
 1

Gprof2tree
Huub van Dam, CCLRC Daresbury Laboratory, January 2006

Contents
Contents .. 1

Quick reference... 2

User guide ... 3

What gprof2tree is for.. 3

What gprof2tree can and cannot do ... 3

Gprof2tree’s requirements and recommended companion software........................ 3
Call tree generation ... 4

Generating a basic call tree ... 4

Pruning the call tree .. 6

Call tree printing ... 10

Ordering the branches for code comparison ... 10

Options to aid the interpretation ... 11

Implementation Guide .. 12

Motivation... 12

Requirements .. 12

Limits .. 12

Outline of the implementation .. 13

Reading the gprof data into tables .. 13

Manipulating the data tables ... 14

Writing the call tree .. 14

References... 14

 2

Quick reference

This section provides a quick reminder to the expert user as to the syntax and meaning of

the supported options.

--parents Print the call moving upwards. I.e. print the routines that call

<subroutine name>.
--children Print the call moving downwards. I.e. print the routines that routine

<subroutine name> calls. This is the default.
--sort Alphabetically sort the routine names in the call tree. This is useful if

call trees of slighty different runs have to be compared as it reduces

the differences introduced by changes of CPU usage.

--nosort Print the routines in the call tree in the same order as found in the

gprof call tree information. Usually this means that the routines

with the highest CPU usage come first. This is the default.

--once Print the sub-tree for every subroutine only once, i.e. the first time it

is encountered. In subsequent encounters only the call is printed. This

helps to greatly reduce the length of the printed call trees and is

therefore the default.

--always Always print the tree of every subroutine encountered limited only by

the --stopat and --exclude options in effect.
--exclude Removes all the routines that are named in the specified files from the

call tree. This is useful in larger codes where there can a lot of

routines that are of no particular interest.

--stopat Removes the call tree information of the routines that are named in

the specified files. The routine names themselves are still printed in

the call trees but not the routines they call. This is particularly useful

in larger codes which may have deep call trees. In which one may

want to know where a routine is called but not how it goes about

doing its job.

--to Prints only the paths through the code that lead from the desired

subroutine to the routines named in the list. All other paths are

suppressed.

--level Print the depth level of a routine in the call tree on every line.

gprof2tree [--parents] [--children] [--[no]sort]
[--once|--always]
[--exclude "<file1>[:<file2>[:<file3>]]"]
[--stopat "<file4>[:<file5>[:<file6>]]"]
[--to "<routine name1>[<routine name2>[<routine name3>]]"]
<subroutine name>

 3

User guide

What gprof2tree is for

Gprof2tree aims to provide a tool for analyzing code structure using widely (and

freely) available software. Relying on data as produced by the gprof program sections

of the call tree can be extracted in plain text. Several mechanisms are provided to select

the sections of interest, and several printing options are provided for example to aid in

comparing different pathways through a code.

What gprof2tree can and cannot do

Because the input data is provided by gprof the call trees reflect only the pathways
through a code that are actually executed. For large codes this helps focusing on the parts

relevant to a run, i.e. the ones that are actually executed. However it also means that the

nothing can be learned about routines that are not executed. Therefore gprof2tree

does not help answering questions like finding all invocations of a particular routine

anywhere in a code. Only the ones that are actually executed in a run can be found.

Gprof2tree allows the call tree to start from any routine in the tree. The tree can be
traversed downwards from a parent routine to its children and its children’s children and

so on. Alternatively the tree can be traversed upwards from a child routine to its parents

and its parent’s parents and so on.

To reduce the size of the printed call tree there are a number of options to terminate

branches at selected points or to print selected branches only.

Gprof2tree’s requirements and recommended companion

software

As gprof2tree relies on the data produced by gprof the obvious requirement is the

availability of a compiler that produces an executable that will write a gmon.out file

and the availability of gprof itself. In practice this means that gprof2tree can be

used in conjunction with most compilers. The only compilers I have encountered that will

not generate code for writing a gmon.out file are the once from the Portland Group

suite of compilers (i.e. pgcc, pgf77, pgf90).

Gprof2tree is implemented in the Python scripting language. Python is available
for many platforms from http://www.python.org .

