VICE, the Versatile Commodore Emulator

Copyright (© 1998-2014 Dag Lem Copyright (©) 1999-2014 Andreas Matthies Copyright
(© 1999-2014 Martin Pottendorfer Copyright (©) 2005-2014 Marco van den Heuvel Copy-
right (© 2006-2014 Christian Vogelgsang Copyright (©) 2007-2014 Fabrizio Gennari Copy-
right (© 2007-2014 Daniel Kahlin Copyright (© 2008-2014 Antti S. Lankila Copyright (©
2009-2014 Groepaz Copyright (© 2009-2014 Ingo Korb Copyright (© 2009-2014 Errol Smith
Copyright (© 2010-2014 Olaf Seibert Copyright (©) 2011-2014 Marcus Sutton Copyright
(© 2011-2014 Ulrich Schulz Copyright (©) 2011-2014 Stefan Haubenthal Copyright (©) 2011-
2014 Thomas Giesel Copyright (© 2011-2014 Kajtar Zsolt Copyright (©) 2012-2014 Benjamin
'BeRo’” Rosseaux

Copyright (©) 2000-2011 Spiro Trikaliotis Copyright (©) 2007-2011 Hannu Nuotio Copyright
(© 1998-2010 Andreas Boose Copyright (© 1998-2010 Tibor Biczo Copyright (© 2007-2010
M. Kiesel Copyright (© 1999-2007 Andreas Dehmel Copyright (© 2003-2005 David Hansel
Copyright (©) 2000-2004 Markus Brenner Copyright (©) 1999-2004 Thomas Bretz Copyright
(© 1997-2001 Daniel Sladic Copyright (©) 1996-2001 Andr Fachat Copyright (©) 1996-1999
Ettore Perazzoli Copyright (© 1993-1994, 1997-1999 Teemu Rantanen Copyright (©) 1993-
1996 Jouko Valta Copyright © 1993-1994 Jarkko Sonninen

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Chapter 1: GNU GENERAL PUBLIC LICENSE 1

1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc. 675
Mass Ave, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Chapter 1: GNU GENERAL PUBLIC LICENSE 2

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Chapter 1: GNU GENERAL PUBLIC LICENSE 3

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Chapter 1: GNU GENERAL PUBLIC LICENSE 4

6.

10.

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Chapter 1: GNU GENERAL PUBLIC LICENSE)

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status dVall AARIRADEIOY our free software and of promoting

11. Bechass quipaseod poAtvars §sreRNSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Chapter 1: GNU GENERAL PUBLIC LICENSE 6

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Chapter 2: About VICE 7

2 About VICE

VICE is the one and only Versatile Commodore Emulator. It provides emulation of the
Commodore C64, C64DTV, C128, VIC20, PET, PLUS4, SCPU64 and CBM-II computers
within a single package. The emulators run as separate programs, but have the same user
interface, share the same settings and support the same file formats.

Important notice: If you have no idea what a Commodore 8-bit computer is, or have
questions about how these machines are used, how the file formats work or anything else
that is not strictly related to VICE, you should read the appropriate FAQs first, as that kind
of information is not available here. See Chapter 18 [Contacts], page 262. for information
about how to retrieve the FAQs.

All the emulators provide an accurate 6502/6510 emulator, with emulation of all the opcodes
(both documented and undocumented ones) and accurate timing. Unlike other emulators,
VICE aims to be cycle accurate; it tries to emulate chip timings as precisely as possible and
does so efficiently.

Please do not expect the C64DTV, C128, PET, PLUS4, SCPU64 and CBM-II emulators
to be as good as the C64 or VIC20 one, as they are still under construction.

Notice: This documentation is written for the Unix release of VICE.

2.1 C64 emulator features
As of version 2.3, two C64 emulators are provided: ‘x64’ (fast) and ‘x64sc’ (accurate).

The fast C64 emulator, called ‘x64’, features a fairly complete emulation of the VIC-II video
chip: sprites, all registers and all video modes are fully emulated. The emulation has been
fully cycle-accurate since version 0.13.0.

The accurate C64 emulator, called ‘x64sc’, features a cycle-based and pixel-accurate VIC-11
emulation. This requires a much faster machine than the old ‘x64’.

A rather complete emulation of the SID sound chip is also provided. All the basic features
are implemented as well as most of the complex ones including synchronisation, ring modu-
lation and filters. There are two emulators of the SID chip available: first is the “standard”
VICE emulator, available since VICE 0.12; the second is Dag Lem’s reSID engine. The
reSID engine is a lot more accurate than the standard engine, but it is also a lot slower,
and only suitable for faster machines.

Naturally, also both CIAs (or VIAs, in some cases) are fully emulated and cycle accurate.

2.2 C64DTYV emulator features

The C64DTV emulator, called ‘x64dtv’, features emulation of C64DTV revisions 2 and
3. The emulator is under construction, but most of the DTV specific features are already
supported (with varying accuracy).

Video cache is disabled by default as it currently doesn’t work with some of C64DTV’s new
video modes. The new video modes have a simple "fake" video cache implementation that
may give incorrect results and decreased performance.

Chapter 2: About VICE 8

2.3 C128 emulator features

The C128 emulator, called ‘x128’, features a complete emulation of the internal MMU
(Memory Management Unit), 80 column VDC screen, fast IEC bus emulation, 2 MHz
mode, Z80 emulation plus all the features of the C64 emulation.

2.4 VIC20 emulator features

The VIC20 emulates all the internal hardware, including the VIA chips. The VIC-I video
chip is fully emulated except NTSC interlace mode, so most graphical effects will work
correctly.

Sound support is implemented, but is still at an experimental stage. If you think it could
be improved and know how to do so, feel free to contact us (see Chapter 18 [Contacts],
page 262).

The VIC20 emulator now allows the wuse of the VIC1112 IEEE488 in-
terface. You have to enable the hardware (by menu, resource, or com-
mandline option) and then load the IEEE488 ROM (see for example
http://www.funet.fi/pub/cbm/schematics/cartridges/vic20/ieee-488/325329-

04 .bin, but you have to double the size to 4k for now). The IEEE-488 code is then started
by SYS45065.

2.5 PET emulator features

The PET emulator emulates the 2001, 3032, 4032, 8032, 8096, 8296 and SuperPET (Mi-
croMainFrame 9000) models, covering practically the whole series. The hardware is pretty
much the same in each and that is why one single program is enough to emulate all of them.
For more detailed information about PET hardware please refer to the ‘PETdoc’ file.

Both the 40 column and 80 column CRTC video chips are emulated (from the 4032 onward),
but a few of the features are not implemented yet (numbers of rasterlines per char and lines
per screen). Fortunately, they are not very important for average applications.

Sound is available for the PET as well, but like the VIC20’s it is still under construction.

The PET 8096 is basically a PET 8032 with a 64k extension board which allows remapping
the upper 32k with RAM. You have to write to a special register at $£££0 to remap the
memory. The PET 8296 is a 8096 but with a completely redesigned motherboard with 128k
RAM in total. Of the additional 32k RAM you can use only some in blocks of 4k, but
you have to set jumpers on the motherboard for it. VICE uses the command line options
‘-petram9’ and ‘-petramA’ instead. Also, the video controller can handle a larger address
range. The PET 8x96 model emulations run the Commodore LOS-96 operating system -
basically an improved BASIC 4 version with up to 32k for BASIC text and 32k for variables.
See ‘PETdoc’ for more information.

The SuperPET also is a PET 8032 with an expansion board. It can map 4k at a time out
of 64k into the $9*** area. Also it has an ACIA 6551 for RS232 communication. The 6809
CPU that is built into the SuperPET is now emulated, since release 2.4, including the 6702
dongle chip.

The Super-OS/9 MMU expansion, developed by TPUG (Toronto PET Users Group) is also
emulated.

Chapter 2: About VICE 9

The PET computers came with three major ROM revisions, so-called BASIC 1, 2 and 4,
all of which are provided. The PET 2001 uses the version 1, the PET 3032 uses version 2,
and the others use version 4. The 2001 ROM is horribly broken with respect to IEEF488
(they shipped it before they tested it with the floppy drive, so only tape worked. Therefore
the emulator patches the ROM to fix the IEEE488 routines.

As well as other low-level fixes the 2001 patch obtains the load address for a program file
from the first two bytes of the file. This allows the loading of both PET2001-saved files (that
have $0400 as their load address) and other PET files (that have $0401). The PET2001
saves from $0400 and not from $0401 as other PETSs do.

Moreover, the secondary addresses used are now 0 and 1 for load and save, respectively,
and not arbitrary unused secondary addresses.

To select which model to run, specify it on the command line with the -model MODEL option,
where MODEL can be one of a list of PET model numbers, all described in see Section 7.6.1
[PET model], page 105

2.6 CBM-II emulator features

The CBM-II emulator emulates several types of CBM-II models. Those models are known
under different names in the USA and Europe. In the States they have been sold as B128
and B256, in Europe as CBM 610, CBM 620 (low-profile case) or CBM 710 and CBM 720 (high-
profile case with monitor). In addition to that now an experimental C510 emulation is
included. The C510 (also known as P500) is the little brother of the C600/700 machines.
It runs at roughly 1 MHz and, surprise, it has a VIC-II instead of the CRTC. Otherwise
the different line of computers are very similar.

These computers are prepared to take a coprocessor board with an 8088 or Z80 CPU. Indeed
there are models CBM 630 and CBM 730 that supposedly had those processors. However these
models are not emulated.

The basic difference is the amount of RAM these machines have been supplied with. The
B128 and the CBM *10 models had 128k RAM, the others 256k. This implies some banking
scheme, as the 6502 can only address 64k. And indeed those machines use a 6509, that
can address 1 MByte of RAM. It has 2 registers at addresses 0 and 1. The indirect bank
register at address 1 determines the bank (0-15) where the opcodes LDA (zp),Y and STA
(zp),Y take the data from. The exec bank register at address 0 determines the bank where
all other read and write addresses take place.

The business line machines (C6xx/7xx) have the RAM in banks 1-2, resp. 1-4. All available
banks are used for BASIC, where program code is separated from all variables, resp. from
normal variables, strings and arrays that are distributed over other banks. The C510 instead
has RAM in banks 0 and 1, and uses bank 1 for program and all variables. Bank 0, though,
can be accessed by the VIC-II to display graphics.

Many models have been expanded to more than the built-in memory. In fact some machines
have been expanded to the full 1M. Bank 15 is used as system bank, with only little RAM,
and lots of expansion cartridge ROM area, the I/O and the kernal/basic ROMs. Some
models have been modified to map RAM into the expansion ROM area. Those modifications
can be emulated as well.

The different settings are described in see Section 7.7.1 [CBM-II model|, page 113.

Chapter 2: About VICE 10

2.7 SCPU64 emulator features

The XSCPU64 emulator is a simulation of a C64 equipped with a SuperCPU64 V2B. Fea-
tures:

e 20 MHz asynchronous single cycle 65816 CPU core with proper dummy and invalid
cycle handling.

e 128 KiB static RAM, 0-16 MiB SIMM RAM, 64-512 KiB EPROM emulated and their
respective timing details.

e All RAM optimization configurations supported with write buffer.

e 1/O area access delays, write through to SRAM implemented.

e Memory mappings including cartridge and boot memory map and kernal shadow.

e Hardware registers and switches implemented.

e Replacement SCPU64 ROM compatible with the original to avoid distribution problems

e It’s using the single cycle VICII core for accurate simulation

Still to do:
e Measure and verify VICII interrupt phase shift
e Measure and verify BA phase shift
e SIMM RAM extra 7.5 cycle refresh delay every 10us missing.
e CPU NMI support for “reset” button

The emulation is quite accurate but not perfect. If you code something timing intensive
using this simulation please always check it on real hardware to avoid bad surprises.

The hardware itself is asynchronous in nature, therefore caution must be taken to not do
long timing loops without synchronization in 20 MHz mode. Also don’t squeeze out the last
remaining cycles without leaving a safety buffer. Synchronization points can be created by
doing I/0 reads or writes and leaving a few hundred cycles left each frame will not hurt.

Otherwise it can happen that the code is running on this version of VICE or my SCPU64
V2+C128D perfectly but nowhere else due to manufacturing variations and frequency drifts.

2.8 The keyboard emulation
There are two ways of emulating the keyboard in VICE.

The default way (symbolic mapping) is to map every key combination to the corresponding
key combination on the real machine: for example, if you press *, which is bound to Shift-8
on a U.S. keyboard, in the C64 emulator, the emulated machine will have just the unshifted
* key pressed (as * is unshifted on the C64 keyboard). Likewise, pressing ’ on the same
U.S. keyboard without any shift key will cause the combination Shift-7 to be pressed in
the emulated C64. This way, it becomes quite obvious what keys should be typed to obtain
all the symbols.

There is, however, one problem with symbolic mapping: some keys really need to be mapped
specially regardless. The most important examples being, in the VIC20, C64 and C128
emulators, that CTRL is mapped to Tab and that the Commodore key is mapped to the left
Control). The RUN/STOP key is mapped to the ESC key on the PC keyboard. The PET
emulator, lacking the Commodore key but having an ESC key, uses the left Control key as
RUN/STOP and the ESC key as ESC of course.

Chapter 2: About VICE 11

The second way (positional mapping) is to map every key on the “real” keyboard to the key
which has the same position on the keyboard of the emulated machine. This way, no Shift
key is forced by the program (with the exception of the function keys F2, F4, F6 and F8,
which require Shift on the Commodore keyboards), and the keyboard is more comfortable
to use in those programs (such as some games) that require the keys to be in the correct
positions.

Warning: unlike the real C64, VICE “presses” the Shift key together with the key to shift
when the Shift must be forced. In most cases this should work fine, but some keyboard
routines are quite picky and tend not to recognize the shift key because of this. For instance,
F6 (which on the real C64 is obtained with Shift + F5) could be recognized as F5. In that
case, use the shift key manually (i.e., type Shift + F5 in the example). Yes, we know this
is a bug.

The RESTORE key is mapped to Page Up (or Prev) by default.

2.9 The joystick emulation

Joysticks can be emulated both via the keyboard and via a real joystick connected to the
host machine (the latter only works on GNU /Linux systems).

There are two keyboard layouts for joystick use, known as numpad and custom.

The numpad layout uses the numeric keypad keys, i.e., the numbers 1...9 which emulate
all the directions including the diagonal ones; 0 emulates the fire button.

The custom layout uses the keys w, e, r, s, d, £, x, ¢, v for the directions and space for the
fire button instead.

2.10 The disk drive emulation

All the emulators support up to 4 external disk drives as devices 8, 9, 10 and 11. Each of
these devices can emulate virtual Commodore 1541, 1541-I1, 1571, 1581, 2031, 2040, 3040,
4040, 1001, 8050 and 8250 drives in one of four ways:

e using disk images, i.e., files that contain a dump of all the blocks contained in a real
floppy disk (if you want more information about what a disk image is, consult the
comp.emulators.cbm FAQ);

e accessing file system directories, thus giving you the use of files without having to copy
them to disk images; this also allows you to read and write files in the POO format
(again, consult the comp.emulators.cbm FAQ for more info).

e accessing a real device connected to the host machine. As of VICE 1.11 it is possible
to connect real drives like Commodore 1541 to the printer port of the host using the
XA1541 or XM1541 cable. Currently this only works on Linux or Windows using
the OpenCBM library. You can get it from http://www.1lb.shuttle.de/puffin/
cbm4linux (cbm4linux, Linux version) or from http://cbm4win.sf.net/ (cbm4win,
Windows version).

e directly using the disk drive of the host. The 3.5" disk drive of the host can be used
to read or write Commodore 1581 formatted disks. Currently this raw drive access
feature is only available for Linux hosts.

When using disk images there are two available types of drive emulation. One of them the
virtual drive emulation. It does mot really emulate the serial line, but patches the kernal

http://www.lb.shuttle.de/puffin/cbm4linux
http://www.lb.shuttle.de/puffin/cbm4linux
http://cbm4win.sf.net/

Chapter 2: About VICE 12

ROM (with the so-called kernal traps) so that serial line operations can be emulated via
C language routines. This emulation is very fast, but only allows use of standard DOS
functions (and not even all of them). For real device or raw drive access it is required to
enable this type of emulation.

The TEEE488 drives (2031, 2040, 3040, 4040, 1001, 8050 and 8250) do not use kernal traps.
Instead the IEEEA488 interface lines are monitored and the data is passed to the drive
emulation. To use them on the C64, you need to enable the IEEE488 interface emulation.
Only if the IEEE488 emulation is enabled, those drives can be selected.

The other alternative is a true drive emulation. The Commodore disk drives are provided
with their own CPU (a 6502 as the VIC20 and the PETSs) and their own RAM and ROM.
So, in order to more closely emulate its features, a complete emulation of this hardware
must be provided and that is what the hardware level emulation does. When the hardware
level emulation is used, the kernal routines remain unpatched and the serial line is fully
emulated. The problem with this emulation is that it needs a lot of processing power,
mainly because the emulator has to emulate two CPUs instead of one.

The PETs do not use a serial IEC bus to communicate with the floppy drive but instead
use the parallel IEEE488 bus. This does byte by byte transfers, as opposed to the bit by bit
transfers of the C64 and VIC20, so making it feasible to emulate the parallel line completely
while emulating the drive at DOS level only. The IEEE488 line interpreter maps the drives
8-11 (as described above) to the IEEE488 disk units, and no kernal traps are needed. The
same emulation of the Commodore IEEE488 bus interface is available for the C64 and the
VIC20. With IEEE488 drives you can have true 2031 emulation at unit #8, and still have
filesystem access at units #10 or #11, because monitoring the IEEF488 lines does not
interfere with the true drive emulation.

The TEEE488 disk drives 2040, 3040, 4040, 8050 and 8250 are Dual Drive Floppy Disks.
This means that these drives handle two disks. To accomplish the emulation, only two disks
can be emulated, namely units #8 and #10. The attached image, track display and LED
display of unit #9 and #11 are used for the second drive of the dual disk drives. On unix
the unit number display (8 or 9, 10 or 11) in the emulation window changes to the drive
number display (0 or 1).

The Commodore 2040, 3040, 4040, 1001, 8050 and 8250 disk drives are so-called "old-
style" disk drives. Their architecture includes not one, but two processors of the 6502 type,
namely a 6502 for the file handling and communication with the PET (IP), and a 6504
(which is a 6502 with reduced address space) for the drive handling (FDC). Both processors
communicate over a shared memory area. The IP writes commands to read/write blocks to
this area and the FDC executes them. To make the emulation feasible, the FDC processor is
not emulated cycle-exactly as a 6504, but simply by checking the commands and executing
them on the host. This provides a fast FDC emulation, but disallows the sending the FDC
processor commands to execute code. Applications where this is necessary are believed to
be rather seldom. Only the format command uses this feature, but this is checked for.

The dual disk drive 2040 emulates one of the very first CBM disk drives. This drive has
DOS version 1. DOSI1 uses an own disk type, that is closely related to the 1541 disk image.
Only on tracks 18-24 DOSI disks have a sector more than 1541 disks. DOS1 disk images
have the extension .d67.

Chapter 2: About VICE 13

The dual disk drives 3040 and 4040 use the same logical disk format as the VC1541 and
the 2031. In fact, the 4040 was the first disk with DOS version 2. The 3040 emulated here
originally was the same as 2040, only for the european 30xx PET series. As many of the
original DOS1 disk drives were upgraded (a simple ROM upgrade!) to DOS2, I use the 3040
number for a DOS 2.0 disk drive, and 4040 for a revised DOS 2 disk drive. It is, however,
not yet clear whether the disks here are write compatible to the 1541, as rumors exist that
the write gap between sectors is different. But read compatible they are. As VICE emulates
the FDC processor in C and not as 6504 emulation, this does not matter in VICE.

The drives 1001, 8050 and 8250 do actually have the very same DOS ROM. Only the code
in the FDC is different, which is taken care of by VICE. So for all three of those disk drives,
only dos1001 is needed. The DOS version used is 2.7.

2.11 Supported file formats

VICE supports the most popular Commodore file formats:
e X64 (preferred) or D64 disk image files; Used by the 1541, 2031, 3040, 4040 drives.
e G64 GCR-encoded 1541 disk image files
e P64 NRZI flux pulse disk image files
e D67 CBM2040 (DOS1) disk image format
e D71 VC1571 disk image format
e D81 V(1581 disk image format
e D80 CBMS050 disk image format
e D82 CBMS8250/1001 disk image format
e D1M FD2000/FD4000 DD disk image format
e D2M FD2000/FD4000 HD disk image format
e D4M FD4000 ED disk image format
e T64 tape image files (read-only)
e P00 program files
e CRT C64 cartridge image files
An utility (c1541, see Chapter 12 [c1541], page 147) is provided to allow transfers and
conversions between these formats.
Notice that the use of the X64 file format is depreciated now.
You can convert an X64 file back into a D64 file with the UNIX dd command:
dd bs=64 skip=1 if=IMAGE.X64 of=IMAGE.D64

See Chapter 15 [File formats], page 155. for a technical description of the supported file
formats.

2.12 Common problems

This section tries to describe the most common known problems with VICE, and how to
resolve them.

Chapter 2: About VICE 14

2.12.1 Sound problems

VICE should compile and run without major problems on many UNIX systems, but there
are some known issues related to the sound driver. In fact, the sound code is the least
portable part of the emulator and has not yet been thoroughly tested on all the supported
platforms.

Linux, AIX and SGI systems should play sound without any problems; if you are running
Linux please use a 2.x kernel, as VICE needs some features that were not implemented in
older versions of the Linux sound driver.

On the other hand, HP-UX and Solaris machines are known to cause troubles. If you think
you can help debugging the code for these systems, your help would be really appreciated.
We are having troubles finding HP-UX and SUN consoles to work at. . .

Some problems have been reported with the proprietary version of the Open Sound System
for Linux. With a Crystal sound card, sound output was significantly delayed and, appar-
ently, the allocated buffer size was completely wrong. This is not a VICE bug, but rather
an OSS bug.

2.12.2 Shared memory problems

If you cannot start VICE because you get errors about shared memory, try to run it with
the ‘+mitshm’ command-line option (see Section 6.5.3 [Video options|, page 34). This will
completely disable usage of the MITSHM extensions, that are normally used to speed up
the emulation window updates. Of course, this will also result in a big loss in speed.

Reasons for this failure could be:

e [PC support has been disabled at the system level; some system administrators disable
this for security reasons. If you are the system administrator, use a kernel that has
IPC support compiled in and enabled.

e You are attempting to run the emulator across the network (i.e., the emulator runs
on one machine, and the output is displayed on another machine that works as an X
terminal) and for some reason VICE does not recognize this fact. In this case, you
have found a bug, so please report it to us.

If you want to avoid running the emulator with ‘“+mitshm’ every time, run it once with
‘+mitshm’ and then choose “Save settings” from the right-button menu.

2.12.3 Printer problems

VICE supports the emulation of a printer either on the userport or as IEC device 4. Un-
fortunately the Commodore IEC routines do not send all commands to the IEC bus. For
example an OPEN 1,4 is not seen on the IEC bus. Also a CLOSE 1 after that is not seen.
VICE can see from printing that there was an OPEN, but it cannot see when the close was.
Also a "finish print job" cannot be seen on the userport device. To flush the printer buffer
(write to print.dump or to the printer) now a menu entry can be used. Disabling and
re-enabling the printer should work as well.

The printing services have not been extensively tested but apart from the problem mentioned
above it should work fine now.

Chapter 2: About VICE 15

2.12.4 PET keyboard problems

If you find that the German keyboard mapping (plus German charset) does not print up-
percase umlauts, then you are right. The umlauts replace the [,\ and | characters in the
charset. The keys that make these characters do not have a different entry in the PET
editor ROM tables when shifted. Thus it is not possible to get the uppercase umlauts in
the editor. Nevertheless other programs are reported to change the keyboard mapping table
and thus allow the use of the shifted (uppercase) umlauts.

Anyway, the VICE keyboard mappings are far from being perfect and we are open to any
suggestions.

Chapter 3: Invoking the emulators 16

3 Invoking the emulators

The names of the available emulators are:

e vsid, the SID player

e x64, the fast C64 emulator

e x64sc, the accurate C64 emulator

e x64dtv, the C64DTV emulator

e x128, the C128 emulator

e xvic, the VIC20 emulator

e xpet, the PET emulator

e xplus4, the PLUS4 emulator

e xcbm2, the CBM-II emulator (CRTC models)

e xcbmb5x0, the CBM-II emulator (VIC-IT models)

e xscpub4, the SCPU64 emulator
You can run each of them by simply typing the name from a shell or by configuring your
window manager for example to use them to open disk images.

If you want to look at the log output, or use the monitor in a port which does not have
a dedicated monitor Ul yet (such as the XAW port), you should always run them from a
terminal window such as xterm or rxvt. For example, you could do

xterm -e x64

3.1 Command-line options used during initialization

There are several options you can specify on the command line. Some of them are used to
specify emulation settings and will be described in detail later (see Chapter 6 [Settings and
resources|, page 29 for a complete list). The remaining options are used only to give usage
information or to initialize the emulator in some way:

-help
-? List all the available command-line options and their meaning.

-default Set default resources (see Chapter 6 [Settings and resources|, page 29). This
will override all the settings specified before, but not the settings specified
afterwards on the command line.

-config <filename>
Specify config file

-logfile <name>
Specify log file name

-verbose Enable verbose log output.

-keybuf <string>
Put the specified string into the keyboard buffer.

-console Console mode (for music playback)

Chapter 3: Invoking the emulators 17

—-chdir <directory>
Change the working directory.

—autostart IMAGE
Autostart ‘IMAGE’ (see Section 3.2 [Command-line autostart], page 18).

—autoload <name>
Attach and autoload tape/disk image <name>

-basicload
On autostart, load to BASIC start (without ,17)

+basicload
On autostart, load with ’,1°

—autostartwithcolon
On autostart, use the 'RUN’ command with a colon, i.e., '/RUN"’

+autostartwithcolon
On autostart, do not use the '/RUN’ command with a colon; i.e., 'RUN’

-autostart-handle-tde
+autostart-handle-tde
Handle/Do not handle True Drive Emulation on autostart

+autostart-warp
Enable/Disable warp mode during autostart

—autostartprgmode
Set autostart mode for PRG files

-autostartprgdiskimage
Set disk image for autostart of PRG files

-autostart-delay-random
+autostart-delay-random
Enable/Disable random delay on autostart

—autostart-delay <value>
Set initial autostart delay (0: use default)

-1 NAME Attach ‘NAME’ as a tape image file.

-8 NAME
-9 NAME
-10 NAME
-11 NAME Attach ‘NAME’ as a disk image to device 8, 9, 10 or 11.

—attach8ro
—attach9ro
-attach10ro
—attachllro
Attach disk image for drive #8-11 read only

Chapter 3: Invoking the emulators 18

—attach8rw
—attach9rw
-attachlOrw
-attachllrw
Attach disk image for drive #8-11 read write (if possible)

3.2 Autostarting programs from the command-line

It is possible to let the emulator autostart a disk or tape image file, by simply specifying
its name as the last argument on the command line, for example

x64 lovelygame.x64.gz

will start the C64 emulator, attaching ‘lovelygame.x64.gz’ as a disk image and running
the first program on it. You can also specify the name of the program on the fisk image by
appending a colon (‘:’) the name itself to the argument; for example

x64 "lovelygame.x64.gz:run me"

will run the program named ‘run me’ on ‘lovelygame.x64.gz’ instead of the first one.
Using the command-line option —autostart is equivalent; so the same result can be obtained
with

x64 -autostart "lovelygame.x64.gz:run me"

If you specify a raw CBM or P00 file, the emulator will setup the file system based drive
emulation so that it is enabled and accesses the directory containing the file first. This is
a very convenient way to start multi-file programs stored in file system directories and not
requiring “true” drive emulation.

See Section 5.5 [Disk and tape images|, page 26. for more information about images and
autostart.

Chapter 4: System files 19

4 System files

In order to work properly, the emulators need to load a few system files:

e the system ROMs, raw binary files containing copies of the original ROMs of the
machine you are emulating;

e the keyboard maps, text files describing the keyboard layout;
e the palette files, text files describing the colors of the machine you are emulating.
e the romset files, text files describing the different ROMs to load.
The place where they will be searched for depends on the value of the Directory resource,

which is a colon (:)-separated search path list, like the UNIX PATH environment variable.
The default value is

PREFIX/1ib/vice/EMU: $HOME/ .vice/EMU: BOOTPATH/EMU

Where PREFIX is the installation prefix (usually ‘/usr/local’), EMU is the name of the
emulated machine (C64, C64DTV, C128, PET, PLUS4, CBM-II, SCPU64 or VIC20) and BOOTPATH
is the directory where the executable resides. The disk drive ROMs are looked for in a
directory with EMU set to DRIVES. $HOME is the user’s home directory.

For example, if you have the C64 emulator installed in
/usr/local/bin/x64
then the value will be
/usr/local/lib/vice/C64:$HOME/ .vice/C64: /usr/local/bin/C64
And system files will be searched for under the following directories, in the specified order:
1. /usr/local/1ib/VICE/C64
2. $HOME/.vice/C64
3. /usr/local/bin/C64
System files can still be installed in a different directory if you specify a complete path
instead of just a file name. For example, if you specify ‘./kernal’ as the kernal image
name, the kernal image will be loaded from the current directory. This can be done by

using command-line options or by modifying resource values (see Section 6.1 [Resource
files], page 29).

4.1 ROM files

Every emulator requires its own ROM set. For the VIC20 and the C64, the ROM set
consists of the following files:

e ‘kernal’, the Kernal ROM (8 KBytes)
e ‘basic’, the Basic ROM (8 KBytes)
e ‘chargen’, the character generator ROM (4 Kbytes)

The C128 needs the following files:
e ‘kernal’, the Kernal ROM (8 Kbytes)
e ‘basic’, the Basic + Editor ROM (32 Kbytes)
e ‘chargen’, the character generator ROM (4 Kbytes)

Chapter 4: System files 20

The C128, VIC20, SCPU64 and C64 emulators also need the following DOS ROMs for the
hardware-level emulation of the 1541, 1571, 1581, 2000 and 4000 disk drives:

‘dos1541’, the 1541 drive ROM (16 Kbytes)
e ‘dos1541IT’, the 1541-II drive ROM (16 Kbytes)
e ‘dos1571’; the 1571 drive ROM (32 Kbytes)
e ‘dos1581’, the 1581 drive ROM (32 Kbytes)
e ‘dos2000’, the 2000 drive ROM (32 Kbytes)
e ‘dos4000’, the 4000 drive ROM (32 Kbytes)
In addition to those all emulators can handle a parallel IEEE488 interface (the C64 and

C128 via $df** extension, the VIC20 via VIC1112 emulation) so they also need the DOS
ROM for the IEEE disk drives:

e ‘dos2031’; the 2031 drive ROM (16 Kbytes) (DOS 2.6, Commodore ROM images
901484-03 and 901484-05)

e ‘dos2040’, the 2040 drive ROM (8 Kbytes) (DOS 1, Commodore ROM images 901468-
06, 901468-07)

e ‘dos3040’, the 3040 drive ROM (12 Kbytes) (DOS 2, Commodore ROM images 901468-
11, 901468-12 and 901468-13)

e ‘dos4040’, the 4040 drive ROM (12 Kbytes) (DOS 2, Commodore ROM images 901468-
14, 901468-15 and 901468-16)

e ‘dos1001’; the 1001/8050/8250 drive ROM (16 Kbytes) (DOS 2.7, Commodore ROM
images 901887-01 and 901888-01)

Note that there are other DOS images on the internet. The DOS 2.5 images might be used
with the 8050, but it cannot handle the double sided drives of the 1001 and 8250 and it is
not supported by VICE.

The PET emulator uses an expanded setup, because there are three major versions of the
Basic and the Kernal, and many versions of the Editor ROM. In addition there are cartridge
ROM sockets.

The Kernal files contain the memory from range $F000-$FFFF, the Basic ROMs either the
range $C000-$DFFF or $B000-$DFFF. To handle the different screen sizes and keyboards,
different so-called “editor-ROMs” for the memory range $E000-$E800 are provided. The
PET ROMs have the following names:

e ‘kernall’, the PET2001 Kernal ROM (4 KBytes) (Commodore ROM images 901447-06
and 901447-07)

e ‘kernal?2’, the PET3032 Kernal ROM (4 KBytes) (Commodore ROM image 901465-03)

e ‘kernal4’, the PET4032/8032 Kernal ROM (4 KBytes) (Commodore ROM image
901465-22)

e ‘basicl’, the PET2001 Basic 1 ROM (8 KBytes) (Commodore ROM images 901447-09,
901447-02, 901447-03, 901447-04.bin. The -09 ROM is the revised -01 ROM)

e ‘basic2’, the PET3032 Basic 2 ROM (8 KBytes) (Commodore ROM images 901465-01
and 901465-01)

e ‘basic4’, the PET4032/8032 Basic 4 ROM (12 KBytes) (Commodore ROM images
901465-23, 901465-20 and 901465-21. The -23 ROM is a revised -19 ROM)

Chapter 4: System files 21

e ‘editlg’, the PET2001 editor for graphics keyboards (2 KBytes) (Commodore ROM
image 901447-05)

e ‘edit2b’, the PET3032 editor for business keyboards (2 KBytes) (Commodore ROM
image 901474-01)

e ‘edit2g’, the PET3032 editor for graphics keyboards (2 KBytes) (Commodore ROM
image 901447-24)

e ‘edit4gd0’, the PET4032 editor for graphics keyboards (2 KBytes) (Commodore ROM
image 901498-01)

e ‘edit4b40’, the PET4032 editor for business keyboards (2 KBytes) (Commodore ROM
image 901474-02)

e ‘edit4b80’, the PET8032 editor for business keyboards (2 KBytes) (Commodore ROM
image 901474-04-7)
e ‘chargen’, the character generator ROM (2k). It has two sets with 128 chars each.

The second (inverted) half of each set is computed from the first half by inverting it.
This is a PET hardware feature. (Commodore ROM image 901447-10)

e ‘chargen.de’, the character generator ROM (2k). This version is a patched German
charset, with the characters [, \ and | replaced by umlauts. It has been provided by U.
Guettich and he reports that it is supported by some programs.

e ‘characters.901640-01.bin’, the SuperPET character generator ROM (4k). The first
half is the same as ‘chargen’, the second half contains, instead of an upper and lower

case set, an ASCII character set and an APL character set. For these sets, the screen
code is equal to the ASCII/APL code.

e ‘waterloo-[abcdf]000.901898-0[1-5].bin’, ‘waterloo-e000.901897-01.bin’.
The Waterloo system ROMs.

The PETSs also have sockets for extension ROMs for the addresses $9000-$9FFF, $A000-
$AFFF and $B000-$BFFF (the last one for PET2001 and PET3032 only). You can specify
ROM image files for those extensions command line options -petrom9, -petromA and -
petromB resp.

An alternative would be to specify a long kernal ROM with the ~kernal option that includes
the extension ROM areas.

Also, you can specify replacements for the basic ROM at $B000-$DFFF with the
-petromBasic option and for the editor ROM at $E000-$E7FF with the -petromEditor
option.

The CBM-II emulator again uses another setup. For those models the kernal used is the
same for all. However, for different amounts of memory exist different versions of the BASIC
ROMs. The 128k RAM version (C610, C710, B128) uses one bank of 64k for the BASIC
text and another one for all the variables. The 256k RAM version uses one bank for text,
one for variables, one for arrays and one for strings.

Also the character generator ROMs have a format different from the above. The other
character ROMs have 8 bytes of pixel data per character. Those ROMs have 16 bytes per
character instead. The C6x0 only uses the first 8 of it, but the C7x0 uses 14 lines per
character and needs those increased ROMs. Both ROMs hold, like the PET, two character
sets with 128 characters each. Again the second half of the full (256 char) character set is
computed by inverting.

Chapter 4: System files 22

e ‘kernal’, the KERNAL (8k) for the business machines (6xx/7xx)

e ‘kernal.500’, the KERNAL (8k) for the personal machine (510) (901234-02)
e ‘basic.128’, the CBM-II 128k BASIC (16k)

e ‘basic.256’, CBM-II 256k BASIC (16k)

e ‘basic.500’, C510 BASIC (16k) (901236-02 + 901235-02)

e ‘chargen.500’, character generator ROM for the C5x0 (4k) (901225-01)

e ‘chargen.600’, character generator ROM for the C6x0 (4k)

e ‘chargen.700’, character generator ROM for the C7x0 (4k)

The SCPU64 needs the following files:
e ‘scpu6d’, the SCPU64 ROM (128 Kbytes)
e ‘chargen’, the character generator ROM (4 Kbytes)

4.2 Keymap files
Keymap files are used to define the keyboard layout, defining which key (or combination of
keys) must be mapped to each keysym.

In other words, the keyboard emulation works like this: whenever the user presses or releases
a key while the emulation window has the input focus, the emulator receives an X-Window
event with a value that identifies that key. That value is called a keysym and is unique to
that key. The emulator then looks up that keysym in an internal table that tells it which
key(s) to press or release on the emulated keyboard.

This table is described by the keymap file, which is made up of lines like the following:
KEYSYM ROW COLUMN SHIFTFLAG
Where:

e KEYSYM is a string identifying the keysym: you can use the xev utility (shipped with
the X Window system) to see what keysym is bound to any key;

e ROW and COLUMN identify the key on the emulated keyboard;
e SHIFTFLAG can have one of the following values:
e 0O: the key is never shifted;
e 1: the key is shifted;
e 2: the key is the left shift;
e 4: the key is the right shift;
e 8: the key can be (optionally) shifted by the user.
The SHIFTFLAG is useful if you want certain keys to be “artificially” shifted by the emulator,
and not by the user. For example, F2 is shifted on the C64 keyboard, but you might want

it to be mapped to the unshifted F2 key on the PC keyboard. To do so, you just have to
use a line like the following:

F2 041

where 0 and 4 identify the key (row 0, column 4 on the keyboard matrix), and 1 specifies
that every time the user presses F2 the shift key on the C64 keyboard must be pressed.
There are also some special commands you can put into the keyboard file; they are recog-
nized because they start with an exclamation mark:

Chapter 4: System files 23

e !CLEAR clears the currently loaded keyboard map; it is necessary to put this at the
beginning of the file if you want the keymap file to override all of the current internal
settings;

e !LSHIFT, !RSHIFT, followed by a row and a column value, specify where the left and
right shift keys are located on the emulated keyboard; for example, C64 default keymaps
will specify
ILSHIFT 1 7
IRSHIFT 6 4

Any line starting with the # sign, instead, is completely ignored. This is useful for adding
comments within the keymap file.

VICE keymap files have the ‘.vkm’ default extension, and every emulator comes with a
default positional mapping and a default symbolic mapping.

4.3 Palette files

Palette files are used to specify the colors used in the emulators. They are made up of lines
like the following:

RED GREEN BLUE DITHER

where RED, GREEN and BLUE are hexadecimal values ranging from 0 to FF and specifying the
amount of red, green and blue you want for each color and DITHER is a 4-bit hexadecimal
number specifying the pattern you want when rendering on a B/W display.

You have to include as many lines as the number of colors the emulated machine has, and
the order of the lines must respect the one used in the machine (so the N’th line must
contain the specifications for color N - 1 in the emulated machine).
Lines starting with the # sign are completely ignored. This is useful for adding comments
(such as color names) within the palette file.
For example, the default PET palette file (which has only two colors, 0 for background and
1 for foreground), looks like the following:
#

VICE Palette file

#
#
Syntax:
Red Green Blue Dither
#

Background
00 00 00 O

Foreground
00 FF 00 F

4.4 Romset files

The Romset files are not used by default on all emulators. You might have recognized that
the names of the ROM images are saved in resources. Loading a Romset file now just means
a ‘shortcut’ to changing all the resources with ROM image names and reloading the ROMs.

Chapter 4: System files 24

The PET and CBM-II emulators use this feature to change between the different ROM
versions available for those machines. E.g. the Romset file for the PET 2001 is

KernalName="pet2001"
EditorName=
ChargenName="chargen"
RomModule9Name=
RomModuleAName=
RomModuleBName=

As you can see, the file even uses the same syntax as the resource file, it is just a bit stripped
down.
While a Romset file is processed, the directory where the Romset file was found is tem-

porarily prepended to the search path (Directory resource). This also means that if you
have a setting for Directory in it, its effect is limited to the Romset file itself.

Chapter 5: Basic operation 25

5 Basic operation
This section describes the basic things you can do once the emulator has been fired up.

5.1 The emulation window

When the emulator is run, the screen of the emulated machine is displayed in a standard
X Window which we will call the emulation window. This window will be updated in real
time, displaying the same contents that a real monitor or TV set would.

Below the emulation window there is an area which is used to display information about
the state of the emulator; we will call this area the status bar.

On the extreme left of the status bar, there is a performance meter. This displays the current
relative speed of the emulator (as a percentage) and the update frequency (in frames per
second). All the machines emulated are PAL, so the update frequency will be 50 frames per
second if your system is fast enough to allow emulation at the speed of the real machine.

On the extreme right of the status bar, there is a drive status indicator. This is only visible
if the hardware-level (“True”) 1541 emulation is turned on. In that case, the drive status
indicator will contain a rectangle emulating the drive LED and will display the current
track position of the drive’s read/write head.

5.2 Using the menus

It is possible to execute some commands and change emulation parameters while the emu-
lator is running: when the pointer is over the emulation window, two menus are available
by pressing either the left or right mouse buttons. The left mouse button will open the
command menu from which several emulation-related commands can be executed; the right
mouse button will open the settings menu from which emulation parameters can be changed.
The basic difference between the command and the settings menu is that, while commands
have only effect on the current session, settings can be saved and later used with the “Save
settings” and “Load settings” right-button menu items, respectively. “Restore default set-
tings” restores the factory defaults. See Chapter 6 [Settings and resources|, page 29. for
more information about how settings work in VICE.

Sometimes commands can be reached via shortcuts or hotkeys, i.e., it is possible to execute
them by pressing a sequence of keys instead of going through the menu with the mouse.
Where shortcuts exist, they are displayed in parentheses at the right edge of the menu item.
In VICE, all shortcuts must begin with the Meta or Alt key. So, for example, to attach a
disk image to drive #8 (the corresponding menu item displays “M-8"), you have to press
the Meta (or Alt) and then 8.

Note that no other key presses are passed on to the emulated machine while either Meta or
Alt are held down.

