monadplus-1.4.2: Haskell98 partial maps and filters over MonadPlus.

Copyright(c) Hans Hoglund 2012
LicenseBSD-style
Maintainerhans@hanshoglund.se
Stabilityexperimental
Portabilitynon-portable (TF,GNTD)
Safe HaskellNone
LanguageHaskell98

Control.Monad.Plus

Contents

Description

Partial maps and filters over MonadPlus instances. The basic idea here is that the monad interface together with the monoidal structure of MonadPlus is enough to implement partial maps and filters (i.e. mmapMaybe and mfilter).

This is especially useful for sequential structures such as event lists, tracks etc.

Inspired by the following blog post:

Synopsis

Basics

guard :: Alternative f => Bool -> f () #

Conditional failure of Alternative computations. Defined by

guard True  = pure ()
guard False = empty

Examples

Expand

Common uses of guard include conditionally signaling an error in an error monad and conditionally rejecting the current choice in an Alternative-based parser.

As an example of signaling an error in the error monad Maybe, consider a safe division function safeDiv x y that returns Nothing when the denominator y is zero and Just (x `div` y) otherwise. For example:

>>> safeDiv 4 0
Nothing
>>> safeDiv 4 2
Just 2

A definition of safeDiv using guards, but not guard:

safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0    = Just (x `div` y)
            | otherwise = Nothing

A definition of safeDiv using guard and Monad do-notation:

safeDiv :: Int -> Int -> Maybe Int
safeDiv x y = do
  guard (y /= 0)
  return (x `div` y)

join :: Monad m => m (m a) -> m a #

The join function is the conventional monad join operator. It is used to remove one level of monadic structure, projecting its bound argument into the outer level.

class Applicative m => Monad (m :: * -> *) where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following laws:

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m a #

Inject a value into the monadic type.

fail :: String -> m a #

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

As part of the MonadFail proposal (MFP), this function is moved to its own class MonadFail (see Control.Monad.Fail for more details). The definition here will be removed in a future release.

Instances
Monad []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

fail :: String -> [a] #

Monad Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Monad IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Monad Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b #

(>>) :: Par1 a -> Par1 b -> Par1 b #

return :: a -> Par1 a #

fail :: String -> Par1 a #

Monad First 
Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last 
Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Monad ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b #

(>>) :: ReadP a -> ReadP b -> ReadP b #

return :: a -> ReadP a #

fail :: String -> ReadP a #

Monad NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

fail :: String -> NonEmpty a #

Monad P

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: P a -> (a -> P b) -> P b #

(>>) :: P a -> P b -> P b #

return :: a -> P a #

fail :: String -> P a #

Monad (Either e)

Since: base-4.4.0.0

Instance details

Defined in Data.Either

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Monad (U1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b #

(>>) :: U1 a -> U1 b -> U1 b #

return :: a -> U1 a #

fail :: String -> U1 a #

Monoid a => Monad ((,) a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, a0) -> (a0 -> (a, b)) -> (a, b) #

(>>) :: (a, a0) -> (a, b) -> (a, b) #

return :: a0 -> (a, a0) #

fail :: String -> (a, a0) #

Monad m => Monad (WrappedMonad m) 
Instance details

Defined in Control.Applicative

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

fail :: String -> WrappedMonad m a #

ArrowApply a => Monad (ArrowMonad a)

Since: base-2.1

Instance details

Defined in Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b #

return :: a0 -> ArrowMonad a a0 #

fail :: String -> ArrowMonad a a0 #

Monad (Proxy :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b #

(>>) :: Proxy a -> Proxy b -> Proxy b #

return :: a -> Proxy a #

fail :: String -> Proxy a #

Monad (Partial r) # 
Instance details

Defined in Control.Monad.Plus

Methods

(>>=) :: Partial r a -> (a -> Partial r b) -> Partial r b #

(>>) :: Partial r a -> Partial r b -> Partial r b #

return :: a -> Partial r a #

fail :: String -> Partial r a #

Monad f => Monad (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

return :: a -> Rec1 f a #

fail :: String -> Rec1 f a #

Monad f => Monad (Alt f) 
Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

fail :: String -> Alt f a #

Monad ((->) r :: * -> *)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b #

(>>) :: (r -> a) -> (r -> b) -> r -> b #

return :: a -> r -> a #

fail :: String -> r -> a #

(Monad f, Monad g) => Monad (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

return :: a -> (f :*: g) a #

fail :: String -> (f :*: g) a #

Monad f => Monad (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

return :: a -> M1 i c f a #

fail :: String -> M1 i c f a #

class Functor (f :: * -> *) where #

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

Instances
Functor []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor Par1 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor ZipList 
Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor First 
Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 
Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Functor NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor P 
Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> P a -> P b #

