programmer's documentation
 All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
Data Fields
paramx Module Reference
Collaboration diagram for paramx:
Collaboration graph

Data Fields

integer nscamx
 maximum number of scalars solutions of an advection equation, apart from the variables of the turbulence model $ (k, \varepsilon, R_{ij}, \omega, \varphi, \overline{f}, \alpha, \nu_t$) , that is to say the temperature and other scalars (passive or not, user-defined or not) More...
 
integer nvarmx
 maximal number of variables = nscamx + 12 (u,v,w,P,Rij,e,alp) More...
 
integer nprcmx
 maximal number of physical properties at cells. = nscamx (Lambda) + 7 (rho,Cp,viscl,visct,cou,fou,iprtot) + 4 (estim) More...
 
integer nprfmx
 maximal number of physical properties at internal faces. = nscamx (flumas) + 2*(flumas,alp) More...
 
integer nprbmx
 maximal number of physical properties at external faces. = nscamx (flumab) + 3*(flumab,alp, romb) More...
 
integer npromx
 maximal number of physical properties, increased by nprcmx. They will be stored in the arrays propce More...
 
integer ngrdmx
 maximal number of physical quantities = nvarmx + npromx More...
 
integer nsmamx
 maximal size of mass source terms arrays. (= nvarmx + 1 for smacel) More...
 
integer nvppmx
 number of displayed variables. = ngrdmx + 20 (20 > dt, tpucou, increased by 16 ...) More...
 
integer ntypmx
 Maximal possible boundary condition types. More...
 
integer iindef
 
integer ientre
 
integer isolib
 
integer isymet
 
integer iparoi
 
integer iparug
 
integer iesicf
 if itypfb=iesicf: imposed inlet/outlet for compressible flow (for example, supersonic inlet). More...
 
integer isspcf
 if itypfb=isspcf: supersonic outlet for compressible flow. More...
 
integer isopcf
 if itypfb=isopcf: mixed outlet for compressible flow with a given pressure. More...
 
integer iephcf
 if itypfb=isopcf: mixed inlet for compressible flow with given total pressure and total enthalpy (reservoir boundary conditions). More...
 
integer ieqhcf
 
integer icscpl
 
integer ifrent
 
integer nestmx
 maximal number of valuators for Navier-Stokes More...
 
integer iespre
 error estimator for Navier-Stokes. iest = iespre: prediction, (default name: EsPre). After the velocity prediction step (yielding $\vect{u}^*$), the estimator $\eta^{\,pred}_{\,i,k}(\vect{u}^*)$, local variable calculated at every cell $ \Omega_i $, is created from $\vect{\mathcal R}^{\,pred}(\vect{u}^*)$, which represents the residual of the equation solved during this step: $\vect{u}$ and $ P $:

\begin{eqnarray*} \vect{\mathcal R}^{\,pred}(\vect{u}^*) & = & \rho^n \dfrac{\vect{u}^*-\vect{u}^n}{\Delta t} + \rho^n \vect{u}^n \cdot \gradt (\vect{u}^*) - \divv \left((\mu+\mu_t)^n \gradt (\vect{u}^*) \right) + \grad(P^n) \\ & - & \text{rest of the right-hand member } (\vect{u}^n, P^n, \text{other variables}^n) \end{eqnarray*}

More...
 
integer iesder
 error estimator for Navier-Stokes. iest = iesder: drift (default name: EsDer). The estimator $\eta^{\,der}_{\,i,k}(\vect{u}^{\,n+1})$ is based on the following quantity (intrinsic to the code):

\begin{eqnarray*} \eta^{\,der}_{\,i,k}(\vect{u}^{\,n+1}) &=& {|\Omega_i|}^{(k-2)/2} || \divs (\text{corrected mass flow after the pressure step}) - \Gamma||_{{L}^{2}(\Omega_i)} \\ &=& {|\Omega_i|}^{(1-k)/2} | \divs (\text{corrected mass flow after the pressure step})- \Gamma| \end{eqnarray*}

More...
 
integer iescor
 error estimator for Navier-Stokes. iest = iescor: correction, (default name: EsCor). The estimator $ \eta^{\,corr}_{\,i,k}(\vect{u}^{\,n+1})$ comes directly from the mass flow calculated with the updated velocity field:

\begin{eqnarray*} \eta^{\,corr}_{\,i,k}(\vect{u}^{\,n+1})= |\Omega_i|^{\,\delta_{\,2,k}}\ |div (\rho^n \vect{u}^{n+1}) - \Gamma| \end{eqnarray*}

More...
 
integer iestot
 error estimator for Navier-Stokes. iest = iestot: total, (default name: EsTot). The estimator $ \eta^{\,tot}_{\,i,k}(\vect{u}^{\,n+1})$, local variable calculated at every cell $\Omega_i$, is based on the quantity $\vect{\mathcal R}^{\,tot}(\vect{u}^{\,n+1})$, which represents the residual of the equation using the updated values of $\vect{u}$ and $P$:

\begin{eqnarray*} \vect{\mathcal R}^{\,pred}(\vect{u}^*) & = & \rho^n \dfrac{\vect{u}^*-\vect{u}^n}{\Delta t} + \rho^n \vect{u}^n \cdot \gradt (\vect{u}^*) - \divv \left((\mu+\mu_t)^n \gradt (\vect{u}^*) \right) + \grad(P^n) \\ & - & \text{rest of the right-hand member } (\vect{u}^n, P^n, \text{other variables}^n) \end{eqnarray*}

More...
 
integer nbmomx
 maximum number of calculated time-averages (default value: 50) More...
 
integer ndgmox
 maximum degree of the time-averages (default value: 5) More...
 
integer ibfixe
 
integer igliss
 
integer ivimpo
 
integer ifresf
 
integer nstrmx
 maximum number of structures in ALE More...
 
integer nflown
 number of variable of rtp moved in field structure (C transition) More...
 

The documentation for this module was generated from the following file: