ERLANG

Erlang/OTP System Documentation

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.
Erlang/OTP System Documentation 9.2
December 17, 2017

Copyright © 1997-2017 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

December 17, 2017

1.1 Installing the Binary Release

1 Installation Guide

This section describes how to install Erlang/OTP on UNIX and Windows.

1.1 Installing the Binary Release

1.1.1 Windows
The system is delivered as a Windows I nstaller executable. Get it from http://www.erlang.org/download.html
Installing
Theinstallation procedure is automated. Double-click the . exe fileicon and follow the instructions.
Verifying
e Start Erlang/OTP by double-clicking on the Erlang shortcut icon on the desktop.

Expect a command-line window to pop up with an output looking something like this:

Erlang/0TP 17 [erts-6.0] [64-bit] [smp:2:2]

Eshell V6.0 (abort with "G)
1>

» Exit by entering the command hal t () .

2> halt().

This closes the Erlang/OTP shell.

1.2 Building and Installing Erlang/OTP

1.2.1 Introduction

This document describes how to build and install Erlang/OTP-20. Erlang/OTP should be possible to build from source
on any Unix/Linux system, including OS X. Y ou are advised to read the whole document before attempting to build
and install Erlang/OTP.

The source code can be downloaded from the official site of Erlang/OTP or GitHub.

e http://Iwww.erlang.org
« https://github.com/erlang/otp

1.2.2 Required Utilities
These are the tools you need in order to unpack and build Erlang/OTP.

Unpacking
e GNU unzip, or amodern uncompress.
* A TAR program that understands the GNU TAR format for long filenames.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 1

href
href

1.2 Building and Installing Erlang/OTP

Building

GNU nake

Compiler -- GNU C Compiler, gcc or the C compiler frontend for LLVM, cl ang.

Perl 5

GNU m4 -- If HiPE (native code) support is enabled. HiPE can be disabled using - - di sabl e- hi pe

ncur ses,terncap,orterm i b -- The development headers and libraries are needed, often known as
ncur ses-devel .Use--w t hout - t er ntap to build without any of these libraries. Note that in this case
only the old shell (without any line editing) can be used.

sed -- Stream Editor for basic text transformation.

Building in Git

GNU aut oconf of at least version 2.59. Note that aut oconf isnot needed when building an unmodified
version of the released source.

Building on OS X

Xcode -- Download and install viathe Mac App Store. Read about Building on a Mac before proceeding.

Installing

Ani nst al | program that can take multiple file names.

1.2.3 Optional Utilities

Some applications are automatically skipped if the dependencies aren't met. Hereis alist of utilities needed for those
applications. Y ou will also find the utilities needed for building the documentation.

Building

OpenSSL -- The opensource toolkit for Secure Socket Layer and Transport Layer Security. Required for building
the application cr ypt o. Further, ssl and ssh require a working crypto application and will also be skipped
if OpenSSL ismissing. The publ i c_key application is available without cr ypt o, but the functionality will
be very limited.

The development package of OpenSSL including the header files are needed as well as the binary command
program openssl . At least version 0.9.8 of OpenSSL is required. Read more and download from http://
www.openssl.org.

Oracle Java SE JDK -- The Java Development Kit (Standard Edition). Required for building the application
jinterface andpartsof i c andor ber . Atleast version 1.6.0 of the JDK is required.

Download from http://www.or acle.com/technetwor k/java/javase/downloads. We have also tested with IBM's
JDK 1.6.0.

X Windows -- Development headers and libraries are needed to build the Erlang/OTP application gs on Unix/
Linux.

f | ex -- Headers and libraries are needed to build the flex scanner for the megaco application on Unix/Linux.
wxWidgets -- Toolkit for GUI applications. Required for building the wx application. At least version 3.0 of
wxWidgetsis required.

Download from http://sour cefor ge.net/projectswxwindows/files/3.0.0/ or get it from GitHub: https://
github.com/wxWidgets'wxWidgets

Further instructions on wxWidgets, read Building with wxErlang.

Building Documentation

xsl t proc -- A command line XSLT processor.

2 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href
href
href
href
href

1.2 Building and Installing Erlang/OTP

A tool for applying XSLT stylesheets to XML documents. Download xsltproc from http://xmlsoft.org/XSL T/
xdtproc2.html.

e fop -- Apache FOP print formatter (requires Java). Can be downloaded from http://xmlgraphics.apache.or g/
fop.
1.2.4 How to Build and Install Erlang/OTP

The following instructions are for building the released source tar ball.

The variable $ERL_TOP will be mentioned a lot of times. It refers to the top directory in the source tree. More
information about $ERL_ TOP can be found in the make and $ERL_TOP section below. If you are building in git you
probably want to take alook at the Building in Git section below before proceeding.

Unpacking

Start by unpacking the Erlang/OTP distribution file with your GNU compatible TAR program.
$ tar -zxf otp src 20.2.1.tar.gz # Assuming bash/sh

Now change directory into the base directory and set the SERL_TOP variable.

$ cd otp_src_20.2.1
$ export ERL TOP="pwd" # Assuming bash/sh

Configuring
Run the following commands to configure the build:

$./configure [options]

If youarebuilding Erlang/OTPfrom git youwill needtorun. / ot p_bui | d aut oconf to generatetheconfigure
scripts.

By default, Erlang/OTP release will beinstalledin/ usr/ |1 ocal / { bi n, I i b/ er | ang} . If you for instance don't
have the permission to install in the standard location, you can install Erlang/OTP somewhere else. For example,
to install in /opt/erlang/20.2.1/{bin,lib/erlang}, use the --prefix=/opt/erlang/20.2.1
option.

On some platforms Perl may behave strangely if certain locales are set. If you get errors when building, try setting
the LANG variable:

$ export LANG=C # Assuming bash/sh
Building
Build the Erlang/OTP release.

$ make

Testing

Before installation you should test whether your build isworking properly by running our smoke test. The smoke test
isasubset of the complete Erlang/OTP test suites. First you will need to build and release the test suites.

$ make release tests

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 3

href
href
href
href
href

1.2 Building and Installing Erlang/OTP

This creates an additional folder in SERL_TOP/ r el ease caledt est s. Now, it'stime to start the smoke test.

$ cd release/tests/test server
$ $ERL TOP/bin/erl -s ts install -s ts smoke test batch -s init stop

To verify that everything is ok you should open $ERL_TOP/ r el ease/ test s/ test _server/i ndex. htm
in your web browser and make sure that there are zero failed test cases.

