Libav
ac3enc.c
Go to the documentation of this file.
1 /*
2  * The simplest AC-3 encoder
3  * Copyright (c) 2000 Fabrice Bellard
4  * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5  * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
6  *
7  * This file is part of Libav.
8  *
9  * Libav is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * Libav is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with Libav; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
29 #include <stdint.h>
30 
31 #include "libavutil/attributes.h"
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
35 #include "libavutil/crc.h"
36 #include "libavutil/internal.h"
37 #include "libavutil/opt.h"
38 #include "avcodec.h"
39 #include "me_cmp.h"
40 #include "put_bits.h"
41 #include "audiodsp.h"
42 #include "ac3dsp.h"
43 #include "ac3.h"
44 #include "fft.h"
45 #include "ac3enc.h"
46 #include "eac3enc.h"
47 
48 typedef struct AC3Mant {
51 } AC3Mant;
52 
53 #define CMIXLEV_NUM_OPTIONS 3
54 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
56 };
57 
58 #define SURMIXLEV_NUM_OPTIONS 3
61 };
62 
63 #define EXTMIXLEV_NUM_OPTIONS 8
67 };
68 
69 
74 static uint8_t exponent_group_tab[2][3][256];
75 
76 
80 const uint64_t ff_ac3_channel_layouts[19] = {
91  (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
92  (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
93  (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
94  (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
95  (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
96  (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
99  0
100 };
101 
102 
108 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
109 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
110 
111  { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
112  { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
113  { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
114 
115  { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
116  { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
117  { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
118 
119  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
120  { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
121  { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
122 
123  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
124  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
125  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
126 
127  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
128  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
129  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
130 };
131 
132 
141 static const int8_t ac3_coupling_start_tab[6][3][19] = {
142 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
143 
144  // 2/0
145  { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
146  { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
147  { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
148 
149  // 3/0
150  { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
151  { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
152  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
153 
154  // 2/1 - untested
155  { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
156  { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
157  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
158 
159  // 3/1
160  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
161  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
162  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
163 
164  // 2/2 - untested
165  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
166  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
167  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
168 
169  // 3/2
170  { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
171  { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
172  { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
173 };
174 
175 
183 {
184  while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
185  s->bits_written -= s->bit_rate;
186  s->samples_written -= s->sample_rate;
187  }
188  s->frame_size = s->frame_size_min +
189  2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
190  s->bits_written += s->frame_size * 8;
192 }
193 
194 
201 {
202  int blk, ch;
203  int got_cpl_snr;
204  int num_cpl_blocks;
205 
206  /* set coupling use flags for each block/channel */
207  /* TODO: turn coupling on/off and adjust start band based on bit usage */
208  for (blk = 0; blk < s->num_blocks; blk++) {
209  AC3Block *block = &s->blocks[blk];
210  for (ch = 1; ch <= s->fbw_channels; ch++)
211  block->channel_in_cpl[ch] = s->cpl_on;
212  }
213 
214  /* enable coupling for each block if at least 2 channels have coupling
215  enabled for that block */
216  got_cpl_snr = 0;
217  num_cpl_blocks = 0;
218  for (blk = 0; blk < s->num_blocks; blk++) {
219  AC3Block *block = &s->blocks[blk];
220  block->num_cpl_channels = 0;
221  for (ch = 1; ch <= s->fbw_channels; ch++)
222  block->num_cpl_channels += block->channel_in_cpl[ch];
223  block->cpl_in_use = block->num_cpl_channels > 1;
224  num_cpl_blocks += block->cpl_in_use;
225  if (!block->cpl_in_use) {
226  block->num_cpl_channels = 0;
227  for (ch = 1; ch <= s->fbw_channels; ch++)
228  block->channel_in_cpl[ch] = 0;
229  }
230 
231  block->new_cpl_strategy = !blk;
232  if (blk) {
233  for (ch = 1; ch <= s->fbw_channels; ch++) {
234  if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
235  block->new_cpl_strategy = 1;
236  break;
237  }
238  }
239  }
240  block->new_cpl_leak = block->new_cpl_strategy;
241 
242  if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
243  block->new_snr_offsets = 1;
244  if (block->cpl_in_use)
245  got_cpl_snr = 1;
246  } else {
247  block->new_snr_offsets = 0;
248  }
249  }
250  if (!num_cpl_blocks)
251  s->cpl_on = 0;
252 
253  /* set bandwidth for each channel */
254  for (blk = 0; blk < s->num_blocks; blk++) {
255  AC3Block *block = &s->blocks[blk];
256  for (ch = 1; ch <= s->fbw_channels; ch++) {
257  if (block->channel_in_cpl[ch])
258  block->end_freq[ch] = s->start_freq[CPL_CH];
259  else
260  block->end_freq[ch] = s->bandwidth_code * 3 + 73;
261  }
262  }
263 }
264 
265 
272 {
273  int nb_coefs;
274  int blk, bnd, i;
275  int start, end;
276  uint8_t *flags;
277 
278  if (!s->rematrixing_enabled)
279  return;
280 
281  for (blk = 0; blk < s->num_blocks; blk++) {
282  AC3Block *block = &s->blocks[blk];
283  if (block->new_rematrixing_strategy)
284  flags = block->rematrixing_flags;
285  nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
286  for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
287  if (flags[bnd]) {
288  start = ff_ac3_rematrix_band_tab[bnd];
289  end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
290  for (i = start; i < end; i++) {
291  int32_t lt = block->fixed_coef[1][i];
292  int32_t rt = block->fixed_coef[2][i];
293  block->fixed_coef[1][i] = (lt + rt) >> 1;
294  block->fixed_coef[2][i] = (lt - rt) >> 1;
295  }
296  }
297  }
298  }
299 }
300 
301 
302 /*
303  * Initialize exponent tables.
304  */
306 {
307  int expstr, i, grpsize;
308 
309  for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
310  grpsize = 3 << expstr;
311  for (i = 12; i < 256; i++) {
312  exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
313  exponent_group_tab[1][expstr][i] = (i ) / grpsize;
314  }
315  }
316  /* LFE */
317  exponent_group_tab[0][0][7] = 2;
318 
319  if (CONFIG_EAC3_ENCODER && s->eac3)
321 }
322 
323 
324 /*
325  * Extract exponents from the MDCT coefficients.
326  */
328 {
329  int ch = !s->cpl_on;
330  int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
331  AC3Block *block = &s->blocks[0];
332 
333  s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
334 }
335 
336 
341 #define EXP_DIFF_THRESHOLD 500
342 
346 static const uint8_t exp_strategy_reuse_tab[4][6] = {
347  { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
348  { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
349  { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
350  { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
351 };
352 
353 /*
354  * Calculate exponent strategies for all channels.
355  * Array arrangement is reversed to simplify the per-channel calculation.
356  */
358 {
359  int ch, blk, blk1;
360 
361  for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
362  uint8_t *exp_strategy = s->exp_strategy[ch];
363  uint8_t *exp = s->blocks[0].exp[ch];
364  int exp_diff;
365 
366  /* estimate if the exponent variation & decide if they should be
367  reused in the next frame */
368  exp_strategy[0] = EXP_NEW;
369  exp += AC3_MAX_COEFS;
370  for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
371  if (ch == CPL_CH) {
372  if (!s->blocks[blk-1].cpl_in_use) {
373  exp_strategy[blk] = EXP_NEW;
374  continue;
375  } else if (!s->blocks[blk].cpl_in_use) {
376  exp_strategy[blk] = EXP_REUSE;
377  continue;
378  }
379  } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
380  exp_strategy[blk] = EXP_NEW;
381  continue;
382  }
383  exp_diff = s->mecc.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
384  exp_strategy[blk] = EXP_REUSE;
385  if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
386  exp_strategy[blk] = EXP_NEW;
387  else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
388  exp_strategy[blk] = EXP_NEW;
389  }
390 
391  /* now select the encoding strategy type : if exponents are often
392  recoded, we use a coarse encoding */
393  blk = 0;
394  while (blk < s->num_blocks) {
395  blk1 = blk + 1;
396  while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
397  blk1++;
398  exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
399  blk = blk1;
400  }
401  }
402  if (s->lfe_on) {
403  ch = s->lfe_channel;
404  s->exp_strategy[ch][0] = EXP_D15;
405  for (blk = 1; blk < s->num_blocks; blk++)
406  s->exp_strategy[ch][blk] = EXP_REUSE;
407  }
408 
409  /* for E-AC-3, determine frame exponent strategy */
410  if (CONFIG_EAC3_ENCODER && s->eac3)
412 }
413 
414 
423 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
424  int cpl)
425 {
426  int nb_groups, i, k;
427 
428  nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
429 
430  /* for each group, compute the minimum exponent */
431  switch(exp_strategy) {
432  case EXP_D25:
433  for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
434  uint8_t exp_min = exp[k];
435  if (exp[k+1] < exp_min)
436  exp_min = exp[k+1];
437  exp[i-cpl] = exp_min;
438  k += 2;
439  }
440  break;
441  case EXP_D45:
442  for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
443  uint8_t exp_min = exp[k];
444  if (exp[k+1] < exp_min)
445  exp_min = exp[k+1];
446  if (exp[k+2] < exp_min)
447  exp_min = exp[k+2];
448  if (exp[k+3] < exp_min)
449  exp_min = exp[k+3];
450  exp[i-cpl] = exp_min;
451  k += 4;
452  }
453  break;
454  }
455 
456  /* constraint for DC exponent */
457  if (!cpl && exp[0] > 15)
458  exp[0] = 15;
459 
460  /* decrease the delta between each groups to within 2 so that they can be
461  differentially encoded */
462  for (i = 1; i <= nb_groups; i++)
463  exp[i] = FFMIN(exp[i], exp[i-1] + 2);
464  i--;
465  while (--i >= 0)
466  exp[i] = FFMIN(exp[i], exp[i+1] + 2);
467 
468  if (cpl)
469  exp[-1] = exp[0] & ~1;
470 
471  /* now we have the exponent values the decoder will see */
472  switch (exp_strategy) {
473  case EXP_D25:
474  for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
475  uint8_t exp1 = exp[i-cpl];
476  exp[k--] = exp1;
477  exp[k--] = exp1;
478  }
479  break;
480  case EXP_D45:
481  for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
482  exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
483  k -= 4;
484  }
485  break;
486  }
487 }
488 
489 
490 /*
491  * Encode exponents from original extracted form to what the decoder will see.
492  * This copies and groups exponents based on exponent strategy and reduces
493  * deltas between adjacent exponent groups so that they can be differentially
494  * encoded.
495  */
497 {
498  int blk, blk1, ch, cpl;
499  uint8_t *exp, *exp_strategy;
500  int nb_coefs, num_reuse_blocks;
501 
502  for (ch = !s->cpl_on; ch <= s->channels; ch++) {
503  exp = s->blocks[0].exp[ch] + s->start_freq[ch];
504  exp_strategy = s->exp_strategy[ch];
505 
506  cpl = (ch == CPL_CH);
507  blk = 0;
508  while (blk < s->num_blocks) {
509  AC3Block *block = &s->blocks[blk];
510  if (cpl && !block->cpl_in_use) {
511  exp += AC3_MAX_COEFS;
512  blk++;
513  continue;
514  }
515  nb_coefs = block->end_freq[ch] - s->start_freq[ch];
516  blk1 = blk + 1;
517 
518  /* count the number of EXP_REUSE blocks after the current block
519  and set exponent reference block numbers */
520  s->exp_ref_block[ch][blk] = blk;
521  while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
522  s->exp_ref_block[ch][blk1] = blk;
523  blk1++;
524  }
525  num_reuse_blocks = blk1 - blk - 1;
526 
527  /* for the EXP_REUSE case we select the min of the exponents */
528  s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
529  AC3_MAX_COEFS);
530 
531  encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
532 
533  exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
534  blk = blk1;
535  }
536  }
537 
538  /* reference block numbers have been changed, so reset ref_bap_set */
539  s->ref_bap_set = 0;
540 }
541 
542 
543 /*
544  * Count exponent bits based on bandwidth, coupling, and exponent strategies.
545  */
547 {
548  int blk, ch;
549  int nb_groups, bit_count;
550 
551  bit_count = 0;
552  for (blk = 0; blk < s->num_blocks; blk++) {
553  AC3Block *block = &s->blocks[blk];
554  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
555  int exp_strategy = s->exp_strategy[ch][blk];
556  int cpl = (ch == CPL_CH);
557  int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
558 
559  if (exp_strategy == EXP_REUSE)
560  continue;
561 
562  nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
563  bit_count += 4 + (nb_groups * 7);
564  }
565  }
566 
567  return bit_count;
568 }
569 
570 
579 {
580  int blk, ch, i, cpl;
581  int group_size, nb_groups;
582  uint8_t *p;
583  int delta0, delta1, delta2;
584  int exp0, exp1;
585 
586  for (blk = 0; blk < s->num_blocks; blk++) {
587  AC3Block *block = &s->blocks[blk];
588  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
589  int exp_strategy = s->exp_strategy[ch][blk];
590  if (exp_strategy == EXP_REUSE)
591  continue;
592  cpl = (ch == CPL_CH);
593  group_size = exp_strategy + (exp_strategy == EXP_D45);
594  nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
595  p = block->exp[ch] + s->start_freq[ch] - cpl;
596 
597  /* DC exponent */
598  exp1 = *p++;
599  block->grouped_exp[ch][0] = exp1;
600 
601  /* remaining exponents are delta encoded */
602  for (i = 1; i <= nb_groups; i++) {
603  /* merge three delta in one code */
604  exp0 = exp1;
605  exp1 = p[0];
606  p += group_size;
607  delta0 = exp1 - exp0 + 2;
608  av_assert2(delta0 >= 0 && delta0 <= 4);
609 
610  exp0 = exp1;
611  exp1 = p[0];
612  p += group_size;
613  delta1 = exp1 - exp0 + 2;
614  av_assert2(delta1 >= 0 && delta1 <= 4);
615 
616  exp0 = exp1;
617  exp1 = p[0];
618  p += group_size;
619  delta2 = exp1 - exp0 + 2;
620  av_assert2(delta2 >= 0 && delta2 <= 4);
621 
622  block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
623  }
624  }
625  }
626 }
627 
628 
637 {
639 
641 
642  encode_exponents(s);
643 
644  emms_c();
645 }
646 
647 
648 /*
649  * Count frame bits that are based solely on fixed parameters.
650  * This only has to be run once when the encoder is initialized.
651  */
653 {
654  static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
655  int blk;
656  int frame_bits;
657 
658  /* assumptions:
659  * no dynamic range codes
660  * bit allocation parameters do not change between blocks
661  * no delta bit allocation
662  * no skipped data
663  * no auxiliary data
664  * no E-AC-3 metadata
665  */
666 
667  /* header */
668  frame_bits = 16; /* sync info */
669  if (s->eac3) {
670  /* bitstream info header */
671  frame_bits += 35;
672  frame_bits += 1 + 1;
673  if (s->num_blocks != 0x6)
674  frame_bits++;
675  frame_bits++;
676  /* audio frame header */
677  if (s->num_blocks == 6)
678  frame_bits += 2;
679  frame_bits += 10;
680  /* exponent strategy */
681  if (s->use_frame_exp_strategy)
682  frame_bits += 5 * s->fbw_channels;
683  else
684  frame_bits += s->num_blocks * 2 * s->fbw_channels;
685  if (s->lfe_on)
686  frame_bits += s->num_blocks;
687  /* converter exponent strategy */
688  if (s->num_blks_code != 0x3)
689  frame_bits++;
690  else
691  frame_bits += s->fbw_channels * 5;
692  /* snr offsets */
693  frame_bits += 10;
694  /* block start info */
695  if (s->num_blocks != 1)
696  frame_bits++;
697  } else {
698  frame_bits += 49;
699  frame_bits += frame_bits_inc[s->channel_mode];
700  }
701 
702  /* audio blocks */
703  for (blk = 0; blk < s->num_blocks; blk++) {
704  if (!s->eac3) {
705  /* block switch flags */
706  frame_bits += s->fbw_channels;
707 
708  /* dither flags */
709  frame_bits += s->fbw_channels;
710  }
711 
712  /* dynamic range */
713  frame_bits++;
714 
715  /* spectral extension */
716  if (s->eac3)
717  frame_bits++;
718 
719  if (!s->eac3) {
720  /* exponent strategy */
721  frame_bits += 2 * s->fbw_channels;
722  if (s->lfe_on)
723  frame_bits++;
724 
725  /* bit allocation params */
726  frame_bits++;
727  if (!blk)
728  frame_bits += 2 + 2 + 2 + 2 + 3;
729  }
730 
731  /* converter snr offset */
732  if (s->eac3)
733  frame_bits++;
734 
735  if (!s->eac3) {
736  /* delta bit allocation */
737  frame_bits++;
738 
739  /* skipped data */
740  frame_bits++;
741  }
742  }
743 
744  /* auxiliary data */
745  frame_bits++;
746 
747  /* CRC */
748  frame_bits += 1 + 16;
749 
750  s->frame_bits_fixed = frame_bits;
751 }
752 
753 
754 /*
755  * Initialize bit allocation.
756  * Set default parameter codes and calculate parameter values.
757  */
759 {
760  int ch;
761 
762  /* init default parameters */
763  s->slow_decay_code = 2;
764  s->fast_decay_code = 1;
765  s->slow_gain_code = 1;
766  s->db_per_bit_code = s->eac3 ? 2 : 3;
767  s->floor_code = 7;
768  for (ch = 0; ch <= s->channels; ch++)
769  s->fast_gain_code[ch] = 4;
770 
771  /* initial snr offset */
772  s->coarse_snr_offset = 40;
773 
774  /* compute real values */
775  /* currently none of these values change during encoding, so we can just
776  set them once at initialization */
782  s->bit_alloc.cpl_fast_leak = 0;
783  s->bit_alloc.cpl_slow_leak = 0;
784 
786 }
787 
788 
789 /*
790  * Count the bits used to encode the frame, minus exponents and mantissas.
791  * Bits based on fixed parameters have already been counted, so now we just
792  * have to add the bits based on parameters that change during encoding.
793  */
795 {
796  AC3EncOptions *opt = &s->options;
797  int blk, ch;
798  int frame_bits = 0;
799 
800  /* header */
801  if (s->eac3) {
802  if (opt->eac3_mixing_metadata) {
804  frame_bits += 2;
805  if (s->has_center)
806  frame_bits += 6;
807  if (s->has_surround)
808  frame_bits += 6;
809  frame_bits += s->lfe_on;
810  frame_bits += 1 + 1 + 2;
812  frame_bits++;
813  frame_bits++;
814  }
815  if (opt->eac3_info_metadata) {
816  frame_bits += 3 + 1 + 1;
818  frame_bits += 2 + 2;
819  if (s->channel_mode >= AC3_CHMODE_2F2R)
820  frame_bits += 2;
821  frame_bits++;
822  if (opt->audio_production_info)
823  frame_bits += 5 + 2 + 1;
824  frame_bits++;
825  }
826  /* coupling */
827  if (s->channel_mode > AC3_CHMODE_MONO) {
828  frame_bits++;
829  for (blk = 1; blk < s->num_blocks; blk++) {
830  AC3Block *block = &s->blocks[blk];
831  frame_bits++;
832  if (block->new_cpl_strategy)
833  frame_bits++;
834  }
835  }
836  /* coupling exponent strategy */
837  if (s->cpl_on) {
838  if (s->use_frame_exp_strategy) {
839  frame_bits += 5 * s->cpl_on;
840  } else {
841  for (blk = 0; blk < s->num_blocks; blk++)
842  frame_bits += 2 * s->blocks[blk].cpl_in_use;
843  }
844  }
845  } else {
846  if (opt->audio_production_info)
847  frame_bits += 7;
848  if (s->bitstream_id == 6) {
849  if (opt->extended_bsi_1)
850  frame_bits += 14;
851  if (opt->extended_bsi_2)
852  frame_bits += 14;
853  }
854  }
855 
856  /* audio blocks */
857  for (blk = 0; blk < s->num_blocks; blk++) {
858  AC3Block *block = &s->blocks[blk];
859 
860  /* coupling strategy */
861  if (!s->eac3)
862  frame_bits++;
863  if (block->new_cpl_strategy) {
864  if (!s->eac3)
865  frame_bits++;
866  if (block->cpl_in_use) {
867  if (s->eac3)
868  frame_bits++;
869  if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
870  frame_bits += s->fbw_channels;
872  frame_bits++;
873  frame_bits += 4 + 4;
874  if (s->eac3)
875  frame_bits++;
876  else
877  frame_bits += s->num_cpl_subbands - 1;
878  }
879  }
880 
881  /* coupling coordinates */
882  if (block->cpl_in_use) {
883  for (ch = 1; ch <= s->fbw_channels; ch++) {
884  if (block->channel_in_cpl[ch]) {
885  if (!s->eac3 || block->new_cpl_coords[ch] != 2)
886  frame_bits++;
887  if (block->new_cpl_coords[ch]) {
888  frame_bits += 2;
889  frame_bits += (4 + 4) * s->num_cpl_bands;
890  }
891  }
892  }
893  }
894 
895  /* stereo rematrixing */
896  if (s->channel_mode == AC3_CHMODE_STEREO) {
897  if (!s->eac3 || blk > 0)
898  frame_bits++;
899  if (s->blocks[blk].new_rematrixing_strategy)
900  frame_bits += block->num_rematrixing_bands;
901  }
902 
903  /* bandwidth codes & gain range */
904  for (ch = 1; ch <= s->fbw_channels; ch++) {
905  if (s->exp_strategy[ch][blk] != EXP_REUSE) {
906  if (!block->channel_in_cpl[ch])
907  frame_bits += 6;
908  frame_bits += 2;
909  }
910  }
911 
912  /* coupling exponent strategy */
913  if (!s->eac3 && block->cpl_in_use)
914  frame_bits += 2;
915 
916  /* snr offsets and fast gain codes */
917  if (!s->eac3) {
918  frame_bits++;
919  if (block->new_snr_offsets)
920  frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
921  }
922 
923  /* coupling leak info */
924  if (block->cpl_in_use) {
925  if (!s->eac3 || block->new_cpl_leak != 2)
926  frame_bits++;
927  if (block->new_cpl_leak)
928  frame_bits += 3 + 3;
929  }
930  }
931 
932  s->frame_bits = s->frame_bits_fixed + frame_bits;
933 }
934 
935 
936 /*
937  * Calculate masking curve based on the final exponents.
938  * Also calculate the power spectral densities to use in future calculations.
939  */
941 {
942  int blk, ch;
943 
944  for (blk = 0; blk < s->num_blocks; blk++) {
945  AC3Block *block = &s->blocks[blk];
946  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
947  /* We only need psd and mask for calculating bap.
948  Since we currently do not calculate bap when exponent
949  strategy is EXP_REUSE we do not need to calculate psd or mask. */
950  if (s->exp_strategy[ch][blk] != EXP_REUSE) {
951  ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
952  block->end_freq[ch], block->psd[ch],
953  block->band_psd[ch]);
955  s->start_freq[ch], block->end_freq[ch],
957  ch == s->lfe_channel,
958  DBA_NONE, 0, NULL, NULL, NULL,
959  block->mask[ch]);
960  }
961  }
962  }
963 }
964 
965 
966 /*
967  * Ensure that bap for each block and channel point to the current bap_buffer.
