Installing GCC

For ccc version 4.9.3

Copyright (©) 1988-2015 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see
below), and with the Back-Cover Texts being (b) (see below). A copy of the license is
included in the section entitled “GNU Free Documentation License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

./gfdl.html

Table of Contents

1 Installing GCC.................................. 1
2 Prerequisites........... L. 3
3 Downloading GCC 9
4 Installing GCC: Configuration................ 11
5 Building............... . 37
5.1 Building a native compiler............ ... i i 37
5.2 Building a cross compiler........... ... oo 40
5.3 Building in parallel 41
5.4 Building the Ada compiler............ i, 41
5.5 Building with profile feedback 41
6 Installing GCC: Testing 43
6.1 How can you run the testsuite on selected tests? 43
6.2 Passing options and running multiple testsuites................ 44
6.3 Additional testing for Java Class Libraries..................... 44
6.4 How to interpret test results.......... ... i 45
6.5 Submitting test results 45
7 Installing GCC: Final installation 47
8 Installing GCC: Binaries 49
9 Host/target specific installation notes for GCC ..
10 Old installation documentation.............. 73
10.1 Configurations Supported by GCC................... 73
GNU Free Documentation License............... 75

ADDENDUM: How to use this License for your documents.......... 82

51

1 Installing GCC

The latest version of this document is always available at http://gcc.gnu.org/install/. Tt
refers to the current development sources, instructions for specific released versions are
included with the sources.

This document describes the generic installation procedure for GCC as well as detailing
some target specific installation instructions.

GCC includes several components that previously were separate distributions with their
own installation instructions. This document supersedes all package-specific installation
instructions.

Before starting the build/install procedure please check the Chapter 9 [Specific], page 51.
We recommend you browse the entire generic installation instructions before you proceed.

Lists of successful builds for released versions of GCC are available at http://gcc.gnu.
org/buildstat.html. These lists are updated as new information becomes available.

The installation procedure itself is broken into five steps.

Please note that GCC does not support ‘make uninstall’ and probably won’t do so in
the near future as this would open a can of worms. Instead, we suggest that you install
GCC into a directory of its own and simply remove that directory when you do not need
that specific version of GCC any longer, and, if shared libraries are installed there as well,
no more binaries exist that use them.

http://gcc.gnu.org/install/
http://gcc.gnu.org/buildstat.html
http://gcc.gnu.org/buildstat.html

2 Prerequisites

GCC requires that various tools and packages be available for use in the build procedure.
Modifying GCC sources requires additional tools described below.

Tools/packages necessary for building GCC

ISO C++98 compiler

Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow
bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also
allow bootstrapping with a traditional (K&R) C compiler.

To build all languages in a cross-compiler or other configuration where 3-stage
bootstrap is not performed, you need to start with an existing GCC binary
(version 3.4 or later) because source code for language frontends other than C
might use GCC extensions.

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you may
need to use --disable-stagel-checking, though bootstrapping the compiler
with such earlier compilers is strongly discouraged.

C standard library and headers

GNAT

In order to build GCC, the C standard library and headers must be present
for all target variants for which target libraries will be built (and not only the
variant of the host C++ compiler).

This affects the popular ‘x86_64-unknown-linux-gnu’ platform (among other
multilib targets), for which 64-bit (‘x86_64’) and 32-bit (‘1386’) libc headers
are usually packaged separately. If you do a build of a native compiler on
‘x86_64-unknown-linux-gnu’, make sure you either have the 32-bit libc de-
veloper package properly installed (the exact name of the package depends on
your distro) or you must build GCC as a 64-bit only compiler by configuring
with the option --disable-multilib. Otherwise, you may encounter an error
such as ‘fatal error: gnu/stubs-32.h: No such file’

In order to build the Ada compiler (GNAT) you must already have GNAT in-
stalled because portions of the Ada frontend are written in Ada (with GNAT
extensions.) Refer to the Ada installation instructions for more specific infor-
mation.