On buildswithout cr ypt 0, ssl and ssh thereisafailed test case for undefined functions. Verify that the failed
test case log only shows calls to skipped applications.

Installing
You are now ready to install the Erlang/OTP release! The following command will install the release on your system.

$ make install

Running

Y ou should now have aworking release of Erlang/OTP! Jump to System Principlesfor instructions on running Erlang/
OTP.

How to Build the Documentation
Make sure you're in the top directory in the source tree.
$ cd $ERL TOP

If you have just built Erlang/OTP in the current source tree, you have already ran conf i gur e and do not need to
do this again; otherwise, run conf i gur e.

$./configure [Configure Args]

When building the documentation you need afull Erlang/OTP-20.2.1 system in the $PATH.
$ export PATH=$ERL TOP/bin:$PATH # Assuming bash/sh

For the FOP print formatter, two steps must be taken:

* Adding the location of your installation of f op in $FOP_HOVE.

$ export FOP_HOME=/path/to/fop/dir # Assuming bash/sh

e Addingthef op script (in $FOP_HQVE) to your $PATH, either by adding $FOP_HOVE to $PATH, or by copying
thef op script to adirectory aready in your $PATH.

Build the documentation.

$ make docs

Build Issues

We have sometimes experienced problemswith Oracle'sj ava running out of memory when running f op. Increasing
the amount of memory available as follows has in our case solved the problem.

$ export FOP_OPTS="-Xmx<Installed amount of RAM in MB>m"

More information can be found at

4 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

* http://xmlgraphics.apache.or g/fop/0.95/r unning.html#memory.
How to Install the Documentation

The documentation can be installed either using thei nst al | - docs target, or using ther el ease_docs target.

e |If you have installed Erlang/OTP using the i nst al | target, install the documentation using the i nst al | -
docs target. Install locations determined by conf i gur e will be used. $DESTDI R can be used the same way
aswhen doing meke install.

$ make install-docs

« Ifyouhaveinstalled Erlang/OTPusingther el ease target, install the documentationusingther el ease_docs
target. You typically want to use the same RELEASE ROOT aswhen invoking meke r el ease.

$ make release docs RELEASE ROOT=<release dir>

Accessing the Documentation
After installation you can access the documentation by

* Reading man pages. Make surethat er | isreferring to the installed version. For example/ usr /| ocal / bi n/
er| . Try viewing at the man page for Mnesia

$ erl -man mnesia

* Browsing the html pages by loading thepage/ usr /1 ocal /| i b/ erl ang/ doc/ er| ang/i ndex. ht m or
<BaseDir>/1i b/ erl ang/ doc/ erl ang/ i ndex. ht m if the prefix option has been used.

How to Install the Pre-formatted Documentation
Pre-formatted html documentation and man pages can be downloaded from
e http://www.erlang.or g/download.html.

Extract the html archive in the installation directory.

$ cd <ReleaseDir>
$ tar -zxf otp html 20.2.1.tar.gz

Forerl -man <page> towork the Unix manual pages haveto be installed in the same way, i.e.

$ cd <ReleaseDir>
$ tar -zxf otp man 20.2.1.tar.gz

Where<Rel easeDir > is

e <PrefixDir>/1ib/erlangifyouhaveinstaled Erlang/OTP usingmake i nstal | .

* $DESTDI R<PrefixDir>/1ib/erl ang if you haveinstaled Erlang/OTP using make i nstal |
DESTDI R=<Tnpl nstal | Di r >.

e RELEASE ROOT if you haveinstalled using make rel ease RELEASE ROOT=<Rel easeDi r>.

1.2.5 Advanced configuration and build of Erlang/OTP

If youwant totailor your Erlang/OTP build and installation, please read on for detailed information about theindividual
steps.

make and $ERL TOP

All the makefiles in the entire directory tree use the environment variable ERL_TOP to find the absolute path of the
installation. The conf i gur e script will figure this out and set it in the top level Makefile (which, when building, it

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 5

href
href
href
href

1.2 Building and Installing Erlang/OTP

will pass on). However, when developing it is sometimes convenient to be able to run make in a subdirectory. To do
this you must set the ERL_ TOP variable before you run make.

For example, assume your GNU make program is called mak e and you want to rebuild the application STDLI B, then
you could do:

$ cd lib/stdlib; env ERL_TOP=<Dir> make
where <Di r > would be what you find ERL_ TOP is set to in the top level Makefile.

otp_build vs configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/

confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. The binary releases for
Windows that we deliver are built using ot p_bui | d.

Configuring

The configure script is created by the GNU autoconf utility, which checksfor system specific features and then creates
anumber of makefiles.

The configure script alows you to customize a number of parameters; type . / configure --help or./
configure --hel p=recursive for details. . / confi gure --hel p=recursive will give help for all
confi gur e scriptsin al applications.

One of the things you can specify iswhere Erlang/OTP should be installed. By default Erlang/OTP will beinstalled in
lusr/local/{bin,Iib/erlang}.Tokeepthesame structure but install in a different place, <Di r > say, use
the- - prefi x argument likethis: . / confi gure --prefix=<Dir>.

Some of the available conf i gur e options are:
e --prefix=PATH- Specify installation prefix.

* --enabl e-pl ai n-emul at or - Build athreaded emulator that only uses one scheduler. This emulator type
is deprecated and will be removed in afuture release.
e --disabl e-threads - Build anon-threaded emulator. This emulator type is deprecated and will be

removed in afuture release.
e --{enabl e, di sabl e}-kernel - pol | -Kernel poll support (enabled by default if possible)
« --{enabl e, di sabl e} - hi pe - HiPE support (enabled by default on supported platforms)

e --{enabl e, di sabl e}-f p- excepti ons - Floating point exceptions (an optimization for floating point
operations). The default differs depending on operating system and hardware platform. Note that by enabling
this you might get a seemingly working system that sometimes fail on floating point operations.

e --enabl e- nB4- bui | d - Build 64-bit binaries using the - n64 flagto (g) cc

e --enabl e-nB2- bui | d - Build 32-bit binariesusing the - n82 flagto (g) cc

e --wth-assuned-cache-1ine-size=S| ZE - Set assumed cache-line size in bytes. Default is 64. Valid
values are powers of two between and including 16 and 8192. The runtime system use this value in order to

try to avoid false sharing. A too large value wastes memory. A to small value will increase the amount of false
sharing.

e --{with,wi thout}-terntap -termcap (without impliesthat only the old Erlang shell can be used)

e --wth-javac=JAVAC- Specify Java compiler to use

e --{with,w thout}-javac - Javacompiler (without impliesthat thej i nt er f ace application won't be
built)

e --{enabl e, di sabl e}-dynami c-ssl -1i b - Dynamic OpenSSL libraries

e --{enabl e, disabl e}-builtin-zlib -Usethebuilt-in source for zlib.