968  * They may have been switched during the bit allocation search.
969  */
971 {
972  int blk, ch;
973  uint8_t *ref_bap;
974 
975  if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
976  return;
977 
978  ref_bap = s->bap_buffer;
979  for (ch = 0; ch <= s->channels; ch++) {
980  for (blk = 0; blk < s->num_blocks; blk++)
981  s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
982  ref_bap += AC3_MAX_COEFS * s->num_blocks;
983  }
984  s->ref_bap_set = 1;
985 }
986 
987 
995 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
996 {
997  int blk;
998 
999  for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
1000  memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1001  mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1002  mant_cnt[blk][4] = 1;
1003  }
1004 }
1005 
1006 
1018  uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1019  int start, int end)
1020 {
1021  int blk;
1022 
1023  for (blk = 0; blk < s->num_blocks; blk++) {
1024  AC3Block *block = &s->blocks[blk];
1025  if (ch == CPL_CH && !block->cpl_in_use)
1026  continue;
1027  s->ac3dsp.update_bap_counts(mant_cnt[blk],
1028  s->ref_bap[ch][blk] + start,
1029  FFMIN(end, block->end_freq[ch]) - start);
1030  }
1031 }
1032 
1033 
1034 /*
1035  * Count the number of mantissa bits in the frame based on the bap values.
1036  */
1038 {
1039  int ch, max_end_freq;
1040  LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1041 
1042  count_mantissa_bits_init(mant_cnt);
1043 
1044  max_end_freq = s->bandwidth_code * 3 + 73;
1045  for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1046  count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1047  max_end_freq);
1048 
1049  return s->ac3dsp.compute_mantissa_size(mant_cnt);
1050 }
1051 
1052 
1063 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1064 {
1065  int blk, ch;
1066 
1067  snr_offset = (snr_offset - 240) << 2;
1068 
1069  reset_block_bap(s);
1070  for (blk = 0; blk < s->num_blocks; blk++) {
1071  AC3Block *block = &s->blocks[blk];
1072 
1073  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1074  /* Currently the only bit allocation parameters which vary across
1075  blocks within a frame are the exponent values. We can take
1076  advantage of that by reusing the bit allocation pointers
1077  whenever we reuse exponents. */
1078  if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1079  s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1080  s->start_freq[ch], block->end_freq[ch],
1081  snr_offset, s->bit_alloc.floor,
1082  ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1083  }
1084  }
1085  }
1086  return count_mantissa_bits(s);
1087 }
1088 
1089 
1090 /*
1091  * Constant bitrate bit allocation search.
1092  * Find the largest SNR offset that will allow data to fit in the frame.
1093  */
1095 {
1096  int ch;
1097  int bits_left;
1098  int snr_offset, snr_incr;
1099 
1100  bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1101  if (bits_left < 0)
1102  return AVERROR(EINVAL);
1103 
1104  snr_offset = s->coarse_snr_offset << 4;
1105 
1106  /* if previous frame SNR offset was 1023, check if current frame can also
1107  use SNR offset of 1023. if so, skip the search. */
1108  if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1109  if (bit_alloc(s, 1023) <= bits_left)
1110  return 0;
1111  }
1112 
1113  while (snr_offset >= 0 &&
1114  bit_alloc(s, snr_offset) > bits_left) {
1115  snr_offset -= 64;
1116  }
1117  if (snr_offset < 0)
1118  return AVERROR(EINVAL);
1119 
1120  FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1121  for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1122  while (snr_offset + snr_incr <= 1023 &&
1123  bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1124  snr_offset += snr_incr;
1125  FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1126  }
1127  }
1128  FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1129  reset_block_bap(s);
1130 
1131  s->coarse_snr_offset = snr_offset >> 4;
1132  for (ch = !s->cpl_on; ch <= s->channels; ch++)
1133  s->fine_snr_offset[ch] = snr_offset & 0xF;
1134 
1135  return 0;
1136 }
1137 
1138 
1139 /*
1140  * Perform bit allocation search.
1141  * Finds the SNR offset value that maximizes quality and fits in the specified
1142  * frame size. Output is the SNR offset and a set of bit allocation pointers
1143  * used to quantize the mantissas.
1144  */
1146 {
1147  count_frame_bits(s);
1148 
1150 
1151  bit_alloc_masking(s);
1152 
1153  return cbr_bit_allocation(s);
1154 }
1155 
1156 
1165 static inline int sym_quant(int c, int e, int levels)
1166 {
1167  int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1168  av_assert2(v >= 0 && v < levels);
1169  return v;
1170 }
1171 
1172 
1181 static inline int asym_quant(int c, int e, int qbits)
1182 {
1183  int m;
1184 
1185  c = (((c << e) >> (24 - qbits)) + 1) >> 1;
1186  m = (1 << (qbits-1));
1187  if (c >= m)
1188  c = m - 1;
1189  av_assert2(c >= -m);
1190  return c;
1191 }
1192 
1193 
1205 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1206  uint8_t *exp, uint8_t *bap,
1207  int16_t *qmant, int start_freq,
1208  int end_freq)
1209 {
1210  int i;
1211 
1212  for (i = start_freq; i < end_freq; i++) {
1213  int v;
1214  int c = fixed_coef[i];
1215  int e = exp[i];
1216  int b = bap[i];
1217  switch (b) {
1218  case 0:
1219  v = 0;
1220  break;
1221  case 1:
1222  v = sym_quant(c, e, 3);
1223  switch (s->mant1_cnt) {
1224  case 0:
1225  s->qmant1_ptr = &qmant[i];
1226  v = 9 * v;
1227  s->mant1_cnt = 1;
1228  break;
1229  case 1:
1230  *s->qmant1_ptr += 3 * v;
1231  s->mant1_cnt = 2;
1232  v = 128;
1233  break;
1234  default:
1235  *s->qmant1_ptr += v;
1236  s->mant1_cnt = 0;
1237  v = 128;
1238  break;
1239  }
1240  break;
1241  case 2:
1242  v = sym_quant(c, e, 5);
1243  switch (s->mant2_cnt) {
1244  case 0:
1245  s->qmant2_ptr = &qmant[i];
1246  v = 25 * v;
1247  s->mant2_cnt = 1;
1248  break;
1249  case 1:
1250  *s->qmant2_ptr += 5 * v;
1251  s->mant2_cnt = 2;
1252  v = 128;
1253  break;
1254  default:
1255  *s->qmant2_ptr += v;
1256  s->mant2_cnt = 0;
1257  v = 128;
1258  break;
1259  }
1260  break;
1261  case 3:
1262  v = sym_quant(c, e, 7);
1263  break;
1264  case 4:
1265  v = sym_quant(c, e, 11);
1266  switch (s->mant4_cnt) {
1267  case 0:
1268  s->qmant4_ptr = &qmant[i];
1269  v = 11 * v;
1270  s->mant4_cnt = 1;
1271  break;
1272  default:
1273  *s->qmant4_ptr += v;
1274  s->mant4_cnt = 0;
1275  v = 128;
1276  break;
1277  }
1278  break;
1279  case 5:
1280  v = sym_quant(c, e, 15);
1281  break;
1282  case 14:
1283  v = asym_quant(c, e, 14);
1284  break;
1285  case 15:
1286  v = asym_quant(c, e, 16);
1287  break;
1288  default:
1289  v = asym_quant(c, e, b - 1);
1290  break;
1291  }
1292  qmant[i] = v;
1293  }
1294 }
1295 
1296 
1303 {
1304  int blk, ch, ch0=0, got_cpl;
1305 
1306  for (blk = 0; blk < s->num_blocks; blk++) {
1307  AC3Block *block = &s->blocks[blk];
1308  AC3Mant m = { 0 };
1309 
1310  got_cpl = !block->cpl_in_use;
1311  for (ch = 1; ch <= s->channels; ch++) {
1312  if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1313  ch0 = ch - 1;
1314  ch = CPL_CH;
1315  got_cpl = 1;
1316  }
1317  quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1318  s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1319  s->ref_bap[ch][blk], block->qmant[ch],
1320  s->start_freq[ch], block->end_freq[ch]);
1321  if (ch == CPL_CH)
1322  ch = ch0;
1323  }
1324  }
1325 }
1326 
1327 
1328 /*
1329  * Write the AC-3 frame header to the output bitstream.
1330  */
1332 {
1333  AC3EncOptions *opt = &s->options;
1334 
1335  put_bits(&s->pb, 16, 0x0b77); /* frame header */
1336  put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1337  put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1338  put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1339  put_bits(&s->pb, 5, s->bitstream_id);
1340  put_bits(&s->pb, 3, s->bitstream_mode);
1341  put_bits(&s->pb, 3, s->channel_mode);
1342  if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1343  put_bits(&s->pb, 2, s->center_mix_level);
1344  if (s->channel_mode & 0x04)
1345  put_bits(&s->pb, 2, s->surround_mix_level);
1346  if (s->channel_mode == AC3_CHMODE_STEREO)
1347  put_bits(&s->pb, 2, opt->dolby_surround_mode);
1348  put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1349  put_bits(&s->pb, 5, -opt->dialogue_level);
1350  put_bits(&s->pb, 1, 0); /* no compression control word */
1351  put_bits(&s->pb, 1, 0); /* no lang code */
1352  put_bits(&s->pb, 1, opt->audio_production_info);
1353  if (opt->audio_production_info) {
1354  put_bits(&s->pb, 5, opt->mixing_level - 80);
1355  put_bits(&s->pb, 2, opt->room_type);
1356  }
1357  put_bits(&s->pb, 1, opt->copyright);
1358  put_bits(&s->pb, 1, opt->original);
1359  if (s->bitstream_id == 6) {
1360  /* alternate bit stream syntax */
1361  put_bits(&s->pb, 1, opt->extended_bsi_1);
1362  if (opt->extended_bsi_1) {
1363  put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1364  put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1365  put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1366  put_bits(&s->pb, 3, s->loro_center_mix_level);
1367  put_bits(&s->pb, 3, s->loro_surround_mix_level);
1368  }
1369  put_bits(&s->pb, 1, opt->extended_bsi_2);
1370  if (opt->extended_bsi_2) {
1371  put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1372  put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1373  put_bits(&s->pb, 1, opt->ad_converter_type);
1374  put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1375  }
1376  } else {
1377  put_bits(&s->pb, 1, 0); /* no time code 1 */
1378  put_bits(&s->pb, 1, 0); /* no time code 2 */
1379  }
1380  put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1381 }
1382 
1383 
1384 /*
1385  * Write one audio block to the output bitstream.
