66 { 0, 1, 2, 3, 16, 17, 18, 19, },
67 { 4, 5, 6, 7, 20, 21, 22, 23, },
68 { 8, 9, 10, 11, 24, 25, 26, 27, },
69 { 12, 13, 14, 15, 28, 29, 30, 31, },
70 { 32, 33, 34, 35, 48, 49, 50, 51, },
71 { 36, 37, 38, 39, 52, 53, 54, 55, },
72 { 40, 41, 42, 43, 56, 57, 58, 59, },
73 { 44, 45, 46, 47, 60, 61, 62, 63, },
145 { 0, 2, 5, 9, 14, 20, 27, 35, },
146 { 1, 4, 8, 13, 19, 26, 34, 42, },
147 { 3, 7, 12, 18, 25, 33, 41, 48, },
148 { 6, 11, 17, 24, 32, 40, 47, 53, },
149 { 10, 16, 23, 31, 39, 46, 52, 57, },
150 { 15, 22, 30, 38, 45, 51, 56, 60, },
151 { 21, 29, 37, 44, 50, 55, 59, 62, },
152 { 28, 36, 43, 49, 54, 58, 61, 63, },
194 int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
195 ((height >> log2_min_cb_size) + 1);
249 uint8_t luma_weight_l0_flag[16];
250 uint8_t chroma_weight_l0_flag[16];
251 uint8_t luma_weight_l1_flag[16];
252 uint8_t chroma_weight_l1_flag[16];
262 if (!luma_weight_l0_flag[i]) {
269 chroma_weight_l0_flag[i] =
get_bits1(gb);
272 chroma_weight_l0_flag[i] = 0;
275 if (luma_weight_l0_flag[i]) {
280 if (chroma_weight_l0_flag[i]) {
281 for (j = 0; j < 2; j++) {
298 if (!luma_weight_l1_flag[i]) {
305 chroma_weight_l1_flag[i] =
get_bits1(gb);
308 chroma_weight_l1_flag[i] = 0;
311 if (luma_weight_l1_flag[i]) {
316 if (chroma_weight_l1_flag[i]) {
317 for (j = 0; j < 2; j++) {
338 int prev_delta_msb = 0;
339 unsigned int nb_sps = 0, nb_sh;
355 for (i = 0; i < rps->
nb_refs; i++) {
372 if (delta_poc_msb_present) {
375 if (i && i != nb_sps)
376 delta += prev_delta_msb;
379 prev_delta_msb =
delta;
389 unsigned int num = 0, den = 0;
444 if (num != 0 && den != 0)
507 int slice_address_length;
517 "Invalid slice segment address: %u.\n",
560 int short_term_ref_pic_set_sps_flag, poc;
566 "Ignoring POC change between slices: %d -> %d\n", s->
poc, poc);
573 short_term_ref_pic_set_sps_flag =
get_bits1(gb);
574 if (!short_term_ref_pic_set_sps_flag) {
581 int numbits, rps_idx;
589 rps_idx = numbits > 0 ?
get_bits(gb, numbits) : 0;
690 "Invalid collocated_ref_idx: %d.\n",
705 "Invalid number of merging MVP candidates: %d.\n",
722 int deblocking_filter_override_flag = 0;
725 deblocking_filter_override_flag =
get_bits1(gb);
727 if (deblocking_filter_override_flag) {
770 for (i = 0; i < length; i++)
779 "The slice_qp %d is outside the valid range "
804 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
806 #define SET_SAO(elem, value) \
808 if (!sao_merge_up_flag && !sao_merge_left_flag) \
810 else if (sao_merge_left_flag) \
811 sao->elem = CTB(s->sao, rx-1, ry).elem; \
812 else if (sao_merge_up_flag) \
813 sao->elem = CTB(s->sao, rx, ry-1).elem; \
821 int sao_merge_left_flag = 0;
822 int sao_merge_up_flag = 0;
833 if (ry > 0 && !sao_merge_left_flag) {
839 for (c_idx = 0; c_idx < 3; c_idx++) {
855 for (i = 0; i < 4; i++)
859 for (i = 0; i < 4; i++) {
868 }
else if (c_idx != 2) {
874 for (i = 0; i < 4; i++) {
890 int log2_trafo_size,
enum ScanType scan_idx,
893 #define GET_COORD(offset, n) \
895 x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n]; \
896 y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n]; \
899 int transform_skip_flag = 0;
901 int last_significant_coeff_x, last_significant_coeff_y;
905 int greater1_ctx = 1;
908 int x_cg_last_sig, y_cg_last_sig;
910 const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
920 int trafo_size = 1 << log2_trafo_size;
921 int i, qp, shift, add, scale, scale_m;
922 const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
928 static const int qp_c[] = {
929 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
933 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
934 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
935 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
939 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
940 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
941 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
961 qp = qp_c[qp_i - 30];
967 add = 1 << (shift - 1);
968 scale = level_scale[rem6[qp]] << (div6[qp]);
977 if (log2_trafo_size != 5)
978 matrix_id = 3 * matrix_id + c_idx;
980 scale_matrix = sl->
sl[log2_trafo_size - 2][matrix_id];
981 if (log2_trafo_size >= 4)
982 dc_scale = sl->
sl_dc[log2_trafo_size - 4][matrix_id];
988 log2_trafo_size == 2) {
992 last_significant_coeff_x =
994 last_significant_coeff_y =
997 if (last_significant_coeff_x > 3) {
999 last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
1000 (2 + (last_significant_coeff_x & 1)) +
1004 if (last_significant_coeff_y > 3) {
1006 last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
1007 (2 + (last_significant_coeff_y & 1)) +
1012 FFSWAP(
int, last_significant_coeff_x, last_significant_coeff_y);
1014 x_cg_last_sig = last_significant_coeff_x >> 2;
1015 y_cg_last_sig = last_significant_coeff_y >> 2;
1019 int last_x_c = last_significant_coeff_x & 3;
1020 int last_y_c = last_significant_coeff_y & 3;
1025 if (trafo_size == 4) {
1028 }
else if (trafo_size == 8) {
1032 }
else if (trafo_size == 16) {
1048 num_coeff =
horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
1055 num_coeff =
horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
1059 num_last_subset = (num_coeff - 1) >> 4;
1061 for (i = num_last_subset; i >= 0; i--) {
1063 int x_cg, y_cg, x_c, y_c;
1064 int implicit_non_zero_coeff = 0;
1065 int64_t trans_coeff_level;
1067 int offset = i << 4;
1069 uint8_t significant_coeff_flag_idx[16];
1070 uint8_t nb_significant_coeff_flag = 0;
1072 x_cg = scan_x_cg[i];
1073 y_cg = scan_y_cg[i];
1075 if (i < num_last_subset && i > 0) {
1077 if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
1078 ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
1079 if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
1080 ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