A “working” POSIX compatible shell, or GNU bash

Necessary when running configure because some /bin/sh shells have bugs
and may crash when configuring the target libraries. In other cases, /bin/sh
or ksh have disastrous corner-case performance problems. This can cause target
configure runs to literally take days to complete in some cases.

So on some platforms /bin/ksh is sufficient, on others it isn’t. See the
host/target specific instructions for your platform, or use bash to be sure.
Then set CONFIG_SHELL in your environment to your “good” shell prior to
running configure/make.

4 Installing GCC

zsh is not a fully compliant POSIX shell and will not work when configuring
GCC.

A POSIX or SVR4 awk
Necessary for creating some of the generated source files for GCC. If in doubt,
use a recent GNU awk version, as some of the older ones are broken. GNU awk
version 3.1.5 is known to work.

GNU binutils
Necessary in some circumstances, optional in others. See the host/target spe-
cific instructions for your platform for the exact requirements.

gzip version 1.2.4 (or later) or

bzip2 version 1.0.2 (or later)
Necessary to uncompress GCC tar files when source code is obtained via FTP
mirror sites.

GNU make version 3.80 (or later)
You must have GNU make installed to build GCC.

GNU tar version 1.14 (or later)
Necessary (only on some platforms) to untar the source code. Many systems’
tar programs will also work, only try GNU tar if you have problems.

Perl version 5.6.1 (or later)
Necessary when targeting Darwin, building ‘libstdc++’, and not using
--disable-symvers. Necessary when targeting Solaris 2 with Sun 1d and not
using --disable-symvers. The bundled perl in Solaris 8 and up works.

Necessary when regenerating Makefile dependencies in libiberty. Necessary
when regenerating libiberty/functions.texi. Necessary when generating
manpages from Texinfo manuals. Used by various scripts to generate some files
included in SVN (mainly Unicode-related and rarely changing) from source
tables.

jar, or InfoZIP (zip and unzip)
Necessary to build libgcj, the GCJ runtime.

Several support libraries are necessary to build GCC, some are required, others optional.
While any sufficiently new version of required tools usually work, library requirements are
generally stricter. Newer versions may work in some cases, but it’s safer to use the exact
versions documented. We appreciate bug reports about problems with newer versions,
though. If your OS vendor provides packages for the support libraries then using those
packages may be the simplest way to install the libraries.

GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
Necessary to build GCC. If a GMP source distribution is found in a subdi-
rectory of your GCC sources named gmp, it will be built together with GCC.
Alternatively, if GMP is already installed but it is not in your library search
path, you will have to configure with the —-with-gmp configure option. See also
--with-gmp-1ib and --with-gmp-include.

Chapter 2: Prerequisites 5

MPFR Library version 2.4.2 (or later)
Necessary to build GCC. It can be downloaded from http://www .mpfr.
org/. If an MPFR source distribution is found in a subdirectory of your
GCC sources named mpfr, it will be built together with GCC. Alternatively, if
MPFR is already installed but it is not in your default library search path, the
--with-mpfr configure option should be used. See also -—with-mpfr-1ib and
--with-mpfr-include.

MPC Library version 0.8.1 (or later)
Necessary to build GCC. It can be downloaded from http: / / www .
multiprecision . org/. If an MPC source distribution is found in a
subdirectory of your GCC sources named mpc, it will be built together with
GCC. Alternatively, if MPC is already installed but it is not in your default
library search path, the ——with-mpc configure option should be used. See also
--with-mpc-1ib and --with-mpc-include.

ISL Library version 0.12.2
Necessary to build GCC with the Graphite loop optimizations. It can be
downloaded from ftp://gcc.gnu. org/pub/gcc/ infrastructure/ as
isl1-0.12.2.tar.bz2. If an ISL source distribution is found in a subdirectory
of your GCC sources named isl, it will be built together with GCC.
Alternatively, the --with-isl configure option should be used if ISL is not
installed in your default library search path.

