libstdc++
stl_multimap.h
Go to the documentation of this file.
1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation. Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose. It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation. Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose. It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_multimap.h
52  * This is an internal header file, included by other library headers.
53  * Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58 
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63 
64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67 
68  template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
69  class map;
70 
71  /**
72  * @brief A standard container made up of (key,value) pairs, which can be
73  * retrieved based on a key, in logarithmic time.
74  *
75  * @ingroup associative_containers
76  *
77  * @tparam _Key Type of key objects.
78  * @tparam _Tp Type of mapped objects.
79  * @tparam _Compare Comparison function object type, defaults to less<_Key>.
80  * @tparam _Alloc Allocator type, defaults to
81  * allocator<pair<const _Key, _Tp>.
82  *
83  * Meets the requirements of a <a href="tables.html#65">container</a>, a
84  * <a href="tables.html#66">reversible container</a>, and an
85  * <a href="tables.html#69">associative container</a> (using equivalent
86  * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type
87  * is T, and the value_type is std::pair<const Key,T>.
88  *
89  * Multimaps support bidirectional iterators.
90  *
91  * The private tree data is declared exactly the same way for map and
92  * multimap; the distinction is made entirely in how the tree functions are
93  * called (*_unique versus *_equal, same as the standard).
94  */
95  template <typename _Key, typename _Tp,
96  typename _Compare = std::less<_Key>,
97  typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
98  class multimap
99  {
100  public:
101  typedef _Key key_type;
102  typedef _Tp mapped_type;
103  typedef std::pair<const _Key, _Tp> value_type;
104  typedef _Compare key_compare;
105  typedef _Alloc allocator_type;
106 
107  private:
108 #ifdef _GLIBCXX_CONCEPT_CHECKS
109  // concept requirements
110  typedef typename _Alloc::value_type _Alloc_value_type;
111 # if __cplusplus < 201103L
112  __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
113 # endif
114  __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
115  _BinaryFunctionConcept)
116  __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
117 #endif
118 
119  public:
120  class value_compare
121  : public std::binary_function<value_type, value_type, bool>
122  {
123  friend class multimap<_Key, _Tp, _Compare, _Alloc>;
124  protected:
125  _Compare comp;
126 
127  value_compare(_Compare __c)
128  : comp(__c) { }
129 
130  public:
131  bool operator()(const value_type& __x, const value_type& __y) const
132  { return comp(__x.first, __y.first); }
133  };
134 
135  private:
136  /// This turns a red-black tree into a [multi]map.
138  rebind<value_type>::other _Pair_alloc_type;
139 
140  typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
141  key_compare, _Pair_alloc_type> _Rep_type;
142  /// The actual tree structure.
143  _Rep_type _M_t;
144 
145  typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
146 
147  public:
148  // many of these are specified differently in ISO, but the following are
149  // "functionally equivalent"
150  typedef typename _Alloc_traits::pointer pointer;
151  typedef typename _Alloc_traits::const_pointer const_pointer;
152  typedef typename _Alloc_traits::reference reference;
153  typedef typename _Alloc_traits::const_reference const_reference;
154  typedef typename _Rep_type::iterator iterator;
155  typedef typename _Rep_type::const_iterator const_iterator;
156  typedef typename _Rep_type::size_type size_type;
157  typedef typename _Rep_type::difference_type difference_type;
158  typedef typename _Rep_type::reverse_iterator reverse_iterator;
159  typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
160 
161 #if __cplusplus > 201402L
162  using node_type = typename _Rep_type::node_type;
163 #endif
164 
165  // [23.3.2] construct/copy/destroy
166  // (get_allocator() is also listed in this section)
167 
168  /**
169  * @brief Default constructor creates no elements.
170  */
171 #if __cplusplus < 201103L
172  multimap() : _M_t() { }
173 #else
174  multimap() = default;
175 #endif
176 
177  /**
178  * @brief Creates a %multimap with no elements.
179  * @param __comp A comparison object.
180  * @param __a An allocator object.
181  */
182  explicit
183  multimap(const _Compare& __comp,
184  const allocator_type& __a = allocator_type())
185  : _M_t(__comp, _Pair_alloc_type(__a)) { }
186 
187  /**
188  * @brief %Multimap copy constructor.
189  *
190  * Whether the allocator is copied depends on the allocator traits.
191  */
192 #if __cplusplus < 201103L
193  multimap(const multimap& __x)
194  : _M_t(__x._M_t) { }
195 #else
196  multimap(const multimap&) = default;
197 
198  /**
199  * @brief %Multimap move constructor.
200  *
201  * The newly-created %multimap contains the exact contents of the
202  * moved instance. The moved instance is a valid, but unspecified
203  * %multimap.
204  */
205  multimap(multimap&&) = default;
206 
207  /**
208  * @brief Builds a %multimap from an initializer_list.
209  * @param __l An initializer_list.
210  * @param __comp A comparison functor.
211  * @param __a An allocator object.
212  *
213  * Create a %multimap consisting of copies of the elements from
214  * the initializer_list. This is linear in N if the list is already
215  * sorted, and NlogN otherwise (where N is @a __l.size()).
216  */
218  const _Compare& __comp = _Compare(),
219  const allocator_type& __a = allocator_type())
220  : _M_t(__comp, _Pair_alloc_type(__a))
221  { _M_t._M_insert_equal(__l.begin(), __l.end()); }
222 
223  /// Allocator-extended default constructor.