1082 significant_coeff_group_flag[x_cg][y_cg] =
1084 implicit_non_zero_coeff = 1;
1086 significant_coeff_group_flag[x_cg][y_cg] =
1087 ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
1088 (x_cg == 0 && y_cg == 0));
1091 last_scan_pos = num_coeff - offset - 1;
1093 if (i == num_last_subset) {
1094 n_end = last_scan_pos - 1;
1095 significant_coeff_flag_idx[0] = last_scan_pos;
1096 nb_significant_coeff_flag = 1;
1101 if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
1102 prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
1103 if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
1104 prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
1106 for (n = n_end; n >= 0; n--) {
1109 if (significant_coeff_group_flag[x_cg][y_cg] &&
1110 (n > 0 || implicit_non_zero_coeff == 0)) {
1115 significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1116 nb_significant_coeff_flag++;
1117 implicit_non_zero_coeff = 0;
1120 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
1121 if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
1122 significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1123 nb_significant_coeff_flag++;
1128 n_end = nb_significant_coeff_flag;
1131 int first_nz_pos_in_cg = 16;
1132 int last_nz_pos_in_cg = -1;
1133 int c_rice_param = 0;
1134 int first_greater1_coeff_idx = -1;
1135 uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
1136 uint16_t coeff_sign_flag;
1138 int sign_hidden = 0;
1141 int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
1143 if (!(i == num_last_subset) && greater1_ctx == 0)
1146 last_nz_pos_in_cg = significant_coeff_flag_idx[0];
1148 for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
1149 int n_idx = significant_coeff_flag_idx[m];
1150 int inc = (ctx_set << 2) + greater1_ctx;
1151 coeff_abs_level_greater1_flag[n_idx] =
1153 if (coeff_abs_level_greater1_flag[n_idx]) {
1155 }
else if (greater1_ctx > 0 && greater1_ctx < 3) {
1159 if (coeff_abs_level_greater1_flag[n_idx] &&
1160 first_greater1_coeff_idx == -1)
1161 first_greater1_coeff_idx = n_idx;
1163 first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
1164 sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
1167 if (first_greater1_coeff_idx != -1) {
1173 coeff_sign_flag =
ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
1176 for (m = 0; m < n_end; m++) {
1177 n = significant_coeff_flag_idx[m];
1179 trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
1180 if (trans_coeff_level == ((m < 8) ?
1181 ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
1184 trans_coeff_level += last_coeff_abs_level_remaining;
1185 if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
1186 c_rice_param =
FFMIN(c_rice_param + 1, 4);
1189 sum_abs += trans_coeff_level;
1190 if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
1191 trans_coeff_level = -trans_coeff_level;
1193 if (coeff_sign_flag >> 15)
1194 trans_coeff_level = -trans_coeff_level;
1195 coeff_sign_flag <<= 1;
1198 if (y_c || x_c || log2_trafo_size < 4) {
1200 switch (log2_trafo_size) {
1201 case 3: pos = (y_c << 3) + x_c;
break;
1202 case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1);
break;
1203 case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2);
break;
1204 default: pos = (y_c << 2) + x_c;
1206 scale_m = scale_matrix[pos];
1211 trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
1212 if(trans_coeff_level < 0) {
1213 if((~trans_coeff_level) & 0xFffffffffff8000)
1214 trans_coeff_level = -32768;
1216 if (trans_coeff_level & 0xffffffffffff8000)
1217 trans_coeff_level = 32767;
1220 coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
1228 if (transform_skip_flag)
1231 log2_trafo_size == 2)
1239 int xBase,
int yBase,
int cb_xBase,
int cb_yBase,
1240 int log2_cb_size,
int log2_trafo_size,
1241 int trafo_depth,
int blk_idx,
1242 int cbf_luma,
int cbf_cb,
int cbf_cr)
1247 int trafo_size = 1 << log2_trafo_size;
1251 if (log2_trafo_size > 2) {
1252 trafo_size = trafo_size << (s->
sps->
hshift[1] - 1);
1256 }
else if (blk_idx == 3) {
1257 trafo_size = trafo_size << s->
sps->
hshift[1];
1259 trafo_size, trafo_size);
1265 if (cbf_luma || cbf_cb || cbf_cr) {
1279 "The cu_qp_delta %d is outside the valid range "
1310 if (log2_trafo_size > 2) {
1315 }
else if (blk_idx == 3) {
1327 int cb_size = 1 << log2_cb_size;
1335 for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1336 for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1337 s->
is_pcm[i + j * min_pu_width] = 2;
1341 int xBase,
int yBase,
int cb_xBase,
int cb_yBase,
1342 int log2_cb_size,
int log2_trafo_size,
1343 int trafo_depth,
int blk_idx,
1344 int cbf_cb,
int cbf_cr)
1351 if (trafo_depth == 1)
1357 if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1359 trafo_depth < lc->cu.max_trafo_depth &&
1373 if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
1375 else if (log2_trafo_size > 2 || trafo_depth == 0)
1377 if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
1379 else if (log2_trafo_size > 2 || trafo_depth == 0)
1382 if (split_transform_flag) {
1383 const int trafo_size_split = 1 << (log2_trafo_size - 1);
1384 const int x1 = x0 + trafo_size_split;
1385 const int y1 = y0 + trafo_size_split;
1387 #define SUBDIVIDE(x, y, idx) \
1389 ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1390 log2_trafo_size - 1, trafo_depth + 1, idx, \
1413 log2_cb_size, log2_trafo_size, trafo_depth,
1414 blk_idx, cbf_luma, cbf_cb, cbf_cr);
1420 for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1421 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1422 int x_tu = (x0 + j) >> log2_min_tu_size;
1423 int y_tu = (y0 + i) >> log2_min_tu_size;
1424 s->
cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1442 int cb_size = 1 << log2_cb_size;
1481 case 0: lc->
pu.
