pandas.Series.argmax¶
-
Series.
argmax
(axis=0, skipna=True, *args, **kwargs)[source]¶ Return the row label of the maximum value.
Deprecated since version 0.21.0.
The current behaviour of ‘Series.argmax’ is deprecated, use ‘idxmax’ instead. The behavior of ‘argmax’ will be corrected to return the positional maximum in the future. For now, use ‘series.values.argmax’ or ‘np.argmax(np.array(values))’ to get the position of the maximum row.
If multiple values equal the maximum, the first row label with that value is returned.
- Parameters
skipna : bool, default True
Exclude NA/null values. If the entire Series is NA, the result will be NA.
axis : int, default 0
For compatibility with DataFrame.idxmax. Redundant for application on Series.
*args, **kwargs
Additional keywords have no effect but might be accepted for compatibility with NumPy.
- Returns
Index
Label of the maximum value.
- Raises
ValueError
If the Series is empty.
See also
numpy.argmax
Return indices of the maximum values along the given axis.
DataFrame.idxmax
Return index of first occurrence of maximum over requested axis.
Series.idxmin
Return index label of the first occurrence of minimum of values.
Notes
This method is the Series version of
ndarray.argmax
. This method returns the label of the maximum, whilendarray.argmax
returns the position. To get the position, useseries.values.argmax()
.Examples
>>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64
>>> s.idxmax() 'C'
If skipna is False and there is an NA value in the data, the function returns
nan
.>>> s.idxmax(skipna=False) nan