Logol Designer And Language
Tutorial

by
Olivier Sallou - IRISA



History:

v1.0: Creation

v1.0.1: Fix errorsin Parental comparison chapter.

v1.0.2: Change special characters for end and dist constraints due to encoding issues
v1.1: Add new features (optimal size constraint and al phabet constraint)

v1.2: Add macro controls

v1.3: Add info on morphism



Index

1 SEATTINE UD. ettt ettt e e e ettt e e e sttt e e sttt e e sesbt e e e e s aseae e s asseeesessaeeeesnsaeessnssreeeens 3
I 03V o T L (T ) o PO TR 3
1.2 Audience and reqUITEIMENLS. ......ceeverrueerierrieerieerieeeteesieesteesseesseesseesseesseessseesssesssessseessseesssesnses 3
1.3 SOTEWATE...cc.eieeteeeiie ettt ettt te et et e e rte e st e e beessaeebeessteesseessseesseesssaesseansseenseenssaeansseaesnsseens 3

2 LaANGUAZE COMOPES. ceeeeuurrreeeeurreereeurteeeeertteeeenrreesaesreeesesnrttessasreeesssssreessesssneesssssseessssssseessssseeesssnmnnes 4
2.1 RUI. .ttt ettt e st e e st e e st e e s ba e e st e e e s ab e e s a b e e e abae e tt e e e bt e e esaeeetaaeeennnres 5
B ¥ 0T (=) 3OS PR 5
2.3 VIBWS..ciiteeeeeetee ettt ettt ettt e e sttt e s ettt e e e s st e e e s b bt e e s e bb e e e e et bt e e e e bt ae e e s nne e et e e eeeeeeeeeeenannn 5
24 EIIEILY .ottt et ettt e bt e s a e e bt e e a e e e bt e e at e e bt e e ht e et e e a b e et e e ht e et e e e aeeeabeenateeabeeenarae 6
2.5 CONSITAINL. ..eeiitiiiiieeeiteeete ettt ettt e st e s bb e e s bt e s be e s e ba e e sbeessbeesenbeesenseesesnnns 6
2.6 IMOTPRISITIS. c...vieiiiieeeiiie ettt ettt e et e st e e st e e st e e sbaeesaseeessbeeesssaeesssaeesssaeenaseaessnsnssnaeessnnnnns 6
2.7 MLACTO COMLTOLS. ...euutitiritiriieteeienit ettt et sat et et e st ebe et esbe e bt satesst e be et e saeebesatesaseesneesneesane 6

3 LaANGUAZE OPETALOTS. ....ceeeeeurreeeeerurteeeaairteeeeeeteeeessreeeeasnseeesasssreeeessssaesssssseesssssteesssssseeesssssssessssnnnnns 7
3.1 AND OPETALOT ... .uvieiieiereeeeeirteeeeiiteeeesstteeeeserteeessasreeessssaeesssssaeesssssseeessssseeessssseesssssseeesssssseesens 8
3.2 OR OPETALOT.......cteiiiiereeeeeiiteeeeeiteeeeeettee e e ettt e e esrteeeessseeessasnreeeeesasaeeessnnsaeessasssaeesssnsaeesssnssaeesnnn 8
3.3 OVERLAP ODETALOT......cttiiiiiiieeiriiiieeesiiteeessiteeessssteesssstteesssseeeesssssseesssssaessssssaeesssssssessssssssnns 9
3.4 REPEAL OPETALOT ... ..eeeiiiieieeeieitteeeeiiteee ettt e e eertteeesnareessenreeeseesateeesnreeessennreeesesnsnaaeeeeseeesesnns 9
3.5 MATH OPETALOLS. ..ceeieuiiteraeiittereeitteeeeeitteeessaeeeesstrteeesssteeeasssaeessssssteesssseeesssssseesssssseeeeeeeeens 11
3.6 RANEE OPETALOT. .....ueeiieiiiiiieeieiitte ettt ettt et e ettt e e s et ee e e e saae e s enbaeeesenreeesessaeaeeeeeeesesnnns 11

4 WTTHNE TULBS....eevtietieeiieeiteeteett ettt e et e st e et e st e e aeessseessaeesseesseesssaenssasssesnseesnsessseasssesassseesnssees 12
4.1 Lan@UAZe SPECITIC.....ccuiiiiiiiiiieiiecieete ettt ettt ee et e et e et e e s aaeebeeesbaeeenaeeeesaaaeenreeas 12
4.2 1.ogolDesigner WIitiNg TULES.........cc.eevuiirieriienieeiteeie ettt et te et esae e e sebe e e ssbeeesnsneees 12