224  explicit
225  multimap(const allocator_type& __a)
226  : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
227 
228  /// Allocator-extended copy constructor.
229  multimap(const multimap& __m, const allocator_type& __a)
230  : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
231 
232  /// Allocator-extended move constructor.
233  multimap(multimap&& __m, const allocator_type& __a)
234  noexcept(is_nothrow_copy_constructible<_Compare>::value
235  && _Alloc_traits::_S_always_equal())
236  : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
237 
238  /// Allocator-extended initialier-list constructor.
239  multimap(initializer_list<value_type> __l, const allocator_type& __a)
240  : _M_t(_Compare(), _Pair_alloc_type(__a))
241  { _M_t._M_insert_equal(__l.begin(), __l.end()); }
242 
243  /// Allocator-extended range constructor.
244  template<typename _InputIterator>
245  multimap(_InputIterator __first, _InputIterator __last,
246  const allocator_type& __a)
247  : _M_t(_Compare(), _Pair_alloc_type(__a))
248  { _M_t._M_insert_equal(__first, __last); }
249 #endif
250 
251  /**
252  * @brief Builds a %multimap from a range.
253  * @param __first An input iterator.
254  * @param __last An input iterator.
255  *
256  * Create a %multimap consisting of copies of the elements from
257  * [__first,__last). This is linear in N if the range is already sorted,
258  * and NlogN otherwise (where N is distance(__first,__last)).
259  */
260  template<typename _InputIterator>
261  multimap(_InputIterator __first, _InputIterator __last)
262  : _M_t()
263  { _M_t._M_insert_equal(__first, __last); }
264 
265  /**
266  * @brief Builds a %multimap from a range.
267  * @param __first An input iterator.
268  * @param __last An input iterator.
269  * @param __comp A comparison functor.
270  * @param __a An allocator object.
271  *
272  * Create a %multimap consisting of copies of the elements from
273  * [__first,__last). This is linear in N if the range is already sorted,
274  * and NlogN otherwise (where N is distance(__first,__last)).
275  */
276  template<typename _InputIterator>
277  multimap(_InputIterator __first, _InputIterator __last,
278  const _Compare& __comp,
279  const allocator_type& __a = allocator_type())
280  : _M_t(__comp, _Pair_alloc_type(__a))
281  { _M_t._M_insert_equal(__first, __last); }
282 
283 #if __cplusplus >= 201103L
284  /**
285  * The dtor only erases the elements, and note that if the elements
286  * themselves are pointers, the pointed-to memory is not touched in any
287  * way. Managing the pointer is the user's responsibility.
288  */
289  ~multimap() = default;
290 #endif
291 
292  /**
293  * @brief %Multimap assignment operator.
294  *
295  * Whether the allocator is copied depends on the allocator traits.
296  */
297 #if __cplusplus < 201103L
298  multimap&
299  operator=(const multimap& __x)
300  {
301  _M_t = __x._M_t;
302  return *this;
303  }
304 #else
305  multimap&
306  operator=(const multimap&) = default;
307 
308  /// Move assignment operator.
309  multimap&
310  operator=(multimap&&) = default;
311 
312  /**
313  * @brief %Multimap list assignment operator.
314  * @param __l An initializer_list.
315  *
316  * This function fills a %multimap with copies of the elements
317  * in the initializer list @a __l.
318  *
319  * Note that the assignment completely changes the %multimap and
320  * that the resulting %multimap's size is the same as the number
321  * of elements assigned.
322  */
323  multimap&
325  {
326  _M_t._M_assign_equal(__l.begin(), __l.end());
327  return *this;
328  }
329 #endif
330 
331  /// Get a copy of the memory allocation object.
332  allocator_type
333  get_allocator() const _GLIBCXX_NOEXCEPT
334  { return allocator_type(_M_t.get_allocator()); }
335 
336  // iterators
337  /**
338  * Returns a read/write iterator that points to the first pair in the
339  * %multimap. Iteration is done in ascending order according to the
340  * keys.
341  */
342  iterator
343  begin() _GLIBCXX_NOEXCEPT
344  { return _M_t.begin(); }
345 
346  /**
347  * Returns a read-only (constant) iterator that points to the first pair
348  * in the %multimap. Iteration is done in ascending order according to
349  * the keys.
350  */
351  const_iterator
352  begin() const _GLIBCXX_NOEXCEPT
353  { return _M_t.begin(); }
354 
355  /**
356  * Returns a read/write iterator that points one past the last pair in
357  * the %multimap. Iteration is done in ascending order according to the
358  * keys.
359  */
360  iterator
361  end() _GLIBCXX_NOEXCEPT
362  { return _M_t.end(); }
363 
364  /**
365  * Returns a read-only (constant) iterator that points one past the last
366  * pair in the %multimap. Iteration is done in ascending order according
367  * to the keys.
368  */
369  const_iterator
370  end() const _GLIBCXX_NOEXCEPT
371  { return _M_t.end(); }
372 
373  /**
374  * Returns a read/write reverse iterator that points to the last pair in
375  * the %multimap. Iteration is done in descending order according to the
376  * keys.