6 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.2 Building and Installing Erlang/OTP

--{with,w thout}-ssl -OpenSSL (without impliesthat thecr ypt o, ssh, andss| won't be built)
--W t h- ssl =PATH - Specify location of OpenSSL include and lib

--w t h-ssl -i ncl =PATH - Location of OpenSSL i ncl ude directory, if different than specified by - -

Wi t h- ssl =PATH

--w t h-ssl - r pat h=yes| no| PATHS - Runtime library path for OpenSSL. Default isyes, which equates
to a number of standard locations. If no, then no runtime library paths will be used. Anything else should be a
comma separated list of paths.

--with-1ibatom c_ops=PATH- Usethel i bat oni c_ops library for atomic memory accesses. If
conf i gur e should inform you about no native atomic implementation available, you typically want to try
usingthel i bat om c_ops library. It can be downloaded from https://github.com/ivmai/libatomic_ops/.

- -di sabl e-snp-require-native-atomn cs - By default conf i gur e will fail if an SMP runtime
system is about to be built, and no implementation for native atomic memory accesses can be found. If

this happens, you are encouraged to find a native atomic implementation that can be used, e.g., using

I i bat omi c_ops, but by passing - - di sabl e-snp-require-native-atom cs you can build using a
fallback implementation based on mutexes or spinlocks. Performance of the SMP runtime system will however
suffer immensely without an implementation for native atomic memory accesses.

--enabl e-static-{nifs,drivers} - Toallow usage of nifsand drivers on OSs that do not

support dynamic linking of librariesit is possible to statically link nifs and drivers with the main Erlang

VM binary. Thisis done by passing a comma separated list to the archives that you want to statically link.
eg.--enabl e-stati c-ni fs=/ hone/ $USER/ my_ni f . a. The path has to be absolute and the

name of the archive has to be the same asthe module, i.e. ny_ni f inthe example above. Thisisalso true

for drivers, but then it is the driver name that has to be the same as the filename. Y ou a so have to define
STATI C_ERLANG { NI F, DRI VER} when compiling the .o files for the nif/driver. If your nif/driver depends
on some other dynamic library, you now have to link that to the Erlang VM binary. Thisis easily achieved by
passing LI BS=- 1 | i bnane to configure.

--wi t hout - $app - By default all applicationsin Erlang/OTP will be included in arelease. If thisis not
wanted it is possible to specify that Erlang/OTP should be compiled without one or more applications, i.e. - -
wi t hout - wx. There is no automatic dependency handling between applications. If you disable an application
that another application depends on, you aso have to disable the dependant application.

--enabl e-getti neof day- as- os- systentti ne - Forceusage of get t i meof day() for OS system
time.

- -enabl e- pr ef er - el apsed- nonot oni c-ti me-duri ng- suspend - Prefer an OS monotonic time
source with elapsed time during suspend.

--di sabl e- prefer-el apsed- nonot oni c-ti me-duri ng-suspend - Do not prefer an OS
monatonic time source with elapsed time during suspend.

--wi th-cl ock-resol uti on=hi gh| | ow- Try tofind clock sources for OS system time, and OS
monatonic time with higher or lower resolution than chosen by default. Note that both alternatives may have a
negative impact on the performance and scalability compared to the default clock sources chosen.

- - di sabl e- saved- conpi | e-ti ne - Disable saving of compile date and time in the emulator binary.
--enabl e-di rty- schedul er s - Enable the experimental dirty schedulers functionality. Note that

the dirty schedulers functionality is experimental, and not supported. This functionality will be subject

to backward incompatible changes. Note that you should not enable the dirty scheduler functionality on
production systems. It is only provided for testing.

If you or your system has special requirements please read the Makef i | e for additional configuration information.

Atomic Memory Operations and the VM

The VM with SMP support makes quite a heavy use of atomic memory operations. An implementation providing
native atomic memory operations is therefore very important when building Erlang/OTP. By default the VM will
refuse to build if native atomic memory operations are not available.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 7

href

1.2 Building and Installing Erlang/OTP

Erlang/OTP itself provides implementations of native atomic memory operations that can be used when compiling
with a gcc compatible compiler for 32/64-bit x86, 32/64-bit SPARC V9, 32-bit PowerPC, or 32-bit Tile. When
compiling with agcc compatible compiler for other architectures, the VM may be able to make use of native atomic
operationsusingthe __at oni ¢_* builtins (may be available when using agcc of at least version 4.7) and/or using
the __sync_* builtins (may be available when using agcc of at least version 4.1). If only thegcc's__sync_*
builtins are available, the performance will suffer. Such a configuration should only be used as a last resort. When
compiling on Windows using a MicroSoft Visual C++ compiler native atomic memory operations are provided by
Windows APIs.

Native atomic implementation in the order preferred:

e Theimplementation provided by Erlang/OTP.

* TheAPI provided by Windows.

e Theimplementation based onthegcc __at omi ¢_* builtins.

« If none of the above are available for your architecture/compiler, you are recommended to build and install
libatomic_ops before building Erlang/OTP. Thel i bat oni ¢_ops library provides native atomic memory
operations for avariety of architectures and compilers. When building Erlang/OTP you need to inform the build
system of wherethel i bat oni c¢_ops library isinstalled usingthe- - wi t h- | i bat om ¢_ops=PATH
confi gur e switch.

» Asalast resort, the implementation solely based onthegcc __sync_* builtins. Thiswill however cause lots
of expensive and unnecessary memory barrier instructions to beissued. That is, performance will suffer. The
conf i gur e script will warn at the end of its execution if it cannot find any other alternative than this.

Building
Building Erlang/OTP on arelatively fast computer takes approximately 5 minutes. To speed it up, you can utilize
parallel make with the - j <num j obs> option.

$ export MAKEFLAGS=-j8 # Assuming bash/sh
$ make

If you've upgraded the source with a patch you may need to clean up from previous builds before the new build. Make
sure to read the Pre-built Source Release section below before doing anake cl ean.