5 PatteIN eSIGN.....uiiiiieieiiieeeiieeeiieeete et st e et e st e e s tteesbteeeabeeesstaeesssaeenssaeesssaessssssseeessnsssseeeesnnnns 13
5.1 FIrSEMOAEL.....coneiiiiiiieieeeetete ettt ettt ettt b et s e be e e bt e ebeesanne s 13
5.2 RUle definition......c.ceeuiiiiieeieeiieeieeieee ettt ettt e et e et e eaeesaaesba e e e ntaeeennaeeennes 14
5.3 Model definition.........cccuiieuiieiiiiiieeieete ettt e eae e s e e ereesaeebe e e e saeeeenraeeeennaeeennns 14
5.4 ENGLY MALCHINE. . ceeviiiiieeiieiieeieeiteeie ettt et et e s tessieesteesaeesasessaesataesaesssessseesnsassnsseesnnns 16
5.5 VIS ettt ettt e et e st e e e st e e e e bt e e e e b e e e e e bt e e e e e ataaeeen e aaaaaaeeeeeeeeeenanns 18
5.6 SPACETS (BAPS)-+evvveeevreersurerrirrerriutersiteesestessttessseessuseesssteesssseesssseesssseesssaeessseessseesssssseeeessssnnes 19
5.7 SUIING CONSITAINES. ...ceeierurteeeerrteeeeniiteereritteeeearteeessasreeessssrteessssseeessssssseesssssstaeeeeesssssssssssnssnses 20
5.8 SIIUCLUI® COMSITAINES. .. vveeeeeurieeeeiireeerertteeeasireeeessseeesessssaeesssssseessssssssesssssssssssseseesssesssssssssnsnnes 21
5.9 Morphisms (and MOGIfierS).......ceerveriiirrieriierieeieerteeie ettt sre e s ar e s eneesssaaeeenns 22
5.10 DfINItiONS. ..c.uviiitieeiieetieeieesteeeteeteesteerte e e e teesteeebe e seessbeesseessseessaessseesseeeansseaesssseesansseesnnses 24

6 LOgOIDESIGNET tOOIDAT......c..eiitiiiiiiiieiieeit ettt sttt et s te e st e sbeesaaesabeesateesnsnaessnnneeas 25

7 DEVEIOPIMENE TIPS ..vveerrieirrieiiiieisieeiriteesteeesteessteesssteessseeesseesssssesssseeessssesssseessssassssseesssseesssnssseees 27
7.1 SEATt QICHOTS. ..c.etitieieeiteteeteetett ettt st ettt et st s bt e b s ate st e s bt e sabeesbeeebeeeneenas 27
7.2 (GAPS / SPACETS. . uuuvveereuerteeeariteeeeaaurteesesarteesssseeeeasausteesasssseeesssssaeeesssssseessssssataeeeeeeesssssssssnsnnnes 27
7.3 VEBWS.. ettt ettt ettt et e e et e s at e et e e a e e e bt e st e s b e e e bt e e bt e st e e b e e e ut e e bt e nbteeenbeeeenbeeenane 27
7.4 SPACeT QBAINSE ENEILIES. ...ceiieiurriereeitteeeeeiteee e ettt e e errteeeeeiteeeseearreeeeesnreeeeessraeesssnnseeesssnneeeeeeanns 27
7.5 Parental COMPAriSON SEAICH.........ccccuiiieiiieiriieieieeeree et e erte e e steeesaeesseeeesseaeesaaeesssaeessseaensseeens 27
7.6 NeGatiVe COMSITAINLS. ......cciirrrrterieirteeeeeiteeeeeeitteeeerteeeeerreeeeesarreeesesnsreesssnnrneessssrteessssneeseeesnns 28

8 ANNEX A RESIIICHIONS. . eeiieiiiietieitieeeeiiteeeertteeeeeitte e e ettt eesstteeeessabteeesssaeeesssnsaaaeaeesesessssssssnnssnes 28

Logol designer and grammar tutorial 1



Index des illustrations

Mlustration 1: Grammar SIaPN.........occuiiiiiiiiiieeieeteee ettt e e et e s beesesesbeesssaeessssaessssseesnns 4
[lustration 2: LogolDesigner AIND ODEIALOT.........ccc.teeueeriterieeeriteeteestteeteesreesteesreeseessseesseessseesseeesns 7
[lustration 3: LogolDesigner OR OPETAtOL.........ceevviirierrieerieerieeniesrieestessseesssessseesseesssessssesssessssseessns 8
[lustration 4: LogolDeSigner rePeat OPETALOT..........ceerveeerueerrreersireesireeessseeessseessseesssesssssesssseessssssees 10
Ilustration 5: LogolDesigner range OPEIator..........cccueeterrerrrereerrerrtenseenrereesseesseesesseessessesseessessennees 11
[lustration 6: LogolDesigner template 10ad............cooouiiriieiniieiniieiieeeieeeieeceeeee e eieneees 12
[lustration 7: LogolDesigner rule CTAtION...........ccueevueerieeriierieeitenteeiee st et e ste et e steesbeeseeesaeeeeaee 13
Mlustration 8: LogolDesigner model call eXample...........coccuervieriiiinieniienieeieenie et eereeeseree e 14
Mlustration 9: LogolDesigner model definition...........ccueecvieiieiiiienieciieieeieereeete e 15
[lustration 10: Logol Designer word definition..........c..cceevverierernienienenieneeneeieneeseeeeeie e 16
[lustration 11: LogolDesigner view definition..........cc.ceeceevieriieniineniineeieetereeie et 18
Illustration 12: LogolDesigner morphism definition..........cccceceeievierienienenienieeneneceeee e 21
Mlustration 13: LogolDesigner MOdifier USAZE..........cccuirrueeriierrieniieinieeieerite et eseeereesreeeseessaeeeseenes 22
lustration 14: LogolDesigner definition USAZE..........cccevuererrieriereerierieneesiestesieesieeeeseeeseeesseesanes 22
Mlustration 15: LogolDesigner tOOIDAT.........ccocieriiriiinieriiienieeie ettt e e s sare e e saaeeesaenee s 23