1386  */
1388 {
1389  int ch, i, baie, bnd, got_cpl, ch0;
1390  AC3Block *block = &s->blocks[blk];
1391 
1392  /* block switching */
1393  if (!s->eac3) {
1394  for (ch = 0; ch < s->fbw_channels; ch++)
1395  put_bits(&s->pb, 1, 0);
1396  }
1397 
1398  /* dither flags */
1399  if (!s->eac3) {
1400  for (ch = 0; ch < s->fbw_channels; ch++)
1401  put_bits(&s->pb, 1, 1);
1402  }
1403 
1404  /* dynamic range codes */
1405  put_bits(&s->pb, 1, 0);
1406 
1407  /* spectral extension */
1408  if (s->eac3)
1409  put_bits(&s->pb, 1, 0);
1410 
1411  /* channel coupling */
1412  if (!s->eac3)
1413  put_bits(&s->pb, 1, block->new_cpl_strategy);
1414  if (block->new_cpl_strategy) {
1415  if (!s->eac3)
1416  put_bits(&s->pb, 1, block->cpl_in_use);
1417  if (block->cpl_in_use) {
1418  int start_sub, end_sub;
1419  if (s->eac3)
1420  put_bits(&s->pb, 1, 0); /* enhanced coupling */
1421  if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1422  for (ch = 1; ch <= s->fbw_channels; ch++)
1423  put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1424  }
1425  if (s->channel_mode == AC3_CHMODE_STEREO)
1426  put_bits(&s->pb, 1, 0); /* phase flags in use */
1427  start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1428  end_sub = (s->cpl_end_freq - 37) / 12;
1429  put_bits(&s->pb, 4, start_sub);
1430  put_bits(&s->pb, 4, end_sub - 3);
1431  /* coupling band structure */
1432  if (s->eac3) {
1433  put_bits(&s->pb, 1, 0); /* use default */
1434  } else {
1435  for (bnd = start_sub+1; bnd < end_sub; bnd++)
1437  }
1438  }
1439  }
1440 
1441  /* coupling coordinates */
1442  if (block->cpl_in_use) {
1443  for (ch = 1; ch <= s->fbw_channels; ch++) {
1444  if (block->channel_in_cpl[ch]) {
1445  if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1446  put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1447  if (block->new_cpl_coords[ch]) {
1448  put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1449  for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1450  put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1451  put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1452  }
1453  }
1454  }
1455  }
1456  }
1457 
1458  /* stereo rematrixing */
1459  if (s->channel_mode == AC3_CHMODE_STEREO) {
1460  if (!s->eac3 || blk > 0)
1461  put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1462  if (block->new_rematrixing_strategy) {
1463  /* rematrixing flags */
1464  for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1465  put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1466  }
1467  }
1468 
1469  /* exponent strategy */
1470  if (!s->eac3) {
1471  for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1472  put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1473  if (s->lfe_on)
1474  put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1475  }
1476 
1477  /* bandwidth */
1478  for (ch = 1; ch <= s->fbw_channels; ch++) {
1479  if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1480  put_bits(&s->pb, 6, s->bandwidth_code);
1481  }
1482 
1483  /* exponents */
1484  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1485  int nb_groups;
1486  int cpl = (ch == CPL_CH);
1487 
1488  if (s->exp_strategy[ch][blk] == EXP_REUSE)
1489  continue;
1490 
1491  /* DC exponent */
1492  put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1493 
1494  /* exponent groups */
1495  nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1496  for (i = 1; i <= nb_groups; i++)
1497  put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1498 
1499  /* gain range info */
1500  if (ch != s->lfe_channel && !cpl)
1501  put_bits(&s->pb, 2, 0);
1502  }
1503 
1504  /* bit allocation info */
1505  if (!s->eac3) {
1506  baie = (blk == 0);
1507  put_bits(&s->pb, 1, baie);
1508  if (baie) {
1509  put_bits(&s->pb, 2, s->slow_decay_code);
1510  put_bits(&s->pb, 2, s->fast_decay_code);
1511  put_bits(&s->pb, 2, s->slow_gain_code);
1512  put_bits(&s->pb, 2, s->db_per_bit_code);
1513  put_bits(&s->pb, 3, s->floor_code);
1514  }
1515  }
1516 
1517  /* snr offset */
1518  if (!s->eac3) {
1519  put_bits(&s->pb, 1, block->new_snr_offsets);
1520  if (block->new_snr_offsets) {
1521  put_bits(&s->pb, 6, s->coarse_snr_offset);
1522  for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1523  put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1524  put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1525  }
1526  }
1527  } else {
1528  put_bits(&s->pb, 1, 0); /* no converter snr offset */
1529  }
1530 
1531  /* coupling leak */
1532  if (block->cpl_in_use) {
1533  if (!s->eac3 || block->new_cpl_leak != 2)
1534  put_bits(&s->pb, 1, block->new_cpl_leak);
1535  if (block->new_cpl_leak) {
1536  put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1537  put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1538  }
1539  }
1540 
1541  if (!s->eac3) {
1542  put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1543  put_bits(&s->pb, 1, 0); /* no data to skip */
1544  }
1545 
1546  /* mantissas */
1547  got_cpl = !block->cpl_in_use;
1548  for (ch = 1; ch <= s->channels; ch++) {
1549  int b, q;
1550 
1551  if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1552  ch0 = ch - 1;
1553  ch = CPL_CH;
1554  got_cpl = 1;
1555  }
1556  for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1557  q = block->qmant[ch][i];
1558  b = s->ref_bap[ch][blk][i];
1559  switch (b) {
1560  case 0: break;
1561  case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1562  case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1563  case 3: put_sbits(&s->pb, 3, q); break;
1564  case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1565  case 14: put_sbits(&s->pb, 14, q); break;
1566  case 15: put_sbits(&s->pb, 16, q); break;
1567  default: put_sbits(&s->pb, b-1, q); break;
1568  }
1569  }
1570  if (ch == CPL_CH)
1571  ch = ch0;
1572  }
1573 }
1574 
1575 
1577 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1578 
1579 
1580 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1581 {
1582  unsigned int c;
1583 
1584  c = 0;
1585  while (a) {
1586  if (a & 1)
1587  c ^= b;
1588  a = a >> 1;
1589  b = b << 1;
1590  if (b & (1 << 16))
1591  b ^= poly;
1592  }
1593  return c;
1594 }
1595 
1596 
1597 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1598 {
1599  unsigned int r;
1600  r = 1;
1601  while (n) {
1602  if (n & 1)
1603  r = mul_poly(r, a, poly);
1604  a = mul_poly(a, a, poly);
1605  n >>= 1;
1606  }
1607  return r;
1608 }
1609 
1610 
1611 /*
1612  * Fill the end of the frame with 0's and compute the two CRCs.
1613  */
1615 {
1616  const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1617  int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1618  uint8_t *frame;
1619 
1620  frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1621 
1622  /* pad the remainder of the frame with zeros */
1623  av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1624  flush_put_bits(&s->pb);
1625  frame = s->pb.buf;
1626  pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1627  av_assert2(pad_bytes >= 0);
1628  if (pad_bytes > 0)
1629  memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1630 
1631  if (s->eac3) {
1632  /* compute crc2 */
1633  crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1634  } else {
1635  /* compute crc1 */
1636  /* this is not so easy because it is at the beginning of the data... */
1637  crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1638  crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1639  crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1640  AV_WB16(frame + 2, crc1);
1641 
1642  /* compute crc2 */
1643  crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1644  s->frame_size - frame_size_58 - 3);
1645  }
1646  crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1647  /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1648  if (crc2 == 0x770B) {
1649  frame[s->frame_size - 3] ^= 0x1;
1650  crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1651  }
1652  crc2 = av_bswap16(crc2);
1653  AV_WB16(frame + s->frame_size - 2, crc2);
1654 }
1655 
1656 
1663 void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1664 {
1665  int blk;
1666 
1668 
1669  s->output_frame_header(s);
1670 
1671  for (blk = 0; blk < s->num_blocks; blk++)
1672  output_audio_block(s, blk);
1673 
1674  output_frame_end(s);
1675 }
1676 
1677 
1679 {
1680 #ifdef DEBUG
1681  AVCodecContext *avctx = s->avctx;
1682  AC3EncOptions *opt = &s->options;
1683  char strbuf[32];
1684 
1685  switch (s->bitstream_id) {
1686  case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1687  case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1688  case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1689  case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1690  case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1691  default: snprintf(strbuf, 32, "ERROR");
1692  }
1693  av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1694  av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1695  av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1696  av_dlog(avctx, "channel_layout: %s\n", strbuf);
1697  av_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1698  av_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1699  av_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1700  if (s->cutoff)
1701  av_dlog(avctx, "cutoff: %d\n", s->cutoff);
1702 
1703  av_dlog(avctx, "per_frame_metadata: %s\n",
1704  opt->allow_per_frame_metadata?"on":"off");
1705  if (s->has_center)
1706  av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1707  s->center_mix_level);
1708  else
1709  av_dlog(avctx, "center_mixlev: {not written}\n");
1710  if (s->has_surround)
1711  av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1712  s->surround_mix_level);
1713  else
1714  av_dlog(avctx, "surround_mixlev: {not written}\n");
1715  if (opt->audio_production_info) {
1716  av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1717  switch (opt->room_type) {
1718  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1719  case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1720  case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1721  default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1722  }
1723  av_dlog(avctx, "room_type: %s\n", strbuf);
1724  } else {
1725  av_dlog(avctx, "mixing_level: {not written}\n");
1726  av_dlog(avctx, "room_type: {not written}\n");
1727  }
1728  av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1729  av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1730  if (s->channel_mode == AC3_CHMODE_STEREO) {
1731  switch (opt->dolby_surround_mode) {
1732  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1733  case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1734  case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1735  default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1736  }
1737  av_dlog(avctx, "dsur_mode: %s\n", strbuf);
1738  } else {
1739  av_dlog(avctx, "dsur_mode: {not written}\n");
1740  }
1741  av_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1742 
1743  if (s->bitstream_id == 6) {
1744  if (opt->extended_bsi_1) {
1745  switch (opt->preferred_stereo_downmix) {
1746  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1747  case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1748  case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1749  default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1750  }
1751  av_dlog(avctx, "dmix_mode: %s\n", strbuf);
1752  av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1754  av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1756  av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1758  av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1760  } else {
1761  av_dlog(avctx, "extended bitstream info 1: {not written}\n");
1762  }
1763  if (opt->extended_bsi_2) {
1764  switch (opt->dolby_surround_ex_mode) {
1765  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1766  case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1767  case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1768  default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1769  }
1770  av_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1771  switch (opt->dolby_headphone_mode) {
1772  case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1773  case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1774  case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1775  default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1776  }
1777  av_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1778 
1779  switch (opt->ad_converter_type) {
1780  case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1781  case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1782  default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1783  }
1784  av_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1785  } else {
