The GNU OpenMP Implementation

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301, USA

Copyright (©) 2006-2014 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with the Invariant Sections being “Funding Free Software”,
the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:

A GNU Manual

(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.

Short Contents

Introductiont e 1
1 Enabling OpenMP. 3
2 Runtime Library Routines 5
3 Environment Variables 19
4 The libgomp ABL. 25
5 Reporting Bugs 31
GNU General Public License 33
GNU Free Documentation License................ 45
Funding Free Software 53

Library Indexo 5Y)

Table of Contents

Introduction 1
1 Enabling OpenMP 3
2 Runtime Library Routines...................... 5
2.1 omp_get_active_level — Number of parallel regions............ 5
2.2 omp_get_ancestor_thread_num — Ancestor thread ID)

2.3 omp_get_cancellation — Whether cancellation support is enabled. . 5
2.4 omp_get_default_device — Get the

default device for target regions........... ..., 6
2.5 omp_get_dynamic — Dynamic teams setting..................... 6
2.6 omp_get_level — Obtain the current nesting level............... 6

2.7 omp_get_max_active_levels — Maximum number of active regions..7
2.8 omp_get_max_threads — Maximum number

of threads of parallel region........... ... i, 7
2.9 omp_get_nested — Nested parallel regions....................... 7
2.10 omp_get_num_devices — Number of target devices............. 8
2.11 omp_get_num_procs — Number of processors online 8
2.12 omp_get_num_teams — Number of teams 8
2.13 omp_get_num_threads — Size of the active team 9
2.14 omp_get_proc_bind — Whether theads

may be moved between CPUs.......... i .. 9
2.15 omp_get_schedule — Obtain the runtime scheduling method ... 9
2.16 omp_get_team_num — Get team number....................... 10
2.17 omp_get_team_size — Number of threads in a team 10
2.18 omp_get_thread_limit — Maximum number of threads....... 10
2.19 omp_get_thread_num — Current thread ID.................... 11
2.20 omp_in_parallel — Whether a parallel region is active........ 11
2.21 omp_in_final — Whether in final or included task region 11

2.22 omp_is_initial_device — Whether executing on the host device. .12
2.23 omp_set_default_device — Set the

default device for target regions i 12
2.24 omp_set_dynamic — Enable/disable dynamic teams 12
2.25 omp_set_max_active_levels — Limits the

number of active parallel regions............. 13
2.26 omp_set_nested — Enable/disable nested parallel regions 13
2.27 omp_set_num_threads — Set upper team size limit............ 13
2.28 omp_set_schedule — Set the runtime scheduling method...... 14
2.29 omp_init_lock — Initialize simple lock........................ 14
2.30 omp_set_lock — Wait for and set simple lock 14
2.31 omp_test_lock — Test and set simple lock if available......... 15

2.32 omp_unset_lock — Unset simple lock 15

iv

2.33 omp_destroy_lock — Destroy simple lock..................... 16
2.34 omp_init_nest_lock — Initialize nested lock.................. 16
2.35 omp_set_nest_lock — Wait for and set nested lock 16
2.36 omp_test_nest_lock — Test and set nested lock if available... 17
2.37 omp_unset_nest_lock — Unset nested lock 17
2.38 omp_destroy_nest_lock — Destroy nested lock............... 17
2.39 omp_get_wtick — Get timer precision......................... 18
2.40 omp_get_wtime — Elapsed wall clock time..................... 18

Environment Variables 19
3.1 OMP_CANCELLATION — Set whether cancellation is activated 19
3.2 OMP_DISPLAY_ENV — Show OpenMP version

and environment variables....... 19
3.3 OMP_DEFAULT_DEVICE — Set the device used in target regions... 19
3.4 O0OMP_DYNAMIC — Dynamic adjustment of threads................ 19
3.5 OMP_MAX_ACTIVE_LEVELS — Set the maximum

number of nested parallel regionsol 20
3.6 OMP_NESTED — Nested parallel regions 20
3.7 OMP_NUM_THREADS — Specifies the number of threads to use..... 20

3.8 OMP_PROC_BIND — Whether theads may be moved between CPUs.. 2

3.9 O0OMP_PLACES — Specifies on which CPUs

the theads should be placed 21
3.10 OMP_STACKSIZE — Set default thread stack size................ 21
3.11 OMP_SCHEDULE — How threads are scheduled................... 21
3.12 OMP_THREAD_LIMIT — Set the maximum number of threads.... 22
3.13 OMP_WAIT_POLICY — How waiting threads are handled......... 22
3.14 GOMP_CPU_AFFINITY — Bind threads to specific CPUs......... 22
3.15 GOMP_STACKSIZE — Set default thread stack size............... 23
3.16 GOMP_SPINCOUNT — Set the busy-wait spin count 23

The libgomp ABI 25
4.1 TImplementing MASTER constructcoooiii ... 25
4.2 TImplementing CRITICAL construct........................ ... 25
4.3 Implementing ATOMIC constructcooiii.... 25
4.4 TImplementing FLUSH constructo... 25
4.5 Implementing BARRIER construct 25
4.6 Implementing THREADPRIVATE construct................... 25
4.7 TImplementing PRIVATE clause 26
4.8 Implementing FIRSTPRIVATE LASTPRIVATE

COPYIN and COPYPRIVATE clausesc.cooviiiiiii ... 26
4.9 Implementing REDUCTION clause.................oooioet. 26
4.10 Implementing PARALLEL construct.......................... 26
4.11 Implementing FOR construct............ ..., 27
4.12 Implementing ORDERED construct 28
4.13 Implementing SECTIONS constructo..... 28