Index des tables

Texte 1: Models USage eXamPIe.........cocuiiiiiriiieriieiiierieeiteete ettt ettt s et este s sbteessbteessaseaesnns 5
Texte 2: Variable Usage eXamPIe.........coeuiiiriiiiriieiiieriee ettt sre e e see e s steessaaeesssseesnsseesnsaeas 7
TeXte 3: AIND OPEIALOL......ceiiiiiiieiieiitteeeeteee ettt e ettt e e ettt e s e sarte e s sesbteesessaeeesessraeessennsaeesessnnnnnnnsnns 7
TEXEE 4: OR OPETALOT ... ..eeieiieiieeeeeeitteeeeiiteeeeeiteeeeestteeeessateeeesssreeesssssteeessassaeeesssseessssssaeesssssssssssssnnnns 8
Texte 5: OVERLADP OPETALOT........cuttttiiiireiiiitteeeeeieeiittteeeessesesiastteeeesssssssssssteaessssesssssssssssssssssssssees 9
Texte 6: REPEAT OPEIALOT.....cccieiiiieieeiieeeeeiiteeeeitteeeesittee e ettt e s s seeteesssnreeeessnsaaeeeeeeesessssssssnnnnnsnnnnns 9
Texte 7: RANGE OPEIALOT.....cciiriiiieieeiiieeeeiiteeeeeriteeeesiiteeessiteeesssabteeesssasaeesssasaaeesssssaeesssssaeeeesssnsnns 11
Texte 8: Logol grammar temMPIate..........coceiriiriiiiriieiieieeeet ettt ettt e e s e e s aae e e anee s 13
Texte 9: Rule definition eXamPIe.........ccveeieriiiiiiiiiiecieeieeste ettt e e saeesteebeessae e baeessssaeeesneeas 13
Texte 10: model call eXamPIe........cccciiieiiiiieiiecie et see e e e e e tee e s aeeesabeeessseeessneesnnns 14
Texte 11: MOAE] CTEALION. ........cieciieriieeieeteeie ettt e et e et e st eebe e st e sbeessteesseesssesseenssessasseeesnssees 15
Texte 12: WOrd definitionN.........cocuiriiniiierieeeee ettt sttt et e e st esaseesans 16
Texte 13: VIEW definition.....cocueriiiieieieeee ettt sttt 17
TeXte 14: SAVE CONMSITAINL...cccieiurreereriirteeeeriteeeeeiiteeeesiteeeessrteeeeesseeeesssssaeeessssaesssssseeesssssseeseeessssssnnnns 19
Texte 15: MOThPISITIS USAZE. .....ccutiruieriieiieeieete ettt ettt et e st e e bt e satesbe e s st e ebeesabesbeesateessasaeesnanes 20
Texte 16: PAreNtal COMPA.....ccuiriirriierieeiiieeieeieerte et e steesteesteesseesssessseessseesseesssessseesssseesssseesssseenn 25

2 Logol designer and grammar tutorial



1 Starting Up...

1.1 Introduction

Logol is a language used to describe some patterns in a DNA/RNA/Protein sequence. It fo-
cuses on biological meaning patterns to help biologists and bio-informaticians formulate some
patterns and create an appropriate model. LogolMatch will then scan a sequence with this
model to find the expected patterns.

This tutorial will describe this grammar, how to use its language to define patterns, and how
to use Logol Designer to create some grammar models graphically.

1.2 Audience and requirements

The intended audience is people needed a forma model description language for biological
patterns and people using LogolMatch.

There is no prerequisiste nor biology or IT knwoledge needed.

As a pattern description language, Logol expects that a pattern can be literally described to be
applied on a sequence. The tool does not find a-priori patterns from a set of sequences, itisin-
tended to find a known pattern only, though the pattern can be “soft”, meaning that unknown
parts can be introduced, or parts with error ranges.

1.3 Software

LogolDesigner is available at http://webapps.genouest.org/L ogolDesigner, on the GenOUEST
bioinformatics platform. The grammar can be designed graphically from a web browser (In-
ternet Explorer, Safari, Firefox, Chrome). It expects quite recent version browsers.

Screencasts can be found at this URL for basic usage of the software and quick startup.

Logol designer and grammar tutorial 3


http://webapps.genouest.org/LogolDesigner

Language concepts

2 Language concepts

Besides language writing or graphical editing concerns, it is first required to understand the
Logol concepts. Those concepts will be find in both ways of modeling.

.
Coose ) Camn)
structm%

structConstraint

Here is the language graph:

entityWariable
stringVariableElement
w stringvariable

S

operator

intexpression

y
varrefinteger

string

Hllustration 1: Grammar graph

Don't be afraid by this graph, you don't need to understand the whole thing. This tutorial will
briefly the most important parts of the components. With the graphical interface, most of
those relationships are hidden within the interface.

4 Logol designer and grammar tutorial



2.1 Rule

The ruleis the entry-point in the language (grammar). Thisis the place where one must define
the models to apply on a sequence. Several models can be applied on a same sequence, with
the possibility to use variable from one model in the other.

For example, a first model can be used to find an anchor in a sequence, then to apply other
models, based on this anchor to find other sub-components.

For the models defined in the rule, the search will not start specifically at position 1 in the se-
guence. The tool will try to match the first entity of the model anywhere in the sequence. Asa
consequence, it isimportant (but not mandatory) to set the first entity as a string anchor, to get
an easier starting match. The more the anchor is strong (well defined), the faster will be the
search.

2.2 Models

Compared to programmatic languages, models can be compared to functions. Models define a
set of words, other models calls and constraints to match a part of a sequence.

For example, amodel A could be:

ModelA  {
search “acgt”,
search “cg”, repeated 3 times
search model B

}
with:
model B {
search “tgca”
}
Texte 1: Models usage example
2.3 Views

A view can apply some constrains on a group of words or models. It can be used to limit for
example the total size of a set of wordsin a match.

Example:

Logol designer and grammar tutorial 5



Language concepts

( search “acgt” with a max distance cost of 1, search “cgta’ with a max distance cost of 1)
whole max distance cost of 1

The view can be seen here as the parenthesized group.

2.4 Entity

Entities are the search words in the sentence, with text search comparison. Entities can refer
each other viavariables in constraints (content constraint for example).

Entity references do not imply left-to-right constraints, e.g. a word A can refer to word B,
even if B isnot yet known at time of the analysis. There are however afew constraints for this
(see annex document), and keeping left-to-right modeling, though not mandatory, will highly
improve performances. As such, define variables and constraints as much as possible as if
reading the sequence from left to right.

2.5 Constraint

Constraints are used on a model to specify what is expected on a word to match against the
sequence.

String constraints |

The string constraints are constraints applying on the sequence itself. In this group, one
can find position or size constraints, as well as a content constraint to specify that we
expect a specific group of nucleotids (or nucleic acids).

Struct constraints

The struct constraints applies on the word to match. It focuses on acceptable errors to
match against the sequence. Both substitutions and distance errors are supported.

2.6 Morphisms

Morphisms define a transformation rule on a word. A classical morphism in biology is the
complement, or the reverse complement of a DNA sequence.

The grammar introduce hard-coded transformation rules, but also a way to define its own
transformation rules.

2.7 Macro controls

Macro controls add the possibility to filter the results based on a mathematical expression us-
ing amix of variables, defined in models.

6 Logol designer and grammar tutorial



Using macro controls, one can check, for example, the global percentage of substitution on
two or more variables.

Those are defined separately from the model, and are checked only when a match is found.
Any variable can be used, with usual constraint operator. Only constraint isto “save’ the vari-
able.

controls: {

#[mod1l.VAR1,modl.VAR2]=6 // The cumulated length of VAR1 and
VAR?2 is equal to 6

Texte 2: Macro controls

3 Language operators

The language supports the AND, OR, and OVERLAP operators in the pattern definition. This
means that several matches are possible for a same word (besides constraints). It aso support
loops for the repeat operations.

The AND operator ( “,” in grammar) suppose that patterns managed by AND are consecutive in
the sequence. (A AND B will match in sequence for AB).

The OR operator (“|” in grammar) introduce different match possibilities for a pattern.

The OVERLAP operator (“;” in grammar) provide the possibility to search for a pattern that
overlaps the previous match (example match acgt with overlap on sequence, while previous
match was acac: acac gt)

The REPEAT operator (“repeat” in grammar) will search for a pattern severa times up to the
limitif any.

LTR is a good example:
sequence: LTR ------------- (spacer)----------------- LTR

First matched LTR can be saved, and used later on in the sequence to
find the same nucleotids suite.

Texte 3: Variable usage example

Variables can be used to save a matched word, so that it can be reused in the model. Thisis use-
ful for word repetitions with spacers between (see word definition chapter). Those variables can
be used with + and — operators in constraints. To call such variables, use the adequate call acces-
sor (see constraints chapters, each constraint define an accessor), and optionally mathematical
operators.

Logol designer and grammar tutorial 7



Language operators

3.1 AND operator

modl()==>"aaa","acgt”

With an other model or a view
modl()==>"aaa",mod2()
modl()==>"aaa",(“ac”,”gt”)

To look for “aaa acgt” in sequence, “aaa” AND “acgt” is written:

Texte 4: AND operator

In LogolDesigner, simply select the Connect tool in the toolbar, click on source component

and drag to target component.

mode| li—
i e

variable

Illustration 2: LogolDesigner AND operator

3.2 OR operator

The OR is used to introduce multiple cases ni a sub-pattern, e.g. match can be A or B.

The OR operator must enclose
parenthesis)

modl()==>("aaa"|"acgt”)
With an other model
mod1l()==>("aaa"|mod2())

To look for “aaa” OR “acgt”, one should write:

Texte 5: OR operator

its components in a view (e.qg.

In LogolDesigner, the OR operator is managed with Fork and Merge components.

At the time of the multiple choice, connect to a Fork element, then add the different branches
to Variables, Models, Views.. At the end of the OR, connect al branches back to a Merge

component.

Logol designer and grammar tutorial



H-R-0

A - o
2888 :EIOE: q o E| L—-P
Wlerge
N % Terminate

Illustration 3: LogolDesigner OR operator

3.3 OVERLAP operator

The OVERLAP operator is managed like a AND operator.

To look for “aaa” AND “acgt”, ALLOW OVERLAP, one should write:
modl()==>"aaa";"acgt”

It will match on sequences: aaacgt (overlap) , aaaacgt (no overlap)
With an other model

mod1l()==>"aaa";mod2()

Texte 6: OVERLAP operator

In LogolDesigner, to introduce overlap, just check the checkbox in the properties of the com-
ponent.

3.4 Repeat operator

A repeat alows to search for a pattern several consecutive times. It alows spacer or overlap
between each repeat.

Example:
| search for ccgge with 1 spacer allowed, repeated twice. It will match on ....ccggce a ccgge
| search for ccgge with overlap allowed, repeated twice. It will match on ....ccggecgge

Logol designer and grammar tutorial 9



Language operators

| search for acgt, with [0,1] spacers, repeated up to 2 times
modl()==>"aaa",repeat("acgt" ,[0,1])+[0,2]
modl()==*>SEQ1
repeat("acgt")+ : no limit on repetitions, no spacer, no overlap
repeat("acgt" ,[0,2])+ : no limit on repetitions, with spacer
repeat("acgt" ;[0,2])+ : no limit on repetitions, with overlap
repeat("acgt")+[2,2] : repetited exactly twice

Texte 7: REPEAT operator

In LogolDesigner, the repeat is managed by the Repeat component and a Connect |oop.