Within Git

When building in a Git working directory you also have to have a GNU aut oconf of at least version 2.59 on your
system, because you need to generate the conf i gur e scripts before you can start building.

The conf i gur e scripts are generated by invoking . / ot p_bui | d aut oconf inthe $ERL_TOR directory. The
conf i gur e scripts aso have to be regenerated whenaconf i gure. i n or acl ocal . n4 file has been modified.
Note that when checking out abranch aconfi gure. i n or acl ocal . n4 file may change content, and you may
therefore have to regenerate the conf i gur e scripts when checking out a branch. Regenerated conf i gur e scripts
imply that you have to run conf i gur e and build again.

Running. / ot p_bui | d aut oconf isnot needed when building an unmodified version of the released source. ‘

Other useful information can be found at our GitHub wiki:
* http://wiki.github.com/erlang/otp
OS X (Darwin)

Make sure that the command host nane returns a valid fully qualified host name (this is configured in / et ¢/
host conf i g). Otherwise you might experience problems when running distributed systems.

8 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.2 Building and Installing Erlang/OTP

If you develop linked-in drivers (shared library) you need to link using gcc and the flags - bundl e -
fl at _namespace -undefined suppress. Youalsoinclude- f no- common in CFLAGS when compiling.
Use. so asthelibrary suffix.

If you have Xcode 4.3, or later, you will also need to download "Command Line Tools" viathe Downloads preference
panein Xcode.

Building with wxErlang

If you want to build the wx application, you will need to get wxWidgets-3.0 (WwxW dget s-3. 0. 3. tar. bz2 from
https://github.com/wxWidgetswxWidgets'r eleases/download/v3.0.3/wxWidgets-3.0.3.tar .bz2) or get it from
github with bug fixes:

$ git clone --branch WX 3 0 BRANCH git@github.com:wxWidgets/wxWidgets.git

The wxWidgets-3.1 version should also work if 2.8 compatibility is enabled, add - - enabl e- conpat 28 to
configure commands below.

Configure and build wxWidgets (shared library on linux):

$./configure --prefix=/usr/local
$ make && sudo make install
$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (static library on linux):

$ export CFLAGS=-fPIC

$ export CXXFLAGS=-fPIC

$./configure --prefix=/usr/local --disable-shared
$ make & sudo make install

$ export PATH=/usr/local/bin:$PATH

Configure and build wxWidgets (on Mavericks - 10.9):

$./configure --with-cocoa --prefix=/usr/local

or without support for old versions and with static libs

$./configure --with-cocoa --prefix=/usr/local --with-macosx-version-min=10.9 --disable-shared
$ make

$ sudo make install

$ export PATH=/usr/local/bin:$PATH

Check that you got the correct wx-config

$ which wx-config && wx-config --version-full
Build Erlang/OTP

$ export PATH=/usr/local/bin:$PATH
$ cd $ERL_TOP

$./configure

$ make

$ sudo make install

Pre-built Source Release

The sourcereleaseisdelivered with alot of platform independent build results already pre-built. If you want to remove
these pre-built files, invoke . / ot p_bui l d renove_prebuilt fil es fromthe $ERL_TOP directory. After
you have done this, you can build exactly the same way as before, but the build process will take a much longer time.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 9

href

1.2 Building and Installing Erlang/OTP

Doing make cl ean in an arbitrary directory of the source tree, may remove files needed for bootstrapping the
build.

Doing . / ot p_bui | d save_boot st rap from the $ERL_TOP directory before doing make cl ean will
ensure that it will be possible to build after doing make cl ean../otp_buil d save_boot strap will be
invoked automatically when make isinvoked from $ERL_ TOP with either thecl ean target, or the default target.
Itisalso automatically invokedif . / ot p_bui | d renmove_prebuilt _fil es isinvoked.

If you need to verify the bootstrap beam files match the provided source files, use ./ ot p_build
updat e_pri mary to create anew commit that contains differences, if any exist.

How to Build a Debug Enabled Erlang RunTime System

After completing all the normal building steps described above a debug enabled runtime system can be built. To do
this you have to change directory to SERL_TOP/ ert s/ emul at or .

In this directory execute:
$ make debug FLAVOR=$FLAVOR

where $FLAVCR is either pl ai n or snp. The flavor options will produce a beam.debug and beam.smp.debug
executable respectively. Thefiles are installed along side with the normal (opt) versionsbeam snp and beam

To start the debug enabled runtime system execute:
$ $ERL TOP/bin/cerl -debug

The debug enabled runtime system features lock violation checking, assert checking and various sanity checksto help
adeveloper ensure correctness. Some of these features can be enabled on a normal beam using appropriate configure
options.

There are other types of runtime systems that can be built as well using the similar steps just described.
$ make $TYPE FLAVOR=$FLAVOR

where $TYPE is opt , gcov, gpr of , debug, val gri nd, or | cnt . These different beam types are useful for
debugging and profiling purposes.

Installing

» Staged install using DESTDIR. You can perform the install phase in a temporary directory and later move the
installation into its correct location by use of the DESTDI R variable:

$ make DESTDIR=<tmp install dir> install

The installation will be created in a location prefixed by $DESTDI R. It can, however, not be run from there.
It needs to be moved into the correct location before it can be run. If DESTDI R have not been set but
| NSTALL PREFI X has been set, DESTDI Rwill besetto| NSTALL _PREFI X. Notethat | NSTALL_PREFI X
in pre R13B04 was buggy and behaved as EXTRA_PREFI X (see below). There are lots of areas of use for an
installation procedure using DESTDI R, e.g. when creating a package, cross compiling, etc. Here is an example
where the installation should be located under / opt / | ocal :

10 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.2 Building and Installing Erlang/OTP

$./configure --prefix=/opt/local
make
make DESTDIR=/tmp/erlang-build install
cd /tmp/erlang-build/opt/local

gnu-tar is used in this example
tar -zcf /home/me/my-erlang-build.tgz *
su -
Password: *x***
$ cd /opt/local
$ tar -zxf /home/me/my-erlang-build.tgz

#H A A A A A

Install using ther el ease target. Instead of doing make i nstal | you can create the installation in whatever
directory you like using the r el ease target and run the | nst al | script yourself. RELEASE ROOT is used
for specifying the directory where the installation should be created. This is what by default ends up under /
usr/local /lib/erlangifyoudotheinstall using make i nstal | .All instalation paths provided in the
confi gur e phaseareignored, aswell asDESTDI R, and | NSTALL_PREFI X. If you want linksfrom a specific
bi n directory to the installation you have to set those up yourself. An example where Erlang/OTP should be
located at / horre/ me/ OTP:

$./configure

$ make

$ make RELEASE_ROOT=/home/me/OTP release
$ cd /home/me/0TP

$./Install -minimal /home/me/OTP
$ mkdir -p /home/me/bin
$ cd /home/me/bin

$ In -s /home/me/0TP/bin/erl erl

$ In -s /home/me/0TP/bin/erlc erlc

$ In -s /home/me/0TP/bin/escript escript

Thel nst al | script should currently be invoked as followsin the directory where it resides (the top directory):
$./Install [-cross] [-minimal|-sasl] <ERL _ROOT>

where:

e« -mni nal Createsan installation that starts up a minimal amount of applications, i.e., only ker nel and
stdl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.
e -cross For cross compilation. Informsthe install script that it is run on the build machine.
e <ERL_RQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same asthe

current working directory, but does not have to be. It can follow any other path through the file system to
the same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Testinstall using EXTRA_PREFI X. The content of the EXTRA _PREFI X variablewill prefix al installation paths
when doing nake i nst al | . Notethat EXTRA PREFI Xissimilar to DESTDI R, but it does not have the same
effect as DESTDI R. The installation can and have to be run from the location specified by EXTRA PREFI X.
That is, it can be useful if you want to try the system out, running test suites, etc, before doing the real install
without EXTRA PREFI X.

Symbolic Links in --bindir

When doing make i nst al | and the default installation prefix is used, relative symbolic links will be created from
/usr/ | ocal / bi ntoal public Erlang/OTP executablesin/ usr /1 ocal /1i b/ er| ang/ bi n. Theinstalation
phase will try to create relative symbolic links aslong as - - bi ndi r and the Erlang bin directory, located under - -
I i bdi r, both have - - exec- pr ef i x as prefix. Where - - exec- prefi x defaultsto - - prefi x. --prefix,

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 11

1.2 Building and Installing Erlang/OTP

--exec-prefix,--bindir,and--1i bdir areal argumentsthat can bepassedtoconfi gur e. Onecanforce
relative, or absolute links by passing Bl NDI R_SYML_I NKS=r el at i ve| absol ut e asargumentsto make during
theinstall phase. Note that such arequest might cause afailure if the request cannot be satisfied.
Running
Using HiPE
HiPE supports the following system configurations:
* x86: All 32-bit and 64-bit mode processors should work.
* Linux: Fedora Coreis supported. Both 32-bit and 64-bit modes are supported.

NPTL glibcis strongly preferred, or a LinuxThreads glibc configured for "floating stacks'. Old non-floating
stacks glibcs have a fundamental problem that makes HiPE support and threads support mutually exclusive.

» Solaris. Solaris 10 (32-bit and 64-hit) and 9 (32-bit) are supported. The build requiresaversion of the GNU C
compiler (gec) that has been configured to use the GNU assembler (gas). Sun's x86 assembler isemphatically
not supported.

* FreeBSD: FreeBSD 6.1 and 6.2 in 32-hit and 64-bit modes should work.
e OS X/Darwin: Darwin 9.8.0 in 32-bit mode should work.

e PowerPC: All 32-hit 6xx/7xx(G3)/74xx(G4) processors should work. 32-bit mode on 970 (G5) and POWERS
processors should work.

e Linux (Yellow Dog) and OS X 10.4 are supported.
* SPARC: All UltraSPARC processors running 32-bit user code should work.

e Solaris9issupported. The build requiresagcc that has been configured to use Sun's assembler and linker.
Using the GNU assembler but Sun's linker has been known to cause problems.

e Linux (Aurora) is supported.
« ARM: ARMV5TE (i.e. XScale) processors should work. Both big-endian and little-endian modes are supported.

e Linuxissupported.
HiPE is automatically enabled on the following systems:

e X86 in 32-bit mode: Linux, Solaris, FreeBSD
* X86 in 64-bit mode: Linux, Solaris, FreeBSD
e PowerPC: Linux, Mac OSX

e SPARC: Linux

e ARM: Linux

On other supported systems, see Advanced Configure on how to enable HiPE.

If you are running on a platform supporting HiPE and if you have not disabled HiPE, you can compile a module into
native code like this from the Erlang shell:

1> c(Module, native).
or

1> c(Module, [native|OtherOptions]).
Using the erlc program, write like this

$ erlc +native Module.erl

The native code will be placed into the beam file and automatically loaded when the beam file is |oaded.

12 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

To add hipe options, write like this from the Erlang shell:
1> c(Module, [native,{hipe,HipeOptions}|MoreOptions]).
Use hi pe: hel p_opti ons/ 0 to print out the available options.

1> hipe:help options().

1.3 Cross Compiling Erlang/OTP

Table of Contents

e Introduction
e otp_build Versus configure/make
* Cross Configuration
* What can be Cross Compiled?
e Compatibility
e Patches
» Build and Install Procedure
* Building With configure/make Directly
e Building a Bootstrap System
e CrossBuilding the System
* Installing
e Installing Using Paths Determined by configure
e Installing Manually
e Building With the otp_build Script
e Building and Installing the Documentation
e Testing the cross compiled system
e Currently Used Configuration Variables
* Variablesfor otp_build Only
e Cross Compiler and Other Tools
e Dynamic Erlang Driver Linking
e LargeFile Support
e Other Tools
» Cross System Root Locations
e Optional Feature, and Bug Tests

1.3.1 Introduction

This document describes how to cross compile Erlang/OTP-20. Y ou are advised to read the whole document before
attempting to cross compile Erlang/OTP. However, before reading this document, you should read the $ERL_TOP/
HOWTO/INSTALL.md document which describes building and installing Erlang/OTP in general. $ERL_TCOP is the
top directory in the source tree.

otp_build Versus configure/make

Building Erlang/OTP can be done either by using the $ERL_TOP/ ot p_bui | d script, or by invoking $ERL_TOP/
confi gure and make directly. Building using ot p_bui | d is easier since it involves fewer steps, but the
ot p_bui I d build procedure is not as flexible as the conf i gur e/make build procedure. Note that ot p_bui | d

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 13

1.3 Cross Compiling Erlang/OTP

conf i gur e will produce a default configuration that differs from what conf i gur e will produce by default. For
example, currently - - di sabl e- dynami c- ssl -1 i bisaddedtotheconf i gur e command lineargumentsunless
- -enabl e- dynani c- ssl - 1i b has been explicitly passed. The binary releases that we deliver are built using
ot p_bui I d. Thedefaultsused by ot p_bui | d confi gur e may change a any time without prior notice.

