stage II tumors are 2 to 5cm in diameter, and Stage III tumors are larger than 

5cm. Because the model does not account for positive nodes and/or metastasis, tumors with 

a diameter of 10mm are simply compared to stage I, 35mm to stage II and 60mm to stage 

III. 
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Table 15 and Figure 26 until Figure 29 show the comparison between the various sources 

and the model data. 

Table 15. Comparison between tumor survival rates 5 years after diagnosis, reported by King et al. 
[27]

 
(Hong Kong) and the tumor survival model. 

Tumor survival rate (5 years) King et al. Model 

Stage I / 10mm 100% 96.7% 
Stage II / 35mm 78.8% 78.2% 
Stage III / 60mm 59.7% 56.2% 

 

 

 
Figure 26. Tumor survival data of Hong Kong by 
Kwong et al. 

[28]
 

 
 

 
Figure 27. Tumor survival rates of various tumor 
sizes by the model. 

 
Figure 28. Cancer survival in the Netherlands (18 
years and older). Source: CBS. As used by Z. Zhan 
and E.J Postema for Dutch simulations using 
SiMRiSc. 

[8]
 
[10]

 

 
Figure 29. Tumor survival rates of various tumor 
sizes by the model. 
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2.6. Discussion 

The SiMRiSc model was modified and changed significantly. New tumor growth and survival 

models have been implemented in SiMRiSc. The growth model matches conceptually better 

with reality, and now women will self-detect tumors in SiMRiSc according to a distribution. 

The preclinical period is now back-calculated from the tumor growth speed and self-detect 

diameter for each woman individually. The tumor survival model now is a fully continuous 

function. The tumor survival model was validated to multiple sources, both Western and from 

Hong-Kong. It can be concluded that the new survival curves can be used for SiMRiSc 

simulations of both urban-Chinese and Western populations. 

2.7. Conclusion 

The SiMRiSc model has been adapted for the urban Chinese population. Literature and 

values for the ethnicity specific input parameters have been found and deduced, including 

error-estimates for the variables based on the population size used in the literature. The 

different parts of SiMRiSc have succeeded the internal validation. The next step is the 

external validation of the model, as is presented in the next chapter.  



27 
 

3. External validation 

3.1. Introduction 

To verify the correct functioning and interaction between the different parts of the model, the 

‘model-as-a-whole’ is validated externally by comparing the results of the model to 

independent (from the input data) sources/data. 

3.2. Material and methods 

The results of the SiMRiSc model are validated externally against 2 studies performed in 

Hong Kong: a screening trial performed in the Hong Kong Kwong Wah Hospital (KWH) by 

Lui et al. [30] in Chapter 3.3.1 and to 702 consecutive patients referred to the Hong Kong 

Sanatorium and Hospital by Leung et al. [24] in Chapter 3.3.2. 

3.3. Results 

3.3.1. Kwong Wah Hospital 

During this 5 year study (1998-2002), 46637 screening mammograms have been performed 

in the KWH, leading to the detecting 232 cases of breast cancer, of which 160 cases of 

invasive breast cancer. The total detection rate was thus 3.43 per 1000 mammograms. 

Furthermore, in this screening program: 

 The screening interval is 2 years 

 2 interval cancers have been detected (in total) 

 25% of the detected cancers of which the pathology was available were found to be 
large (>2cm), 47% small (<2cm) and 28% were DCIS (DCIS is excluded for this 
validation). 

 
Table 16 and Table 17 list the data for this screening program according to age and 

screening round. The patients with DCIS have been subtracted. Unfortunately there is no 

data available combining both tables. 

Table 16. Number of woman attending for mammographic screening and the number of cancers detected 
in the KWH during the screening program in the period of 1998 to 2002. 

Age* Mammograms Tumors detected Detection rate per 1000 
mammograms 

40-44 6678 45 6.68 
45-49 15516 50 3.20 
50-54 13301 34 2.54 
55-59 6559 16 2.42 
60-64 2304 8 3.44 
>65 2091 7 3.44 

Total 46449 160 3.43 
* Note there were also 188 mammograms performed in age-group 35-39, but all women in this age-group where considered to 

be in a high risk group due to a positive family history and have been excluded from our validation. 
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Table 17. Number of tumors detected according to the screening round. 

Screening round Mammograms Tumors 
detected 

Detection rate per 1000 
mammograms (95% CI) 

First 29028  121 4.16 

Second  11236 32 2.82 

Third  4772 7 1.51 

Fourth   1388 5 3.63 

Fifth or higher  213 1 3.38  

Total 46637* 230 3.55 

Total, ex. 1
st

 round 17609* 45 2.54* 

* Including the 188 mammograms performed in age-group 35-39. 

A SiMRiSc simulation to compare to this data is set up with a start population of 250000 

women to suppress the statistical error as much as possible in the results. Screening is 

performed in 4 rounds with an interval of 2 years, as the number of women having more than 

4 rounds is very low in the KWH study. Note that only ~1/6 women of the KWH trial would go 

through to the third round or higher, while in the SiMRiSc model all women go through all the 

screening rounds. 

First round 
Table 18 shows the detection rates comparing only the first screening round of the SiMRiSc 

simulation and the KWH study. 

Table 18. First round screening, comparison between the KWH trial and the SiMRiSc results. 

 Mammograms Tumors detected Detection rate per 
1000 mammograms 

SiMRiSc 242121 1337 5.52 
Kwong Wah Hospital 29028 121 4.16 

 

Subsequent rounds 
The results of the subsequent rounds are shown in Table 19. A weighted average of the 

subsequent rounds in SiMRiSc is compared to the weighted average of the subsequent 

rounds of the KWH study. 

Table 19. Subsequent round screening, comparison between the KWH trial and the SiMRiSc results. 

 Mammograms Tumors detected Detection rate per 
1000 mammograms 

SiMRiSc 715055 1918 2.68 

Kwong Wah Hospital 17609 45 2.54 
 

Total study 
The results of the total studies (first and subsequent rounds combined) are listed in Table 

20. 

Table 20. Total screening results, comparison between the KWH trial and the SiMRiSc results. 

 Mammograms Tumors detected Detection rate per 
1000 mammograms 

SiMRiSc 957176 3255 3.40 
Kwong Wah Hospital 46637 166 3.55 
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3.3.2. Hong Kong Sanatorium and Hospital 

A biannual screening scenario from age 40 to 70 is setup in SiMRiSc. The tumor size 

distribution generated by SiMRiSc is shown in Figure 30, showing the difference between 

the self- and screen-detected tumors. The self-detected tumor distribution shown here is the 

same as shown in Figure 14. 

 

Figure 30. The size distribution of found tumors by self-detection only or with the screening program 
implemented. Self-detected tumors are significantly larger than screen detected tumors. 

Figure 31 shows the same self- and screen detected tumor size distribution according to the 

study of Leung et al. [24] 

 

Figure 31. Distribution of tumor sizes of mammographic detected and self-detected tumors, in Hong 
Kong. 

[24]
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Figure 32 and Figure 33 show the direct comparison between the data of Leung et al and the 

simulation results. 

 

Figure 32. Screen detected tumor size distribution, comparing Leung et al with the simulation results. 

 

Figure 33. Self-detected tumor size distribution, comparing Leung et al with the simulation results. 

3.4. Discussion 

3.4.1. Kwong Wah Hospital 

Both in the SiMRiSc simulation and the KWH trial the detection rate in the first round is 

higher than the subsequent rounds. This can be explained by due to the fact that there are a 

fair amount of women with slow growing tumors (Figure 12), where the tumor might have 

been present for multiple years. These tumors have a good chance of being detected in the 

first screening round. The detection rates of the first and subsequent rounds of SiMRiSc 

simulation and the KWH trial show good agreement. 

3.4.2. Hong Kong Sanatorium and Hospital 

Assessing the self-detected versus the screen-detected tumors clearly shows the effect of 

screening, and tumors are being found early at smaller size. Taking the self-detected tumors 

into account only, the majority of the detected tumors are larger than 10mm. When 

implementing the screening program, there is a great shift towards smaller tumors.  
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This same shift is also visible when comparing the self-detected tumor sizes with 

mammographic detected tumors from data published by Leung et al. The tumor size 

distributions are very similar for the simulation and the literature data. Mind that these 

mammographic detected tumors are not detected by a systematic screening program, so 

cannot be compared to the outcome of the SiMRiSc in a quantitative way. 