1786  av_dlog(avctx, "extended bitstream info 2: {not written}\n");
1787  }
1788  }
1789 #endif
1790 }
1791 
1792 
1793 #define FLT_OPTION_THRESHOLD 0.01
1794 
1795 static int validate_float_option(float v, const float *v_list, int v_list_size)
1796 {
1797  int i;
1798 
1799  for (i = 0; i < v_list_size; i++) {
1800  if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1801  v > (v_list[i] - FLT_OPTION_THRESHOLD))
1802  break;
1803  }
1804  if (i == v_list_size)
1805  return -1;
1806 
1807  return i;
1808 }
1809 
1810 
1811 static void validate_mix_level(void *log_ctx, const char *opt_name,
1812  float *opt_param, const float *list,
1813  int list_size, int default_value, int min_value,
1814  int *ctx_param)
1815 {
1816  int mixlev = validate_float_option(*opt_param, list, list_size);
1817  if (mixlev < min_value) {
1818  mixlev = default_value;
1819  if (*opt_param >= 0.0) {
1820  av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1821  "default value: %0.3f\n", opt_name, list[mixlev]);
1822  }
1823  }
1824  *opt_param = list[mixlev];
1825  *ctx_param = mixlev;
1826 }
1827 
1828 
1836 {
1837  AVCodecContext *avctx = s->avctx;
1838  AC3EncOptions *opt = &s->options;
1839 
1840  opt->audio_production_info = 0;
1841  opt->extended_bsi_1 = 0;
1842  opt->extended_bsi_2 = 0;
1843  opt->eac3_mixing_metadata = 0;
1844  opt->eac3_info_metadata = 0;
1845 
1846  /* determine mixing metadata / xbsi1 use */
1848  opt->extended_bsi_1 = 1;
1849  opt->eac3_mixing_metadata = 1;
1850  }
1851  if (s->has_center &&
1852  (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1853  opt->extended_bsi_1 = 1;
1854  opt->eac3_mixing_metadata = 1;
1855  }
1856  if (s->has_surround &&
1857  (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1858  opt->extended_bsi_1 = 1;
1859  opt->eac3_mixing_metadata = 1;
1860  }
1861 
1862  if (s->eac3) {
1863  /* determine info metadata use */
1865  opt->eac3_info_metadata = 1;
1866  if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1867  opt->eac3_info_metadata = 1;
1868  if (s->channel_mode == AC3_CHMODE_STEREO &&
1870  opt->eac3_info_metadata = 1;
1872  opt->eac3_info_metadata = 1;
1873  if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1875  opt->audio_production_info = 1;
1876  opt->eac3_info_metadata = 1;
1877  }
1878  } else {
1879  /* determine audio production info use */
1880  if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1881  opt->audio_production_info = 1;
1882 
1883  /* determine xbsi2 use */
1885  opt->extended_bsi_2 = 1;
1887  opt->extended_bsi_2 = 1;
1888  if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1889  opt->extended_bsi_2 = 1;
1890  }
1891 
1892  /* validate AC-3 mixing levels */
1893  if (!s->eac3) {
1894  if (s->has_center) {
1895  validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1897  &s->center_mix_level);
1898  }
1899  if (s->has_surround) {
1900  validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1902  &s->surround_mix_level);
1903  }
1904  }
1905 
1906  /* validate extended bsi 1 / mixing metadata */
1907  if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1908  /* default preferred stereo downmix */
1911  if (!s->eac3 || s->has_center) {
1912  /* validate Lt/Rt center mix level */
1913  validate_mix_level(avctx, "ltrt_center_mix_level",
1915  EXTMIXLEV_NUM_OPTIONS, 5, 0,
1916  &s->ltrt_center_mix_level);
1917  /* validate Lo/Ro center mix level */
1918  validate_mix_level(avctx, "loro_center_mix_level",
1920  EXTMIXLEV_NUM_OPTIONS, 5, 0,
1921  &s->loro_center_mix_level);
1922  }
1923  if (!s->eac3 || s->has_surround) {
1924  /* validate Lt/Rt surround mix level */
1925  validate_mix_level(avctx, "ltrt_surround_mix_level",
1927  EXTMIXLEV_NUM_OPTIONS, 6, 3,
1929  /* validate Lo/Ro surround mix level */
1930  validate_mix_level(avctx, "loro_surround_mix_level",
1932  EXTMIXLEV_NUM_OPTIONS, 6, 3,
1934  }
1935  }
1936 
1937  /* validate audio service type / channels combination */
1939  avctx->channels == 1) ||
1943  && avctx->channels > 1)) {
1944  av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1945  "specified number of channels\n");
1946  return AVERROR(EINVAL);
1947  }
1948 
1949  /* validate extended bsi 2 / info metadata */
1950  if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1951  /* default dolby headphone mode */
1954  /* default dolby surround ex mode */
1957  /* default A/D converter type */
1958  if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1960  }
1961 
1962  /* copyright & original defaults */
1963  if (!s->eac3 || opt->eac3_info_metadata) {
1964  /* default copyright */
1965  if (opt->copyright == AC3ENC_OPT_NONE)
1966  opt->copyright = AC3ENC_OPT_OFF;
1967  /* default original */
1968  if (opt->original == AC3ENC_OPT_NONE)
1969  opt->original = AC3ENC_OPT_ON;
1970  }
1971 
1972  /* dolby surround mode default */
1973  if (!s->eac3 || opt->eac3_info_metadata) {
1976  }
1977 
1978  /* validate audio production info */
1979  if (opt->audio_production_info) {
1980  if (opt->mixing_level == AC3ENC_OPT_NONE) {
1981  av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1982  "room_type is set\n");
1983  return AVERROR(EINVAL);
1984  }
1985  if (opt->mixing_level < 80) {
1986  av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1987  "80dB and 111dB\n");
1988  return AVERROR(EINVAL);
1989  }
1990  /* default room type */
1991  if (opt->room_type == AC3ENC_OPT_NONE)
1993  }
1994 
1995  /* set bitstream id for alternate bitstream syntax */
1996  if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1997  if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1998  static int warn_once = 1;
1999  if (warn_once) {
2000  av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
2001  "not compatible with reduced samplerates. writing of "
2002  "extended bitstream information will be disabled.\n");
2003  warn_once = 0;
2004  }
2005  } else {
2006  s->bitstream_id = 6;
2007  }
2008  }
2009 
2010  return 0;
2011 }
2012 
2013 
2020 {
2021  int blk, ch;
2022  AC3EncodeContext *s = avctx->priv_data;
2023 
2025  for (ch = 0; ch < s->channels; ch++)
2026  av_freep(&s->planar_samples[ch]);
2027  av_freep(&s->planar_samples);
2028  av_freep(&s->bap_buffer);
2029  av_freep(&s->bap1_buffer);
2032  av_freep(&s->exp_buffer);
2034  av_freep(&s->psd_buffer);
2036  av_freep(&s->mask_buffer);
2037  av_freep(&s->qmant_buffer);
2040  for (blk = 0; blk < s->num_blocks; blk++) {
2041  AC3Block *block = &s->blocks[blk];
2042  av_freep(&block->mdct_coef);
2043  av_freep(&block->fixed_coef);
2044  av_freep(&block->exp);
2045  av_freep(&block->grouped_exp);
2046  av_freep(&block->psd);
2047  av_freep(&block->band_psd);
2048  av_freep(&block->mask);
2049  av_freep(&block->qmant);
2050  av_freep(&block->cpl_coord_exp);
2051  av_freep(&block->cpl_coord_mant);
2052  }
2053 
2054  s->mdct_end(s);
2055 
2056  return 0;
2057 }
2058 
2059 
2060 /*
2061  * Set channel information during initialization.
2062  */
2063 static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
2064  uint64_t *channel_layout)
2065 {
2066  int ch_layout;
2067 
2068  if (channels < 1 || channels > AC3_MAX_CHANNELS)
2069  return AVERROR(EINVAL);
2070  if (*channel_layout > 0x7FF)
2071  return AVERROR(EINVAL);
2072  ch_layout = *channel_layout;
2073  if (!ch_layout)
2074  ch_layout = av_get_default_channel_layout(channels);
2075 
2076  s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2077  s->channels = channels;
2078  s->fbw_channels = channels - s->lfe_on;
2079  s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2080  if (s->lfe_on)
2081  ch_layout -= AV_CH_LOW_FREQUENCY;
2082 
2083  switch (ch_layout) {
2085  case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
2086  case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
2087  case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2088  case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
2089  case AV_CH_LAYOUT_QUAD:
2090  case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2091  case AV_CH_LAYOUT_5POINT0:
2092  case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
2093  default:
2094  return AVERROR(EINVAL);
2095  }
2096  s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2097  s->has_surround = s->channel_mode & 0x04;
2098 
2100  *channel_layout = ch_layout;
2101  if (s->lfe_on)
2102  *channel_layout |= AV_CH_LOW_FREQUENCY;
2103 
2104  return 0;
2105 }
2106 
2107 
2109 {
2110  AVCodecContext *avctx = s->avctx;
2111  int i, ret, max_sr;
2112 
2113  /* validate channel layout */
2114  if (!avctx->channel_layout) {
2115  av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2116  "encoder will guess the layout, but it "
2117  "might be incorrect.\n");
2118  }
2119  ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2120  if (ret) {
2121  av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2122  return ret;
2123  }
2124 
2125  /* validate sample rate */
2126  /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2127  decoder that supports half sample rate so we can validate that
2128  the generated files are correct. */
2129  max_sr = s->eac3 ? 2 : 8;
2130  for (i = 0; i <= max_sr; i++) {
2131  if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2132  break;
2133  }
2134  if (i > max_sr) {
2135  av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2136  return AVERROR(EINVAL);
2137  }
2138  s->sample_rate = avctx->sample_rate;
2139  s->bit_alloc.sr_shift = i / 3;
2140  s->bit_alloc.sr_code = i % 3;
2141  s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2142 
2143  /* select a default bit rate if not set by the user */
2144  if (!avctx->bit_rate) {
2145  switch (s->fbw_channels) {
2146  case 1: avctx->bit_rate = 96000; break;
2147  case 2: avctx->bit_rate = 192000; break;
2148  case 3: avctx->bit_rate = 320000; break;
2149  case 4: avctx->bit_rate = 384000; break;
2150  case 5: avctx->bit_rate = 448000; break;
2151  }
2152  }
2153 
2154  /* validate bit rate */
2155  if (s->eac3) {
2156  int max_br, min_br, wpf, min_br_dist, min_br_code;
2157  int num_blks_code, num_blocks, frame_samples;
2158 
2159  /* calculate min/max bitrate */
2160  /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2161  found use either 6 blocks or 1 block, even though 2 or 3 blocks
2162  would work as far as the bit rate is concerned. */
2163  for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2164  num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2165  frame_samples = AC3_BLOCK_SIZE * num_blocks;
2166  max_br = 2048 * s->sample_rate / frame_samples * 16;
2167  min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2168  if (avctx->bit_rate <= max_br)
2169  break;
2170  }
2171  if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2172  av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2173  "for this sample rate\n", min_br, max_br);
2174  return AVERROR(EINVAL);
2175  }
2176  s->num_blks_code = num_blks_code;
2177  s->num_blocks = num_blocks;
2178 
2179  /* calculate words-per-frame for the selected bitrate */
2180  wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2181  av_assert1(wpf > 0 && wpf <= 2048);
2182 
2183  /* find the closest AC-3 bitrate code to the selected bitrate.
2184  this is needed for lookup tables for bandwidth and coupling
2185  parameter selection */
2186  min_br_code = -1;
2187  min_br_dist = INT_MAX;
2188  for (i = 0; i < 19; i++) {
2189  int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2190  if (br_dist < min_br_dist) {
2191  min_br_dist = br_dist;
2192  min_br_code = i;
2193  }
2194  }
2195 
2196  /* make sure the minimum frame size is below the average frame size */
2197  s->frame_size_code = min_br_code << 1;
2198  while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2199  wpf--;
2200  s->frame_size_min = 2 * wpf;
2201  } else {
2202  int best_br = 0, best_code = 0, best_diff = INT_MAX;
2203  for (i = 0; i < 19; i++) {
2204  int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2205  int diff = abs(br - avctx->bit_rate);
2206  if (diff < best_diff) {
2207  best_br = br;
2208  best_code = i;
2209  best_diff = diff;
2210  }
2211  if (!best_diff)
2212  break;
2213  }
2214  avctx->bit_rate = best_br;
2215  s->frame_size_code = best_code << 1;
2217  s->num_blks_code = 0x3;
2218  s->num_blocks = 6;
2219  }
2220  s->bit_rate = avctx->bit_rate;
2221  s->frame_size = s->frame_size_min;
2222 
2223  /* validate cutoff */
2224  if (avctx->cutoff < 0) {
2225  av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2226  return AVERROR(EINVAL);
2227  }
2228  s->cutoff = avctx->cutoff;
2229  if (s->cutoff > (s->sample_rate >> 1))
2230  s->cutoff = s->sample_rate >> 1;
2231 
2232  ret = ff_ac3_validate_metadata(s);
2233  if (ret)
2234  return ret;
2235 
2238 
2241 
2242  return 0;
2243 }
2244 
2245 
2246 /*
2247  * Set bandwidth for all channels.
2248  * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2249  * default value will be used.