5.3 Getting help

At any time, if you get stuck or do not remember how to perform a certain action, you
can use the “Browse manuals” command (left button menu). This will popup a browser
and open the HTML version of this documentation. Notice that this requires VICE to be
properly (and fully) installed with a ‘make install’.

Chapter 5: Basic operation 26

The browser can be specified via the HTMLBrowserCommand string resource (see Chapter 6
[Settings and resources|, page 29 for information about resources). Every ‘%s’ in the string
will be replaced with a URL to the VICE HTML pages.

5.4 Using the file selector

In those situations where it is necessary to specify a file name, all of the VICE emulators
will pop up a file selector window allowing you to select or specify a file interactively.

To the left of the file selector, there is a list of ancestor directories: by clicking on them, you
can ascend the directory tree. To the right, there is a list of the files in the current directory;
files can be selected by clicking on them. If you click on a directory, that directory becomes
the current one; if you click on an ordinary file, it becomes the active selection.

At the top, there is a directory box, with the complete path of the current directory, and
a file name box, with the name of the currently selected file. At the bottom there are two
buttons: “OK” confirms the selected file and “Cancel” abandons the file selector without
cancelling the operation.

It is also possible to specify what files you want to show in the file selector by writing an
appropriate shell-like pattern in the directory box; e.g., *~/*. [dx]64’ will only show files in
the home directory whose name ends with either ‘.d64’ or with ‘.x64’.

5.5 Using disk and tape images

The emulator is able to emulate disk drives and (read-only) tape recorders if provided with
suitable disk images or tape images. An image is a raw dump of the contents of the media,
and must be attached before the emulator can use it. “Attaching” a disk or tape image is
like “virtually” inserting a diskette or a cassette into the disk drive or the tape recorder:
once an image is attached, the emulator is able to use it as a storage media.
There are five commands (in the left button menu) that deal with disk and tape images:

e Attach Disk Image

e Detach Disk Image

Attach Tape Image

Detach Tape Image
Smart-attach a file

The first four commands are used to insert and remove the virtual disks and cassettes from
the respective units. On the other hand, the last commands tries to guess the type of the
image you are attaching from its name and size, and attaches it to the most reasonable
device.

Supported formats are D64 and X64 for disk images (devices 8, 9 and 10) and T64 for
tape images. Notice that T64 support is read-only, and that the cassette is automatically
rewound when you reach its end.

Another important feature is that raw Commodore BASIC binary files and .P0O0 files can be
attached as tapes. As you can autostart a tape image when it is attached (see Section 5.5.2
[Autostart], page 27), this allows you to autostart these particular files as well.

You can attach a disk for which you do not have write permissions: when this happens,
the 1541 emulator will emulate a write-protected disk. This is also useful if you want to

Chapter 5: Basic operation 27

prevent certain disk images from being written to; in the latter case, just remove the write
permission for that file, e.g., by doing a chmod a-w.

5.5.1 Previewing the image contents

It is possible to examine the directory of a disk or tape image before attaching it. Just press
the “Contents” button in the file selector window and a new window will pop up with the
contents of the selected image.

Notice that this function automatically translates the directory from PETSCII to ASCII;
but, due to differences in the two encodings, it is not always possible to translate all the char-
acters, so you might get funny results when “weird” characters such as the semi-graphical
ones are being used.

5.5.2 “Autostarting” an image

If you want to reset the machine and run the first program on a certain image without
typing any commands at the Commodore BASIC prompt, you can use the “Autostart”
button in the file selector window after selecting a proper disk or tape image file.

Notice that, if true drive emulation is turned on, it will be turned off before running the
program and then turned on again after it has been loaded. This way, you get the maximum
possible speed while loading the file, but you do not lose compatibility once the program
itself is running.

This method is not completely safe, because some autostarting methods might cause the
true drive emulation not to be turned on again. In such cases, the best thing to do is to
disable kernal traps (which will cause true drive emulation to be always kept turned on),
or to manually load the program with true drive emulation turned on.

5.5.3 Using compressed files

It is also possible to attach disk or tape images that have been compressed through various
algorithms; compression formats are identified from the file extension. The following formats
are supported (the expected file name extension is in parenthesis):

e GNU Zip (.gz or .z);

e BZip version 2 (.bz2);

PkZip (.zip);

e GNU Zipped TAR archives (.tar.gz, .tgz);

e Zoo (.zo0).

PkZip, tar.gz, lha and zoo support is read-only and always uses the first T64 or D64 file in
the archive. So archives containing multiple files will always be handled as if they contain
only a single file.

Windows and MSDOS don’t contain the needful programs to handle compressed archives.
Get gzip and unzip for Windows at ftp://ftp.freesoftware . com/pub/infozip/
WIN32 and for MSDOS at ftp: //ftp . freesoftware . com / pub / infozip / MSDOS.
Don’t use pkunzip for MSDOS, it doesn’t work. The programs to use BZip2 archives
may be found at http: //sourceware . cygnus . com/bzip2. Just put the programs
(unzip.exe, gzip.exe, bzip2.exe) into a directory of your search path (e.g. C:\DOS or
CAWINDOWS\COMMAND; have a look at the PATH variable).

ftp://ftp.freesoftware.com/pub/infozip/WIN32
ftp://ftp.freesoftware.com/pub/infozip/WIN32
ftp://ftp.freesoftware.com/pub/infozip/MSDOS
http://sourceware.cygnus.com/bzip2

Chapter 5: Basic operation 28

5.5.4 Using Zipcode and Lynx images

Since version 0.15, the VICE emulators have been able to attach disks packed with Zipcode
or Lynx directly, removing the need to manually convert them into D64 or X64 files with
c1541. This is achieved by automatically invoking c1541, letting it decode the file into a
temporary image and attaching the resulting temporary image read-only. For this to work,
the directory containing c1541 must be in your PATH.

This uses the —unlynx and -zcreate options of c1541 (see Section 12.3 [c1541 commands
and options|, page 148); these commands are not very reliable yet, and could fail with
certain kinds of Lynx and Zipcode images (for example, they cannot deal with DEL files
properly). So please use them with caution.

Lynx files usually come as ‘.1nx’ files which are unpacked into single disk images. On the
other hand, Zipcode files do not have a particular extension (although ‘.z64’ is sometimes
used), and represent a disk by means of component files, named as follows:

e ‘1INAME’

e ‘2INAME’
e ‘3INAME’
e ‘4INAME’

If you attach as a disk image (or smart-attach) any one of these files, the emulator will
simply pick up the other three (by examining the name) and then build a disk image using
all four.

5.6 Resetting the machine
You can reset the emulated machine at any time by using the “Reset” command from the
command menu. There are two types of reset:
e soft reset, which simply resets the CPU and all the other chips;
e hard reset, which also clears up the contents of RAM.
A soft reset is the same as a hardware reset achieved by pulling the RESET line down; a

hard reset is more like a power on/power off sequence in that it makes sure the whole RAM
is cleared.

It is possible that a soft reset may not be enough to take the machine to the OS initialization
sequence: in such cases, you will have to do a hard reset instead.

This is especially the case for the CBM-II emulators. Those machines examine a memory
location and if they find a certain "magic" value they only do what you know from the C64
as Run/Stop-Restore. Therefore, to really reset a CBM-II use hard reset.

Chapter 6: Settings and resources 29

6 Settings and resources

In the VICE emulators, all the settings are stored in entities known as called resources.
Each resource has a name and a value which may be either an integer or a string. Integer
values are often used as boolean values with the usual convention of using zero for “false”
and any other value for “true”.

Resource values can be changed via the right-button menu (the settings menu), via
command-line options or via the resource file.

The resource file is a human-readable file containing resource values: it is called ‘vicerc’
and is stored in the directory ‘.vice/’ in the user’s home directory. It is possible to dump
the current values of the resources into that file or load the values stored into that file as the
current values, at any time. This is achieved with the “Save settings” and “Load settings”
right menu items. A third menu item, “Restore Default Settings”, can be used to reset all
the values to the factory defaults.

A special resource, SaveResourcesOnExit, if set to a non zero value, causes the emulator
to ask you if you want to save the current (changed) settings before exiting, and can be
toggled with the “Save settings on exit” command from the right-button menu.

Notice that not all the resources can be changed from the menus; some of them can only
be changed by manually modifying the resource file or by using command-line options.

6.1 Format of resource files

A resource file is made up of several sections; sections have the purpose of separating the
resources of a certain emulator from the ones of the other emulators. A section starts with
the name of an emulator in brackets (e.g., ‘[C64]’) and ends when another section starts
or when the file ends.

Every line in a section has the following format:
RESOURCE=VALUE

where RESOURCE is the name of a resource and VALUE is its assigned value. Resource names
are case-sensitive and resource values are either strings or integers. Strings must start and
end with a double quote character ("), while integers must be given in decimal notation.

Here is an example of a stripped-down ‘.vice/vicerc’ file:

[VIC20]
HTMLBrowserCommand="netscape %s"
SaveResourcesOnExit=0
FileSystemDevice8=1
FSDevice8ConvertP00=1
FSDevice8Dir="/home/ettore/cbm/stuff/vic20p00"
FSDevice8SaveP00=1
FSDevice8HideCBMFiles=1

[C64]
HTMLBrowserCommand="netscape %s"
SaveResourcesOnExit=1
FileSystemDevice8=1
FSDevice8ConvertP00=1

Chapter 6: Settings and resources 30

FSDevice8Dir="/home/ettore/cbm/stuff/c64p00"
FSDevice8SaveP00=1
FSDevice8HideCBMFiles=1

Notice that, when resource values are saved with “Save settings”, the emulator only modifies
its own section, leaving the others unchanged.

6.2 Using command-line options to change resources

Resources can also be changed via command-line options.

Command-line options always override the defaults from .vice/vicerc, and their assign-
ments last for the whole session. So, if you specify a certain command-line option that
changes a certain resource from its default value and then use “Save Settings”, the value
specified with the command-line option will be saved back to the resource file.
Command-line options can begin with with a minus sign (‘-’) or with a plus sign (‘+).
Options beginning with a minus sign may require an additional parameter, while the ones
beginning with the plus sign never require one.

Moreover, options beginning with a plus sign always have a counterpart with the same
name, but with a minus sign; in that case, the option beginning with a minus sign is used
to enable a certain feature, while the one beginning with a plus sign is used to disable
the same feature (this is an X11 convention). For example, -mitshm enables support of
MITSHM, while +mitshm disables it.

6.3 Autostart settings

6.3.1 Autostart resources

AutostartPrgDiskImage
String specifying the filename of the disk image used when autostarting a prg
file and "copy to D64" is enabled.

AutostartBasicLoad
Boolean, if true load to basic start using ,8 when autostarting.

AutostartRunWithColon
Boolean, if true put a colon after the load command when autostarting.

AutostartHandleTrueDriveEmulation
Boolean, if true handle (enable/disable) True Drive Emulation on autostart.

AutostartWarp
Boolean, if true temporarily enable warp mode when autostarting

AutostartPrgMode
Integer specifying the autostart mode for prg files. (0: virtual filesystem, 1:
inject to RAM, 2: copy to D64)

AutostartDelayRandom
Boolean, enables a short random delay on autostart.

AutostartDelay
Integer specifying the maximum delay in frames.

Chapter 6: Settings and resources 31

6.4 Performance settings

It is possible to control the emulation speed by using the “Maximum speed” menu item in
the right-button menu. The default setting is 100, which causes the emulation to never run
faster than the real machine. A higher value allows the emulator to run faster, a lower one
may force it to run slower. The setting “No limit” means to run as fast as possible, without
limiting speed.

It is also possible to control the emulator’s rate of frame update using the “Refresh rate”
setting; the value ranges from “1/1” (update 1/1 of the frames of the real machine, that
is 50 frames per second) to “1/10” (update 1 every 10 frames) and can be changed via the
“Refresh Rate” submenu. The “Auto” setting means to dynamically adapt the refresh rate
to the current speed of the host machine, making sure the maximum speed specified by the
via “Maxium speed” is always reached if possible. In any case, the refresh rate will never
be worse than 1/10 if this option is specified.

Note that you cannot simultaneously specify “Auto” as the refresh rate and “No limit” as
the maximum speed..

Moreover, a special warp speed mode is provided and can be toggled with the “Enable
Warp Mode” menu item. If this mode is enabled, it will cause the emulator to disable any
speed limit, turn sound emulation off and use a 1/10 refresh rate, so that it will run at the
maximum possible speed.

6.4.1 Performance resources
Speed Integer specifying the maximum relative speed, as a percentage. 0 stands for
“no limit”.

RefreshRate
Integer specifying the refresh rate; a value of n specifies a refresh rate of 1/n.
A value of 0 enables automatic frame skipping.

WarpMode Booolean specifying whether “warp mode” is turned on or not.

6.4.2 Performance command-line options

-speed VALUE
Specifies the maximum speed as a percentage. 0 stands for “no limit”. (Same
as setting the Speed resource.)

-refresh VALUE
Specifies refresh rate; a value of n specifies a refresh rate of 1/n. A value of 0
enables automatic frame skipping. (Same as setting the RefreshRate resource.)

-warp
+warp Enables/disables warp mode (WarpMode=1, WarpMode=0).

6.5 Video settings

The following right-button menu items control the video output. On emulators that include
two video chips (like x128) all options but XSync exist twice, once for each chip. XSync is
shared between the video chips.

Chapter 6: Settings and resources 32

e “Video Cache” enables a video cache that can speed up the emulation when little
graphics activity is going on; it is especially useful when you run the emulator on a
networked X terminal as it can reduce the network bandwidth required. However, this
setting can actually make the emulator slower when there is little graphics activity and
the amount of work needed to maintain the cache is greater than the amount of work
that would be wasted by not using it (if any).

e “Double Size” toggles double-size mode, which makes the emulation window twice as
big. When emulating a 80-column PET, only the height is doubled, so that the aspect
ratio is closer to that of the real thing.

e “Double Scan” toggles double-scan mode, which causes the emulator to draw only odd
lines when running in double-size mode (this saves some CPU time and also makes the
emulation window look more like an old monitor).

e ‘Use XSync()” causes the emulator to call the X11 function XSync () before updating
the emulation window: this might be necessary on low-end systems to prevent it from
consuming so many system resources that it becomes impossible for the user to interact
with it.

6.5.1 using openGL Rastersynchronization under X11

Warning: To get full retro experience with synchronization to the vertrical raster retrace
messing with X11 modelines (resolution and refresh frequencies) is necessary. This descrip-
tion is a suggestion - Follow this instructions at your own risk!

The following was tested under Ubuntu Linux (8.04) featuring Xorg Xserver 1:7.3+10ubuntu
and mesa openGL including HW support (NVIDIA driver) supporting glx version 1.4 sup-
plying GLX_SGI_video_sync.

It is assumed that this works also on other systems supporting the required extensions.
Preconditions:

e openGL extension GLX_SGI_video_sync in your X11 setup. The availability of the
extension is checked at startup.

e XRandR extension to switch proper modes (50Hz for PAL, 60Hz for NTSC) is manda-
tory, proper modelines in your /etc/X11/xorg.conf must be present.
If your systems lacks 50 or 60Hz modes you might try using ‘gtf’ (typcally shipped with
Xorg, xserver) - see related man page.
You might need to add the output such as:

800x600 # 50.00 Hz (GTF) hsync: 30.90 kHz; pclk: 31.15 MHz
Modeline "800x600_50.00" 31.15 800 824 904 1008 600 601 604 618 -HSync +Vsync

to you Monitor Section of /etc/X11/xorg.conf and add the resolution to the ‘Screen’ section.

Sometimes some consistency checks within the display driver drop this resolutions again.
To drop e.g. the autodetection features in the NVIDIA driver you might add Option
"UseEDID" "FALSE" in section Device.

XRandR cannot cope properly with the DynamicTwinView feature of the proprietary nvidia
driver. You might need

Option "DynamicTwinView" "False"

to get proper results (in Screen or Device section of you xorg.conf).

Chapter 6: Settings and resources 33

ATTENTION: Disabling such features might allow X11 to access your HW in a way that
it gets damaged! You are at your own risk!

Enable fullscreen (not necessary, but makes sense):

e choose your preferred resolution/refresh XRandR Resolutions and enable XRandR as
fullscreen device (50Hz/PAL or 60Hz/NTSC mode).

e Activate fullscreen with ‘Alt-D’.

e choose ‘OpenGL Rastersynchronization’ in the video chip menu (VIC-II Settings, VIC
Setting, etc.)

Note that:

e the current implementation is dropping synchronization silently in case the display
frequency isn’t aligned (50Hz for PAL, 60Hz for NTSC).

e On some systems the XRandR system isn’t informed about desktop display frequency
changes if you switch resolutions via hotkeys like CTRL-Alt-+ (Numpad), which is
possible e.g. with the X11 implementation of Xorg.

In that case you can override/tell the current frequency via menu: Settings->VICII
Settings->Desktop Refreshrate (e.g. in x64) (this shouldn’t be necessary if you use
fullscreen via XRandR.

6.5.2 Video resources

The following resources affect the screen emulation.

UseXSync DBoolean specifying whether XSync() is called after updating the emulation
window.

MITSHM Integer specifying whether VICE should try to use the shared memory exten-
sions (MITSHM) when starting up. The shared memory extensions make things
a lot faster but might not be available on your system. You will not be able to
use these extensions if you are sitting at an X terminal while running the em-
ulator on a remote machine across a network. Valid values are: 0 = do not use
MITSHM, 1 = do use MITSHM, -1 = try to autodetect availability on startup
(default). The last is a simple test if the emulator runs across a network and if
so disables MITSHM (If you have problems with this test please report it).

PrivateColormap
Boolean specifying whether VICE should install a private colormap at startup.
This makes sense for 8-bit displays that could run out of colors if other color-
hungry applications are running at the same time.

DisplayDepth
Integer specifying the depth of the host display. The value ‘0’ (the default)
causes the emulator to autodetect it.

UseFullscreen
Boolean specifying whether fullscreen mode is currently in use.

HwScalePossible
Boolean that indicates whether hardware scaling is possible or not.

Chapter 6: Settings and resources 34

openGL_sync
Boolean, if true enable Open-GL frame sync.

openGL_no_sync
Boolean, if true Open-GL sync is not available.

KeepAspectRatio
Boolean specifying whether the aspect ratio of the output window should be
preserved. (O=free scaling, 1=scale with fixed aspect ratio)

TrueAspectRatio
Boolean specifying whether to use the true (non square pixels) aspect ratio.

WindowOWidth
WindowOHeight
WindowOXpos
WindowOYpos
Integers specifying the position and size of the (first) emulator window.

WindowlWidth
WindowlHeight
WindowlXpos
WindowlYpos
Integers specifying the position and size of the (second) emulator window.

6.5.3 Video command-line options

-xsync

+xsync Enable/disable usage of XSync() when updating the emulation window
(UseXSync=1, UseXSync=0).

-mitshm

+mitshm Enable/disable usage of the MITSHM extensions (MITSHM=1, MITSHM=0).

-install

+install Enable/disable installation of a private colormap (PrivateColormap=1,
PrivateColormap=0).

—-displaydepth DEPTH
Specify the display depth (DisplayDepth).

-fullscreen

+fullscreen
Enable/disable fullscreen mode

6.6 Keyboard settings

It is possible to specify whether the “positional” or “symbolic” keyboard mapping should be
used with the “Keyboard mapping type” submenu (see Section 2.8 [Keyboard emulation],
page 10 for an explanation of positional and symbolic mappings).

The keyboard settings submenu also allows you to:

e Load custom-made positional and symbolic keymap files (“Set symbolic keymap file”
and “Set positional keymap file”).
e Dump the current keymap to a user-defined keymap file (“Dump to keymap file”).

Chapter 6: Settings and resources 35

6.6.1 Keyboard resources

KeymapIndex
Integer identifying which keymap is being used; 0 indicates symbolic mapping,
1 positional mapping. For the PET the even values represent symbolic map-
ping, odd positional. Then add 0 for UK business keyboard or 2 for graphics
keyboard.

KeymapSymFile
String specifying the name of the keymap file for the symbolic mapping (see
Section 2.8 [Keyboard emulation], page 10, all but PET and CBM-II).

KeymapSymDeFile
String specifying the name of the keymap file for the symbolic mapping (de)

KeymapPosFile
String specifying the name of the keymap file for the positional mapping (see
Section 2.8 [Keyboard emulation], page 10, all but PET and CBM-II).

KeymapBusinessUKSymFile

KeymapBusinessUKPosFile
String specifying the name of the keymap file for the symbolic and positional
mapping for the UK business keyboard (see Section 2.8 [Keyboard emulation],
page 10, PET and CBM-II).

KeymapGraphicsSymFile

KeymapGraphicsPosFile
String specifying the name of the keymap file for the symbolic and positional
mapping for the graphics keyboard (see Section 2.8 [Keyboard emulation],
page 10, PET only).

KeymapBusinessDESymFile

KeymapBusinessDEPosFile
String specifying the name of the keymap file for the symbolic and positional
mapping for the German business keyboard. (see Section 2.8 [Keyboard emu-
lation], page 10, PET only).

6.6.2 Keyboard command-line options

-keymap N Specifies which keymap is being used; 0 indicates symbolic mapping, 1 posi-
tional mapping (as for the KeymapIndex resource).

-symkeymap NAME
Specify ‘NAME’ as the symbolic keymap file (KeymapSymFile).

-poskeymap NAME
Specify ‘NAME’ as the positional keymap file (KeymapPosFile).

-symdekeymap NAME
Specify ‘NAME’ as the symbolic keymap file (KeymapSymDeFile).

Chapter 6: Settings and resources 36

-buksymkeymap NAME

-bukposkeymap NAME
Specify ‘NAME’ as the symbolic/positional keymap file for the UK business
keyboard (KeymapBusinessUKSymFile, KeymapBusinessUKPosFile, PET and
CBM-II).

-grsymkeymap NAME

—-grposkeymap NAME
Specify ‘NAME’ as the symbolic/positional keymap file for the graphics keyboard
(KeymapGraphicsSymFile, KeymapGraphicsPosFile, PET only).

-bdesymkeymap NAME

—bdeposkeymap NAME
Specify ‘NAME’ as the symbolic/positional keymap file for the German busi-
ness keyboard (KeymapBusinessDESymFile, KeymapBusinessDEPosFile, PET
only).

6.7 Joystick settings

6.7.1 Joystick resources

JoyDevicel

JoyDevice2

JoyDevice3

JoyDevice4d
Integer specifying which joystick device the emulator should use for joystick
emulation for ports 1 - 4, respectively. (0=None, 1=Numpad, 2=Keyset 1,
3=Keyset 2, 4=Analog joystick 1, 5=Analog joystick 2, 6=Analog joystick 3,
7=Analog joystick 4, 8=Analog joystick 5, 9=Analog joystick 6, 10=Digital
joystick 1, 11=Digital joystick 2, 12=USB joystick 1, 13=USB joystick 2 on
Unix) (0=None, 1=Numpad, 2=Keyset 1, 3=Keyset 2 on AmigaOS4) (0=None,
1=Numpad, 2=Joy0, 3=Joyl, 4=Joy2, 5=Joy3 on AmigaOS3, MorphOS and
AROS) (0=None, 1=Numpad, 2=Keyset 1, 3=Keyset 2, 4..19=Hardware joy-
sticks on BeOS) (0=None, 1=Numpad, 2=Keyset 1, 3=Keyset 2, 4=Joystick
1, 5=Joystick 2 on DOS) (0=None, 1=Joystick 1, 2=Joystick 2, 4=Numpad,
8=Keyset 1, 16=Keyset 2 on OS/2) (0=None, 1=Numpad, 2=Keyset 1, 3=Key-
set 2, 4=Joystick in SDL) (0=None, 1=Numpad, 2=Keyset 1, 3=Keyset 2,
4=HID joystick 0, 5=HID joystick 1 on Mac OS X) The available joysticks
might differ depending on operating system and joystick support in the OS
(Linux joystick module must be available for example).

JoyOpposite
Boolean, if true allow (usually impossible) bitcombinations for opposite direc-
tions.

ExtraJoy Boolean, enables extra joysticks if true.

ExtraJoyType
Integer specifying the type of adapter used for the extra joysticks. (0=Classical
Games/ Protovision, 1=PET, 2=Hummer, 3=0EM, 4=Digital Excess/Hitmen,
5=Kingsoft, 6=Starbyte)

Chapter 6: Settings and resources 37

Mouse Boolean, enables mouse emulation

Mousetype
Integer that specifies the type of emulated mouse. (0=1351, 1=NEOS,
2=Amiga, 3=Paddles, 4=Atari CX-22, 5=Atari ST, 6=Smart, 7=Micromys 8
= Koalapad)

Mouseport
Integer that specifies the joystick port the emulated mouse is connected to.
(1=port 1, 2=port 2)

Lightpen Boolean, enables lightpen emulation

LightpenType
Integer specifying the type of lightpen. (0=Pen with button Up, 1=Pen with
button Left, 2=Datel Pen, 3=Magnum Light Phaser, 4=Stack Light Rifle)

KeySet1NorthWest
KeySet1North

KeySet1NorthEast
KeySetlEast

KeySetl1SouthEast
KeySet1South

KeySet1SouthWest
KeySetlWest

KeySetl1Fire

Integers specifying the keycodes for keyset 1.

KeySet2NorthWest
KeySet2North

KeySet2NorthEast
KeySet2East

KeySet2SouthEast
KeySet2South

KeySet2SouthWest
KeySet2West

KeySet2Fire

Integers specifying the keycodes for keyset 2.

KeySetEnable
Boolean that specifies whether user defined keysets are enabled.

6.7.2 Joystick command-line options

-joydevl <range>

-joydev2 <range>
Set the device for joystick emulation of port 1 and 2, respectively. (JoyDevicel,
JoyDevice2). The range for unix is 0-8. The range for AmigaOS4 is 0-3. The
range for AmigaOS3, MorphOS, AROS, DOS and Mac OS X is 0-5. The range
for BeOS is 0-19. The range for OS/2 is, valid numbers in the range are 0, 1,
2, 4, 8 and 16. The range for SDL is 0-4.

Chapter 6: Settings and resources 38

—extrajoydevl <0-8>
-extrajoydev2 <0-8>
Set device for extra joystick port 1 and 2.

-mouse
+mouse Enable/Disable mouse grab

-mousetype <value>
Select the mouse type (0 = 1351, 1 = NEOS, 2 = Amiga, 3 = Paddles, 4 =
CX-22, 5 = ST, 6 = Smart))

-mouseport <value>
Select the joystick port the mouse is attached to

-lightpen
+lightpen
Enable/Disable lightpen emulation

-lightpentype <type>
Set lightpen type

6.8 Sound settings

The following menu items control sound output:
e “Enable sound playback” turns sound emulation on and off.

e “Sound synchronization” specifies the method for syncronizing the sound playback.
Possible settings are:

e “Flexible”, i.e., the audio renderer flexibly adds/removes samples to the output to
smoothly adapt the playback to slight changes in the speed of the emulator.

e “Adjusting” works like “flexible”, but supports bigger differences in speed. For
example, if the emulation speed drops down from from 100% to 50%, audio slows
down by the same amount too.

e “Exact”, instead, makes the audio renderer output always the same sounds you
would hear from the real thing, without trying to adapt the ratio; to compensate
the tolerances in speed, some extra frames will be skipped or added.

e “Sample rate” specifies the sampling frequency, ranging from 8000 to 48000 Hz (not all
the sound cards and/or sound drivers can support all the frequencies, so actually the
nearest candidate will be chosen).

e “Bulffer size” specifies the size of the audio buffer; the bigger the buffer, the longer the
delay with which sounds are played. You should pick the smallest value your machine
can handle without problems.

e “Sound suspend time”, will cause the audio playback to pause for the specified number
of seconds whenever some clicking happens. If “Keep going” is selected, no pausing is
done.

6.8.1 Sound resources

Sound Boolean specifying whether audio emulation is turned on.

Chapter 6: Settings and resources 39

SoundSpeedAdjustment
Integer specifying what speed adjustment method the audio renderer should
use. Possible values are:

e 0: “flexible”
e 1: “adjusting”
e 2: “exact”
SoundSampleRate
Integer specifying the sampling frequency, ranging from 8000 to 48000 Hz (not

all the sound cards and/or sound drivers can support all the frequencies, so
actually the nearest candidate will be chosen).

SoundBufferSize
Integer specifying the size of the audio buffer, in milliseconds.

SoundSuspendTime
Integer specifying the pause interval when audio underflows (“clicks”) happen.
0 means no pause is done.

SoundDeviceName

String specifying the audio driver.

Implemented drivers are:
e ahi, for the Amiga/Morphos/Aros sound driver.
e aix, for the IBM AIX sound driver.
e allegro, for the MSDOS Allegro sound driver.
e alsa, for the linux ALSA sound driver.
e arts, for the *nix ARTS sound driver.
e beos, for the BeOS/Zeta/Haiku sound driver.
e bsp, for the BeOS/Zeta/Haiku BeOS Media Kit sound driver.
e coreaudio, for the Mac OS X sound driver.
e dart, for the OS/2 sound driver.

e dummy, fully emulating the sound output chip(s), but not actually playing
samples.

e dump, writing all the write accesses to the registers to a file (specified by
SoundDeviceArg, default value is vicesnd.sid);

e dx, for the Windows Direct-X sound driver.

e fs, writing samples to a file (specified by SoundDeviceArg; default is
‘vicesnd.raw’);

e hpux, for the HP-UX audio device (unfinished; SoundDeviceArg specifies
the audio device, ‘/dev/audio’ by default).

e midas, for the MSDOS Midas sound driver.
e pulse, for the Pulseaudio sound driver.
e sdl, for the Simple DirectMedia Layer audio driver.

e sgi, for the Silicon Graphics audio device (SoundDeviceArg specifies the
audio device, ‘/dev/audio’ by default);

Chapter 6: Settings and resources 40

e speed, like dummy but also calculating samples (mainly used to evaluate
the speed of the sample generator);

e sun, for the Solaris and NetBDS audio device (unfinished; SoundDeviceArg
specifies the audio device, ‘/dev/audio’ by default).

e uss, for the Linux/FreeBSD Universal Sound System driver
(SoundDeviceArg specifies the audio device, ‘/dev/dsp’ by default);

e wmm, for the Windows Multimedia Waveout sound device.

These drivers will actually be present only if the VICE configuration script
detected the corresponding development support at the time of compilation.

SoundDeviceArg
String specifying an additional parameter for the audio driver (see
SoundDeviceName).

SoundRecordDeviceName
String specifying the driver used for sound recording.

Implemented drivers are:
e aiff, for the Apple Interchange File Format 16bit sound recorder driver.

e iff, for the Amiga Interchange File Format (8SVX) 8bit sound recorder
driver.

e mp3, for the MP3 sound recorder driver.
e voc, for the Creative Voice (VOC) sound recorder driver.
e wav, for the RIFF/WAYV sound recorder driver.

These drivers will actually be present only if the VICE configuration script
detected the corresponding development support at the time of compilation.

SoundRecordDeviceArg
String specifying additional arguments for sound recording.

SoundFragmentSize
Enum specifying the fragment size (0: very small, 1: small, 2: medium, 3: large,
4: very large)

SoundVolume
Integer specifying the master volume in percent. [100] (0..100)

SoundOutput
Enum specifying how the type of sound output. Output is selectable between
'system’ (system decides to use mono or stereo output based on the presence of
a stereo sid), 'always mono’ (output is always mono, stereo streams are mixed
into a mono stream) or ’always stereo’ (output is always stereo, mono streams
are multiplexed to a stereo stream). (0=system, 1=mono, 2=stereo)

6.8.2 Sound command-line options

-sound
+sound Turns sound emulation on (Sound=1) and off (Sound=0).

Chapter 6: Settings and resources 41

-soundsync N
Specify N as the sound speed adjustment method (SoundSpeedAdjustment).

-soundrate RATE
Specifies the sound playback sample rate (SoundSampleRate).

-soundoutput <output mode>
Sound output mode: (0: system decides mono/stereo, 1: always mono, 2: al-
ways stereo)

-soundbufsize SIZE
Specifies the size of the audio buffer in milliseconds (SoundBufferSize).

-soundfragsize <value>
Set sound fragment size (0 = small, 1 = medium, 2 = large)

—-sounddev NAME
Specifies the name of the audio device (SoundDeviceName).

-soundarg ARG
Specifies an additional parameter for the audio device (SoundDeviceArg).

-soundrecdev <name>
Specify recording sound driver

-soundrecarg <args>
Specify initialization parameters for recording sound driver

6.9 Tape settings

These settings are used to control the hardware-level emulation of the Tape drive.

6.9.1 Tape resources

DatasetteResetWithCPU
Boolean specifying whether to reset (rewind) the tape when resetting the CPU.

DatasetteZeroGapDelay
Integer specifying the delay in cycles for a zero in the tap.

DatasetteSpeedTuning
Integer specifying the number of cycles added to each gap in the tap.

6.9.2 Tape command-line options

—-dsresetwithcpu
+dsresetwithcpu
Enable/Disable automatic Datasette-Reset

—-dszerogapdelay <value>
Set delay in cycles for a zero in the tap

—-dsspeedtuning <value>
Set number of cycles added to each gap in the tap

Chapter 6: Settings and resources 42

6.10 Drive settings

These settings are used to control the hardware-level emulation of the Disk drives. When
hardware-level emulation is turned on, only drives 8 and 9 are being emulated.

The

The

following settings affect both drives:

“Enable true drive emulation” enables the (slow) hardware-level emulation of the drives
for maximum compatibility. This must be turned on for any of the following settings
to have effect.

“Drive sync factor” specifies the speed of the drive’s CPU. This can be used to help
loading certain programs that have trouble with the default PAL setting (for example,
programs designed for NTSC machines). The ratio is calculated as follows:

sync_factor = 65536 * clk_drive / clk_machine

where clk_drive and clk_machine are clock speeds in MHz. The menu lets you choose
between the PAL and NTSC values, and also lets you specify whatever value you want.
Be careful when changing it, though, because a wrong value can break things and even
corrupt disk images.

following settings, instead, are specific of each drive:

“Drive model” specifies the model of the drive being emulated. Warning: This will
reset the drive.

“Enable parallel cable” enables emulation of a SpeedDOS parallel cable; if you switch
this option on and replace the original Commodore ROMs with SpeedDOS-compatible
ones, you can speed up loading/saving times.

“Idle method” specifies which method the drive emulation should use to save CPU
cycles in the host CPU. There are three methods:

e Skip cycles: Each time the serial line is accessed by the C64, the drive executes all
the cycles since the last time it ran. If the number of elapsed cycles is larger than
a certain value, the drive discards part of them.

e Trap idle: The disk drive is still emulated upon serial line accesses as with the
previous option, but it is also always emulated at the end of each screen frame.
If the drive gets into the DOS idle loop, only pending interrupts are emulated to
save time.

e No traps: Like “Trap idle”, but without any traps at all. So basically the drive
works exactly as with the real thing, and nothing is done to reduce the power
needs of the drive emulation.

The first option (“Skip cycles”) is usually best for performance, as the drive is emulated
as little as possible; on the other hand, you may notice sudden slowdowns (when the
drive executes several cycles at once) and the LED status is never updated (because
it would not be possible to do correctly so). Moreover, if the drive tries to get in sync
with the computer in some weird way and the computer does not access the serial line
for a long time, it is possible that some cycles are discarded and the sync is lost. Notice
that this hack will have no effect on performance if a program continuously reads from
the TEC port, as the drive will have to be fully emulated in any case (some stupid
programs do this, even when they don’t actually need to use the drive).

Chapter 6: Settings and resources 43

The second option (“Trap idle”) is usually a bit slower, as at least interrupts are always
emulated, but ensures the LED state is always updated correctly and always keeps the
drive and the computer in sync. On the other hand, if a program installs a non-standard
idle loop in the drive, the drive CPU has to be emulated even when not necessary and
the global emulation speed is then much slower.

e “40-track image support” specifies how 40-track (“extended”) disk images should be
supported. There are three possible ways:

e “Never extend” never extends disk images at all (so if a program tries to write
tracks beyond the 35th, it is not allowed to do so);

e “Ask on extend” prompts the user as soon as a program tries to write tracks
beyond the 35th, and the user can then choose whether he wants the disk image
to be extended or not;

o “Extend on access” simply extends the disk image as soon the program needs it,
without prompting the user.

6.10.1 Drive resources

RawDriveDriver
String specifying the name of the device to be used for raw block access.

DriveTrueEmulation
Boolean controlling whether the “true” drive emulation is turned on.

DriveSoundEmulation
Boolean controlling whether the drive noise emulation is turned on.

Drive8Type

Drive9Type

DrivelOType

DrivellType
Integers specifying the model number for drives 8 to 11. Possible values are
1541, 1542 (1541-II), 1570, 1571, 1573 (1571CR), 1551, 1581, 1001, 2000,
2031, 2040, 3040, 4000, 4040, 8050, 8250.

Drive8ParallelCable

Drive9ParallelCable

DrivelOParallelCable

DrivellParallelCable
integer controlling what type of parallel cable is emulated for drives 8 to 11. (0:
none, 1: speed-DOS, 2: Professional DOS, 3: Formel64)

Drive8ProfD0S

Drive9ProfD0S

DrivelOProfD0S

Drivel1ProfD0S
Booleans controlling whether Professional DOS is emulated or not for drives 8
to 11.

Chapter 6: Settings and resources 44

Drive8RAM2000
Drive8RAM4000
Drive8RAM6000
Drive8RAM8000
Drive8RAMAOOO
Drive9RAM2000
Drive9RAM4000
Drive9RAM6000
Drive9RAM8000
Drive9RAMAOOO
Drive1ORAM2000
Drivel1ORAM4000
DrivelORAM6000
Drive1ORAM8000
DrivelORAMAOOQO
Drivel11RAM2000
Drivel11RAM4000
Drive11RAM6000
Drive11RAM8000
Drivel11RAMAOOQO
Booleans controlling whether a RAM block is emulated at the respective block
or not for drives 8 to 11.

Drive8ExtendImagePolicy

Drive9ExtendImagePolicy

DrivelOExtendImagePolicy

DrivellExtendImagePolicy
Integer specifying the policy for 40-track support for drives 8 to 11. Possible
values are 0 (never extend), 1 (ask on extend), 2 (extend on access).

Drive8IdleMethod

Drive9IdleMethod

Drivel0IdleMethod

DrivellIdleMethod
Integers specifying the idling method for the drive CPU. Possible values are 0
(none), 1 (skip cycles), 2 (trap idle). See Section 6.10 [Drive settings|, page 42.

Chapter 6: Settings and resources 45

DosName1541
DosNamel1541ii
DosName1570
DosNamel1571
DosNamel571cr
DosName1581
DosName2000
DosName4000
DosName2031
DosName2040
DosName3040
DosName4040
DosName1001
DosName1551
Strings specifying the names of the ROM images for the drive emulation.

DriveProfD0S1571Name
String specifying the filename of the 1571 professional DOS ROM image.

6.10.2 Drive command-line options

—truedrive

+truedrive
Turns true drive emulation on (DriveTrueEmulation=1) and off
(DriveTrueEmulation=0), respectively.

—-drivesound

+drivesound
Turns drive sound emulation on (DriveSoundEmulation=1) and off
(DriveSoundEmulation=0), respectively.

—drive8type TYPE

—drive9type TYPE

—-drivelOtype TYPE

-drivelltype TYPE
Specifies the drive types for drives 8-11, respectively. Possible values for TYPE
are 1541, 1542 (meaning 1541-1I), 1551, 15670, 1571, 1573 (meaning 1571cr),
1581, 2000, 4000, 2031, 2040, 3040, 4040, 1001, 8050 and 8250

-parallel8 <type>
-parallel9 <type>
-parallellO <type>
-parallelll <type>
Set parallel cable type (0: none, 1: standard, 2: Dolphin DOS)

Chapter 6: Settings and resources 46

-drive8idle NUM

-drive9idle NUM

-drivel0idle NUM

-drivellidle NUM
Specifies NUM as the idling method for drives 8-11 (0: no traps, 1: skip
cycles, 2: trap idle), respectively (Drive8IdleMethod, Drive9IdleMethod),
Drivel0IdleMethod), Drivel1IdleMethod).

-drive8extend NUM

-drive9extend NUM

-drivelOextend NUM

-drivellextend NUM
Specifies NUM as the track 40 extend policy in drives 8 and 9, respectively
(Drive8ExtendImagePolicy, Drive9ExtendImagePolicy).

-dos1541 <name>

-dos15411I1 <name>

-dos1551 <name>

-dos1570 <name>

-dos1571 <name>

-dos1571cr <name>

-dos1581 <name>

-dos2000 <name>

-dos4000 <name>

-dos2031 <name>

-dos2040 <name>

-dos3040 <name>

-dos4040 <name>

—-dos1001 <name>
Specify the ROM names for the 1541, 154111, 1551, 1570, 1571, 1571cr, 1581,
2000, 4000, 2031, 2040, 3040, 4040 and 1001 emulation respectively.

-drive8ram2000, +drive8ram2000
—-drive9ram2000, +drive9ram2000
-drivel0ram2000, +drivel0ram2000
—-drivellram2000, +drivell1ram2000
Enable/Disable 8KB RAM expansion at $2000-$3FFF

—-drive8ram4000, +drive8ram4000
-drive9ram4000, +drive9ram4000
—-drivel0ram4000, +drivel10ram4000
-drivellram4000, +drivellram4000
Enable/Disable 8KB RAM expansion at $4000-$5FFF

-drive8ram6000, +drive8ram6000
—-drive9ram6000, +drive9ram6000
—-drivel0ram6000, +drivel0ram6000
-drivellram6000, +drivellram6000
Enable/Disable 8KB RAM expansion at $6000-$7FFF

Chapter 6: Settings and resources 47

—-drive8ram8000, +drive8ram8000
-drive9ram8000, +drive9ram8000
-drivel0ram8000, +drivel0ram8000
—-drivellram8000, +drivell1ram8000
Enable/Disable 8KB RAM expansion at $8000-$9FFF

-drive8rama000, +drive8rama000
-drive9rama000, +drive9rama000
—-drivel0rama000, +drivel0rama000
—-drivellrama000, +drivellrama000
Enable/Disable 8KB RAM expansion at $A000-$BFFF

—-drive8profdos, +drive8profdos
—drive9profdos, +drive9profdos
—-drivelOprofdos, +drivelOprofdos
-drivellprofdos, +drivellprofdos
Enable/Disable Professional DOS

-profdos1571 <name>
Specify name of Professional DOS 1571 ROM image

6.11 Peripheral settings
VICE is able to support some special peripherals:

e file system devices, pseudo-drives accessing the Unix file system;

e Dprinters.