Cross Configuration

The $SERL_TOP/ xconp/ er | - xconp. conf . t enpl at e file contains all available cross configuration variables
and can be used as a template when creating a cross compilation configuration. All cross configuration
variables are aso listed at the end of this document. For examples of working cross configurations see the
$ERL_TOP/ xconp/ erl - xconp-Ti | eraMDE2. O-ti | epro. conf file and the $ERL_TOP/ xconp/ er| -
xconp- x86_64-saf -1 i nux- gnu. conf file. If the default behavior of a variable is satisfactory, the variable
does not need to be set. However, the conf i gur e script will issue a warning when a default value is used. When
avariable has been set, no warning will be issued.

A cross configuration file can be passed to ot p_bui | d confi gur e using the - - xconp- conf command line
argument. Note that conf i gur e does not accept this command line argument. When using the conf i gur e script
directly, pass the configuration variables as arguments to conf i gur e using a <VARI ABLE>=<VALUE> syntax.
Variables can also be passed as environment variablesto conf i gur e. However, if you pass the configuration in the
environment, make sureto unset all of these environment variables beforeinvoking mak e; otherwise, the environment
variables might set make variables in some applications, or parts of some applications, and you may end up with an
erroneously configured build.

What can be Cross Compiled?

All Erlang/OTP applications except the wx application can be cross compiled. The build of thewx driver will currently
be automatically disabled when cross compiling.

Compatibility

The build system, including cross compilation configuration variables used, may be subject to non backward
compatible changes without prior notice. Current cross build system has been tested when cross compiling some
Linux/GNU systems, but has only been partly tested for more esoteric platforms. The VxWorks examplefileishighly
dependent on our environment and is here more or less only for internal use.

Patches

Please submit any patches for cross compiling in away consistent with this system. All input is welcome as we have
avery limited set of cross compiling environments to test with. If a new configuration variable is needed, add it to
$ERL_TOP/ xconp/ er | - xconp. conf . tenpl at e, and useitinconfi gur e. i n. Other files that might need
to be updated are:

e $ERL_TOP/ xconp/ erl -xconp-vars. sh

e S$ERL_TOP/erl-build-tool -vars. sh

« $ERL TOP/erts/aclocal .

e $ERL_TOP/ xconp/ README. nd

e $ERL_TOP/ xconp/ erl - xconp-*. conf

Note that this might be an incomplete list of files that need to be updated.

General information on how to submit patches can be found at: http://wiki.github.com/erlang/otp/submitting-
patches

1.3.2 Build and Install Procedure

If you are building in Git, you want to read the Building in Git section of $ERL_TOP/HOWTO/INSTALL.md before
proceeding.

14 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href
href

1.3 Cross Compiling Erlang/OTP

We will first go through the conf i gur e/make build procedure which people probably are most familiar with.

Building With configure/make Directly

1
Change directory into the top directory of the Erlang/OTP source tree.

$ cd $ERL TOP

In order to compile Erlang code, asmall Erlang bootstrap system has to be built, or an Erlang/OTP system of the same
release as the one being built has to be provided in the $PATH. The Erlang/OTP for the target system will be built
using this Erlang system, together with the cross compilation tools provided.

If you want to build using a compatible Erlang/OTP system in the $PATH, jump to (3).
Building a Bootstrap System
@

$./configure --enable-bootstrap-only
$ make

The- - enabl e- boot st rap- onl y argument to conf i gur e isn't strictly necessary, but will speed things up. It
will only run conf i gur e in applications necessary for the bootstrap, and will disable alot of things not needed by
the bootstrap system. If you run conf i gur e without - - enabl e- boost r ap- onl y you also have to run make as
make boot st r ap; otherwise, the whole system will be built.

Cross Building the System
(©)

$./configure --host=<HOST> --build=<BUILD> [Other Config Args]
$ make

<HOST> is the host/target system that you build for. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by executing $ERL_TOP/ ert s/ aut oconf/ confi g. sub
<HOST>. If conf i g. sub fails, you need to be more specific.

<BUI LD> should equal the CPU- VENDOR- CS triplet of the system that you build on. If you execute SERL_TOP/
erts/aut oconf/config. guess, it will in most cases print the triplet you want to use for this.

Pass the cross compilation variables as command line argumentsto conf i gur e using a<VARI ABLE>=<VALUE>
syntax.

Y ou can not passaconfigurationfileusingthe- - xconp- conf argumentwhenyouinvokeconf i gur e directly.
The - - xconp- conf argument can only be passedto ot p_bui | d confi gure.

make will verify that the Erlang/OTP system used when building is of the same release as the system being
built, and will fail if this is not the case. It is possible, however not recommended, to force the cross
compilation even though the wrong Erlang/OTP system is used. This by invoking make like this. nmake
ERL_XCOWP_FORCE_DI FFERENT_OTP=yes.

Invoking make ERL_XCOWP_FORCE DI FFERENT OTP=yes might fail, silently produce suboptimal code,
or silently produce erroneous code.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 15

1.3 Cross Compiling Erlang/OTP

Installing
You can either install using the installation paths determined by conf i gur e (4), or install manually using (5).
Installing Using Paths Determined by configure
(4)
$ make install DESTDIR=<TEMPORARY PREFIX>

make install will install at alocation specified when doing conf i gur e. conf i gur e arguments specifying
where the installation should reside are for example: - - prefi x, - - exec-prefi x,--1ibdir,--bindir,etc.
By default it will install under / usr /1 ocal . You typically do not want to install your cross build under / usr/

| ocal onyour build machine. Using DESTDIR will cause the installation paths to be prefixed by $DESTDI R. This
makes it possible to install and package the installation on the build machine without having to place the installation
in the same directory on the build machine as it should be executed from on the target machine.

When make i nstall hasfinished, change directory into $DESTDI R, package the system, move it to the target
machine, and unpack it. Note that theinstallation will only be working on the target machine at the location determined
by confi gure.