CLooG 0.18.1
Necessary to build GCC with the Graphite loop optimizations. It can
be downloaded from ftp://gcc . gnu. org/pub/gcc/ infrastructure /
as cloog-0.18.1.tar.gz. If a CLooG source distribution is found in a
subdirectory of your GCC sources named cloog, it will be built together with
GCC. Alternatively, the --with-cloog configure option should be used if
CLooG is not installed in your default library search path.

If you want to install CLooG separately it needs to be built against ISL 0.12.2 by
using the --with-isl=systen to direct CLooG to pick up an already installed
ISL. Using the ISL library as bundled with CLooG is not supported.

Tools/packages necessary for modifying GCC

autoconf version 2.64

GNU m4 version 1.4.6 (or later)
Necessary when modifying configure.ac, aclocal.m4, etc. to regenerate
configure and config.in files.

automake version 1.11.1
Necessary when modifying a Makefile.am file to regenerate its associated
Makefile.in.

Much of GCC does not use automake, so directly edit the Makefile.in file.
Specifically this applies to the gcc, intl, libcpp, libiberty, 1ibobjc direc-
tories as well as any of their subdirectories.

http://www.mpfr.org/
http://www.mpfr.org/
http://www.multiprecision.org/
http://www.multiprecision.org/
ftp://gcc.gnu.org/pub/gcc/infrastructure/
ftp://gcc.gnu.org/pub/gcc/infrastructure/
ftp://gcc.gnu.org/pub/gcc/infrastructure/

6 Installing GCC

For directories that use automake, GCC requires the latest release in the 1.11
series, which is currently 1.11.1. When regenerating a directory to a newer
version, please update all the directories using an older 1.11 to the latest released
version.

gettext version 0.14.5 (or later)
Needed to regenerate gcc.pot.

gperf version 2.7.2 (or later)
Necessary when modifying gperf input files, e.g. gcc/cp/cfns.gperf to regen-
erate its associated header file, e.g. gcc/cp/cfns.h.

DejaGnu 1.4.4
Expect
Tecl

Necessary to run the GCC testsuite; see the section on testing for
details. Tcl 8.6 has a known regression in RE pattern handling that make
parts of the testsuite fail. See http://core. tcl. tk/tcl/tktview/
267b7e2334ee2e9de34c4b00d6e72e2f1997085f for more information.

autogen version 5.5.4 (or later) and

guile version 1.4.1 (or later)
Necessary to regenerate fixinc/fixincl.x from fixinc/inclhack.def and
fixinc/*.tpl.
Necessary to run ‘make check’ for fixinc.

Necessary to regenerate the top level Makefile.in file from Makefile.tpl and
Makefile.def.

Flex version 2.5.4 (or later)
Necessary when modifying *.1 files.

Necessary to build GCC during development because the generated output files
are not included in the SVN repository. They are included in releases.

Texinfo version 4.7 (or later)
Necessary for running makeinfo when modifying *.texi files to test your
changes.

Necessary for running make dvi or make pdf to create printable documentation
in DVI or PDF format. Texinfo version 4.8 or later is required for make pdf.

Necessary to build GCC documentation during development because the gen-
erated output files are not included in the SVN repository. They are included
in releases.

TEX (any working version)
Necessary for running texi2dvi and texi2pdf, which are used when running
make dvi or make pdf to create DVI or PDF files, respectively.