To compare call trees, for example ones produced from different runs of the same code to

find differences in the executed pathways, a graphical diff program is recommended. A

good and freely available diff program tkdiff is provided with tkCVS

(http://www.twobarleycorns.net/tkcvs.html, http://sourceforge.net/projects/tkcvs/). It is

 4

advised to activate an option to ignore differences in white-space. TkCVS does require

Tcl/Tk (http://www.tcl.tk) to run.

Call tree generation

Generating a basic call tree

To explain the basics of this call tree generation tool it makes sense to look at a simple

example program. In later sections we will consider real applications to demonstrate the

strengths of the more advanced options but this would be too cumbersome as an

introduction. The sample program we will consider is a Fortran77 program given in Box

1. Note though that gprof2tree will work for

programs written in any other language that can be compiled to generate a gmon.out

file. To compile the program and produce a gprof output that serves as the basis for

gprof2tree to work on execute the commands in Box 2.

 g77 –c –pg simple.f
 g77 –pg simple.o –o simple
 simple
 gprof simple gmon.out > gprof.out
 gprof2tree MAIN__ < gprof.out > simple_calltree.out

Box 2: The commands needed to produce a file gprof.out that will be the

main input to gprof2tree.

 program simple
 call sub_a
 end
 subroutine sub_a
 call sub_b
 end
 subroutine sub_b
 call sub_c
 end
 subroutine sub_c
 write(*,*)”Hello from sub_c”
 end

Box 1: The source code of the program simple kept in the file simple.f

 5

In this example I used the GNU Fortran77 compiler. In practice many other compilers

could be used and in most cases the –pg flag can be used to instruct the compiler to

instrument the code to produce the gmon.out file. Note that the –pg flag typically has

to be provided to the linker (the second invocation of g77) as well to link in the code that

actually writes the gmon.out file.

Running the executable simple produces the file gmon.out. This file contains binary

timing data that is transformed into legible text by the program gprof. In order for

gprof to be able to associate the timing data with the correct routines you need to pass it

both the executable and the gmon.out files as input. The output is written to

gprof.out which serves as the input to gprof2tree in the final command. Here I

have asked gprof2tree to print the call tree starting from the routine MAIN__ . This

name is the symbol that g77 has assigned to the routine that starts with the program
statement in the Fortran code. This name is generally compiler dependent as are any

trailing underscores or prefixed periods (“.”) with other routine names. Therefore it is

advisable to look at the contents of gprof.out before using gprof2tree for the first

time to see what the compiler has made of your subroutine names.

The call tree as produced by gprof2tree was stored in simple_calltree.out
the contents of which are shown in Box 3. It should come as no surprise that it shows the

program calling subroutine sub_a, calling subroutine sub_b, and so on. Of course

there is no requirement to start printing the call tree at the top level MAIN__ .

Gprof2tree can print the call tree of every routine you wish.

Instead of looking at which routines are called by a given routine, i.e. printing the

children of the routine, it may be useful to find out where a given routine is called from,

i.e. printing its parents. In other words one might be interested in printing the call tree

from the bottom up instead of from the top down. The flag --parents allows you to do
that as shown in Box 4.

MAIN__
 sub_a__
 sub_b__
 sub_c__

Box 3: The contents of simple_calltree.out.

 6

Pruning the call tree

The basic problem with call trees is not the lack of data but the opposite of that. Even for

modest programs the call tree quickly grows to a size that defies comprehension.

Therefore any mechanisms to help prune the call tree and focus on the relevant parts in a

given context are crucial. To illustrate these mechanisms I will use examples from the

quantum chemistry package GAMESS-UK [1](http://www.cfs.dl.ac.uk). This program is
mostly written in Fortran77 but some parts that are closely linked to the operating system

such as memory allocators, timers and file access have been written in C. In total the

program comprises approximately 1 million lines of code and almost 8000 subroutines.

The program provides a wide variety of quantum chemistry methods, ranging from a low

to a high algorithmic complexity.