4.14 TImplementing SINGLE construct 28

GNU libgomp

0

5 Reporting BugsL. 31

GNU General Public License 33
GNU Free Documentation License 45

ADDENDUM: How to use this License for your documents.......... 52
Funding Free Software............................. 53

Library Index 55

Introduction

This manual documents the usage of libgomp, the GNU implementation of the OpenMP
(http://www.openmp.org) Application Programming Interface (API) for multi-platform
shared-memory parallel programming in C/C++ and Fortran.

http://www.openmp.org
http://www.openmp.org

1 Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time flag —f openmp
must be specified. This enables the OpenMP directive #pragma omp in C/C++ and !$omp
directives in free form, c$omp, *$omp and !$omp directives in fixed form, !'$ conditional
compilation sentinels in free form and c$, *$ and !$ sentinels in fixed form, for Fortran.
The flag also arranges for automatic linking of the OpenMP runtime library (Chapter 2
[Runtime Library Routines], page 5).

A complete description of all OpenMP directives accepted may be found in the OpenMP
Application Program Interface (http://www.openmp.org) manual, version 4.0.

http://www.openmp.org
http://www.openmp.org

2 Runtime Library Routines

The runtime routines described here are defined by Section 3 of the OpenMP specification
in version 4.0. The routines are structured in following three parts:

2.1 omp_get_active_level — Number of parallel regions

Description:
This function returns the nesting level for the active parallel blocks, which
enclose the calling call.

C/C++
Prototype: int omp_get_active_level(void);

Fortran:
Interface: integer function omp_get_active_level()

See also: Section 2.6 [omp_get_level], page 6, Section 2.7 [omp_get_max_active_levels],
page 7, Section 2.25 [omp_set_max_active_levels], page 13,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.20.

2.2 omp_get_ancestor_thread_num — Ancestor thread ID

Description:
This function returns the thread identification number for the given nesting
level of the current thread. For values of level outside zero to omp_get_level
-1 is returned; if level is omp_get_level the result is identical to omp_get_
thread_num.

C/C++
Prototype: int omp_get_ancestor_thread_num(int level);
Fortran:
Interface: integer function omp_get_ancestor_thread_num(level)

integer level

See also: Section 2.6 [omp_get_level], page 6, Section 2.19 [omp_get_thread_num)],
page 11, Section 2.17 [omp_get_team_size], page 10,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.18.

2.3 omp_get_cancellation — Whether cancellation support is
enabled

Description:
This function returns true if cancellation is activated, false otherwise. Here,
true and false represent their language-specific counterparts. Unless OMP
CANCELLATION is set true, cancellations are deactivated.

C/C++:

Prototype: int omp_get_cancellation(void);

http://www.openmp.org/
http://www.openmp.org/

6 GNU libgomp

Fortran:

Interface: logical function omp_get_cancellation()
See also: Section 3.1 [OMP_CANCELLATION], page 19,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.9.

2.4 omp_get_default_device — Get the default device for
target regions

Description:
Get the default device for target regions without device clause.

C/C++:
Prototype: int omp_get_default_device(void);
Fortran:
Interface: integer function omp_get_default_device()

See also: Section 3.3 [OMP_DEFAULT_DEVICE]|, page 19, Section 2.23
[omp_set_default_device], page 12,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.24.

2.5 omp_get_dynamic — Dynamic teams setting

Description:
This function returns true if enabled, false otherwise. Here, true and false
represent their language-specific counterparts.

The dynamic team setting may be initialized at startup by the OMP_DYNAMIC
environment variable or at runtime using omp_set_dynamic. If undefined, dy-
namic adjustment is disabled by default.

C/C++:
Prototype: int omp_get_dynamic(void) ;

Fortran:
Interface: logical function omp_get_dynamic ()

See also: Section 2.24 [omp_set_dynamic], page 12, Section 3.4 [OMP_DYNAMIC],
page 19,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.8.

2.6 omp_get_level — Obtain the current nesting level

Description:
This function returns the nesting level for the parallel blocks, which enclose the
calling call.

C/C++
Prototype: int omp_get_level(void) ;

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 7

Fortran:

Interface: integer function omp_level()
See also: Section 2.1 [omp_get_active_level], page 5,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.17.

2.7 omp_get_max_active_levels — Maximum number of active

regions

Description:
This function obtains the maximum allowed number of nested, active parallel
regions.

C/C++
Prototype: int omp_get_max_active_levels(void);

Fortran:
Interface: integer function omp_get_max_active_levels()

See also: Section 2.25 [omp_set_max_active_levels], page 13, Section 2.1

[omp_get_active_level], page 5,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.16.

2.8 omp_get_max_threads — Maximum number of threads of
parallel region

Description:
Return the maximum number of threads used for the current parallel region
that does not use the clause num_threads.

C/C++:
Prototype: int omp_get_max_threads(void) ;
Fortran:
Interface: integer function omp_get_max_threads()

See also: Section 2.27 [omp_set_num_threads]|, page 13, Section 2.24 [omp_set_dynamic],
page 12, Section 2.18 [omp_get_thread_limit], page 10,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.3.

2.9 omp_get_nested — Nested parallel regions

Description:
This function returns true if nested parallel regions are enabled, false other-
wise. Here, true and false represent their language-specific counterparts.

Nested parallel regions may be initialized at startup by the OMP_NESTED envi-

ronment variable or at runtime using omp_set_nested. If undefined, nested
parallel regions are disabled by default.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

8 GNU libgomp

C/C++:
Prototype: int omp_get_nested(void);

Fortran:

Interface: logical function omp_get_nested()
See also: Section 2.26 [omp_set_nested], page 13, Section 3.6 [OMP_NESTED], page 20,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.11.