mvd.
x = 0;
break;
1487 case 0: lc->
pu.
mvd.
y = 0;
break;
1506 int block_w,
int block_h)
1510 ptrdiff_t srcstride = ref->
linesize[0];
1519 x_off += mv->
x >> 2;
1520 y_off += mv->
y >> 2;
1523 if (x_off < extra_left || y_off < extra_top ||
1527 int offset = extra_top * srcstride + (extra_left << s->
sps->
pixel_shift);
1528 int buf_offset = extra_top *
1532 edge_emu_stride, srcstride,
1535 x_off - extra_left, y_off - extra_top,
1536 pic_width, pic_height);
1538 srcstride = edge_emu_stride;
1560 int x_off,
int y_off,
int block_w,
int block_h)
1565 ptrdiff_t src1stride = ref->
linesize[1];
1566 ptrdiff_t src2stride = ref->
linesize[2];
1567 int pic_width = s->
sps->
width >> 1;
1573 x_off += mv->
x >> 3;
1574 y_off += mv->
y >> 3;
1590 edge_emu_stride, src1stride,
1594 pic_width, pic_height);
1597 src1stride = edge_emu_stride;
1599 block_w, block_h, mx, my, lc->
mc_buffer);
1602 edge_emu_stride, src2stride,
1606 pic_width, pic_height);
1608 src2stride = edge_emu_stride;
1611 block_w, block_h, mx, my,
1615 block_w, block_h, mx, my,
1618 block_w, block_h, mx, my,
1626 int y = (mv->
y >> 2) + y0 + height + 9;
1632 int log2_cb_size,
int partIdx)
1634 #define POS(c_idx, x, y) \
1635 &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1636 (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1639 struct MvField current_mv = {{{ 0 }}};
1654 int x_cb = x0 >> log2_min_cb_size;
1655 int y_cb = y0 >> log2_min_cb_size;
1670 log2_cb_size, partIdx,
1671 merge_idx, ¤t_mv);
1677 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1687 partIdx, merge_idx, ¤t_mv);
1693 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1700 if (inter_pred_idc !=
PRED_L1) {
1703 current_mv.
ref_idx[0] = ref_idx[0];
1709 partIdx, merge_idx, ¤t_mv,
1715 if (inter_pred_idc !=
PRED_L0) {
1718 current_mv.
ref_idx[1] = ref_idx[1];
1730 partIdx, merge_idx, ¤t_mv,
1741 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1746 ref0 = refPicList[0].
ref[current_mv.
ref_idx[0]];
1752 ref1 = refPicList[1].
ref[current_mv.
ref_idx[1]];
1763 ¤t_mv.
mv[0], x0, y0, nPbW, nPbH);
1771 tmpstride, nPbW, nPbH);
1776 ¤t_mv.
mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1784 nPbW / 2, nPbH / 2);
1789 nPbW / 2, nPbH / 2);
1802 ¤t_mv.
mv[1], x0, y0, nPbW, nPbH);
1816 ¤t_mv.
mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1823 dst1, s->
frame->
linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1827 dst2, s->
frame->
linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1844 ¤t_mv.
mv[0], x0, y0, nPbW, nPbH);
1846 ¤t_mv.
mv[1], x0, y0, nPbW, nPbH);
1856 tmp, tmp2, tmpstride, nPbW, nPbH);
1859 tmp, tmp2, tmpstride, nPbW, nPbH);
1863 ¤t_mv.
mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1865 ¤t_mv.
mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1875 tmpstride, nPbW / 2, nPbH / 2);
1882 tmpstride, nPbW / 2, nPbH / 2);
1894 int prev_intra_luma_pred_flag)
1912 int intra_pred_mode;
1917 if ((y0 - 1) < y_ctb)
1920 if (cand_left == cand_up) {
1921 if (cand_left < 2) {
1926 candidate[0] = cand_left;
1927 candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1928 candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1931 candidate[0] = cand_left;
1932 candidate[1] = cand_up;
1942 if (prev_intra_luma_pred_flag) {
1943 intra_pred_mode = candidate[lc->
pu.