377  */
378  reverse_iterator
379  rbegin() _GLIBCXX_NOEXCEPT
380  { return _M_t.rbegin(); }
381 
382  /**
383  * Returns a read-only (constant) reverse iterator that points to the
384  * last pair in the %multimap. Iteration is done in descending order
385  * according to the keys.
386  */
387  const_reverse_iterator
388  rbegin() const _GLIBCXX_NOEXCEPT
389  { return _M_t.rbegin(); }
390 
391  /**
392  * Returns a read/write reverse iterator that points to one before the
393  * first pair in the %multimap. Iteration is done in descending order
394  * according to the keys.
395  */
396  reverse_iterator
397  rend() _GLIBCXX_NOEXCEPT
398  { return _M_t.rend(); }
399 
400  /**
401  * Returns a read-only (constant) reverse iterator that points to one
402  * before the first pair in the %multimap. Iteration is done in
403  * descending order according to the keys.
404  */
405  const_reverse_iterator
406  rend() const _GLIBCXX_NOEXCEPT
407  { return _M_t.rend(); }
408 
409 #if __cplusplus >= 201103L
410  /**
411  * Returns a read-only (constant) iterator that points to the first pair
412  * in the %multimap. Iteration is done in ascending order according to
413  * the keys.
414  */
415  const_iterator
416  cbegin() const noexcept
417  { return _M_t.begin(); }
418 
419  /**
420  * Returns a read-only (constant) iterator that points one past the last
421  * pair in the %multimap. Iteration is done in ascending order according
422  * to the keys.
423  */
424  const_iterator
425  cend() const noexcept
426  { return _M_t.end(); }
427 
428  /**
429  * Returns a read-only (constant) reverse iterator that points to the
430  * last pair in the %multimap. Iteration is done in descending order
431  * according to the keys.
432  */
433  const_reverse_iterator
434  crbegin() const noexcept
435  { return _M_t.rbegin(); }
436 
437  /**
438  * Returns a read-only (constant) reverse iterator that points to one
439  * before the first pair in the %multimap. Iteration is done in
440  * descending order according to the keys.
441  */
442  const_reverse_iterator
443  crend() const noexcept
444  { return _M_t.rend(); }
445 #endif
446 
447  // capacity
448  /** Returns true if the %multimap is empty. */
449  bool
450  empty() const _GLIBCXX_NOEXCEPT
451  { return _M_t.empty(); }
452 
453  /** Returns the size of the %multimap. */
454  size_type
455  size() const _GLIBCXX_NOEXCEPT
456  { return _M_t.size(); }
457 
458  /** Returns the maximum size of the %multimap. */
459  size_type
460  max_size() const _GLIBCXX_NOEXCEPT
461  { return _M_t.max_size(); }
462 
463  // modifiers
464 #if __cplusplus >= 201103L
465  /**
466  * @brief Build and insert a std::pair into the %multimap.
467  *
468  * @param __args Arguments used to generate a new pair instance (see
469  * std::piecewise_contruct for passing arguments to each
470  * part of the pair constructor).
471  *
472  * @return An iterator that points to the inserted (key,value) pair.
473  *
474  * This function builds and inserts a (key, value) %pair into the
475  * %multimap.
476  * Contrary to a std::map the %multimap does not rely on unique keys and
477  * thus multiple pairs with the same key can be inserted.
478  *
479  * Insertion requires logarithmic time.
480  */
481  template<typename... _Args>
482  iterator
483  emplace(_Args&&... __args)
484  { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
485 
486  /**
487  * @brief Builds and inserts a std::pair into the %multimap.
488  *
489  * @param __pos An iterator that serves as a hint as to where the pair
490  * should be inserted.
491  * @param __args Arguments used to generate a new pair instance (see
492  * std::piecewise_contruct for passing arguments to each
493  * part of the pair constructor).
494  * @return An iterator that points to the inserted (key,value) pair.
495  *
496  * This function inserts a (key, value) pair into the %multimap.
497  * Contrary to a std::map the %multimap does not rely on unique keys and
498  * thus multiple pairs with the same key can be inserted.
499  * Note that the first parameter is only a hint and can potentially
500  * improve the performance of the insertion process. A bad hint would
501  * cause no gains in efficiency.
502  *
503  * For more on @a hinting, see:
504  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
505  *
506  * Insertion requires logarithmic time (if the hint is not taken).
507  */
508  template<typename... _Args>
509  iterator
510  emplace_hint(const_iterator __pos, _Args&&... __args)
511  {
512  return _M_t._M_emplace_hint_equal(__pos,
513  std::forward<_Args>(__args)...);
514  }
515 #endif
516 
517  /**
518  * @brief Inserts a std::pair into the %multimap.
519  * @param __x Pair to be inserted (see std::make_pair for easy creation
520  * of pairs).
521  * @return An iterator that points to the inserted (key,value) pair.
522  *
523  * This function inserts a (key, value) pair into the %multimap.
524  * Contrary to a std::map the %multimap does not rely on unique keys and
525  * thus multiple pairs with the same key can be inserted.
526  *
527  * Insertion requires logarithmic time.