Properties of the Repeat component will define number of repetitions, overlap etc...

®

Terminate

Properties
Fig rensat
de=scription
Number of
repeats
Allow |:|
overlap?
Allowed
Spacers
0K | Cancel

Hllustration 4: LogolDesigner repeat operator

To create the loop, insert the Repeat component. Then connect you pattern to loop to the Re-
peat component. Once done, Connect the Repeat component back to the pattern. Connect
lines can be selected to be redrawn if required.

Note: A repeat operator can apply on several components.

10 Logol designer and grammar tutorial



3.5 MATH operators

The grammar supports PLUS and MINUS operators on variables. In a constraint, to use a
math operator, one should write for example:

Start position of VAR1 plus 10 = @VAR1 + 10

Math is supported only between a variable and an integer, not between two variables. The
variable name is aways the first element of the operation.

In Logol grammar file, one should take care to put whitespaces before and after the math op-
erator. Thisisnot required in LogolDesigner.

3.6 Range operator

Most constraints work with ranges as input. This is helpful to search for example a position
range, or allow between amin and a max of errors.

| search for aaa with a maximum of 2 errors.

"aaa":{$[0,2]}
| search for “aaa” between the position of VARL plus 1000 and position
of VAR1 plus 2000

“aaa”:{@[@VAR1 + 1000,@VAR1 + 2000]}
Texte 8: RANGE operator

In LogolDesigner, the range are written with a comma separator. By default, if only one ex-
pression is set, therange used is[ O, expression].

In the above example, the constraint is position of [0,@VARL + 2000]

Logol designer and grammar tutorial 11



Language operators

Properties
label acgt Negative FI Negative [Fl
N start cozt
constraint constraint
description Start @W\RL}S 2000 Substitution
position
canstraint
Negative S ]
overlap? 5 D distance
Negative i conztraint constraint
content Distance
constraint EE:.'rtiun ‘
Apply constraint
morphism
e Negative D
N gize
ame canstraint
Size
constraint B
Caontent
constraint
Save as
OK | Cancel

4 Writing rules

Illustration 5: LogolDesigner range operator
Additionally, if the accessor of the variable is not set in the properties, the default will be the
accessor of the property. E.g., if VARL is called in begin property, the designer will suppose
that begin property of VARL is used. Same for other cases.

If end position of VAR needs to be used in begin property, then the accessor MUST be used:
$VAR1+2000.

4.1 Language specific

If using a language file instead of graphical interface, a number of writing rules must be fol -
lowed. If not compliant, LogolMatch will fail at analyzing it. The exact language rules can be
found in the Logol Grammar document.

4.2 LogolDesigner writing rules

In LogolDesigner, writing rules are far less restrictive. However, for components names and
data, do not use special characters nor white spaces. Accepted characters are: [a-z],[A-Z],[0-

9]1['!_]'

In properties of components, Label and Description fields are common to all components.
The Label should be a simple, short, name that will appear on the component to distinguish it

12

Logol designer and grammar tutorial



in theinterface. The Description field can hold longer comments to specify the usage or con-
text of the component for easier understanding of the model.

Constants must be enclosed by double quotes, e.g., “acgt”

5 Pattern design

5.1 First model

Before starting a new pattern model, one needs a base template to startup.
In LogolDesigner, simply open the designer and click on “Load Example”.
This sample example gives a basic template to develop new pattern models.

Illustration 6: LogolDesigner template load

To start with agrammar language file, here is a basic structure:

def:{
}

modl()==>"aaa"
modl()==*>SEQ1

Texte 9: Logol grammar template

Logol designer and grammar tutorial 13



Pattern design

5.2 Rule definition

As described before, the rule is the entry point.

In the template, a default rule calling one model is used. It is however possible to call multiple
models (no limit) in a rule, with the possibility to transfer one or more variables from one
model to the others.

Note: in a rule definition, the model order is important. The first model will be scanned
against the sequence, then the second etc...

Note: Only 1 rule must be created in a model. If several rules are created, an error will be
raised when executing the model.

mod1(VAR1).mod2().mod3(VAR1)==*>SEQ1

In this example, we call model mod1l. This model returns a variable(word)
VAR1. Then we call model mod2, then model mod3. The last model will
use the variable VAR1 as input.

Texte 10: Rule definition example

In LogolDesigner,to create arule, simply drag Rule component, and connect it to Model com-
ponents. The properties of the Rule offer adescription field to store some comments.

Terminate

Illustration 7: LogolDesigner rule creation

Variables are specified in the model definition. To do so, edit the properties of the Model, and
add some variable names separated by commas.

5.3 Model definition

Models are defined in Rule, and can be called within other Model.

Note: model variables type can be input or output. However it cannot be both, e.g. a variable
cannot be modified once set.

Model call

A model iscalled by its name and, optionally, can use variables as input or output.
In LogolDesigner:

14 Logol designer and grammar tutorial



In
be
dc

SC

Properties

label

medel_example

= - o
|__| @ description

Terminate

parameters

myinputvar,myoutputvar

Allows
overlap?

| ]

nams

modelExample|

N 0K | Cancel

Illustration 8: LogolDesigner model call example

Model creation

e
in
d

To call a model, a model must be defined. There is no order for declarations. A model can
first be called, then be created later on in the model. Take great care to use the exact same
name between model call and model definition. Variables do not need to get the same name,

they are associated by their order in the parametersfield.

mod1l(VAR1,VAR2)==>"aaa",...

Texte 12: model creation

A model is defined by its name and parameters. Then the pattern for this model is defined.
In LogolDesigner, amodel definition must always end with a Terminate component.