2250  */
2252 {
2253  int blk, ch, cpl_start;
2254 
2255  if (s->cutoff) {
2256  /* calculate bandwidth based on user-specified cutoff frequency */
2257  int fbw_coeffs;
2258  fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2259  s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2260  } else {
2261  /* use default bandwidth setting */
2262  s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2263  }
2264 
2265  /* set number of coefficients for each channel */
2266  for (ch = 1; ch <= s->fbw_channels; ch++) {
2267  s->start_freq[ch] = 0;
2268  for (blk = 0; blk < s->num_blocks; blk++)
2269  s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2270  }
2271  /* LFE channel always has 7 coefs */
2272  if (s->lfe_on) {
2273  s->start_freq[s->lfe_channel] = 0;
2274  for (blk = 0; blk < s->num_blocks; blk++)
2275  s->blocks[blk].end_freq[ch] = 7;
2276  }
2277 
2278  /* initialize coupling strategy */
2279  if (s->cpl_enabled) {
2280  if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2281  cpl_start = s->options.cpl_start;
2282  } else {
2283  cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2284  if (cpl_start < 0) {
2286  s->cpl_enabled = 0;
2287  else
2288  cpl_start = 15;
2289  }
2290  }
2291  }
2292  if (s->cpl_enabled) {
2293  int i, cpl_start_band, cpl_end_band;
2294  uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2295 
2296  cpl_end_band = s->bandwidth_code / 4 + 3;
2297  cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2298 
2299  s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2300 
2301  s->num_cpl_bands = 1;
2302  *cpl_band_sizes = 12;
2303  for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2305  *cpl_band_sizes += 12;
2306  } else {
2307  s->num_cpl_bands++;
2308  cpl_band_sizes++;
2309  *cpl_band_sizes = 12;
2310  }
2311  }
2312 
2313  s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2314  s->cpl_end_freq = cpl_end_band * 12 + 37;
2315  for (blk = 0; blk < s->num_blocks; blk++)
2316  s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2317  }
2318 }
2319 
2320 
2322 {
2323  AVCodecContext *avctx = s->avctx;
2324  int blk, ch;
2325  int channels = s->channels + 1; /* includes coupling channel */
2326  int channel_blocks = channels * s->num_blocks;
2327  int total_coefs = AC3_MAX_COEFS * channel_blocks;
2328 
2329  if (s->allocate_sample_buffers(s))
2330  goto alloc_fail;
2331 
2332  FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs *
2333  sizeof(*s->bap_buffer), alloc_fail);
2334  FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs *
2335  sizeof(*s->bap1_buffer), alloc_fail);
2336  FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs *
2337  sizeof(*s->mdct_coef_buffer), alloc_fail);
2338  FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs *
2339  sizeof(*s->exp_buffer), alloc_fail);
2340  FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 *
2341  sizeof(*s->grouped_exp_buffer), alloc_fail);
2342  FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs *
2343  sizeof(*s->psd_buffer), alloc_fail);
2344  FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 *
2345  sizeof(*s->band_psd_buffer), alloc_fail);
2346  FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 *
2347  sizeof(*s->mask_buffer), alloc_fail);
2348  FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs *
2349  sizeof(*s->qmant_buffer), alloc_fail);
2350  if (s->cpl_enabled) {
2351  FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 *
2352  sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2353  FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 *
2354  sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2355  }
2356  for (blk = 0; blk < s->num_blocks; blk++) {
2357  AC3Block *block = &s->blocks[blk];
2358  FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef),
2359  alloc_fail);
2360  FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp),
2361  alloc_fail);
2362  FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp),
2363  alloc_fail);
2364  FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd),
2365  alloc_fail);
2366  FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd),
2367  alloc_fail);
2368  FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask),
2369  alloc_fail);
2370  FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant),
2371  alloc_fail);
2372  if (s->cpl_enabled) {
2373  FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp),
2374  alloc_fail);
2375  FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant),
2376  alloc_fail);
2377  }
2378 
2379  for (ch = 0; ch < channels; ch++) {
2380  /* arrangement: block, channel, coeff */
2381  block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2382  block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2383  block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2384  block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2385  block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2386  if (s->cpl_enabled) {
2387  block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2388  block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2389  }
2390 
2391  /* arrangement: channel, block, coeff */
2392  block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2393  block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2394  }
2395  }
2396 
2397  if (!s->fixed_point) {
2398  FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs *
2399  sizeof(*s->fixed_coef_buffer), alloc_fail);
2400  for (blk = 0; blk < s->num_blocks; blk++) {
2401  AC3Block *block = &s->blocks[blk];
2402  FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2403  sizeof(*block->fixed_coef), alloc_fail);
2404  for (ch = 0; ch < channels; ch++)
2405  block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2406  }
2407  } else {
2408  for (blk = 0; blk < s->num_blocks; blk++) {
2409  AC3Block *block = &s->blocks[blk];
2410  FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2411  sizeof(*block->fixed_coef), alloc_fail);
2412  for (ch = 0; ch < channels; ch++)
2413  block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2414  }
2415  }
2416 
2417  return 0;
2418 alloc_fail:
2419  return AVERROR(ENOMEM);
2420 }
2421 
2422 
2424 {
2425  AC3EncodeContext *s = avctx->priv_data;
2426  int ret, frame_size_58;
2427 
2428  s->avctx = avctx;
2429 
2430  s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2431 
2433 
2434  ret = validate_options(s);
2435  if (ret)
2436  return ret;
2437 
2438  avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2439  avctx->delay = AC3_BLOCK_SIZE;
2440 
2441  s->bitstream_mode = avctx->audio_service_type;
2443  s->bitstream_mode = 0x7;
2444 
2445  s->bits_written = 0;
2446  s->samples_written = 0;
2447 
2448  /* calculate crc_inv for both possible frame sizes */
2449  frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2450  s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2451  if (s->bit_alloc.sr_code == 1) {
2452  frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2453  s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2454  }
2455 
2456  /* set function pointers */
2461  } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2465  }
2466  if (CONFIG_EAC3_ENCODER && s->eac3)
2468  else
2470 
2471  set_bandwidth(s);
2472 
2473  exponent_init(s);
2474 
2475  bit_alloc_init(s);
2476 
2477  ret = s->mdct_init(s);
2478  if (ret)
2479  goto init_fail;
2480 
2481  ret = allocate_buffers(s);
2482  if (ret)
2483  goto init_fail;
2484 
2485  ff_audiodsp_init(&s->adsp);
2486  ff_me_cmp_init(&s->mecc, avctx);
2488 
2489  dprint_options(s);
2490 
2491  return 0;
2492 init_fail:
2493  ff_ac3_encode_close(avctx);
2494  return ret;
2495 }
static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
Initialize mantissa counts.
Definition: ac3enc.c:995
av_cold void ff_me_cmp_init(MECmpContext *c, AVCodecContext *avctx)
Definition: me_cmp.c:893
uint64_t av_get_default_channel_layout(int nb_channels)
Return default channel layout for a given number of channels.
uint8_t new_rematrixing_strategy
send new rematrixing flags in this block
Definition: ac3enc.h:143
uint8_t exp_strategy[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]
exponent strategies
Definition: ac3enc.h:249
uint32_t poly
Definition: crc.c:252
int eac3_mixing_metadata
Definition: ac3enc.h:118
const uint8_t ff_ac3_bap_tab[64]
Definition: ac3tab.c:270
#define AC3_MAX_CODED_FRAME_SIZE
Definition: ac3.h:30
int dialogue_level
Definition: ac3enc.h:98
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, uint64_t *channel_layout)
Definition: ac3enc.c:2063
static void ac3_output_frame_header(AC3EncodeContext *s)
Definition: ac3enc.c:1331
int db_per_bit_code
dB/bit code (dbpbcod)
Definition: ac3enc.h:224
static const uint8_t exp_strategy_reuse_tab[4][6]
Table used to select exponent strategy based on exponent reuse block interval.
Definition: ac3enc.c:346
uint32_t av_crc(const AVCRC *ctx, uint32_t crc, const uint8_t *buffer, size_t length)
Calculate the CRC of a block.
Definition: crc.c:311
int slow_decay_code
slow decay code (sdcycod)
Definition: ac3enc.h:222
Encoding Options used by AVOption.
Definition: ac3enc.h:96
const uint8_t ff_ac3_slow_decay_tab[4]
Definition: ac3tab.c:280
int ff_ac3_fixed_allocate_sample_buffers(AC3EncodeContext *s)
float loro_surround_mix_level
Definition: ac3enc.h:113
static void put_sbits(PutBitContext *pb, int n, int32_t value)
Definition: put_bits.h:172
static void compute_exp_strategy(AC3EncodeContext *s)
Definition: ac3enc.c:357
int channel_coupling
Definition: ac3enc.h:124
static int asym_quant(int c, int e, int qbits)
Asymmetric quantization on 2^qbits levels.
Definition: ac3enc.c:1181
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:129
int dolby_surround_ex_mode
Definition: ac3enc.h:115
static uint8_t exponent_group_tab[2][3][256]
LUT for number of exponent groups.
Definition: ac3enc.c:74
#define AV_CH_LAYOUT_SURROUND
uint8_t ** cpl_coord_exp
coupling coord exponents (cplcoexp)
Definition: ac3enc.h:140
#define AC3_MAX_COEFS
Definition: ac3.h:34
int bandwidth_code
bandwidth code (0 to 60) (chbwcod)
Definition: ac3enc.h:208
const uint16_t ff_ac3_frame_size_tab[38][3]
Possible frame sizes.
Definition: ac3tab.c:37
uint8_t * grouped_exp_buffer
Definition: ac3enc.h:241
static av_cold int allocate_buffers(AC3EncodeContext *s)
Definition: ac3enc.c:2321
av_cold void ff_ac3_common_init(void)
Initialize some tables.
Definition: ac3.c:220
#define LEVEL_PLUS_1POINT5DB
Definition: ac3.h:54
int16_t ** psd
psd per frequency bin
Definition: ac3enc.h:136
int frame_size_code
frame size code (frmsizecod)
Definition: ac3enc.h:186
void(* mdct_end)(struct AC3EncodeContext *s)
Definition: ac3enc.h:257
int frame_bits
all frame bits except exponents and mantissas
Definition: ac3enc.h:231
#define av_bswap16
Definition: bswap.h:31
av_cold void ff_audiodsp_init(AudioDSPContext *c)
Definition: audiodsp.c:106
void ff_ac3_process_exponents(AC3EncodeContext *s)
Calculate final exponents from the supplied MDCT coefficients and exponent shift. ...
Definition: ac3enc.c:636
#define EXP_REUSE
Definition: ac3.h:45
const uint16_t ff_ac3_sample_rate_tab[3]
Definition: ac3tab.c:129
#define AV_CH_LAYOUT_4POINT0
uint8_t ** cpl_coord_mant
coupling coord mantissas (cplcomant)
Definition: ac3enc.h:141
uint16_t ** qmant
quantized mantissas
Definition: ac3enc.h:139
av_dlog(ac->avr,"%d samples - audio_convert: %s to %s (%s)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt), use_generic?ac->func_descr_generic:ac->func_descr)
int start_freq[AC3_MAX_CHANNELS]
start frequency bin (strtmant)
Definition: ac3enc.h:209
#define AV_CH_LAYOUT_STEREO
const uint16_t ff_ac3_slow_gain_tab[4]
Definition: ac3tab.c:288
PutBitContext pb
bitstream writer context
Definition: ac3enc.h:164
#define blk(i)
Definition: sha.c:173
#define EXP_D25
Definition: ac3.h:49
static const float cmixlev_options[CMIXLEV_NUM_OPTIONS]
Definition: ac3enc.c:54
int num_cpl_channels
number of channels in coupling
Definition: ac3enc.h:149
AC3BitAllocParameters bit_alloc
bit allocation parameters
Definition: ac3enc.h:226
#define AV_CH_LAYOUT_5POINT0
static int count_exponent_bits(AC3EncodeContext *s)
Definition: ac3enc.c:546
static void extract_exponents(AC3EncodeContext *s)
Definition: ac3enc.c:327
Macro definitions for various function/variable attributes.
int ff_ac3_float_allocate_sample_buffers(AC3EncodeContext *s)
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
enum AVAudioServiceType audio_service_type
Type of service that the audio stream conveys.