3.5. Conclusion 

The SiMRiSc model behaves as expected. In the first round, the detection ratio is higher 

than subsequent rounds because slow growing tumors are being detected. This effect is also 

visible in the screening trial performed at the Kwong Wah Hospital in Hong Kong. The 

detection rate between the simulations and this trial study seem comparable. Tumor size 

distributions of self- and screen detected tumors are also very comparable, between the 

SiMRiSc simulations and patients referred to the Hong Kong Sanatorium and Hospital. 

Simulations with SiMRiSc are accurately enough to allow predictive scenario simulations.  
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4. Scenario simulations 

4.1. Introduction 

In this chapter, the results of different screening scenarios simulations are presented and the 

effect of the screening in terms of years of life saved (YOLS), costs (in € per year of life 

saved), number of detected and interval cancers, false positives and tumor size are 

evaluated. 

4.2. Material and methods 

The screening scenarios are setup using the input parameters from chapter 2. Each 

scenario uses the same input population of 100.000 women. This way, the exact influence of 

the different screening scenarios can be compared for each woman in the simulation. 

The screening scenarios are varied by changing the start age of screening between 30 and 

50 years, varying the end age between 60 and 70 and using annual or biennial screening 

intervals. A scenario without screening is included for reference.  

The YOLS are calculated by subtracting the sum of the death age of all women without 

screening from the sum of the death age of all women with screening (Equation (25)). The 

incremented costs of the scenario are calculated by subtracting the sum of all costs without 

screening from the sum of all costs with screening (Equation (26)). The average costs per 

life-year saved (€/YOLS) can then be calculated by dividing these. 

𝑌𝑂𝐿𝑆 = ∑ 𝑎𝑑𝑒𝑎𝑡ℎ(𝑤𝑖𝑡ℎ 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔) − ∑ 𝑎𝑑𝑒𝑎𝑡ℎ(𝑛𝑜 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔) 
(25) 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 = ∑ 𝑤𝑜𝑚𝑎𝑛 𝑐𝑜𝑠𝑡𝑠𝑤𝑖𝑡ℎ 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 − ∑ 𝑤𝑜𝑚𝑎𝑛 𝑐𝑜𝑠𝑡𝑠𝑛𝑜 𝑠𝑐𝑟𝑒𝑒𝑛𝑖𝑛𝑔 (26) 

4.3. Results 

Table 21 shows the results of the scenario simulations. 

Table 21. Simulated screening scenarios and results, sorted to increasing costs per life-year saved. 

Start 
age 

End 
age 

Interval 
(years) 

Tumors 
Detected * 

Tumor 
deaths * 

YOLS * €/YOLS ** 

No Screening 0 33.11 - - 
40 60 2 29.13 26.55 128.98 2655 
30 60 2 35.28 25.36 180.22 2781 
40 70 2 38.87 25.06 145.79 3329 
50 70 2 28.74 27.63 81.56 3961 
40 60 1 34.33 25.14 163.50 4073 
30 60 1 43.08 23.78 226.76 4372 
40 70 1 46.98 23.09 187.19 5104 
50 70 1 34.17 26.08 106.77 5889 

* Per 1000 women  ** Assuming €0.13/Yuan 
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4.4. Discussion 

When implementing the '40-60-2' scenario (biennial screening starting at 40 and ending at 

age 60), the mortality of breast cancer would go down from 33.11 per 1000 women to 26.55 

per 1000 women, with 128.98 years of life saved per 1000 women. The increased healthcare 

costs for this are €2655 per life year saved, the most cost effective of all tested scenarios. 

Then, when starting screening for 10 years earlier, at age 30, the mortality further decreases 

to 25.36 per 1000 women, but the gained life years go up significantly (to 180.22) while the 

costs per won life year goes up only marginally (to €2781). Starting with screening earlier 

seems like a sensible thing to do. 

When screening from 40 until age 70 (screening for 10 years longer compared to the 40-60 

scenario) results in a lower breast cancer mortality than the '30-60' scenario, but the life-

years saved is lower; this can be explained by the fact that a tumor found at earlier age 

results in more life year saved than a tumor found at later age. 