Note: many components can end on the same Terminate component.

Logol designer and grammar tutorial

15



Pattern design

Properties

% label modell

oy |
Ehodel —
m varigble de=scription S
Terminate
nams maodel
parameters
OK | Cancel

Illustration 9: LogolDesigner model definition

5.4 Entity matching

Entity (word) match is the atomic component of the grammar. An entity specifies aletter or a
group of letter expected in a sequence. Constraints will apply on thisword to keep “elasticity”
between the word searched and the match.

Typicaly, an entity will be one or more nucleotids (for a dna sequence).
A word is defined by its content and its constraints (see next chapters).

If the search word is well defined, it will be defined by its content, e.g. a constant (“acgt” for
example” or an other word reference (I want the same content that known word Y).

Structure of an entity:
variable_name: { string constraints } : { struct constraints}
Grammar usage:

16 Logol designer and grammar tutorial



mod1l(VAR1)==>"aaa", ?VAR1, VAR2:{string constraints}:{struct constraints}

A word can be set explicitly, e.g. “aaa”, by a variable name (?VAR1 means |
want to get content of VAR1) optionally followed by additional constraints, or
defined by a new name followed by constraints (VAR2).

Here follows several examples:
“acgt”

?VAR1:{ $[0,21}
VAR2:{@[1000,1500], SAVEDVAR2}
VAR2:{?VAR1}:{$[0,2]}

Texte 13: word definition

Logol Designer word usage:

It is defined by the Variable component. In the case of defined content, you don't need to fill
the name property, it is optional. The content will be managed by the content constraint.

If word is not defined by its content (only by its size for example, or for parental compar -
isons), then fill the name property by avariable name.

Note: if content is a constant e.g. “acgt” or a Definition, then it can be set directly in name,
like in below example. Thisis an additional writing possibility but content can always be set
in Content constraint (see later). If case of a string constant, it should be enclosed by double
guotes (“acgt”). For adefinition, simply put the name of the definition.

]
/-H_-_H-\ Properties =
at
c
label variable Negative (] MNegative cost | ] €
start constraint R
constraint =
description { ic
plion || find acat Start
position 2
constraint Negati O =
Allo i
overlap? ‘ L Hegave | ] dtance I~
model end congtraint
varisble \Apply constraint Distance
morphizm o
position

Name “acgt” ‘ constraint
Negative Pl

size

constraint

Size
constraint

Content
constraint

Save as

| 0K | Cancel

Illustration 10: Logol Designer word definition

A few examples:

Logol designer and grammar tutorial 17



Pattern design

Use case Name property

| want to find “acgt” “acgt”

| want to find a START (defined in a START

definition)

| want to find X content None (will fill constraints)

| want to define new variable X, no None (will fill constraints if variable
parental comparisons expected needs to be saved for later use)

| want to define new variable X, fu- X

ture parental comparisons expected

5.5 Views

The views are away to group some models, words etc..

The goa can be double. At first, it provides a logical grouping of some components, and a
way to get the global match of this group in the results. Secondly, it is a way to apply some
constraints (see constraints chapters) on a group of components.

First case:

If A and B are in the same group, result match will give the (A,B) result (starts at A and ends
at B, with A+B errors), with of course the details of A and B.

Second case;

| look for A with 2 errors max, then | look for B with 2 errors max. | want that A+B errorsis
less than or equal to 2. (A,B):{$[0,2]}

mod1l(VAR1)==>("aaa", "ccc"):{string constraints}:{struct constraints}

A view is characterized by parenthesis. Then constraints can be applied to the
group

Texte 14: view definition

In LogolDesigner, the first case (logical group) is also a way to get an analytic view of the
model help with the collapse/extend functions of the View component.

Simply drag a View component in the main window, then drag some components into the
View component (aModel, or a Variable).

18 Logol designer and grammar tutorial



or
Selection

Cke

Properties

label View Negative D Negative D

start cost

constraint constraint
description | [=start

position

~ || |[constraint

(Al ‘ O = Negat

Negative ol |
overlap? i i tlislﬂnc?
Negative || [] constraint constraint
content Distance
constrant E::niun .

constraint

Negative D

size

constraint

Size

constraint
% Save as

| 0K | Cancel

Illustration 11: LogolDesigner view definition

In the above example, we set a distance constraint on the group.
The collapse button can reduce the block to hide the internal components of the view.

A right click on the view show the “Go into” menu. If selected, the browser opens the content
of the view. A right click again, will then show the “Go up” menu to go back to the main
model. Multiple layers are managed for easier management, mainly in the case of complex
views where number of components is important and would be difficult to manage in the
main model.

Do not forget to link to the first component of the view and to link to the last component of
the view (views are connected by itsinternal components, not by the view component itself).

5.6 Spacers (gaps)

Spacers are away to define a gap between two entities. Spacer can be of undefined length or
constrained by a size range, as well as by its position in the sequence. Spacer cannot be saved,
it isonly to specify that next entity is further in the sequence. It is preferable to place spacers
in front of known entities rather than a Model for example, or a Fork.

mod1l(VAR1)==>"aaa", .*:{#[200,500]},"ccc"
“aaa” and “ccc” are separated by a gap of size >200 and <500.
Gap is specified with the characters “.*”

Texte 15: spacer definition

Logol designer and grammar tutorial 19



Pattern design

™ LN (TTTTT Y
meodel aogt :?BpacEl_ﬁ variable
| — e ] ;
Terminate
‘%' properties
label Spacer Start position [
constraint
description | gap hetwesn acot and next ||| |End position
variable constraint
Size 100,300]
constraint
OK | Cancel

Illustration 12: LogolDesigner spacer usage

5.7 String constraints

Constraints applies on the match of the pattern. The result must match the applied constraints.
Some of those can be negative constraints, e.g. , the constraint must fail to match.