These features depend on some kernal traps that replace the existing routines in the original
Commodore operating system with custom-made C routines.

6.11.1 Settings for file system devices

These settings deal with the drive-like peripherals connected to the bus of the emulated
machine. The first setting relates to the parallel IEEE488 interface. With this interface a
special engine is used to listen to the bus lines to translates them to the filesystem code.
Thus the PET will always detect a drive for example, but it can also use drives 10 and 11
even together with true disk drive emulation.

e “Enable virtual devices”, enables the peripheral access via the fast disk emulation
(either kernal traps or IEEE488 interface). Both, filesystem and disk image access via
fast drive emulation, are affected.

Four peripherals, numbered from 8 to 11, are accessible; each of them provides the following
settings:

e “File system access”, if enabled, allows the device to emulate a drive accessing a file
system directory; note that when a disk image is attached to the same drive, the
directory is no longer visible and the attached disk is used instead.

e “File system directory” specifies the directory to be accessed by the drive.

e “Convert P00 file names”, if enabled, allows access to P00 files using their built-in
name instead of the Unix one.

Chapter 6: Settings and resources 48

e “Create P00 files on save”, if enabled, creates P00 files (instead of raw CBM files)
whenever a program creates a file.

Note that, by default, all drives create P00 files on save.

6.11.1.1 Resources for file system devices

TIECDevice8

TIECDevice9

TIECDevicelO

TIECDevicell
Booleans that specify whether IEC device emulation for device #8 to #11 is
enabled.

FileSystemDevice8

FileSystemDevice9

FileSystemDevicelO

FileSystemDevicell
Enum specifying the device type for device 8-11 (0: NONE, 1: FILESYSTEM,
2: OPENCBM (Real), 3: BLOCK DEVICE (Raw))

FSDevice8ConvertP00

FSDevice9ConvertP00

FSDevicelOConvertP0O

FSDevicellConvertP00O
Booleans specifying whether on-read support for P00 files is enabled on drives
8,9, 10 and 11 respectively (on by default).

FSDevice8SaveP00

FSDevice9SaveP00

FSDevice1l0SaveP00

FSDevicel1SaveP00
Booleans specifying whether the drives should create P00 files instead of plain
CBM ones (on by default for drives 8-10, off for 11).

FSDevice8HideCBMFiles

FSDevice9HideCBMFiles

FSDevicelOHideCBMFiles

FSDevicellHideCBMFiles
Booleans specifying whether non-P00 files should be invisible to programs run-
ning in the emulator (do not hide by default).

FSDevice8Dir
FSDevice9Dir
FSDevicelODir
FSDevicellDir
Strings specifying the directories to which drives 8, 9, 10 and 11 have access.

Chapter 6: Settings and resources 49

6.11.1.2 Command-line options for file system devices

—-iecdevice8
+iecdevice8
Enable/Disable IEC device emulation for device #8

—iecdevice9
+iecdevice9
Enable/Disable IEC device emulation for device #9

-iecdevicel0

+iecdevicelO
Enable/Disable IEC device emulation for device #10

-iecdevicell
+iecdevicell
Enable/Disable IEC device emulation for device #11

—device8 <type>

—-device9 <type>

-devicelQ <type>

—-devicell <type>
Set device type for device 8-11 (0: NONE, 1: FILESYSTEM, 2: OPENCBM
(Real), 3: BLOCK DEVICE (Raw))

-fs8 PATH

-fs9 PATH

-fs10 PATH

-fs11 PATH
Specify the paths for the file system access on drives 8, 9, 10 and 11, respectively
(FSDevice8Dir, FSDevice9Dir, FSDevicelODir and FSDevicellDir).

-flipname <name>
Specify name of the flip list file image

6.11.2 Printer settings

The VICE emulators can emulate printers connected to either the IEC buffer or the user
port. Emulation can be achieved by redirecting the printer output to a file or by piping
it through an external process. This is defined by so-called printer device file names; a
printer device file name can be either a simple path, or a command name preceeded by a
pipe symbol ‘|’.

For example, printer device ‘filename’ will cause the output to be appended to the file
‘filename’, while printer device ‘|1pr’ will cause the lpr command to be executed and be
fed the printer output. The printer output will not be converted but saved as printed by
the emulated machine.

Up to three printer devices may be specified through the following resources:
e device 1, whose default value is print.dump;
e device 2, whose default value is |1lpr.

e device 3, whose default value is |petlp -F PS|1pr;

Chapter 6: Settings and resources 50

So, basically, by default printer device 1 will dump printer output to ‘print.dump’; printer
device 2 will print it via 1pr directly to the printer and device 3 will print it via petlp (a
not-yet-complete utility that will produce Postscript output from the Commodore printer
code) and then to the printer via lpr.

6.11.2.1 Printer resources

TECDevice4

IECDeviceb

IECDevice6

IECDevice7
Booleans that specify whether IEC device emulation for device #4, #5, #6 and
#7 is enabled.

PrinterTextDevicel

PrinterTextDevice2

PrinterTextDevice3
Strings specifying the printer devices (see Section 6.11.2 [Printer settings],
page 49).

Printer4TextDevice

Printer5TextDevice
Integer (ranging from 0 to 2, for device 1-3) specifying what printer device (see
Section 6.11.2 [Printer settings|, page 49) the IEC printer is using.

Printer4
Printer5 Integer specifying how the IEC printer (device 4-5) is being emulated. (0:
NONE, 1: FS, 2: REAL)

Printer4Driver
Printer5Driver
String (ascii, mps803, nl10) specifying the IEC printer output driver.

Printer40utput
Printer50utput
String specifying the IEC printer output device.

PrinterUserport
Boolean specifying if the user-port printer is being emulated.

PrinterUserportTextDevice
Integer (ranging from 0 to 2, for device 1-3) specifying what printer device the
user-port, printer is using.

PrinterUserportDriver
String specifying the user-port printer output driver.

PrinterUserportOutput
String specifying the user-port printer output device.

Chapter 6: Settings and resources 51

6.11.2.2 Printer command-line options

-iecdeviced
+iecdeviced
Enable/Disable IEC device emulation for device #4

—-iecdeviceb
+iecdeviceb
Enable/Disable IEC device emulation for device #5

-iecdevice6
+iecdevice6
Enable/Disable IEC device emulation for device #6

-iecdevice7

+iecdevice?
Enable/Disable IEC device emulation for device #7

—-device4 <type>
—-deviceb <type>
Set device type for device 4-5 (0: NONE, 1: FS, 2: REAL)

-prtxtdevl <name>
-prtxtdev2 <name>
-prtxtdev3 <name>
Specify name of printer text device or dump file

-pré4txtdev <0-2>
-prbtxtdev <0-2>
Specify printer text output device for IEC printer #4-5

-pr4output <name>

-prb5output <name>
Specify name of output device for device #4-5 Specify name of output device
for device #5-5

-pr4drv <name>

-prb5drv <name>
Specify name of printer driver for device #4-5 Specify name of printer driver
for device #5-5

-pruser
+pruser Enable/disable emulation of the userport printer emulation (PrUser=1,
PrUser=0).

-prusertxtdev <0-2>
Specify printer text output device for userport printer

-pruseroutput <name>
Specify name of output device for the userport printer

-pruserdrv <name>
Specify name of printer driver for the userport printer

Chapter 6: Settings and resources 52

6.11.3 Disabling kernal traps

If you have compatibility problems, you can completely disable Kernal traps with the “Dis-
able kernal traps” option. This will of course disable all the features that depend on it, such
as the fast 1541 emulation (so you will have to turn true 1541 emulation on if you want to
be able to read or write disk images) and tape support.

6.11.3.1 Resources to control Kernal traps

VirtualDevices
Boolean specifying whether all the mechanisms for virtual device emulation
should be enabled. Serial IEC devices use kernal traps, parallel IEEE488 devices
use an own IEEEA488 engine. Both are switched on and off with this resource.

6.11.3.2 Command-line options to control Kernal traps

-virtualdev
+virtualdev
Enable (VirtualDevices=1) or disable (VirtualDevices=0) virtual devices.

6.12 RS232 settings

The VICE emulators can emulate the RS232 device most of the machines have. The C64,
C128 and VIC20 emulators emulate the userport RS232 interface at 300 and 1200 baud.
The C64 and C128 can also use the 9600 baud interface by Daniel Dallmann, using the shift
registers of the two CIA 6526 chips. The PET can have a 6551 ACIA RS232 interface when
running as a SuperPET, and the CBM-II has such an ACIA by default. The C64 and C128
emulators can emulate an ACIA 6551 (also known as Datapump for example) as extension
at $dexx*.

Emulation can be achieved by either:
e connecting a real UNIX serial device;
e dumping to a file;
e piping through a process.

It is possible to define up to four UNIX serial devices, and then decide which interface
should be connected to which device. This is done by so-called rs232 device file names; an
rs232 device file name can be either a simple path, or a command name preceeded by a
pipe symbol ‘|’. If the path specifies a special device (e.g. ‘/dev/ttyS0’) it is recognized
by VICE and the emulator can set the baudrate.

For example, rs232 device ‘filename’ will cause the output to be written (not appended) to
the file ‘filename’, while printer device ‘|1pr’ will cause the 1pr command to be executed
and be fed the rs232 output. The rs232 output will not be converted but saved as sent by
the emulated machine. The same holds true for the rs232 input. If the command writes
data to the standard output it will be caught by VICE and sent back to the emulator. Also
the data sent by the pseudo device will be sent back to VICE.

For example you can setup a null-modem cable between two serial ports of your PC, setup
one port for login and use the other in VICE. Then you can login from your emulator via
the RS232 emulation and the null-modem cable to your machine again.

Chapter 6: Settings and resources 53

You can not simply run a shell from VICE, as the shell will notice that it does not run on
its own pseudo terminal and will thus buffer its output. You need to write some program
that opens an own pseudo terminal and runs the shell from there (not yet finished).

Up to four RS232 devices may be specified through the following resources:
e device 1, whose default value is /dev/ttyS0;
e device 2, whose default value is /dev/ttyS1;

device 3, whose default value is rs232.dump;

e device 4, whose default value is |1lpr.

For the first two devices you can change the baudrate the tty device is set to by specifying
it on the commandline or in the menu. This baudrate is 9600 by default for the latter two,
but can be changed only by resources (The baudrate is independent from the baudrate the
emulator actually expects).

6.12.1 RS232 resources

RsDevicel

RsDevice2

RsDevice3

RsDevice4
Strings specifying the RS232 devices (see Section 6.12 [RS232 settings],
page 52).

RsDevicelBaud

RsDevice2Baud

RsDevice3Baud

RsDevice4Baud
Integer specifying the RS232 baudrate devices if the device file points to a
special device (like ‘/dev/ttyS0’; see Section 6.12 [RS232 settings|, page 52).

AcialDev Integer (ranging from 0 to 3, for device 1-4) specifying what RS232 device (see
Section 6.12 [RS232 settings|, page 52) the ACIA is using (All emulators except
C64DTV and VSID, and only if RS232 support is enabled and supported at
compile time).

AcialIrq Integer specifying which interrupt to use. 0 = none, 1 = IRQ, 2 = NMI (C64,
VIC20 and C128 only, and only if RS232 support is enabled and supported at
compile time)

RsUserEnable

Boolean specifying if the user-port RS232 interface is being emulated (C64,
C128 and VIC20).

RsUserBaud
Integer specifying the baudrate of the user-port RS232 interface (C64, C128
and VIC20).

RsUserDev
Integer (ranging from 0 to 3, for device 1-4) specifying what RS232 device the
user-port interface is using (C64, C128 and VIC20).

Chapter 6: Settings and resources 54

6.12.2 RS232 command-line options

-rsdevl NAME

-rsdev2 NAME

-rsdev3 NAME

-rsdev4 NAME
Specify NAME as RS232 devices 1, 2, 3 and 4, respectively (RsDevicel,
RsDevice2 RsDevice3 and RsDevice4).

-rsdevl BAUDRATE

-rsdev2 BAUDRATE

-rsdev3 BAUDRATE

-rsdev4 BAUDRATE
Specify BAUDRATE as baudrate for the RS232 devices if the device name
specifies a special device (like ‘/dev/ttyS0’ for example, see Section 6.12
[RS232 settings|, page 52; RsDevicelBaud, RsDevice2Baud RsDevice3Baud
and RsDevice4Baud).

-myaciadev <0-3>
Specify RS232 device the ACIA should work on (all emulators except C64DTV
and VSID)

-rsuser
+rsuser Enable or disable emulation of the userport RS232 emulation (RsUser; C64,

C128 and VIC20)

-rsuserbaud <baud>
Set the baud rate of the RS232 userport emulation.

-rsuserdev <0-3>
Specify device for the userport RS232 emulation (RsUserDev; C64, C128 and
VIC20).

6.12.3 RS232 usage example

Here we give you a simple example how to set up an emulated C64 using the modem
connected to your PC. The following list shows each step.

Attach your modem to your PC at a serial port.
Normally you should set it up to use the modem as "/dev/modem".

start VICE

Setup VICE to use your modem as "serial device 1"
Go to the RS232 settings menu and change "Serial 1 device" to " /dev/modem"
(or the device where you attached your modem to) Then go to the RS232
settings menu and change "Serial 1 baudrate" to the baudrate your modem
should run at. Watch out, e.g. on Linux there is an additional multiplier to
multiply with the baudrate (so e.g. 19200 gives 115200 or so baud) See the
"setserial" manpage on Linux for example. However, most modems should be
able to autodetect the speed to the computer as well.

Chapter 6: Settings and resources 55

Select the RS232 emulation your programs use
If you want to use the Userport emulation, go to the RS232 settings and change
"Userport RS232 Device" to "Serial 1". If you want ACIA emulation (swiftlink
or what’s it called?) then change "ACIA $DE** device" to "Serial 1".

Enable the emulation
Go to the RS232 settings and select either "ACIA $DE** emulation" or User-
port 300/1200 baud or CIA 9600 baud emulation.

Load your program and start it.
If it is able to detect an RS232 cartridge like swiftlink or so, try to detect the
ACTA emulation if enabled. Otherwise just set the baudrate to either 300, 1200
or 9600 according to what you enabled in the VICE menu for the userport.

6.13 Monitor settings

This section lists command-line options specific to the built-in monitor.

6.13.1 Monitor resources

KeepMonitorOpen
Boolean, if true the monitor window may stay open when the emulation is
running, eg to look at trace-point output. (Not all ports/Uls support this, in
that case this setting has no effect.)

MonitorServer
Boolean specifying whether the remote monitor server is enabled.

MonitorServerAddress
String specifying the address the remote monitor server listens to
(ip4://127.0.0.1:6510)

6.13.2 Monitor command-line options

-moncommands FILENAME
Execute the commands from the file FILENAME in the monitor after starting
up. This command line switch is mainly thought to load labels and to set
breakpoints. Not all other commands are useful to be executed in this way,
some may even lead to strange effects.

-initbreak <address>
Set an initial breakpoint for the monitor. Addresses with prefix "0x" are hex-
adecimal.

-remotemonitor
+remotemonitor
Enable/Disable remote monitor

-remotemonitoraddress <name>
The local address the remote monitor should bind to

Chapter 6: Settings and resources 56

6.14 Machine settings

6.14.1 Machine resources

MachineVideoStandard
Integer that specifies the video standard of the emulated machine. (-1: PAL,
-2: NTSC, -3: NTSC (old), -4: PAL-N)

6.14.2 Machine command-line options

-pal Use PAL sync factor
-ntsc Use NT'SC sync factor
-ntscold Use old NTSC sync factor
-paln Use PAL-N sync factor

6.15 Memory settings

6.15.1 Memory resources

RAMInitStartValue
Integer specifying the value for the very first RAM address after powerup

RAMInitValueInvert
Integer specifying the length of the memory block initialized with the same
value

RAMInitPatternInvert
Integer specifying the length of the memory block initialized with the same
pattern

6.15.2 Memory command-line options

-raminitstartvalue <value>
Set the value for the very first RAM address after powerup

-raminitvalueinvert <num of bytes>
Length of memory block initialized with the same value

-raminitpatterninvert <num of bytes>
Length of memory block initialized with the same pattern

6.16 Miscellaneous settings

This section lists generic resources that do not fit in the other categories.

6.16.1 Miscellaneous resources

Directory
String specifying the search path for system files. It is defined as a sequence
of directory names, separated by colons (‘:’), just like the PATH variable in
the shell. The special string ‘$$’ stands for the default search path, which is
initialized at startup to the following value:

Chapter 6: Settings and resources 57

LIBDIR/EMUID:$HOME/ .vice/EMUID:BOOTPATH/EMUID: LIBDIR/DRIVES: $HOME/ .vice/DRIVES:BO
where:

e LIBDIRis the VICE installation directory (usually ‘/usr/local/lib/vice’]
‘/usr/lib/vice’ or ‘/opt/vice/lib’);

e EMUID is the emulation identification string (C64, C128, VIC20 or PET);

e BOOTPATH is the directory where the binary lies (usually ‘/usr/local/bin’,
‘/usr/bin’ or /opt/vice/bin).

e DRIVES is the directory called "DRIVES", where the disk drive ROMs
are. (The disk drive ROMs are used by all emulators, so there is an extra
directory for them.)

Notice that the middle entry points to a default location in the user’s home
directory. Here private ROM versions (e.g. speeddos or JiffyDos) can be stored
for example.

See Chapter 4 [System files|, page 19. for a description of the method used to
load the emulator’s system files.

HTMLBrowserCommand
String specifying the command to run the help browser. The help browser can
be any HTML browser, and every ‘%s’ in the string is replaced with the name
of the toplevel file of the VICE documentation. For example, the default value
‘netscape %s’ runs Netscape Navigator.

SaveResourcesOnExit
Boolean specifying whether the emulator should save changed settings before
exiting. If this is enabled, the user will be always prompted first, in case the
settings have changed.

DoCoreDump
Boolean specifying whether the emulator should dump core when it gets a
signal.

NetworkServerName
String specifying the name of the remote server.

NetworkServerBindAddress
String specifying the IP of the remote server.

NetworkServerPort
Integer specifying the port used for network play.

NetworkControl
Integer specifying whether the emulator is running as server or client (0: client,
1: server)

LogFileName
String specifying the filename of the current log file.

FliplistName
String specifying the filename of the current flip list. (Drive 8 only)

Chapter 6: Settings and resources 58

ConfirmOnExit
Boolean specifying whether to show a confirmation dialog on exit.

AttachDevice8Readonly
AttachDevice9Readonly
AttachDevicelOReadonly
AttachDevicellReadonly
Booleans that specify whether to attach images on drives 8 to 11 read-only.

RomsetArchiveName
String specifying the filename of the ROM set archive (.vra) file ["default"]

RomsetArchiveActive
String specifying the active configuration of the current ROM set archive [""]

RomsetFileName
String specifying the filename of the ROM set resource file ["default"]

RomsetSourceFile
Boolean specifying the type of currently used ROM set (0: .vra Archive, 1:
resource file) [1]

6.16.2 Miscellaneous command-line options

—directory SEARCHPATH
Specify the system file search path (Directory).

-htmlbrowser COMMAND
Specify the command to run the HTML browser for the on-line help
(HTMLBrowserCommand).

-saveres
+saveres Enable/disable automatic saving of settings on exit (SaveResourcesOnExit=1,
SaveResourcesOnExit=0).

—confirmexit
Confirm quiting VICE

+confirmexit
Never confirm quiting VICE

-core Enable generation of core dumps (DoCoreDump=1)

+core Disable generation of core dumps (DoCoreDump=0)

Chapter 7: Machine-specific features 59

7 Machine-specific features

7.1 C64/128-specific commands and settings

This section lists the settings and commands that are C64/128 specific and thus are not
present in the other emulators.

7.1.1 Using cartridges

The cartridge system is organized in "Slots" to allow more than one cartridge connected at
a time, like it can be done using an expansion port expander on a real C64 (see below).

Generally a cartridge can be enabled by attaching its respective cartridge image, or using
the respective menu option for cartridges that do not require an image.

x64, x64sc and x128 allow you to attach the following kinds of images:

e ‘.crt’ images, as used by the CCS64 emulator by Per Hkan Sundell

e raw ‘.bin’ images, with or without load address
Cartridge images are like disk images, but contain the contents of cartridge ROM and/or
RAM images instead of disk images.

To attach cartridges, use the “Attach a cartridge image” submenu. When using ‘.crt’
images, this will work for every cartridge which is supported. For raw ‘.bin’ images you
might have to use command line options.

When you have successfully attached a cartridge image, you should then reset the machine
to make sure the cartridge initializes itself. (Or enable the "reset on cartridge change"
option).

Of course, it is also possible to detach a currently attached cartridge image (“Detach car-
tridge image”).

If you are using a freezer cart like an Action Replay cartridge, you can emulate the cartridge’s
freeze button with the “Cartridge freeze” command.

The imaginary expansion port expander is organized in 4 slots, the cartridges are associated
with them like this:

7.1.1.1 Slot 0

All carts that have a passthrough connector go here. Once a "Slot 0" cartridge is enabled
all further cartridges are connected to its respective passthrough port.

Only one cartridge of this type can be active at a time.
"Slot 0" carts have individual "enable" switches, enabling means enabling permanently.
The following cartridges are emulated in this slot:

e IEEE-488 Interface (http://www.funet.fi/pub/cbm/schematics/cartridges/c64/ieee-|j
488/eprom.bin)

e Magic Voice
e MMC64

Chapter 7: Machine-specific features 60

7.1.1.2 Slot 1

Mostly RAM based cartridges which for one reason or the other might make sense to be
enabled together with one of the "Main Slot" cartridges go here.

Only one cartridge of this type can be active at a time.

"Slot 1" carts have individual "enable" switches, enabling means enabling permanently
The following cartridges are emulated in this slot:

Double Quick Brown Box (DQBB)

Expert Cartridge

e ISEPIC

e RamCart

7.1.1.3 Main Slot

All other cartridges which are not pure i/o extensions go here.

Only one cartridge of this type can be active at a time.
Cartridges in the "Main Slot" must be explicitly set as default to enable them permanently.
The following cartridges are emulated in this slot:

e generic 4K, 8K and 16K game- and ultimax cartridges

e Action Replay V5

e Action Replay MK2

e Action Replay MK3

e Action Replay MK4

e Atomic Power

e (64 Games System

e Capture

e Comal 80

e Dela EP64

e Dela EP7x8

e Dela EP256

e Diashow-Maker

e Dinamic

e FKEasyFlash

e Epyx FastLoad

e EXOS

e The Final Cartridge

e The Final Cartridge I11

e Final Cartridge Plus

o Freeze Frame

e Freeze Machine

e Fun Play

Chapter 7: Machine-specific features

Game Killer

IDE64 (http://www.ide64.org/)

KCS Power Cartridge
MACH 5

Magic Desk

Magic Formel

Mikro Assembler
MMC Replay

Ocean

Prophet64

REX 256k EPROM Cart
REX Utility

Retro Replay

ROSS

Simons’ BASIC
Snapshot 64

Stardos

Structured BASIC
Super Explode V5.0
Super Games

Super Snapshot V4
Super Snapshot V5
Warp Speed
Westermann Learning

Zaxxon

7.1.1.4 1/0 Slot

All carts that are pure I/O extensions go here.

Any number of "I/O Slot" Carts may be active at a time.

61

"I/O Slot" carts have individual "enable" switches, enabling means enabling permanently.

The following cartridges are emulated in this slot:
ACIA (Swiftlink, Turbo232)

DigiMAX

Ethernet (The Final Ethernet, RR-Net)

GEO-RAM

MIDI (Passport/Syntech, Datel/Siel/JMS/C-Lab, Maplin, Namesoft, Sequential)
RAM Expansion Module (REU)

SFX Sound Expander
SFX Sound Sampler

Chapter 7: Machine-specific features 62

7.1.1.5 Expected behaviour

When the emulator is run without arguments, all settings from the config file should be
applied and arguments override settings from the config file.

When saving the settings to the config file it is expected that on the next run of the emulator
all settings will be in the same state as they were when saved.

There is an exception to this rule: the cartridge in the "Main Slot" must be explicitly set
as default before it gets saved to the config file.

+cart should disable ALL cartridges, including eventually activated REU, Swithlink and
all similar expansionport devices.

-cartXYZ options should generally attach AND activate a cart of type XYZ. As a conse-
quence, attaching carts this way which are NOT in the "Main Slot" will also enable the
cart permanently.

7.1.1.6 Common problems

If attaching a cartridge does not work as expected, this may be because of various reasons:

e Not seldomly the CRT type is incorrectly set in .crt files found "in the wild". Make
sure this is not the case (if in doubt use cartconv to verify and/or fix).

e You may have unintentionally enabled more than one cartridge at once, for example
by saving the settings with REU enabled, and then later attaching a game cartridge
from the command-line. The cartridge system will allow certain combinations, but (as
on the real thing) not all do (can) actually work. To make sure this is not the case,
either detach all cartridges from the menus, or use +cart on the command-line.

e The cartridge image might be broken. Try one from a different source. If you are sure
the dump is ok (for example because you dumped it yourself) then make sure it is in
proper linear order (on some cartridges, for example "capture", address and/or data
lines at the eprom are shuffled around so a dump made with an eprom burner can not
be used as is).

e Last not least you might have encountered a bug in the emulation. If you suspect this
is the case, and you can still reproduce the bug after checking the things above, please
file a bug report including the following information:

e attach your vicerc and a reference to the cartridge binaries

e if you can, comment in the respective DEBUGXYZ macros prominently defined
at the top of these files: src/c64/cart/c64cart.c src/c64/cart/c64cartmem.c
src/c64/c64io.c src/c64/c64export.c and then recompile. this will add debug
output that might make it much easier to locate certain problems.

7.1.1.7 TEEE-488 interface

To be able to use an IEEE drive, you need to enable IEEE emulation for the emulator. To
do this, follow the following steps:

Download the IEEE 488 ROM image from the CBM archives (formerly known as FUNET)
Attach that image with File/Attach cartridge image/IEEE488 interface image.
Make sure you have a one-drive system only (that is, go to Settings/Peripheral Setting,

uncheck "use IEC device" for all devices, go to Settings/Drive Settings and select "Floppy
type" as "none" for all drives other than drive 8.

Chapter 7: Machine-specific features 63

After this, all drives can be selected in x64 and x128.

7.1.1.8 The Final Cartridge 3

The Final Cartridge 3 detects whether a mouse is connected when it starts and disables
mouse support if it doesnt detect one. So to make mouse emulation work you must either
enable it on the command line, or reset the cartridge after enabling it from the user interface.

7.1.2 C64 cartridge settings

7.1.2.1 C64 cartridge resources

I0CollisionHandling
Integer specifying the way the I/O collisions should be handled, (0: error mes-
sage and detach all involved carts, 1: error message and detach last attached
involved carts, 2: warning in log and ’AND’ the valid return values)

CartridgeReset
Boolean specifying whether the machine should be reset when a cartridge is
changed.
CartridgeType
Integer specifying the type of cartridge emulated in the "main" slot
CartridgeFile
String specifying the filename of the image for the cartridge emulated in the
"main" slot
DQBB Boolean specifying whether the Double Quick Brown Box should be emulated
or not.
DQBBfilename

String specifying the filename of the DQBB RAM image.

DQBBImageWrite
Boolean, if true write back the DQBB image file automatically, incase the RAM
contents changed, when detaching or quitting the emulator.

EasyFlashJumper
Boolean specifying whether the Easy Flash jumper is set.

EasyFlashWriteCRT
Boolean, if true write back the Easy FLash image file automatically, incase the
contents changed, when detaching or quitting the emulator.

ExpertCartridgeEnabled
Boolean specifying whether the Expert Cartridge should be emulated or not.

Expertfilename
String specifying the filename of the Expert Cartridge RAM image.

ExpertImageWrite
Boolean, if true write back the Expert Cartridge image file automatically, incase
the RAM contents changed, when detaching or quitting the emulator.

Chapter 7: Machine-specific features 64

ExpertCartridgeMode
Enum specifying the state of the expert cartridge switch (0O=off 1=prg 2=on)

IDE64Config
String encoded content of IDE64 DS1302 RAM, used to store IDEDOS setup

parameters. Not meant to be directly manipulated as content depends on the
version of IDEDOS used.

IDE64version4
Boolean specifying whether the emulated card version is V4.1 or V3.4. This is
automatically detected most of the time for .crt cartridge images.

IDE64RTCOffset
Integer in seconds which gives the difference between the local time and the
time of the emulated DS1302 RTC.

IDE64Imagel

IDE64Image?2

IDE64Image3

IDE64Image4d
String specifying the full path to the four harddisk images. If a file is non-
existing the drive is not emulated. Some older IDEDOS versions only support
the first two harddisks.

IDE64Cylindersl
IDE64Cylinders?2
IDE64Cylinders3
IDE64Cylinders4
Number of cylinders for the four harddisk images. Valid range is 1-65535.

IDE64Heads1
IDE64Heads?2
IDE64Heads3
IDE64Heads4
Number of heads for the four harddisk images. Valid range is 1-16.

IDE64Sectorsi
IDE64Sectors?2
IDE64Sectors3
IDE64Sectors4
Number of sectors for the four harddisk images. Valid range is 1-63.

IDE64AutodetectSizel

IDE64AutodetectSize2

IDE64AutodetectSize3

IDE64AutodetectSized
Boolean specifying whether the disk geometry should be auto detected based on
the disk image for the respective harddisk, or the cylinder/head/sector resources
above should be used.

IDE64USBServerAddress
String specifying the address the IDE64 USB server listens to
(ip4://127.0.0.1:64245)

Chapter 7: Machine-specific features 65

IDE64USBServer
Boolean specifying whether the IDE64 USB server is enabled.

IEEE488 Boolean specifying whether the IEEE488 interface should be emulated or not.

IEEE488Image
String specifying the filename of the IEEE488 ROM image

IsepicCartridgeEnabled
Boolean specifying whether ISEPIC should be emulated or not.

Isepicfilename
String specifying the filename of the ISEPIC RAM image.

IsepicSwitch
Boolean specifying the status of the ISEPIC switch (0: off, 1: on)

IsepicImageWrite
Boolean, if true write back the ISEPIC image file automatically, incase the
RAM contents changed, when detaching or quitting the emulator.

MagicVoiceCartridgeEnabled
Boolean specifying whether the Magic Voice should be emulated or not.

MagicVoiceImage
String specifying the filename of the Magic Voice ROM image

MMC64 Boolean specifying whether the MMC64 should be emulated or not.

MMC64BI0Sfilename
String specifying the filename of the MMC64 Flash ROM image.

MMC64_bios_write
Boolean, if true write back the MMC64 Flash ROM image file automatically,
incase the contents changed, when detaching or quitting the emulator.

MMC64_flashjumper
Boolean that specifies whether the MMC64 flash jumper is set.

MMC64_revision
Integer that specifies the MMC64 hardware revision (0=Rev. A, 1=Rev. B)

MMC64imagefilename
String specifying the filename of the SD-Card image used by the MMC64 em-
ulation.

MMC64_R0O Boolean, if true the SD-Card image is mounted read-only.

MMC64_sd_type
Integer that specifies the reported type for the emulated SD-Card. (0=Auto,
1=MMC, 2=SD, 3=SDHC)

MMCRCardImage
String that specifies the filename of the SD-Card image used by the MMCR
emulation.

MMCREEPROMImage
String that specifies the filename of the MMCR EEPROM image.

Chapter 7: Machine-specific features 66

MMCRRescueMode

Boolean that specifies if the rescue mode (both buttons pressed during powerup)
of the MMCR is active.

MMCRImageWrite
Boolean, if true write back the MMCR Flash ROM image file automatically,
incase the contents changed, when detaching or quitting the emulator.

MMCRCardRW
Boolean that specifies if the SD-Card image used by the MMCR emulation is
writeable.

MMCRSDType
Integer that specifies the reported type for the emulated SD-Card. (0=Auto,
1=MMC, 2=SD, 3=SDHC)

MMCREEPROMRW
Boolean that specifies if the MMCR EEPROM image is writeable.
RAMCART Boolean specifying whether the RAMCart should be emulated or not.

RAMCARTfilename
String specifying the filename of the RAMCart RAM image.

RAMCARTImageWrite
Boolean, if true write back the RAMCart image file automatically, incase the
RAM contents changed, when detaching or quitting the emulator.

RAMCART_RO
Boolean, if true the RAMCart contents are read only

RAMCARTsize
Integer specifying the size of the RAMCart in KB (64, 128)

RRrevision
Integer specifying the RR hardware revision (O=retro replay, 1=nordic replay)

RRFlashJumper
Boolean specifying whether the RR flash jumper is set or not.

RRBankJumper
Boolean specifying whether the RR bank jumper is set or not.

RRBiosWrite
Boolean, if true write back the RR Flash ROM image file automatically, incase
the contents changed, when detaching or quitting the emulator.

7.1.2.2 C64 cartridge command-line options

-iocollision <method>
Select the way the I/O collisions should be handled, (0: error message and
detach all involved carts, 1: error message and detach last attached involved
carts, 2: warning in log and ’AND’ the valid return values

+cart Disable all cartridges (which would eventually be enabled in the config file).

Chapter 7: Machine-specific features

—cartreset
+cartreset
Reset /Do not reset machine if a cartridge is attached or detached

-cart8 <name>
Attach generic 8KB cartridge image

-cart16 <name>
Attach generic 16KB cartridge image

-cartultimax <name>
Attach generic 16kB Ultimax cartridge image

-cartcrt <name>
Attach CRT cartridge image

—-cartap <name>
Attach raw 32KB Atomic Power cartridge image

—-cartar2 <name>
Attach raw 16kB Action Replay MK2 cartridge image

—-cartar3 <name>
Attach raw 16KB Action Replay MK3 cartridge image

-cartar4 <name>
Attach raw 32KB Action Replay MK4 cartridge image

—-cartarb <name>
Attach raw 32KB Action Replay cartridge image

—-cartcap <name>
Attach raw 8kB Capture cartridge image

—-cartcomal <name>
Attach raw 64kB Comal 80 cartridge image

—-cartdep256 <name>
Attach raw Dela EP256 cartridge image

—-cartdep64 <name>
Attach raw Dela EP64 cartridge image

—-cartdep7x8 <name>
Attach raw Dela EP7x8 cartridge image

-cartdin <name>
Attach raw 128kB Dinamic cartridge image

-cartdsm <name>
Attach raw 8kB Diashow-Maker cartridge image

—-cartdgbb <name>

Attach raw 16kB Double Quick Brown Box cartridge image
-dgbb
+dgbb Enable/Disable Double Quick Brown Box

Chapter 7: Machine-specific features 68

—-dgbbimage <name>
Specify Double Quick Brown Box filename

-dgbbimagerw
+dgbbimagerw
Allow/Disallow writing to DQBB image

-carteasy <name>
Attach raw EasyFlash cartridge image

-easyflashjumper
+easyflashjumper
Enable/Disable EasyFlash jumper

-easyflashcrtwrite
+easyflashcrtwrite
Allow/Disallow writing to EasyFlash .crt image

-cartepyx <name>
Attach raw 8KB Epyx FastLoad cartridge image

—cartexos <name>
Attach raw 8kB EXOS cartridge image

-cartexpert <name>
Attach raw 8kB Expert Cartridge image

-expert
+expert Enable/Disable the Expert Cartridge

-expertimagename <name>
Set Expert Cartridge image name

-expertimagerw
+expertimagerw
Allow/Disallow writing to Expert Cartridge image

-cartf64 <Name>
Attach raw 32kB Formel 64 image

-cartfcl <name>
Attach raw 16kB Final Cartridge image

-cartfc3 <name>
Attach raw 64kB Final Cartridge III image

—-cartfcplus <name>
Attach raw 32kB Final Cartridge Plus image

-cartff <name>
Attach raw 8kB Freeze Frame image

-cartfm <name>
Attach raw 32kB Freeze Machine image

-cartfp <name>
Attach raw 128kB Fun Play/Power Play cartridge image

Chapter 7: Machine-specific features

—-cartgk <name>

Attach raw 8KB Game Killer cartridge image

—-cartgs <name>

Attach raw 512kB Game System cartridge image

—-cartide64 <name>

Attach raw 64KB or 128KB IDE64 cartridge image

-IDE64imagel <name>
—-IDE64image2 <name>
-IDE64image3 <name>
-IDE64image4 <name>
Specify path to the image files for IDE64 harddisks

—-IDE64cyll <value>
-IDE64cyl2 <value>
-IDE64cyl3 <value>
—-IDE64cyl4 <value>

Set number of cylinders for the IDE64 harddisk emulation (1-65535)

-IDE64hds1 <value>
-IDE64hds2 <value>
-IDE64hds3 <value>
-IDE64hds4 <value>

Set number of heads for the IDE64 harddisk emulation (1-16)

-IDE64secl <value>
-IDE64sec2 <value>
-IDE64sec3 <value>
-IDE64sec4d <value>

Set number of sectors for the IDE64 harddisk emulation (1-63)

-IDE64autosizel
+IDE64autosizel
-IDE64autosize?2
+IDE64autosize?2
-IDE64autosize3
+IDE64autosize3
-IDE64autosized
+IDE64autosized

69

Autodetect geometry of formatted images or do not autodetect and use specified

geometry

-IDE64version4d
+IDE64versiond

Emulate version 4 hardware/Emulate pre version 4 hardware

-IDE64USB
+IDE64USB

Enable/Disable IDE64 USB server

Chapter 7: Machine-specific features 70

-IDE64USBAddress <name>
The local address the IDE64 USB server should bind to

—-cartieee <name>
Attach CBM IEEE-488 cartridge image

-ieee488
+ieee488 Enable (IEEE488=1) or disable (IEEE488=0) emulation of the IEEE488 inter-
face.

-ieee488image <name>

Set IEEEA48S interface image name
-isepic
+isepic Enable/Disable the ISEPIC cart

—-cartisepic <name>
Attach raw 2kB ISEPIC cartridge image

-isepicimagename <name>

Set ISEPIC image name
-isepicimagerw
+isepicimagerw

Allow/Disallow writing to ISEPIC image

-cartkcs <name>
Attach raw 16kB KCS Power cartridge image

-cartks <name>
Attach raw 24kB Kingsoft cartridge image

—-cartmachb <name>
Attach raw 8kB MACH 5 cartridge image

-cartmd <name>
Attach raw 32/64/128kB Magic Desk cartridge image

-cartmf <name>
Attach raw Magic Formel cartridge image

—-cartmikro <name>
Attach raw 8kB Mikro Assembler cartridge image

-mmc64
+mmc64 Enable/Disable the MMC64 expansion

—cartmmc64 <name>
Attach raw 8kB MMC64 cartridge image

-mmc64bios <name>
Specify name of MMC64 BIOS image

-mmc64image <name>
Specify name of MMC64 image

-mmc64readonly
Set the MMC64 card to read-only

Chapter 7: Machine-specific features

-mmc64readwrite
Set the MMC64 card to read/write

-mmc64bioswrite
Save the MMC64 bios when changed

—-cartmmcr <name>
Attach raw 512kB MMC Replay cartridge image

-mmcrrescue
+mmcrrescue
Enable/Disable MMC Replay rescue mode

-mmcrimagerw
+mmcrimagerw
Allow/Disallow writing to MMC Replay image

-mmcrcardimage <filename>
Specify MMC Replay card image filename

-mmcrcardrw
+mmcrcardrw
Allow /Disallow writes to MMC Replay card image

-mmcreepromimage
Specify MMC Replay EEPROM image filename

-mmcreepromrw
+mmcreepromrw
Allow /Disallow writes to MMC Replay EEPROM image

—-cartmv <name>
Attach raw 16kB Magic Voice cartridge image

-cartocean <name>
Attach raw Ocean cartridge image

—-cartp64 <name>
Attach raw 256 KB Prophet 64 cartridge image

-cartpf <name>
Attach raw 64kb Pagefox cartridge image

-cartramcart <name>
Attach raw RamCart cartridge image

-ramcart
+ramcart Enable/Disable the RAMCART expansion

-ramcartsize <size in KB>
Size of the RAMCART expansion

-ramcartimage <name>
Specify name of RAMCART image

-ramcartimagerw
+ramcartimagerw
Allow/Disallow writing to RAMCart image

71

Chapter 7: Machine-specific features

—cartrep256 <name>
Attach raw REX EP256 cartridge image

—cartross <name>

Attach raw 16/32kB ROSS cartridge image

-cartrr <name>
Attach raw 64KB Retro Replay cartridge image

-rrbioswrite
+rrbioswrite
Enable/Disable saving of the RR ROM at exit

-rrbankjumper

+rrbankjumper
Set/Unset RR Bank Jumper

-rrflashjumper

+rrflashjumper
Set/Unset RR Flash Jumper

—-cartru <name>
Attach raw 8kB REX Utility cartridge image

-carts64 <name>
Attach raw 4kB Snapshot 64 cartridge image

-cartsb <name>
Attach raw Structured Basic cartridge image

-cartseb <name>
Attach raw 16kB Super Explode V5 cartridge image

—-cartsg <name>
Attach raw 64kB Super Games cartridge image

-cartsilver <Name>
Attach raw Silverrock 128 cartridge image

-cartsimon <name>
Attach raw 16kB Simons Basic cartridge image

-cartss4 <name>
Attach raw 32KB Super Snapshot V4 cartridge image

-cartssb <name>
Attach raw 64KB Super Snapshot V5 cartridge image

—cartstar <name>
Attach raw 16KB Stardos cartridge image

—-cartwl <name>
Attach raw 16KB Westermann Learning cartridge image

-cartws <name>
Attach raw 8kB Warp Speed cartridge image

—cartzaxxon <name>
Attach raw 16kB Zaxxon cartridge image

72

Chapter 7: Machine-specific features 73

7.1.3 CIA settings

7.1.3.1 CIA resources

CIA1Model
CIA2Model
Enum specifying CIA model (0 = old 6526, 1 = new 6526A)

7.1.3.2 CIA command-line options

—-ciamodel <model>

Set both CIA models (0 = old 6526, 1 = new 6526A)

—-cialmodel <model>

Set CIA 1 model (0 = old 6526, 1 = new 6526A)

—-cia2model <model>
Set CIA 2 model (0 = old 6526, 1 = new 6526A)

7.1.4 VIC-II settings

These settings control the emulation of the VIC-II (MOS6569) video chip used in both the
C64 and the C128.

e “Sprite-sprite collisions” and “Sprite-background collisions”, if enabled, cause the hard-
ware detection of sprite-to-sprite and sprite-to-background collisions of the VIC-II to
be emulated. This feature is used by many games, and disabling either of the two
detection systems can sometimes make you invincible (although there is also a chance
that also enemies become invincible then).

e “Color set” can be used to dynamically change the palette file being used by choosing
one of the available predefined color sets:

e ‘default.vpl’ (“default”), the default VICE palette;

e ‘c64s.vpl’ (“C64S”), palette taken from the shareware C64S emulator by Miha
Peternel.

e ‘ccs64.vpl’ (“CCS64”), palette taken from the shareware CCS64 emulator by Per
Hkan Sundell.

e ‘frodo.vpl’ (“Frodo”), palette taken from the free Frodo emulator by Christian
Bauer (http://www.uni-mainz.de/ bauec002/FRMain.html).

e ‘pc6d.vpl’ (“PC64”), palette taken from the free PC64 emulator by Wolfgang
Lorenz.

e ‘godot.vpl’ (“GoDot”), palette as suggested by the authors of the C64 graphics
package GoDot (http://users.aol.com/howtogodot/welcome.htm).