528  * @{
529  */
530  iterator
531  insert(const value_type& __x)
532  { return _M_t._M_insert_equal(__x); }
533 
534 #if __cplusplus >= 201103L
535  // _GLIBCXX_RESOLVE_LIB_DEFECTS
536  // 2354. Unnecessary copying when inserting into maps with braced-init
537  iterator
538  insert(value_type&& __x)
539  { return _M_t._M_insert_equal(std::move(__x)); }
540 
541  template<typename _Pair>
542  __enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
543  insert(_Pair&& __x)
544  { return _M_t._M_emplace_equal(std::forward<_Pair>(__x)); }
545 #endif
546  // @}
547 
548  /**
549  * @brief Inserts a std::pair into the %multimap.
550  * @param __position An iterator that serves as a hint as to where the
551  * pair should be inserted.
552  * @param __x Pair to be inserted (see std::make_pair for easy creation
553  * of pairs).
554  * @return An iterator that points to the inserted (key,value) pair.
555  *
556  * This function inserts a (key, value) pair into the %multimap.
557  * Contrary to a std::map the %multimap does not rely on unique keys and
558  * thus multiple pairs with the same key can be inserted.
559  * Note that the first parameter is only a hint and can potentially
560  * improve the performance of the insertion process. A bad hint would
561  * cause no gains in efficiency.
562  *
563  * For more on @a hinting, see:
564  * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
565  *
566  * Insertion requires logarithmic time (if the hint is not taken).
567  * @{
568  */
569  iterator
570 #if __cplusplus >= 201103L
571  insert(const_iterator __position, const value_type& __x)
572 #else
573  insert(iterator __position, const value_type& __x)
574 #endif
575  { return _M_t._M_insert_equal_(__position, __x); }
576 
577 #if __cplusplus >= 201103L
578  // _GLIBCXX_RESOLVE_LIB_DEFECTS
579  // 2354. Unnecessary copying when inserting into maps with braced-init
580  iterator
581  insert(const_iterator __position, value_type&& __x)
582  { return _M_t._M_insert_equal_(__position, std::move(__x)); }
583 
584  template<typename _Pair>
585  __enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
586  insert(const_iterator __position, _Pair&& __x)
587  {
588  return _M_t._M_emplace_hint_equal(__position,
589  std::forward<_Pair>(__x));
590  }
591 #endif
592  // @}
593 
594  /**
595  * @brief A template function that attempts to insert a range
596  * of elements.
597  * @param __first Iterator pointing to the start of the range to be
598  * inserted.
599  * @param __last Iterator pointing to the end of the range.
600  *
601  * Complexity similar to that of the range constructor.
602  */
603  template<typename _InputIterator>
604  void
605  insert(_InputIterator __first, _InputIterator __last)
606  { _M_t._M_insert_equal(__first, __last); }
607 
608 #if __cplusplus >= 201103L
609  /**
610  * @brief Attempts to insert a list of std::pairs into the %multimap.
611  * @param __l A std::initializer_list<value_type> of pairs to be
612  * inserted.
613  *
614  * Complexity similar to that of the range constructor.
615  */
616  void
618  { this->insert(__l.begin(), __l.end()); }
619 #endif
620 
621 #if __cplusplus > 201402L
622  /// Extract a node.
623  node_type
624  extract(const_iterator __pos)
625  {
626  __glibcxx_assert(__pos != end());
627  return _M_t.extract(__pos);
628  }
629 
630  /// Extract a node.
631  node_type
632  extract(const key_type& __x)
633  { return _M_t.extract(__x); }
634 
635  /// Re-insert an extracted node.
636  iterator
637  insert(node_type&& __nh)
638  { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
639 
640  /// Re-insert an extracted node.
641  iterator
642  insert(const_iterator __hint, node_type&& __nh)
643  { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
644 
645  template<typename, typename>
646  friend class _Rb_tree_merge_helper;
647 
648  template<typename _C2>
649  void
650  merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
651  {
652  using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
653  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
654  }
655 
656  template<typename _C2>
657  void
658  merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
659  { merge(__source); }
660 
661  template<typename _C2>
662  void
663  merge(map<_Key, _Tp, _C2, _Alloc>& __source)
664  {
665  using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
666  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
667  }
668 
669  template<typename _C2>
670  void
671  merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
672  { merge(__source); }
673 #endif // C++17
674 
675 #if __cplusplus >= 201103L
676  // _GLIBCXX_RESOLVE_LIB_DEFECTS
677  // DR 130. Associative erase should return an iterator.
678  /**
679  * @brief Erases an element from a %multimap.
680  * @param __position An iterator pointing to the element to be erased.
681  * @return An iterator pointing to the element immediately following
682  * @a position prior to the element being erased. If no such
683  * element exists, end() is returned.
684  *
685  * This function erases an element, pointed to by the given iterator,
686  * from a %multimap. Note that this function only erases the element,
687  * and that if the element is itself a pointer, the pointed-to memory is
688  * not touched in any way. Managing the pointer is the user's
689  * responsibility.
690  *
691  * @{
692  */
693  iterator
694  erase(const_iterator __position)
695  { return _M_t.erase(__position); }
696 
697  // LWG 2059.
698  _GLIBCXX_ABI_TAG_CXX11
699  iterator
700  erase(iterator __position)
701  { return _M_t.erase(__position); }
702  // @}
703 #else
704  /**
705  * @brief Erases an element from a %multimap.
706  * @param __position An iterator pointing to the element to be erased.