2.10 omp_get_num_devices — Number of target devices

Description:
Returns the number of target devices.

C/C++:

Prototype: int omp_get_num_devices(void) ;

Fortran:

Interface: integer function omp_get_num_devices()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.25.

2.11 omp_get_num_procs — Number of processors online

Description:
Returns the number of processors online on that device.

C/C++:

Prototype: int omp_get_num_procs(void);

Fortran:

Interface: integer function omp_get_num_procs()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.5.

2.12 omp_get_num_teams — Number of teams

Description:
Returns the number of teams in the current team region.

C/C++:

Prototype: int omp_get_num_teams(void);

Fortran:

Interface: integer function omp_get_num_teams ()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.26.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 9

2.13 omp_get_num_threads — Size of the active team

Description:

Returns the number of threads in the current team. In a sequential section of
the program omp_get_num_threads returns 1.

The default team size may be initialized at startup by the OMP_NUM_THREADS
environment variable. At runtime, the size of the current team may be set
either by the NUM_THREADS clause or by omp_set_num_threads. If none of the
above were used to define a specific value and OMP_DYNAMIC is disabled, one
thread per CPU online is used.

C/C++:
Prototype: int omp_get_num_threads(void) ;
Fortran:

Interface: integer function omp_get_num_threads()

See also: Section 2.8 [omp_get_max_threads|, page 7, Section 2.27 [omp_set_num_threads],|]
page 13, Section 3.7 [OMP_NUM_THREADS], page 20,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.2.

2.14 omp_get_proc_bind — Whether theads may be moved
between CPUs

Description:
This functions returns the currently active thread affinity policy, which is set
via OMP_PROC_BIND. Possible values are omp_proc_bind_false, omp_proc_
bind_true, omp_proc_bind_master, omp_proc_bind_close and omp_proc_
bind_spread.

C/C+:
Prototype: omp_proc_bind_t omp_get_proc_bind(void);
Fortran:
Interface: integer (kind=omp_proc_bind_kind) function omp_get_proc_
bind ()

See also: Section 3.8 [OMP_PROC_BIND], page 20, Section 3.9 [OMP_PLACES],
page 21, Section 3.14 [GOMP_CPU_AFFINITY], page 22,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.22.

2.15 omp_get_schedule — Obtain the runtime scheduling
method

Description:
Obtain the runtime scheduling method. The kind argument will be set to
the value omp_sched_static, omp_sched_dynamic, omp_sched_guided or omp_
sched_auto. The second argument, modifier, is set to the chunk size.

http://www.openmp.org/
http://www.openmp.org/

10 GNU libgomp

C/C++
Prototype: void omp_get_schedule(omp_sched_t *kind, int *modifier);
Fortran:

Interface: subroutine omp_get_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier

See also: Section 2.28 [omp_set_schedule], page 14, Section 3.11 [OMP_SCHEDULE],
page 21,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.13.

2.16 omp_get_team_num — Get team number

Description:
Returns the team number of the calling thread.
C/C++:
Prototype: int omp_get_team_num(void) ;
Fortran:
Interface: integer function omp_get_team_num()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.27.

2.17 omp_get_team_size — Number of threads in a team

Description:
This function returns the number of threads in a thread team to which either
the current thread or its ancestor belongs. For values of level outside zero to
omp_get_level, -1 is returned; if level is zero, 1 is returned, and for omp_get_
level, the result is identical to omp_get_num_threads.

C/C++:
Prototype: int omp_get_team_size(int level);

Fortran:

Interface: integer function omp_get_team_size(level)
integer level

See also: Section 2.13 [omp_get_num_threads], page 9, Section 2.6 [omp_get_level|, page 6,
Section 2.2 [omp_get_ancestor_thread_num]|, page 5,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.19.

2.18 omp_get_thread_limit — Maximum number of threads

Description:
Return the maximum number of threads of the program.

C/C++:
Prototype: int omp_get_thread_limit(void);

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 11

Fortran:
Interface: integer function omp_get_thread_limit()

See also: Section 2.8 [omp_get_max_threads], page 7, Section 3.12 [OMP_THREAD_LIMIT] J]
page 22,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.14.

2.19 omp_get_thread_num — Current thread ID

Description:
Returns a unique thread identification number within the current team. In a
sequential parts of the program, omp_get_thread_num always returns 0. In
parallel regions the return value varies from 0 to omp_get_num_threads-1 in-
clusive. The return value of the master thread of a team is always 0.

C/C++:
Prototype: int omp_get_thread_num(void) ;
Fortran:

Interface: integer function omp_get_thread_num()

See also: Section 2.13 [omp_get_num_threads], page 9, Section 2.2 [omp_get_ancestor_thread _num],Jj
page 5,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.4.

2.20 omp_in_parallel — Whether a parallel region is active

Description:
This function returns true if currently running in parallel, false otherwise.
Here, true and false represent their language-specific counterparts.

C/C++:
Prototype: int omp_in_parallel(void);
Fortran:

Interface: logical function omp_in_parallel()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.6.

2.21 omp_in_final — Whether in final or included task region

Description:
This function returns true if currently running in a final or included task re-
gion, false otherwise. Here, true and false represent their language-specific

counterparts.
C/C++:
Prototype: int omp_in_final(void);
Fortran:
Interface: logical function omp_in_final()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.21.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

12 GNU libgomp

2.22 omp_is_initial_device — Whether executing on the host
device
Description:

This function returns true if currently running on the host device, false oth-
erwise. Here, true and false represent their language-specific counterparts.