SVN (any version)

SSH (any version)
Necessary to access the SVN repository. Public releases and weekly snapshots
of the development sources are also available via FTP.

http://core.tcl.tk/tcl/tktview/267b7e2334ee2e9de34c4b00d6e72e2f1997085f
http://core.tcl.tk/tcl/tktview/267b7e2334ee2e9de34c4b00d6e72e2f1997085f

Chapter 2: Prerequisites 7

GNU diffutils version 2.7 (or later)
Useful when submitting patches for the GCC source code.

patch version 2.5.4 (or later)
Necessary when applying patches, created with diff, to one’s own sources.

ecjl

gjavah
If you wish to modify .java files in libjava, you will need to configure with
--enable-java-maintainer-mode, and you will need to have executables
named ecjl and gjavah in your path. The ecjl executable should run the
Eclipse Java compiler via the GCC-specific entry point. You can download a
suitable jar from ftp://sourceware.org/pub/java/, or by running the script
contrib/download_ec].

antlr.jar version 2.7.1 (or later)

antlr binary
If you wish to build the gjdoc binary in libjava, you will need to have an
antlr.jar library available. The library is searched for in system locations
but can be specified with ——with-antlr-jar= instead. When configuring with
--enable-java-maintainer-mode, you will need to have one of the executables
named cantlr, runantlr or antlr in your path.

ftp://sourceware.org/pub/java/

3 Downloading GCC

GCC is distributed via SVN and FTP tarballs compressed with gzip or bzip2.
Please refer to the releases web page for information on how to obtain GCC.

The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in
the case of GCC 3.1 and later) compilers, as well as runtime libraries for C++, Objective-C,
Fortran, and Java. For previous versions these were downloadable as separate components
such as the core GCC distribution, which included the C language front end and shared
components, and language-specific distributions including the language front end and the
language runtime (where appropriate).

If you also intend to build binutils (either to upgrade an existing installation or for use in
place of the corresponding tools of your OS), unpack the binutils distribution either in the
same directory or a separate one. In the latter case, add symbolic links to any components
of the binutils you intend to build alongside the compiler (bfd, binutils, gas, gprof, 14,
opcodes, . ..) to the directory containing the GCC sources.

Likewise the GMP, MPFR and MPC libraries can be automatically built together with
GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory contain-
ing the GCC sources and rename their directories to gmp, mpfr and mpc, respectively (or
use symbolic links with the same name).

http://gcc.gnu.org/svn.html
http://gcc.gnu.org/releases.html

11

4 Installing GCC: Configuration

Like most GNU software, GCC must be configured before it can be built. This document
describes the recommended configuration procedure for both native and cross targets.

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer
to the toplevel build/object directory.

If you obtained the sources via SVN, srcdir must refer to the top gcc directory, the one
where the MAINTAINERS file can be found, and not its gcc subdirectory, otherwise the build
will fail.

If either srcdir or objdir is located on an automounted NFS file system, the shell’s
built-in pwd command will return temporary pathnames. Using these can lead to various
sorts of build problems. To avoid this issue, set the PWDCMD environment variable to an
automounter-aware pwd command, e.g., pawd or ‘amq -w’, during the configuration and
build phases.

First, we highly recommend that GCC be built into a separate directory from the sources
which does not reside within the source tree. This is how we generally build GCC; building
where srcdir == objdir should still work, but doesn’t get extensive testing; building where
objdir is a subdirectory of srcdir is unsupported.

If you have previously built GCC in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes is
Makefile; if ‘make distclean’ complains that Makefile does not exist or issues a message
like “don’t know how to make distclean” it probably means that the directory is already
suitably clean. However, with the recommended method of building in a separate objdir,
you should simply use a different objdir for each target.

Second, when configuring a native system, either cc or gcc must be in your path or
you must set CC in your environment before running configure. Otherwise the configuration
scripts may fail.

To configure GCC:

% mkdir objdir
% cd objdir
% srcdir/configure [options] [target]

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code,
you should use the options described in this section to make clear that your version contains
modifications.

--with-pkgversion=version
Specify a string that identifies your package. You may wish to include a build
number or build date. This version string will be included in the output of gcc
--version. This suffix does not replace the default version string, only the
‘GCC’ part.

The default value is ‘GCC’.

12 Installing GCC

--with-bugurl=url
Specify the URL that users should visit if they wish to report a bug. You are of
course welcome to forward bugs reported to you to the FSF, if you determine
that they are not bugs in your modifications.