707  *
708  * This function erases an element, pointed to by the given iterator,
709  * from a %multimap. Note that this function only erases the element,
710  * and that if the element is itself a pointer, the pointed-to memory is
711  * not touched in any way. Managing the pointer is the user's
712  * responsibility.
713  */
714  void
715  erase(iterator __position)
716  { _M_t.erase(__position); }
717 #endif
718 
719  /**
720  * @brief Erases elements according to the provided key.
721  * @param __x Key of element to be erased.
722  * @return The number of elements erased.
723  *
724  * This function erases all elements located by the given key from a
725  * %multimap.
726  * Note that this function only erases the element, and that if
727  * the element is itself a pointer, the pointed-to memory is not touched
728  * in any way. Managing the pointer is the user's responsibility.
729  */
730  size_type
731  erase(const key_type& __x)
732  { return _M_t.erase(__x); }
733 
734 #if __cplusplus >= 201103L
735  // _GLIBCXX_RESOLVE_LIB_DEFECTS
736  // DR 130. Associative erase should return an iterator.
737  /**
738  * @brief Erases a [first,last) range of elements from a %multimap.
739  * @param __first Iterator pointing to the start of the range to be
740  * erased.
741  * @param __last Iterator pointing to the end of the range to be
742  * erased .
743  * @return The iterator @a __last.
744  *
745  * This function erases a sequence of elements from a %multimap.
746  * Note that this function only erases the elements, and that if
747  * the elements themselves are pointers, the pointed-to memory is not
748  * touched in any way. Managing the pointer is the user's
749  * responsibility.
750  */
751  iterator
752  erase(const_iterator __first, const_iterator __last)
753  { return _M_t.erase(__first, __last); }
754 #else
755  // _GLIBCXX_RESOLVE_LIB_DEFECTS
756  // DR 130. Associative erase should return an iterator.
757  /**
758  * @brief Erases a [first,last) range of elements from a %multimap.
759  * @param __first Iterator pointing to the start of the range to be
760  * erased.
761  * @param __last Iterator pointing to the end of the range to
762  * be erased.
763  *
764  * This function erases a sequence of elements from a %multimap.
765  * Note that this function only erases the elements, and that if
766  * the elements themselves are pointers, the pointed-to memory is not
767  * touched in any way. Managing the pointer is the user's
768  * responsibility.
769  */
770  void
771  erase(iterator __first, iterator __last)
772  { _M_t.erase(__first, __last); }
773 #endif
774 
775  /**
776  * @brief Swaps data with another %multimap.
777  * @param __x A %multimap of the same element and allocator types.
778  *
779  * This exchanges the elements between two multimaps in constant time.
780  * (It is only swapping a pointer, an integer, and an instance of
781  * the @c Compare type (which itself is often stateless and empty), so it
782  * should be quite fast.)
783  * Note that the global std::swap() function is specialized such that
784  * std::swap(m1,m2) will feed to this function.
785  *
786  * Whether the allocators are swapped depends on the allocator traits.
787  */
788  void
790  _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
791  { _M_t.swap(__x._M_t); }
792 
793  /**
794  * Erases all elements in a %multimap. Note that this function only
795  * erases the elements, and that if the elements themselves are pointers,
796  * the pointed-to memory is not touched in any way. Managing the pointer
797  * is the user's responsibility.
798  */
799  void
800  clear() _GLIBCXX_NOEXCEPT
801  { _M_t.clear(); }
802 
803  // observers
804  /**
805  * Returns the key comparison object out of which the %multimap
806  * was constructed.
807  */
808  key_compare
809  key_comp() const
810  { return _M_t.key_comp(); }
811 
812  /**
813  * Returns a value comparison object, built from the key comparison
814  * object out of which the %multimap was constructed.
815  */
816  value_compare
817  value_comp() const
818  { return value_compare(_M_t.key_comp()); }
819 
820  // multimap operations
821 
822  //@{
823  /**
824  * @brief Tries to locate an element in a %multimap.
825  * @param __x Key of (key, value) pair to be located.
826  * @return Iterator pointing to sought-after element,
827  * or end() if not found.
828  *
829  * This function takes a key and tries to locate the element with which
830  * the key matches. If successful the function returns an iterator
831  * pointing to the sought after %pair. If unsuccessful it returns the
832  * past-the-end ( @c end() ) iterator.
833  */
834  iterator
835  find(const key_type& __x)
836  { return _M_t.find(__x); }
837 
838 #if __cplusplus > 201103L
839  template<typename _Kt>
840  auto
841  find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
842  { return _M_t._M_find_tr(__x); }
843 #endif
844  //@}
845 
846  //@{
847  /**
848  * @brief Tries to locate an element in a %multimap.
849  * @param __x Key of (key, value) pair to be located.
850  * @return Read-only (constant) iterator pointing to sought-after
851  * element, or end() if not found.
852  *
853  * This function takes a key and tries to locate the element with which
854  * the key matches. If successful the function returns a constant
855  * iterator pointing to the sought after %pair. If unsuccessful it
856  * returns the past-the-end ( @c end() ) iterator.
857  */
858  const_iterator
859  find(const key_type& __x) const
860  { return _M_t.find(__x); }
861 
862 #if __cplusplus > 201103L
863  template<typename _Kt>
864  auto
865  find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
866  { return _M_t._M_find_tr(__x); }
867 #endif
868  //@}
869 
870  //@{
871  /**
872  * @brief Finds the number of elements with given key.