C/C++:
Prototype: int omp_is_initial_device(void);
Fortran:
Interface: logical function omp_is_initial_device()

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.28.

2.23 omp_set_default_device — Set the default device for
target regions
Description:

Set the default device for target regions without device clause. The argument
shall be a nonnegative device number.

C/C++:
Prototype: void omp_set_default_device(int device_num);

Fortran:

Interface: subroutine omp_set_default_device(device_num)
integer device_num

See also: Section 3.3 [OMP_DEFAULT_DEVICE|, page 19, Section 2.4
[omp_get_default_device], page 6,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.23.

2.24 omp_set_dynamic — Enable/disable dynamic teams

Description:
Enable or disable the dynamic adjustment of the number of threads within a
team. The function takes the language-specific equivalent of true and false,
where true enables dynamic adjustment of team sizes and false disables it.

C/C++:
Prototype: void omp_set_dynamic(int dynamic_threads) ;
Fortran:
Interface: subroutine omp_set_dynamic(dynamic_threads)
logical, intent(in) :: dynamic_threads

See also: Section 3.4 [OMP_DYNAMIC], page 19, Section 2.5 [omp_get_dynamic], page 6,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.7.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 13

2.25 omp_set_max_active_levels — Limits the number of
active parallel regions

Description:
This function limits the maximum allowed number of nested, active parallel
regions.
C/C++
Prototype: void omp_set_max_active_levels(int max_levels);
Fortran:
Interface: subroutine omp_set_max_active_levels(max_levels)
integer max_levels
See also: Section 2.7 [omp_get_-max_active_levels], page 7, Section 2.1

[omp_get_active_level], page 5,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.15.

2.26 omp_set_nested — Enable/disable nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The function takes the language-specific equivalent
of true and false, where true enables dynamic adjustment of team sizes and
false disables it.

C/C++:
Prototype: void omp_set_nested(int nested);
Fortran:
Interface: subroutine omp_set_nested(nested)
logical, intent(in) :: nested

See also: Section 3.6 [OMP_NESTED], page 20, Section 2.9 [omp_get_nested], page 7,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.10.

2.27 omp_set_num_threads — Set upper team size limit

Description:
Specifies the number of threads used by default in subsequent parallel sections,
if those do not specify a num_threads clause. The argument of omp_set_num_
threads shall be a positive integer.

C/C++:
Prototype: void omp_set_num_threads(int num_threads);

Fortran:

Interface: subroutine omp_set_num_threads (num_threads)
integer, intent(in) :: num_threads

http://www.openmp.org/
http://www.openmp.org/

14 GNU libgomp

See also: Section 3.7 [OMP_NUM_THREADS|, page 20, Section 2.13
[omp_get_num_threads], page 9, Section 2.8 [omp_get_max_threads],
page 7,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.1.

2.28 omp_set_schedule — Set the runtime scheduling method

Description:
Sets the runtime scheduling method. The kind argument can have the value
omp_sched_static, omp_sched_dynamic, omp_sched_guided or omp_sched_
auto. Except for omp_sched_auto, the chunk size is set to the value of modifier
if positive, or to the default value if zero or negative. For omp_sched_auto the
modifier argument is ignored.

C/C++
Prototype: void omp_set_schedule(omp_sched_t kind, int modifier);

Fortran:

Interface: subroutine omp_set_schedule(kind, modifier)
integer (kind=omp_sched_kind) kind
integer modifier

See also: Section 2.15 [omp_get_schedule], page 9, Section 3.11 [OMP_SCHEDULE],
page 21,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.2.12.

2.29 omp_init_lock — Initialize simple lock

Description:
Initialize a simple lock. After initialization, the lock is in an unlocked state.
C/C++:
Prototype: void omp_init_lock(omp_lock_t *lock);
Fortran:
Interface: subroutine omp_init_lock(svar)
integer (omp_lock_kind), intent(out) :: svar

See also: Section 2.33 [omp_destroy_lock|, page 16,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.1.

2.30 omp_set_lock — Wait for and set simple lock

Description:
Before setting a simple lock, the lock variable must be initialized by omp_init_
lock. The calling thread is blocked until the lock is available. If the lock is
already held by the current thread, a deadlock occurs.

C/C++:

Prototype: void omp_set_lock(omp_lock_t *lock) ;

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2:

Fortran:

See also:

Reference:

Runtime Library Routines 15
Interface: subroutine omp_set_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

Section 2.29 [omp-init_lock], page 14, Section 2.31 [omp_test_lock]|, page 15,
Section 2.32 [omp_unset_lock], page 15,

OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.3.

2.31 omp_test_lock — Test and set simple lock if available

Description:

C/C++:

Fortran:

See also:

Reference:

Before setting a simple lock, the lock variable must be initialized by omp_init_
lock. Contrary to omp_set_lock, omp_test_lock does not block if the lock is
not available. This function returns true upon success, false otherwise. Here,
true and false represent their language-specific counterparts.

Prototype: int omp_test_lock(omp_lock_t *lock);
Interface: logical function omp_test_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

Section 2.29 [omp_init_lock], page 14, Section 2.30 [omp_set_lock], page 14,
Section 2.30 [omp_set_lock], page 14,

OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.5.

2.32 omp_unset_lock — Unset simple lock

Description:

C/C++:

Fortran:

See also:

Reference:

A simple lock about to be unset must have been locked by omp_set_lock or
omp_test_lock before. In addition, the lock must be held by the thread calling
omp_unset_lock. Then, the lock becomes unlocked. If one or more threads
attempted to set the lock before, one of them is chosen to, again, set the lock
to itself.