mpm_idx];
1945 if (candidate[0] > candidate[1])
1947 if (candidate[0] > candidate[2])
1949 if (candidate[1] > candidate[2])
1953 for (i = 0; i < 3; i++)
1954 if (intra_pred_mode >= candidate[i])
1961 for (i = 0; i < size_in_pus; i++) {
1962 memset(&s->
tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1963 intra_pred_mode, size_in_pus);
1965 for (j = 0; j < size_in_pus; j++) {
1966 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
is_intra = 1;
1967 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
pred_flag[0] = 0;
1968 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
pred_flag[1] = 0;
1969 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
ref_idx[0] = 0;
1970 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
ref_idx[1] = 0;
1971 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
mv[0].x = 0;
1972 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
mv[0].y = 0;
1973 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
mv[1].x = 0;
1974 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].
mv[1].y = 0;
1978 return intra_pred_mode;
1982 int log2_cb_size,
int ct_depth)
1989 for (y = 0; y < length; y++)
1998 static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1999 uint8_t prev_intra_luma_pred_flag[4];
2001 int pb_size = (1 << log2_cb_size) >> split;
2002 int side = split + 1;
2006 for (i = 0; i < side; i++)
2007 for (j = 0; j < side; j++)
2010 for (i = 0; i < side; i++) {
2011 for (j = 0; j < side; j++) {
2012 if (prev_intra_luma_pred_flag[2 * i + j])
2019 prev_intra_luma_pred_flag[2 * i + j]);
2024 if (chroma_mode != 4) {
2039 int pb_size = 1 << log2_cb_size;
2047 if (size_in_pus == 0)
2049 for (j = 0; j < size_in_pus; j++) {
2050 memset(&s->
tab_ipm[(y_pu + j) * min_pu_width + x_pu],
INTRA_DC, size_in_pus);
2051 for (k = 0; k < size_in_pus; k++)
2058 int cb_size = 1 << log2_cb_size;
2061 int length = cb_size >> log2_min_cb_size;
2063 int x_cb = x0 >> log2_min_cb_size;
2064 int y_cb = y0 >> log2_min_cb_size;
2076 for (x = 0; x < 4; x++)
2089 x = y_cb * min_cb_width + x_cb;
2090 for (y = 0; y < length; y++) {
2091 memset(&s->
skip_flag[x], skip_flag, length);
2116 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2164 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
2180 log2_cb_size, 0, 0, 0, 0);
2193 x = y_cb * min_cb_width + x_cb;
2194 for (y = 0; y < length; y++) {
2205 int log2_cb_size,
int cb_depth)
2208 const int cb_size = 1 << log2_cb_size;
2212 if (x0 + cb_size <= s->sps->width &&
2213 y0 + cb_size <= s->sps->height &&
2226 const int cb_size_split = cb_size >> 1;
2227 const int x1 = x0 + cb_size_split;
2228 const int y1 = y0 + cb_size_split;
2233 #define SUBDIVIDE(x, y) \
2235 if (x < s->sps->width && y < s->sps->height) { \
2236 int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
2261 int ctb_addr_in_slice = ctb_addr_rs - s->
sh.
slice_addr;
2266 if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2293 if (!ctb_addr_in_slice > 0)
2295 if (ctb_addr_in_slice < s->sps->ctb_width)
2314 while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2339 if (x_ctb + ctb_size >= s->
sps->
width &&
2366 "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2369 return nuh_layer_id == 0;
2377 for (c_idx = 0; c_idx < 3; c_idx++) {
2385 int len = min_pu_size >> hshift;
2388 for (n = 0; n < (min_pu_size >> vshift); n++) {
2389 memcpy(dst, src, len);
2502 int ctb_addr_ts, ret;
2558 if (s->
max_ra == INT_MAX) {
2580 }
else if (!s->
ref) {
2587 "Non-matching NAL types of the VCL NALUs: %d %d\n",
2597 "Error constructing the reference lists for the current slice.\n");
2611 if (ctb_addr_ts < 0) {
2644 #define STARTCODE_TEST \
2645 if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) { \
2646 if (src[i + 2] != 3) { \
2652 #if HAVE_FAST_UNALIGNED
2653 #define FIND_FIRST_ZERO \
2654 if (i > 0 && !src[i]) \
2659 for (i = 0; i + 1 < length; i += 9) {
2661 (
AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2662 0x8000800080008080ULL))
2669 for (i = 0; i + 1 < length; i += 5) {
2671 (
AV_RN32A(src + i) - 0x01000101U)) &
2680 for (i = 0; i + 1 < length; i += 2) {
2683 if (i > 0 && src[i - 1] == 0)
2689 if (i >= length - 1) {
2702 memcpy(dst, src, i);
2704 while (si + 2 < length) {
2706 if (src[si + 2] > 3) {
2707 dst[di++] = src[si++];
2708 dst[di++] = src[si++];
2709 }
else if (src[si] == 0 && src[si + 1] == 0) {
2710 if (src[si + 2] == 3) {
2720 dst[di++] = src[si++];
2723 dst[di++] = src[si++];
2735 int i, consumed, ret = 0;
2743 while (length >= 4) {
2745 int extract_length = 0;
2750 extract_length = (extract_length << 8) | buf[i];
2754 if (extract_length > length) {
2765 if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2772 extract_length = length;
2809 for (i = 0; i < s->
nb_nals; i++) {
2813 "Error parsing NAL unit #%d.\n", i);
2828 for (i = 0; i < 16; i++)
2829 av_log(log_ctx, level,
"%02"PRIx8, md5[i]);
2858 for (i = 0; frame->
data[i]; i++) {
2866 for (j = 0; j < h; j++) {
2871 (
const uint16_t *) src, w);
2879 if (!memcmp(md5, s->
md5[i], 16)) {
3130 int i, j, num_arrays, nal_len_size;
3135 nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3136 num_arrays = bytestream2_get_byte(&gb);
3143 for (i = 0; i < num_arrays; i++) {
3144 int type = bytestream2_get_byte(&gb) & 0x3f;
3145 int cnt = bytestream2_get_be16(&gb);
3147 for (j = 0; j < cnt; j++) {
3149 int nalsize = bytestream2_peek_be16(&gb) + 2;
3152 "Invalid NAL unit size in extradata.\n");
3159 "Decoding nal unit %d %d from hvcC failed\n",
3208 memset(s, 0,
sizeof(*s));
3224 #define OFFSET(x) offsetof(HEVCContext, x)
3225 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3235 {
"apply_defdispwin",
"Apply default display window from VUI",
OFFSET(apply_defdispwin),
3253 .priv_class = &hevc_decoder_class,
#define EDGE_EMU_BUFFER_STRIDE
static const uint8_t horiz_scan2x2_x[4]
int frame_packing_arrangement_type
unsigned int log2_min_cb_size
int sei_frame_packing_present
frame packing arrangement variables
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
int ff_hevc_merge_idx_decode(HEVCContext *s)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it...