The default value refers to the FSF’s GCC bug tracker.

Target specification

e GCC has code to correctly determine the correct value for target for nearly all native
systems. Therefore, we highly recommend you do not provide a configure target when
configuring a native compiler.

e target must be specified as --target=target when configuring a cross compiler; ex-
amples of valid targets would be m68k-elf, sh-elf, etc.

e Specifying just target instead of --target=target implies that the host defaults to
target.

Options specification

Use options to override several configure time options for GCC. A list of supported options
follows; ‘configure --help’ may list other options, but those not listed below may not
work and should not normally be used.

Note that each --enable option has a corresponding --disable option and that each
--with option has a corresponding --without option.

—--prefix=dirname
Specify the toplevel installation directory. This is the recommended way to
install the tools into a directory other than the default. The toplevel installation
directory defaults to /usr/local.

We highly recommend against dirname being the same or a subdirectory of
objdir or vice versa. If specifying a directory beneath a user’s home direc-
tory tree, some shells will not expand dirname correctly if it contains the <’
metacharacter; use $HOME instead.

The following standard autoconf options are supported. Normally you should
not need to use these options.

--exec-prefix=dirname
Specify the toplevel installation directory for architecture-
dependent files. The default is prefix.

--bindir=dirname
Specify the installation directory for the executables called by users
(such as gcc and g++). The default is exec-prefix/bin.

--libdir=dirname
Specify the installation directory for object code libraries and in-
ternal data files of GCC. The default is exec-prefix/1ib.

--libexecdir=dirname
Specify the installation directory for internal executables of GCC.
The default is exec-prefix/libexec.

Chapter 4: Installing GCC: Configuration 13

--with-slibdir=dirname
Specify the installation directory for the shared libgcc library. The
default is 1ibdir.

--datarootdir=dirname
Specify the root of the directory tree for read-only architecture-
independent data files referenced by GCC. The default is
prefix/share.

-—infodir=dirname
Specify the installation directory for documentation in info format.
The default is datarootdir/info.

-—datadir=dirname
Specify the installation directory for some architecture-independent
data files referenced by GCC. The default is datarootdir.

-—docdir=dirname
Specify the installation directory for documentation files (other
than Info) for GCC. The default is datarootdir/doc.

--htmldir=dirname
Specify the installation directory for HI'ML documentation files.
The default is docdir.

--pdfdir=dirname
Specify the installation directory for PDF documentation files. The
default is docdir.

—--mandir=dirname
Specify the installation directory for manual pages. The default is
datarootdir/man. (Note that the manual pages are only extracts
from the full GCC manuals, which are provided in Texinfo format.
The manpages are derived by an automatic conversion process from
parts of the full manual.)

--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default
depends on other configuration options, and differs between cross
and native configurations.

--with-specs=specs
Specify additional command line driver SPECS. This can be useful
if you need to turn on a non-standard feature by default with-
out modifying the compiler’s source code, for instance --with-
specs=/{!fcommon:%{!fno-common:-fno-common}}. See Section
“Specifying subprocesses and the switches to pass to them” in Using
the GNU Compiler Collection (GCC),

—-—program-prefix=prefix
GCC supports some transformations of the names of its programs when in-
stalling them. This option prepends prefix to the names of programs to install

14

Installing GCC

in bindir (see above). For example, specifying —-program-prefix=foo- would
result in ‘gcc’ being installed as /usr/local/bin/foo-gcc.

--program-suffix=suffix

Appends suffix to the names of programs to install in bindir (see above). For ex-
ample, specifying ——program-suffix=-3.1 would result in ‘gcc’ being installed
as /usr/local/bin/gcc-3.1.