7.1.4.1 VIC-II resources

VICIIModel

Integer that specifies VIC-II model (6569/6569r1/8565/6567/8562/6567r56a).
only available in x64sc.

VICIICheckSsColl
Boolean specifying whether the sprite-sprite hardware collision detection must
be emulated.

http://www.uni-mainz.de/~bauec002/FRMain.html
http://users.aol.com/howtogodot/welcome.htm

Chapter 7: Machine-specific features 74

VICIICheckSbColl
Boolean specifying whether the sprite-background hardware collision detection
must be emulated.

VICIIVideoCache
Boolean specifying whether the video cache is turned on.

VICIIDoubleSize
Boolean specifying whether double-size mode is turned on.

VICIIDoubleScan
Boolean specifying whether double-scan mode is turned on.

VICIINewLuminances
Boolean specifying whether to use new (9 steps) luminances

VICIIPaletteFile
String specifying the name of the palette file being used. The ‘.vpl’ extension
is optional.

VICIIHwScale
Boolean specifying whether to enable or disable hardware scaling

VICIIFullscreenDevice
fullscreen device

VICIIFullscreen
Boolean specifying whether to use fullscreen mode or not.

VICIIFullscreenStatusbar
Boolean specifying whether to show the status bar in fullscreen mode or not.

VICIIXRANDRFullscreenMode
integer specifying XRANDR fullscreen mode

VICIIVidmodeFullscreenMode
integer specifying Vidmode fullscreen mode

VICIIExternalPalette
Boolean specifying whether to use external palette file or not.

VICIIColorSaturation
integer specifying saturation of internal calculated palette [1250] <0-2000>

VICIIColorContrast
integer specifying contrast of internal calculated palette [1250] <0-2000>

VICIIColorBrightness
integer specifying brightness of internal calculated palette [1000] <0-2000>

VICIIColorGamma
integer specifying gamma of internal calculated palette [2200] <0-4000>

VICIIColorTint
integer specifying tint of internal calculated palette [1000] <0-2000>

Chapter 7: Machine-specific features 75

VICIIPALScanLineShade
integer specifying amount of scan line shading for the CRT emulation [750]
<0-1000>

VICIIPALBlur
integer specifying amount of horizontal blur for the CRT emulation. [500] <0-
1000>

VICIIPALOddLinePhase
integer specifying phase for color carrier in odd lines [1125] <0-2000>

VICIIPALOddLineOffset
integer specifying phase offset for color carrier in odd lines [875] <0-2000>

VICITAudioLeak
Boolean specifying whether to enable/disable video to audio leak emulation.

VICIIFilter
integer specifying rendering filter, O:none, 1:CRT emulation, 2: scale2x

VICIIBorderMode
integer specifying border display mode (0: normal, 1: full, 2: debug, 3:none)

7.1.4.2 VIC-II command-line options

-VICIIcheckss

+VICIIcheckss
Enable (VICIICheckSsColl=1) and disable (VICIICheckSsColl=0) emulation
of hardware sprite-sprite collision detection, respectively.

-VICIIchecksb

+VICIIchecksb
Enable (VICIICheckSbColl=1) and disable (VICIICheckSbColl=0) emulation
of hardware sprite-background collision detection, respectively.

-VICIIvcache
+VICIIvcache
Enable/disable the video cache (VICIIVideoCache=1, VICIIVideoCache=0).

-VICIIdsize

+VICIIdsize
Enable/disable the double size mode (VICIIDoubleSize=1,
VICIIDoubleSize=0).

-VICIIdscan

+VICIIdscan
Enable/disable =~ the double scan mode (VICIIDoubleScan=1,
VICIIDoubleScan=0).

-VICIThwscale
+VICIThwscale
Enable/Disable hardware scaling

-VICIIfilter <Mode>
Select rendering filter, 0:none, 1:CRT emulation, 2: scale2x

Chapter 7: Machine-specific features 76

-VICIIintpal
Use an internal calculated palette

-VICIIextpal
Use an external palette (file)

-VICIIpalette NAME
Specify NAME as the palette file (VICIIPaletteFile).

-VICIIfulldevice <device>
Select fullscreen device

-VICIIXRANDRfullmode <mode>
Select fullscreen mode

-VICIIVidmodefullmode <mode>
Select fullscreen mode

-VICIIborders <mode>
Set VIC-II border display mode (0: normal, 1: full, 2: debug, 3:none)

-VICIImodel <model>
Set VIC-II model (6569/6569r1/8565/6567/8562/6567r56a). This setting is
only available in x64sc.

-VICIInewluminance
+VICIInewluminance
Enable/Disable new luminances.

-VICIIsaturation <0-2000>
Set saturation of internal calculated palette [1250]

-VICIIcontrast <0-2000>
Set contrast of internal calculated palette [1250]

-VICIIbrightness <0-2000>
Set brightness of internal calculated palette [1000]

-VICIIgamma <0-4000>
Set gamma of internal calculated palette [2200]

-VICIItint <0-2000>
Set tint of internal calculated palette [1000]

-VICIIoddlinesphase <0-2000>
Set phase for color carrier in odd lines [1125]

-VICIIoddlinesoffset <0-2000>
Set phase offset for color carrier in odd lines [875]

-VICIIcrtblur <0-1000>
Amount of horizontal blur for the CRT emulation. [500]

-VICIIcrtscanlineshade <0-1000>
Amount of scan line shading for the CRT emulation [750]

-VICITaudioleak
+VICITaudioleak
Enable/Disable video to audio leak emulation.

Chapter 7: Machine-specific features 77

7.1.5 SID settings
These settings control the emulation of the SID (MOS6581 or MOS8580) audio chip.

e “Second SID” maps a second SID chip into the address space for stereo sound. This
emulates e.g. the “SID Symphony Stereo Cartridge” from Dr. Evil Laboratories. The
second SID can be used with software such as “Stereo SID Player” by Mark Dickenson
or “The Enhanced Sidplayer” by Craig Chamberlain.

e “Second SID base address” sets the start address for the second SID chip. Software nor-
mally uses $DE00 or $DF00, since $DE00-$DEFF and $DF00-$DFFF can be mapped
through the cartridge port of the C64. The default start address is $DEOQO.

e “Emulate filters” causes the built-in programmable filters of the SID chip to be emu-
lated. A lot of C64 music requires them to be emulated properly, but their emulation
requires some additional processor power.

e “ChipModel” specifies the model of the SID chip being emulated: there are two slightly
different generations of SID chips: MOS6581 ones and MOS8580 ones.

e “Use reSID emulation” specifies whether the more accurate (and resource hungry)
reSID emulation is turned on or off.

e “reSID sampling method” selects the method for conversion of the SID output signal to
a sampling rate appropriate for playback by standard digital sound equipment. Possible
settings are:

e “Fast” simply clocks the SID chip at the output sampling frequency, picking the
nearest sample. This yields acceptable sound quality, but sampling noise is notice-
able in some cases, especially with SID combined waveforms. The sound emulation
is still cycle exact.

e “Interpolating” clocks the SID chip each cycle, and calculates each sample with
linear interpolation. The sampling noise is now strongly attenuated by the SID
external filter (as long as “Emulate filters” is selected), and the linear interpolation
further improves the sound quality.

e “Resampling” clocks the SID chip each cycle, and uses the theoretically correct
method for sample generation. This delivers CD quality sound, but is extremely
CPU intensive, and is thus most useful for non-interactive sound generation. Unless
you have a very fast machine, that is.

e “reSID resampling passband” specifies the percentage of the total bandwidth allocated
to the resampling filter passband. The work rate of the resampling filter is inversely
proportional to the remaining transition band percentage. This implies that e.g. with
the transition band starting at ~ 20kHz, it is faster to generate 48kHz than 44.1kHz
samples. For CD quality sound generation at 44.1kHz the passband percentage should
be set to 90 (i.e. the transition band starting at almost 20kHz).

7.1.5.1 SID resources

SidStereo
Integer specifying the amount of emulated extra SIDs. (0=off, 1=1 extra sid,
2=2 extra sids.

SidStereoAddressStart
Integer specifying the base address of the second SID.

Chapter 7: Machine-specific features 78

SidTripleAddressStart
Integer specifying the base address of the third SID.

SidFilters
Boolean specifying whether the built-in SID filters must be emulated.

SidModel Integer specifying what model of the SID must be emulated (0: 6581 , 1: 8580,
2: 8580D, 3: 6581R4, 4: DTVSID).

SidEngine
Integer specifying what SID engine will be used (0: FASTSID, 1: RESID , 2:
CATWEASELMKIII, 3: HARDSID, 4: PARSID_PORT1, 5: PARSID_PORT?2
, 6: PARSID_PORTS3).

SidResidSampling
Integer specifying the sampling method (0: Fast, 1: Interpolation, 2: Resam-
pling)

SidResidPassband
Integer specifying the resampling filter passband in percentage of the total band-
width (0 - 90).

SidResidGain
Integer that specifies reSID gain in percent [97] (90..100)

SidResidFilterBias
Integer that specifies reSID filter bias, which can be used to adjust DAC bias
in millivolts. [0] (-5000..5000)

7.1.5.2 SID command-line options

-sidstereo
Specifies the amount of extra SID chips to emulate (SidStereo).

-sidstereoaddress ADDRESS
Specifies the start address for the second SID chip (SidStereoAddressStart).

-sidtripleaddress ADDRESS
Specifies the start address for the third SID chip (SidTripleAddressStart).

-sidenginemodel <engine and model>
Specify SID engine and MODEL for the emulated SID chip (0: FastSID 6581,
1: FastSID 8580, 256: ReSID 6581, 257: ReSID 8580, 258: ReSID 8580 +
digiboost, 1024: ParSID in par port 1, 1280: ParSID in par port 2, 1536:
ParSID in par port 3).

-sidfilters

+sidfilters
Enable (SidFilters=1) or disable (SidFilters=0) emulation of the built-in
SID filters.

-residsamp METHOD
Specifies the sampling method; fast (SidResidSampling=0), interpolating
(SidResidSampling=1), resampling (SidResidSampling=2), fast resampling
(SidResidSampling=3).

Chapter 7: Machine-specific features 79

-residpass PERCENTAGE
Specifies the resampling filter passband in percentage of the total bandwidth
(SidResidPassband=0-90).

-residgain PERCENTAGE
Specifies reSID gain in percent (90 - 100).

-residfilterbias <number>
reSID filter bias setting, which can be used to adjust DAC bias in millivolts.

7.1.6 C64 I/0O extension settings

I/O extensions are (usually) cartridges which do not map into ROM space, but use only
the I/O space at address range $DEQO . .. $DEFF and/or $DF00 ... $DFFF.

Please use these extensions only when needed, as they might cause compatibility problems.
The following I/O extensions are available:

e ACIA (Swiftlink, Turbo232)

e DigiMAX

e Ethernet (The Final Ethernet, RR-Net)

¢ GEO-RAM

e MIDI (Passport, Datel, Maplin, Namesoft, Sequential)

e REU - The “RAM Expansion Module” extension emulates a standard Commodore
RAM Expansion Unit; this can be used with GEOS and other programs that are
designed to take advantage of it. This currently works only in the C64 emulator.

e SFX Sound Expander
e SFX Sound Sampler

7.1.6.1 C64 I/0 extension resources

AcialEnable
Boolean specifying whether the ACIA (Swiftlink, Turbo232) cartridge should
be emulated or not.

AcialMode
Enum specifying the type of emulated RS232 interface (0: normal, 1: Swithlink,
2: Turbo232)

AcialBase
Integer specifying the base address for the emulated ACIA chip.

DIGIMAX Boolean specifying whether the DigiMAX cartridge should be emulated or not.

DIGIMAXbase
Integer specifying the DigiMAX base address.

ETHERNET_ACTIVE
Boolean that specifies whether the CS8900 ethernet interface emulation is ac-
tive.

Chapter 7: Machine-specific features 80

ETHERNET_INTERFACE
String specifying the device name of the ethernet device to use for the emulation.

ETHERNET_DISABLED
Boolean that specified whether ethernet emulation has been disabled because
it is not available in the current configuration.

ETHERNET_AS_RR
Boolean that specifies whether RR-Net compatible mapping is enabled.

GEORAM Boolean specifying whether the GEO-RAM cartridge should be emulated or
not.

GEORAMfilename
String specifying the filename of the GEORAM image.

GEORAMImageWrite
Boolean, if true write back the GEO-RAM image file automatically, incase the
RAM contents changed, when detaching or quitting the emulator.

GEORAMsize
Integer specifying the size of the emulated GEO-RAM in KB (64, 128, 256, 512,
1024, 2048, 4096)

MIDIEnable
Boolean specifying whether the MIDI cartridge should be emulated or not.

MIDIMode Enum specifying the type of emulated MIDI interface (0: Sequential, 1: Pass-
port/Syntech, 2: DATEL/Siel/JMS, 3: Namesoft, 4: Maplin)

MIDIDriver
Enum specifying the MIDI driver (0: OSS; 1:ALSA)

MIDIInDev
String specifying the MIDI input device.
MIDIOutDev
String specifying the MIDI output device.
REU Boolean specifying whether the RAM Expansion Module should be emulated
or not.
REUfilename
String specifying the filename of the REU image.
REUImageWrite

Boolean, if true write back the REU image file automatically, incase the RAM
contents changed, when detaching or quitting the emulator.

REUsize Integer specifying the size of the emulated REU in KB (128, 256, 512, 1024,
2048, 4096, 8192, 16384)

SFXSoundExpander
Boolean specifying whether the SFX Sound Expander should be emulated or
not.

Chapter 7: Machine-specific features 81

SFXSoundExpanderChip
Integer specifying which YM chip is emulated (3526, 3812)

SFXSoundSampler
Boolean specifying whether the SFX Sound Sampler should be emulated or not.

7.1.6.2 C64 I/0 extension command-line options

-acial
+acial Enable/Disable the $DE** ACIA RS232 interface emulation

-digimax
+digimax Enable/Disable the DigiMAX cartridge

-digimaxbase <base address>
Base address of the DigiMAX cartridge

-miditype <0-4>
MIDI interface type (0: Sequential, 1: Passport, 2: DATEL, 3: Namesoft, 4:
Maplin)

-midi

+midi Enable/Disable MIDI emulation

-midiin <name>
Specify MIDI-In device

-midiout <name>
Specify MIDI-Out device

-mididrv <driver>

Specify MIDI driver (0 = OSS, 1 = ALSA)

-georam
+georam Enable/Disable the GEORAM expansion unit

-cartgeoram <name>
Attach raw GEO-RAM cartridge image

-georamimage <name>
Specify name of GEORAM image

-georamimagerw
+georamimagerw
Allow/Disallow writing to GEORAM image

-georamsize <size in KB>
Size of the GEORAM expansion unit

-reu
+reu Enable (REU=1) or disable (REU=0) emulation of the RAM Expansion Module.

—cartreu <name>
Attach raw REU cartridge image

-reuimage <name>
Specify name of REU image

Chapter 7: Machine-specific features 82

-reuimagerw
+reuimagerw
Allow/Disallow writing to REU image

-reusize <size in KB>
Size of the RAM expansion unit

-sfxse
+sfxse Enable/Disable the SFX soundexpander cartridge

-sfxsetype <type>
Set YM chip type (3526 / 3812)

-sfxss
+sfxss Enable/Disable the SFX Sound Sampler cartridge

-tfe
+tfe Enable/Disable the TFE ("The Final Ethernet") unit

-tfeif <name>
Set the system ethernet interface for TFE emulation

-tferrnet
+tferrnet
Enable/Disable RRNet mode of TFE emulation

-burstmod <value>
Enable/Disable burst modification. If it’s 1 the cable is connected to CIA1, if 2
then to CIA2 and 0 disables it. This is emulates the fast serial bus connection
as described at http://www.cs.tut.fi/ albert/Dev/burst/, with the wire
to the tape port cut.

7.1.7 C64/128 system ROM settings

These settings can be used to control what system ROMs are loaded in the C64/128 emu-
lators at startup. They cannot be changed from the menus.

7.1.7.1 C64/128 system ROM resources

KernalName
String specifying the name of the Kernal ROM (default ‘kernal’).

BasicName
String specifying the name of the Basic ROM (default ‘basic’). In the C128
emulator, the ROM image must actually include the editor ROM too.

ChargenName
String specifying the name of the character generator ROM (default ‘chargen’).

KernalRev
String specifying the Kernal revision. This resource can be used to control what
revision of the C64 kernal is being used; it cannot be changed at runtime. VICE
is able to automatically convert one ROM revision into another, by manually
patching the loaded image. This way, it is possible to use any of the ROM
revisions without changing the ROM set. Valid values are:

http://www.cs.tut.fi/~albert/Dev/burst/

Chapter 7: Machine-specific features 83

0 Kernal revision 0;

3 Kernal revision 3;

SX

67 Commodore SX-64 ROM;

100

4064 Commodore 4064 (also known as “PET64” or “Educator 64”)
ROM.

7.1.7.2 C64/128 system ROM command-line options

-kernal NAME
Specify ‘NAME’ as the Kernal ROM file (KernalName).

-basic NAME
Specify ‘NAME’ as the Basic ROM file (BasicName).

—-chargen NAME
Specify ‘NAME’ as the character generator ROM file (ChargenName).

-kernalrev REVISION
Specify Kernal revision (KernalRev).

7.1.8 C64 settings
7.1.8.1 C64 resources

GlueLogic
Integer specifying the type of emulated glue-logic. (0: discrete, 1: custom IC)

BurstMod Boolean, enable/disable the Burst-Mode modification.
PLUS60K Boolean, enable/disable the PLUS60K RAM expansion

PLUS60Kfilename
String specifying the filename of the PLUS60K RAM image.

PLUS60Kbase
Integer that specifies the base address of the PLUS60K RAM expansion.

PLUS256K Boolean, enable/disable the PLUS256K RAM expansion

PLUS256Kfilename
String specifying the filename of the PLUS256K RAM image.

C64_256K Boolean, enable/disable the 256 K RAM expansion

C64_256Kfilename
String specifying the filename of the 256K RAM image.

C64_256Kbase
Integer that specifies the base address of the 256K RAM expansion.

Chapter 7: Machine-specific features 84

7.1.8.2 C64 command-line options
-gluelogictype <type>
Set glue logic type (0 = discrete, 1 = 252535-01)

-plus60k
+plus60k Enable/Disable the PLUS60K RAM expansion

-plus60kimage <name>
Specify name of PLUS60K image

-plus60kbase <base address>
Base address of the PLUS60K expansion

-plus256k
+plus256k
Enable/Disable the PLUS256K RAM expansion

-plus256kimage <name>
Specify name of PLUS256K image

-256k
+256k Enable/Disable the 256K RAM expansion

-256kimage <name>
Specify name of 256K image

-256kbase <base address>
Base address of the 256K expansion

7.2 C128-specific commands and settings

7.2.1 VDC settings

7.2.1.1 VDC resources
VDC64KB Boolean, enabled full 64k video ram.

VDCRevision
Integer specifying the VDC hardware revision. (0: Rev 0, 1: Rev 1, 2: Rev 2)

VDCVideoCache
Boolean specifying whether the video cache is turned on.

VDCDoubleSize
Boolean specifying whether double-size mode is turned on.

VDCDoubleScan
Boolean specifying whether double-scan mode is turned on.

VDCStretchVertical
Boolean specifying whether vertical stretching is turned on.

VDCPaletteFile
String specifying the name of the palette file being used. The ‘.vpl’ extension
is optional.

Chapter 7: Machine-specific features 85

VDCHwScale
Boolean specifying whether to enable or disable hardware scaling

VDCFullscreenDevice
fullscreen device

VDCFullscreen
Boolean specifying whether to use fullscreen mode or not.

VDCFullscreenStatusbar
Boolean specifying whether to show the status bar in fullscreen mode or not.

VDCXRANDRFullscreenMode
integer specifying XRANDR fullscreen mode

VDCVidmodeFullscreenMode
integer specifying Vidmode fullscreen mode

VDCExternalPalette
Boolean specifying whether to use external palette file or not.

VDCColorSaturation
integer specifying saturation of internal calculated palette [1250] <0-2000>

VDCColorContrast
integer specifying contrast of internal calculated palette [1250] <0-2000>

VDCColorBrightness
integer specifying brightness of internal calculated palette [1000] <0-2000>

VDCColorGamma
integer specifying gamma of internal calculated palette [2200] <0-4000>

VDCColorTint
integer specifying tint of internal calculated palette [1000] <0-2000>

VDCPALScanLineShade
integer specifying amount of scan line shading for the CRT emulation [750]
<0-1000>

VDCPALBlur
integer specifying amount of horizontal blur for the CRT emulation. [500] <0-
1000>

VDCPALOddLinePhase
integer specifying phase for color carrier in odd lines [1125] <0-2000>

VDCPALOddLineOffset
integer specifying phase offset for color carrier in odd lines [875] <0-2000>

VDCAudioLeak
Boolean specifying whether to enable/disable video to audio leak emulation.

VDCFilter
integer specifying rendering filter, O:none, 1:CRT emulation, 2: scale2x

Chapter 7: Machine-specific features

7.2.1.2 VDC command-line options

-VDCvcache
+VDCvcache
Enable/Disable the video cache

-VDCdsize
+VDCdsize
Enable/Disable double size

-VDCstretchvertical
+VDCstretchvertical
Enable/Disable vertical stretching

-VDCdscan
+VDCdscan
Enable/Disable double scan

-VDChwscale
+VDChwscale
Enable/Disable hardware scaling

-VDCintpal
Use an internal calculated palette

-VDCextpal
Use an external palette (file)

-VDCpalette <name>
Specify name of file of external palette

-VDCfulldevice <device>
Select fullscreen device

-VDCXRANDRfullmode <mode>
Select fullscreen mode

-VDCVidmodefullmode <mode>
Select fullscreen mode

-VDC16KB Set the VDC memory size to 16KB
-VDC64KB Set the VDC memory size to 64KB

-VDCRevision <number>
Set VDC revision (0..2)

-VDCsaturation <0-2000>
Set saturation of internal calculated palette [1250]

-VDCcontrast <0-2000>
Set contrast of internal calculated palette [1250]

-VDCbrightness <0-2000>
Set brightness of internal calculated palette [1000]

86

Chapter 7: Machine-specific features

-VDCgamma <0-4000>
Set gamma of internal calculated palette [2200]

-VDCtint <0-2000>
Set tint of internal calculated palette [1000]

-VDCoddlinesphase <0-2000>
Set phase for color carrier in odd lines [1125]

-VDCoddlinesoffset <0-2000>
Set phase offset for color carrier in odd lines [875]

-VDCcrtblur <0-1000>
Amount of horizontal blur for the CRT emulation. [500]

-VDCcrtscanlineshade <0-1000>
Amount of scan line shading for the CRT emulation [750]

-VDCaudioleak
+VDCaudioleak
Enable/Disable video to audio leak emulation.

7.2.2 C128 system ROM settings
7.2.2.1 C128 system ROM resources

ChargenIntName
ChargenDEName
ChargenFRName
ChargenSEName
ChargenCHName
Strings specifying the filename of the Chargen ROM images.

KernalIntName
KernalDEName
KernalFIName
KernalFRName
KernalITName
KernalNOName
KernalSEName
KernalCHName
Strings specifying the filename of the Kernal ROM images.

BasicLoName
BasicHiName
Strings specifying the filename of the Basic ROM images.

Kernal64Name

String specifying the filename of the C64 kernal ROM image.

Basic64Name
String specifying the filename of the C64 basic ROM image.

87

Chapter 7: Machine-specific features 88

InternalFunctionROM
Sets the internal function ROM type (0: None, 1: ROM, 2: RAM, 3:
RAM+RTC).

InternalFunctionName
Strings specifying the filename of the ROM image for the internal function
ROM.

ExternalFunctionROM
Sets the external function ROM type (0: None, 1: ROM, 2: RAM, 3:
RAM+RTC).

ExternalFunctionName
Strings specifying the filename of the ROM image for the external function
ROM.

7.2.2.2 C128 system ROM command-line options

-basic64 <name>
Specify name of C64 mode BASIC ROM image

-kernal64 <name>
Specify name of C64 mode Kernal ROM image

-basiclo <name>
Specify name of BASIC ROM image (lower part)

-basichi <name>
Specify name of BASIC ROM image (higher part)

-kernal <name>
Specify name of international Kernal ROM image

—-kernalde <name>
Specify name of German Kernal ROM image

-kernalfi <name>
Specify name of Finnish Kernal ROM image

-kernalfr <name>
Specify name of French Kernal ROM image

-kernalit <name>
Specify name of Italian Kernal ROM image

-kernalno <name>
Specify name of Norwegian Kernal ROM image

—kernalse <name>
Specify name of Swedish Kernal ROM image

-kernalch <name>
Specify name of Swiss Kernal ROM image

—-chargen <name>
Specify name of international character generator ROM image

Chapter 7: Machine-specific features 89

—-chargde <name>
Specify name of German character generator ROM image

-chargfr <name>
Specify name of French character generator ROM image

-chargse <name>
Specify name of Swedish character generator ROM image

-chargch <name>
Specify name of Swiss character generator ROM image

-intfunc <type>
Set the internal Function ROM type (0: None, 1: ROM, 2: RAM, 3: RTC)

-intfrom <name>
Specify name of internal Function ROM image

—extfunc <type>
Set the external Function ROM type (0: None, 1: ROM, 2: RAM, 3: RTC)

—extfrom <name>
Specify name of external Function ROM image

7.2.3 C128 settings
7.2.3.1 C128 resources

40/80ColumnKey
Boolean, status of the 40/80 columns key

Go64Mode Boolean, if true enter C64 mode on reset

C128FullBanks
Boolean, enables Banks 2 and 3.

MachineType
Integer specifying the C128 machine type. (0: Internatinal, 1: Finnish, 2:
French, 3: German, 4: Italian, 5: Norwegian, 6: Swedish)

7.2.3.2 C128 command-line options

-40col Activate 40 column mode

-80col Activate 80 column mode

-go64 Always switch to C64 mode on reset
+go64 Always switch to C128 mode on reset

7.3 C64DTV-specific commands and settings

This section lists the settings and commands that are C64DTYV specific and thus are not
present in the other emulators.

Chapter 7: Machine-specific features 90

7.3.1 C64DTV ROM image

The DTV has a 2MB Flash chip which contains the kernal, basic and character set ROMs
along with other data, such as games in the case of the original C64DTV ROM.

The image file is a dump of the flash chip. It is exactly 2MB (2097152 bytes).

If you do not have a suitable image file, an image using the C64 kernal, basic and charset
is automatically created.

If writing to the C64DTV ROM is enabled, the image file is rewritten with the current data
when exiting x64dtv.

Note that x64dtv tries to load the image file from the C64DTV directory first, and if
it isn’t found there, x64dtv tries to load it from the current directory. If you do not
have ‘dtvrom.bin’ in your C64DTV directory and writing to DTV ROM is enabled, the
‘dtvrom.bin’ file is created to the current directory.

NOTE: The original C64DTV ROM has somewhat distorted colors, normally you should

use a patched rom.

-c64dtvromimage NAME
Specify ‘NAME’ as the C64DTV ROM image

-c64dtvromrw
+c64dtvromrw

Enable or disable writing to C64DTV ROM image

The trueflashfs option is analogous to True drive emulation. If disabled, any file access to
the flash filesystem (device 1) will go to the local file system instead.

-trueflashfs
+trueflashfs
Enable or disable true hardware flash file system

-fsflash NAME
Specify ‘NAME’ as directory for flash file system device

7.3.2 DTV revision

The DTV revision 2 has a bug in the Blitter. Using revision 3 is recommended. Emulation
of DTV revision 2 including Blitter bug is intended for testing DTV software.

—-dtvrev REVISION
Specify DTV ‘REVISION’ (2 or 3)

7.3.3 LumaFix

The PAL C64DTVs have wrong resistors in the video output circuit, which causes incorrect
luminances. Several hardware solutions ("LumaFixes") have been developed to fix this flaw.

The fixed video output is emulated by selecting "New Luminances". The unmodified
C64DTV video output can be emulated with "Old Luminances".

The default setting is "New Luminances".

Chapter 7: Machine-specific features 91

7.3.4 Userport

The C64DTYV userport emulation currently supports three devices: Hummer ADC, userport
joystick and PS/2 mouse.

The joystick that controls either the Hummer ADC or userport joystick can be selected
using the same parameter or menu option.

While using the Hummer ADC, joystick UP and DOWN are mapped to the Hummer buttons
A and B respectively. LEFT and RIGHT set the ADCs output to 0 and 255. Centering
the joystick results in the ADC value of 128.

Currently the Hummer ADC and userport joystick are mutually exclusive. This means that
enabling one disables the other. PS/2 mouse emulation can be used simultaneously with
either Hummer ADC or userport joystick.

—hummeradc
+hummeradc
Enable/Disable Hummer ADC

-ps2mouse
+ps2mouse
Enable or disable PS/2 mouse on userport

7.3.5 Debug

Debugging information on Blitter, DMA and Flash can be enabled with command line
parameters. This can be useful for DTV software development.

-dtvblitterlog
+dtvblitterlog
Enable or disable DTV Blitter log

—-dtvdmalog
+dtvdmalog
Enable or disable DTV DMA log

-dtvflashlog
+dtvflashlog
Enable or disable DTV Flash log

7.3.6 Monitor DTV features
Currently the registers A, Y and X are registers R0, R1 and R2 regardless of the mapping,
which can be seen and modified via the registers ACM and XYM.

The monitor can access all 2MB of RAM and 2MB of Flash, but only 64 kB at a time.
The 64kB bank can be selected with "bank ram00".."ramlf" for RAM and "bank
rom00".."rom1f" for Flash.

The "load" command can load large files (>64kB) correctly if the bank is set to "ramXX",
where XX is the starting bank (usually "bank00").

7.3.7 DTV resources

DtvRevision
Integer specifying the emulated DTV revision (2: DTV2, 3: DTV3)

Chapter 7: Machine-specific features 92

c64dtvromfilename
String specifying the filename of the DTV Flash ROM image.

c64dtvromrw
Boolean that specifies whether the emulated Flash ROM is writeable.

FSFlashDir
String specifying the working directory for the flash file system.

FlashTrueFS
Boolean, enables true hardware flash file system.

HummerADC
Boolean, enables Hummer ADC emulation.

ps2mouse Boolean, enables PS/2 Mouse emulation.

DtvBlitterLog
Boolean, enables Blitter logging.

DtvDMALog
Boolean, enables DMA logging.

DtvFlashLog
Boolean, enables Flash ROM logging.

7.4 VIC20-specific commands and settings

This section lists the settings and commands that are VIC20-specific and thus are not
present in the other emulators.

7.4.1 Using cartridge images
As with the C64 (see Section 7.1.1 [C64 cartridges|, page 59), it is possible to attach several
types of cartridge images:

e 4 or 8 Kbyte cartridges located at $2000;

e 4 or 8 Kbyte cartridges located at $4000;

e 4 or 8 Kbyte cartridges located at $6000;

e 4 or 8 Kbyte cartridges located at $A000;

e 4 Kbyte cartridges located at $B000.
This can all be done via the “Attach cartridge image. . .” command in the left-button menu.
It is also possible to let xvic “guess” the type of cartridge using “Smart-attach cartridge
image. ..”.
Notice that several cartridges are actually made up of two pieces (and two files), that need

to be loaded separately at different addresses. In that case, you have to know the addresses
(which are usually specified in the file name) and use the “attach” command twice.

A special kind of cartridge file is where the two files mentioned above are concatenated
(with removing the two byte load address of the second image) into one 16k image. There
are only few of those images, though. Normally the second part is located at $A000. Vice
can now attach such concatenated files at the start address $2000, $4000, and $6000. The
second half of such an image is moved to $A000. If you encounter 16k images that have the

Chapter 7: Machine-specific features 93

second half not at $A000 you can split the image into two halfs (i.e. one 8194 byte and one
8192 byte, because the first has the load address) and attach both files separately.

One cartridge that is currently only partially supported here is the VIC1112 IEEE488
interface. You have to load the ROM as a cartridge, but you also have to enable the
TEEE488 hardware by menu.

7.4.2 VIC20 cartridge settings
7.4.2.1 VIC20 cartridge resources

CartridgeReset
Boolean specifying whether the machine should be reset when a cartridge is
changed.

CartridgeType
Integer specifying the type of cartridge emulated.

CartridgeFile
String specifying the filename of the image for the current cartridge.

I0CollisionHandling
Integer specifying the way the I/O collisions should be handled, (0: error mes-
sage and detach all involved carts, 1: error message and detach last attached
involved carts, 2: warning in log and ’AND’ the valid return values)

GenericCartridgeFile2000
GenericCartridgeFile4000
GenericCartridgeFile6000
GenericCartridgeFileAOOO
GenericCartridgeFileB00O
String specifying the name of the respective cartridge ROM images.

FinalExpansionWriteBack
Boolean, if true write back the Flash ROM image file automatically, incase the
contents changed, when detaching or quitting the emulator.

VicFlashPluginWriteBack
Boolean, if true write back the Flash ROM image file automatically, incase the
contents changed, when detaching or quitting the emulator.

MegaCartNvRAMfilename
String specifying the filename of the MegaCart NvRAM image.

MegaCartNvRAMWriteBack
Boolean, if true write back the NvRAM image file automatically, incase the
RAM contents changed, when detaching or quitting the emulator.

TFEIOSwap
Boolean, swap/don’t swap io mapping (map cart I/O to VIC20 1/0-2)

SFXSoundExpanderIOSwap
Boolean, swap/don’t swap io mapping (map cart 1/O to VIC20 I/0-2)

Chapter 7: Machine-specific features 94

SFXSoundSamplerIOSwap
Boolean, swap/don’t swap io mapping (map cart I/O to VIC20 I/0-2)

GEORAMIOSwap
Boolean, swap/don’t swap io mapping (map cart I/O-1 to VIC20 1/0O-3 and
cart I/O-2 to VIC20 I/0-2)

SidCart Boolean, enables SID cart emulation.

SidAddress
Integer that specifies the base address of the emulated SID chip.

SidClock Integer specifying the clock rate used for the emulated SID chip (0: C64, 1:
VIC-20)

7.4.2.2 VIC20 cartridge command-line options

-iocollision <method>
Select the way the I/O collisions should be handled, (0: error message and
detach all involved carts, 1: error message and detach last attached involved
carts, 2: warning in log and ’AND’ the valid return values

—-cart2 <name>
Specify 4/8/16K extension ROM name at $2000

-cart4 <name>
Specify 4/8/16K extension ROM name at $4000

-cart6 <name>
Specify 4/8/16K extension ROM name at $6000

-cartA <name>
Specify 4/8K extension ROM name at $A000

—-cartB <name>

Specify 4K extension ROM name at $B000

—-cartgeneric <name>
Specify generic extension ROM name

—-cartmega <name>
Specify Mega-Cart extension ROM name

-mcnvramfile <name>
Set Mega-Cart NvVRAM filename

-mcnvramwriteback
+mcnvramwriteback

Enable/Disable Mega-Cart NvVRAM writeback

-cartfe <name>
Specify Final Expansion extension ROM name

-fewriteback
+fewriteback
Enable/Disable Final Expansion write back to ROM file

Chapter 7: Machine-specific features 95

—-cartfp <name>
Specify Vic Flash Plugin extension ROM name

-fpwriteback
+fpwriteback
Enable/Disable Vic Flash Plugin write back to ROM file

-ieee488
+ieee488 Enable/Disable VIC-1112 IEEE488 interface

-sidcart
+sidcart Enable/Disable SID Cartridge

-tfeioswap
+tfeioswap
Swap/don’t swap io mapping (map cart I/O to VIC20 I/0-2)

-tfe
+tfe Enable/Disable the TFE ("The Final Ethernet") unit

-tfeif <name>
Set the system ethernet interface for TFE emulation

-tferrnet
+tferrnet
Enable/Disable RRNet mode of TFE emulation

-digimax
+digimax Enable/Disable the DigiMAX cartridge

-digimaxbase <base address>
Base address of the DigiMAX cartridge

-sfxseioswap
+sfxseioswap
Swap/don’t swap io mapping (map cart I/O to VIC20 I/0-2)

-sfxse
+sfxse Enable/Disable the SFX soundexpander cartridge

-sfxsetype <type>
Set YM chip type (3526 / 3812)

-sfxssioswap
+sfxssioswap
Swap/don’t swap io mapping (map cart I/O to VIC20 I/0-2)

-sfxss
+sfxss Enable/Disable the SFX Sound Sampler cartridge

-georamioswap

+georamioswap
Swap/don’t swap io mapping (map cart I/O-1 to VIC20 I/O-3 and cart I/0-2
to VIC20 1/0-2)

Chapter 7: Machine-specific features 96

-georam
+georam Enable/Disable the GEORAM expansion unit

-georamimage <name>
Specify name of GEORAM image

-georamimagerw
+georamimagerw
Allow/Disallow writing to GEORAM image

—georamsize <size in KB>
Size of the GEORAM expansion unit

7.4.3 VIC settings
7.4.3.1 VIC resources

VICVideoCache
Boolean specifying whether the video cache is turned on.

VICDoubleSize
Boolean specifying whether double-size mode is turned on.

VICDoubleScan
Boolean specifying whether double-scan mode is turned on.

VICPaletteFile
String specifying the name of the palette file being used. The ‘.vpl’ extension
is optional.

VICHwScale
Boolean specifying whether to enable or disable hardware scaling

VICFullscreenDevice
fullscreen device

VICFullscreen
Boolean specifying whether to use fullscreen mode or not.

VICFullscreenStatusbar
Boolean specifying whether to show the status bar in fullscreen mode or not.

VICXRANDRFullscreenMode
integer specifying XRANDR fullscreen mode

VICVidmodeFullscreenMode
integer specifying Vidmode fullscreen mode

VICExternalPalette
Boolean specifying whether to use external palette file or not.

VICColorSaturation
integer specifying saturation of internal calculated palette [1250] <0-2000>

VICColorContrast
integer specifying contrast of internal calculated palette [1250] <0-2000>

Chapter 7: Machine-specific features 97

VICColorBrightness
integer specifying brightness of internal calculated palette [1000] <0-2000>

VICColorGamma
integer specifying gamma of internal calculated palette [2200] <0-4000>

VICColorTint
integer specifying tint of internal calculated palette [1000] <0-2000>

VICPALScanLineShade
integer specifying amount of scan line shading for the CRT emulation [750]
<0-1000>

VICPALBlur
integer specifying amount of horizontal blur for the CRT emulation. [500] <0-
1000>

VICPALOddLinePhase
integer specifying phase for color carrier in odd lines [1125] <0-2000>

VICPALOddLineOffset
integer specifying phase offset for color carrier in odd lines [875] <0-2000>

VICAudioLeak
Boolean specifying whether to enable/disable video to audio leak emulation.

VICFilter
integer specifying rendering filter, O:none, 1:CRT emulation, 2: scale2x

VICBorderMode
integer specifying border display mode (0: normal, 1: full, 2: debug, 3:none)

7.4.3.2 VIC command-line options

-VICvcache
+VICvcache
Enable/disable the video cache (VICVideoCache=1, VICVideoCache=0).

-VICdsize
+VICdsize
Enable/disable the double size mode (VICDoubleSize=1, VICDoubleSize=0).

-VICdscan
+VICdscan
Enable/disable the double scan mode (VICDoubleScan=1, VICDoubleScan=0).

-VIChwscale
+VIChwscale
Enable/Disable hardware scaling

-VICfilter <Mode>
Select rendering filter, 0:none, 1:CRT emulation, 2: scale2x

-VICpalette NAME
Specify NAME as the palette file (VICPaletteFile).

Chapter 7: Machine-specific features 98

-VICintpal
Use an internal calculated palette

-VICextpal
Use an external palette (file)

-VICfulldevice <device>
Select fullscreen device

-VICXRANDRfullmode <mode>
Select fullscreen mode

-VICVidmodefullmode <mode>
Select fullscreen mode

-VICborders <mode>
Set VIC border display mode (0: normal, 1: full, 2: debug, 3:none)

-VICsaturation <0-2000>
Set saturation of internal calculated palette [1250]

-VICcontrast <0-2000>
Set contrast of internal calculated palette [1250]

-VICbrightness <0-2000>
Set brightness of internal calculated palette [1000]

-VICgamma <0-4000>
Set gamma of internal calculated palette [2200]

-VICtint <0-2000>
Set tint of internal calculated palette [1000]

-VICoddlinesphase <0-2000>
Set phase for color carrier in odd lines [1125]

-VICoddlinesoffset <0-2000>
Set phase offset for color carrier in odd lines [875]

-VICcrtblur <0-1000>
Amount of horizontal blur for the CRT emulation. [500]

-VICcrtscanlineshade <0-1000>
Amount of scan line shading for the CRT emulation [750]

-VICaudioleak
+VICaudioleak
Enable/Disable video to audio leak emulation.

7.4.4 Changing memory configuration

It is possible to change the VIC20 memory configuration in two ways: by enabling and/or
disabling certain individual memory blocks, or by choosing one among a few typical memory
configurations. The former can be done by modifying resource values directly or from the
right-button menu; the latter can only be done from the menu.

