# -*- coding: utf-8 -*-
import warnings
import numpy as np
from numpy.linalg import eigh
from ase.optimize.optimize import Optimizer
from ase.utils import basestring
[docs]class BFGS(Optimizer):
def __init__(self, atoms, restart=None, logfile='-', trajectory=None,
maxstep=0.04, master=None):
"""BFGS optimizer.
Parameters:
atoms: Atoms object
The Atoms object to relax.
restart: string
Pickle file used to store hessian matrix. If set, file with
such a name will be searched and hessian matrix stored will
be used, if the file exists.
trajectory: string
Pickle file used to store trajectory of atomic movement.
logfile: file object or str
If *logfile* is a string, a file with that name will be opened.
Use '-' for stdout.
maxstep: float
Used to set the maximum distance an atom can move per
iteration (default value is 0.04 Å).
master: boolean
Defaults to None, which causes only rank 0 to save files. If
set to true, this rank will save files.
"""
if maxstep > 1.0:
warnings.warn('You are using a much too large value for '
'the maximum step size: %.1f Å' % maxstep)
self.maxstep = maxstep
Optimizer.__init__(self, atoms, restart, logfile, trajectory, master)
def todict(self):
d = Optimizer.todict(self)
if hasattr(self, 'maxstep'):
d.update(maxstep=self.maxstep)
return d
def initialize(self):
self.H = None
self.r0 = None
self.f0 = None
def read(self):
self.H, self.r0, self.f0, self.maxstep = self.load()
def step(self, f=None):
atoms = self.atoms
if f is None:
f = atoms.get_forces()
r = atoms.get_positions()
f = f.reshape(-1)
self.update(r.flat, f, self.r0, self.f0)
omega, V = eigh(self.H)
dr = np.dot(V, np.dot(f, V) / np.fabs(omega)).reshape((-1, 3))
steplengths = (dr**2).sum(1)**0.5
dr = self.determine_step(dr, steplengths)
atoms.set_positions(r + dr)
self.r0 = r.flat.copy()
self.f0 = f.copy()
self.dump((self.H, self.r0, self.f0, self.maxstep))
def determine_step(self, dr, steplengths):
"""Determine step to take according to maxstep
Normalize all steps as the largest step. This way
we still move along the eigendirection.
"""
maxsteplength = np.max(steplengths)
if maxsteplength >= self.maxstep:
dr *= self.maxstep / maxsteplength
return dr
def update(self, r, f, r0, f0):
if self.H is None:
self.H = np.eye(3 * len(self.atoms)) * 70.0
return
dr = r - r0
if np.abs(dr).max() < 1e-7:
# Same configuration again (maybe a restart):
return
df = f - f0
a = np.dot(dr, df)
dg = np.dot(self.H, dr)
b = np.dot(dr, dg)
self.H -= np.outer(df, df) / a + np.outer(dg, dg) / b
def replay_trajectory(self, traj):
"""Initialize hessian from old trajectory."""
if isinstance(traj, basestring):
from ase.io.trajectory import Trajectory
traj = Trajectory(traj, 'r')
self.H = None
atoms = traj[0]
r0 = atoms.get_positions().ravel()
f0 = atoms.get_forces().ravel()
for atoms in traj:
r = atoms.get_positions().ravel()
f = atoms.get_forces().ravel()
self.update(r, f, r0, f0)
r0 = r
f0 = f
self.r0 = r0
self.f0 = f0
class oldBFGS(BFGS):
def determine_step(self, dr, steplengths):
"""Old BFGS behaviour for scaling step lengths
This keeps the behaviour of truncating individual steps. Some might
depend of this as some absurd kind of stimulated annealing to find the
global minimum.
"""
dr /= np.maximum(steplengths / self.maxstep, 1.0).reshape(-1, 1)
return dr