873  * @param __x Key of (key, value) pairs to be located.
874  * @return Number of elements with specified key.
875  */
876  size_type
877  count(const key_type& __x) const
878  { return _M_t.count(__x); }
879 
880 #if __cplusplus > 201103L
881  template<typename _Kt>
882  auto
883  count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
884  { return _M_t._M_count_tr(__x); }
885 #endif
886  //@}
887 
888  //@{
889  /**
890  * @brief Finds the beginning of a subsequence matching given key.
891  * @param __x Key of (key, value) pair to be located.
892  * @return Iterator pointing to first element equal to or greater
893  * than key, or end().
894  *
895  * This function returns the first element of a subsequence of elements
896  * that matches the given key. If unsuccessful it returns an iterator
897  * pointing to the first element that has a greater value than given key
898  * or end() if no such element exists.
899  */
900  iterator
901  lower_bound(const key_type& __x)
902  { return _M_t.lower_bound(__x); }
903 
904 #if __cplusplus > 201103L
905  template<typename _Kt>
906  auto
907  lower_bound(const _Kt& __x)
908  -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
909  { return iterator(_M_t._M_lower_bound_tr(__x)); }
910 #endif
911  //@}
912 
913  //@{
914  /**
915  * @brief Finds the beginning of a subsequence matching given key.
916  * @param __x Key of (key, value) pair to be located.
917  * @return Read-only (constant) iterator pointing to first element
918  * equal to or greater than key, or end().
919  *
920  * This function returns the first element of a subsequence of
921  * elements that matches the given key. If unsuccessful the
922  * iterator will point to the next greatest element or, if no
923  * such greater element exists, to end().
924  */
925  const_iterator
926  lower_bound(const key_type& __x) const
927  { return _M_t.lower_bound(__x); }
928 
929 #if __cplusplus > 201103L
930  template<typename _Kt>
931  auto
932  lower_bound(const _Kt& __x) const
933  -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
934  { return const_iterator(_M_t._M_lower_bound_tr(__x)); }
935 #endif
936  //@}
937 
938  //@{
939  /**
940  * @brief Finds the end of a subsequence matching given key.
941  * @param __x Key of (key, value) pair to be located.
942  * @return Iterator pointing to the first element
943  * greater than key, or end().
944  */
945  iterator
946  upper_bound(const key_type& __x)
947  { return _M_t.upper_bound(__x); }
948 
949 #if __cplusplus > 201103L
950  template<typename _Kt>
951  auto
952  upper_bound(const _Kt& __x)
953  -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
954  { return iterator(_M_t._M_upper_bound_tr(__x)); }
955 #endif
956  //@}
957 
958  //@{
959  /**
960  * @brief Finds the end of a subsequence matching given key.
961  * @param __x Key of (key, value) pair to be located.
962  * @return Read-only (constant) iterator pointing to first iterator
963  * greater than key, or end().
964  */
965  const_iterator
966  upper_bound(const key_type& __x) const
967  { return _M_t.upper_bound(__x); }
968 
969 #if __cplusplus > 201103L
970  template<typename _Kt>
971  auto
972  upper_bound(const _Kt& __x) const
973  -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
974  { return const_iterator(_M_t._M_upper_bound_tr(__x)); }
975 #endif
976  //@}
977 
978  //@{
979  /**
980  * @brief Finds a subsequence matching given key.
981  * @param __x Key of (key, value) pairs to be located.
982  * @return Pair of iterators that possibly points to the subsequence
983  * matching given key.
984  *
985  * This function is equivalent to
986  * @code
987  * std::make_pair(c.lower_bound(val),
988  * c.upper_bound(val))
989  * @endcode
990  * (but is faster than making the calls separately).
991  */
993  equal_range(const key_type& __x)
994  { return _M_t.equal_range(__x); }
995 
996 #if __cplusplus > 201103L
997  template<typename _Kt>
998  auto
999  equal_range(const _Kt& __x)
1000  -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1001  { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1002 #endif
1003  //@}
1004 
1005  //@{
1006  /**
1007  * @brief Finds a subsequence matching given key.
1008  * @param __x Key of (key, value) pairs to be located.
1009  * @return Pair of read-only (constant) iterators that possibly points
1010  * to the subsequence matching given key.
1011  *
1012  * This function is equivalent to
1013  * @code
1014  * std::make_pair(c.lower_bound(val),
1015  * c.upper_bound(val))
1016  * @endcode
1017  * (but is faster than making the calls separately).
1018  */
1020  equal_range(const key_type& __x) const
1021  { return _M_t.equal_range(__x); }
1022 
1023 #if __cplusplus > 201103L
1024  template<typename _Kt>
1025  auto
1026  equal_range(const _Kt& __x) const
1028  _M_t._M_equal_range_tr(__x)))
1029  {
1031  _M_t._M_equal_range_tr(__x));
1032  }
1033 #endif
1034  //@}
1035 
1036  template<typename _K1, typename _T1, typename _C1, typename _A1>
1037  friend bool
1040 
1041  template<typename _K1, typename _T1, typename _C1, typename _A1>
1042  friend bool
1043  operator<(const multimap<_K1, _T1, _C1, _A1>&,
1045  };
1046 
1047  /**
1048  * @brief Multimap equality comparison.