(<$) :: a -> P b -> P a #

Functor (Either a)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

fmap :: (a0 -> b) -> Either a a0 -> Either a b #

(<$) :: a0 -> Either a b -> Either a a0 #

Functor (V1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Functor (U1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b #

(<$) :: a -> U1 b -> U1 a #

Functor ((,) a)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b) -> (a, a0) -> (a, b) #

(<$) :: a0 -> (a, b) -> (a, a0) #

Functor (Array i)

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Monad m => Functor (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Functor (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 #

Functor (Proxy :: * -> *)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b #

(<$) :: a -> Proxy b -> Proxy a #

Functor (Partial r) # 
Instance details

Defined in Control.Monad.Plus

Methods

fmap :: (a -> b) -> Partial r a -> Partial r b #

(<$) :: a -> Partial r b -> Partial r a #

Functor f => Functor (Rec1 f) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b #

(<$) :: a -> Rec1 f b -> Rec1 f a #

Functor (URec Char :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Functor (URec Double :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Functor (URec Float :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Functor (URec Int :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Functor (URec Word :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Functor (URec (Ptr ()) :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Arrow a => Functor (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

(<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Functor (Const m :: * -> *)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Functor f => Functor (Alt f) 
Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Functor ((->) r :: * -> *)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b #

(<$) :: a -> (r -> b) -> r -> a #

Functor (K1 i c :: * -> *) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b #

(<$) :: a -> K1 i c b -> K1 i c a #

(Functor f, Functor g) => Functor (f :+: g) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Functor f, Functor g) => Functor (f :*: g) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

Functor f => Functor (M1 i c f) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b #

(<$) :: a -> M1 i c f b -> M1 i c f a #

(Functor f, Functor g) => Functor (f :.: g) 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b #

(<$) :: a -> (f :.: g) b -> (f :.: g) a #

mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b) #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_.

sequence :: (Traversable t, Monad m) => t (m a) -> m (t a) #

Evaluate each monadic action in the structure from left to right, and collect the results. For a version that ignores the results see sequence_.

mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a #

Direct MonadPlus equivalent of filter filter = (mfilter:: (a -> Bool) -> [a] -> [a] applicable to any MonadPlus, for example mfilter odd (Just 1) == Just 1 mfilter odd (Just 2) == Nothing

(<$!>) :: Monad m => (a -> b) -> m a -> m b infixl 4 #

Strict version of <$>.

Since: base-4.8.0.0

unless :: Applicative f => Bool -> f () -> f () #

The reverse of when.

replicateM_ :: Applicative m => Int -> m a -> m () #

Like replicateM, but discards the result.

replicateM :: Applicative m => Int -> m a -> m [a] #

replicateM n act performs the action n times, gathering the results.

foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #

Like foldM, but discards the result.

foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #

The foldM function is analogous to foldl, except that its result is encapsulated in a monad. Note that foldM works from left-to-right over the list arguments. This could be an issue where (>>) and the `folded function' are not commutative.

foldM f a1 [x1, x2, ..., xm]

==

do
  a2 <- f a1 x1
  a3 <- f a2 x2
  ...
  f am xm

If right-to-left evaluation is required, the input list should be reversed.

Note: foldM is the same as foldlM

zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #

zipWithM_ is the extension of zipWithM which ignores the final result.

zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #

The zipWithM function generalizes zipWith to arbitrary applicative functors.

mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) #

The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of lists. This function is mainly used with complicated data structures or a state-transforming monad.

forever :: Applicative f => f a -> f b #

forever act repeats the action infinitely.

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c infixr 1 #

Right-to-left Kleisli composition of monads. (>=>), with the arguments flipped.