Prototype: void omp_unset_lock(omp_lock_t *lock) ;
Interface: subroutine omp_unset_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

Section 2.30 [omp_set_lock]|, page 14, Section 2.31 [omp_test_lock|, page 15,

OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.4.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

16 GNU libgomp

2.33 omp_destroy_lock — Destroy simple lock

Description:
Destroy a simple lock. In order to be destroyed, a simple lock must be in the
unlocked state.

C/C++:
Prototype: void omp_destroy_lock(omp_lock_t *lock);
Fortran:
Interface: subroutine omp_destroy_lock(svar)
integer (omp_lock_kind), intent(inout) :: svar

See also: Section 2.29 [omp_init_lock], page 14,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.2.

2.34 omp_init_nest_lock — Initialize nested lock

Description:
Initialize a nested lock. After initialization, the lock is in an unlocked state and
the nesting count is set to zero.

C/C+:
Prototype: void omp_init_nest_lock(omp_nest_lock_t *lock);

Fortran:

Interface: subroutine omp_init_nest_lock(nvar)
integer (omp_nest_lock_kind), intent(out) :: nvar

See also: Section 2.38 [omp_destroy_nest_lock], page 17,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.1.

2.35 omp_set_nest_lock — Wait for and set nested lock

Description:
Before setting a nested lock, the lock variable must be initialized by omp_init_
nest_lock. The calling thread is blocked until the lock is available. If the
lock is already held by the current thread, the nesting count for the lock is

incremented.
C/C++:

Prototype: void omp_set_nest_lock(omp_nest_lock_t *lock) ;
Fortran:

Interface: subroutine omp_set_nest_lock(nvar)

integer (omp_nest_lock_kind), intent(inout) :: nvar

See also: Section 2.34 [omp_init_nest_lock], page 16, Section 2.37 [omp_unset_nest_lock],
page 17,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.3.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 2: Runtime Library Routines 17

2.36 omp_test_nest_lock — Test and set nested lock if
available

Description:

C/C++:

Fortran:

See also:

Reference:

Before setting a nested lock, the lock variable must be initialized by omp_init_
nest_lock. Contrary to omp_set_nest_lock, omp_test_nest_lock does not
block if the lock is not available. If the lock is already held by the current
thread, the new nesting count is returned. Otherwise, the return value equals

Z€ro.
Prototype: int omp_test_nest_lock(omp_nest_lock_t *lock);
Interface: logical function omp_test_nest_lock(nvar)

integer (omp_nest_lock_kind), intent(inout) :: nvar

Section 2.29 [omp-init_lock]|, page 14, Section 2.30 [omp_set_lock]|, page 14,
Section 2.30 [omp_set_lock], page 14,

OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.5.

2.37 omp_unset_nest_lock — Unset nested lock

Description:
A nested lock about to be unset must have been locked by omp_set_nested_
lock or omp_test_nested_lock before. In addition, the lock must be held by
the thread calling omp_unset_nested_lock. If the nesting count drops to zero,
the lock becomes unlocked. If one ore more threads attempted to set the lock
before, one of them is chosen to, again, set the lock to itself.

C/C++:

Fortran:

See also:

Reference:

Prototype: void omp_unset_nest_lock(omp_nest_lock_t *lock);
Interface: subroutine omp_unset_nest_lock(nvar)
integer (omp_nest_lock_kind), intent(inout) :: nvar

Section 2.35 [omp_set_nest_lock], page 16,
OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.4.

2.38 omp_destroy_nest_lock — Destroy nested lock

Description:

C/C++:

Fortran:

Destroy a nested lock. In order to be destroyed, a nested lock must be in the
unlocked state and its nesting count must equal zero.

Prototype: void omp_destroy_nest_lock(omp_nest_lock_t *);

Interface: subroutine omp_destroy_nest_lock(nvar)
integer (omp_nest_lock_kind), intent(inout) :: nvar

http://www.openmp.org/
http://www.openmp.org/

18 GNU libgomp

See also: Section 2.29 [omp_init_lock], page 14,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.3.2.

2.39 omp_get_wtick — Get timer precision

Description:
Gets the timer precision, i.e., the number of seconds between two successive
clock ticks.

C/C+:
Prototype: double omp_get_wtick(void) ;

Fortran:

Interface: double precision function omp_get_wtick()
See also: Section 2.40 [omp_get_wtime|, page 18,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.4.2.

2.40 omp_get_wtime — Elapsed wall clock time

Description:
Elapsed wall clock time in seconds. The time is measured per thread, no guar-
antee can be made that two distinct threads measure the same time. Time is
measured from some "time in the past", which is an arbitrary time guaranteed
not to change during the execution of the program.

C/C++:
Prototype: double omp_get_wtime(void) ;

Fortran:

Interface: double precision function omp_get_wtime()
See also: Section 2.39 [omp_get_wtick], page 18,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 3.4.1.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

19

3 Environment Variables

The environment variables which beginning with OMP_ are defined by section 4 of the
OpenMP specification in version 4.0, while those beginning with GOMP_ are GNU exten-
sions.

3.1 OMP_CANCELLATION — Set whether cancellation is activated

Description:
If set to TRUE, the cancellation is activated. If set to FALSE or if unset, cancel-
lation is disabled and the cancel construct is ignored.

See also: Section 2.3 [omp_get_cancellation|, page 5,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.11

3.2 OMP_DISPLAY_ENV — Show OpenMP version and
environment variables
Description:
If set to TRUE, the OpenMP version number and the values associated with
the OpenMP environment variables are printed to stderr. If set to VERBOSE,

it additionally shows the value of the environment variables which are GNU
extensions. If undefined or set to FALSE, this information will not be shown.