Caution: an absolute position will not work if sequence is analyzed in both direction (execu-
tion option). In such acase, use only relative position constraints.

Constraints are not exclusive, but only one of each can be defined (1 begin and 1 content are
allowed, while 2 begin are forbidden).

Range in stringconstraints can define a “no limit” element with the character “_” (file or de-
signer). For example #[10, ] would mean a size constraint of at least 10.

Begin constraint |

It will check the start position in aleft to right reading of the sequence. It isarange.
The accessor is character “@" .
Begin position of variable VAR1 is @VARL.

End constraint

It will check the end position in aleft to right reading of the sequence. It isarange.
The accessor is character “ @@" .

20

Logol designer and grammar tutorial



End position of variable VAR1 is @@V ARL.

Size constraint

It will check the size of the match. It isarange
The accessor is character “#”.
The size of variable VAR1 is#VAR1.

The size constraint can be set as optimal, e.g. try to search for the largest match for this
variable with the accessor: “#OPT".

Optimal search filter can be set on severa variables. The optimal solution is the longest
match for the variable. For several optimal variables, the program search for the longest
match of avariable whereit is minimal for the other ones.

Content constraint

The content constraint try to match a specific content/word on the sequence. It can be
used alone to search for exact match, or combined with struct constraints to introduce
errors.

The accessor is character “ 7.
The content of variable VAR1 is ?VARL1.

Save constraint

Saves the content of the match on the sequence, so that it can be resused in an other
component with the content constraint. There is no accessor for this constraint. It is ac-
cessed with the Content constraint accessor.

modl()==>("aaa"):{ VAR1}:{$[0,1]}
| look for aaa, with 1 error allowed, and save result in VAR1

Texte 16: save constraint

5.8 Structure constraints

Constraints applies on the structure of the pattern. The result must match the applied con-
straints. If the variable is saved, the cost and distance found between the sequence and the pat-
tern will be available viatheir accessor.

Some of those can be negative constraints, e.g. , the constraint must fail to match.

Logol designer and grammar tutorial 21



Pattern design

Cost constraint

This constraint refers to alowed substitutions in the sequence compared to the pattern.
It isarange.

The accessor is character “$”.
The cost found for variable VAR1 is $VARL.

Distance constraint

This constraint refers to allowed edit distance in the sequence compared to the pattern.
Itisarange.

The accessor is character “$%$”.
The distance found for variable VAR1 is $$VAR1.

Alphabet constraint

This constraint is afilter constraint. It means that it can be used to filter a match, but the
value of the filter will not be stored in results.

It specifies the minimum percentage required between a match and a defined a phabet.
It isdefined by: % "xxxX":INT

XXX are the expected characters to match and INT is the minimum percentage.
Warning: A whitespace is required between % and double quote.

Example:

% " cg”:70 expects to match at least 70% of G and C nucleotides.

5.9 Morphisms (and modifiers)

Mor phisms are transformation rules for a pattern. When a pattern is known (“acgt” or an other
variable content), it can be transformed help with a modifier. The modifier calls the Mor-
phism

element to apply itsrules, and then the tool tries to match the result of the transformation with
the sequence with the constraints of the entity.

Modifiers applies on Entities only. They should be prepended by a “-” to specify that element
should be reversed before applying the modifier or a“+" for direct apply.

To define amorphism and use it as a modifier:

Morphism rules do not limit to one character, severa characters can be mapped to a single
one (example: morphism(foo,at,g), will map at to g)

22

Logol designer and grammar tutorial



def:{
morphism(foo,a,q)
}

mod1l()==>"aaa",-"foo" "tgca"

mod1l()==*>SEQ1
In this example, we define a morphism called foo, which maps “a” to “g”.

The tool will take “tgca”, reverse it (“acgt”), and apply the morphism “gcgt”.
The searched word is “gcgt”.

Texte 17: morhpisms usage

Warning: All transformation rules must be defined in the morphism, even if thereisno
mapping, e.g. mor phism(foo,a,a)

Already defined mor phisms:

wc : word complement, available with + and — directions.

p2d: protein to dna conversion. In a nucleic search, it allows to specify a proteic string that
will be converted in its nucleic possible matches. Example: the “f” will be mapped to “ttt”
or “ttc”.

reverse: ssmply reverse the string. Direction is not taken into account, though for better lisi-
bility, it isadvised to prepend it by a minus sign.

In LogolDesigner, add as many Morphism components as required to create the whole rule.
Specify the morphism name that will be used for modifiers, set in “in” property the characters
to transform (no quotes, no comma), and set in “out” property the expected character.

Logol designer and grammar tutorial 23



Pattern design

Properties
labe marghism
dezcription
name foo

out -

0K cancel|

Illustration 13: LogolDesigner morphism definition

Then morphism can used used viaa modifier to be applied on an Variable.

24 Logol designer and grammar tutorial



—-&——-
varisble

Properties
label variable Negative ] Negative [F]
start cost
constraint constraint
description Start Substitution
position
constraint
[Allow ‘D : Negatt
Negative 13n5E O
overlap? % = rl dis.tancs_:
Hegative Fl censtraint constraint
content :
Distance
constraint Eg.:'rtiun
Apply -foo constraint
marghism
R Negative |:|
N size
i conztraint
Size
constraint
Content "a-:gt'1
constraint || T
Save as
0K | Cancel

Illustration 14: LogolDesigner modifier usage

5.10 Definitions

Specific to the LogolDesigner, definitions are a way to define a string, associated with a
name, to be used several timesin the model. This prevents errorsin copying same datain sev-
eral components, and provides easier reading help with the definition name.