The 50-70-2 scenario (like implemented in the Netherlands) has only disadvantages 

compared to the scenarios discussed above. This can partly be explained by the earlier 

peak-age of the breast-cancer incidence in the Chinese urban population; the incidence 

peaks over 10 year earlier (see paragraph 2.3.2) and also because of much increased 

overdiagnosis (according to 'definition 2' of chapter 6) when screening at later ages. 

Changing the screening interval for the various scenarios from 2 years to 1 year significantly 

reduces the cost effectiveness, but also the won life-years increase with about 25%.  

4.5. Conclusion 

Breast cancer mortality is simulated to go down from 33.11 tumor death per 1000 born 

women to 26.55 when implementing a biennial screening scenario starting from age 40 until 

age 70, giving a 129 years of life saved per 1000 women at a costs of €2655 per YOLS. 

Starting screening 10 years earlier, at age 30 further increases the YOLS to 180 years per 

1000 women, while increasing the costs slightly to €2781 per YOLS. Starting screening 

earlier seems like a sensible thing to do. Changing the screening interval from 2 years to 1 

year decreases the mortality with about 25%, but reduces the cost effectiveness to over 

€4000 per YOLS. Shortening the screening interval really comes down to willingness to 

spend.  
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5. Sensitivity analysis 

5.1. Introduction 

The SiMRiSc model and the results are studied by analyzing the propagation of uncertainty 

of the input parameters on the results by performing a sensitivity analysis. This will show the 

variance in the results, and give a good indication of which of the input variables contribute 

most to the uncertainty of the output. Uncertainty in the output in SiMRiSc can be caused by 

2 things (Figure 34): 

 Uncertainty in the input population. 

 Uncertainty in the input parameters. 

 

Figure 34. Input variables will have uncertainty, due to finite sample size used in the study. The 
simulation population will also add uncertainty, due to a finite number of women in the simulation. 

5.2. Material and methods 

The sensitivity analysis is performed by running (iterating) the same scenario 100 times, 

each time using a different seed of the random number generator, so a different input 

population or set of random sampled input parameters is taken. For each iteration, a 

simulation without screening using the same input parameters/population has to be run, in 

order to provide the baseline to calculate equations (25) and (26). The output is a plot of the 

years of life saved versus additional costs of each iteration, visualized in a scatter plot. From 

the scatter plots, the CEAC (Cost effectiveness acceptability curves) can be created, which 

show the variation of the output. 

3 different sensitivity analyses are run: 

 The first sensitivity analysis is performed for different SiMRiSc population sizes, by using 

a different seed for each iteration, effectively ‘picking’ a random population of N each 

time, showing the variance in the output because of the statistical uncertainty of a finite 

population size. The 40-60-2 scenario is used for this analysis. 

 A sensitivity analysis is run by varying one of the input parameters each iteration, by 

sampling this input parameter from the distribution according to the uncertainty described 

in Chapter 2 on that input parameter. The other input parameters are kept constant at 

their nominal value, and the same input population of 100.000 is used. This way, the 

contribution of only that input variable on the variance of the output is shown. Again the 

40-60-2 scenario is used. 
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 Finally, the sensitivity analysis is run for all the scenarios of Chapter 4. Again, the same 

input population of 100.000 is used for each iteration, but now all parameters are 

randomly sampled, showing the total variance in the cost effectiveness of each scenario 

due to the uncertainty of all input parameters.  

5.3. Results 

5.3.1. Population size 

Figure 35 shows CEAC curves for the 40-60-2 scenario using different population sizes of 

10000, 25000, 50000 and 100000 women per iteration. Scatter plots are attached as 

Appendix C. 

 

Figure 35. 100 simulations using a random population of various sizes, using the 40-60-2 scenario. 

5.3.2. Model input parameters 

Figure 36 shows the SEAC curves when varying the input parameters. See Appendix B for 

ICER scatter plots and CEAC curves of all the input parameters. 
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Figure 36. CEAC curves variating only single input parameters, using the 40-60-2 scenario. 