Note how this operator resembles function composition (.):

(.)   ::            (b ->   c) -> (a ->   b) -> a ->   c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #

Left-to-right Kleisli composition of monads.

filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #

This generalizes the list-based filter function.

forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #

forM is mapM with its arguments flipped. For a version that ignores the results see forM_.

sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #

Evaluate each monadic action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequence.

As of base 4.8.0.0, sequence_ is just sequenceA_, specialized to Monad.

forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () #

forM_ is mapM_ with its arguments flipped. For a version that doesn't ignore the results see forM.

As of base 4.8.0.0, forM_ is just for_, specialized to Monad.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see mapM.

As of base 4.8.0.0, mapM_ is just traverse_, specialized to Monad.

void :: Functor f => f a -> f () #

void value discards or ignores the result of evaluation, such as the return value of an IO action.

Examples

Expand

Replace the contents of a Maybe Int with unit:

>>> void Nothing
Nothing
>>> void (Just 3)
Just ()

Replace the contents of an Either Int Int with unit, resulting in an Either Int '()':

>>> void (Left 8675309)
Left 8675309
>>> void (Right 8675309)
Right ()

Replace every element of a list with unit:

>>> void [1,2,3]
[(),(),()]

Replace the second element of a pair with unit:

>>> void (1,2)
(1,())

Discard the result of an IO action:

>>> mapM print [1,2]
1
2
[(),()]
>>> void $ mapM print [1,2]
1
2

ap :: Monad m => m (a -> b) -> m a -> m b #

In many situations, the liftM operations can be replaced by uses of ap, which promotes function application.

return f `ap` x1 `ap` ... `ap` xn

is equivalent to

liftMn f x1 x2 ... xn

liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #

Promote a function to a monad, scanning the monadic arguments from left to right. For example,

liftM2 (+) [0,1] [0,2] = [0,2,1,3]
liftM2 (+) (Just 1) Nothing = Nothing

liftM :: Monad m => (a1 -> r) -> m a1 -> m r #

Promote a function to a monad.

when :: Applicative f => Bool -> f () -> f () #

Conditional execution of Applicative expressions. For example,

when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #

Same as >>=, but with the arguments interchanged.

class (Alternative m, Monad m) => MonadPlus (m :: * -> *) where #

Monads that also support choice and failure.

Methods

mzero :: m a #

The identity of mplus. It should also satisfy the equations

mzero >>= f  =  mzero
v >> mzero   =  mzero

The default definition is

mzero = empty

mplus :: m a -> m a -> m a #

An associative operation. The default definition is

mplus = (<|>)
Instances
MonadPlus []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: [a] #

mplus :: [a] -> [a] -> [a] #

MonadPlus Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

MonadPlus IO

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

MonadPlus ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

mzero :: ReadP a #

mplus :: ReadP a -> ReadP a -> ReadP a #

MonadPlus P

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

mzero :: P a #

mplus :: P a -> P a -> P a #

MonadPlus (U1 :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: U1 a #

mplus :: U1 a -> U1 a -> U1 a #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

mzero :: ArrowMonad a a0 #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

MonadPlus (Proxy :: * -> *)

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

mzero :: Proxy a #

mplus :: Proxy a -> Proxy a -> Proxy a #

MonadPlus (Partial r) # 
Instance details

Defined in Control.Monad.Plus

Methods

mzero :: Partial r a #

mplus :: Partial r a -> Partial r a -> Partial r a #

MonadPlus f => MonadPlus (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: Rec1 f a #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a #

MonadPlus f => MonadPlus (Alt f) 
Instance details

Defined in Data.Semigroup.Internal

Methods

mzero :: Alt f a #

mplus :: Alt f a -> Alt f a -> Alt f a #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: (f :*: g) a #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

MonadPlus f => MonadPlus (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: M1 i c f a #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a #

msum :: (Foldable t, MonadPlus m) => t (m a) -> m a #

The sum of a collection of actions, generalizing concat. As of base 4.8.0.0, msum is just asum, specialized to MonadPlus.

msum' :: (MonadPlus m, Foldable t) => t (m a) -> m a Source #

This generalizes the list-based concat function.

Constructing

mfold :: (MonadPlus m, Foldable t) => t a -> m a Source #

Fold a value into an arbitrary MonadPlus type.

This function generalizes the toList function.

mfromList :: MonadPlus m => [a] -> m a Source #

Translate a list to an arbitrary MonadPlus type.