int ff_hevc_frame_nb_refs(HEVCContext *s)
Get the number of candidate references for the current frame.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
static void restore_tqb_pixels(HEVCContext *s)
void(* put_hevc_epel[2][2])(int16_t *dst, ptrdiff_t dststride, uint8_t *src, ptrdiff_t srcstride, int width, int height, int mx, int my, int16_t *mcbuffer)
void(* put_pcm)(uint8_t *dst, ptrdiff_t stride, int size, GetBitContext *gb, int pcm_bit_depth)
static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
Views are alternated temporally.
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
int ff_hevc_merge_flag_decode(HEVCContext *s)
int ff_hevc_sao_band_position_decode(HEVCContext *s)
int coded_width
Bitstream width / height, may be different from width/height e.g.
uint8_t edge_emu_buffer[(MAX_PB_SIZE+7)*EDGE_EMU_BUFFER_STRIDE *2]
static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref, const Mv *mv, int y0, int height)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
int ff_hevc_decode_nal_sps(HEVCContext *s)
Views are next to each other, but when upscaling apply a checkerboard pattern.
#define AV_LOG_WARNING
Something somehow does not look correct.
int content_interpretation_type
int ff_hevc_cbf_luma_decode(HEVCContext *s, int trafo_depth)
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
int16_t x
horizontal component of motion vector
void(* bswap16_buf)(uint16_t *dst, const uint16_t *src, int len)
static int hevc_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
static int set_sps(HEVCContext *s, const HEVCSPS *sps)
int ff_hevc_end_of_slice_flag_decode(HEVCContext *s)
uint8_t intra_split_flag
IntraSplitFlag.
int rem_intra_luma_pred_mode
enum AVColorRange color_range
MPEG vs JPEG YUV range.
void(* put_hevc_qpel[4][4])(int16_t *dst, ptrdiff_t dststride, uint8_t *src, ptrdiff_t srcstride, int width, int height, int16_t *mcbuffer)
void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv)
int ff_hevc_significant_coeff_group_flag_decode(HEVCContext *s, int c_idx, int ctx_cg)
uint8_t weighted_bipred_flag
void ff_hevc_unref_frame(HEVCContext *s, HEVCFrame *frame, int flags)
int ff_hevc_decode_short_term_rps(HEVCContext *s, ShortTermRPS *rps, const HEVCSPS *sps, int is_slice_header)
#define DECLARE_ALIGNED(n, t, v)
int ff_hevc_rem_intra_luma_pred_mode_decode(HEVCContext *s)
void(* put_unweighted_pred)(uint8_t *dst, ptrdiff_t dststride, int16_t *src, ptrdiff_t srcstride, int width, int height)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
static void intra_prediction_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
uint8_t seq_loop_filter_across_slices_enabled_flag
uint8_t cabac_init_present_flag
void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everythnig contained in src to dst and reset src.
int ff_hevc_frame_rps(HEVCContext *s)
Construct the reference picture sets for the current frame.
#define FF_ARRAY_ELEMS(a)
int ff_hevc_coeff_abs_level_greater2_flag_decode(HEVCContext *s, int c_idx, int inc)
int * ctb_addr_ts_to_rs
CtbAddrTSToRS.
int num_ref_idx_l0_default_active
num_ref_idx_l0_default_active_minus1 + 1
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
struct HEVCFrame * ref[MAX_REFS]
ShortTermRPS st_rps[MAX_SHORT_TERM_RPS_COUNT]
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
int ff_hevc_sao_type_idx_decode(HEVCContext *s)
uint16_t seq_decode
Sequence counters for decoded and output frames, so that old frames are output first after a POC rese...
enum NALUnitType first_nal_type
Macro definitions for various function/variable attributes.