Installing Manually
©)
$ make release RELEASE ROOT=<RELEASE DIR>
make rel ease will copy what you have built for the target machine to <RELEASE DI R>. Thel nst al | script
will not be run. The content of <RELEASE DI R> iswhat by default endsupin/ usr/ | ocal /i b/ erl ang.

Thel nst al | script used when installing Erlang/OTP requires common Unix tools such assed to be present in your
$PATH. If your target system does not have such tools, you need to run the | nst al | script on your build machine
before packaging Erlang/OTP. The | nst al | script should currently be invoked as follows in the directory where
it resides (the top directory):

$./Install [-cross] [-minimal|-sasl] <ERL ROOT>

where:

e« -mni mal Createsan installation that starts up aminimal amount of applications, i.e., only ker nel and
st dl i b are started. The minimal system is normally enough, and iswhat make i nstal | uses.

e -sasl Createsaninstalation that also starts up the sas| application.

e -cross For cross compilation. Informs the install script that it is run on the build machine.

e <ERL_ROQOOT> - The absolute path to the Erlang installation to use at run time. Thisis often the same as the
current working directory, but does not have to be. It can follow any other path through the file system to the
same directory.

If neither - m ni mal , nor - sasl is passed as argument you will be prompted.

Y ou can now either do:

(6)

» Decide where the installation should be located on the target machine, run the | nst al | script on the build

machine, and package the installed installation. The installation just need to be unpacked at the right location on
the target machine:

$ cd <RELEASE DIR>
$./Install -cross [-minimal|-sasl] <ABSOLUTE_ INSTALL DIR ON TARGET>

or:

16 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

href

1.3 Cross Compiling Erlang/OTP

()
« Packagetheinstallation in <RELEASE_DI R>, place it wherever you want on your target machine, and run the
I nst al | script on your target machine:

$ cd <ABSOLUTE INSTALL DIR ON TARGET>
$./Install [-minimal|-sasl] <ABSOLUTE_INSTALL DIR ON_TARGET>

Building With the otp_build Script
)
$ cd $ERL TOP
9)
$./otp build configure --xcomp-conf=<FILE> [Other Config Args]
aternatively:
$./otp build configure --host=<HOST> --build=<BUILD> [Other Config Args]

If you have your cross compilation configuration in afile, pass it using the - - xconp- conf =<FI LE> command
line argument. If not, pass - - host =<HOST>, - - bui | d=<BUI LD>, and the configuration variables using a
<VARI ABLE>=<VALUE> syntax on the command line (same asin (3)). Note that <HOST> and <BUI LD> haveto be
passed one way or the other; either by using er | _xconp_host =<HOST> and er | _xconp_bui | d=<BUI LD>
in the configuration file, or by using the - - host =<HOST>, and - - bui | d=<BUI LD> command line arguments.

ot p_bui I d confi gur e will configure both for the boostrap system on the build machine and the crosshost system.
(10)
$./otp build boot -a

otp_build boot -a will first build a bootstrap system for the build machine and then do the cross build of the
system.

(11)

$./otp build release -a <RELEASE DIR>
otp_build rel ease -a will dothe same as (5), and you will after this have to do a manual install either by
doing (6), or (7).

1.3.3 Building and Installing the Documentation

After the system has been cross built you can build and install the documentation the same way as after a native build
of the system. See the How to Build the Documentation section in the $ERL_TOP/HOWTO/INSTALL.md document
for information on how to build the documentation.

1.3.4 Testing the cross compiled system

Some of the tests that come with erlang use native code to test. This means that when cross compiling erlang you
also have to cross compile test suites in order to run tests on the target host. To do this you first have to release the
tests as usual.

$ make release tests

or

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 17

1.3 Cross Compiling Erlang/OTP

$./otp build tests

The tests will be released into $ERL_TOP/ r el ease/ t est s. After releasing the tests you have to install the tests
on the build machine. Y ou supply the same xcomp fileasto. / ot p_bui | d in (9).

$ cd $ERL TOP/release/tests/test server/
$ $ERL_TOP/bootstrap/bin/erl -eval 'ts:install([{xcomp,"<FILE>"}])' -s ts compile testcases -s init stop

You should get alot of printouts as the testcases are compiled. Once done you should copy the entire SERL_TOP/
rel ease/ t est s folder to the cross host system.

Then go to the cross host system and setup the erlang installed in (4) or (5) to be in your $PATH. Then go to what
previously was SERL_TOP/ r el ease/ t est s/t est _ser ver and issue the following command.

$ erl -s ts install -s ts run all tests -s init stop
The configure should be skipped and all tests should hopefully pass. For more details about how to use ts run er |
-s ts help -s init stop
1.3.5 Currently Used Configuration Variables

Note that you cannot define arbitrary variables in a cross compilation configuration file. Only the ones listed below
will be guaranteed to be visible throughout the whole execution of al conf i gur e scripts. Other variables needs to
be defined as argumentsto conf i gur e or exported in the environment.

Variables for otp_build Only

Variables in this section are only used, when configuring Erlang/OTP for cross compilation using $ERL_TOP/
otp_build configure.

These variables currently have no effect if you configure using the conf i gur e script directly. ‘

e erl_xconp_buil d-Thebuild system used. Thisvalue will be passed as- - bui | d=$er| _xconp_bui Il d
argument to the confi gure script. It does not have to be a full CPU- VENDOR- OS triplet, but can
be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/ confi g. sub
$erl _xconp_build. If set to guess, the build system will be guessed using $ERL_TOP/ ert s/
aut oconf/confi g. guess.

« erl_xconp_host - Cross host/target system to build for. This value will be passed as - - host =
$er| _xconp_host argument to the confi gur e script. It does not have to be a full CPU- VENDOR- OS
triplet, but can be. The full CPU- VENDOR- CS triplet will be created by $ERL_TOP/ ert s/ aut oconf/
config.sub $erl _xconp_host.

« erl_xconp_configure_fl ags - Extraconfigure flagsto passto theconf i gur e script.
Cross Compiler and Other Tools

If the crosscompilation toolsareprefixed by <HOST>- you probably do not need to set these variables (where<HOST>
iswhat has been passed as - - host =<HOST> argument to conf i gur e).

All variables in this section can also be used when native compiling.
e CC-Ccompiler.

* CFLAGS - C compiler flags.

e STATI C_CFLAGS - Static C compiler flags.