There are 5 RAM expansion blocks in the VIC20, numbered 0, 1, 2, 3 and 5:

Chapter 7: Machine-specific features 99

e block 0 (3 Kbytes at $0400-$0FFF);
e block 1 (8 Kbytes at $2000-$3FFF);
e block 2 (8 Kbytes at $4000-$5FFF);
e block 3 (8 Kbytes at $6000-$7FFF);

e block 5 (8 Kbytes at $A000-$BFFF).

)

These blocks are called expansion blocks because they are not present a stock (“unex-
panded”) machine. Each of them is associated to a boolean RamBlockX resource (where X
is the block number) that specifies whether the block is enabled or not.

There are also some common memory configurations you can pick from the right-button
menu:

e no RAM expansion blocks at all;

e all RAM expansion blocks enabled;

e 3K expansion (only block 0 is enabled);

e 8K expansion (only block 1 is enabled);

e 16K expansion (only blocks 1 and 2 are enabled);

e 24K expansion (only blocks 1, 2 and 3 are enabled).

7.4.4.1 VIC20 memory configuration resources

RAMBlockO
RAMBlock1
RAMBlock2
RAMBlock3
RAMBlockb
Booleans specifying whether RAM blocks 0, 1, 2, 3 and 5 must be enabled.

7.4.4.2 VIC20 memory configuration command-line options

-memory CONFIG
Specify memory configuration. It must be a comma-separated list of options,
each of which can be one the following;:

e none (no extension);

e all (all blocks);

e 3k (3k space in block 0);

e 8k (first 8k extension block);

e 16k (first and second 8k extension blocks);

e 24k (first, second and 3rd extension blocks);

e 0,1, 2 3,5 (memory in respective blocks);

e 04, 20, 40, 60, A0 (memory at respective address.
For example,

Xvic -memory none
gives an unexpanded VIC20. While

Chapter 7: Machine-specific features 100

xvic -memory 60,a0
or
xvic -memory 3,5
enables memory in blocks 3 and 5, which is the usual configuration for 16k
ROM modules.
7.4.5 VIC20 system ROM settings
These settings can be used to control what system ROMs are loaded in the VIC20 emulator

at startup. They cannot be changed from the menus.

7.4.5.1 VIC20 system ROM resources

KernalName
String specifying the name of the Kernal ROM (default ‘kernal’).

BasicName
String specifying the name of the Basic ROM (default ‘basic’).

ChargenName
String specifying the name of the character generator ROM (default ‘chargen’).

7.4.5.2 VIC20 system ROM command-line options

-kernal NAME
Specify ‘NAME’ as the Kernal ROM file (KernalName).

-basic NAME
Specify ‘NAME’ as the Basic ROM file (BasicName).

-chargen NAME
Specify ‘NAME’ as the character generator ROM file (ChargenName).

-cart2 NAME

—-cart4 NAME

—-cart6 NAME

—-cartA NAME

-cartB NAME
Specify ‘NAME’ as the cartridge image to attach. (CartridgeFile2000, ...
CartridgeFileB000).

7.4.6 VIC20 settings

7.4.6.1 VIC20 command-line options
-0EMjoy
+0EMjoy Enable/Disable the OEM userport joystick adapter

7.5 PLUS4-specific commands and settings

7.5.1 TED settings

Chapter 7: Machine-specific features 101

7.5.1.1 TED resources

TEDVideoCache
Boolean specifying whether the video cache is turned on.

TEDDoubleSize
Boolean specifying whether double-size mode is turned on.

TEDDoubleScan
Boolean specifying whether double-scan mode is turned on.

TEDPaletteFile
String specifying the name of the palette file being used. The ‘.vpl’ extension
is optional.

TEDHwScale
Boolean specifying whether to enable or disable hardware scaling

TEDFullscreenDevice
fullscreen device

TEDFullscreen
Boolean specifying whether to use fullscreen mode or not.

TEDFullscreenStatusbar
Boolean specifying whether to show the status bar in fullscreen mode or not.

TEDXRANDRFullscreenMode
integer specifying XRANDR fullscreen mode

TEDVidmodeFullscreenMode
integer specifying Vidmode fullscreen mode

TEDExternalPalette
Boolean specifying whether to use external palette file or not.

TEDColorSaturation
integer specifying saturation of internal calculated palette [1250] <0-2000>

TEDColorContrast

integer specifying contrast of internal calculated palette [1250] <0-2000>
TEDColorBrightness

integer specifying brightness of internal calculated palette [1000] <0-2000>
TEDColorGamma

integer specifying gamma of internal calculated palette [2200] <0-4000>
TEDColorTint

integer specifying tint of internal calculated palette [1000] <0-2000>
TEDPALScanLineShade

integer specifying amount of scan line shading for the CRT emulation [750]

<0-1000>
TEDPALBlur

integer specifying amount of horizontal blur for the CRT emulation. [500] <0-
1000>

Chapter 7: Machine-specific features 102

TEDPALOddLinePhase
integer specifying phase for color carrier in odd lines [1125] <0-2000>

TEDPALOddLineOffset
integer specifying phase offset for color carrier in odd lines [875] <0-2000>

TEDAudioLeak
Boolean specifying whether to enable/disable video to audio leak emulation.

TEDFilter
integer specifying rendering filter, O:none, 1:CRT emulation, 2: scale2x

TEDBorderMode
integer specifying border display mode (0: normal, 1: full, 2: debug, 3:none)

7.5.1.2 TED command-line options

-TEDvcache
+TEDvcache
Enable/Disable the video cache

-TEDdsize
+TEDdsize
Enable/Disable double size

-TEDdscan
+TEDdscan
Enable/Disable double scan

-TEDfilter <Mode>
Select rendering filter, O:none, 1:CRT emulation, 2: scale2x

-TEDhwscale
+TEDhwscale
Enable/Disable hardware scaling

-TEDintpal
Use an internal calculated palette

-TEDextpal
Use an external palette (file)

-TEDpalette <name>
Specify name of file of external palette

—-TEDfulldevice <device>
Select fullscreen device

-TEDXRANDRfullmode <mode>
Select fullscreen mode

-TEDVidmodefullmode <mode>
Select fullscreen mode

-TEDborders <mode>
Set TED border display mode (0: normal, 1: full, 2: debug, 3:none)

Chapter 7: Machine-specific features 103

-TEDsaturation <0-2000>
Set saturation of internal calculated palette [1250]

—-TEDcontrast <0-2000>
Set contrast of internal calculated palette [1250]

-TEDbrightness <0-2000>
Set brightness of internal calculated palette [1000]

-TEDgamma <0-4000>
Set gamma of internal calculated palette [2200]

-TEDtint <0-2000>
Set tint of internal calculated palette [1000]

-TEDoddlinesphase <0-2000>
Set phase for color carrier in odd lines [1125]

—-TEDoddlinesoffset <0-2000>
Set phase offset for color carrier in odd lines [875]

—TEDcrtblur <0-1000>
Amount of horizontal blur for the CRT emulation. [500]

-TEDcrtscanlineshade <0-1000>
Amount of scan line shading for the CRT emulation [750]

-TEDaudioleak
+TEDaudioleak
Enable/Disable video to audio leak emulation.

7.5.2 PLUS4 I/0 extension settings
7.5.2.1 PLUS4 I/O extension resources

CartridgeReset
Boolean specifying whether the machine should be reset when a cartridge is
changed.

DIGIBLASTER
Boolean, enables Digiblaster emulation.

SpeechEnabled
Boolean, enables emulation of the V364 speech chip.

SpeechImage
String specifying the filename of the speech ROM image.

SidCart Boolean, enables emulation of the SID-Cart

SidAddress
Integer that specifies the base address of the emulated SID chip.

SidClock Integer specifying the clock rate used for the emulated SID chip (0: C64, 1:
Plus4)

SIDCartJoy
Boolean, enables emulation of the SID-Cart joystick

Chapter 7: Machine-specific features

7.5.2.2 PLUS4 I/O extension command-line options

-cartreset
+cartreset
Do/don’t reset machine if a cartridge is attached or detached

-cart <Name>
Smart-attach cartridge image

+cart Disable default cartridge

-digiblaster
+digiblaster
Enable/Disable the digiblaster add-on

-sidcart
+sidcart Enable/Disable SID Cartridge

-sidcartjoy
+sidcartjoy
Enable/Disable SID cartridge joystick

—-speech
+speech Enable/Disable the v364 speech add-on

-speechrom <name>
Attach Speech ROM image

7.5.3 PLUS4 system ROM settings
7.5.3.1 PLUS4 system ROM resources

FunctionLowName
String specifying the filenames of the Lo Function ROM.

FunctionHighName
String specifying the filenames of the High Function ROM.

clloName String specifying the filenames of cartridge 1 Lo ROM.
clhiName String specifying the filenames of cartridge 1 High ROM.
c2loName String specifying the filenames of cartridge 2 Lo ROM.
c2hiName String specifying the filenames of cartridge 2 High ROM.

7.5.3.2 PLUS4 system ROM command-line options

—-functionlo <name>
Specify name of Function low ROM image

—-functionhi <name>
Specify name of Function high ROM image

-cllo <name>
Specify name of Cartridge 1 low ROM image

104

Chapter 7: Machine-specific features 105

—-clhi <name>
Specify name of Cartridge 1 high ROM image

-c2lo <name>
Specify name of Cartridge 2 low ROM image

-c2hi <name>
Specify name of Cartridge 2 high ROM image

7.5.4 PLUS4 settings

7.5.4.1 PLUS4 resources

H256K Integer, enables the HANNES 256K RAM expansion (0: disabled, 1: 256kB, 2:
1024kB, 3: 4096kB)

CS256K Boolean, enables the CSORY 256K RAM expansion
AcialEnable
Boolean specifying whether the ACIA should be emulated or not.

7.5.4.2 PLUS4 command-line options

-ramsize <ramsize>
Specify size of RAM installed in kb (16/32/64)

-h256k Enable the HANNES 256K RAM expansion
-h1024k Enable the HANNES 1024K RAM expansion
-h4096k Enable the HANNES 4096K RAM expansion
-cs256k Enable the CSORY 256K RAM expansion
-acia

+acia Enable/Disable the ACIA emulation

7.6 PET-specific commands and settings

This section lists the settings and commands that are PET-specific and thus are not present
in the other emulators.

7.6.1 Changing PET model settings

With xpet, it is possible to change at runtime the characteristics of the emulated PET so
that it matches (or not) the ones of a certain PET model, and it is also possible to select
from a common set of PET models so that all the features are selected accordingly.

The former is done by changing the following resources (via resource file, command line
options or right-menu items):

RamSize Size of memory in kByte. 96k denotes a 8096, 128k a 8296.
I0Size Size of I/O area in Byte. Either 2048 or 256 for 8296.

VideoSize
The number of columns on the screen (40 or 80). A 0 auto-detects this from
the ROM.

Chapter 7: Machine-specific features 106

Ram9 The 8296 can map RAM into the address range $9***
RamA The 8296 can map RAM into the address range $A***

SuperPET This resource enables the SuperPET (MicroMainFrame 9000) I/O and 6809
CPU, and disables the 8x96 mappings.

Basicl If (by checksum) a version 1 kernal is detected, then the kernal ROM is patched
to make the IEEE488 interface work.

BasiclChars
Exchanges some character in the character ROM that have changed between
the first PET 2001 and all newer versions.

EoiBlank This resource enables the "blank screen on EOI" feature of the oldest PET
2001.

DiagPin Set the diagnositc pin on the PET userport (see below).

ChargenName
Specify ‘NAME’ as the character generator ROM file

KernalName
Specify ‘NAME’ as the kernal ROM file. This file contains the complete BASIC,
EDITOR and KERNAL ROMs and is either 16k (BASIC 1 and 2) or 20k
(BASIC 4) in size.

EditorName
Specify ‘NAME’ as the editor ROM file. This file contains an overlay for the
editor ROM at $E000-$E7FF if necessary.

RomModule9Name
Specify ‘NAME’ as the $9*** Expansion ROM file. This file contains an expansion
ROM image of 4k.

RomModuleAName
Specify ‘NAME’ as the $A*** Expansion ROM file. This file contains an expan-
sion ROM image of 4k.

RomModuleBName
Specify ‘NAME’ as the $B*** Expansion ROM file. This file contains an expan-
sion ROM image of 4k. This file overlays the lowest 4k of a BASIC 4 ROM.

Choosing a common PET model is done from the right-button menu instead, by choosing
an item from the “Model defaults” submenu. Available models are:

e PET 2001-8N

e PET 3008

e PET 3016

e PET 3032

e PET 3032B

e PET 4016

e PET 4032

Chapter 7: Machine-specific features 107

e PET 4032B
e PET 8032
e PET 8096
e PET 8296
e SuperPET

Notice that this will reset the emulated machine.

It is also possible to select the PET model at startup, with the -model command-line option:
for example, ‘xpet -model 3032’ will emulate a PET 3032 while ‘xpet -model 8296 will
emulate a PET 8296.

7.6.2 CRTC Settings

7.6.2.1 CRTC resources
Crtc Enables CRTC 6545 emulation (all models from 40xx and above)

CrtcVideoCache
Boolean specifying whether the video cache is turned on.

CrtcDoubleSize
Boolean specifying whether double-size mode is turned on.

CrtcDoubleScan
Boolean specifying whether double-scan mode is turned on.

CrtcStretchVertical
Boolean specifying whether vertical stretching is turned on.

CrtcPaletteFile
String specifying the name of the palette file being used. The ‘.vpl’ extension
is optional.

CrtcHwScale
Boolean specifying whether to enable or disable hardware scaling

CrtcFullscreenDevice
fullscreen device

CrtcFullscreen
Boolean specifying whether to use fullscreen mode or not.

CrtcFullscreenStatusbar
Boolean specifying whether to show the status bar in fullscreen mode or not.

CrtcXRANDRFullscreenMode
integer specifying XRANDR fullscreen mode

CrtcVidmodeFullscreenMode
integer specifying Vidmode fullscreen mode

CrtcExternalPalette
Boolean specifying whether to use external palette file or not.

Chapter 7: Machine-specific features 108

CrtcColorSaturation
integer specifying saturation of internal calculated palette [1250] <0-2000>

CrtcColorContrast
integer specifying contrast of internal calculated palette [1250] <0-2000>

CrtcColorBrightness
integer specifying brightness of internal calculated palette [1000] <0-2000>

CrtcColorGamma
integer specifying gamma of internal calculated palette [2200] <0-4000>

CrtcColorTint
integer specifying tint of internal calculated palette [1000] <0-2000>

CrtcPALScanLineShade
integer specifying amount of scan line shading for the CRT emulation [750]
<0-1000>

CrtcPALBlur
integer specifying amount of horizontal blur for the CRT emulation. [500] <0-
1000>

CrtcPALOddLinePhase
integer specifying phase for color carrier in odd lines [1125] <0-2000>

CrtcPALOddLineOffset
integer specifying phase offset for color carrier in odd lines [875] <0-2000>

CrtcAudioLeak
Boolean specifying whether to enable/disable video to audio leak emulation.

CrtcFilter
integer specifying rendering filter, O:none, 1:CRT emulation, 2: scale2x

7.6.2.2 CRTC command-line options

—-Crtcvcache
+Crtcvcache
Enable/Disable the video cache

—-Crtcdsize
+Crtcdsize
Enable/Disable double size

-CRTCstretchvertical
+CRTCstretchvertical
Enable/Disable vertical stretching

-Crtcdscan
+Crtcdscan
Enable/Disable double scan

-Crtcfilter <Mode>
Select rendering filter, O:none, 1:CRT emulation, 2: scale2x

Chapter 7: Machine-specific features

-Crtchwscale
+Crtchwscale
Enable/Disable hardware scaling

-Crtcintpal
Use an internal calculated palette

-Crtcextpal
Use an external palette (file)

—-Crtcpalette NAME
Specify NAME as the palette file (CrtcPaletteFile).

—-Crtcfulldevice <device>
Select fullscreen device

-CrtcXRANDRfullmode <mode>
Select fullscreen mode

-CrtcVidmodefullmode <mode>
Select fullscreen mode

-Crtcsaturation <0-2000>
Set saturation of internal calculated palette [1250]

-Crtccontrast <0-2000>
Set contrast of internal calculated palette [1250]

—-Crtcbrightness <0-2000>
Set brightness of internal calculated palette [1000]

-Crtcgamma <0-4000>
Set gamma of internal calculated palette [2200]

-Crtctint <0-2000>
Set tint of internal calculated palette [1000]

-Crtcoddlinesphase <0-2000>
Set phase for color carrier in odd lines [1125]

-Crtcoddlinesoffset <0-2000>
Set phase offset for color carrier in odd lines [875]

—Crtccrtblur <0-1000>
Amount of horizontal blur for the CRT emulation. [500]

—-Crtccrtscanlineshade <0-1000>
Amount of scan line shading for the CRT emulation [750]

-Crtcaudioleak
+Crtcaudioleak
Enable/Disable video to audio leak emulation.

7.6.3 PET I/0 extension settings

109

Chapter 7: Machine-specific features 110

7.6.3.1 PET I/0O extension resources
PETREU Boolean specifying whether PET REU emulation is enabled.

PETREUfilename
String specifying the filename of the PET REU image.

PETREUsize
Integer specifying the size of the emulated PET REU in KB (128, 512, 1024,
2048)

PETDWW Boolean specifying whether DWW emulation is enabled.

PETDWWfilename
String specifying the filename of the DWW image RAM image.

UserportDAC
Boolean specifying whether userport DAC emulation is enabled.

SidCart Boolean specifying whether SID Cart emulation is enabled.

SidAddress
Integer that specifies the base address of the emulated SID chip.

SidClock Integer specifying the clock rate used for the emulated SID chip (0: C64, 1:
PET)

7.6.3.2 PET I/0 extension command-line options

-petreu
+petreu Emnable or disable the PET Memory Expansion Unit.

-petreuimage <name>
Specify name of PET Ram and Expansion Unit image

-petreuramsize <size in KB>
Size of the PET Ram and Expansion Unit

-userportdac, +userportdac
Enable or disable the userport DAC.

-petdww
+petdww Enable/Disable the PET DWW hi-res board

-petdwwimage <name>
Specify name of PET DWW image

—-sidcart

+sidcart Enable/Disable SID Cartridge

7.6.4 PET system ROM settings

Chapter 7: Machine-specific features 111

7.6.4.1 PET system ROM resources

H6809RomAName

H6809RomBName

H6809RomCName

H6809RomDName

H6809RomEName

H6809RomFName
Strings specifying the filenames of the respective H6809 ROM images, relevant
for the SuperPET.

7.6.4.2 PET system ROM command-line options

—-kernal NAME
Specify ‘NAME’ as the Kernal/BASIC ROM file (KernalName).

—editor NAME
Specify ‘NAME’ as the editor ROM file (EditorName).

—-chargen NAME
Specify ‘NAME’ as the character generator ROM file (ChargenName).

-rom9 NAME, -romA NAME, -romB NAME
Specify ‘NAME’ as the ROM image file for the respective cartridge areas
(RomModule9Name, RomModuleAName, RomModuleBName).

-6809romA <Name>
Specify 4K to 24K ROM file name at $A000 for 6809

-6809romB <Name>
Specify 4K to 20K ROM file name at $B000 for 6809

-6809romC <Name>
Specify 4K to 16K ROM file name at $C000 for 6809

-6809romD <Name>
Specify 4K to 12K ROM file name at $D000 for 6809

-6809romE <Name>
Specify 2K or 8K ROM file name at $E000 for 6809

-6809romF <Name>
Specify 4K ROM file name at $F000 for 68309

7.6.5 The PET diagnostic pin

It is possible to enable or disable emulation of the PET diagnostic pin via the DiagPin
resource, or the “PET userport diagnostic pin” item in the right-button menu.

When the diagnostic pin is set, the Kernal does not try to initialize the BASIC, but directly
jumps into the builtin machine monitor.

7.6.6 PET settings

Chapter 7: Machine-specific features 112

7.6.6.1 PET resources

CPUswitch
Integer specifying the status of the SuperPET CPU switch (0: 6502, 1: 6809,
2: PROG)

7.6.6.2 PET command line options

These are the commandline options specific for the CBM-II models.

-model MODEL
Specify the PET model you want to emulate.

-petram9, +petram9
Switch on RAM mapping on addresses $9000-$9{ff (Ram9).

-petramA, +petramh
Switch on RAM mapping on addresses $a000-$afff (RamA).

-superpet, +superpet
Enable/Disable SuperPET I/O and CPU emulation (SuperPET).

-cpu6502 Set SuperPET CPU switch to '6502’
-cpu6809 Set SuperPET CPU switch to 6809’
-cpuprog Set SuperPET CPU switch to 'Prog’

-basicl, +basicil
Enable/Disable patching the IEEE488 section of the PET2001 ROM when de-
tected (Basicl).

-basiclchar, +basiclchar
Enable/Disable PET 2001 character generator (Basic1Chars).

-eoiblank, +eoiblank
Enable/Disable EOI blanking the screen (EoiBlank).

—-diagpin

+diagpin Enable (DiagPin=1) or disable (DiagPin=0) the diagnostic pin at the PET
userport.

7.6.7 Changing screen colors

It is also possible to choose what color set is used for the emulation window. This is done by
specifying a palette file name (see Section 4.3 [Palette files|, page 23) in the PaletteName
resource. The menu provides the following values:

e green.vpl (default, “green)”), the good old green-on-black feeling;
e amber.vpl (“amber”), an amber phosphor lookalike;

e white.vpl (“white”), simple white-on-black palette.

7.7 CBM-I1I-specific commands and settings

This section lists the settings and commands that are CBM-II-specific and thus are not
present in the other emulators.

Chapter 7: Machine-specific features 113

7.7.1 Changing CBM-II model

With xcbm2 and xcbmbx0, it is possible to change at runtime the characteristics of the
emulated CBM so that it matches (or not) the ones of a certain CBM model, and it is also
possible to select from a common set of CBM models so that all the features are selected
accordingly.

The former is done by changing the following resources (via resource file, command line
options or right-menu items):

RamSize Size of memory in kByte. Possible values are 128, 256, 512 and 1024

Ram08

Rami

Ram?2

Ram4

Ram6

RamC Expanded CBM-II models could map RAM to the expansion ROM areas at
$0800-$0fFf, $1000-$1fff, $2000-$3FFF, $4000-$5FFF, $6000-$7FFF and $c000-
$cfff respectively.

Cart1Name

Cart2Name

Cart4Name

Cart6Name
Specify ‘NAME’ as the $1000-$1FFF, $2000-$3FFF, $4000-$5FFF or
$6000-$6FFF Expansion ROM file. This file contains an 8k ROM dump.

ModelLine
The CBM-II business models have two hardcoded lines at one of the I/O ports.
From those lines the kernal determines how it should init the CRTC video chip
for either 50Hz (Europe) or 60Hz (North America), and either for 8 (C6x0) or
14 (C7x0) scanlines per character. 0 = CBM 7x0 (50Hz), 1 = 60Hz C6x0, 2 =
50Hz C6x0).

Choosing a common CBM-II model is done from the right-button menu instead, by choosing
an item from the “Model defaults” submenu. Available models are:

e (C510 PAL or NTSC (128k RAM)

e C610 PAL or NTSC (128k RAM)

e (620 (256k RAM)

e (C620+ (1024k RAM, expanded) PAL or NTSC

e C710 (128k RAM) NTSC

e C720 (256k RAM) NTSC

e (C720+ (1024k RAM, expanded) NTSC

Notice that this will reset the emulated machine.
Warning: At this time the 5x0 and other machines are implemented in different executables,
so switching between those models is not possible.
It is also possible to select the CBM model at startup, with the -model command-line

option: for example, ‘xcbm2 -model 610’ will emulate a CBM 610 while ‘xcbm2 -model
620’ will emulate a CBM 620.

Chapter 7: Machine-specific features 114

7.7.2 CBM-II system ROM settings
7.7.2.1 CBM-II system ROM resources
7.7.2.2 CBM-II system ROM command line options

-kernal NAME
Specify ‘NAME’ as the Kernal ROM file (KernalName).

-basic NAME
Specify ‘NAME’ as the Basic ROM file (BasicName).

-chargen NAME
Specify ‘NAME’ as the character generator ROM file (ChargenName).

-cartl <name>
Specify ‘NAME’ as the ROM image file for the cartridge area $1000-$1FFF
(CartiName).

-cart2 <name>
Specify ‘NAME’ as the ROM image file for the cartridge area $2000-$3fff
(Cart2Name).

-cart4 <name>
Specify ‘NAME’ as the ROM image file for the cartridge area $4000-$5fff
(Cart4Name).

-cart6 <name>
Specify ‘NAME’ as the ROM image file for the cartridge area $6000-$7fff
(Cart6Name).

7.7.3 CBM-II command line options
These are the commandline options specific for the CBM-II models.

-ramsize <ramsize>
Specify size of RAM (64/128/256/512/1024 kByte)

-ram08

+ram08 Enable/Disable RAM mapping in bank 15 on addresses $0800-$OFFF resp
(Ram08).

-raml

+raml Enable/Disable RAM mapping in bank 15 on addresses $1000-31FFF resp
(Raml).

-ram?2

+ram?2 Enable/Disable RAM mapping in bank 15 on addresses $2000-$3FFF resp
(Ram2).

-ram4

+ramé Enable/Disable RAM mapping in bank 15 on addresses $4000-$5FFF resp
(Ram4).

Chapter 7: Machine-specific features 115

-ram6

+ramé Enable/Disable RAM mapping in bank 15 on addresses $6000-$7FFF resp
(Rams).

-ramC

+ramC Enable/Disable RAM mapping in bank 15 on addresses $C000-$CFFF resp
(RamC).

-model <modelnumber>
Specify CBM-II model to emulate
7.7.4 Changing screen colors

It is also possible to choose what color set is used for the emulation window. This is done by
specifying a palette file name (see Section 4.3 [Palette files|, page 23) in the PaletteName
resource. The menu provides the following values:

e green.vpl (default, “green”), the good old green-on-black feeling;
e amber.vpl (“amber”), an amber phosphor lookalike;

e white.vpl (“white”), simple white-on-black palette.
7.8 VSID-specific commands and settings

7.8.1 VSID settings
7.8.1.1 VSID resources

PSIDKeepEnv

Boolean that specifies whether to override PSID settings for Video standard
and SID model.

PSIDTune Integer that specifies the currently played sub tune.
7.8.1.2 VSID command-line options
-keepenv Override PSID settings for Video standard and SID model

-tune <number>
Specify PSID tune <number>

Chapter 8: Snapshots 116

8 Snapshots

Every VICE emulator has a built-in snapshot feature, that saves the complete emulator
state into one file for later use. You can therefore save the emulator state - including the
state of the game you are playing for example - in a single file.

8.1 Snapshot usage

A snapshot is one file containining the complete emulator state. A snapshot file can be
generated by selecting the “Save snapshot” command at any time. This will pop up a
requester from which you can specify whether the snapshot should also contain the disk
and ROM status.

A snapshot file can be used to restore the emulator state by selecting the load snapshot
menu entry at any time. Unfortunately attached ROM images/cartridges are only supported
in the VIC20, the PET and the CBM-II emulators at this time.

The memory configuration of the emulator is saved in the snapshot file as well. This
configuration is restored when the snapshot is loaded.

A quick snapshot can now be made by pressing the M-F11 key and reloaded by pressing the
M-F10 key.

8.2 Snapshot format

A snapshot file consists of several modules of mostly different types. Each module has a
name and saves the state of an entity like a CIA, the CPU, or the memory.

8.2.1 Emulator modules

This section lists the modules that are contained in each of the emulators snapshot files.

8.2.1.1 x64 modules

The modules in the x64 emulator are:

Name Type Description

MAINCPU 6502 The Main CPU - although it is a 6510, only
the 6502 core is saved here

C64MEM Memory Holds the RAM contents of the C64. Also
the CPU I/O register contents are saved
here.

C64ROM ROM images Dump of the system ROMs

VIC-II 656* The VIC-IT of the C64/128

CIA1 6526 The CIA for the interrupts and the
keyboard

CIA2 6526 The CIA for the userport, IEC-bus and
RS232.

SID 6581 The SID sound chip of the C64/C128

REU* The RAM Extension Unit state (optional)

ACIA1 6551 An ACIA (RS232 interface) at $DEO0O

(optional)

Chapter 8: Snapshots 117

TPI 6525 A TPI at $DF00 for a parallel IEEE488 in-
terface (optional)

* Drive modules The emulated drive(s) have their own mod-
ules see Section 8.2.1.6 [Drive modules],
page 119

Some of the modules are optional and are only saved if the specific feature is enabled at
save-time. If the module is found when restoring the state the optional features are enabled,
and disabled otherwise.

8.2.1.2 x128 modules

The modules in the x128 emulator are:

Name Type Description

MAINCPU 6502 The Main CPU - although it is a 6510, only
the 6502 core is saved here

C128MEM Memory Holds the RAM contents of the C64. Also
the CPU I/O register contents are saved
here.

C128ROM ROM images Dump of the system ROMs

VIC-II 656* The VIC-II of the C64/128

CIA1 6526 The CIA for the interrupts and the
keyboard

CIA2 6526 The CIA for the userport, IEC-bus and
RS232.

SID 6581 The SID sound chip of the C64/C128

ACIA1 6551 An ACIA at $DEO0O (optional)

TPI 6525 A TPI at $DFO00 for a parallel IEEE488 in-
terface (optional)

* Drive modules The emulated drive(s) have their own mod-
ules see Section 8.2.1.6 [Drive modules],
page 119

Some of the modules are optional and are only saved if the specific feature is enabled at
save-time. If the module is found when restoring the state the optional features are enabled,
and disabled otherwise.

Not yet supported are the 80 column video chip, cartridges and RAM expansion unit.

8.2.1.3 xvic modules

The modules in the xvic emulator are:

Name Type Description

MAINCPU 6502 The Main CPU

VIC20MEMMemory Holds the RAM contents of the VIC20.

VIC20ROMROM images Holds the ROM images of the VIC20, in-
cluding possibly attached cartridges

VIC-I 656* The VIC-I of the VIC20

VIA1 6522 The VIA for the interrupts and the

keyboard

Chapter 8: Snapshots

VIA2 6522

Drive modules

8.2.1.4 xpet modules

The modules in the xpet emulator are:

Name Type
MAINCPU 6502
PETMEM Memory
PETROM ROM images

CRTC 6545
PIA1 6520
PIA2 6520
VIA 6522
ACIA1 6551

DWWPIA 6520
CPU6809 6809

Drive modules

118

The VIA for the userport, IEC-bus and
RS232.

The emulated drive(s) have their own mod-
ules see Section 8.2.1.6 [Drive modules],
page 119

Description

The Main CPU

Holds the RAM contents of the PET.
Holds the ROM images of the PET, includ-
ing possibly attached cartridges

The CRTC of the PET. This is also in-
cluded if it is a dump of a PET without
CRTC, because the video state is saved
here anyway.

The PIA for the interrupts, tape and the
keyboard

The PIA for the IEEE488-bus

The VIA for IEEE488, userport, sound
The ACIA for the SuperPET. This module
is optional.

The PIA for the DWW hires board.

The extra CPU in the SuperPET. This
module is optional.

The emulated drive(s) have their own mod-
ules see Section 8.2.1.6 [Drive modules],
page 119

8.2.1.5 xcbm2 and xcbm5x0 modules

The modules in the xcbm?2 and xcbmb5x0 emulators are:

Name Type
MAINCPU 6502

CBM2MEMMemory

C500DATA

CBM2ROMMemory
CRTC 6545

Description

The Main CPU - although it is a 6509, only
the 6502 core is saved here

Holds the RAM contents of the CBM-II
models. Also holds the exec-bank and indi-
rection bank registers

Holds additional state information neces-
sary for the C500 (e.g. cycles till the next
IRQ)

optional. Holds the ROM images.

The video chip for the C6*0 and C7*0 mod-
els (only those models).

Chapter 8: Snapshots 119

VIC-II 6567 The video chip for the C5*%0 models (only
the C5*0 models).

CIA1 6526 The CIA for IEEE 488 and userport.

TPI1 6525 TPI 1 for IEEE488

TPI2 6525 TPI 2 for interrupts and keyboard.

ACIA1 6551 The RS232 interface

SID 6581 The CBM2s SID sound chip

* Drive modules The emulated drive(s) have their own mod-
ules see Section 8.2.1.6 [Drive modules],
page 119

8.2.1.6 Drive modules

The modules for the real disk drive emulation are included in the emulator when the emu-
lation is enabled during the writing of the snapshot.

Name Type Description
*CPU 6502 The Drive 0 CPU
* * *

8.2.2 Module formats

This section shows the basic module framework and the contents of the different types of
modules.

The single chip modules contain the chip state, not the state of the emulator. We tried to
make the format as implementation-independent as possible, to allow reuse of snapshots in
later versions of this emulator, or even in other emulators.

8.2.2.1 Terminology

In this section we use certain abbreviations to define the types of the data saved in the
snapshot.

BYTE 8 bit integer.
WORD 16 bit integer. Saved with low-byte first, high-byte last.
DWORD 32 bit integer. Saved with low-word first, then high-word. Each word saved

with its low-byte first.
ARRAY Array of BYTE values. Length depends on the description.

The tables for the single modules state the type, name and description of the data saved in
the modules. The data is saved in the order it is in the tables, so no offset is given.

8.2.2.2 Module framework

The VICE snapshot file starts with the magic string and includes the fileformat version
number.

Type Name Description
19 MAGIC "VICE Snapshot File\032", padded with 0
BYTE

BYTE VMAJOR fileformat major version number

Chapter 8: Snapshots 120

BYTE VMINOR fileformat minor version number
16 MACHINENAME Name of emulated machine, like "PET",
BYTE "CBM-II", "VIC20", "C64" or "(C128".

zerobyte-padded.
The file header is followed by a number of different snapshot modules.

Each module has a header with the information given in the table below. The header
includes two version numbers, VMAJOR and VMINOR. Modules with the same VMA-
JOR should be able to be exchanged. I.e. higher VMINOR numbers only append to the
data for lower VMINOR. This additional data is ignored by older restore routines. The
other way around newer restore routines must accept the fewer info from lower VMINOR
dumps. Changes in VMAJOR might introduce any incompatibility you like, but that’s
what VMAJOR is for after all :-)

Type Name Description

16 MODULENAME The name of the module in ASCII, padded
BYTE with 0 to 16 byte.

BYTE VMAJOR major version number

BYTE VMINOR minor version number

DWORD SIZE size of the module, including this header

8.2.2.3 CPU 6502 module

This module saves the core 6502 state. You will find a clock value there. All other modules
save their own clock values relative to this value. However, the drive modules save their
clocks relative to their appropriate CPUs of course.

Warning: This module is still under construction and saves some information that is not
sure to be VICE-independent. If in doubt, read the source.

Type Name Description

DWORD CLK the current CPU clock value. All other
clock values are relative to this.

BYTE AC Accumulator

BYTE XR X index register

BYTE YR Y index register

BYTE SP Stack Pointer

WORD PC Programm Counter

BYTE ST Status Registers

DWORD LASTOPCODE ?

DWORD IRQCLK absolute CLK when the ITRQ line came
active

DOWRD NMICLK absolute CLK when the NMI line came
active

DWORD 7 ?

DWORD 7 ?

Chapter 8: Snapshots

8.2.2.4 CPU 6809 module

121

This module saves the core 6809 state. You will find a clock value there. All other modules
save their own clock values relative to this value. However, the drive modules save their
clocks relative to their appropriate CPUs of course.

Warning: This module is still under construction and saves some information that is not
sure to be VICE-independent. If in doubt, read the source.

Type
DWORD

WORD
WORD
WORD
WORD
BYTE
BYTE
BYTE
BYTE

WORD
BYTE
BYTE

8.2.2.5 CIA module

Name
CLK

=

PC
DP
CcC
A
B

\Y
E
F

Description

the current CPU clock value. All other
clock values are relative to this.

The X register

The Y register

The U register

The Program Counter register

The Direct Page register

The Condition Code register

The A register

The B register

The following are for 6309 compatibility:
The V register

The E register

The F register

The CIA 6526 is an 1/O port chip with 2 8-bit I/O ports, a shift register, two timers, a

Time of Day clock and interrupts.

Version numbers: Major 1, Minor 1.

Type
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
WORD
WORD
BYTE

Name
ORA

ORB
DDRA
DDRB
TAC

TBC
TOD_TEN
TOD_SEC
TOD_MIN
TOD_HR
SDR

IER

CRA

CRB

TAL

TBL

IFR

Description

Output register A

Output register B

Data direction register A

Data direction register B

Timer A counter value

Timer B counter value

Time of Day - current tenth of second
Time of Day - current seconds
Time of Day - current minutes
Time of Day - current hours
contents of shift register

mask of enabled interrupt masks
Control register A

Control register B

Timer A latch value

Timer B latch value

mask of currently active interrupts

Chapter 8: Snapshots 122

BYTE PBSTATE Bit 6/7 reflect the PB6/7 toggle bit state.
Bit 2/3 reflect the corresponding port bit
state.

BYTE SRHBITS number of half-bits to still shift in/out SDR

BYTE ALARM_TEN Time of Day - alarm tenth of second

BYTE ALARM_SEC Time of Day - alarm seconds

BYTE ALARM_MIN Time of Day - alarm minutes

BYTE ALARM_HR Time of Day - alarm hours

BYTE READICR current clock minus the clock when ICR
was read last plus 128.

BYTE TODLATCHED Bit 0: 1= latched for reading, Bit 1:
2=stopped for writing

BYTE TODL_TEN Time of Day - latched tenth of second

BYTE TODL_SEC Time of Day - latched seconds

BYTE TODL_MIN Time of Day - latched minutes

BYTE TODL_HR Time of Day - latched hours

DWORD TOD_TICKS clk ticks till next tenth of second

- — The next items have been added in V1.1

WORD TASTATE The state bits of the CIA timer A, accord-
ing to ciatimer.h

WORD TBSTATE The state bits of the CIA timer B, accord-

ing to ciatimer.h

The last two items have been added in CIA snapshot version 1.1 due to the improved CIA
emulation in the newer VICE versions. Some state bits correspond to the CIA state as
described in the "A Software Model of the CIA 6526" document by Wolfgang Lorenz, some
are delayed versions. For more read the source file ciatimer.h.

8.2.2.6 VIA module

The VIA 6522 is the predecessor of the CIA and also an I/O port chip with 2 8-bit I/O
ports, a shift register, two timers and interrupts.

Version numbers: Major 1, Minor 0.

Type Name Description

BYTE ORA Output register A

BYTE DDRA Data direction register A

BYTE ORB Output register B

BYTE DDRB Data direction register B

WORD TI1L Timer 1 Latch value

WORD T1C Timer 1 counter value

BYTE T2L Timer 2 latch (8 bit as only lower byte is
used)

WORD T2C Timer 2 counter value

BYTE RUNFL bit 7: timer 1 will generate IRQ on under-
flow; bit 6: timer 2 will generate IRQ on
underflow

BYTE SR Shift register value

BYTE ACR Auxiliary control register

Chapter 8: Snapshots 123

BYTE PCR Peripheral control register

BYTE IFR active interrupts

BYTE IER interrupt mask

BYTE PB7 bit 7 = pb7 state

BYTE SRHBITS number of half-bits to shift out on SR

BYTE CABSTATE bit 7: state of CA2 pin, bit 6: state of CB2
pin

BYTE ILA Port A Input Latch (see ACR bit 0)

BYTE ILB Port B Input Latch (see ACR bit 1)

8.2.2.7 PIA module

The PIA 6520 is a chip with two I/O ports (Parallel Interface Adapter) and four additional
handshake lines. The chip is pretty the same for Port A and B, only that Port A implements
handshake on read operation and port B on write operation.

Version numbers: Major 1, Minor 0.

Type Name Description

UBYTE ORA Output register A

UBYTE DDRA Data Direction Register A

UBYTE CTRLA Control Register A

UBYTE ORB Output register B

UBYTE DDRB Data Direction Register B

UBYTE CTRLB Control Register B

UBYTE CABSTATE Bit 7 = state of CA2, Bit 6 = state of CB2

8.2.2.8 TPI module

The TPI 6525 is a chip with three I/O ports (Tri-Port-Interface). One of the ports can
double as an interrupt prioritizer. Therefore we also have to save the states of the interrupt
stack etc.

Version numbers: Major 1, Minor 0.

Type Name Description

BYTE PRA Port A output register

BYTE PRB Port B output register

BYTE PRC Port C output register (doubles as TRQ
latch register)

BYTE DDRA Port A data direction register

BYTE DDRB Port B data direction register

BYTE DDRC Port C data direction register (doubles as
IRQ mask register)

BYTE CR Control Register

BYTE AIR Active interrupt register

BYTE STACK Interrupt stack - the interrupt bits that are
not (yet) served.

BYTE CABSTATE State of CA/CB pins. Bit 7 = state of CA,

Bit 6 = state of CB

Chapter 8: Snapshots 124

8.2.2.9 RIOT module

The RIOT 6532 is a chip with two I/O ports, some RAM and a Timer. The chip contains
128 byte RAM, but the RAM is not saved in the RIOT snapshot, but in the memory section.

Warning: This module is still under construction

Version numbers: Major 0, Minor 0.

Type Name Description

BYTE ORA Port A output register

BYTE DDRA Port A data direction register

BYTE ORB Port B output register

BYTE DDRB Port B data direction register

BYTE EDGECTRL Bit 0/1: AO0/A1l address bits written to
edgecontrol registers

BYTE TIRQFL Bit 6/7: A6/AT IRQ flag register. Bit O:
state of the IRQ line (O=inactive, 1=active)

BYTE N timer value

WORD DIVIDER Pre-scale divider value (1, 8, 64, or 1024)

WORD REST cycles since the last counter change

BYTE TRQEN Bit 0: 0= timer IRQ disabled, 1= timer

TRQ enabled
8.2.2.10 SID module

Warning: This module is still under construction.

8.2.2.11 ACIA module

The ACIA 6551 is an RS232 interface chip. VICE emulates RS232 connections via
/dev/ttyS* (Unix) or COM: (DOS/WIN - not yet?). When saving a snapshot, those
connections are of course lost. The state of the ACIA however is restored if possible. Le. if
a connection is already open when restoring the snapshot, this connection is used instead.
If no connection is open, a carrier/DTR drop is emulated.

Version numbers: Major 1, Minor 0.