A very powerful pruning aspect of gprof2tree is of course that the base data only
includes those routines that are actually executed in a given run. This typically eliminates

the majority of the routines. Even so, the full call tree of the simplest calculation run with

GAMESS-UK produces a call tree of some 3746 lines, which corresponds to more that 50
pages of text assuming some 65 lines fit onto a page. Clearly, reducing this is essential if

one tries to understand the code.

The simplest way to reduce the call tree is of course to choose a suitable top level routine

to print the call tree of. The deeper this routine sits in the call tree the smaller its call tree

will be. Although this obvious approach can easily reduce the call tree by a factor 2 or 3

the remaining data is still far too much.

Another way to drastically reduce the call tree is to exploit the fact that many routines are

invoked multiple times during a run. In the call tree, strictly speaking, the structure of

every routine has to appear only once. The options --always and --once control this,
where the first requests the structure of a subroutine to be printed in full in every

instance, the second requests the structure to be printed only once. Using the latter option

on the example mentioned above reduces the call tree from 3746 lines to only 906 lines,

as illustrated in Box 5.

 gprof2tree --parents sub_c__ < gprof.out

Box 4: The use of the --parents flag (top) reverses the order of the call tree
as shown above.

sub_c__
 sub_b__
 sub_a__
 MAIN__

 7

The above option achieves a significant reduction but the resulting 906 lines still equate

to 14 pages.

The next step is based on the realization that many large scale programs rely on using

libraries. Here a library is considered a collection of routines whose functionality is

closely linked. For example, a program may use a collection of routines related to file

I/O. These libraries may be an integral part of the program or they might be third party

libraries. The point is that most often when a code uses a library you are actually not

interested how this library works. So a mechanism that identifies named routines as

library routines to gprof2tree could be used to stop it from printing the internal
structure of those routines. As libraries often contain many routines I chose to have a

mechanism where one would store all the subroutine names of a single library in a file.

The option --stopat followed by a colon separated list of file names instructs

gprof2tree to terminate the call tree at each of the routines mentioned in each of the

files. Taking this one step further the option --exclude will remove each of the
mentioned subroutines altogether. To illustrate the use of these options lets assume we

want to suppress printing the structure of the file I/O routines. In a file called io we store

the names of the various routines such as rdedx_, rdchr_, wrtc_, wrt3_, etc.

Running gprof2tree with the --stopat option in combination with the --once

option reduces the call tree to 860 lines. Using the --exclude option instead the call

 gprof2tree --always MAIN__ < gprof.out > tree_always.txt
 gprof2tree --once MAIN__ < gprof.out > tree_once.txt

Box 5: The use of the --always and --once flags, note how in

tree_always.txt the structure of put_ appears twice where in

tree_once.txt the second instance is suppressed

 8

tree is reduced to 739 lines, see Box 6. This is a reasonable result given that the io
library contained only 16 routines, the structure of which was printed at most once due to

the --once option. The impact of this option can of course be increased by including

more and more libraries.

After having reduced the call tree to a comprehensible size of perhaps a few pages only,

one might be able to identify a few key routines. Focussing only on these might well

condense the call tree as much as possible without losing any relevant information. The

option --to allows to do just this. It takes a space separated list of subroutine names and
prints all the pathways that lead from the top level routine to one of the routines in the

list. Everything else is suppressed. When this is applied for example to answer the

question where symmetry related subroutines are used in the code the call tree is reduced

to just 32 lines as shown in Box 7.

gprof2tree --once MAIN__ < gprof.out > tree_once.txt
gprof2tree --once --exclude io MAIN__ < gprof.out >
tree_exclude.txt

Box 6. The effect of the --exclude option, note how the printing of the

structure of the routines wrtc_, wrt3s_ and secput_ has been suppressed.

 9

The above presents how a call tree can be condensed to focus on the most relevant parts.

However perhaps even more important is the comparison of call trees of slightly different

runs of a program. This gives more insight in how certain options change the pathway

through the code. Options to help with this analysis are given below.

gprof2tree --to “ssymb_ symm_ setsym_ symh_ symass_
symsvq_ symana_ symsrt_ sym1e_ symtrn_ symtrv_ symtrd_”
MAIN__ < gprof.out > tree_sym.txt

Box 7: The use of the --to flag to limit the call tree to selected branches only.