18 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.3 Cross Compiling Erlang/OTP

e« CFLAG _RUNTI ME_LI BRARY_PATH - Thisflag should set runtime library search path for the shared libraries.
Note that this actually isalinker flag, but it needs to be passed via the compiler.

e CPP- C pre-processor.

e CPPFLAGS - C pre-processor flags.
e CXX- C++ compiler.

e CXXFLAGS - C++ compiler flags.

e LD-Linker.

e LDFLAGS - Linker flags.

e LIBS-Libraries.

Dynamic Erlang Driver Linking

Either set all or none of the DED_LD* variables. |

 DED_LD- Linker for Dynamically loaded Erlang Drivers.
e« DED _LDFLAGS - Linker flagsto usewith DED LD.

e DED LD FLAG RUNTI ME_LI BRARY_PATH - This flag should set runtime library search path for shared
libraries when linking with DED_LD.

Large File Support

Either set all or none of the LFS_* variables.

* LFS_CFLAGS - Large file support C compiler flags.
e LFS LDFLAGS - Largefile support linker flags.

e LFS LI BS- Largefilesupport libraries.

Other Tools

* RANLIB-ranli b archiveindex tool.

e« AR-ar archiving tool.

e CETCONF - get conf system configuration inspectiontool. get conf iscurrently used for finding out largefile
support flags to use, and on Linux systems for finding out if we have an NPTL thread library or not.

Cross System Root Locations

e« erl_xconp_sysroot - Theabsolute path to the system root of the cross compilation environment. Currently,
the cr ypt o, odbc, ssh and ssl applications need the system root. These applications will be skipped if the
system root has not been set. The system root might be needed for other things too. If this is the case and the
system root has not been set, conf i gur e will fail and request you to set it.

e erl_xconp_isysroot - The absolute path to the system root for includes of the cross compilation
environment. If not set, this value defaults to $er | _xconp_sysr oot , i.e, only set this value if the include
system root path is not the same as the system root path.

Optional Feature, and Bug Tests

Thesetests cannot (always) be done automatically when cross compiling. Y ou usually do not need to set thesevariabl es.

Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation | 19

1.3 Cross Compiling Erlang/OTP

Warning:

Setting these variables wrong may cause hard to detect runtime errors. If you need to change these values, really
make sure that the values are correct.

Note:

Some of these values will override results of tests performed by conf i gur e, and some will not be used until
confi gur e issurethat it cannot figure the result out.

Theconf i gur e script will issue awarning when a default value is used. When a variable has been set, no warning
will be issued.

erl _xconp_after_norecore_hook - yes| no. Defaults to no. If yes, the target system must have a
working __after_norecore_hook that can be used for tracking used mal | oc() implementations core
memory usage. Thisis currently only used by unsupported features.

erl _xconp_bi gendi an - yes| no. No default. If yes, the target system must be big endian. If no, little
endian. This can often be automatically detected, but not always. If not automatically detected, conf i gur e will
fail unlessthisvariableisset. Since no default valueisused, conf i gur e will try to figurethis out automatically.

erl _xconp_doubl e_mi ddl e - yes| no. Defaults to no. If yes, the target system must have doubles in
"middle-endian" format. If no, it has "regular" endianness.

erl _xconp_cl ock_gettime_cpu_tine-yes| no. Defaultsto no. If yes, the target system must have
aworkingcl ock_getti me() implementation that can be used for retrieving process CPU time.

er| _xconp_get addri nfo - yes| no. Defaults to no. If yes, the target system must have a working
get addri nf o() implementation that can handle both 1Pv4 and 1Pv6.

erl _xconp_get hrvtime_procfs_ioctl -yes| no.Defaultstono. If yes, thetarget system must have
aworking get hr vt i ne() implementation and is used with procfsi oct | ().

erl _xconp_dl sym brk_wrappers - yes| no. Defaults to no. If yes, the target system must have a
workingdl sym(RTLD_NEXT, <S>) implementation that can be used on br k and sbr k symbols used by the
mal | oc() implementation in use, and by thistrack thermal | oc() implementations core memory usage. This
iscurrently only used by unsupported features.

erl _xconp_kqueue - yes| no. Defaultsto no. If yes, the target system must have a working kqueue()
implementation that returns a file descriptor which can be used by pol | () and/or sel ect () . If no and the
target system has not got epol | () or/ dev/ pol I , the kernel-poll feature will be disabled.

erl _xconp_linux_clock_gettime_correction - yes| no. Defaults to yes on Linux; otherwise,
no. If yes, cl ock_getti me(CLOCK_MONOTONI C,) on the target system must work. This variable is
recommended to be set to no on Linux systems with kernel versions less than 2.6.

erl _xconp_Ilinux_nptl -yes| no. Defaultsto yes on Linux; otherwise, no. If yes, the target system
must have NPTL (Native POSIX Thread Library). Older Linux systems have LinuxThreads instead of NPTL
(Linux kernel versionstypically lessthan 2.6).

erl _xconp_Ilinux_usabl e_sigal tstack -yes| no. Defaultstoyes on Linux; otherwise, no. If yes,
si gal t st ack() must be usable on the target system. si gal t st ack() on Linux kernel versions less than
2.4 are broken.

erl _xconp_Ilinux_usabl e_si gusrx -yes| no. Defaultstoyes. If yes, the SI GUSR1 and SI GUSR2
signals must be usable by the ERTS. Old LinuxThreads thread libraries (Linux kernel versionstypically lessthan
2.2) used these signals and made them unusable by the ERTS.

erl _xconp_pol | -yes| no. Defaultsto no on Darwin/MacOSX; otherwise, yes. If yes, the target system

must have a working pol | () implementation that also can handle devices. If no, sel ect () will be used
instead of pol | () .

20 | Ericsson AB. All Rights Reserved.: Erlang/OTP System Documentation

1.4 How to Build Erlang/OTP on Windows

e erl_xconp_put env_copy - yes| no. Defaults to no. If yes, the target system must have a put env ()
implementation that stores a copy of the key/value pair.

e erl_xconp_reliable fpe-yes|no.Defaultstono. If yes, thetarget system must have reliable floating
point exceptions.

« erl_xconp_posi x_memnal i gn - yes| no. Defaults to yes if posi x_nemal i gn system call exists;
otherwise no. If yes, thetarget system must haveaposi x_nmenal i gn implementation that accepts larger than
page size alignment.

1.4 How to Build Erlang/OTP on Windows
Table of Contents

e Introduction

e Short Version

e Frequently Asked Questions

e Toolsyou Need and Their Environment
e The Shell Environment

* Building and Instal