AVRational time_base
This is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented...
uint8_t entropy_coding_sync_enabled_flag
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
int ff_hevc_cu_transquant_bypass_flag_decode(HEVCContext *s)
static int hls_slice_data(HEVCContext *s)
const uint8_t ff_hevc_qpel_extra_before[4]
static void hls_sao_param(HEVCContext *s, int rx, int ry)
AVBufferPool * rpl_tab_pool
candidate references for the current frame
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
int ff_hevc_last_significant_coeff_y_prefix_decode(HEVCContext *s, int c_idx, int log2_size)
unsigned int log2_max_trafo_size
static int decode(MimicContext *ctx, int quality, int num_coeffs, int is_iframe)
struct AVMD5 * av_md5_alloc(void)
int ff_hevc_mpm_idx_decode(HEVCContext *s)
int ff_hevc_coeff_abs_level_greater1_flag_decode(HEVCContext *s, int c_idx, int ctx_set)
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
int ff_hevc_skip_flag_decode(HEVCContext *s, int x0, int y0, int x_cb, int y_cb)
Stereo 3D type: this structure describes how two videos are packed within a single video surface...
static int set_side_data(HEVCContext *s)
uint8_t ctb_up_right_flag
uint8_t vps_timing_info_present_flag
int ff_hevc_abs_mvd_greater0_flag_decode(HEVCContext *s)
static int hls_slice_header(HEVCContext *s)
#define FF_PROFILE_HEVC_MAIN
int num_ref_idx_l1_default_active
num_ref_idx_l1_default_active_minus1 + 1
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
unsigned int log2_min_pcm_cb_size
static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride, AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h)
8.5.3.2.2.1 Luma sample interpolation process
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
uint8_t scaling_list_data_present_flag
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
int ff_hevc_decode_nal_sei(HEVCContext *s)
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
void(* put_weighted_pred_avg)(uint8_t *dst, ptrdiff_t dststride, int16_t *src1, int16_t *src2, ptrdiff_t srcstride, int width, int height)
#define EPEL_EXTRA_BEFORE
uint8_t loop_filter_disable_flag
int ff_hevc_mvd_decode(HEVCContext *s)
static void print_md5(void *log_ctx, int level, uint8_t md5[16])
int sei_anticlockwise_rotation
void ff_hevc_flush_dpb(HEVCContext *s)
Drop all frames currently in DPB.
static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
uint8_t cu_transquant_bypass_flag
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
#define FF_PROFILE_HEVC_MAIN_10
static av_unused const uint8_t * skip_bytes(CABACContext *c, int n)
Skip n bytes and reset the decoder.
uint8_t transquant_bypass_enable_flag
int ff_hevc_sao_offset_sign_decode(HEVCContext *s)
int temporal_id
temporal_id_plus1 - 1
#define SET_SAO(elem, value)
struct HEVCSPS::@22 temporal_layer[MAX_SUB_LAYERS]
static void hevc_decode_flush(AVCodecContext *avctx)
int slice_idx
number of the slice being currently decoded
#define BOUNDARY_UPPER_SLICE
uint8_t intra_pred_mode[4]
uint16_t depth_minus1
Number of bits in the component minus 1.
void av_md5_update(AVMD5 *ctx, const uint8_t *src, const int len)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
int has_b_frames
Size of the frame reordering buffer in the decoder.
int flags
Additional information about the frame packing.
static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
void ff_hevc_deblocking_boundary_strengths(HEVCContext *s, int x0, int y0, int log2_trafo_size)
uint8_t slice_initialized
1 if the independent slice segment header was successfully parsed
static int extract_rbsp(const uint8_t *src, int length, HEVCNAL *nal)
unsigned int log2_max_poc_lsb
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
void(* transform_add[4])(uint8_t *dst, int16_t *coeffs, ptrdiff_t stride)
AVBufferRef * vps_list[MAX_VPS_COUNT]
static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2, ptrdiff_t dststride, AVFrame *ref, const Mv *mv, int x_off, int y_off, int block_w, int block_h)
8.5.3.2.2.2 Chroma sample interpolation process
#define CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
AVBufferRef * rpl_tab_buf
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int vui_timing_info_present_flag
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
static av_always_inline av_const int av_clip_c(int a, int amin, int amax)
Clip a signed integer value into the amin-amax range.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
void(* intra_pred[4])(struct HEVCContext *s, int x0, int y0, int c_idx)
int ff_hevc_compute_poc(HEVCContext *s, int poc_lsb)
Compute POC of the current frame and return it.
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
unsigned int log2_ctb_size
void av_log(void *avcl, int level, const char *fmt,...)
const char * name
Name of the codec implementation.
void(* weighted_pred)(uint8_t denom, int16_t wlxFlag, int16_t olxFlag, uint8_t *dst, ptrdiff_t dststride, int16_t *src, ptrdiff_t srcstride, int width, int height)
void ff_init_cabac_states(void)
void(* transquant_bypass[4])(uint8_t *dst, int16_t *coeffs, ptrdiff_t stride)
void ff_hevc_save_states(HEVCContext *s, int ctb_addr_ts)
static int verify_md5(HEVCContext *s, AVFrame *frame)
static const AVClass hevc_decoder_class
uint8_t max_trafo_depth
MaxTrafoDepth.
uint16_t sequence
A sequence counter, so that old frames are output first after a POC reset.
static char * split(char *message, char delim)
uint8_t tiles_enabled_flag
int ff_hevc_decode_nal_vps(HEVCContext *s)
int eo_class[3]
sao_eo_class
uint32_t vps_num_units_in_tick
static av_cold int hevc_init_context(AVCodecContext *avctx)
av_cold void ff_bswapdsp_init(BswapDSPContext *c)
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
int ff_hevc_mvd_sign_flag_decode(HEVCContext *s)
common internal API header
#define FF_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding...