Type Name Description

BYTE TDR Transmit Data Register

BYTE RDR Receiver Data Register

BYTE SR Status Register

BYTE CMD Command Register

BYTE CTRL Ctrl Register

BYTE INTX 0 = no data to tx; 1 = Data is being trans-

mitted; 2 = Data is being transmitted while
data in TDR waiting to be put to internal
transmit register

DWORD TICKS Clock ticks till the next TDR empty
interrupt

8.2.2.12 VIC-I module

Warning: This module is still under construction.

Chapter 8: Snapshots 125

8.2.2.13 VIC-II module

Warning: This module is still under construction.

8.2.2.14 CRTC module

Warning: After VICE version 1.0 the CRTC emulation has improved considerably. Espe-
cially it is now cycle exact. Therefore a lot more variables must be saved. The snapshot
module version jumped from 0.0 to 1.0. Newer versions of VICE can read the old snapshots,
but older versions (1.0 and below) cannot read the new snapshots.

Warning: This module is still under construction. Especially the RASTERY and RASTER-

LINE values might be bogus.

Version numbers: Major 1, Minor 1.

Type Name Description
Hardware options

WORD VADDR_MASK Mask of the address bits valid when access-
ing the video memory

WORD VADDR_CHARSWITCH If one bit in the video address is used to
switch the character generator, it is masked
here.

WORD VADDR_CHAROFFSET The offset in characters in the character
generator that CHARSWITCH switches.

WORD VADDR_REVSWITCH If one bit in the video address inverts the
screen, it is masked here.

WORD CHARGEN_MASK size of character generator in byte - 1

WORD CHARGEN_OFFSET offset given by external circuitry

BYTE HW_CURSOR external hardware cursor circuitry enabled

BYTE HW_COLS number of displayed columns during one
character clock cycle

BYTE HW_BLANK set if the hardware blank feature is available
CRTC register

20 REGISTERS register DUMP of the CRTC registers 0-19.

BYTE
CRTC internal registers

BYTE REGNO The current index in the CRTC register file

BYTE CHAR The current cycle within the current
rasterline

BYTE CHARLINE The current character line

BYTE YCOUNTER The current rasterline in the character

BYTE CRSRCNT Framecounter for the blinking cursor

BYTE CRSRSTATE if set the hardware cursor is visible

BYTE CRSRLINES set if ycounter is within the active cursor
rasterlines for a char

WORD CHARGEN_REL relative base of currently used character
generator in ROM (in byte)

WORD SCREEN_REL screen address to load the counter at the

beginning of the next rasterline

Chapter 8: Snapshots

WORD

BYTE

WORD
WORD
WORD

WORD
WORD

WORD

WORD

BYTE

VSYNC

VENABLE

SCREEN_WIDTH
SCREEN_HEIGHT
SCREEN_XOFFSET

HJITTER
SCREEN_YOFFSET

FRAMELINES

CURRENT_LINE

FLAG

126

number of rasterlines left within vsync; 0 =
not in vsync

vertical enable flipflop; 1= display, 0=
blank.

(VICE-dependent?) variables

width of the current display window
height of the current display window

x position where the first character in a line
starts in the window. . .

.. .but only after adding this jitter

x position where the first character in a line
starts in the window. . .

expected number of rasterlines for the cur-
rent frame

current rasterline as seen from the CRTC
This value has been added in module ver-
sion V1.1

Bit O If 1 then bit in
VADDR_REVSWITCH must be
set for reverse; if 0 then bit must be
cleared for reverse.

Here is the reference for the previous CRTC snapshot module. It is outdated and will not

be read by this and later versions of VICE.

Version numbers: Major 0, Minor 0.

Type
BYTE

WORD
WORD

BYTE

20
BYTE

BYTE

8.2.2.15 C64 memory module

Name
RASTERY

RASTERLINE
ADDRMASK

HWFLAG

REGISTERS

CRSRSTATE

Description

The number of clock cycles from rasterlines
start

The current rasterline

The address mask valid for the CRTC. All
memory accesses are masked with this value
Bit 0: 1= hardware cursor available. Bit 1:
1= number of columns is doubled by exter-
nal hardware

register DUMP of the CRTC registers 0-19.

Hardware cursor: Bits 0-3: frame counter
till next crsr line toggle. Bit 7: 1= cursor
line active

The C64 memory module actually consists of two modules. The "C64MEM" module is
mandatory and contains the RAM dump. The "C64ROM" module is optional and contains
a dump of the ROM images.

Chapter 8: Snapshots 127

The size of the C64 memory modules differs with each different memory configuration. The
RAM configuration is saved in the snapshot, and restored when the snapshot is loaded. The
attached cartridges are not yet(!) saved and not yet restored upon load.

Version numbers: Major 0, Minor 0

The C64MEM module

Type Name Description

BYTE CPUDATA CPU port data byte

BYTE CPUDIR CPU port direction byte
BYTE EXROM state of the EXROM line (7)
BYTE GAME state of the GAME line (7)
ARRAY RAM 64k RAM dump

The C64ROM module

Type Name Description

ARRAY KERNAL 8k dump of the kernal ROM
ARRAY BASIC 8k dump of the basic ROM
ARRAY CHARGEN 4k dump of the chargen ROM

8.2.2.16 C128 memory module

The C128 memory module actually consists of two modules. The "C128MEM" module is
mandatory and contains the RAM dump. The "C128ROM" module is optional and contains
a dump of the ROM images.

The size of the C128 memory modules differs with each different memory configuration.
The RAM configuration is saved in the snapshot, and restored when the snapshot is loaded.
The attached cartridges are also restored upon load if they have been saved in the snapshot.
Version numbers: Major 0, Minor 0

The C128MEM module

Type Name Description

12 MMU dump of the 12 MMU registers
BYTE

ARRAY RAM 128k RAM dump banks 0 and 1
The C128ROM module

Type Name Description

ARRAY KERNAL 8k dump of the kernal ROM
ARRAY BASIC 32k dump of the basic ROM
ARRAY EDITOR 4k dump of the editor ROM
ARRAY 4k CHARGEN dump of the chargen ROM

8.2.2.17 VIC20 memory module

The VIC20 memory module actually consists of two modules. The "VIC20MEM" module
is mandatory and contains the RAM dump. The "VIC20ROM" module is optional and
contains a dump of the ROM images.

The size of the VIC20 memory modules differs with each different memory configuration.
The RAM configuration is saved in the snapshot, and restored when the snapshot is loaded.
The attached cartridges are also restored upon load if they have been saved in the snapshot.

Chapter 8: Snapshots

The VIC20MEM module

Version numbers: Major 1, Minor 0

Type
BYTE

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

ARRAY

Name
CONFIG

RAMO

RAM1
COLORRAM
BLKO

BLK1

BLK2

BLK3

BLK5

The VIC20ROM module

Version numbers: Major 1, Minor 1

Type
BYTE

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

ARRAY

Name
CONFIG

KERNAL
BASIC
CHARGEN
BLKIA
BLK1B
BLK3A
BLK3B
BLK5A
BLK5B
BLK2A

BLK2B

128

Description

Configuration register. Bits 0,1,2,3,5 reflect
if the corresponding memory block is RAM
(bit=1) or not (bit=0).

1k RAM dump $0000-$03ff

4k RAM dump $1000-$1fFf

2k Color RAM, $9400-$9bff

if CONFIG & 1 then: 3k RAM dump
$0400-$0fFf

if CONFIG & 2 then: 8k RAM dump
$2000-$3ftf

if CONFIG & 4 then: 8k RAM dump
$4000-$51Ff

if CONFIG & 8 then: 8k RAM dump
$6000-$ 71t

if CONFIG & 32 then: 8k RAM dump
$a000-$bfff

Description

Bit 0: 1= ROM block $2*** enabled. Bit 1:
1= ROM block $3*** enabled. Bit 2: 1=
ROM block $4*** enabled. Bit 3: 1= ROM
block $5*** enabled. Bit 4: 1= ROM block
$6*** enabled. Bit 5: 1= ROM block $7***
enabled. Bit 6: 1= ROM block $A***
enabled. Bit 7: 1= ROM block $B***
enabled.

8k KERNAL ROM image $e000-$ftff

16k BASIC ROM image $c000-$dfff

4k CHARGEN ROM image

4k ROM image $2*** (if CONFIG & 1)
4k ROM image $3*** (if CONFIG & 2)
4k ROM image $6*** (if CONFIG & 16)
4k ROM image $7*** (if CONFIG & 32)
Ak ROM image $A*** (if CONFIG & 64)
4k ROM image $B*** (if CONFIG & 128)
4k ROM image $4*** (if CONFIG & 4;
added in V1.1)

4k ROM image $5*** (if CONFIG & §;
added in V1.1)

Chapter 8: Snapshots

8.2.2.18 PET memory module

129

The PET memory module actually consists of three modules. The "PETMEM" module is
mandatory and contains the RAM dump. The "PETROM" module is optional and contains
a dump of the ROM images. The "PETDWW?" module is also optional and contains the

image of the hires expansion board (if enabled).

The size of the PET memory modules differs with each different memory configuration. The
RAM configuration is saved in the snapshot, and restored when the snapshot is loaded.

The PETMEM module

Version numbers: Major 1, Minor 3

Type Name

BYTE CONFIG
BYTE KEYBOARD
BYTE MEMSIZE
BYTE CONF8X96
BYTE SUPERPET
ARRAY RAM

ARRAY VRAM
ARRAY EXTRAM
ARRAY RAM

BYTE POSITIONAL
BYTE EOIBLANK
WORD CPU_SWITCH
BYTE VAL, PREVODD, WANTODD

WORD[8] SHIFT

Description

Configuration value. Bits 0-3: 0= 40 col
PET without CRTC; 1= 40 col PET with
CRTC; 2 = 80 col PET (with CRTC); 3=
SuperPET; 4= 8096; 5= 8296. Bit 6: 1=
RAM at $9***. Bit 7: 1= RAM at $A***,
Keyboard type. 0= UK business; 1=
Graphics; 2= German business

memory size of low 32k in k (possible values
4, 8, 16, 32)

Value of the 8x96 configuration register
SuperPET config. Bit 0: 1= $9*** RAM
enabled. Bit 1: 1= RAM write protected.
Bit 2: 1= CTRL register write protected.
Bit 3: 0= DIAG pin active. Bits 4-7: RAM
block in use.

4-32k RAM (not 8296, size depends on
MEMSIZE)

2/4k RAM (not 8296, size depends on
CONFIG)

64k expansion RAM (SuperPET and 8096
only)

128k RAM (8296 only)

The following item has been added in V1.1
bit 0=0 = symbolic keyboard mapping, bit
0=1 = positional mapping.

The following item has been added in V1.2
bit 0=0 = EOI does not blank screen, bit
0=1 = EOI blanks screen.

The following items have been added in
V1.3

6502 / 6809 / PROG

6702 dongle state information

Chapter 8: Snapshots 130

BYTE SuperPET config 2 Extra bits due to the Super-OS/9 MMU.
Bit 5: FIRQ disabled. Bit 6: expansion
memory in OS/9 flat mode.

The POSITIONAL item has been added in PETMEM snapshot version 1.1. It is ignored
by earlier restore routines (V1.0) and the V1.1 restore routines do not change the current
setting when reading a V1.0 snapshot.

In V1.2 the new EOIBLANK variable has been added. This implements the "blank screen
on EOI" feature that was previously linked to a wrong resource.

In V1.3 the state for SuperPET has been added.
The PETROM module
Version numbers: Major 1, Minor 1

Type Name Description

BYTE CONFIG Bit 0: 1= $9*** ROM included. Bit 1: 1=
$A*** ROM included. Bit 2: 1= $B***
ROM included. Bit 3: 1= $e900-$efff ROM
included. Bit 4: 1= SuperPET ROMs

included.
ARRAY KERNAL 4k KERNAL ROM image $f000-$ffff
ARRAY EDITOR 2k EDITOR ROM image $e000-$e7ff
ARRAY CHARGEN 2k CHARGEN ROM image
ARRAY ROM9 4k $9*** ROM image (if CONFIG & 1)
ARRAY ROMA 4k $A*** ROM image (if CONFIG & 2)
ARRAY ROMB 4k $B*** ROM image (if CONFIG & 4)
ARRAY ROMC 4k $C*** ROM image
ARRAY ROMD 4k $D*** ROM image
ARRAY ROME9 7 blocks $e900-$efff ROM image (if CON-
FIG & 8)
- - The following items have been added in
V1.1
ROM6809 ROM6809 24k $A000-$FFFF ROM (if CONFIG & 16)
ARRAY CHARGEN(2) upper half of CHARGEN (if CONFIG &
16)

The PETDWW module

For storing the state of the DWW hires expansion board, there is a PETDWWPIA module,
and a DWWMEM module.

The former has the same format as the PIA1.

Type Name Description

WORD SIZE The size of the memory dump that follows,
or 0 if DWW disabled.

ARRAY MEM The memory in the DWW card, SIZE

bytes.

Chapter 8: Snapshots 131

8.2.2.19 CBM-II memory module

The CBM-II memory module actually consists of two modules. The "CBM2MEM" module
is mandatory and contains the RAM dump. The "CBM2ROM" module is optional and
contains a dump of the ROM images.

The size of the CBM-II memory modules differs with each different memory configuration.
The RAM configuration is saved in the snapshot, and restored when the snapshot is loaded.

Version numbers: Major 1, Minor 0

The CBM2MEM module

Type Name Description

UBYTE MEMSIZE Memory size in 128k blocks (1=128k,
2=256k, 4=512k, 8=1024k)

UBYTE CONFIG Bit 0 = $f0800-$f0fff RAM, Bit 1 = $f1000-

$FLFF RAM, Bit 2 = $£2000-$£3fFf RAM, Bit
3 = $f4000-$f5Ff RAM, Bit 4 = $f6000-
$F7HE RAM, Bit 5 = $fc000-$fcfff RAM, Bit

6 = is a C500

UBYTE HWCONFIG Bit 0/1: model line configuration

UBYTE EXECBANK CPUs execution bank register

UBYTE INDBANK CPUs indirection bank register

ARRAY SYSRAM 2k system RAM $£0000-${07{f

ARRAY VIDEO 2k video RAM $£d000-$d7{f

ARRAY RAM RAM dump, size according to MEMSIZE

ARRAY RAMOS if memsize < 1M and CONFIG & 1 : 2k
RAM $f0800-$f0fff

ARRAY RAMI1 if memsize < 1M and CONFIG & 2 : 4k
RAM $f1000-$f1{ff

ARRAY RAM2 if memsize < 1M and CONFIG & 4 : 8k
RAM $£2000-$£3 1t

ARRAY RAM4 if memsize < 1M and CONFIG & 8 : 8k
RAM $£4000-$f5(f

ARRAY RAMG if memsize < 1M and CONFIG & 16 : 8k
RAM $f6000-$f7{tf

ARRAY RAMC if memsize < 1M and CONFIG & 32 : 4k

RAM $£c000-$fcftf

The RAM* arrays are only saved if the RAM itself is less than 1M. If the memory size is
1M then those areas are taken from the bank 15 area of the normal RAM.

The memory array starts at $10000 if the memory size is less than 512k, or at $00000 if
512k or more. In case of a C510, then the memory array also always starts at $00000.

The CBM2ROM module

Type Name Description

Chapter 8:

UBYTE

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

ARRAY

8.2.2.20 C500 data module

Snapshots

CONFIG

KERNAL
BASIC
CHARGEN
ROM1
ROM2
ROM4

ROMG6

132

Bit 1: 1= $1*** ROM image included. Bit
2: 1= $2000-$3fff ROM image included.
Bit 3: 1= $4000-$5fff ROM image included.
Bit 4: 1= $6000-$7fff ROM image included.
Bit 5: 1= chargen ROM is VIC-II chargen,
0= CRTC chargen.

8 KERNAL ROM image ($e000-Sefff)
BASIC ROM image ($8000-$bfff)

4k CHARGEN ROM image

4k cartridge ROM image for $1*** (if CON-
FIG & 2)

8k cartridge ROM image for $2000-$3fff (if
CONFIG & 4)

8k cartridge ROM image for $4000-$5fff (if
CONFIG & 8)

8k cartridge ROM image for $6000-$7fff (if
CONFIG & 16)

The C500 data module contains simple state information not already saved in the other

modules.

Version numbers: Major 0, Minor 0
The C500DATA module

Type
DWORD

Name
TIRQCLK

Description
CPU clock ticks till next 50Hz IRQ

Chapter 9: Media images 133

9 Media images

9.1 Media images resources

DoodleOversizeHandling
Integer specifying the way the oversized input should be handled, (0: scale
down, 1: crop left top, 2: crop center top, 3: crop right top, 4: crop left center,
5: crop center, 6: crop right center, 7: crop left bottom, 8: crop center bottom,
9: crop right bottom)

DoodleMultiColorHandling
Integer specifying the way the multicolor to hires should be handled, (0: b&w,
1: 2 colors, 2: 4 colors, 3: gray scale, 4: best cell colors)

DoodleTEDLumHandling
Integer specifying the way the TED luminosity should be handled, (0: ignore,
1: dither)

DoodleCRTCTextColor
Integer specifying the text color used when making screenshots from a CRTC
window in doodle format. (0: white, 1: amber, 2: green)

FFMPEGFormat
String specifying the current FFMPEG output driver.

FFMPEGAudioBitrate
Integer specifying the current FFMPEG audio bitrate.

FFMPEGVideoBitrate
Integer specifying the current FFMPEG video bitrate.

FFMPEGAudioCodec
Integer specifying the current FFMPEG audio codec.

FFMPEGVideoCodec
Integer specifying the current FFMPEG video codec.

FFMPEGVideoHalveFramerate
Boolean, if true record only every other frame.

9.2 Media images command-line options

-doodleoversize <method>
Select the way the oversized input should be handled, (0: scale down, 1: crop
left top, 2: crop center top, 3: crop right top, 4: crop left center, 5: crop center,
6: crop right center, 7: crop left bottom, 8: crop center bottom, 9: crop right
bottom)

—doodlemc <method>
Select the way the multicolor to hires should be handled, (0: b&w, 1: 2 colors,
2: 4 colors, 3: gray scale, 4: best cell colors)

Chapter 9: Media images 134

—doodletedlum <method>
Select the way the TED luminosity should be handled, (0: ignore, 1: dither)

—-doodlecrtctextcolor <color>
Select the CRTC text color (0: white, 1: amber, 2: green)

—-ffmpegaudiobitrate <value>
Set bitrate for audio stream in media file

-ffmpegvideobitrate <value>
Set bitrate for video stream in media file

Chapter 10: Event history 135

10 Event history

VICE supports recording an arbitrary session on the emulated machine and playing back
this session later. This is done by saving a snapshot at the beginning of the recording
session and then remembering all the user interaction such as keyboard and joystick input.
We call this an ’event history’. The main purpose for having an event history is to create
game sessions, e.g. recording how to solve a game. An example walkthrough for the well
known game "Fort Apocalypse" is available.

This brief chapter will advise you how to record and playback such a session. Although it
is based on the WinVICE x64 release and its user interface, histories may be transferred to
other machines and other ports that support event history, e.g. the Unix port.

10.1 Recommended Settings

When using the event history feature it is possible that the playback session differs from
what was done at recording time. This might arise due to a problem in the initial snap-
shot or settings. Here are some suggestions to minimize the chance of failures in the ses-
sion: a. Reset to default settings. b. Choose refresh rate 1/1. c. Choose joystick and
Video/Doublesize settings as desired or needed. d. SID engine must be reSID (which is the
default). e. Choose Drive settings/Idle method: None Do not change any settings during
recording or playback!

10.2 Recorded Events

The following is a list of the user interaction that will be recorded: - Joystick movement
and button - Keyboard - Resetting the machine (hard and soft) - Attaching or detaching
disk/tape images (see 8. Limitations) - Datasette controls

10.3 Recording an Event History

Recording an event history will create one or two files for a snapshot and the list of the
user events. First, create an empty directory in which these files are to be saved and
then select this directory and the name of the snapshot files via ’Snapshot//Select History
files/directory’. Next, attach the disk or tape image with the game you want to record and
load and run the game.

Start recording via ’Snapshot//Start/Stop Recording History’. Play the game. All actions
will be recorded. After the game is finished, stop recording via ’Snapshot//Start/Stop
Recording History’. The selected directory should now contain the two snapshot files (de-
fault ist start.vsf and end.vsf).

10.4 Setting and Returning to Milestones

It is difficult to finish a game in one sitting and noone wants to record all their mistakes
and lost lives. Use the milestone feature in a recording session in the following way:

Set a milestone when you have finished a level or completed a task (’Snapshot//Set recording
milestone’ or ALT-E). This will save the event history and a snapshot of the machine to
the file end.vsf but recording will continue.

Chapter 10: Event history 136

Return to the last milestone when you have made a mistake or lost a life ("Snapshot//Return
to milestone’ or ALT-U). This will reset the game and the event history to the last milestone
snapshot so that you can try again.

10.5 Continuing an Event History

If you have stopped a recording session and want to continue it later, you should create a
backup of your start.vsf and end.vsf files first to avoid overwriting them by accident.

Then change the event history start mode: ’Snapshot//Recording start mode//Load ex-
isting snapshot’. When you start recording now, you will continue where the session was
stopped last time.

Another way of continuing an existing history is to start somewhere inside the history (e.g.
you have recorded 10 minutes of a game and later recognize that you made a mistake after
6 minutes that makes it impossible to finish the game). For this you have to select the start
mode 'Overwrite playback’. Now you can start the playback with ’Snapshot//Start/Stop
Playback History’ and when you reach the point where you want to change the history you
can directly switch to recording via ’Snapshot//Start/Stop Recording History’.

10.6 Playing Back an Event History

To play back an event history, select the directory with the history files start.vsf and end.vsf
via Snapshot / /Select History directory’ and start the playback with ’Snapshot//Start/Stop
Playback History’. Enjoy! During playback any user interaction is disabled. The playback
stops when the end of the session is reached or if ’Snapshot//Select History directory’ is
selected again.

10.7 Limitations and Suggestions

a. Snapshot files will be quite big (>1MB) if a disk image has been attached. If possible,
use PRG or T64 images to reduce the size of snapshot files. b. Snapshots may not be 100%
accurate even with all the recommended settings.

10.8 Event history resources

EventSnapshotDir
String specifying the directory used for loading and saving snapshots.

EventStartSnapshot
String specifying the filename for the start snapshot. ["start.vsf"]

EventEndSnapshot
String specifying the filename for the end snapshot. ["end.vsf"]

EventStartMode
Integer specifying how to start event recording. (0: save new snapshot, 1: load
existing snapshot, 2: reset, 3: playback)

EventImageInclude
Boolean specifying whether to include ROM and Disk images in the snapshots.

1]

Chapter 10: Event history 137

10.9 Event history command-line options

-playback
Playback recorded events

Chapter 11: Monitor 138

11 Monitor

Every VICE emulator has a complete built-in monitor, which can be used to examine, dis-
assemble and assemble machine language programs, as well as debug them through break-
points. It can be activated by using the “Activate monitor” command (left button menu).
Notice that in some ports you have to run the emulator from a terminal emulation program
(such as rxvt or xterm) in order to use the monitor.

11.1 Terminology

‘address_space’
This refers to the range of memory locations and a set of registers. This can be
the addresses available to the computer’s processor, the disk drive’s processor
or a specific memory configuration of one of the mentioned processors.

‘pankname’
The CPU can only see 64k of memory at any one time, due to its 16 bit address
bus. The C64 and other computers have more than this amount, and this is
handled by banking: a memory address can have different contents, depending
on the active memory bank. A bankname names a specific bank in the current
address_space.

‘register’
One of the following: program counter (PC), stack pointer (SP), accumulator
(A), X register (X), or Y register (Y).

‘address’ A specific memory location in the range $0000 to $FFFF.

‘address_range’
Two addresses. If the second address is less than the first, the range is assumed
to wraparound from $FFFF to $0000. Both addresses must be in the same
address space.

‘address_opt_range’
An address or an address range.

‘label’ label is the name of a label. It must start with a dot (".") in order for the
monitor to recognize it as a label. Register names preceeded by a dot (for
example .PC) are special labels that evaluate to value of the respective register
at the time it is used, and thus can not be used as a regular label.

‘prompt’ The prompt has the format [x:y]. If x is -, memory reads from the monitor
do not have side effects. Otherwise, x is S. The second part of the prompt, vy,
shows the default address space.

‘checkpoint’
The monitor has the ability to setup triggers that perform an action when a
specified situation occurs. There are three types of checkpoints; breakpoints,
tracepoints and watchpoints.

‘breakpoint’
A breakpoint is triggered based on the program counter. When it is triggered,
the monitor is entered.

Chapter 11: Monitor 139

‘tracepoint’
Like breakpoints, a tracepoint is triggered based on the program counter. In-
stead of entering the monitor, the program counter is printed and execution
continues.

‘watchpoint’
Watchpoints are triggered by a read and/or write to an address. When a
watchpoint is triggered, the monitor is entered.

‘memmap’ The memmap keeps track of RAM/ROM/IO read/write/execute accesses. The
feature must be enabled with "—enable-memmap" configure option, as it might
decrease performance notably on slower hardware. The option also enables
CPU history.

KL A data type.
k! Zero or more occurrences.

‘.01 An optional argument.

11.2 Machine state commands

backtrace
bt Print JSR call chain (most recent call first). Stack offset relative to SP+1 is
printed in parentheses. This is a best guess only.

cpuhistory [<count>]

chis [<count>]
Show <count> last executed commands. (disabled by default; configure with
—enable-memmap to enable)

dump "<filename>"
Write a snapshot of the machine into the file specified. This snapshot is compat-
ible with a snapshot written out by the UI. Note: No ROM images are included
into the dump.

goto <address>
g <address>
Change the PC to address and continue execution.

io [<address>]
Display i/o registers. Invoking without an address shows a dump of the entire
io range, if an address is given then details for the chip at the respective (base-
)address are displayed (if available).

next [<count>]
n [<count>]
Advance to the next instruction. Subroutines are treated as a single instruction.

registers [<reg_name> = <number> [, <reg_name> = <number>]*]
r [<reg_name> = <number> [, <reg_name> = <number>]*]
Assign respective registers. With no parameters, display register values.

Chapter 11: Monitor 140

reset [<type>]
Reset the machine or drive. type: 0 = soft, 1 = hard, 8-11 = drive.

return
ret Continues execution and returns to the monitor just after the next RTS or RTT
is executed.

step [<count>]

z [<count>]
Single step through instructions. An optional count allows stepping more than
a single instruction at a time.

stopwatch [reset]
Print the CPU cycle counter of the current device. ’reset’ sets the counter to 0.

undump "<filename>"
Read a snapshot of the machine from the file specified.

11.3 Memory commands

bank [<bankname>]
Without a bankname, display all available banks for the current address_space.
With a bankname given, switch to the specified bank. If a bank is not com-
pletely filled (ROM banks for example) normally the ram bank is used where
the bank has holes. The cpu bank uses the bank currently used by the CPU.

compare <address_range> <address>

c <address_range> <address>
Compare memory from the source specified by the address range to the des-
tination specified by the address. The regions may overlap. Any values that
miscompare are displayed using the default displaytype.

device [c:18:19:]
Set the default address space to either the computer ‘c:” or the specified drive
‘87 or ‘97

f£ill <address_range> <data_list>

f <address_range> <data_list>
Fill memory in the specified address range with the data in <data_list>. If the
size of the address range is greater than the size of the data_list, the data_list
is repeated.

hunt <address_range> <data_list>

h <address_range> <data_list>
Hunt memory in the specified address range for the data in <data_list>. If the
data is found, the starting address of the match is displayed. The entire range
is searched for all possible matches. The data list may have ‘xx’ as a wildcard.

i <address_opt_range>
Display memory contents as PETSCII text.

ii <address_opt_range>
Display memory contents as screen code text

Chapter 11: Monitor 141

mem [<data_type>] [<address_opt_range>]

m [<data_type>] [<address_opt_range>]
Display the contents of memory. If no datatype is given, the default is used.
If only one address is specified, the length of data displayed is based on the
datatype. If no addresses are given, the 'dot’ address is used.

memmapshow [<mask>] [<address_opt_range>]

mmsh [<mask>] [<address_opt_range>]
Show the memmap. The mask can be specified to show only those locations with
accesses of certain type(s). The mask is a number with the bits "ioRWXrwx",
where RWX are for ROM and rwx for RAM. Optionally, an address range can
be specified. (disabled by default; configure with —enable-memmap to enable)

memmapzap
mmzap Clear the memmap. (disabled by default; configure with —enable-memmap to
enable)

memmapsave "<filename>" <format>

mmsave "<filename>" <format>
Save the memmap as a picture. format: 0 = BMP, 1 = PCX, 2 = PNG, 3 =
GIF, 4 = IFF. (disabled by default; configure with —enable-memmap to enable)

memchar [<data_type>] [<address_opt_range>]

mc [<data_type>] [<address_opt_range>]
Display the contents of memory as character data. If only one address is speci-
fied, only one character is displayed. If no addresses are given, the “dot” address
is used.

memsprite [<data_type>] [<address_opt_range>]

ms [<data_type>] [<address_opt_range>]
Display the contents of memory as sprite data. If only one address is specified,
only one sprite is displayed. If no addresses are given, the “dot” address is used.

move <address_range> <address>

t <address_range> <address>
Move memory from the source specified by the address range to the destination
specified by the address. The regions may overlap.

screen
sc Displays the contents of the screen.

sidefx [on|off|toggle]

sfx [on|off|togglel
Control how monitor generated reads affect memory locations that have read
side-effects, like CIA interrupt registers for example. If the argument is ’on’
then reads may cause side-effects. If the argument is ’off” then reads don’t cause
side-effects. If the argument is 'toggle’ then the current mode is switched. No
argument displays the current state.

> [<address>] <data_list>
Write the specified data at address.

Chapter 11: Monitor 142

11.4 Assembly commands

a <address> [<instruction> [: <instruction>]*]
Assemble instructions to the specified address. If only one instruction is speci-
fied, enter assembly mode (enter an empty line to exit assembly mode).

disass [<address> [<address>]]

d [<address> [<address>]]
Disassemble instructions. If two addresses are specified, they are used as a start
and end address. If only one is specified, it is treated as the start address and a
default number of instructions are disassembled. If no addresses are specified,
a default number of instructions are disassembled from the dot address.

11.5 Checkpoint commands

break [load|storel|exec] [address [address] [if <cond_expr>]]

This command allows setting a breakpoint or listing the current breakpoints. If
no address is given, the currently valid checkpoints are printed. If an address is
given, a breakpoint is set for that address and the breakpoint number is printed.
The "load |store |exec" parameter can be either "load", "store" or "exec" (or
any combination of these) to determine on which operation the monitor breaks.
If not specified, the monitor breaks on "exec". A conditional expression can
also be specified for the breakpoint. For more information on conditions, see
the CONDITION command.

enable <checknum>

disable <checknum>
Each checkpoint can be enabled or disabled. This command allows changing
between these states.

command <checknum> "<command>"
When checkpoint checknum is hit, the specified command is executed by the
monitor. Note that the x command is not yet supported as a command argu-
ment.

condition <checknum> if <cond_expr>

cond <checknum> if <cond_expr>
Each time the specified checkpoint is examined, the condition is evaluated. If
it evalutes to true, the checkpoint is activated. Otherwise, it is ignores. If
registers are specified in the expression, the values used are those at the time
the checkpoint is examined, not when the condition is set.
Currently, the cond_expr is very limited. You can use registers (.A, .X, .Y, .PC,
and .SP) and compare against other registers or absolute values. For example,
the following are all valid conditions: .A == 0, X ==Y, 8. X == X, .A |=
5, .A < .X.

However, you cannot specify memory contents and compare that.
delete <checknum>

del <checknum>
Delete the specified checkpoint.

Chapter 11: Monitor 143

ignore <checknum> [<count>]
Ignore a checkpoint after a given number of crossings. If no count is given, the
default value is 1.

trace [load|storel|exec] [address [address] [if <cond_expr>]]

tr [load|storel|exec] [address [address] [if <cond_expr>]]
This command is similar to the break command except that it operates on
tracepoints. A tracepoint differs from a breakpoint by not stopping execution
but simply printing the PC, giving the user an execution trace. The second
optional address can be used to specify the end of an range of addresses to be
traced. If no addresses are given, a list of all the checkpoints is printed. The
"load | store|exec" parameter can be either "load", "store" or "exec" (or any
combination of these) to determine which operation the monitor traces. If not
specified, the monitor traces all operations. A conditional expression can also
be specified for the tracepoint. For more information on conditions, see the
CONDITION command.

until [<address>]

un [<address>]
If no address is given, the currently valid breakpoints are printed. If an address
is given, a temporary breakpoint is set for that address and the breakpoint
number is printed. Control is returned to the emulator by this command. The
breakpoint is deleted once it is hit.

watch [load|store|exec] [address [address] [if <cond_expr>]]

w [load|store|exec] [address [address] [if <cond_expr>]]
This command is similar to the break command except that it operates on
watchpoints. A watchpoint differs from a breakpoint by stopping on a read
and/or write to an address or range of addresses. If no addresses are given, a
list of all the checkpoints is printed. The "load |store|exec" parameter can be
either "load", "store" or "exec" (or any combination of these) to determine on
which operation the monitor breaks. If not specified, the monitor breaks on
"load" and "store" operations. A conditional expression can also be specified
for the watchpoint. For more information on conditions, see the CONDITION
command.

11.6 General commands

cd <directory>
Change the working directory.

device [c:8:]9:]
dev [c:18:19:]
Set the default address space to either the computer (c:) or the disk (8:19:).

dir [<directory>]
1ls [<directory>]
Display the directory contents.

pwd Show current working directory.

Chapter 11: Monitor 144

radix [HID|OIB]

rad [H|D|O|B]
Set the default radix to hex, decimal, octal, or binary. With no argument, the
current radix is printed.

11.7 Disk commands

attach <filename> <device>
Attach file to device. (device 32 = cart)

block_read <track> <sector> [<address>]

br <track> <sector> [<address>]
Read the block at the specified track and sector. If an address is specified, the
data is loaded into memory. If no address is given, the data is displayed using
the default datatype.

block_write <track> <sector> <address>

bw <track> <sector> <address>
Write a block of data at address to the specified track and sector of disk in
drive 8.

detach <device>
Detach file from device. (device 32 = cart)

0<disk command>
Perform a disk command on the currently attached disk image on drive 8. The
specified disk command is sent to the drive’s channel #15.

load "<filename>" <device> [<address>]

1 "<filename>" <device> [<address>]
Load the specified file into memory. If no address is given, the file is loaded
to the address specified by the first two bytes read from the file. If address is
given, the file is loaded to the specified address and the first two bytes read
from the file are skipped. If device is 0, the file is read from the file system.

list [<directory>]
List disk contents.

bload "<filename>" <device> <address>

bl "<filename>" <device> <address>
Load the specified file into memory at the specified address. If device is 0, the
file is read from the file system.

save "<filename>" <device> <addressl> <address2>

s "<filename>" <device> <addressl1> <address2>
Save the memory from addressl to address2 to the specified file. Write two-byte
load address. If device is 0, the file is written to the file system.

bsave "<filename>" <device> <addressl> <address2>

bs "<filename>" <device> <addressl1> <address2>
Save the memory from addressl to address2 to the specified file. If device is 0,
the file is written to the file system.

Chapter 11: Monitor 145

11.8 Command file commands

playback "<filename>"

pb "<filename>"
Monitor commands from the specified file are read and executed. This command
stops at the end of file or when a STOP command is read.

record "<filename>"

rec "<filename>"
After this command, all commands entered are written to the specified file until
the STOP command is entered.

stop Stop recording commands. See record.

11.9 Label commands

add_label <address> <label>

al <address> <label>
Map a given address to a label. This label can be used when entering assembly
code and is shown during disassembly. Additionally, it can be used whenever
an address must be specified.

<label> is the name of the label; it must start with a dot (".") in order for the
monitor to recognize it as a label.

delete_label [<address_space>] <label>

dl [<address_space>] <label>
Remove the specified label from the label tables. If no address space is checked,
all tables are checked.

load_labels [<address_space>] "<filename>"

11 [<address_space>] "<filename>"
Load a file containing a mapping of labels to addresses. If no address space is
specified, the default readspace is used.

The file must contain commands the monitor understands, e.g. add_label. The
compiler cc65 can create such label files.

Vice can also load label files created by the Acme assembler. Their syntax is e.g.
"labelname = $1234 ; Maybe a comment". A dot will be added automatically
to label names assigned in this way to fit to the Vice label syntax. Normally
the semicolon seperates commands but after an assignment of this kind it may
be used to start a comment to end of line, so unchanged Acme label files can
be fed into Vice.

save_labels [<address_space>] "<filename>"
sl [<address_space>] "<filename>"
Save labels to a file. If no address space is specified, all of the labels are saved.

show_labels [<address_space>]
shl [<address_space>]
Display current label mappings. If no address space is specified, show all labels.

Chapter 11: Monitor 146

11.10 Miscellaneous commands

cartfreeze
Use cartridge freeze.

cpu <type>
Specify the type of CPU currently used (6502/z80).
exit
X Leave the monitor and return to execution.
export
exp Print out list of attached expansion port devices.

help [<command>]
If no argument is given, prints out a list of all available commands. If an
argument is given, prints out specific help for that command.

keybuf "<string>"
Put the specified string into the keyboard buffer. Note that you can specify
specific keycodes by using C-style escaped hexcodes ("\x0a").

print <expression>
p <expression>
Evaluate the specified expression and output the result.

resourceget "<resource>"
resget "<resource>"
Displays the value of the resource.

resourceset "<resource>" "<value>"
resset "<resource>" "<value>"
Sets the value of the resource.

load_resources "<file>"
resload "<file>"
Load resources from file.

save_resources "<file>"
ressave "<file>"
Save resources to file.

screenshot "<filename>" [<format>]

scrsh "<filename>" [<format>]
Take a screenshot. format: default = BMP, 1 = PCX, 2 = PNG, 3 = GIF, 4
= IFF.

tapectrl <command>
Control the datasette. command: 0 = stop, 1 = start, 2 = forward, 3 = rewind,
4 = record, 5 = reset, 6 = reset counter.

quit Exit the emulator immediately.

~ <number>
Display the specified number in decimal, hex, octal and binary.

Chapter 12: ¢1541 147

12 c1541

VICE is provided with a complete stand-alone disk image maintenance utility, called c1541.

You can either invoke it from the command line or from within one of the VICE emulators,
using the “Run ¢1541” command which will open a new xterm window with a running
c1541 in it.

The syntax is:
c1541 [IMAGE1 [IMAGE2]] [COMMAND1 COMMAND2 ... COMMANDN]

IMAGE1 and IMAGE2 are disk image names that can be attached before c1541 starts. c1541
can handle up to two disk images at the same time by using two virtual built-in drives,
numbered 8 and 9; IMAGE1l (if present) is always attached to drive 8, while IMAGE2 is
attached to drive 9.

COMMANDs specified on the command-line all begin with the minus sign (-); if present, c1541
executes them in the same order as they are on the command line and returns a zero error
code if they were successful. If any of the COMMANDs fails, c1541 stops and returns a nonzero
error code.

If no COMMANDs are specified at all, c1541 enters interactive mode, where you can type
commands manually. Commands in interactive mode are the same as commands in batch
mode, but do not require a leading -. As with the monitor, file name completion and
command line editing with history are provided via GNU readline. Use the command
‘quit’ or press C-d to exit.

12.1 Specifying files in c1541

When accessing CBM DOS files (i.e. files that reside on disk images), c1541 uses a special
syntax that lets you access files on both drive 8 and 9. If you prepend the file name with @8:
or @9:, you will specified that file is to be found or created on drive 8 and 9, respectively.

For instance,
08:somefile
will name file named somefile on unit 8, while
@9:somefile

will name file named somefile on unit 9.

12.2 Using quotes and backslashes

You can use quotes (") in a command to embed spaces into file names. For instance,
read some file

will read file some from the disk image and write it into the file system as file, while
read "some file"

will copy some file into the file system, with the name some file.

The backslash character (\) has a special meaning too: it lets you literally insert the
following character no matter what it is. For example,

read some\ file

will copy file some file into the file system, while

Chapter 12: ¢1541 148

read some\ file this\'"file

will copy some file into the file system with name this"file (with an embedded quote).

12.3 c1541 commands and options

This is a list of the c1541 commands. They are shown in their interactive form, without the
leading -. Square brackets [] indicate an optional part, and "<COMMAND>" translates to
a disk command according to CBM DOS; like "i0" for example.

@ [<command>]
Execute specified CBM DOS command and print the current status of the drive.
If no command is specified, just print the status.

? [<command>]
Explain specified command. If no command is specified, list available ones.

attach <diskimage> [<unit>]
Attach diskimage to unit (default unit is 8).

block <track> <sector> <disp> [<drive>]
Show specified disk block in hex form.

copy <sourcel> [<source2> ... <sourceN>] <destination>
Copy sourcel ... sourcel into destination. If N > 1, destination must be a
simple drive specifier (@n:).

delete <filel> [<file2> ... <fileN>]
Delete the specified files.

exit Exit (same as quit).
extract Extract all the files to the file system.

format <diskname,id> [<type> <imagename>] [<unit>]
If unit is specified, format the disk in unit unit. If type and imagename are
specified, create a new image named imagename, attach it to unit 8 and format
it. type is a disk image type, and must be either x64, d64 (both VC1541/2031),
g64 (VC1541/2031 but in GCR coding), 471 (VC1571), d81 (VC1581), d80
(CBM8050) or d82 (CBM8250/1001). Otherwise, format the disk in the current
unit, if any.

gcrformat <diskname,id> <imagename>
Create and format a G64 disk image named imagename.

help [<command>]
Explain specified command. If no command is specified, list available ones.

info [<unit>]
Display information about unit unit (if unspecified, use the current one).

list [<pattern>]
List files matching pattern (default is all files).

quit Exit (same as exit).

Chapter 12: ¢1541 149

read <source> [<destination>]
Read source from the disk image and copy it into destination in the file
system. If destination is not specified, copy it into a file with the same name
as source.",

rename <oldname> <newname>
Rename oldname into newname. The files must be on the same drive.

tape <t64name> [<filel> ... <fileN>]
Extract files from a T64 image.

unit <number>
Make unit number the current unit.

unlynx <lynxname> [<unit>]
Extract the specified Lynx image file into the specified unit (default is the
current unit).

validate [<unit>]
Validate the disk in unit unit. If unit is not specified, validate the disk in the
current unit.

write <source> [<destination>]
Write source from the file system into destination on a disk image.

zcreate <x64name> <zipname> [<1label,id>]
Create an X64 disk image out of a set of four Zipcoded files named 1!zipname,
2!zipname, 3!zipname and 4!zipname.