To add a definition, drag a Terminal to the main window, and edit properties. Label will be
the name to be used as reference in other components properties, while Name will contain the
dataitself (“acgt” for example”).

Though Terminals do not need to be connected to any component, it is advised to connect
Terminal components each other for easier reading.

Logol designer and grammar tutorial 25



Pattern design

?—-—-{n—-—-qa Properties

Eomenuclectidi

Bt

label somenucleotids

description || an interesting =uite of

Name "cratta”

0K | Cancel

P
Illustration 15: LogolDesigner definition usage

In the above example, we call the modifier foo (foo morphism), to be applied on content con-
straint “acgt” after areverse (minusin front of modifier).

6 LogolDesigner toolbar

Here is the description of the toolbar:

26 Logol designer and grammar tutorial



Tools
Load a model
(= Save a model
El Preview or print a
= model
I-g é‘m} Select/Move
i Connect components
e N undo / redo
b'S EE copy/paste/delete
& X
E.E ._; group/ungroup
Terminal = definitions
C
Rule/ Model
E O compenents
o
& O
ForkiMerge/End/Loop
® +
o
o )
Zoom functions
~
-~
B ij cutline! help/ Show
@ Task

Illustration 16: LogolDesigner toolbar

Logol designer and grammar tutorial



Development tips

7 Development tips

7.1 Start anchors

All patterns are search within the input sequence with an input gap of undetermined size:

If match is expected to be found in a known range at the start of the sequence, specify
a begin position constraint on the first block.

Alwaystry to set the first block with a constant value ("acgt" content constraint for ex-
ample). This anchor will drastically reduce the number of possibilities, even if number
of solutionsis high.

7.2 Gaps / spacers

Avoid using agap in front of afork (OR). Prefer the fork, followed on each branch by a gap.

7.3 Views

Limit the number of views

Using views is very useful from a graphical point of view to group the data. However
grouping feature adds a logical behavior to the grammar (with possibly specific con-
straints, per view detail in the results) . Grouping should be limited to itsrole, e.g. to
give ameaning to agroup of data (to use it as a constraint in an other element, or get a
high level view in the results)

7.4 Spacer against entities

Entity can also be used to search for a spacer with a relative small size. Spacers (see Spacer
chapter), allow to search for a pattern on the sequence with a gap compared to current posi-
tion. When one knows that remote pattern isquite near in the sequence, one can gain some
performances by replacing a spacer with an entity. To do so, simply create an entity with a
name (VARL for example), and set a size constraint range [0, maxsize].

7.5 Parental comparison search

Parental comparison can be useful to compare some entities having the same parents from
phylogeny point of view.

28

Logol designer and grammar tutorial



It can be used to find childs that differs when being copied according to different rules (for
example LTR that would get stronger conservation at one side than the other).

It could be expressed as below:

modl()==>X1:{$[0,21},....X1:{$[0,61},....,.X1:{$[0,2]}

This example looks for 3 copies of X1, but the copy at the middle will have
more errors than the other copies.

Texte 18: parental comparison

The parental comparison does not take one entity as reference to find the other, the reference
isthe old parent.

This should be used for specific cases, not to compare 2 ssimple entities. Parental comparison
isvery costly during the earch.

7.6 Negative constraints

Negative constraint give the possibility to check that word do not match a constraint. If nega-
tive constraints can be useful, one should take care at using them regarding performances.
Negative constraint does not help in the search, thisis only a posterior condition checked after
each possible match. This means that, when looking for an entity, the negative constraints are
not used. Once a match is a candidate, then and only then the negative constraint is checked.

Thus, using a negative End constraint on awell defined word could be a good candidate us-
age. Negative content constraints have poor performances and should be avoided if not realy
required.

Negative contraint is select in graphical interface via“negative ...” checkbox.
In grammar, itisset witha“!” characte, example:

mod1()==>"a":{_X1},”cgt”,| X L:{#[1,4]}

Meaning that after “cgt” we want anything of length [1,4] not matching X1.

If no length contraint is set, the program will suppose that we want to match the samelength
than X1 but not X1.

Logol designer and grammar tutorial 29



Annex A: Restrictions

8 Annex A: Restrictions

30 Logol designer and grammar tutorial



	1 Starting Up...
	1.1 Introduction
	1.2 Audience and requirements
	1.3 Software

	2 Language concepts
	2.1 Rule
	2.2 Models
	2.3 Views
	2.4 Entity
	2.5 Constraint
	2.6 Morphisms
	2.7 Macro controls

	3 Language operators
	3.1 AND operator
	3.2 OR operator
	3.3 OVERLAP operator
	3.4 Repeat operator
	3.5 MATH operators
	3.6 Range operator

	4 Writing rules
	4.1 Language specific
	4.2 LogolDesigner writing rules

	5 Pattern design
	5.1 First model
	5.2 Rule definition
	5.3 Model definition
	5.4 Entity matching
	5.5 Views
	5.6 Spacers (gaps)
	5.7 String constraints
	5.8 Structure constraints
	5.9 Morphisms (and modifiers)
	5.10 Definitions

	6 LogolDesigner toolbar
	7 Development tips
	7.1 Start anchors
	7.2 Gaps / spacers
	7.3 Views
	7.4 Spacer against entities
	7.5 Parental comparison search
	7.6 Negative constraints

	8 Annex A: Restrictions