int ff_hevc_mvp_lx_flag_decode(HEVCContext *s)
uint8_t lists_modification_present_flag
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
AVBufferRef * tab_mvf_buf
int ff_hevc_coeff_abs_level_remaining(HEVCContext *s, int base_level, int rc_rice_param)
uint8_t type_idx[3]
sao_type_idx
const uint8_t ff_hevc_qpel_extra[4]
int ff_hevc_transform_skip_flag_decode(HEVCContext *s, int c_idx)
const uint8_t ff_hevc_qpel_extra_after[4]
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
int max_transform_hierarchy_depth_inter
void(* weighted_pred_avg)(uint8_t denom, int16_t wl0Flag, int16_t wl1Flag, int16_t ol0Flag, int16_t ol1Flag, uint8_t *dst, ptrdiff_t dststride, int16_t *src1, int16_t *src2, ptrdiff_t srcstride, int width, int height)
int16_t mc_buffer[(64+7)*64]
static const AVOption options[]
int offset_abs[3][4]
sao_offset_abs
int width
picture width / height.
int ff_hevc_output_frame(HEVCContext *s, AVFrame *frame, int flush)
Find next frame in output order and put a reference to it in frame.
static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
#define FF_PROFILE_UNKNOWN
static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size, int prev_intra_luma_pred_flag)
8.4.1
int ff_hevc_part_mode_decode(HEVCContext *s, int log2_cb_size)
#define FF_PROFILE_HEVC_MAIN_STILL_PICTURE
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
AVBufferRef * sps_list[MAX_SPS_COUNT]
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
uint8_t cu_qp_delta_enabled_flag
uint8_t used_by_curr_pic_lt_sps_flag[32]
static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
Context Adaptive Binary Arithmetic Coder inline functions.
void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0, int nPbW, int nPbH)
uint8_t sign_data_hiding_flag
uint8_t output_flag_present_flag
const uint8_t ff_hevc_diag_scan4x4_y[16]
int offset_val[3][5]
SaoOffsetVal.
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure rotation by the specified angle (in degrees)...
static int hevc_frame_start(HEVCContext *s)
AVBufferRef * pps_list[MAX_PPS_COUNT]
the normal 2^n-1 "JPEG" YUV ranges
if(ac->has_optimized_func)
uint8_t pic_slice_level_chroma_qp_offsets_present_flag
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
int ff_hevc_split_coding_unit_flag_decode(HEVCContext *s, int ct_depth, int x0, int y0)
int colour_description_present_flag
static const int8_t mv[256][2]
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames...
static void hls_prediction_unit(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int partIdx)
enum AVPixelFormat pix_fmt
static int hls_transform_unit(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
int sei_display_orientation_present
display orientation
void ff_hevc_dsp_init(HEVCDSPContext *hevcdsp, int bit_depth)
enum AVStereo3DType type
How views are packed within the video.
#define AV_LOG_INFO
Standard information.
static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
static void pic_arrays_free(HEVCContext *s)
NOTE: Each function hls_foo correspond to the function foo in the specification (HLS stands for High ...
uint8_t transform_skip_enabled_flag
static av_cold int hevc_decode_init(AVCodecContext *avctx)
int ff_hevc_significant_coeff_flag_decode(HEVCContext *s, int c_idx, int x_c, int y_c, int log2_trafo_size, int scan_idx, int prev_sig)
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
uint8_t is_nalff
this flag is != 0 if bitstream is encapsulated as a format defined in 14496-15
int * ctb_addr_rs_to_ts
CtbAddrRSToTS.
AVBufferRef * av_buffer_alloc(int size)
Allocate an AVBuffer of the given size using av_malloc().
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
unsigned int log2_min_pu_size
int ff_hevc_decode_nal_pps(HEVCContext *s)
int ff_hevc_abs_mvd_greater1_flag_decode(HEVCContext *s)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
unsigned int sps_id
seq_parameter_set_id
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
main external API structure.
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
static void close(AVCodecParserContext *s)
static int hevc_decode_extradata(HEVCContext *s)
enum PredMode pred_mode
PredMode.
void(* transform_skip)(uint8_t *dst, int16_t *coeffs, ptrdiff_t stride)
int num_extra_slice_header_bits
uint8_t * data
The data buffer.
int16_t y
vertical component of motion vector
void ff_hevc_clear_refs(HEVCContext *s)
Mark all frames in DPB as unused for reference.
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
uint8_t num_long_term_ref_pics_sps
void av_md5_init(AVMD5 *ctx)
static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb, int ctb_addr_ts)
void(* transform_4x4_luma_add)(uint8_t *dst, int16_t *coeffs, ptrdiff_t stride)
uint32_t vui_num_units_in_tick
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
uint8_t deblocking_filter_control_present_flag
static unsigned int get_bits1(GetBitContext *s)
void ff_hevc_pred_init(HEVCPredContext *hpc, int bit_depth)
uint8_t * checksum_buf
used on BE to byteswap the lines for checksumming
uint8_t sps_temporal_mvp_enabled_flag
Describe the class of an AVClass context structure.
static void skip_bits(GetBitContext *s, int n)
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, int size)
Add a new side data to a frame.
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0, int log2_cb_size, int ct_depth)
enum AVColorSpace colorspace
YUV colorspace type.
static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
int ff_hevc_sao_eo_class_decode(HEVCContext *s)
static const uint8_t rem6[QP_MAX_NUM+1]
static const uint8_t diag_scan2x2_inv[2][2]
#define AV_EF_CRCCHECK
Verify checksums embedded in the bitstream (could be of either encoded or decoded data...
unsigned int log2_min_tb_size
enum PartMode part_mode
PartMode.
uint16_t lt_ref_pic_poc_lsb_sps[32]
int ff_hevc_slice_rpl(HEVCContext *s)
Construct the reference picture list(s) for the current slice.
static int hls_nal_unit(HEVCContext *s)
static const uint8_t horiz_scan4x4_x[16]
enum NALUnitType nal_unit_type
void av_md5_final(AVMD5 *ctx, uint8_t *dst)
int allocate_progress
Whether to allocate progress for frame threading.
uint8_t scaling_list_enable_flag
static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
static const uint8_t horiz_scan4x4_y[16]
int tc_offset
tc_offset_div2 * 2
uint8_t transfer_characteristic
uint8_t flags
A combination of HEVC_FRAME_FLAG_*.