12.4 Executing shell commands

If you want to execute a shell command from withing c1541, just prepend it with an
exclamation mark (!). For example,

1ls -la

will execute the command 1s -1a, which will show you all the files in the current directory.

12.5 c1541 examples

c1541 -attach test.d64 -write test.prg testfile
Write test.prg to test.d64 as testfile.

Chapter 13: cartconv 150

13 cartconv

The cartconv program is a cartridge conversion utility, it can convert between binary and
.crt images and it can 'insert’ binary and /or .crt images into the EPROM type of cartridges.

13.1 cartconv command line options
The cartconv program has the following parameters:

—-i "input name"
This parameter is mandatory, it should contain the name of the binary/.crt file
you want to convert. For the EPROM type of cartridges this parameter can be
used multiple times to insert images into the resulting file.

-0 "output name"
This parameter is mandatory, it should contain the name of the binary/.crt file
you want to convert the input file to.

-t carttype
This parameter is optional. It is only needed when converting to a .crt file. See
below for the supported cartridge types.

-n "cart name"
This parameter is optional and is used as the cartridge name when creating a
.crt file.

-1 loadaddress
This parameter is optional and is used as the load-address when converting a
.crt file to a .prg file, or when converting to a generic type .crt file.

-f "input name"
This parameter is optional, and is meant to output information about the named
file. It can’t be used in conjuction with any of the other parameters.

-r This parameter is optional, it enables repair mode (accept broken input files)
-q This parameter is optional, it disables all non-error messages

The following cartridge types are supported:

bin Binary .bin file (Default crt->bin)

normal Generic 8kB/12kB/16kB .crt file (Default bin->crt)
prg Binary C64 .prg file with load-address

ulti Ultimax mode 4kB/8kB/16kB .crt file

ap Atomic Power .crt file

ar2 Action Replay MK2 .crt file

ar3 Action Replay MK3 .crt file

ard Action Replay MK4 .crt file

arb Action Replay V5 .crt file

Chapter 13: cartconv 151

cap Capture .crt file
comal Comal 80 .crt file
dep256 Dela EP256 .crt file, extra files can be inserted (1)(2)

dep64 Dela EP64 .crt file, extra files can be inserted (1)
dep7x8 Dela EP7x8 .crt file, extra files can be inserted (1)(2)(3)
din Dinamic .crt file

dsm Diashow-Maker .crt file

easy EasyFlash .crt file

epyx Epyx FastLoad .crt file

exo0s EXOS .crt file

expert Expert Cartridge .crt file

fcl The Final Cartridge .crt file
fc3 The Final Cartridge III .crt file
fcp Final Cartridge Plus .crt file
ff Freeze Frame .crt file

fm Freeze Machine .crt file

fp Fun Play .crt file

gk Game Killer .crt file

gs C64 Games System .crt file
ide64 IDE64 .crt file

ieee IEEE-488 Interface .crt file
kcs KCS Power Cartridge .crt file
machb MACH 5 .crt file

md Magic Desk .crt file

mf Magic Formel .crt file

mikro Mikro Assembler .crt file
mmc64 MMC64 .crt file

mmcr MMC Replay .crt file

mv Magic Voice .crt file

ocean Ocean .crt file

p64 Prophet64 .crt file

rep256 REX 256k EPROM Cart .crt file, extra files can be inserted (1)(2)(3)
ross ROSS .crt file

Chapter 13: cartconv 152

rr
ru
s64
sb
seb
sg
simon
ss4
ssb
star
wl

WS

zZaxxon

Retro Replay .crt file

REX Utility .crt file
Snapshot 64 .crt file
Structured BASIC .crt file
Super Explode V5.0 .crt file
Super Games .crt file
Simons’ BASIC .crt file
Super Snapshot V4 .crt file
Super Snapshot V5 .crt file
Stardos .crt file
Westermann Learning .crt file
Warp Speed .crt file

Zaxxon .crt file

e (1) insertion of 32kB EPROM files supported.
e (2) insertion of 8kB .crt/binary files supported.

e (3) insertion of 16kB .crt/binary files supported.

13.2 cartconv examples

cartconv

cartconv

cartconv

cartconv

cartconv

cartconv

cartconv

cartconv

-i foo.crt -o foo.bin
Convert a .crt file to a binary file with no load-address.
-t prg -1 foo.crt -o foo.prg
Convert a .crt file to a .prg file with default load-address.
-t prg -1 49152 -i foo.crt -o foo.prg
Convert a .crt file to a .prg file with 49152 as the load-address.
-t ocean -i foo.bin -o foo.crt
Convert a binary file to an ocean type cartridge.
-t dep64 -i dep64.bin -i eprom.prg -o foo.crt
Inserting a 32kB EPROM file into an dep64 type cartridge.
e step 1 : use the dep64 binary file in VICE as a generic 8kB cartridge.
e step 2 : generate an EPROM file.
e step 3 : get the EPROM file to the host computer.
e step 4 : insert the EPROM file into the final dep64 .crt file:

-t dep256 -i dep256.bin -i somegame.crt -o foo.crt
Insert an 8kB .crt file into a dep256 type cartridge.

-t rep2566 -1 rep256.bin -i fool.crt -i foo2.crt -i foo3.crt -o foo.crt
Insert multiple 8kB .crt files into a rep256 type cartridge.

-f foo.crt
Get information about a .crt file.

Chapter 14: petcat 153

14 petcat

The petcat program is a text conversion utility, it can convert between ASCII, PETSCII
and tokenized BASIC.

14.1 petcat command line options

~help Output help text

-v Same as above

-c controls (interpret also control codes) (default if textmode)

-nc no controls (suppress control codes in printout) (default if non-textmode)
-ic interpret control codes case-insensitive

-h write header (default if output is stdout)

-nh no header (default if output is a file)

-skip <n> Skip <n> bytes in the beginning of input file. Ignored on P00.

-text Force text mode

—-<version>

use keywords for <version> instead of the v7.0 ones

-w<version>
tokenize using keywords on specified Basic version.

-k<version>
list all keywords for the specified Basic version

-k list all Basic versions available.
-1 Specify load address for program (in hex, no loading chars!).

-0 <name> Specify the output file name

-f Force overwritten the output file. The default depends on the BASIC version.
BASIC Versions:

1 PET Basic V1.0

2 Basic v2.0

superexp Basic v2.0 with Super Expander (VIC20)

turtle Basic v2.0 with Turtle Basic by Craig Bruce (VIC20)
mighty Basic v2.0 with Mighty Basic by Craig Bruce (VIC20)
a Basic v2.0 with AtBasic (C64)

simon Basic v2.0 with Simon’s Basic extension (C64)
speech Basic v2.0 with Speech Basic v2.7 (C64)

F Basic v2.0 with Final Cartridge III (C64)

Chapter 14: petcat

ultra
graph
WSB
WSBF
Pegasus
Xbasic
Drago
REU

Lightning

magic
easy
blarg
Game
BSX
superbas
exp20
exp64
sxc
warsaw
4v

4 -wde
5

3

70

71

10

Basic v2.0 with Ultrabasic-64 (C64)
Basic v2.0 with Graphics basic (C64)
Basic v2.0 with WS basic (C64)

Basic v2.0 with WS basic final (C64)
Basic v2.0 with Pegasus basic 4.0 (C64)
Basic v2.0 with Xbasic (C64)

Basic v2.0 with Drago basic 2.2 (C64)
Basic v2.0 with REU-basic (C64)

Basic v2.0 with Basic Lightning (C64)
Basic v2.0 with Magic Basic (C64)

Basic v2.0 with Easy Basic (VIC20)

Basic v2.0 with Blarg (C64)

Basic v2.0 with Game Basic (C64)

Basic v2.0 with Basex (C64)

Basic v2.0 with Super Basic (C64)

Basic 2.0 with Expanded Basic (VIC20)
Basic 2.0 with Expanded Basic (C64)

Basic 2.0 with Super Expander Chip (C64)
Basic 2.0 with Warsaw Basic (C64)

Basic 2.0 with Basic 4.0 extensions (VIC20)
PET Basic v4.0 program (PET/C64)

Basic 2.0 with Basic 5.0 extensions (VIC20)
Basic v3.5 program (C16)

Basic v7.0 program (C128)

Basic v7.1 program (C128)

Basic v10.0 program (C64DX)

14.2 petcat examples

petcat -2 -o outputfile.txt -- inputfile.prg

petcat -wsimon -o outputfile.prg -- inputfile.txt
Convert inputfile.txt to a PRG file in outputfile.prg, using Simon’s BASIC

Convert inputfile.prg to a text file in outputfile.txt, using BASIC V2 only

154

Chapter 15: The emulator file formats 155

15 The emulator file formats
This chapter gives a technical description of the various files supported by the emulators.

15.1 The T64 tape image format

(This section was taken from the C64S distribution.)

The T64 File Structure was developed by Miha Peternel for use in the C64S emulator. It is
easy to use and allows future extensions.

15.1.1 T64 File structure

Offset Size Description

0 64 tape record

64 32*n file records for n directory entries

64+32*n varies binary contents of the files

15.1.2 Tape Record

Offset Size Description

0 32 DOS tape description + EOF (for
type)

32 2 tape version ($0200)

34 2 number of directory entries

36 2 number of used entries (can be 0
in my loader)

38 2 free

40 24 user description as displayed in
tape menu

15.1.3 File record
Offset Size Description

0 1 entry type (see below)

1 1 C64 file type

2 2 start address

4 2 end address

6 2 free

8 4 offset of file contents start within
T64 file

12 4 free

16 16 C64 file name

Valid entry types are:

Code Explanation

0 free entry

1 normal tape file

2 tape file with header: header is saved just before file data

3 memory snapshot v0.9, uncompressed

4 tape block

Chapter 15: The emulator file formats 156

5 digitized stream
6 ... 255 reserved
Notes:

e VICE only supports file type 1.

e Types 3, 4 and 5 are subject to change (and are rarely used).

15.2 The G64 GCR-encoded disk image format
(This section was contributed by Peter Schepers and slightly edited by Ettore Perazzoli.)

This format was defined in 1998 as a cooperative effort between several emulator people,
mainly Per Hkan Sundell, author of the CCS64 C64 emulator, Andreas Boose of the VICE
CBM emulator team and Joe Forster/STA, the author of Star Commander. It was the first
real public attempt to create a format for the emulator community which removed almost
all of the drawbacks of the other existing image formats, namely D64.

The intention behind G64 is not to replace the widely used D64 format, as D64 works fine
with the vast majority of disks in existence. It is intended for those small percentage
of programs which demand to work with the 1541 drive in a non-standard way, such as
reading or writing data in a custom format. The best example is with speeder software
such as Action Cartridge in Warp Save mode or Vorpal which write track/sector data in
another format other than standard GCR. The other obvious example is copy-protected
software which looks for some specific data on a track, like the disk ID, which is not stored
in a standard D64 image.

G64 has a deceptively simply layout for what it is capable of doing. We have a signature,
version byte, some predefined size values, and a series of offsets to the track data and speed
zones. It is what’s contained in the track data areas and speed zones which is really at the
heart of this format.

Fach track entry in simply the raw stream of GCR data, just what a read head would see
when a diskette is rotating past it. How the data gets interpreted is up to the program
trying to access the disk. Because the data is stored in such a low-level manner, just about
anything can be done. Most of the time I would suspect the data in the track would be
standard sectors, with SYNC, GAP, header, data and checksums. The arrangement of the
data when it is in a standard GCR sector layout is beyond the scope of this document.
Since it is a flexible format in both track count and track byte size, there is no “standard”
file size. However, given a few constants like 42 tracks and halftracks, a track size of 7928
bytes and no speed offset entries, the typical file size will a minimum of 333744 bytes.
Below is a dump of the header, broken down into its various parts. After that will be an
explanation of the track offset and speed zone offset areas, as they demand much more
explanation.

Addr 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

0000: 47 43 52 2D 31 35 34 31 00 54 F8 1E ..

Offset Description
$0000-0007 File signature (GCR-1541)
$0008 G64 version (presently only $00 defined)

$0009 Number of tracks in image (usually $54, decimal 84)

Chapter 15: The emulator file formats 157

$000A-000B Size of each stored track in bytes (usually 7928, or $1EF8) in LO/HI
format.

An obvious question here is “why are there 84 tracks defined when a normal D64 disk only
has 35 tracks?” Well, by definition, this image includes all half-tracks, so there are actually
42 tracks and 42 half tracks. The 1541 stepper motor can access up to 42 tracks and the in-
between half-tracks. Even though using more than 35 tracks is not typical, it was important
to define this format from the start with what the 1541 is capable of doing, and not just
what it typically does.

At first, the defined track size value of 7928 bytes may seem to be arbitrary, but it is not. It
is determined by the fastest write speed possible (speed zone 0), coupled with the average
rotation speed of the disk (300 rpm). After some math, the answer that actually comes up
is 7692 bytes. Why the discrepency between the actual size of 7692 and the defined size
of 79287 Simply put, not all drives rotate at 300 rpm. Some can be faster or slower, so a
upper safety margin of +3% was built added, in case some disks rotate slower and can write
more data. After applying this safety factor, and some rounding-up, 7928 bytes per track
was arrived at.

Also note that this upper limit of 7928 bytes per track really only applies to 1541 and
compatible disks. If this format were applied to another disk type like the SFD1001, this
value would be higher.

Below is a dump of the first section of a G64 file, showing the offsets to the data portion for
each track and half-track entry. Following that is a dump of the speed zone offsets.

Addr 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0000: ACO0O200 00
0010: 00 00 00 00 A6 21 00 00 00 0O 00 00 AO 40 00 00
0020: 00 00 00 00 9A 5F 00 00 00 0O 00 00 94 7E 00 00
0030: 00 00 00 00 8E 9D 00 00 00 OO 00 00 88 BC 00 00
0040: 00 00 00 00 82 DB 00 00 00 00 00 00 7C FA 00 00
0050: 00 00 00 00 76 19 01 00 00 00 00 00 70 38 01 00
0060: 00 00 00 00 6A 57 01 00 00 00 00 00 64 76 01 00
0070: 00 00 00 OO0 5E 95 01 00 00 0O 00 00 58 B4 01 00
0080: 00 00 00 00 52 D3 01 00 00 00 00 00 4C F2 01 00
0090: 00 00 00 00 46 11 02 00 00 00 00 00 40 30 02 00
00AO: 00 00 00 00 3A 4F 02 00 00 00 00 00 34 6E 02 00
00BO: 00 00 00 00 2E 8D 02 00 00 00 00 00 28 AC 02 00
00CO: 00 00 00 00 22 CB 02 00 00 00 00 00 1C EA 02 00
00DO: 00 00 00 00 16 09 03 00 00 00 00 00 10 28 03 00
OOEO: 00 00 00 00 OA 47 03 00 00 00 00 00 04 66 03 00
OOFO: 00 00 00 00 FE 84 03 00 00 00 00 00 F8 A3 03 00
0100: 00 00 00 00 F2 C2 03 00 00 00 00 00 EC E1 03 00
0110: 00 00 00 00 E6 00 04 00 00 00 00 00 EO 1F 04 00
0120: 00 00 00 00 DA 3E 04 00 00 00 00 00 D4 5D 04 00
0130: 00 00 00 00 CE 7C 04 00 00 00 00 00 C8 9B 04 00
0140: 00 00 00 00 C2 BA 04 00 00 00 00 00 BC D9 04 00
0150: 00 00 00 00 B6 F8 04 00 00 00 00 00 ..

Offset Description

Chapter 15: The emulator file formats 158

$000C-000F Offset to stored track 1.0 ($000002AC, in LO/HI format, see below for
more)

$0010-0013 Offset to stored track 1.5 ($00000000)

$0014-0017 Offset to stored track 2.0 ($000021A6)

$0154-0157 Offset to stored track 42.0 ($0004F8B6)

$0158-015B Offset to stored track 42.5 ($00000000)

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0150: 03 0000 OO
0160: 00 00 00 00 03 00 00 OO0 00 OO 00 00 03 00 00 00
0170: 00 00 00 00 03 00 00 OO0 00 0O 00 00 03 00 00 00
0180: 00 00 00 00 03 00 00 OO0 00 OO OO0 00 03 00 00 00
0190: 00 00 00 00 03 00 00 00 00 OO 00 00 03 00 00 00
01A0: 00 00 00 00 03 00 00 00 00 OO 00 00 03 00 00 00
01BO: 00 00 00 00 03 00 00 00 00 OO 00 00 03 00 00 00
01CO: 00 00 00 00 03 00 00 00 00 0O 00 00 03 00 00 00
01DO: 00 00 00 00 03 00 00 00 00 00O 00 00 03 00 00 00
01EO: 00 00 00 00 02 00 00 00 00 OO 00 00 02 00 00 00
01F0: 00 00 00 00 02 00 00 00 00 00 00 00 02 00 00 00
0200: 00 00 00 00 02 00 00 00 00 OO 00 00 02 00 00 00
0210: 00 00 00 00 02 00 00 OO0 00 0O 00 00 01 0O 00 00
0220: 00 00 00 00 01 00O OO 00 00 OO OO0 00 01 0O 00 00
0230: 00 00 00 00 01 00O OO OO0 00O OO OO0 00 01 0O 00 00
0240: 00 00 00 00 01 OO 0O OO0 0O OO OO0 00 00 0O 00 00
0250: 00 00 00 00 00 00O 0O 00 00 OO OO0 00 00 00 00 00
0260: 00 00 00 00 00O 00O 00 OO0 00 0O 00 OO0 00 0O 00 00
0270: 00 00 00 00O 00 OO OO OO0 00O OO OO0 00 00 0O 00 00
0280: 00 00 00 00 00 OO 0O 00 00O OO OO0 00 00 0O 00 00
0290: 00 00 00 00 00 00O 0O 00 00 OO 00 00 00 00O 00 00
02A0: 00 00 00 00 00 00 00 00 00 00 00 00 ..

Offset Description

$015C-015F Speed zone entry for track 1 ($03, in LO/HI format, see below for
more)

$0160-0163 Speed zone entry for track 1.5 ($03)

$02A4-02A7 Speed zone entry for track 42 ($00)

$02A8-02AB Speed zone entry for track 42.5 ($00)

Starting here at $02AC is the first track entry (from above, it is the first entry for track
1.0)

The track offsets (from above) require some explanation. When one is set to all 0’s, no track
data exists for this entry. If there is a value, it is an absolute reference into the file (starting
from the beginning of the file). From the track 1.0 entry we see it is set for $000002AC.
Going to that file offset, here is what we see. . .

00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF

Chapter 15: The emulator file formats 159

02A0: 0C 1E FF FF
02BO: FF FF FF 52 54 B5 29 4B 7A 5E 95 55 55 55 55 55
02C0: 55 55 55 55 55 55 FF FF FF FF FF 55 D4 A5 29 4A
02D0: 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52

Offset Description

$02AC-02AD Actual size of stored track (7692 or $1E0C, in LO/HI format)
$02AE- Track data

02AE+$1E0C

Following the track data is filler bytes. In this case, there are 368 bytes of unused space.
This space can contain anything, but for the sake of those wishing to compress these images
for storage, they should all be set to the same value. In the sample I used, these are all set
to $FF.

Below is a dump of the end of the track 1.0 data area. Note the actual track data ends at
address $20B9, with the rest of the block being unused, and set to $FF.

00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF
1FEO: 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52
1FFO: 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94
2000: A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5
2010: 29 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29
2020: 4A 52 94 A5 29 4A 52 94 A5 29 4A 52 94 A5 29 4A
2030: 55 55 55 55 55 55 FF FF FF FF FF FF FF FF FF FF
2040: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2070: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2080: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2090: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20A0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20BO: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20C0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20D0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20EO: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
20F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2100: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2110: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2120: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2130: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2140: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2150: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2160: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2170: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2180: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
2190: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
21A0: FF FF FF FF FF FF ..

Chapter 15: The emulator file formats 160

The speed offset entries can be a little more complex. The 1541 has four speed zones defined,
which means the drive can write data at four distinct speeds. On a normal 1541 disk, these
zones are as follows:

Track Range Speed Zone

1-17 3 (highest writing speed)
18-24 2

25-30 1

31 and up 0 (lowest writing speed)

Note that you can, through custom programming of the 1541, change the speed zone of
any track to something different (change the 3 to a 0) and write data differently. From the
dump of the speed offset entries above, we see that all the entries are in the range of 0-3.
If any entry is less than 4, this is not considered a speed offset but defines the whole track
to be recorded at that one speed.

In the example I had, there were no offsets defined, so no speed zone dump can be shown.
However, I can define what should be there. You will have a block of data, 1982 bytes long.
Each byte is encoded to represent the speed of 4 bytes in the track offset area, and is broken
down as follows:

Speed entry $FF: in binary %11111111
100
(I
| | | +- 4°th byte speed (binary 11, 3 dec)
| | +--- 3’rd byte speed (binary 11, 3 dec)
| +-———- 2°nd byte speed (binary 11, 3 dec)
+o————- 1’st byte speed (binary 11, 3 dec)

It was very smart thinking to allow for two speed zone settings, one in the offset block and
another defining the speed on a per-byte basis. If you are working with a normal disk,
where each track is one constant speed, then you don’t need the extra blocks of information
hanging around the image, wasting space.

What may not be obvious is the flexibility of this format to add tracks and speed offset
zones at will. If a program decides to write a track out with varying speeds, and no speed
offset exist, a new block will be created by appending it to the end of the image, and the
offset pointer for that track set to point to the new block. If a track has no offset yet,
meaning it doesn’t exist (like a half-track), and one needs to be added, the same procedure
applies. The location of the actual track or speed zone data is not important, meaning they
do not have to be in any particular order since they are all referenced by the offsets at the
beginning of the image.

15.3 The P64 NRZI flux pulse disk image format

This section is taken from "P64 file format specification" by Benjamin 'BeRo’ Rosseaux.

All values are in little endian order !

15.3.1 P64 Header Layout
0 1 2 3 4 5 6 7 8 9 A B C€C D E F

0000: |°P’|’6°|%4°|>=>|>1>|’5> |47 |17 Version | Flags |

Chapter 15: The emulator file formats

161

o o o +
0010: | Size

| CRC32Checksum

Version: File format version, current is 0x00000000

Size Size of the following whole chunk content stream

Flags: Bit 0 = Write protect Bit 1-31 = Reserved, all set to 0 when creating a file, preserve
existing value when updating

CRC32CheckSum: CRC32 checksum of the following whole chunk content stream

15.3.2 P64 Chunk Header Layout

0 1 2 3 4 5 6 7 8 9 A B C D E F
e +
0000: |Chunk Signature| Size | CRC32Checksum |
e +
Chunk signature: Signature of chunk
Size: Size of the chunk data
CRC32CheckSum: CRC32 checksum of the chunk data
15.3.3 P64 Chunk "HTPx’ Layout
| x = half track index byte | + +
Track 18 = Half track 36 = Half track index byte decimal value 36
Half track NRZI transition flux pulse data chunk block
0 1 2 3 4 5 6 7 8 9 A B C D E F
e e T +
0000: | Count pulses | Size PR Range-encoded data |
P +

Count pulses: Count of the NRZI transition flux pulses in half track

Size: Size of the range-encoded data

15.3.4 "HTPx’ Range encoded data format
Hint: For a working C implememtation see p64.c and p64.h

The range coder is a FPAQO-style range coder combined with 12-bit 0-order models, one
model per byte with one bit per byte processing.

+ __________________

$m——_—————e—— =

+ __________________

+ __________________

Sub stream
Position
Strength

Position flag

Strenth flag

| Total value bits |
S +
| 32 |
o +
I 32 I
S +
| 1 |
o +
| 1 |

Chapter 15: The emulator file formats 162

o o o o +
+===Total models=== 10 | | |
o +

All initial model state values are initialized with zero.
All initial model probability values are initialized with 2048.

These model probability values will be updating in a adaptive way on the fly and not
precalculated before the encoding and even not loaded before the decoding, see pseudo
code below.

16000000 Hz / 5 rotations per second at 300 RPM = maximal 3200000 flux pulses

So NRZI transition flux pulse positions are in the 0 .. 3199999 value range, which is also
a exact single rotation, where each time unit is a cycle at 16 MHz with 300 RPM as a
mapping for the ideal case.

The NRZI transition flux pulse stength are in the 0x00000000 .. Oxffffffff value range, where
OxfIffftf indices a strong flux pulse, that always triggers, and 0x00000001 indices a weak
flux pulse, that almost never triggers, and 0x00000000 indices a flux pulse, that absolutly
never triggers.

For 32-bit values, the model sub streams are subdivided byte wide in a little-endian manner,
and each byte is processed bitwise with model probability shifting of 4 bits, just as:

Pascal-Style pseudo code:

procedure WriteDWord(Model, Value : longword);
var ByteValue, ByteIndex, Context, Bit : longword;

begin
for ByteIndex := 0 to 3 do begin
ByteValue := (Value shr (ByteIndex shl 3)) and $£ff;
Context := 1;
for Bit := 7 downto O do begin
Context := (Context shl 1) or RangeCoderEncodeBit(
RangeCoderProbabilities[
RangeCoderProbabilityOffsets[Model + ByteIndex] +
(((RangeCoderProbabilityStates[Model + ByteIndex]
shl 8) or Context) and $£ffff)], 4, (ByteValue shr
Bit) and 1);
end;

RangeCoderProbabilityStates[Model+ByteIndex] := ByteValue;
end;
end;

And for 1-bit flag values it is much simpler, but also with model probability shifting of 4
bits, just as:

Pascal-Style pseudo code:

procedure WriteBit(Model, Value : longword) ;
begin
RangeCoderProbabilityStates[Model] :=
RangeCoderEncodeBit (RangeCoderProbabilities[
RangeCoderProbabilityOffsets [Model] +

Chapter 15: The emulator file formats 163

RangeCoderProbabilityStates[Model]], 4, Value and 1);
end;

The position and strength values are delta-encoded. If a value is equal to the last previous
value, then the value will not encoded, instead, a flag for this will encoded. First the position
value will encoded, then the stength value. If the last position delta is 0, then it is a track
stream end marker.

Pascal-Style pseudo code:

LastPosition := 0;
PreviousDeltaPosition := 0O

LastStrength := 0;

for PulseIndex := 0 to PulseCount - 1 do begin

DeltaPosition := Pulses[Pulselndex].Position - LastPosition;
if PreviousDeltaPosition <> DeltaPosition then begin
PreviousDeltaPosition := DeltaPosition;

WriteBit(ModelPositionFlag, 1)

WriteDWord (ModelPosition, DeltaPosition);
end else begin

WriteBit(ModelPositionFlag, 0);
end;
LastPosition := Pulses[PulseIndex] .Position;

if LastStrength <> Pulses[PulselIndex].Strength then begin
WriteBit (ModelStrengthFlag, 1)
WriteDWord(ModelStrength, Pulses[PulseIndex].Strength - LastStrength);
end else begin
WriteBit (ModelStrengthFlag, 0);
end;
LastStrength := Pulses”[PulselIndex].Strength;

end;

// End code
WriteBit (ModelPositionFlag, 1);
WriteDWord (ModelPosition, 0);

The decoding is simply just in the another direction way.
Pseudo code for a FPAQO-style carryless range coder:
Pascal-Style pseudo code:

procedure RangeCoderInit; // At encoding and decoding start
begin

RangeCode := 0;

RangelLow := 0;

RangeHigh := $ffffffff;

Chapter 15: The emulator file formats 164

end;

procedure RangeCoderStart; // At decoding start

var Counter : longword;

begin
for Counter := 1 to 4 do begin
RangeCode := (RangeCode shl 8) or ReadByteFromInput;
end;

end;

procedure RangeCoderFlush; // At encoding end
var Counter : longword;
begin
for Counter := 1 to 4 do begin
WriteByteToOutput (RangeHigh shr 24);
RangeHigh := RangeHigh shl 8;
end;
end;

procedure RangeCoderEncodeNormalize;
begin
while ((Rangelow xor RangeHigh) and $££000000) = O do begin
WriteByteToOutput (RangeHigh shr 24);
Rangelow := RangeLow shl 8;
RangeHigh := (RangeHigh shl 8) or $ff;
end;
end;

function RangeCoderEncodeBit(var Probability : longword; Shift,
BitValue : longword) : longword;
begin
RangeMiddle := RangeLow + (((RangeHigh - RangeLow) shr 12) x
Probability);
if BitValue <> O then begin
inc(Probability, ($fff - Probability) shr Shift);
RangeHigh := RangeMiddle;
end else begin
dec(Probability, Probability shr Shift);
Rangelow := RangeMiddle + 1;

end;
RangeCoderEncodeNormalize;
result := BitValue;

end;

procedure RangeCoderDecodeNormalize;
begin
while ((RangeLow xor RangeHigh) and $££f000000) = O do begin

Chapter 15: The emulator file formats 165

Rangelow := RangeLow shl 8;
RangeHigh := (RangeHigh shl 8) or $ff;
RangeCode := (RangeCode shl 8) or ReadByteFromInput;
end;
end;

function RangeCoderDecodeBit(var Probability : longword;
Shift : longword) : longword;
begin
RangeMiddle := RangeLow + (((RangeHigh - RangeLow) shr 12) x
Probability);
if RangeCode <= RangeMiddle then begin
inc(Probability, ($fff - Probability) shr Shift);
RangeHigh := RangeMiddle;
result := 1;
end else begin
dec(Probability, Probability shr Shift);
Rangelow := RangeMiddle + 1;

result := O;
end;
RangeCoderDecodeNormalize;
end;

The probability may be never zero! But that can’t happen here with this adaptive model
in this P64 file format, since the adaptive model uses a shift factor of 4 bits and initial
probabilities value of 2048, so the probability has a value range from 15 up to 4080 here.
If you do want to use the above range coder routines for other stuff with other probability
models, then you must to ensure that the probability output value is never zero, for example
with "probability |= (probability < 1); " in C.

15.3.5 P64 Chunk "'DONE’ Layout
This is the last empty chunk for to signalize that the correct file end is reached.

15.4 The D64 disk image format

(This section was contributed by Peter Schepers and slightly edited by Marco van den
Heuvel. Added 42 track info by groepaz)

First and foremost we have D64, which is basically a sector-for-sector copy of a 1540/1541
disk. There are several versions of these which I will cover shortly. The standard D64 is a
174848 byte file comprised of 256 byte sectors arranged in 35 tracks with a varying number
of sectors per track for a total of 683 sectors. Track counting starts at 1, not 0, and goes
up to 35. Sector counting starts at 0, not 1, for the first sector, therefore a track with 21
sectors will go from 0 to 20.

The original media (a 5.25" disk) has the tracks laid out in circles, with track 1 on the very
outside of the disk (closest to the sides) to track 35 being on the inside of the disk (closest
to the inner hub ring). Commodore, in their infinite wisdom, varied the number of sectors
per track and data densities across the disk to optimize available storage, resulting in the

Chapter 15: The emulator file formats 166

chart below. It shows the sectors/track for a standard D64. Since the outside diameter of a
circle is the largest (versus closer to the center), the outside tracks have the largest amount
of storage.

Track Sectors/track # Sectors

1-17 21 357

18-24 19 133

25-30 18 108

31-35 17 85

36-40(*) 17 85

41-42(%*) 17 34

Track #Sect #Sectorsln D64 Offset
1 21 0 $00000
2 21 21 $01500
3 21 42 $02A00
4 21 63 $03F00
5 21 84 $05400
6 21 105 $06900
7 21 126 $07E00
8 21 147 $09300
9 21 168 $0A800
10 21 189 $0BD00
11 21 210 $0D200
12 21 231 $0ET700
13 21 252 $0FC00
14 21 273 $11100
15 21 294 $12600
16 21 315 $13B00
17 21 336 $15000
18 19 357 $16500
19 19 376 $17800
20 19 395 $18B00
21 19 414 $19E00
22 19 433 $1B100
23 19 452 $1C400
24 19 471 $1D700
25 18 490 $1EA00
26 18 508 $1FC00
27 18 526 $20E00
28 18 544 $22000
29 18 562 $23200
30 18 580 $24400
31 17 598 $25600
32 17 615 $26700
33 17 632 $27800
34 17 649 $28900
35 17 666 $29A00

Chapter 15: The emulator file formats 167

36(*) 17 683 $2AB00
37(*) 17 700 $2BC00
38(*) 17 717 $2CD00
39(*) 17 734 $2DE00
40(¥) 17 751 $2EF00
41(*) 17 768 $30000

42(%) 17 785 $31100

(*) Tracks 36-40 apply to 40- and 42-track images only. (*) Tracks 41-42 apply to 42-track
images only.

The directory track should be contained totally on track 18. Sectors 1-18 contain the
entries and sector 0 contains the BAM (Block Availability Map) and disk name/ID. Since
the directory is only 18 sectors large (19 less one for the BAM), and each sector can contain
only 8 entries (32 bytes per entry), the maximum number of directory entries is 18 * 8 =
144. The first directory sector is always 18/1, even though the t/s pointer at 18/0 (first two
bytes) might point somewhere else. It then follows the same chain structure as a normal
file, using a sector interleave of 3. This makes the chain links go 18/1, 18/4, 18/7 etc.

Note that you can extend the directory off of track 18, but only when reading the disk
or image. Attempting to write to a directory sector not on track 18 will cause directory
corruption. Each directory sector has the following layout (18/1 partial dump):

00: 12 04 81 11 00 4E 41 4D 45 53 20 26 20 50 4F 53 <- notice the T/S link
10: 49 54 A0 A0 AO 00 00 00 00 00 00 00 00 00 15 00 <- to 18/4 ($12/$04)
20: 00 00 84 11 02 41 44 44 49 54 49 4F 4E 41 4C 20 <- and how its not here
30: 49 4E 46 4F A0 11 OC FE 00 00 00 00 00 00 61 01 <- ($00/$00)
The first two bytes of the sector ($12/$04) indicate the location of the next track/sector of
the directory (18/4). If the track is set to $00, then it is the last sector of the directory. It
is possible, however unlikely, that the directory may *not* be competely on track 18 (some
disks do exist like this). Just follow the chain anyhow.
When the directory is done, the track value will be $00. The sector link should contain a
value of $FF, meaning the whole sector is allocated, but the actual value doesn’t matter.
The drive will return all the available entries anyways.

This is a breakdown of a standard directory sector:

Bytes Description

$00-$1F First directory entry

$20-$3F Second dir entry

$40-35F Third dir entry

$60-37F Fourth dir entry

$80-$9F Fifth dir entry

$A0-$BF Sixth dir entry

$C0-$DF Seventh dir entry

$EO0-$FF Eighth dir entry

This is a breakdown of a standard directory entry:
Bytes Description

$00-$01 Track/Sector location of next directory sector ($00 $00 if not the first

entry in the sector)
$02 File type

Chapter 15: The emulator file formats 168

$03-$04 Track/sector location of first sector of file

$05-$14 16 character filename (in PETASCII, padded with $A0)

$15-316 Track/Sector location of first side-sector block (REL file only)

$17 REL file record length (REL file only, max. value 254)

$18-$1D Unused (except with GEOS disks)

$1E-$1F File size in sectors, low/high byte order ($1E+$1F*256). The approx.

filesize in bytes is <= #sectors * 254

The file type field is used as follows:

Bits Description

0-3 The actual file type

4 Unused

5 Used only during SAVE-@ replacement

6 Locked flag (Set produces ">" locked files)
7 Closed flag (Not set produces "*", or "splat" files)
The actual file type can be one of the following:

Binary Decimal File type

0000 0 DEL

0001 1 SEQ

0010 2 PRG

0011 3 USR

0100 4 REL

Values 5-15 are illegal, but if used will produce very strange results. The 1541 is inconsistent
in how it treats these bits. Some routines use all 4 bits, others ignore bit 3, resulting in
values from 0-7.

Files, on a standard 1541, are stored using an interleave of 10. Assuming a starting

track/sector of 17/0, the chain would run 17/0, 17/10, 17/20, 17/8, 17/18, etc.

15.4.1 Non-Standard & Long Directories

Most Commdore floppy disk drives use a single dedicated directory track where all filenames
are stored. This limits the number of files stored on a disk based on the number of sectors
on the directory track. There are some disk images that contain more files than would
normally be allowed. This requires extending the directory off the default directory track
by changing the last directory sector pointer to a new track, allocating the new sectors in
the BAM, and manually placing (or moving existing) file entries there. The directory of an
extended disk can be read and the files that reside there can be loaded without problems
on a real drive. However, this is still a very dangerous practice as writing to the extended
portion of the directory will cause directory corruption in the non-extended part. Many
of the floppy drives core ROM routines ignore the track value that the directory is on and
assume the default directory track for operations.

To explain: assume that the directory has been extended from track 18 to track 19/6 and
that the directory is full except for a few slots on 19/6. When saving a new file, the drive
DOS will find an empty file slot at 19/6 offset $40 and correctly write the filename and a
few other things into this slot. When the file is done being saved the final file information
will be written to 18/6 offset $40 instead of 19/6 causing some directory corruption to the

Chapter 15: The emulator file formats 169

entry at 18/6. Also, the BAM entries for the sectors occupied by the new file will not be
saved and the new file will be left as a SPLAT (*) file.

Attempts to validate the disk will result in those files residing off the directory track to not
be allocated in the BAM, and could also send the drive into an endless loop. The default
directory track is assumed for all sector reads when validating so if the directory goes to
19/6, then the validate code will read 18/6 instead. If 18/6 is part of the normal directory
chain then the validate routine will loop endlessly.

15.4.2 BAM layout
The layout of the BAM area (sector 18/0) is a bit more complicated. . .

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00: 12
10: 15
20: 00
30: OE
40: 15
50: 13
60: 13
70: 00
80: 11
90: 53
AO: AO
BO: 00
CO: 00
DO: 00
EO: 00
FO: 00

Bytes
$00-301

00 00 00 00 00 00 00 00 00 00 00 00

Description

Track/Sector location of the first directory sector (should be set to
18/1 but it doesn’t matter, and don’t trust what is there, always go to
18/1 for first directory entry)

Disk DOS version type (see note below) $41 ("A")

Unused

BAM entries for each track, in groups of four bytes per track, starting
on track 1 (see below for more details)

Disk Name (padded with $A0)

Filled with $A0

Disk ID

Usually $A0

DOS type, usually "2A"

Filled with $A0

Unused ($00)

For DOLPHIN DOS track 36-40 BAM entries, otherwise unused ($00)
For SPEED DOS track 36-40 BAM entries, otherwise unused ($00)

Chapter 15: The emulator file formats 170

$D4-$FF Unused

(%00)

Note: The BAM entries for SPEED, DOLPHIN and ProLogic DOS use the same layout as
standard BAM entries. One of the interesting things from the BAM sector is the byte at
offset $02, the DOS version byte. If it is set to anything other than $41 or $00, then we
have what is called "soft write protection". Any attempt to write to the disk will return
the "DOS Version" error code 73 ,"CBM DOS V 2.6 1541". The 1541 is simply telling
you that it thinks the disk format version is incorrect. This message will normally come
up when you first turn on the 1541 and read the error channel. If you write a $00 or a
$41 into 1541 memory location $O0FF (for device 0), then you can circumvent this type of
write-protection, and change the DOS version back to what it should be.

The BAM entries require a bit (no pun intended) more of a breakdown. Take the first entry
at bytes $04-$07 (312 $FF $F9 $17). The first byte ($12) is the number of free sectors on
that track. Since we are looking at the track 1 entry, this means it has 18 (decimal) free
sectors. The next three bytes represent the bitmap of which sectors are used/free. Since
it is 3 bytes (8 bits/byte) we have 24 bits of storage. Remember that at most, each track
only has 21 sectors, so there are a few unused bits.

Bytes Data Description
$04-$07 $12 $FF $F9 $17 Track 1 BAM
$08-30B $15 $SFF $FF $FF Track 2 BAM
$0C-$0F $15 $FF $FF $1F Track 3 BAM
$8C-$8F $11 $FF $FF $01 Track 35 BAM

These entries must be viewed in binary to make any sense. We will use the first entry (track

1) at bytes 04-07:
FF=11111111, F9=11111001, 17=00010111
In order to make any sense from the binary notation, flip the bits around.

111111 11112222
01234567 89012345 67890123

11111111 10011111 11101000

sector O sector 20

Since we are on the first track, we have 21 sectors, and only use up to the bit 20 position.
If a bit is on (1), the sector is free. Therefore, track 1 has sectors 9, 10 and 19 used, all the
rest are free. Any leftover bits that refer to sectors that don’t exist, like bits 21-23 in the
above example, are set to allocated.

Each filetype has its own unique properties, but most follow one simple structure. The first
file sector is pointed to by the directory and follows a t/s chain, until the track value reaches
$00. When this happens, the value in the sector link location indicates how much of the
sector is used. For example, the following chain indicates a file 6 sectors long, and ends
when we encounter the $00/$34 chain. At this point the last sector occupies from bytes
$02-$34.

1 2 3 4 5 6

Chapter 15: The emulator file formats 171

17/0 17/10 17/20 17/1 17/11 0/52
(11/00) (11/0A) (11/14) (11/01) (11/0B) (0/34)

15.4.3 Variations on the D64 layout

These are some variations of the D64 layout:

1. Standard 35 track layout but with 683 error bytes added on to the end of the file. Each
byte of the error info corresponds to a single sector stored in the D64, indicating if the
sector on the original disk contained an error. The first byte is for track 1/0, and the last
byte is for track 35/16.

2. A 40 track layout, following the same layout as a 35 track disk, but with 5 extra tracks.
These contain 17 sectors each, like tracks 31-35. Some of the PC utilities do allow you to
create and work with these files. This can also have error bytes attached like variant #1.
3. A 42 track layout, with two extra tracks of 17 sectors each. This is extremely uncommon,
since real drives often have problems with accessing these tracks, software that uses them
is very rare.

4. The Commodore 128 allowed for "auto-boot" disks. With this, t/s 1/0 holds a specific
byte sequence which the computer recognizes as boot code.

Below is a small chart detailing the standard file sizes of D64 images, 35, 40 or 42 tracks,
with or without error bytes.

Disk type Size

35 track, no errors 174848
35 track, 683 error bytes 175531
40 track, no errors 196608
40 track, 768 error bytes 197376
42 track, no errors 205312
42 track, 802 error bytes 206114

The following table (provided by Wolfgang Moser) outlines the differences between the
standard 1541 DOS and the various "speeder" DOS’s that exist. The "header 7/8 category
is the 'fill bytes’ as the end of the sector header of a real 1541 disk.