5.3.3. Scenarios 

Figure 37 shows the CEAC curves of the scenarios of Chapter 4.  

 

Figure 37. Cost effectiveness acceptability curves of different screening scenarios. 100 simulations using 
a population of 100.000 women per scenario. 
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The spread on the costs per life-year saved can also be visualized as a histogram. Figure 38 

shows the histogram for the 40-60-2 scenario. Scatter plots, CEAC curves and histograms 

for all scenarios are in Appendix A. 

 

Figure 38.  Uncertainty on the costs per life-year saved for the 40-60-2 scenario. 

5.4. Discussion 

As expected, using a smaller simulation population gives a larger variance of the populations 

(Figure 35). Using a larger population per simulation decreases this statistical spread, but 

also increases the computation time. When simulating with a population size of 100.000 

women keeps, the uncertainty because of the population is about the same magnitude as 

the spread because one of the input parameters (see next paragraph), while the simulation 

time is still reasonable (~10 minutes for 100 iterations). 

Performing a sensitivity analysis over the individual input parameters is helpful to identify the 

input parameters that have the largest contribution to the uncertainty in the output. Extra 

attention could be given to these input variables (perhaps by finding literature sources with 

less uncertainty for these variables) to decrease the uncertainty in the output. The tumor 

volume doubling time and self-detection diameter are shown to have the greatest influence 

on the variance of the output. The tumor induction (Beir 7) and mean age of the tumor 

incidence have almost no influence on the outcome. 

The 50% point of the ICER (incremental cost-effectiveness ratios) for the scenarios 

corresponds to the median €/YOLS for that scenario (Table 21). Rough 95% confidence 

interval estimation for the 40-60-2 scenario is €1900 to €3500 per year of life saved. 

5.4.1. Further applications of the sensitivity analysis 

The ICER scatter plots are also useful for validation of the model, and can be used to search 

for unexpected relationships between inputs and outputs. For example, Figure 39 displays 

the scatterplot for a parameter of the tumor survival model, and proves that the tumor 

survival model does not influence costs, only years of life saved, as expected. In principle 

these plots could be made for any input/output relation (for example, number of detected 

tumors, interval tumors, etc), and the response of these outputs could be analyzed to detect 

unexpected behavior, but is beyond the scope of this research. 
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Figure 39. Scatter plot of the 'a' parameter of the tumor survival model. The tumor survival model shows 
no influence on the costs, only on the years of life saved. 

5.5. Conclusion 

A sensitivity analyses have been run to analyze the SiMRiSc model and uncertainty of the 

output. The tumor volume doubling time and self-detection diameter are shown to have the 

greatest influence on the variance of the output. In addition to the input parameters, the finite 

population size adds uncertainty. 100.000 women per iteration is determined as the minimal 

population size to be used to keep the uncertainty because of the population to about the 

same magnitude as the spread because one of the input parameters. ICER plots of the 

scenarios are created, showing the variance on the cost-effectiveness.  
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6. Overdiagnosis 

6.1. Introduction 

In case of overdiagnosis, a tumor is detected that will never cause symptoms or death during 

the women's life. 

6.2. Material and methods 

Two definitions of what is overdiagnosis and how to calculate the overdiagnosis percentage 

in SiMRiSc can be made: 

 Over-diagnosed tumors are screen detected, but would not be self-detected without 

screening 

 Over-diagnosed tumors are screen detected, but the women would die of another (than 

tumor) cause without screening 

6.3. Results 

Table 22 presents the overdiagnosis of the screening scenarios. 

Table 22. Overdiagnosis of tumors of the various scenarios, according to definition 1 and definition 2 

Start 
age 

End 
age 

Interval 
(years) 

Tumors 
detecte
d * 

Over-
diagnosed 
tumors (def 1) * 

Over-
diagnosis 
(def 1) 

Over-
diagnosed 
tumors (def 2) * 

Over-
diagnosis 
(def 2) 

No Screening 0     
40 60 2 29.13 0.59 2.03% 13.91 48% 
30 60 2 35.28 0.66 1.87% 16.1 46% 
40 70 2 38.87 1.08 2.78% 20.85 54% 
50 70 2 28.74 0.82 2.85% 16.68 58% 
40 60 1 34.33 0.64 1.86% 16.64 48% 
30 60 1 43.08 0.88 2.04% 20.29 47% 
40 70 1 46.98 1.35 2.87% 25.73 55% 
50 70 1 34.17 0.9 2.63% 20.17 59% 
* Per 1000 women 

6.4. Discussion 

The 2 definitions of overdiagnosis result in vastly different numbers for the overdiagnosed 

tumors per scenario. 

