sig
val mk_mset :
EConstr.constr -> (EConstr.constr * int) list -> EConstr.constr
module Sigma :
sig
val add :
EConstr.constr ->
EConstr.constr -> EConstr.constr -> EConstr.constr -> EConstr.constr
val empty : EConstr.constr -> EConstr.constr
val of_list :
EConstr.constr ->
EConstr.constr -> (int * EConstr.constr) list -> EConstr.constr
val to_fun :
EConstr.constr -> EConstr.constr -> EConstr.constr -> EConstr.constr
end
module Sym :
sig
type pack = { ar : Constr.t; value : Constr.t; morph : Constr.t; }
val typ : EConstr.constr lazy_t
val mk_pack : Coq.Relation.t -> Theory.Sym.pack -> EConstr.constr
val null : Coq.Relation.t -> EConstr.constr
end
module Stubs :
sig
val lift : EConstr.constr Stdlib.Lazy.t
val lift_proj_equivalence : EConstr.constr Stdlib.Lazy.t
val lift_transitivity_left : EConstr.constr Stdlib.Lazy.t
val lift_transitivity_right : EConstr.constr Stdlib.Lazy.t
val lift_reflexivity : EConstr.constr Stdlib.Lazy.t
val eval : EConstr.constr lazy_t
val decide_thm : EConstr.constr lazy_t
val lift_normalise_thm : EConstr.constr lazy_t
end
module Trans :
sig
type envs
val empty_envs : unit -> Theory.Trans.envs
val t_of_constr :
Coq.goal_sigma ->
Coq.Relation.t ->
Theory.Trans.envs ->
EConstr.constr * EConstr.constr ->
Matcher.Terms.t * Matcher.Terms.t * Coq.goal_sigma
val add_symbol :
Coq.goal_sigma ->
Coq.Relation.t -> Theory.Trans.envs -> Constr.t -> Coq.goal_sigma
type ir
val ir_of_envs :
Coq.goal_sigma ->
Coq.Relation.t ->
Theory.Trans.envs -> Coq.goal_sigma * Theory.Trans.ir
val ir_to_units : Theory.Trans.ir -> Matcher.ext_units
val raw_constr_of_t :
Theory.Trans.ir ->
Coq.Relation.t ->
EConstr.rel_context -> Matcher.Terms.t -> EConstr.constr
type sigmas = {
env_sym : EConstr.constr;
env_bin : EConstr.constr;
env_units : EConstr.constr;
}
type reifier
val mk_reifier :
Coq.Relation.t ->
EConstr.constr ->
Theory.Trans.ir ->
(Theory.Trans.sigmas * Theory.Trans.reifier -> Proof_type.tactic) ->
Proof_type.tactic
val reif_constr_of_t :
Theory.Trans.reifier -> Matcher.Terms.t -> EConstr.constr
end
end