This function generalizes the listToMaybe function.

mfromMaybe :: MonadPlus m => Maybe a -> m a Source #

Translate maybe to an arbitrary MonadPlus type.

This function generalizes the maybeToList function.

mreturn :: MonadPlus m => (a -> Maybe b) -> a -> m b Source #

Convert a partial function to a function returning an arbitrary MonadPlus type.

Filtering

mpartition :: MonadPlus m => (a -> Bool) -> m a -> (m a, m a) Source #

The partition function takes a predicate a list and returns the pair of lists of elements which do and do not satisfy the predicate, respectively; i.e.,

partition p xs == (filter p xs, filter (not . p) xs)

This function generalizes the partition function.

Special filters

mscatter :: MonadPlus m => m [b] -> m b Source #

Join list elements together.

This function generalizes the catMaybes function.

mscatter' :: (MonadPlus m, Foldable t) => m (t b) -> m b Source #

Join foldable elements together.

This function generalizes the catMaybes function.

mcatMaybes :: MonadPlus m => m (Maybe a) -> m a Source #

Pass through Just elements.

This function generalizes the catMaybes function.

mlefts :: MonadPlus m => m (Either a b) -> m a Source #

Pass through Left elements.

This function generalizes the lefts function.

mrights :: MonadPlus m => m (Either a b) -> m b Source #

Pass through Right elements.

This function generalizes the rights function.

mpartitionEithers :: MonadPlus m => m (Either a b) -> (m a, m b) Source #

Separate Left and Right elements.

This function generalizes the partitionEithers function.

Special maps

mmapMaybe :: MonadPlus m => (a -> Maybe b) -> m a -> m b Source #

Modify or discard a value.

This function generalizes the mapMaybe function.

mconcatMap :: MonadPlus m => (a -> [b]) -> m a -> m b Source #

Modify, discard or spawn values.

This function generalizes the concatMap function.

mconcatMap' :: (MonadPlus m, Foldable t) => (a -> t b) -> m a -> m b Source #

Modify, discard or spawn values.

This function generalizes the concatMap function.

Utility

newtype Partial a b Source #

Wrapper for partial functions with MonadPlus instance.

Constructors

Partial 

Fields

Instances
Monad (Partial r) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

(>>=) :: Partial r a -> (a -> Partial r b) -> Partial r b #

(>>) :: Partial r a -> Partial r b -> Partial r b #

return :: a -> Partial r a #

fail :: String -> Partial r a #

Functor (Partial r) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

fmap :: (a -> b) -> Partial r a -> Partial r b #

(<$) :: a -> Partial r b -> Partial r a #

Applicative (Partial r) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

pure :: a -> Partial r a #

(<*>) :: Partial r (a -> b) -> Partial r a -> Partial r b #

liftA2 :: (a -> b -> c) -> Partial r a -> Partial r b -> Partial r c #

(*>) :: Partial r a -> Partial r b -> Partial r b #

(<*) :: Partial r a -> Partial r b -> Partial r a #

Alternative (Partial r) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

empty :: Partial r a #

(<|>) :: Partial r a -> Partial r a -> Partial r a #

some :: Partial r a -> Partial r [a] #

many :: Partial r a -> Partial r [a] #

MonadPlus (Partial r) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

mzero :: Partial r a #

mplus :: Partial r a -> Partial r a -> Partial r a #

Semigroup (Partial a b) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

(<>) :: Partial a b -> Partial a b -> Partial a b #

sconcat :: NonEmpty (Partial a b) -> Partial a b #

stimes :: Integral b0 => b0 -> Partial a b -> Partial a b #

Monoid (Partial a b) Source # 
Instance details

Defined in Control.Monad.Plus

Methods

mempty :: Partial a b #

mappend :: Partial a b -> Partial a b -> Partial a b #

mconcat :: [Partial a b] -> Partial a b #

partial :: (a -> Bool) -> a -> Maybe a Source #

Convert a predicate to a partial function.

predicate :: (a -> Maybe a) -> a -> Bool Source #

Convert a partial function to a predicate.

always :: (a -> b) -> a -> Maybe b Source #

Convert a total function to a partial function.

never :: a -> Maybe c Source #

Make a partial function that always rejects its input.