Definition: avcodec.h:1882
int ff_ac3_validate_metadata(AC3EncodeContext *s)
Validate metadata options as set by AVOption system.
Definition: ac3enc.c:1835
float ltrt_surround_mix_level
Definition: ac3enc.h:111
int new_cpl_leak
send new coupling leak info
Definition: ac3enc.h:153
int rematrixing_enabled
stereo rematrixing enabled
Definition: ac3enc.h:218
void ff_eac3_get_frame_exp_strategy(AC3EncodeContext *s)
Determine frame exponent strategy use and indices.
Definition: eac3enc.c:64
int channel_mode
channel mode (acmod)
Definition: ac3enc.h:197
int num_cpl_subbands
number of coupling subbands (ncplsubnd)
Definition: ac3enc.h:214
float surround_mix_level
Definition: ac3enc.h:101
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1815
uint8_t
int(* allocate_sample_buffers)(struct AC3EncodeContext *s)
Definition: ac3enc.h:261
#define av_cold
Definition: attributes.h:66
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:63
static void count_frame_bits(AC3EncodeContext *s)
Definition: ac3enc.c:794
AVOptions.
static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS]
Definition: ac3enc.c:64
uint8_t rematrixing_flags[4]
rematrixing flags
Definition: ac3enc.h:145
const AVCRC * av_crc_get_table(AVCRCId crc_id)
Get an initialized standard CRC table.
Definition: crc.c:297
#define EXP_D15
Definition: ac3.h:48
int fbw_channels
number of full-bandwidth channels (nfchans)
Definition: ac3enc.h:191
uint8_t new_cpl_coords[AC3_MAX_CHANNELS]
send new coupling coordinates (cplcoe)
Definition: ac3enc.h:150
static av_cold void set_bandwidth(AC3EncodeContext *s)
Definition: ac3enc.c:2251
#define b
Definition: input.c:52
const uint8_t ff_ac3_enc_channel_map[8][2][6]
Table to remap channels from SMPTE order to AC-3 order.
Definition: ac3tab.c:112
#define emms_c()
Definition: internal.h:47
av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
Finalize encoding and free any memory allocated by the encoder.
Definition: ac3enc.c:2019
uint8_t * bap1_buffer
Definition: ac3enc.h:237
#define AV_CH_LOW_FREQUENCY
int slow_gain_code
slow gain code (sgaincod)
Definition: ac3enc.h:221
uint8_t cpl_master_exp[AC3_MAX_CHANNELS]
coupling coord master exponents (mstrcplco)
Definition: ac3enc.h:151
static int flags
Definition: log.c:44
#define CRC16_POLY
CRC-16 Polynomial.
Definition: ac3enc.c:1577
uint8_t ** exp
original exponents
Definition: ac3enc.h:134
#define CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:658
int num_rematrixing_bands
number of rematrixing bands
Definition: ac3enc.h:144
static av_cold int validate_options(AC3EncodeContext *s)
Definition: ac3enc.c:2108
AC3DSPContext ac3dsp
AC-3 optimized functions.
Definition: ac3enc.h:168
int loro_center_mix_level
Lo/Ro center mix level code.
Definition: ac3enc.h:204
int num_cpl_bands
number of coupling bands (ncplbnd)
Definition: ac3enc.h:215
static int bit_alloc(AC3EncodeContext *s, int snr_offset)
Run the bit allocation with a given SNR offset.
Definition: ac3enc.c:1063
void ff_ac3_fixed_mdct_end(AC3EncodeContext *s)
static void dprint_options(AC3EncodeContext *s)
Definition: ac3enc.c:1678
int lfe_channel
channel index of the LFE channel
Definition: ac3enc.h:194
int mant2_cnt
Definition: ac3enc.c:50
int ref_bap_set
indicates if ref_bap pointers have been set
Definition: ac3enc.h:254
#define EXP_DIFF_THRESHOLD
Exponent Difference Threshold.
Definition: ac3enc.c:341
static av_cold void exponent_init(AC3EncodeContext *s)
Definition: ac3enc.c:305
static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef, uint8_t *exp, uint8_t *bap, int16_t *qmant, int start_freq, int end_freq)
Quantize a set of mantissas for a single channel in a single block.
Definition: ac3enc.c:1205
int new_snr_offsets
send new SNR offsets
Definition: ac3enc.h:152
#define r
Definition: input.c:51
int loro_surround_mix_level
Lo/Ro surround mix level code.
Definition: ac3enc.h:205
CoefType ** mdct_coef
MDCT coefficients.
Definition: ac3enc.h:132
int16_t * qmant4_ptr
mantissa pointers for bap=1,2,4
Definition: ac3enc.c:49
#define AV_CH_LAYOUT_5POINT1
uint8_t channel_in_cpl[AC3_MAX_CHANNELS]
channel in coupling (chincpl)
Definition: ac3enc.h:148
int16_t * qmant1_ptr
Definition: ac3enc.c:49
int eac3_info_metadata
Definition: ac3enc.h:119
int mixing_level
Definition: ac3enc.h:104
#define AC3ENC_OPT_SMALL_ROOM
Definition: ac3enc.h:86
int num_blks_code
number of blocks code (numblkscod)
Definition: ac3enc.h:182
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
const uint64_t ff_ac3_channel_layouts[19]
List of supported channel layouts.
Definition: ac3enc.c:80
static uint8_t * put_bits_ptr(PutBitContext *s)
Return the pointer to the byte where the bitstream writer will put the next bit.
Definition: put_bits.h:199
static int sym_quant(int c, int e, int levels)
Symmetric quantization on 'levels' levels.
Definition: ac3enc.c:1165
const uint8_t ff_ac3_fast_decay_tab[4]
Definition: ac3tab.c:284
AC3EncOptions options
encoding options
Definition: ac3enc.h:162
int16_t ** band_psd
psd per critical band
Definition: ac3enc.h:137
float ltrt_center_mix_level
Definition: ac3enc.h:110
#define AVERROR(e)
Definition: error.h:43
static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy, int cpl)
Update the exponents so that they are the ones the decoder will decode.
Definition: ac3enc.c:423
#define CONFIG_AC3_FIXED_ENCODER
Definition: config.h:1009
int channels
total number of channels (nchans)
Definition: ac3enc.h:192
#define AC3_MAX_CHANNELS
maximum number of channels, including coupling channel
Definition: ac3.h:31
int flags
CODEC_FLAG_*.
Definition: avcodec.h:1144
int ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd, int start, int end, int fast_gain, int is_lfe, int dba_mode, int dba_nsegs, uint8_t *dba_offsets, uint8_t *dba_lengths, uint8_t *dba_values, int16_t *mask)
Calculate the masking curve.
Definition: ac3.c:123
uint8_t * buf
Definition: put_bits.h:38
uint16_t crc_inv[2]
Definition: ac3enc.h:187
int cpl_on
coupling turned on for this frame
Definition: ac3enc.h:212
simple assert() macros that are a bit more flexible than ISO C assert().
#define AV_CH_LAYOUT_QUAD
int16_t * mask_buffer
Definition: ac3enc.h:244
#define CONFIG_AC3_ENCODER
Definition: config.h:1008
int16_t * psd_buffer
Definition: ac3enc.h:242
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
int fixed_point
indicates if fixed-point encoder is being used
Definition: ac3enc.h:174
const char * av_get_sample_fmt_name(enum AVSampleFormat sample_fmt)
Return the name of sample_fmt, or NULL if sample_fmt is not recognized.
Definition: samplefmt.c:47
int ltrt_surround_mix_level
Lt/Rt surround mix level code.
Definition: ac3enc.h:203
static void put_bits(PutBitContext *s, int n, unsigned int value)
Write up to 31 bits into a bitstream.
Definition: put_bits.h:134
int new_cpl_strategy
send new coupling strategy
Definition: ac3enc.h:146
int surround_mix_level
surround mix level code
Definition: ac3enc.h:201
#define LEVEL_MINUS_3DB
Definition: ac3.h:56
int cpl_in_use
coupling in use for this block (cplinu)
Definition: ac3enc.h:147
size_t av_strlcpy(char *dst, const char *src, size_t size)
Copy the string src to dst, but no more than size - 1 bytes, and null-terminate dst.
Definition: avstring.c:81
int cpl_enabled
coupling enabled for all frames
Definition: ac3enc.h:213
static void output_frame_end(AC3EncodeContext *s)
Definition: ac3enc.c:1614
#define EXTMIXLEV_NUM_OPTIONS
Definition: ac3enc.c:63
Definition: ac3enc.c:48
uint64_t channel_layout
Audio channel layout.
Definition: avcodec.h:1868
#define LEVEL_MINUS_4POINT5DB
Definition: ac3.h:57
static int put_bits_count(PutBitContext *s)
Definition: put_bits.h:67
#define AC3_BLOCK_SIZE
Definition: ac3.h:35
static void output_audio_block(AC3EncodeContext *s, int blk)
Definition: ac3enc.c:1387
const uint16_t ff_ac3_bitrate_tab[19]
Definition: ac3tab.c:132
static int count_mantissa_bits(AC3EncodeContext *s)
Definition: ac3enc.c:1037
#define AV_CH_LAYOUT_2_1
#define AV_CH_LAYOUT_2_2
Data for a single audio block.
Definition: ac3enc.h:131
#define AC3ENC_OPT_ON
Definition: ac3enc.h:79
common internal API header
int(* mdct_init)(struct AC3EncodeContext *s)
Definition: ac3enc.h:258
int floor_code
floor code (floorcod)
Definition: ac3enc.h:225
int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
Definition: ac3enc.c:1145
#define AC3ENC_OPT_DOWNMIX_LORO
Definition: ac3enc.h:88
int bitstream_mode
bitstream mode (bsmod)
Definition: ac3enc.h:177
#define AC3ENC_OPT_ADCONV_STANDARD
Definition: ac3enc.h:89
int has_surround
indicates if there are one or more surround channels
Definition: ac3enc.h:196
int bit_rate
the average bitrate
Definition: avcodec.h:1114
audio channel layout utility functions
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define FFMIN(a, b)
Definition: common.h:57
AudioDSPContext adsp
Definition: ac3enc.h:165
int eac3
indicates if this is E-AC-3 vs. AC-3
Definition: ac3enc.h:175
static const uint8_t ac3_bandwidth_tab[5][3][19]
LUT to select the bandwidth code based on the bit rate, sample rate, and number of full-bandwidth cha...
Definition: ac3enc.c:108
float loro_center_mix_level
Definition: ac3enc.h:112
av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
Definition: ac3dsp.c:213
int mant4_cnt
mantissa counts for bap=1,2,4
Definition: ac3enc.c:50
int ff_ac3_float_mdct_init(AC3EncodeContext *s)
Initialize MDCT tables.
Definition: ac3enc_float.c:63
int32_t
const uint16_t ff_ac3_fast_gain_tab[8]
Definition: ac3tab.c:300
int ad_converter_type
Definition: ac3enc.h:117
void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
Adjust the frame size to make the average bit rate match the target bit rate.
Definition: ac3enc.c:182
#define AC3ENC_OPT_AUTO
Definition: ac3enc.h:77
#define CONFIG_EAC3_ENCODER
Definition: config.h:1011
int exponent_bits
number of bits used for exponents
Definition: ac3enc.h:232
int stereo_rematrixing
Definition: ac3enc.h:123
#define AV_CH_LAYOUT_5POINT1_BACK
int coarse_snr_offset
coarse SNR offsets (csnroffst)
Definition: ac3enc.h:227
Definition: ac3.h:67
int16_t ** mask
masking curve
Definition: ac3enc.h:138
void(* extract_exponents)(uint8_t *exp, int32_t *coef, int nb_coefs)
Definition: ac3dsp.h:127
if(ac->has_optimized_func)
SampleType ** planar_samples
Definition: ac3enc.h:235
int fast_decay_code
fast decay code (fdcycod)
Definition: ac3enc.h:223
int16_t * qmant_buffer
Definition: ac3enc.h:245
int frame_size
Number of samples per channel in an audio frame.