1049  * @param __x A %multimap.
1050  * @param __y A %multimap of the same type as @a __x.
1051  * @return True iff the size and elements of the maps are equal.
1052  *
1053  * This is an equivalence relation. It is linear in the size of the
1054  * multimaps. Multimaps are considered equivalent if their sizes are equal,
1055  * and if corresponding elements compare equal.
1056  */
1057  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1058  inline bool
1061  { return __x._M_t == __y._M_t; }
1062 
1063  /**
1064  * @brief Multimap ordering relation.
1065  * @param __x A %multimap.
1066  * @param __y A %multimap of the same type as @a __x.
1067  * @return True iff @a x is lexicographically less than @a y.
1068  *
1069  * This is a total ordering relation. It is linear in the size of the
1070  * multimaps. The elements must be comparable with @c <.
1071  *
1072  * See std::lexicographical_compare() for how the determination is made.
1073  */
1074  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1075  inline bool
1076  operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1078  { return __x._M_t < __y._M_t; }
1079 
1080  /// Based on operator==
1081  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1082  inline bool
1085  { return !(__x == __y); }
1086 
1087  /// Based on operator<
1088  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1089  inline bool
1092  { return __y < __x; }
1093 
1094  /// Based on operator<
1095  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1096  inline bool
1097  operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1099  { return !(__y < __x); }
1100 
1101  /// Based on operator<
1102  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1103  inline bool
1106  { return !(__x < __y); }
1107 
1108  /// See std::multimap::swap().
1109  template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1110  inline void
1113  _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1114  { __x.swap(__y); }
1115 
1116 _GLIBCXX_END_NAMESPACE_CONTAINER
1117 
1118 #if __cplusplus > 201402L
1119 _GLIBCXX_BEGIN_NAMESPACE_VERSION
1120  // Allow std::multimap access to internals of compatible maps.
1121  template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1122  typename _Cmp2>
1123  struct
1124  _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
1125  _Cmp2>
1126  {
1127  private:
1128  friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
1129 
1130  static auto&
1131  _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1132  { return __map._M_t; }
1133 
1134  static auto&
1135  _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1136  { return __map._M_t; }
1137  };
1138 _GLIBCXX_END_NAMESPACE_VERSION
1139 #endif // C++17
1140 
1141 } // namespace std
1142 
1143 #endif /* _STL_MULTIMAP_H */
multimap(initializer_list< value_type > __l, const allocator_type &__a)
Allocator-extended initialier-list constructor.
Definition: stl_multimap.h:239
auto find(const _Kt &__x) const -> decltype(_M_t._M_find_tr(__x))
Tries to locate an element in a multimap.
Definition: stl_multimap.h:865
iterator end() noexcept
Definition: stl_multimap.h:361
iterator find(const key_type &__x)
Tries to locate an element in a multimap.
Definition: stl_multimap.h:835
multimap & operator=(initializer_list< value_type > __l)
Multimap list assignment operator.
Definition: stl_multimap.h:324
key_compare key_comp() const
Definition: stl_multimap.h:809
bool operator!=(const multimap< _Key, _Tp, _Compare, _Alloc > &__x, const multimap< _Key, _Tp, _Compare, _Alloc > &__y)
Based on operator==.
multimap & operator=(const multimap &)=default
Multimap assignment operator.
iterator lower_bound(const key_type &__x)
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:901
const_reverse_iterator rbegin() const noexcept
Definition: stl_multimap.h:388
auto upper_bound(const _Kt &__x) -> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:952
reverse_iterator rend() noexcept
Definition: stl_multimap.h:397
A standard container made up of (key,value) pairs, which can be retrieved based on a key...
Definition: stl_map.h:99
The standard allocator, as per [20.4].
Definition: allocator.h:108
iterator insert(const value_type &__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:531
multimap(_InputIterator __first, _InputIterator __last, const _Compare &__comp, const allocator_type &__a=allocator_type())
Builds a multimap from a range.
Definition: stl_multimap.h:277
const_reverse_iterator crbegin() const noexcept
Definition: stl_multimap.h:434
iterator insert(const_iterator __position, const value_type &__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:571
iterator erase(const_iterator __first, const_iterator __last)
Erases a [first,last) range of elements from a multimap.
Definition: stl_multimap.h:752
A standard container made up of (key,value) pairs, which can be retrieved based on a key...
Definition: stl_map.h:71
const_iterator begin() const noexcept
Definition: stl_multimap.h:352
auto count(const _Kt &__x) const -> decltype(_M_t._M_count_tr(__x))
Finds the number of elements with given key.
Definition: stl_multimap.h:883
auto upper_bound(const _Kt &__x) const -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:972
One of the comparison functors.
Definition: stl_function.h:340
Struct holding two objects of arbitrary type.
Definition: stl_pair.h:208
const_iterator cbegin() const noexcept
Definition: stl_multimap.h:416
std::pair< const_iterator, const_iterator > equal_range(const key_type &__x) const
Finds a subsequence matching given key.
initializer_list
size_type max_size() const noexcept
Definition: stl_multimap.h:460
multimap(const _Compare &__comp, const allocator_type &__a=allocator_type())
Creates a multimap with no elements.
Definition: stl_multimap.h:183
const_iterator find(const key_type &__x) const
Tries to locate an element in a multimap.