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.12

3.3 OMP_DEFAULT_DEVICE — Set the device used in target
regions
Description:
Set to choose the device which is used in a target region, unless the value is
overridden by omp_set_default_device or by a device clause. The value shall

be the nonnegative device number. If no device with the given device number
exists, the code is executed on the host. If unset, device number 0 will be used.

See also: Section 2.4 [omp_get_default_device], page 6, Section 2.23
[omp_set_default_device], page 12,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.11

3.4 OMP_DYNAMIC — Dynamic adjustment of threads

Description:
Enable or disable the dynamic adjustment of the number of threads within
a team. The value of this environment variable shall be TRUE or FALSE. If
undefined, dynamic adjustment is disabled by default.

See also: Section 2.24 [omp_set_dynamic|, page 12,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.3

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

20 GNU libgomp

3.5 OMP_MAX_ACTIVE_LEVELS — Set the maximum number of
nested parallel regions

Description:
Specifies the initial value for the maximum number of nested parallel regions.
The value of this variable shall be a positive integer. If undefined, the number
of active levels is unlimited.

See also: Section 2.25 [omp_set_max_active_levels|, page 13,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.9

3.6 OMP_NESTED — Nested parallel regions

Description:
Enable or disable nested parallel regions, i.e., whether team members are al-
lowed to create new teams. The value of this environment variable shall be
TRUE or FALSE. If undefined, nested parallel regions are disabled by default.

See also: Section 2.26 [omp_set_nested], page 13,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.6

3.7 OMP_NUM_THREADS — Specifies the number of threads to use

Description:
Specifies the default number of threads to use in parallel regions. The value
of this variable shall be a comma-separated list of positive integers; the value
specified the number of threads to use for the corresponding nested level. If
undefined one thread per CPU is used.

See also: Section 2.27 [omp_set_num_threads|, page 13,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.2

3.8 OMP_PROC_BIND — Whether theads may be moved between
CPUs

Description:

Specifies whether threads may be moved between processors. If set to TRUE,
OpenMP theads should not be moved; if set to FALSE they may be moved. Al-
ternatively, a comma separated list with the values MASTER, CLOSE and SPREAD
can be used to specify the thread affinity policy for the corresponding nest-
ing level. With MASTER the worker threads are in the same place partition as
the master thread. With CLOSE those are kept close to the master thread in
contiguous place partitions. And with SPREAD a sparse distribution across the
place partitions is used.

When undefined, OMP_PROC_BIND defaults to TRUE when OMP_PLACES or GOMP_
CPU_AFFINITY is set and FALSE otherwise.

See also: Section 3.9 [OMP_PLACES], page 21, Section 3.14 [GOMP_CPU_AFFINITY],
page 22, Section 2.14 [omp_get_proc_bind], page 9,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.4

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 3: Environment Variables 21

3.9 OMP_PLACES — Specifies on which CPUs the theads should
be placed

Description:

The thread placement can be either specified using an abstract name or by an
explicit list of the places. The abstract names threads, cores and sockets
can be optionally followed by a positive number in parentheses, which denotes
the how many places shall be created. With threads each place corresponds
to a single hardware thread; cores to a single core with the corresponding
number of hardware threads; and with sockets the place corresponds to a single
socket. The resulting placement can be shown by setting the OMP_DISPLAY_ENV
environment variable.

Alternatively, the placement can be specified explicitly as comma-separated list
of places. A place is specified by set of nonnegative numbers in curly braces,
denoting the denoting the hardware threads. The hardware threads belonging
to a place can either be specified as comma-separated list of nonnegative thread
numbers or using an interval. Multiple places can also be either specified by
a comma-separated list of places or by an interval. To specify an interval, a
colon followed by the count is placed after after the hardware thread number
or the place. Optionally, the length can be followed by a colon and the stride
number — otherwise a unit stride is assumed. For instance, the following specifies
the same places list: "{0,1,2}, {3,4,6}, {7,8,9}, {10,11,12}"; "{0:3},
{3:3}, {7:3}, {10:3}"; and "{0:2}:4:3".

If OMP_PLACES and GOMP_CPU_AFFINITY are unset and OMP_PROC_BIND is either
unset or false, threads may be moved between CPUs following no placement
policy.

See also: Section 3.8 OMP_PROC_BIND], page 20, Section 3.14 [GOMP_CPU_AFFINITY],}
page 22, Section 2.14 [omp_get_proc_bind], page 9, Section 3.2
[OMP_DISPLAY_ENV], page 19,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.5

3.10 OMP_STACKSIZE — Set default thread stack size

Description:
Set the default thread stack size in kilobytes, unless the number is suffixed by B,
K, M or G, in which case the size is, respectively, in bytes, kilobytes, megabytes or
gigabytes. This is different from pthread_attr_setstacksize which gets the
number of bytes as an argument. If the stack size cannot be set due to system
constraints, an error is reported and the initial stack size is left unchanged. If
undefined, the stack size is system dependent.

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.7

3.11 OMP_SCHEDULE — How threads are scheduled

Description:
Allows to specify schedule type and chunk size. The value of the variable
shall have the form: typel,chunk] where type is one of static, dynamic,

http://www.openmp.org/
http://www.openmp.org/

22 GNU libgomp

guided or auto The optional chunk size shall be a positive integer. If undefined,
dynamic scheduling and a chunk size of 1 is used.

See also: Section 2.28 [omp_set_schedule], page 14,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Sections 2.7.1 and 4.1

3.12 OMP_THREAD_LIMIT — Set the maximum number of
threads

Description:
Specifies the number of threads to use for the whole program. The value of this
variable shall be a positive integer. If undefined, the number of threads is not
limited.