MAIN__
 driver_
 start_
 rdgeom_
 sget_
 ssymb_
 symm_
 setsym_
 scfgvb_
 hfscf_
 scf_
 rhfclm_
 symh_
 symass_
 symas2_
 symsvq_
 symana_
 symsrt_
 denscf_
 symh_
 standv_
 stvstv_
 sym1e_
 hfprop_
 lowdin_
 symtrn_
 symtrv_
 symtrd_

 10

Call tree printing

Ordering the branches for code comparison

Personally I think gprof2tree is most useful for comparing call trees of calculations

run with different options. Using tkdiff the differences in the pathway through the
code are highlighted straightaway helping to focus on how a particular option is

implemented. For this to work the call trees produced by 2 calculations have to be fairly

similar on the whole. In the data produced by gprof the subroutines are listed in the

order of decreasing CPU time usage. This order can differ wildly depending on the

options given to the program or the size of the calculation, causing problems in the

comparison. A simple solution to this problem is to sort the list of parents or children of

every subroutine in alphabetical order. The option --sort will request this sorting to

take place, the option --nosort explicitly requests this sorting to be omitted. The latter

may be desirable if you want to focus on performance issues rather than algorithm

comparison. The effect of the --sort option is illustrated in Box 8a,b.

Box 8a: The call tree comparison obtained with --nosort.

 11

From the above example it is clear that tkdiff is much more successful identifying the
crucial differences in the code when the call tree is sorted than when its not.

Options to aid the interpretation

The last option to consider in this section is most useful for large call trees. In particular,

when printing large call trees it can be difficult to match up the depth of the tree. The

chances are that you misjudge the level of indentation and hence misinterpret the

structure of the code. To counter this problem the option --level is provided to request
the depth level of the call tree to be printed as shown in Box 9. Clearly this option is

useful only if you want to store a non-trivial call tree for future reference.

Box 8b: The same call tree comparison obtained with --sort.

 12

Implementation Guide

Motivation

The creation of this little script was motivated by the need to quickly familiarize myself

with a number of quantum chemistry codes including CADPAC, HONDO, and NWChem

[2,3] in the course of a project. Specifically I needed a quick way of pin-pointing the
particular parts of each of these codes that were involved in performing certain

calculations.

Requirements

There were many requirements the most important of which were:

- Platform independence requiring both the tool as any other utilities to be used in

conjunction with the tool to run on any platform that we support including but not

limited to Linux, MacOS, Windows and any of the commercial UNIX’s.

- Simplicity of porting to all the above platforms.

- The production of text based call trees that can be stored in a revision control

system for future reference.

- The ability to work on large codes without excessive overheads.

- The availability of options to effectively reduce the size of call trees to focus on

the relevant parts.

Limits

The implementation of this tool was limited in several ways:

- All the data involved obtained directly from a gprof output and kept in memory.
No data is kept between runs.

- No time was allocated for the creation of this tool in the project plan, so it had to

be written within the time that one could expect it would save. This severly

 gprof2tree --level MAIN__ < gprof.out

Box 9: The use of the --level flag to print the depth levels in the call tree.

 1 MAIN__
 2 sub_a__
 3 sub_b__
 4 sub_c__

 13

limited the options available. All the input data as well as the capability to analyse

the output had to be available from existing tools.

Outline of the implementation

The essential idea behind the implementation is the recognition that three things need to

happen:

1. The call tree information needs to be extracted from the gprof output.
2. The data needs to be massaged in certain ways to effect the various options

whether they be sorting the subroutine names or limiting the amount of data being

printed.

3. Finally the call tree needs to be written out.
The main reason for separating steps 2 and 3 was to achieve a high efficiency. In step 3

one particular subroutine may be encountered many times. Instead of performing various

operations at that stage they can be performed in step 2 where every subroutine is

encountered only once. This way the scalability of the script as a function of the size of

the codes being analysed is improved.

Reading the gprof data into tables

The gprof data is being read and parsed by the python function

parse_call_tree. This function stores the data in three dictionaries; parents,

children and times. The subroutine names are used as keys in the first two
dictionaries. For each subroutine they hold a list of parent subroutines or child

subroutines. The dictionary times uses tuples of subroutine names and child names as
keys. For each subroutine-child tuple it holds a tuple of cpu-time and call-counts. Special

arrangements have been made for routines that are called from uninstrumented routines

which are marked by gprof as having a parent “<spontaneous>”, and for recursive

routines.