—--program-transform-name=pattern

Applies the ‘sed’ script pattern to be applied to the names of programs to
install in bindir (see above). pattern has to consist of one or more basic
‘sed’ editing commands, separated by semicolons. For example, if you
want the ‘gcc’ program name to be transformed to the installed program
/usr/local/bin/myowngcc and the ‘g++’ program name to be transformed to
/usr/local/bin/gspecial++ without changing other program names, you
could use the pattern --program-transform-name=’s/ gcc$/myowngcc/;
s/ g++$/gspecial++/’ to achieve this effect.

All three options can be combined and used together, resulting in more com-
plex conversion patterns. As a basic rule, prefix (and suffix) are prepended
(appended) before further transformations can happen with a special transfor-
mation script pattern.

As currently implemented, this option only takes effect for native builds; cross
compiler binaries’ names are not transformed even when a transformation is
explicitly asked for by one of these options.

For native builds, some of the installed programs are also installed with the
target alias in front of their name, as in ‘i686-pc-linux-gnu-gcc’. All of
the above transformations happen before the target alias is prepended to the
name—so, specifying ——program-prefix=foo- and program-suffix=-3.1, the
resulting binary would be installed as /usr/local/bin/i686-pc-linux-gnu-
foo-gcc-3.1.

As a last shortcoming, none of the installed Ada programs are transformed yet,
which will be fixed in some time.

--with-local-prefix=dirname

Specify the installation directory for local include files. The default is
/usr/local. Specify this option if you want the compiler to search
directory dirname/include for locally installed header files instead of
/usr/local/include.

You should specify —-with-local-prefix only if your site has a different con-
vention (not /usr/local) for where to put site-specific files.

The default value for --with-local-prefix is /usr/local regardless of the
value of —-prefix. Specifying --prefix has no effect on which directory GCC
searches for local header files. This may seem counterintuitive, but actually it
is logical.

The purpose of -—prefix is to specify where to install GCC. The local header
files in /usr/local/include—if you put any in that directory—are not part of
GCC. They are part of other programs—perhaps many others. (GCC installs
its own header files in another directory which is based on the --prefix value.)

Chapter 4: Installing GCC: Configuration 15

Both the local-prefix include directory and the GCC-prefix include directory
are part of GCC’s “system include” directories. Although these two directories
are not fixed, they need to be searched in the proper order for the correct
processing of the include_next directive. The local-prefix include directory is
searched before the GCC-prefix include directory. Another characteristic of
system include directories is that pedantic warnings are turned off for headers
in these directories.

Some autoconf macros add -I directory options to the compiler command
line, to ensure that directories containing installed packages’ headers are
searched. When directory is one of GCC’s system include directories, GCC
will ignore the option so that system directories continue to be processed in
the correct order. This may result in a search order different from what was
specified but the directory will still be searched.

GCC automatically searches for ordinary libraries using GCC_EXEC_PREFIX.
Thus, when the same installation prefix is used for both GCC and packages,
GCC will automatically search for both headers and libraries. This provides
a configuration that is easy to use. GCC behaves in a manner similar to that
when it is installed as a system compiler in /usr.

Sites that need to install multiple versions of GCC may not want to use the
above simple configuration. It is possible to use the --program-prefix,
—--program-suffix and --program-transform-name options to install
multiple versions into a single directory, but it may be simpler to use different
prefixes and the —--with-local-prefix option to specify the location of the
site-specific files for each version. It will then be necessary for users to specify
explicitly the location of local site libraries (e.g., with LIBRARY_PATH).

The same value can be used for both --with-local-prefix and --prefix
provided it is not /usr. This can be used to avoid the default search of
/usr/local/include.

Do not specify /usr as the ——with-local-prefix! The directory you use for
—-—with-local-prefix must not contain any of the system’s standard header
files. If it did contain them, certain programs would be miscompiled (including
GNU Emacs, on certain targets), because this would override and nullify the
header file corrections made by the fixincludes script.

Indications are that people who use this option use it based on mistaken ideas
of what it is for. People use it as if it specified where to install part of GCC.
Perhaps they make this assumption because installing GCC creates the direc-
tory.