Views are on top of each other.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
int ff_hevc_inter_pred_idc_decode(HEVCContext *s, int nPbW, int nPbH)
int ff_hevc_cbf_cb_cr_decode(HEVCContext *s, int trafo_depth)
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int ff_hevc_ref_idx_lx_decode(HEVCContext *s, int num_ref_idx_lx)
uint8_t intra_pred_mode_c
static int hls_coding_quadtree(HEVCContext *s, int x0, int y0, int log2_cb_size, int cb_depth)
the normal 219*2^(n-8) "MPEG" YUV ranges
int eos
current packet contains an EOS/EOB NAL
Views are next to each other.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> out
const uint8_t ff_hevc_diag_scan8x8_x[64]
int ff_hevc_intra_chroma_pred_mode_decode(HEVCContext *s)
int max_transform_hierarchy_depth_intra
coded frame dimension in various units
int ff_hevc_no_residual_syntax_flag_decode(HEVCContext *s)
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
static void hls_residual_coding(HEVCContext *s, int x0, int y0, int log2_trafo_size, enum ScanType scan_idx, int c_idx)
common internal and external API header
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
#define CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
uint8_t weighted_pred_flag
#define BOUNDARY_LEFT_SLICE
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
int32_t * tab_slice_address
static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output, AVPacket *avpkt)
unsigned int * column_width
ColumnWidth.
static const uint8_t diag_scan2x2_x[4]
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
uint8_t * filter_slice_edges
uint8_t slice_header_extension_present_flag
static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
int ff_hevc_coeff_sign_flag(HEVCContext *s, uint8_t nb)
int nal_length_size
Number of bytes used for nal length (1, 2 or 4)
void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW, int nPbH, int log2_cb_size, int part_idx, int merge_idx, MvField *mv, int mvp_lx_flag, int LX)
AVBufferPool * tab_mvf_pool
static av_cold int init(AVCodecParserContext *s)
static int hls_transform_tree(HEVCContext *s, int x0, int y0, int xBase, int yBase, int cb_xBase, int cb_yBase, int log2_cb_size, int log2_trafo_size, int trafo_depth, int blk_idx, int cbf_cb, int cbf_cr)
int video_full_range_flag
int ff_hevc_cu_qp_delta_abs(HEVCContext *s)
static const uint8_t div6[QP_MAX_NUM+1]
void ff_hevc_cabac_init(HEVCContext *s, int ctb_addr_ts)
#define SUBDIVIDE(x, y, idx)
int ff_hevc_split_transform_flag_decode(HEVCContext *s, int log2_trafo_size)
#define GET_COORD(offset, n)
static const uint8_t horiz_scan8x8_inv[8][8]
int ff_hevc_pred_mode_decode(HEVCContext *s)
struct AVCodecInternal * internal
Private context used for internal data.
int ff_hevc_cu_qp_delta_sign_flag(HEVCContext *s)
const uint8_t ff_hevc_diag_scan4x4_x[16]
int ff_hevc_prev_intra_luma_pred_flag_decode(HEVCContext *s)
int key_frame
1 -> keyframe, 0-> not
void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC, int xBase, int yBase, int log2_cb_size)
static const uint8_t diag_scan4x4_inv[4][4]
int ff_hevc_last_significant_coeff_suffix_decode(HEVCContext *s, int last_significant_coeff_prefix)
uint8_t long_term_ref_pics_present_flag
static void * av_mallocz_array(size_t nmemb, size_t size)
int ff_hevc_set_new_ref(HEVCContext *s, AVFrame **frame, int poc)
static const uint8_t scan_1x1[1]
int ff_hevc_last_significant_coeff_x_prefix_decode(HEVCContext *s, int c_idx, int log2_size)
int diff_cu_qp_delta_depth
int ff_hevc_sao_offset_abs_decode(HEVCContext *s)
int ff_hevc_pcm_flag_decode(HEVCContext *s)
const uint8_t ff_hevc_diag_scan8x8_y[64]
uint8_t context_initialized
int video_signal_type_present_flag
#define FFSWAP(type, a, b)
uint8_t deblocking_filter_override_enabled_flag
int beta_offset
beta_offset_div2 * 2
static const uint8_t horiz_scan2x2_y[4]
#define BOUNDARY_LEFT_TILE
static const uint8_t diag_scan2x2_y[4]
int ff_hevc_sao_merge_flag_decode(HEVCContext *s)
static av_cold int hevc_decode_free(AVCodecContext *avctx)
This structure stores compressed data.
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
void(* emulated_edge_mc)(uint8_t *buf, const uint8_t *src, ptrdiff_t buf_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
static const uint8_t diag_scan8x8_inv[8][8]
uint8_t separate_colour_plane_flag
output (i.e. cropped) values
static const AVProfile profiles[]
static void intra_prediction_unit_default_value(HEVCContext *s, int x0, int y0, int log2_cb_size)
#define SAMPLE_CTB(tab, x, y)
uint8_t dependent_slice_segments_enabled_flag
int offset_sign[3][4]
sao_offset_sign
#define BOUNDARY_UPPER_TILE