 0.00 0.16 4/25 minit_ [4]
 0.00 0.84 21/25 sfun1_ [6]
[5] 97.6 0.00 1.00 25 calcfg_ [5]
 0.00 0.75 10/10 grad_ [9]
 0.00 0.26 13/14 newpt_ [15]
 0.00 0.00 24/24 mindum_ [255]
 0.00 0.00 23/26533 dcopy_ [94]
 0.00 0.00 14/2370 cpulft_ [112]
 0.00 0.00 1/23 mnter_ [264]

Box 10. An example of a section of gprof output

 14

The general parsing procedure knows 2 phases named parse_parents and

parse_children. The procedure starts in the parse_parents phase. In the

example in Box 10 it builds a list containing the subroutines minit_ and sfun1_ . The

phase is terminated at the subroutine calcfg_ . At this point the parent list is stored in

the parents dictionary. The phase is switched to the parse_children phase. Next

a list is build up containing grad_, newpt_, …, mnter_ . This phase is terminated at

the “----“ line, at which point the list is stored in the children dictionary and phase is

switched to parse_parents for the next section. The parse routine terminates at the

end-of-file or the string “ This table:”.

Manipulating the data tables

The main two table manipulations are related to the --stopat and --exclude

options. The --stopat option is effected simply by replacing the list of children in the

children dictionary with an empty list for a given subroutine. The same thing is done

in the parents dictionary.

The --exclude option is effected by deleting the whole entry of a given subroutine in

the children and parents dictionaries.

The --sort option is effected by iterating through the children and parents

dictionaries and sorting the lists stored with the keys.

Writing the call tree

Writing the call tree out is a matter of simply traversing the stored data recursively. The

only critical point is that a subroutine name should not be printed if it does not appear as

a key in dictionary. This is required to make the --exclude option work correctly.

The --to option presents slight challenge in that whether a subroutine name should be
printed depends on whether it has a child somewhere down the stack. This challenge is

met by building up a list of subroutine names as the tree is being traversed. If a “to”

subroutine is found then the list of subroutines is printed. Essentially this is a simple

modification of the straightforward tree traversion.

References

1. GAMESS-UK is a package of ab initio programs. See: "http://www.cfs.dl.ac.uk/gamess-
uk/index.shtml", M.F. Guest, I. J. Bush, H.J.J. van Dam, P. Sherwood, J.M.H. Thomas,
J.H. van Lenthe, R.W.A Havenith, J. Kendrick, "The GAMESS-UK electronic structure
package: algorithms, developments and applications",Molecular Physics, Vol. 103, No. 6-
8, 719-747.

 15

2. Aprà, E.; Windus, T.L.; Straatsma, T.P.; Bylaska, E.J.; de Jong, W.; Hirata, S.; Valiev, M.;
Hackler, M.; Pollack, L.; Kowalski, K.; Harrison, R.; Dupuis, M.; Smith, D.M.A; Nieplocha,
J.; Tipparaju V.; Krishnan, M.; Auer, A.A.; Brown, E.; Cisneros, G.; Fann, G.; Fruchtl, H.;
Garza, J.; Hirao, K.; Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.;
Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.;
Elwood, D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.;
Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.;
Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; van Lenthe, J.; Wong, A.;
Zhang, Z.; "NWChem, A Computational Chemistry Package for Parallel Computers,
Version 4.7" (2005), Pacific Northwest National Laboratory, Richland, Washington 99352-
0999, USA.

3. "High Performance Computational Chemistry: An Overview of NWChem a Distributed
Parallel Application," Kendall, R.A.; Apra, E.; Bernholdt, D.E.; Bylaska, E.J.; Dupuis, M.;
Fann, G.I.; Harrison, R.J.; Ju, J.; Nichols, J.A.; Nieplocha, J.; Straatsma, T.P.; Windus,
T.L.; Wong, A.T.; Computer Phys. Comm. 2000, 128, 260-283.