See also: Section 3.7 [OMP_NUM_THREADS|, page 20, Section 2.18
[omp_get_thread_limit], page 10,

Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.10

3.13 OMP_WAIT_POLICY — How waiting threads are handled

Description:
Specifies whether waiting threads should be active or passive. If the value
is PASSIVE, waiting threads should not consume CPU power while waiting;
while the value is ACTIVE specifies that they should. If undefined, threads wait
actively for a short time before waiting passively.

See also: Section 3.16 [GOMP_SPINCOUNT], page 23,
Reference: OpenMP specification v4.0 (http://www.openmp.org/), Section 4.8

3.14 GOMP_CPU_AFFINITY — Bind threads to specific CPUs

Description:

Binds threads to specific CPUs. The variable should contain a space-separated
or comma-separated list of CPUs. This list may contain different kinds of
entries: either single CPU numbers in any order, a range of CPUs (M-N) or a
range with some stride (M-N:S). CPU numbers are zero based. For example,
GOMP_CPU_AFFINITY="0 3 1-2 4-15:2" will bind the initial thread to CPU 0,
the second to CPU 3, the third to CPU 1, the fourth to CPU 2, the fifth to
CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12, and 14 respectively and
then start assigning back from the beginning of the list. GOMP_CPU_AFFINITY=0
binds all threads to CPU 0.

There is no GNU OpenMP library routine to determine whether a CPU affinity
specification is in effect. As a workaround, language-specific library functions,
e.g., getenv in C or GET_ENVIRONMENT_VARIABLE in Fortran, may be used to
query the setting of the GOMP_CPU_AFFINITY environment variable. A defined
CPU affinity on startup cannot be changed or disabled during the runtime of
the application.

http://www.openmp.org/
http://www.openmp.org/
http://www.openmp.org/

Chapter 3: Environment Variables 23

See also:

If both GOMP_CPU_AFFINITY and OMP_PROC_BIND are set, OMP_PROC_BIND has a
higher precedence. If neither has been set and OMP_PROC_BIND is unset, or when
OMP_PROC_BIND is set to FALSE, the host system will handle the assignment of
threads to CPUs.

Section 3.9 [OMP_PLACES], page 21, Section 3.8 [OMP_PROC_BIND],
page 20,

3.15 GOMP_STACKSIZE — Set default thread stack size

Description:

See also:

Reference:

Set the default thread stack size in kilobytes. This is different from pthread_
attr_setstacksize which gets the number of bytes as an argument. If the
stack size cannot be set due to system constraints, an error is reported and
the initial stack size is left unchanged. If undefined, the stack size is system
dependent.

Section 3.10 [OMP_STACKSIZE], page 21,

GCC Patches Mailinglist (http://gcc.gnu.org/ml/gcc-patches/2006-06/
msg00493 . html), GCC Patches Mailinglist (http://gcc . gnu. org/ml/
gcc-patches/2006-06/msg00496 . html)

3.16 GOMP_SPINCOUNT — Set the busy-wait spin count

Description:

See also:

Determines how long a threads waits actively with consuming CPU power be-
fore waiting passively without consuming CPU power. The value may be either
INFINITE, INFINITY to always wait actively or an integer which gives the num-
ber of spins of the busy-wait loop. The integer may optionally be followed
by the following suffixes acting as multiplication factors: k (kilo, thousand), M
(mega, million), G (giga, billion), or T (tera, trillion). If undefined, 0 is used
when OMP_WAIT_POLICY is PASSIVE, 300,000 is used when OMP_WAIT_POLICY is
undefined and 30 billion is used when OMP_WAIT_POLICY is ACTIVE. If there are
more OpenMP threads than available CPUs, 1000 and 100 spins are used for
OMP_WAIT_POLICY being ACTIVE or undefined, respectively; unless the GOMP_
SPINCOUNT is lower or OMP_WAIT_POLICY is PASSIVE.

Section 3.13 [OMP_WAIT_POLICY], page 22,

http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html
http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html
http://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html

25

4 The libgomp ABI

The following sections present notes on the external ABI as presented by libgomp. Only
maintainers should need them.

4.1 Implementing MASTER construct

if (omp_get_thread_num () == 0)
block

Alternately, we generate two copies of the parallel subfunction and only include this in
the version run by the master thread. Surely this is not worthwhile though...

4.2 Implementing CRITICAL construct

Without a specified name,

void GOMP_critical_start (void);
void GOMP_critical_end (void);

so that we don’t get COPY relocations from libgomp to the main application.

With a specified name, use omp_set_lock and omp_unset_lock with name being trans-
formed into a variable declared like

_attribute__((common))

omp_lock_t gomp_critical_user_<name>

Ideally the ABI would specify that all zero is a valid unlocked state, and so we wouldn’t
need to initialize this at startup.

4.3 Implementing ATOMIC construct

The target should implement the __sync builtins.
Failing that we could add

void GOMP_atomic_enter (void)
void GOMP_atomic_exit (void)

which reuses the regular lock code, but with yet another lock object private to the library.

4.4 Implementing FLUSH construct

Expands to the __sync_synchronize builtin.

4.5 Implementing BARRIER construct

void GOMP_barrier (void)

4.6 Implementing THREADPRIVATE construct

In _most_ cases we can map this directly to __thread. Except that OMP allows constructors
for C++ objects. We can either refuse to support this (how often is it used?) or we can
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions to the main pthreads library.
Failing that, we can have a set of entry points to register ctor functions to be called.