--with-native-system-header-dir=dirname
Specifies that dirname is the directory that contains native system header files,
rather than /usr/include. This option is most useful if you are creating a
compiler that should be isolated from the system as much as possible. It is
most commonly used with the --with-sysroot option and will cause GCC to
search dirname inside the system root specified by that option.

16 Installing GCC

--enable-shared[=packagel, .. .]]
Build shared versions of libraries, if shared libraries are supported on the target
platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default
on all platforms that support shared libraries.

If a list of packages is given as an argument, build shared libraries only for the
listed packages. For other packages, only static libraries will be built. Pack-
age names currently recognized in the GCC tree are ‘libgcc’ (also known as
‘gec’), ‘libstdc++ (not ‘libstdc++-v3’), ‘1libffi’, ‘z1ib’, ‘boehm-gc’, ‘ada’,
‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. Note ‘libiberty’ does not sup-
port shared libraries at all.

Use --disable-shared to build only static libraries. Note that --disable-
shared does not accept a list of package names as argument, only --enable-
shared does.

Contrast with ——enable-host-shared, which affects host code.

-—enable-host-shared
Specify that the host code should be built into position-independent machine
code (with -fPIC), allowing it to be used within shared libraries, but yielding a
slightly slower compiler.

Currently this option is only of use to people developing GCC itself.

Contrast with -—enable-shared, which affects target libraries.

--with-gnu-as

Specify that the compiler should assume that the assembler it finds is the GNU
assembler. However, this does not modify the rules to find an assembler and will
result in confusion if the assembler found is not actually the GNU assembler.
(Confusion may also result if the compiler finds the GNU assembler but has not
been configured with --with-gnu-as.) If you have more than one assembler
installed on your system, you may want to use this option in connection with
--with-as=pathname or —-with-build-time-tools=pathname.

The following systems are the only ones where it makes a difference whether you
use the GNU assembler. On any other system, ——with-gnu-as has no effect.
e ‘hppal.O-any-any’
e ‘hppal.l-any-any’
e ‘sparc-sun-solaris?2.any’
e ‘sparc64-any-solaris2.any’
--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname,

rather than the one found by the standard rules to find an assembler, which
are:

e Unless GCC is being built with a cross compiler, check the
libexec/gcc/target/version directory. libexec defaults to
exec-prefix/libexec; exec-prefix defaults to prefix, which de-
faults to /usr/local unless overridden by the --prefix=pathname
switch described above. target is the target system triple, such as

Chapter 4: Installing GCC: Configuration 17

‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as
3.0.

o If the target system is the same that you are building on, check operating
system specific directories (e.g. /usr/ccs/bin on Sun Solaris 2).

e Check in the PATH for a tool whose name is prefixed by the target system
triple.

e Check in the PATH for a tool whose name is not prefixed by the target
system triple, if the host and target system triple are the same (in other
words, we use a host tool if it can be used for the target as well).

You may want to use -—with-as if no assembler is installed in the directories
listed above, or if you have multiple assemblers installed and want to choose
one that is not found by the above rules.

--with-gnu-1d
Same as —-with-gnu-as but for the linker.

--with-ld=pathname
Same as ——with-as but for the linker.

-—-with-stabs
Specify that stabs debugging information should be used instead of whatever
format the host normally uses. Normally GCC uses the same debug format as
the host system.

On MIPS based systems and on Alphas, you must specify whether you want
GCC to create the normal ECOFF debugging format, or to use BSD-style stabs
passed through the ECOFF symbol table. The normal ECOFF debug format
cannot fully handle languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.

Normally, GCC uses the ECOFF debugging format by default; if you prefer
BSD stabs, specify —-with-stabs when you configure GCC.

No matter which default you choose when you configure GCC, the user can use
the —gcoff and -gstabs+ options to specify explicitly the debug format for a
particular compilation.