Definition 1 tells how much tumors are detected that really would have had no influence on 

the women's life. These numbers are quite low, as the chance is high that the women would 

self-detect the tumor at some point in her life when it grows larger. 

But, as definition 2 shows, a large fraction of the screen-detected tumors do not yield any 

extra life-years gained. This can be explained by the fact that in the case where no 

screening is implemented, and women find cancer by means of self-detection, a large 

fraction of the cancers are cured or delayed long enough that the women will die of other 

causes. In these cases, screening can still detect tumors earlier and at a smaller size, but it 

does not lead to any life years gained or contribute to the effectiveness in terms of €/YOLS 

for the screening program. However, screening might still have other advantages in these 

cases, like detecting the tumor while it is small enough to allow breast conserving surgery 

while this might not have been the case without screening. Also to be noted is that this 

overdiagnosis percentage of definition 2 goes up when either the start- or end-age of 
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screening is later. For example, the 50-70 scenarios have a higher overdiagnosis than the 

40-60 scenarios. This can be explained by the fact that when a tumor onsets at a later age, 

and is detected by screening at a later age, the chance of the women dying naturally before 

dying because of the tumor increases. 

It can be concluded that a large fraction (~50%) of the screen detected tumors do not lead to 

life-years gained, and thus also not contribute to the cost-effectiveness (€/YOLS) of the 

screening. 

SiMRiSc does not add 'pseudo-disease' to the population. All the tumors in SiMRiSc are 

'real' tumors that would eventually cause symptoms, because the tumor-incidence curves 

are from an unscreened population. Very slow progressing or even regressing tumors would 

not be self-detected, and are thus also not added to the tumor incidence statistics. When 

implementing screening, some of these tumors may very well be detected and this is the 

actual cause of overdiagnosis (Figure 40). 

These cases of screen-detected overdiagnosis will also be added to the tumor incidence 

statistics. One hypothesis could be that the large difference in breast cancer incidence 

between the western world and China are (partly) due to screening. Increased awareness of 

women and better healthcare in general may also lead to increased detection of tumors that 

would otherwise never cause symptoms. 

 

Figure 40. Exaggerated figures for the sake of the argument. Overdiagnosis may be the cause of 
increased tumor incidence. Also the survival rates may increase when implementing screening, but this 
effect may not be entirely 'true'. Figure from 

[31]
. 

6.5. Conclusion 

Because SiMRiSc does not add pseudo-disease to the population, it is doubtful that 

overdiagnosis can really be simulated with SiMRiSc. If the pseudo-disease detected tumors 

are treated and determine a large fraction of the hospitalization costs, it is doubtful that the 

cost-effectiveness analysis performed with SiMRiSc is valid. One suggestion to allow 

simulating overdiagnosed tumors is by implementing a Gompertz function in the tumor 

growth model to allow for stagnating tumors in the simulation (see chapter 7.1.2). 

The actual causes and magnitude of overdiagnosis, and the influence on the screening 

model is beyond the scope of this research.  
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7. General Discussion 

7.1. Further work 

Some suggestions are given to improve or extend the results presented in this thesis. 

7.1.1. Urban Chinese simulations 

More detailed scenarios could be simulated. This study only performed very 'rough' 

scenario's; only varying the start- and end-age of screening with 10 years, and only looking 

at annual and biennial screening. 

Instead of calculating the death rates, tumor incidence and detection rates per 1000 born 

women, these should be calculated as age-standardised rates (thus as an amount per 

100.000 women alive per age-group). This would allow comparison to other studies and 

literature. 

The sensitivity analysis could be used to analyse different output parameters, like tumor size 

and detection rate, to generate error bars on the data of chapter 3. 

