2条曲线的面积
确定由以下函数 f 与 g
与
代表的曲线以及方程为 x=$val16 与 x=$val17 的直线所围成的区域的面积:
xrange $val6-1,$val8+1 yrange $val26-1,$val25+1 line $val6,$val26-1,$val6,$val25+1,blue line $val16,$val26-1,$val16,$val25+1,yellow line $val17,$val26-1,$val17,$val25+1,yellow line $val8,$val26-1,$val8,$val25+1,blue line $val6-1,0,$val8+1,0,green plot black,$val14 plot red,$val15 text blue,$val6,0,medium,x=$val6 text black,$val16,0,medium,x=$val16 text black,$val17,0,medium,x=$val17 text blue,$val8,0,medium,x=$val8 text black,$val22,$val25,medium,y=f(x) text red,$val24,$val26,medium,y=g(x)
你可以利用在另一个窗口里的计算器 : 数值计算器
面积与积分
确定函数 f
代表的曲线与横轴以及两条竖直直线 x=$val24 和 x=$val23 所围成的区域的精确面积. f 的曲线由下图给出:
xrange $val30,$val31 yrange $val54,$val55 line $val30,0,$val31,0,green line $val23,$val54,$val23,$val55,blue line $val24,$val54,$val24,$val55,blue plot black,$val25 text blue,$val23,0,medium,x=$val23 text blue,$val24,0,medium,x=$val24 text green,($val23+$val24)/2,0,medium,y=0
在输入回答时, 可利用以下的协定:
自然对数写成 log. 例如, 输入 log(2) 代表实数 ln(2). 反之, 软件用 log 代表 ln.
平方根函数写成 sqrt. 例如, 输入 sqrt(2) 代表实数
.
最后, 指数函数写成 exp. 例如, 输入 exp(2) 代表实数
. 也可以记为 e^2.
积分学 III
利用分部积分计算以下积分的精确值 :
在输入回答时, 可利用以下的协定:
自然对数写成 log. 例如, 输入 log(2) 代表实数 ln(2). 反之, 软件用 log 代表 ln.
平方根函数写成 sqrt. 例如, 输入 sqrt(2) 代表实数
.
最后, 指数函数写成 exp. 例如, 输入 exp(2) 代表实数
. 也可以记为 e^2.
积分学 I
计算以下积分的精确值 :
在输入回答时, 可利用以下的协定:
自然对数写成 log. 例如, 输入 log(2) 代表实数 ln(2). 反之, 软件用 log 代表 ln.
平方根函数写成 sqrt. 例如, 输入 sqrt(2) 代表实数
.
最后, 指数函数写成 exp. 例如, 输入 exp(2) 代表实数
. 也可以记为 e^2.
积分学 II
计算由下式定义的函数 f 在区间 [$val21;$val20] 上的平均值 :
在输入回答时, 可利用以下的协定:
自然对数写成 log. 例如, 输入 log(2) 代表实数 ln(2). 反之, 软件用 log 代表 ln.
平方根函数写成 sqrt. 例如, 输入 sqrt(2) 代表实数
.
最后, 指数函数写成 exp. 例如, 输入 exp(2) 代表实数
. 也可以记为 e^2.
函数与积分
考虑由下式定义的
上的函数 F :
在
上, 函数 F 是 :
三角函数的积分
计算以下积分的精确值 :
平方根函数记为 sqrt. 例如, sqrt(2)=
. 数
记为 pi.