--with-stabs is meaningful on the ISC system on the 386, also, if ——with-
gas is used. It selects use of stabs debugging information embedded in COFF
output. This kind of debugging information supports C++ well; ordinary COFF
debugging information does not.

--with-stabs is also meaningful on 386 systems running SVRA4. It selects use
of stabs debugging information embedded in ELF output. The C++ compiler
currently (2.6.0) does not support the DWARF debugging information normally
used on 386 SVRA4 platforms; stabs provide a workable alternative. This requires
gas and gdb, as the normal SVR4 tools can not generate or interpret stabs.

-—with-tls=dialect
Specify the default TLS dialect, for systems were there is a choice. For ARM
targets, possible values for dialect are gnu or gnu2, which select between the
original GNU dialect and the GNU TLS descriptor-based dialect.

#with-gnu-as
#with-as

18 Installing GCC

—-—enable-multiarch
Specify whether to enable or disable multiarch support. The default is to check
for glibc start files in a multiarch location, and enable it if the files are found.
The auto detection is enabled for native builds, and for cross builds config-
ured with --with-sysroot, and without -~-with-native-system-header-dir.
More documentation about multiarch can be found at http://wiki.debian.
org/Multiarch.

--enable-vtable-verify

Specify whether to enable or disable the vtable verification feature. Enabling
this feature causes libstdc++ to be built with its virtual calls in verifiable mode.
This means that, when linked with libvtv, every virtual call in libstdc++ will
verify the vtable pointer through which the call will be made before actually
making the call. If not linked with libvtv, the verifier will call stub functions (in
libstdc++ itself) and do nothing. If vtable verification is disabled, then libstdc++
is not built with its virtual calls in verifiable mode at all. However the libvtv
library will still be built (see -—disable-1ibvtv to turn off building libvtv).
--disable-vtable-verify is the default.

-—disable-multilib
Specify that multiple target libraries to support different target variants, calling
conventions, etc. should not be built. The default is to build a predefined set
of them.

Some targets provide finer-grained control over which multilibs are built (e.g.,
--disable-softfloat):

arm—-*—-* fpu, 26bit, underscore, interwork, biendian, nofmult.
m68*—x—* softfloat, m68881, m68000, m68020.

mips*—*—x*
single-float, biendian, softfloat.

powerpc*—*—%, rs6000*—*—x*
aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, bien-
dian, sysv, aix.

-—with-multilib-list=1ist

——without-multilib-1list
Specify what multilibs to build. Currently only implemented for sh*-*-* and
x86-64-*-linux*.

shx—*-x]ist is a comma separated list of CPU names. These must be of the
form sh* or m* (in which case they match the compiler option for
that processor). The list should not contain any endian options -
these are handled by --with-endian.

If list is empty, then there will be no multilibs for extra processors.
The multilib for the secondary endian remains enabled.

As a special case, if an entry in the list starts with a ! (exclamation
point), then it is added to the list of excluded multilibs. Entries

http://wiki.debian.org/Multiarch
http://wiki.debian.org/Multiarch

Chapter 4: Installing GCC: Configuration 19

of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once
the leading ! has been stripped).

If ——with-multilib-1ist is not given, then a default set of multi-
libs is selected based on the value of —-target. This is usually the
complete set of libraries, but some targets imply a more specialized
subset.

Example 1: to configure a compiler for SH4A only, but supporting
both endians, with little endian being the default:

--with-cpu=sh4a --with-endian=little,big --with-multilib-list=
Example 2: to configure a compiler for both SH4A and SH4AL-
DSP, but with only little endian SH4AL:

--with-cpu=sh4a --with-endian=little,big \
--with-multilib-list=sh4al, !mb/mdal

x86-64-*-1inux*
list is a comma separated list of m32, m64 and mx32 to enable 32-bit,
64-bit and x32 run-time libraries, respectively. If list is empty, then
there will be no multilibs and only the default run-time library will
be enabled.

If ——with-multilib-1ist is not given, then only 32-bit and 64-bit
run-time libraries