26 GNU libgomp

4.7 Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent of a PARALLEL block, the
variable becomes a local variable in the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new automatic variable within
the current function. This preserves the semantic of new variable creation.

4.8 Implementing FIRSTPRIVATE LASTPRIVATE
COPYIN and COPYPRIVATE clauses

This seems simple enough for PARALLEL blocks. Create a private struct for communicating
between the parent and subfunction. In the parent, copy in values for scalar and "small"
structs; copy in addresses for others TREE_ADDRESSABLE types. In the subfunction,
copy the value into the local variable.

It is not clear what to do with bare FOR or SECTION blocks. The only thing I can
figure is that we do something like:
#pragma omp for firstprivate(x) lastprivate(y)
for (int i = 0; i < n; ++i)
body;
which becomes
{

int x = x, y;

// for stuff

if (i == n)
y =5
}

where the "x=x" and "y=y" assignments actually have different uids for the two vari-
ables, i.e. not something you could write directly in C. Presumably this only makes sense
if the "outer" x and y are global variables.

COPYPRIVATE would work the same way, except the structure broadcast would have
to happen via SINGLE machinery instead.

4.9 Implementing REDUCTION clause

The private struct mentioned in the previous section should have a pointer to an array of
the type of the variable, indexed by the thread’s team_id. The thread stores its final value
into the array, and after the barrier, the master thread iterates over the array to collect the
values.

4.10 Implementing PARALLEL construct

#pragma omp parallel
body;
}

becomes

void subfunction (void *data)

{

Chapter 4: The libgomp ABI 27

use data;
body;
}

setup data;

GOMP_parallel_start (subfunction, &data, num_threads);
subfunction (&data);

GOMP_parallel_end ();

void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
The FN argument is the subfunction to be run in parallel.

The DATA argument is a pointer to a structure used to communicate data in and out
of the subfunction, as discussed above with respect to FIRSTPRIVATE et al.

The NUM_THREADS argument is 1 if an IF clause is present and false, or the value of
the NUM_THREADS clause, if present, or 0.

The function needs to create the appropriate number of threads and/or launch them
from the dock. It needs to create the team structure and assign team ids.
void GOMP_parallel_end (void)

Tears down the team and returns us to the previous omp_in_parallel () state.

4.11 Implementing FOR construct

#pragma omp parallel for
for (i = 1b; i <= ub; i++)
body;

becomes

void subfunction (void *data)
{
long _sO, _eO0;
while (GOMP_loop_static_next (&_sO, &_e0))

{
long _el = _e0, i;
for (i = _s0; i < _el; i++)
body;
}
GOMP_loop_end_nowait ();

}

GOMP_parallel_loop_static (subfunction, NULL, O, 1b, ub+1l, 1, 0);
subfunction (NULL);
GOMP_parallel_end ();

#pragma omp for schedule(runtime)
for (i = 0; i < n; i++)
body;

becomes
{

long i, _s0O, _e0;
if (GOMP_loop_runtime_start (0, n, 1, &_sO, &_e0))
do {
long _el = _e0;
for (i = _s0, i < _e0; i++)
body;
} while (GOMP_loop_runtime_next (&_sO, _&e0));

28 GNU libgomp

GOMP_loop_end Q) ;
}

Note that while it looks like there is trickiness to propagating a non-constant STEP,
there isn’t really. We're explicitly allowed to evaluate it as many times as we want, and
any variables involved should automatically be handled as PRIVATE or SHARED like any
other variables. So the expression should remain evaluable in the subfunction. We can also
pull it into a local variable if we like, but since its supposed to remain unchanged, we can
also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be able to
get away with no work-sharing context at all, since we can simply perform the arithmetic
directly in each thread to divide up the iterations. Which would mean that we wouldn’t
need to call any of these routines.

There are separate routines for handling loops with an ORDERED clause. Bookkeeping
for that is non-trivial...

4.12 Implementing ORDERED construct

void GOMP_ordered_start (void)
void GOMP_ordered_end (void)

4.13 Implementing SECTIONS construct
A block as

#pragma omp sections

#pragma omp section
stmtl;
#pragma omp section
stmt2;
#pragma omp section
stmt3;

}

becomes

for (i = GOMP_sections_start (3); i !'= 0; i = GOMP_sections_next ())
switch (i)
{
case 1:
stmtl;
break;
case 2:
stmt2;
break;
case 3:
stmt3;
break;
}
GOMP_barrier ();

4.14 Implementing SINGLE construct

A block like
#pragma omp single

{
body;
}

becomes

if (GOMP_single_start ())
body;
GOMP_barrier ();

while

#pragma omp single copyprivate(x)
body;

becomes

datap = GOMP_single_copy_start ();
if (datap == NULL)
{
body;
data.x = x;
GOMP_single_copy_end (&data) ;
}
else
x = datap—>x;
GOMP_barrier ();

29

31

5 Reporting Bugs

Bugs in the GNU OpenMP implementation should be reported via Bugzilla (http://gcc.
gnu.org/bugzilla/). For all cases, please add "openmp" to the keywords field in the bug

report.

http://gcc.gnu.org/bugzilla/
http://gcc.gnu.org/bugzilla/

33

GNU General Public License

Version 3, 29 June 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

34 GNU libgomp

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS
0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.
The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

GNU General Public License 35

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.
2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

36

GNU libgomp

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

GNU General Public License 37

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c¢. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

38

GNU libgomp

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

GNU General Public License 39

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

40

10.

11.

GNU libgomp

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

GNU General Public License 41

12.

13.

14.

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

Revised Versions of this License.

42

15.

16.

17.

GNU libgomp

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

Disclaimer of Warranty.