Definition: stl_multimap.h:859
bool operator==(const multimap< _Key, _Tp, _Compare, _Alloc > &__x, const multimap< _Key, _Tp, _Compare, _Alloc > &__y)
Multimap equality comparison.
iterator emplace(_Args &&... __args)
Build and insert a std::pair into the multimap.
Definition: stl_multimap.h:483
iterator emplace_hint(const_iterator __pos, _Args &&... __args)
Builds and inserts a std::pair into the multimap.
Definition: stl_multimap.h:510
value_compare value_comp() const
Definition: stl_multimap.h:817
multimap()=default
Default constructor creates no elements.
const_iterator upper_bound(const key_type &__x) const
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:966
bool operator>=(const multimap< _Key, _Tp, _Compare, _Alloc > &__x, const multimap< _Key, _Tp, _Compare, _Alloc > &__y)
Based on operator<.
bool empty() const noexcept
Definition: stl_multimap.h:450
void clear() noexcept
Definition: stl_multimap.h:800
ISO C++ entities toplevel namespace is std.
multimap(const multimap &__m, const allocator_type &__a)
Allocator-extended copy constructor.
Definition: stl_multimap.h:229
Uniform interface to C++98 and C++11 allocators.
size_type erase(const key_type &__x)
Erases elements according to the provided key.
Definition: stl_multimap.h:731
std::pair< iterator, iterator > equal_range(const key_type &__x)
Finds a subsequence matching given key.
Definition: stl_multimap.h:993
auto equal_range(const _Kt &__x) const -> decltype(pair< const_iterator, const_iterator >(_M_t._M_equal_range_tr(__x)))
Finds a subsequence matching given key.
auto find(const _Kt &__x) -> decltype(_M_t._M_find_tr(__x))
Tries to locate an element in a multimap.
Definition: stl_multimap.h:841
auto lower_bound(const _Kt &__x) const -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:932
multimap(_InputIterator __first, _InputIterator __last, const allocator_type &__a)
Allocator-extended range constructor.
Definition: stl_multimap.h:245
const_reverse_iterator crend() const noexcept
Definition: stl_multimap.h:443
iterator erase(const_iterator __position)
Erases an element from a multimap.
Definition: stl_multimap.h:694
reverse_iterator rbegin() noexcept
Definition: stl_multimap.h:379
void insert(_InputIterator __first, _InputIterator __last)
A template function that attempts to insert a range of elements.
Definition: stl_multimap.h:605
multimap(_InputIterator __first, _InputIterator __last)
Builds a multimap from a range.
Definition: stl_multimap.h:261
auto equal_range(const _Kt &__x) -> decltype(pair< iterator, iterator >(_M_t._M_equal_range_tr(__x)))
Finds a subsequence matching given key.
Definition: stl_multimap.h:999
allocator_type get_allocator() const noexcept
Get a copy of the memory allocation object.
Definition: stl_multimap.h:333
const_iterator end() const noexcept
Definition: stl_multimap.h:370
bool operator>(const multimap< _Key, _Tp, _Compare, _Alloc > &__x, const multimap< _Key, _Tp, _Compare, _Alloc > &__y)
Based on operator<.
const_iterator lower_bound(const key_type &__x) const
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:926
~multimap()=default
_GLIBCXX_ABI_TAG_CXX11 iterator erase(iterator __position)
Erases an element from a multimap.
Definition: stl_multimap.h:700
size_type size() const noexcept
Definition: stl_multimap.h:455
auto lower_bound(const _Kt &__x) -> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
Finds the beginning of a subsequence matching given key.
Definition: stl_multimap.h:907
multimap(multimap &&__m, const allocator_type &__a) noexcept(is_nothrow_copy_constructible< _Compare >::value &&_Alloc_traits::_S_always_equal())
Allocator-extended move constructor.
Definition: stl_multimap.h:233
multimap(const allocator_type &__a)
Allocator-extended default constructor.
Definition: stl_multimap.h:225
__enable_if_t< is_constructible< value_type, _Pair && >::value, iterator > insert(const_iterator __position, _Pair &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:586
void swap(multimap &__x) noexcept(/*conditional */)
Swaps data with another multimap.
Definition: stl_multimap.h:789
multimap(initializer_list< value_type > __l, const _Compare &__comp=_Compare(), const allocator_type &__a=allocator_type())
Builds a multimap from an initializer_list.
Definition: stl_multimap.h:217
size_type count(const key_type &__x) const
Finds the number of elements with given key.
Definition: stl_multimap.h:877
iterator upper_bound(const key_type &__x)
Finds the end of a subsequence matching given key.
Definition: stl_multimap.h:946
iterator begin() noexcept
Definition: stl_multimap.h:343
void insert(initializer_list< value_type > __l)
Attempts to insert a list of std::pairs into the multimap.
Definition: stl_multimap.h:617
iterator insert(value_type &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:538
__enable_if_t< is_constructible< value_type, _Pair >::value, iterator > insert(_Pair &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:543
const_reverse_iterator rend() const noexcept
Definition: stl_multimap.h:406
const_iterator cend() const noexcept
Definition: stl_multimap.h:425
iterator insert(const_iterator __position, value_type &&__x)
Inserts a std::pair into the multimap.
Definition: stl_multimap.h:581