Definition: avcodec.h:1827
#define AC3ENC_OPT_MODE_OFF
Definition: ac3enc.h:82
void(* bit_alloc_calc_bap)(int16_t *mask, int16_t *psd, int start, int end, int snr_offset, int floor, const uint8_t *bap_tab, uint8_t *bap)
Calculate bit allocation pointers.
Definition: ac3dsp.h:106
NULL
Definition: eval.c:55
#define AC3ENC_OPT_ADCONV_HDCD
Definition: ac3enc.h:90
void(* output_frame_header)(struct AC3EncodeContext *s)
Definition: ac3enc.h:264
#define CPL_CH
coupling channel index
Definition: ac3.h:32
const uint8_t ff_eac3_default_cpl_band_struct[18]
Table E2.16 Default Coupling Banding Structure.
Definition: ac3tab.c:146
uint8_t * ref_bap[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]
bit allocation pointers (bap)
Definition: ac3enc.h:253
void ff_eac3_output_frame_header(AC3EncodeContext *s)
Write the E-AC-3 frame header to the output bitstream.
Definition: eac3enc.c:124
Libavcodec external API header.
int audio_production_info
Definition: ac3enc.h:103
enum AVCodecID codec_id
Definition: avcodec.h:1067
int sample_rate
samples per second
Definition: avcodec.h:1807
int dolby_surround_mode
Definition: ac3enc.h:102
static const int8_t ac3_coupling_start_tab[6][3][19]
LUT to select the coupling start band based on the bit rate, sample rate, and number of full-bandwidt...
Definition: ac3enc.c:141
main external API structure.
Definition: avcodec.h:1050
int fast_gain_code[AC3_MAX_CHANNELS]
fast gain codes (signal-to-mask ratio) (fgaincod)
Definition: ac3enc.h:228
int sample_rate
sampling frequency, in Hz
Definition: ac3enc.h:180
CoefType * mdct_coef_buffer
Definition: ac3enc.h:238
#define LEVEL_ZERO
Definition: ac3.h:60
#define LEVEL_ONE
Definition: ac3.h:61
int has_center
indicates if there is a center channel
Definition: ac3enc.h:195
int bit_rate
target bit rate, in bits-per-second
Definition: ac3enc.h:179
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
Definition: ac3enc.c:1580
const uint8_t * channel_map
channel map used to reorder channels
Definition: ac3enc.h:198
uint8_t * exp_buffer
Definition: ac3enc.h:240
int frame_bits_fixed
number of non-coefficient bits for fixed parameters
Definition: ac3enc.h:230
int end_freq[AC3_MAX_CHANNELS]
end frequency bin (endmant)
Definition: ac3enc.h:154
#define FLT_OPTION_THRESHOLD
Definition: ac3enc.c:1793
static int validate_float_option(float v, const float *v_list, int v_list_size)
Definition: ac3enc.c:1795
int cpl_start
Definition: ac3enc.h:125
uint8_t * cpl_coord_exp_buffer
Definition: ac3enc.h:246
int ltrt_center_mix_level
Lt/Rt center mix level code.
Definition: ac3enc.h:202
#define AV_WB16(p, d)
Definition: intreadwrite.h:213
#define AV_CH_LAYOUT_5POINT0_BACK
av_cold void ff_eac3_exponent_init(void)
Initialize E-AC-3 exponent tables.
Definition: eac3enc.c:48
int center_mix_level
center mix level code
Definition: ac3enc.h:200
#define AC3_MAX_BLOCKS
Definition: ac3.h:36
AC-3 encoder private context.
Definition: ac3enc.h:160
void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
Write the frame to the output bitstream.
Definition: ac3enc.c:1663
static void count_frame_bits_fixed(AC3EncodeContext *s)
Definition: ac3enc.c:652
AC3Block blocks[AC3_MAX_BLOCKS]
per-block info
Definition: ac3enc.h:172
const int16_t ff_ac3_floor_tab[8]
Definition: ac3tab.c:296
SampleType * windowed_samples
Definition: ac3enc.h:234
int mant1_cnt
Definition: ac3enc.c:50
int preferred_stereo_downmix
Definition: ac3enc.h:109
void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
Quantize mantissas using coefficients, exponents, and bit allocation pointers.
Definition: ac3enc.c:1302
int(* compute_mantissa_size)(uint16_t mant_cnt[6][16])
Calculate the number of bits needed to encode a set of mantissas.
Definition: ac3dsp.h:125
int num_blocks
number of blocks per frame
Definition: ac3enc.h:183
static void encode_exponents(AC3EncodeContext *s)
Definition: ac3enc.c:496
#define CMIXLEV_NUM_OPTIONS
Definition: ac3enc.c:53
me_cmp_func sad[6]
Definition: me_cmp.h:41
float center_mix_level
Definition: ac3enc.h:100
#define EXP_NEW
Definition: ac3.h:46
static void reset_block_bap(AC3EncodeContext *s)
Definition: ac3enc.c:970
static av_cold void bit_alloc_init(AC3EncodeContext *s)
Definition: ac3enc.c:758
int extended_bsi_2
Definition: ac3enc.h:114
#define AC3_FRAME_SIZE
Definition: ac3.h:37
int frame_size
current frame size in bytes
Definition: ac3enc.h:185
#define SURMIXLEV_NUM_OPTIONS
Definition: ac3enc.c:58
int room_type
Definition: ac3enc.h:105
void(* update_bap_counts)(uint16_t mant_cnt[16], uint8_t *bap, int len)
Update bap counts using the supplied array of bap.
Definition: ac3dsp.h:117
uint8_t ** grouped_exp
grouped exponents
Definition: ac3enc.h:135
int cpl_end_freq
coupling channel end frequency bin
Definition: ac3enc.h:210
#define AC3ENC_OPT_LARGE_ROOM
Definition: ac3enc.h:85
uint8_t cpl_band_sizes[AC3_MAX_CPL_BANDS]
number of coeffs in each coupling band
Definition: ac3enc.h:216
MECmpContext mecc
Definition: ac3enc.h:167
#define AC3ENC_OPT_MODE_ON
Definition: ac3enc.h:81
static void flush_put_bits(PutBitContext *s)
Pad the end of the output stream with zeros.
Definition: put_bits.h:83
static void validate_mix_level(void *log_ctx, const char *opt_name, float *opt_param, const float *list, int list_size, int default_value, int min_value, int *ctx_param)
Definition: ac3enc.c:1811
#define FF_ALLOC_OR_GOTO(ctx, p, size, label)
Definition: internal.h:117
static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS]
Definition: ac3enc.c:59
static void init_put_bits(PutBitContext *s, uint8_t *buffer, int buffer_size)
Initialize the PutBitContext s.
Definition: put_bits.h:48
int64_t bits_written
bit count (used to avg. bitrate)
Definition: ac3enc.h:188
uint32_t AVCRC
Definition: crc.h:28
#define AC3ENC_OPT_NONE
Definition: ac3enc.h:76
void(* ac3_exponent_min)(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
Set each encoded exponent in a block to the minimum of itself and the exponents in the same frequency...
Definition: ac3dsp.h:43
int bitstream_id
bitstream id (bsid)
Definition: ac3enc.h:176
int16_t * band_psd_buffer
Definition: ac3enc.h:243
int dolby_headphone_mode
Definition: ac3enc.h:116
AVCodecContext * avctx
parent AVCodecContext
Definition: ac3enc.h:163
uint8_t exp_ref_block[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]
reference blocks for EXP_REUSE
Definition: ac3enc.h:252
void * priv_data
Definition: avcodec.h:1092
int cutoff
Audio cutoff bandwidth (0 means "automatic")
Definition: avcodec.h:1851
int allow_per_frame_metadata
Definition: ac3enc.h:122
void ff_ac3_bit_alloc_calc_psd(int8_t *exp, int start, int end, int16_t *psd, int16_t *band_psd)
Calculate the log power-spectral density of the input signal.
Definition: ac3.c:97
static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch, uint16_t mant_cnt[AC3_MAX_BLOCKS][16], int start, int end)
Update mantissa bit counts for all blocks in 1 channel in a given bandwidth range.
Definition: ac3enc.c:1017
int original
Definition: ac3enc.h:107
#define LEVEL_PLUS_3DB
Definition: ac3.h:53
#define AC3ENC_OPT_DOWNMIX_LTRT
Definition: ac3enc.h:87
int channels
number of audio channels
Definition: avcodec.h:1808
#define AC3ENC_OPT_NOT_INDICATED
Definition: ac3enc.h:80
static int cbr_bit_allocation(AC3EncodeContext *s)
Definition: ac3enc.c:1094
uint8_t * bap_buffer
Definition: ac3enc.h:236
int frame_size_min
minimum frame size in case rounding is necessary
Definition: ac3enc.h:184
#define LEVEL_MINUS_6DB
Definition: ac3.h:58
void ff_ac3_float_mdct_end(AC3EncodeContext *s)
Finalize MDCT and free allocated memory.
Definition: ac3enc_float.c:50
AC-3 encoder & E-AC-3 encoder common header.
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
Definition: ac3enc.c:1597
#define LOCAL_ALIGNED_16(t, v,...)
Definition: internal.h:114
void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
Apply stereo rematrixing to coefficients based on rematrixing flags.
Definition: ac3enc.c:271
const uint8_t ff_ac3_rematrix_band_tab[5]
Table of bin locations for rematrixing bands reference: Section 7.5.2 Rematrixing : Frequency Band De...
Definition: ac3tab.c:141
int64_t samples_written
sample count (used to avg. bitrate)
Definition: ac3enc.h:189
uint8_t * cpl_coord_mant_buffer
Definition: ac3enc.h:247
int use_frame_exp_strategy
indicates use of frame exp strategy
Definition: ac3enc.h:251
#define FFSWAP(type, a, b)
Definition: common.h:60
static void bit_alloc_masking(AC3EncodeContext *s)
Definition: ac3enc.c:940
int ff_ac3_fixed_mdct_init(AC3EncodeContext *s)
void ff_ac3_group_exponents(AC3EncodeContext *s)
Group exponents.
Definition: ac3enc.c:578
const uint16_t ff_ac3_db_per_bit_tab[4]
Definition: ac3tab.c:292
int16_t * qmant2_ptr
Definition: ac3enc.c:49
#define AV_CH_LAYOUT_MONO
void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
Set the initial coupling strategy parameters prior to coupling analysis.
Definition: ac3enc.c:200
int cutoff
user-specified cutoff frequency, in Hz
Definition: ac3enc.h:207
E-AC-3 encoder.
int lfe_on
indicates if there is an LFE channel (lfeon)
Definition: ac3enc.h:193
int fine_snr_offset[AC3_MAX_CHANNELS]
fine SNR offsets (fsnroffst)
Definition: ac3enc.h:229
#define AC3ENC_OPT_OFF
Definition: ac3enc.h:78
int delay
Codec delay.
Definition: avcodec.h:1212
Common code between the AC-3 encoder and decoder.
int32_t * fixed_coef_buffer
Definition: ac3enc.h:239
#define EXP_D45
Definition: ac3.h:50
#define FF_ALLOCZ_OR_GOTO(ctx, p, size, label)
Definition: internal.h:126
int extended_bsi_1
Definition: ac3enc.h:108
int copyright
Definition: ac3enc.h:106
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
int32_t ** fixed_coef
fixed-point MDCT coefficients
Definition: ac3enc.h:133
av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
Definition: ac3enc.c:2423
bitstream writer API
static int16_t block[64]
Definition: dct-test.c:88