7.1.2. Possible improvements of the SiMRiSc model 

Here some possible improvements of the SiMRiSc model are discussed. While the technical 

implementation of these suggestions is not that complicated, the difficult part will be to find 

accurate literature to provide input parameters for these suggested models. 

Tumor growth model and overdiagnosis 
The exponential growth model currently implemented in SiMRiSc is the simplest model. As 

this model does not allow for growth deceleration and/or take metabolic considerations into 

account. One model of bounded growth that could be implemented in future versions of 

SiMRiSc makes use of a Gompertz Function. [32] Implementing such a model could also be 

the first step to accurately simulate overdiagnosis, as this allows simulation of stagnating 

tumors that will never be self-detected or cause symptoms. 

Mammographic sensitivity 
Currently, the mammographic sensitivity in SiMRiSc is not a function of tumor size. It is 

recommended that for a future improvement of SiMRiSc this is implemented according to the 

work of Michaelson et al, and sensitivity becomes one continuous function of tumor size and 

breast density, removing the need for the concept of a 'hard' limit of mammographic 

detection. 

7.2. Conclusions 

The aim of this study was to assess the benefits and cost-efficiency of implementing 

systematic mammographic breast cancer screening in the urban Chinese population. This 

was done implementing and using the SiMRiSc breast cancer screening model. 

Literature and values for the ethnicity specific input parameters have been found and 

deduced. The SiMRiSc model was modified and changed significantly. New tumor growth 

and survival models have been implemented in SiMRiSc. The growth models matches 

conceptually better with reality, and now women will self-detect tumors in the model 

according to a distribution. The preclinical period is now back-calculated from the tumor 

growth speed and self-detect diameter for each woman individually. The tumor survival 

model now is a fully continuous function. The tumor survival model was validated to multiple 
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sources, both Western and from Hong-Kong. It can be concluded that the new survival 

curves can be used for SiMRiSc simulations of both urban-Chinese and Western 

populations. 

The SiMRiSc model as a whole was validated externally against 2 hospital studies from 

Hong Kong. This showed that with screening tumors are detected at a significantly smaller 

size than without screening, giving an improved survival chance for women. 

The results of different screening scenarios that have been simulated include the number of 

cancers detected and the incremental costs per life-year saved. These simulations suggest 

that starting early with screening, at age 30, seems to be cost-effective for the urban 

Chinese population, resulting in a cost of €2781 per life year gained. Screening does not 

yield any life-year gained for a large fraction (~50%) of women with screen-detected tumors. 

However, the tumor will still be detected early and at a smaller size.  

A sensitivity analysis has been performed and shows that the tumor volume doubling time is 

the greatest contributor to the uncertainty in the results, with the self-detection diameter 

second. Running simulations with 100000 women is deemed the minimum population size to 

keep statistical variance because limited. 

Because SiMRiSc does not add pseudo-disease to the population, it is doubtful that 

overdiagnosis can really be simulated with SiMRiSc. If the pseudo-disease detected tumors 

are treated and determine a large fraction of the hospitalization costs, it is doubtful that the 

cost-effectiveness analysis performed with SiMRiSc is valid. A suggestion has been given to 

implement stagnating tumors to the tumor growth model to allow for simulation of 

overdiagnosed tumors.  
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Appendix A. ICER and CEAC curves of scenarios 
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Scenario 30-60-2 
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Scenario 40-70-2 
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Scenario 50-70-2 
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Scenario 40-60-1 
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Scenario 30-60-1 
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Scenario 40-70-1 
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Scenario 50-70-1 
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Scenario 30-60-1 
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Appendix B. ICER and CEAC curves of input parameters 
 

Breast cancer incidence: Lifetime risk 

  
 

Breast cancer incidence: Spread 

  
 

Breast cancer incidence: Mean age 
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Tumor volume doubling time 

  
 

Self-detection diameter 

  
 

Tumor induction b 
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Tumor survival a 

  
 

Tumor survival b 

  
 

Tumor survival c 
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Tumor survival d 
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Appendix C. ICER and CEAC curves of population sizes 
 

Population 10000 

  
 

Population 25000 

  
 

Population 50000 
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Population 100000 
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Appendix D. SiMRiSc Flowchart 
 

 