Disk format tracks header Dos Diskdos VvS.
7/8 type type
Original CBM DOS v2.6 35 $of $of "2A" $41/°A°
*SpeedDOS+ 10 SO£S0f "2AM $41/A°
Professional DOS Initial 35 $0f $0f "2A" $41/A°
Professional DOS Version 1/Prototype 40 $0f $0f "2A" $41/°A°
ProfDOS Release 40 $of $0f "4A" $41/A°
Dolphin-DOS 2.0/3.0 35 $of $of "2A" $41)°A°
Dolphin-DOS 2.0/3.0 40 $0d "2A" $41)°A°
$of
PrologicDOS 1541 35 $of $of "2A" $41/°A°
PrologicDOS 1541 40 $0f $0f 2P $50/°P’
ProSpeed 1571 2.0 35 $0f $0f "2A" $41/A°
ProSpeed 1571 2.0 40 $0f $0f 2P $50/'P’

*Note: There are also clones of SpeedDOS that exist, such as RoloDOS and DigiDOS. Both
are just a change of the DOS startup string.

Chapter 15: The emulator file formats 172

The location of the extra BAM information in sector 18/0, for 40 track images, will be
different depending on what standard the disks have been formatted with. SPEED DOS
stores them from $CO0 to $D3, DOLPHIN DOS stores them from $AC to $BF and Prolog-
icDOS stored them right after the existing BAM entries from $90-A3. PrologicDOS also
moves the disk label and ID forward from the standard location of $90 to $A4. 64COPY
and Star Commander let you select from several different types of extended disk formats
you want to create/work with.

All three of the speeder DOS’s mentioned above don’t alter the standard sector interleave
of 10 for files and 3 for directories. The reason is that they use a memory cache installed
in the drive which reads the entire track in one pass. This alleviates the need for custom
interleave values. They do seem to alter the algorithm that finds the next available free
sector so that the interleave value can deviate from 10 under certain circumstances, but 1
don’t know why they would bother.

Below is a HEX dump of a Speed DOS BAM sector. Note the location of the extra BAM
info from $C0-D3.

0070: 12 FF FF 03 12 FF FF 03 12 FF FF 03 11 FF FF 01
0080: 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
0090: A0 AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO
0OAO: A0 AO 30 30 AO 32 41 AO AO AO AO 00 00 00 00 00
00BO: 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00
00CO: 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
00DO: 11 FF FF 01 00 00 00 00 00 00 00 00 00 0O 00 00

Below is a HEX dump of a Dolphin DOS BAM sector. Note the location of the extra BAM
info from $AC-BF.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0070: 12 FF FF 03 12 FF FF 03 12 FF FF 03 11 FF FF 01
0080: 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
0090: A0 AO AO AO AO AO AO AO AO AO AO AO AO AO AO AO
OOAO: A0 AO 30 30 AO 32 41 AO AO AO AO 00 11 FF FF 01
00BO: 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
00CO: 00 00 00 00 OO 0O 00 OO 0O 00 OO 00 00 00 00 00
00DO: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Below is a HEX dump of a PrologicDOS BAM sector. Note that the disk name and ID are
now located at $A4 instead of starting at $90.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0070: 12 FF FF 03 12 FF FF 03 12 FF FF 03 11 FF FF 01
0080: 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
0090: 11 FF FF 01 11 FF FF 01 11 FF FF 01 11 FF FF 01
00AO: 11 FF FF 01 AO AO AO AO AO AO AO AO AO AO AO AO
00BO: AO AO AO AO AO AO 30 30 AO 32 50 AO AO AO AO 00
00CO: 00 00 00 00 00 00 00 00 00 OO 00 00 00 00 00 00

Chapter 15: The emulator file formats 173

00DO: 00 00 00 00 00 00 00 00 00 00O 00 00 00 00O 00 00

15.4.4 Error codes

Here is the meaning of the error bytes added onto the end of any extended D64. The CODE
is the same as that generated by the 1541 drive controller. . . it reports these numbers, not
the error code we usually see when an error occurs.

Some of what comes below is taken from Immers/Neufeld book "Inside Commodore DOS".
Note the descriptions are not completely accurate as to what the drive DOS is actually
doing to seek/read/decode/write sectors, but serve as simple examples only. The "type"
field is where the error usually occurs, whether it’s searching for any SYNC mark, any
header ID, any valid header, or reading a sector.

Code Error Type D64 Description

$01 00 N/A * No error.

$02 20 Seek * Header block
not found
/ Header
descriptor byte
not found

$03 21 Seek * No SYNC se-
quence found

$04 22 Read * Data descriptor
byte not found

$05 23 Read * Checksum error
in data block

$06 24 Write Write verify on

format (never
occurs on 1541)

$07 25 Write Write verify
error

$08 26 Write Write protect
on

$09 27 Seek * Checksum error
in header block

$0A 28 Write Write error
(never occurs
on 1541)

$0B 29 Seek * Disk sector ID
mismatch

$O0F 74 Read Drive Not

Ready (no disk
in drive or no
device 1)

Codes $0 and $C to $E are unused and never occur.

These first errors are "seek" errors, where the disk controller is simply reading headers
and looking at descriptor bytes, checksums, format ID’s and reporting what errors it sees.

Chapter 15: The emulator file formats 174

These errors do *not* necessarily apply to the exact sector being looked for. This fact
makes duplication of these errors very unreliable.

Code : $03 Error : 21 Type : Seek Message : No SYNC sequence found.

Each sector data block and header block are preceeded by SYNC marks. If *no* sync
sequence is found within 20 milliseconds (only ~1/10 of a disk rotation!) then this error is
generated. This error used to mean the entire track is bad, but it does not have to be the
case. Only a small area of the track needs to be without a SYNC mark and this error will
be generated.

Converting this error to a D64 is very problematic because it depends on where the physical
head is on the disk when a read attempt is made. If it is on valid header/sectors then it
won’t occur. If it happens over an area without SYNC marks, it will happen.

Code : $02 Error : 20 Type : Seek Message : Header descriptor byte not found (HEX $08,
GCR $52)

Each sector is preceeded by an 8-byte GCR header block, which starts with the value $52
(GCR). If this value is not found after 90 attempts, this error is generated.

Basically, what a track has is SYNC marks, and possibly valid data blocks, but no valid
header descriptors.

Code : $09 Error : 27 Type : Seek Message : Checksum error in header block

The header block contains a checksum value, calculated by XOR’ing the TRACK, SECTOR,
ID1 and ID2 values. If this checksum is wrong, this error is generated.

Code : $0B Error : 29 Type : Seek Message : Disk sector ID mismatch

The ID’s from the header block of the currently read sector are compared against the ones
from the low-level header of 18/0. If there is a mismatch, this error is generated.

Code : $02 Error : 20 Type : Seek Message : Header block not found

This error can be reported again when searching for the correct header block. An image
of the header is built and searched for, but not found after 90 read attempts. Note the
difference from the first occurance. The first one only searches for a valid ID, not the whole
header.

Note that error 20 occurs twice during this phase. The first time is when a header ID
is being searched for, the second is when the proper header pattern for the sector being
searched for is not found.

From this point on, all the errors apply to the specific sector you are looking for. If a read
passed all the previous checks, then we are at the sector being searched for.

Note that the entire sector is read before these errors are detected. Therefore the data,
checksum and off bytes are available.

Code : $04 Error : 22 Type : Read Message : Data descriptor byte not found (HEX $07,
GCR $55)

Each sector data block is preceeded by the value $07, the "data block" descriptor. If this
value is not there, this error is generated. Each encoded sector has actually 260 bytes. First
is the descriptor byte, then follows the 256 bytes of data, a checksum, and two "off" bytes.
Code : $05 Error : 23 Type : Read Message : Checksum error in data block

The checksum of the data read of the disk is calculated, and compared against the one
stored at the end of the sector. If there’s a discrepancy, this error is generated.

Chapter 15: The emulator file formats 175

Code : $0F Error : 74 Type : Read Message : Drive Not Ready (no disk in drive or no
device 1)

These errors only apply when writing to a disk. I don’t see the usefulness of having these
as they cannot be present when only *reading* a disk.

Code : $06 Error : 24 Type : Write Message : Write verify (on format)
Code : $07 Error : 25 Type : Write Message : Write verify error
Once the GCR-encoded sector is written out, the drive waits for the sector to come around

again and verifies the whole 325-byte GCR block. Any errors encountered will generate this
error.

Code : $08 Error : 26 Type : Write Message : Write protect on

Self explanatory. Remove the write-protect tab, and try again.

Code : $0A Error : 28 Type : Write Message : Write error

In actual fact, this error never occurs, but it is included for completeness.

This is not an error at all, but it gets reported when the read of a sector is ok.
Code : $01 Error : 00 Type : N/A Message : No error.

Self explanatory. No errors were detected in the reading and decoding of the sector.

The advantage with using the 35 track D64 format, regardless of error bytes, is that it can
be converted directly back to a 1541 disk by either using the proper cable and software on
the PC, or send it down to the C64 and writing it back to a 1541. It is the best documented
format since it is also native to the C64, with many books explaining the disk layout and
the internals of the 1541.

15.5 The X64 disk image format

(This section was contributed by Peter Schepers and slightly edited by Marco van den
Heuvel.)

This file type, created by Teemu Rantanen, is used on the X64 emulator (a UNIX-based
emulator) which has been superceeded by VICE. Both VICE and X64 support the X64 file
standard, with VICE also supporting the regular D64 and T64 files.

X64 is not a specific type of file, but rather encompasses *all* known C64 disk types (hard
disk, floppies, etc). An X64 is created by prepending a 64-byte header to an existing image
(1541, 1571, etc) and setting specific bytes which describe what type of image follows. This
header has undergone some revision, and this description is based on the 1.02 version, which
was the last known at the time of writing.

The most common X64 file you will see is the D64 variety, typically 174912 bytes long
(174848 for the D64 and 64 bytes for the header, assuming no error bytes are appended).
The header layout (as used in 64COPY) is as follows:

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
0000: 43 15 41 64 01 02 01 23 00 00 00 00 00 OO0 OO 0O
0010: 00 00 00 00 OO OO 0O 00 00 00 00 00 OO0 OO0 0O 0O
0020: 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00O OO 0O 00 00 00 00 00 00 00 00 00
0040: XX XX XX <- standard C64 image starts here....

Chapter 15: The emulator file formats 176

Bytes
$00-303
$04

$05

$06

$07

$08

$09
$0A-$1F
$20-$3E
$3F

$40-

Description

This is the "Magic header" ($43 $15 $41 $64)

Header version major ($01)

Header version minor ($01, now its up to $02)

Device type represented

Maximum tracks in image (only in version 1.02 or greater) 1540/41/70:
35 1571: 35 1581: 80 (Logical single-sided disk)

Number of disk sides in image. This value must be $00 for all 1541
and 1581 formats. $00=No second side $01=Second side

Error data flag.

Unused, set to $00

Disk image description (in ASCII or ISO Latin/1)

Always set to $00

Standard C64 file begins here.

The device types are:

Value
$00
$01
$02
$03
$04
$05
$06
$08
$10
$11
$12
$18
$20
$21
$22
$30
$31
$32

Drive type
1540 See note below. . .
1541 (Default)
1542

1551

1570

1571

1572

1581

2031 or 4031
2040 or 3040
2041

4040

8050

8060

8061
SFD-1001
8250

8280

The first four bytes used for the device type at position $06 (300 to $03) are functionally
the same, and are compatible with older version of X64 files. Some old X64 files might have
$00 for the device type (instead of $01), but it makes no real difference.

As most instances of X64 files will be strictly 1541 images, bytes $08-$3F are set to zero,
and some versions of the X64 emulator don’t use bytes $08-$3F.

15.6 The D71 disk image format
(This section was contributed by Peter Schepers and slightly edited by Marco van den

Heuvel.)

Chapter 15: The emulator file formats 177

Similar to the D64 (1541), the 1571 drive can operate in either single-sided (1541 compatible)
mode or double-sided (1571) mode. In this section I will be dealing with the double-sided
mode only. For the breakdown of the single-sided mode, see the D64 section.

The D71 has 70 tracks, double that of the 1541, with a DOS file size of 349696 bytes. If the
error byte block (1366 bytes) is attached, this makes the file size 351062 bytes. The track
range and offsets into the D71 files are as follows:

Track Sec/trk # Sectors
1-17 (side 0) 21 357
18-24 (side 0) 19 133
25-30 (side 0) 18 108
31-35 (side 0) 17 85
36-52 (side 1) 21 357
53-59 (side 1) 19 133
60-65 (side 1) 18 108
66-70 (side 1) 17 85
Track #Sect #Sectorsin D71 Offset
1 21 0 $00000
2 21 21 $01500
3 21 42 $02A00
4 21 63 $03F00
5 21 84 $05400
6 21 105 $06900
7 21 126 $07E00
8 21 147 $09300
9 21 168 $0A800
10 21 189 $0BD00
11 21 210 $0D200
12 21 231 $OE700
13 21 252 $0FC00
14 21 273 $11100
15 21 294 $12600
16 21 315 $13B00
17 21 336 $15000
18 19 357 $16500
19 19 376 $17800
20 19 395 $18B00
21 19 414 $19E00
22 19 433 $1B100
23 19 452 $1C400
24 19 471 $1D700
25 18 490 $1EA00
26 18 508 $1FCO00
27 18 526 $20E00
28 18 544 $22000
29 18 562 $23200

30 18 580 $24400

Chapter 15: The emulator file formats 178

31 17 598 $25600
32 17 615 $26700
33 17 632 $27800
34 17 649 $28900
35 17 666 $29A00
36 21 683 $2AB00
37 21 704 $2C000
38 21 725 $2D500
39 21 746 $2EA00
40 21 767 $2FF00
41 21 788 $31400
42 21 809 $32900
43 21 830 $33E00
44 21 851 $35300
45 21 872 $36800
46 21 893 $37D00
47 21 914 $39200
48 21 935 $3A700
49 21 956 $3BC00
50 21 977 $3D100
51 21 998 $3E600
52 21 1019 $3FB00
53 19 1040 $41000
o4 19 1059 $42300
95 19 1078 $43600
56 19 1097 $44900
57 19 1116 $45C00
58 19 1135 $46F00
99 19 1154 $48200
60 18 1173 $49500
61 18 1191 $4A700
62 18 1209 $4B900
63 18 1227 $4CB00
64 18 1245 $4DD00
65 18 1263 $4EF00
66 17 1281 $50100
67 17 1298 $51200
68 17 1315 $52300
69 17 1332 $53400
70 17 1349 $54500

The directory structure is the same as a D64/1541. All the same filetypes apply, the
directory still only holds 144 files per disk and should only exist on track 18.

The first two bytes of the sector ($12/$04 or 18/4) indicate the location of the next
track/sector of the directory. If the track value is set to $00, then it is the last sector
of the directory. It is possible, however unlikely, that the directory may *not* be competely
on track 18 (some disks do exist like this). Just follow the chain anyhow.

Chapter 15: The emulator file formats 179

When the directory is done, the track value will be $00. The sector link should contain a
value of $FF, meaning the whole sector is allocated, but the actual value doesn’t matter.
The drive will return all the available entries anyways. This is a breakdown of a standard
directory sector and entry:

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00: 12 04 82 11 00 4A 45 54 20 53 45 54 20 57 49 4C
10: 4C 59 AO A0 AO 00 00 00 00 00O 00 00 00 00 2B 00
20: 00 00 82 OF 01 4A 53 57 20 31 AO AO AO AO AO AO
30: AO AO AO AO AO 00 OO OO 00 00O OO OO0 00 OO0 BF 00
40: 00 00 82 06 03 53 4F 4E 20 4F 46 20 42 4C 41 47
50: 47 45 52 A0 A0 00 00 00 00 00 00 00 00 OO0 AE 00
60: 00 00 82 15 OD 50 4F 54 54 59 20 50 49 47 45 4F
70: 4E AO AO AO AO 00 00 OO0 00 00 00 00 00 00 A2 00
80: 00 00 00 00 00 00 OO OO0 00 OO OO OO0 00 00 00 00
90: 00 00 00 00 00 00 OO0 00 00 OO OO OO0 00 00 00 00
AO: 00 00 00 00 00 OO OO0 OO0 00 0O 00 00 00 00 00 00
BO: 00 00 00 00 00 0O OO OO 00 OO OO0 00 00 0O 00 00
CO0: 00 00 00 00 00 00 OO0 OO0 00 00O OO0 OO0 00 00 00 00
DO: 00 00 00 00 00 OO OO0 OO0 00O 0O 00 00 00O 0O 00 00
EO: 00 00 00 00 00 OO 00 OO0 00 0O 00 00 OO 00 00 00
FO: 00 00 00 00 00 OO 00 OO0 00O OO OO0 00 OO0 00 00 00

Bytes Description

$00-$1F First directory entry

$20-$3F Second dir entry

$40-35F Third dir entry

$60-$7F Fourth dir entry

$80-$9F Fifth dir entry

$A0-$BF Sixth dir entry

$C0-$DF Seventh dir entry

$EO0-SFF Eighth dir entry

This is a breakdown of a standard directory entry:

Bytes Description

$00-$01 Track/Sector location of next directory sector ($00/$FF if its the last
sector)

$02 File type

$03-$04 Track/sector location of first sector of file

$05-$14 16 character filename (in PETASCII, padded with $A0)

$15-316 Track/Sector location of first side-sector block (REL file only)

$17 REL file record length (REL file only, max. value 254)

$18-$1D Unused (except with GEOS disks)

$1E-$1F File size in sectors, low/high byte order ($1E+$1F*256). The approx.

filesize in bytes is <= #sectors * 254
The file type field is used as follows:

Bits Description

Chapter 15: The emulator file formats 180

0-3 The actual file type

4 Unused

5 Used only during SAVE-Q@ replacement

6 Locked flag (Set produces ">" locked files)

7 Closed flag (Not set produces "*", or "splat" files)

The actual file type can be one of the following:

Binary Decimal File type
0000 0 DEL
0001 1 SEQ
0010 2 PRG
0011 3 USR
0100 4 REL

Values 5-15 are illegal, but if used will produce very strange results. The 1571 is inconsistent
in how it treats these bits. Some routines use all 4 bits, others ignore bit 3, resulting in
values from 0-7.

When the 1571 is in is native ("1571") mode, files are stored with a sector interleave of 6,
rather than 10 which the 1541 (and the 1571 in "1541" mode) uses. The directory still uses
an interleave of 3.

15.6.1 Non-Standard & Long Directories

Most Commodore floppy disk drives use a single dedicated directory track where all file-
names are stored. This limits the number of files stored on a disk based on the number
of sectors on the directory track. There are some disk images that contain more files than
would normally be allowed. This requires extending the directory off the default directory
track by changing the last directory sector pointer to a new track, allocating the new sectors
in the BAM, and manually placing (or moving existing) file entries there. The directory of
an extended disk can be read and the files that reside there can be loaded without problems
on a real drive. However, this is still a very dangerous practice as writing to the extended
portion of the directory will cause directory corruption in the non- extended part. Many
of the floppy drives core ROM routines ignore the track value that the directory is on and
assume the default directory track for operations.

To explain: assume that the directory has been extended from track 18 to track 19/6 and
that the directory is full except for a few slots on 19/6. When saving a new file, the drive
DOS will find an empty file slot at 19/6 offset $40 and correctly write the filename and a
few other things into this slot. When the file is done being saved the final file information
will be written to 18/6 offset $40 instead of 19/6 causing some directory corruption to the
entry at 18/6. Also, the BAM entries for the sectors occupied by the new file will not be
saved and the new file will be left as a SPLAT (*) file.

Attempts to validate the disk will result in those files residing off the directory track to not
be allocated in the BAM, and could also send the drive into an endless loop. The default
directory track is assumed for all sector reads when validating so if the directory goes to
19/6, then the validate code will read 18/6 instead. If 18/6 is part of the normal directory
chain then the validate routine will loop endlessly.

Chapter 15: The emulator file formats

15.6.2 Bam layout The BAM is somewhat different as it now has

to

take 35 new tracks into account. In order to do this, most of the extra BAM information
is stored on track 53/0, and the remaining sectors on track 53 are marked in the BAM as
allocated. This does mean that except for one allocated sector on track 53, the rest of the
track is unused and wasted. (Track 53 is the equivalent to track 18, but on the flip side of

the disk). Here is a dump of the first BAM sector. . .

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00: 12 01
10: 15 FF
20: 15 FF
30: 15 FF
40: 15 FF
50: 13 FF
60: 13 FF
70: 12 FF
80: 11 FF
90: AO AO
AO: AO AO
BO: 00 00
CO: 00 00
DO: 00 00
EO: 15 15
FO: 13 13

Bytes
$00-301

<
s}
[\]

£
)
w

$04-8F

90-$9F
A0-$A1
A2-$A3
A4
A5-$A6
AT-$AA
AB-$DC
DD-$FF

S S P P L L PP

11

11

11

11

Description

Track/Sector location of the first directory
sector (should be set to 18/1 but it doesn’t
matter, and don’t trust what is there, al-
ways go to 18/1 for first directory entry)

Disk DOS version type (see note below) $41

('A’) = 1541

Double-sided flag $00 - Single sided disk $80
- Double sided disk

BAM entries for each track, in groups of
four bytes per track, starting on track 1.
Disk Name (padded with $A0)

Filled with $A0

Disk ID
Usually $A0

DOS type, usually "2A"

Filled with $A0

Not used ($00’s)

Free sector count for tracks 36-70 (1

byte/track).

Chapter 15: The emulator file formats 182

The "free sector" entries for tracks 36-70 are likely included here in the first BAM sector due
to some memory restrictions in the 1571 drive. There is only enough memory available for
one BAM sector, but in order to generate the "blocks free" value at the end of a directory
listing, the drive needs to know the extra track "free sector" values. It does make working
with the BAM a little more difficult, though.

These are the values that would normally be with the 4-byte BAM entry, but the rest of
the entry is contained on 53/0.

Note: If the DOS version byte is set to anything other than $41 or $00, then we have what
is called "soft write protection". Any attempt to write to the disk will return the "DOS
Version" error code 73. The 1571 is simply telling you that it thinks the disk format version
is incorrect.

The BAM entries require some explanation. Take the first entry at bytes $04-$07 ($12 $FF
$F9 $17). The first byte ($12) is the number of free sectors on that track. Since we are
looking at the track 1 entry, this means it has 18 (decimal) free sectors.

The next three bytes represent the bitmap of which sectors are used/free. Since it is 3 bytes
(8 bits/byte) we have 24 bits of storage. Remember that at most, each track only has 21
sectors, so there are a few unused bits. These entries must be viewed in binary to make any
sense. We will use the first entry (track 1) at bytes 04-07:

FF=11111111, F9=11111001, 17=00010111
In order to make any sense from the binary notation, flip the bits around.

111111 11112222
01234567 89012345 67890123

11111111 10011111 11101000

sector O sector 20

Since we are on the first track, we have 21 sectors, and only use up to the bit 20 position.
If a bit is on (1), the sector is free. Therefore, track 1 has sectors 9,10 and 19 used, all the
rest are free.

In order to complete the BAM, we must check 53/0.
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00: FF FF 1F FF FF 1F FF FF 1F FF FF 1F FF FF 1F FF
10: FF 1F FF FF 1F FF FF 1F FF FF 1F FF FF 1F FF FF
20: 1F FF FF 1F FF FF 1F FF FF 1F FF FF 1F FF FF 1F
30: FF FF 1F 00 00 00 FF FF 07 FF FF 07 FF FF 07 FF
40: FF 07 FF FF 07 FF FF 07 FF FF 03 FF FF 03 FF FF
50: 03 FF FF 03 FF FF 03 FF FF 03 FF FF 01 FF FF 01
60: FF FF 01 FF FF 01 FF FF 01 00 00 00 00 00 00 00
70: 00 00 00 00 OO OO OO OO OO 00 00 00 00 OO 0O 00
80: 00 00 00 0O OO OO0 OO OO OO0 OO OO 00 00 00 00 00
90: 00 00 00 00 00 00 OO OO0 00 0O 0O OO0 00 00 00 00
AO: 00 00 00 00 00 OO OO0 OO0 00O 0O 00 00 00O 00 00 00
BO: 00 00 00 00 00 OO 00 OO0 00O 0O OO0 00 OO 00 00 00
CO: 00 00 00 00 00 00 OO0 00 00 00 00 OO0 00 00 00 00

Chapter 15: The emulator file formats 183

DO: 00 00 00 00 00 OO 00 OO0 00O 0O 00 00 OO 0O 00 00
EO: 00 00 00 00 00 OO 00 OO0 00O 0O 00 00 OO 00 00 00
FO: 00 00 00 00 00 OO OO0 OO0 00 OO OO0 00 00 0O 00 00

Each track from 36-70 has 3 byte entries, starting at address $00.

Byte: $00-$02: $FF $FF $1F - BAM map for track 36
$03-$05: $FF $FF $1F - BAM map for track 37

$33-$35: $00 $00 $00

BAM map for track 53

$66-$68: $FF $FF $01 - BAM map for track 70
$69-$FF: - Not used

You can break down the entries for tracks 36-70 the same way as track 1, just combine the
free sector bytes from 18/0 and the BAM usage from 53 to get the full 4-byte entry.

Just like a D64, you can attach error bytes to the file, for sector error information. This
block is 1366 bytes long, 1 byte for each of the 1366 sectors in the image. With the error
bytes, the file size is 351062 bytes.

15.7 The D81 disk image format

(This section was contributed by Peter Schepers and slightly edited by Marco van den
Heuvel.)

Like D64 and D71, this is a byte for byte copy of a physical 1581 disk. It consists of 80
tracks, 40 sectors each (0 to 39) for a size of 819200 bytes, or 3200 sectors. If the error byte
block is attached, this makes the file size 822400 bytes.

There are three sectors on the directory track used for disk internals (header and BAM),
leaving 37 sectors for filename entries, thus allowing for 296 files (37 * 8) to be stored at
the root level of the disk.

The actual physical layout on the disk is quite different from what the user sees, but this is
unimportant to the scope of this section. One important difference from the D64 and D71
is all the sector interleaves are now 1 for both files and directory storage (rather than 3 for
directory and 10 for file on a D64/D71). This is due to the built-in buffering in the 1581.
When reading a sector, the whole track will be buffered in memory, and any sectors being
modified will be done in memory. Once it has to be written, the whole track will be written
out in one step.

The track range and offsets into the D81 files are as follows:

Track #Sect #SectorsIn D81 Offset
1 40 0 $00000
2 40 40 $02800
3 40 80 $05000
4 40 120 $07800
5 40 160 $0A000
6 40 200 $0C800
7 40 240 $0F000
8 40 280 $11800
9 40 320 $14000

Chapter 15: The emulator file formats 184

10 40 360 $16800
11 40 400 $19000
12 40 440 $1B800
13 40 480 $1E000
14 40 520 $20800
15 40 560 $23000
16 40 600 $25800
17 40 640 $28000
18 40 680 $2A800
19 40 720 $2D000
20 40 760 $2F800
21 40 800 $32000
22 40 840 $34800
23 40 880 $37000
24 40 920 $39800
25 40 960 $3C000
26 40 1000 $3E800
27 40 1040 $41000
28 40 1080 $43800
29 40 1120 $46000
30 40 1160 $48800
31 40 1200 $4B000
32 40 1240 $4D800
33 40 1280 $50000
34 40 1320 $52800
35 40 1360 $55000
36 40 1400 $57800
37 40 1440 $5A000
38 40 1480 $5C800
39 40 1520 $5F000
40 40 1560 $61800
41 40 1600 $64000
42 40 1640 $66800
43 40 1680 $69000
44 40 1720 $6B800
45 40 1760 $6E000
46 40 1800 $70800
47 40 1840 $73000
48 40 1880 $75800
49 40 1920 $78000
50 40 1960 $7A800
51 40 2000 $7D000
52 40 2040 $7EF800
53 40 2080 $82000
54 40 2120 $84800
55 40 2160 $87000

56 40 2200 $89800

Chapter 15: The emulator file formats 185

57 40 2240 $8C000
58 40 2280 $8E800
59 40 2320 $91000
60 40 2360 $93800
61 40 2400 $96000
62 40 2440 $98800
63 40 2480 $9B000
64 40 2520 $9D800
65 40 2560 $A0000
66 40 2600 $A2800
67 40 2640 $A5000
68 40 2680 $A7800
69 40 2720 $AA000
70 40 2760 $AC800
71 40 2800 $AF000
72 40 2840 $B1800
73 40 2880 $B4000
74 40 2920 $B6800
75 40 2960 $B9000
76 40 3000 $BB800
77 40 3040 $BE000
78 40 3080 $C0800
79 40 3120 $C3000
80 40 3160 $C5800

The header sector is stored at 40/0, and contains the disk name, ID and DOS version bytes,
but the BAM is no longer contained here (like the D64).

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00: 28 03 44 00 31 35 38 31 20 55 54 49 4C 49 54 59
10: 20 56 30 31 AO AO 47 42 AO 33 44 AO AO 00 00 00
20: 00 00 00 00 00 00 OO 00 00 0O OO OO0 00 00 00 00
30: 00 00 00 00O 00 00 OO 00 00 OO OO0 OO0 00 00 00 00
40: 00 00 00 00 00 OO OO OO 00 OO 00 00 00O 0O 00 00
50: 00 00 00 00 00 00 OO OO0 00 00O 0O 00 00 00 00 00
60: 00 00 00 00O 00 00O OO OO0 00 OO OO OO0 00 00 00 00
70: 00 00 00 00O OO0 00O OO OO0 00 OO OO OO0 00 OO 00 00
80: 00 00 00 00 00 00 OO0 00 00 0O 00 OO0 00 00 00 00
90: 00 00 00 00 00 00 OO0 OO0 00 00 OO0 00 00 00 00 00
AO: 00 00 00 00 00 OO OO OO0 00 OO OO0 00 00O 0O 00 00
BO: 00 00 00 00 00 OO OO OO0 00O OO OO0 00 OO 0O 00 00
CO: 00 00 00 00 00 00 OO 00 00 0O OO0 00 00 00 00 00
DO: 00 00 00 00 00 OO0 00 OO0 00 0O 00 00 00 00 00 00
EO: 00 00 00 00 00 00 OO OO0 00 OO OO0 00 00 0O 00 00
FO: 00 00 00 00 00 OO OO OO0 00 OO OO0 00 OO 0O 00 00

Bytes Description

Chapter 15: The emulator file formats 186

$00-$01 Track/Sector location of the first directory sector (should be set to
40/3 but it doesn’t matter, and don’t trust what is there, always go to
40/3 for first directory entry)

$02 Disk DOS version type (see note below) $44 ("D’)=1581
$03 $00

$04-$13 16 character Disk Name (padded with $A0)

$14-$15 $A0

$16-317 Disk ID

$18 $A0

$19 DOS Version ("3")

$1A Disk version ("D")

$1B-$1C $A0

$1D-$FF Unused (usually $00)

The following might be set if the disk is a GEOS format (this info is based on the D64
layout, and might not prove to be true)

Bytes Description

$AB-SAC Border sector (GEOS only, else set to $00)

$AD-$BC GEOS ID string ("geos FORMAT V1.x" GEOS only, else $00)
$BD-$FF Unused (usually $00)

Note: If the DOS version byte is changed to anything other than a $44 (or $00), then we
have what is called "soft write protection". Any attempt to write to the disk will return
the "DOS Version" error code 73. The drive is simply telling you that it thinks the disk
format version is incompatible.

The directory track should be contained totally on track 40. Sectors 3-39 contain the entries
and sector 1 and 2 contain the BAM (Block Availability Map). Sector 0 holds the disk name
and ID. The first directory sector is always 40/3, even though the t/s pointer at 40/0 (first
two bytes) might point somewhere else. It goes linearly up the sector count, 3-4-5-6-etc.
Each sector holds up to eight entries.

The first two bytes of the sector ($28/$04) indicate the location of the next track/sector of
the directory (40/4). If the track is set to $00, then it is the last sector of the directory. It
is possible, however unlikely, that the directory may *not* be competely on track 40. Just
follow the chain anyhow.

When the directory is done (track=$00), the sector should contain an $FF, meaning the
whole sector is allocated. Theactual value doesn’t matter as all the entries will be returned
anyways. Each directory sector has the following layout:

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00: 28 04 81 2B 00 53 43 52 45 45 4E 20 20 33 AO AO
10: AO AO AO A0 AO OO 00 OO0 00O 0O 00 00 00 00 02 00
20: 00 00 81 2B 01 53 43 52 45 45 4E 20 20 34 AO AO
30: AO AO AO AO AO 00 00 OO 00 00 00 00 00 00 03 00
40: 00 00 81 2B 02 53 43 52 45 45 4E 20 20 35 A0 AO
50: AO AO AO AO AO 00 OO 00 00 00O 0O OO0 00 00 07 00
60: 00 00 81 2B 08 53 43 52 45 45 4E 20 20 36 AO AO
70: AO AO AO AO AO OO OO 0O 00 00 00 00 00 00 08 00

Chapter 15: The emulator file formats 187

80: 00 00 81 2B 14 53 43 52 45 45 4E 20 20 37 AO AO
90: AO AO AO AO AO 00 OO 00 00 00O OO 00 00 00 07 00
AO: 00 00 81 24 00 53 43 52 45 45 4E 20 20 38 AO AO
BO: AO AO AO AO AO 00 00 00 00 OO 00 00 00 OO OB 00
CO: 00 00 82 24 04 46 49 4C 45 34 32 39 33 36 39 30
DO: AO AO AO AO AO OO OO0 00 00 0O 00 00 00 00O 07 00
EO: 00 00 82 24 06 46 49 4C 45 32 35 37 38 38 31 35
FO: AO AO AO AO AO 00 00 00 00 0O OO0 00 OO OO 05 00

Bytes Description

$00-$1F First directory entry

$20-$3F Second dir entry

$40-$5F Third dir entry

$60-37F Fourth dir entry

$80-$9F Fifth dir entry

$A0-$BF Sixth dir entry

$C0-$DF Seventh dir entry

$EO0-$FF Eighth dir entry

This is a breakdown of a standard directory entry:

Bytes Description

$00-$01 Track/Sector location of next directory sector

$02 File type

$03-$04 Track/sector location of first sector of file or partition

$05-$14 16 character filename (in PETASCII, padded with $A0)

$15-316 Track/Sector location of first SUPER SIDE SECTOR block (REL file
only)

$17 REL file record length (REL file only)

$18-$1B Unused (except with GEOS disks)

$1C-$1D (Used during an SAVE or OPEN, holds the new t/s link)

$1E-$1F File or partition size in sectors, low/high byte order ($31E+$1F*256).

The approx. file size in bytes is <= #sectors * 254
The file type field is used as follows:

Bits Description

0-3 The actual file type

4 Unused

5 Used only during SAVE-@ replacement

6 Locked flag (Set produces ">" locked files)

7 Closed flag (Not set produces "*", or "splat" files)
The actual file type can be one of the following:

Binary Decimal File type

0000 0 DEL

0001 1 SEQ

0010 2 PRG

0011 3 USR

0100 4 REL

0101 5 CBM (partition or sub-directory)

Chapter 15: The emulator file formats 188

Values 6-15 are illegal, but if used will produce very strange results.

15.7.1 Non-Standard & Long Directories

Most Commdore floppy disk drives use a single dedicated directory track where all filenames
are stored. This limits the number of files stored on a disk based on the number of sectors
on the directory track. There are some disk images that contain more files than would
normally be allowed. This requires extending the directory off the default directory track
by changing the last directory sector pointer to a new track, allocating the new sectors in
the BAM, and manually placing (or moving existing) file entries there. The directory of an
extended disk can be read and the files that reside there can be loaded without problems
on a real drive. However, this is still a very dangerous practice as writing to the extended
portion of the directory will cause directory corruption in the non-extended part. Many
of the floppy drives core ROM routines ignore the track value that the directory is on and
assume the default directory track for operations.

15.7.2 BAM layout

The BAM is located on 40/1 (for side 0, tracks 1-40) and 40/2 (for side 1, tracks 41-80).
Each entry takes up six bytes, one for the "free sector" count and five for the allocation
bitmap.
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00: 28 02 44 BB 47 42 CO 00 00 00 00 00 00 OO 00 00
10: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
20: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
30: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
40: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
50: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
60: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
70: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
80: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
90: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
AO: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
BO: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
CO: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
DO: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
EO: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
FO: FF FF FF FF 28 FF FF FF FF FF 24 FO FF 2D FF FE

Bytes:
$00-$01: Track/sector of next bam sector (40/2)
$02: Version # (’D’)
$03: One’s complement of version# ($BB)
$04-$05: Disk ID bytes (same as 40/0 Disk ID)
$06: I/0 byte
bit 7 set - Verify on
bit 7 clear - Verify off
bit 6 set - Check header CRC

Chapter 15: The emulator file formats 189

bit 6 clear - Don’t check header CRC
$07: Auto-boot-loader flag
$08-$0F: Reserved for future (set to $00)
$10-$15: BAM entry for track 1 (track 41, side 1)
$16-$1B: BAM entry for track 2 (track 42, side 1)

$46-$4B: BAM entry for track 10 (track 50, side 1)
$82-$87: BAM entry for track 20 (track 60, side 1)
$BE-$C3: BAM entry for track 30 (track 70, side 1)

$FA-$FF: BAM entry for track 40 (track 80, side 1)

The BAM entries require some explanation, so lets look at the track 40 entry at bytes
$FA-FF (324 $FO $FF $2D $FF $FE). The first byte ($24, or 36 decimal) is the number
of free sectors on that track. The next five bytes represent the bitmap of which sectors are
used/free. Since it is five bytes (8 bits/byte) we have 40 bits of storage. Since this format
has 40 sectors/track, the whole five bytes are used.

FO: . e e e 24 FO FF 2D FF FE

The last five bytes of any BAM entry must be viewed in binary to make any sense. We will
once again use track 40 as our reference:

F0=11110000, FF=11111111, 2D=00101101, FF=11111111, FE=11111110
In order to make any sense from the binary notation, flip the bits around.

111111 11112222 22222233 33333333
Sector 01234567 89012345 67890123 45678901 23456789

00001111 11111111 10110100 11111111 01111111

Note that if a bit is on (1), the sector is free. Therefore, track 40 has sectors 0-3, 17, 20,
22, 23 and 32 used, all the rest are free.

The second BAM (for side 1) contains the entries for tracks 41-80.
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF

00: 00 FF 44 BB 47 42 CO 00 00 00 00 00 00 00 00 00
10: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
20: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
30: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
40: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
50: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
60: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
70: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
80: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
90: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF
AO: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
BO: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
CO: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF

Chapter 15: The emulator file formats 190

DO: 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
EO: FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF 28 FF
FO: FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF FF FF

It is laid out exactly as the side 0 BAM except for one difference. The track/sector reference
for the next sector should be set to $00/$FF, indicating there is no next sector.

15.7.3 REL files The REL filetype requires some extra explaining.

It was designed to make access to data *anywhere* on the disk very fast. Take a look at
this directory entry. . .

00: 00 FF 84 27 00 41 44 44 49 54 49 4F 4E 41 4C 20
10: 49 4E 46 4F A0 27 02 FE 00 00 00 00 00 00 D2 0B

The third byte ($84) indicates this entry is a REL file and that the three normally empty
entries at offset $15, $16 and $17 are now used as they are explained above. It’s the
track/sector chain that this entry points to, called the SUPER SIDE SECTOR, which is
of interest here (in this case, 39/2). The SUPER SIDE SECTOR is very different from the
D64 format. If you check the D64 entry for a REL file and do the calculations, you will
find that the maximum file size of the REL file is 720 data sectors. With the new SUPER
SIDE SECTOR, you can now have 126 groups of these SIDE SECTORS chains, allowing
for file sizes up to (theoretically) 90720 sectors, or about 22.15 Megabytes.

Here is a dump of the beginning of the SUPER SIDE SECTOR. ..

00: 27 01 FE 27 01 15 09 03 OF 38 16 4A 1C 00 00 00
10: 00 00 00 00 00O 00 00 OO0 00 0O 00 00 00 00 00 00
20: 00 00 00 00 00 00 OO0 OO0 00 00 OO0 00 00 00 00 00

Bytes:
$00-$01: Track/sector of first side sector in group O
$02: Always $FE
$03-$04: Track/sector of first side sector in group O (again)

$FD-$FE: Track/sector of first side sector in group 125
$FF: Unused (likely $00)

The side sector layout is the same as the D64/1571.
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00: 12 OA 00 FE 15 09 12 OA OF OB 0C OC 09 OD 06 OE
10: 15 07 15 08 15 OA 15 OB 15 0C 15 OD 15 OE 15 OF
20: 15 10 15 11 15 12 15 13 15 14 15 15 15 16 15 17
30: 15 18 15 19 15 1A 15 1B 15 1C 15 1D 15 1E 15 1F
40: 15 20 15 21 15 22 15 23 15 24 15 25 15 26 15 27
50: 14 00 14 01 14 02 14 03 14 04 14 05 14 06 14 07
60: 14 08 14 09 14 OA 14 OB 14 0C 14 OD 14 OE 14 OF
70: 14 10 14 11 14 12 14 13 14 14 14 15 14 16 14 17
80: 14 18 14 19 14 1A 14 1B 14 1C 14 1D 14 1E 14 1F
90: 14 20 14 21 14 22 14 23 14 24 14 25 14 26 14 27
AO: 13 00 13 01 13 02 13 03 13 04 13 05 13 06 13 07
BO: 13 08 13 09 13 OA 13 OB 13 0C 13 0D 13 OE 13 OF

Chapter 15: The emulator file formats 191

CO: 13 10 13 11 13 12 13 13 13 14 13 15 13 16 13 17
DO: 13 18 13 19 13 1A 13 1B 13 1C 13 1D 13 1E 13 1F
EO: 13 20 13 21 13 22 13 23 13 24 13 25 13 26 13 27
FO: 12 00 12 01 12 02 12 03 12 04 12 05 12 06 12 07
Bytes:
$00: Track location of next side-sector ($00 if last sector)
$01: Sector location of next side-sector
$02: Side-sector block number (first sector is $00, the next is
$01, then $02, etc)
$03: REL file RECORD size (from directory entry)
$04-$0F: Track/sector locations of the six other side-sectors. Note
the first entry is this very sector we have listed here.
The next is the next t/s listed at the beginning of the
sector. All of this information must be correct. If one of
these chains is $00/$00, then we have no more side sectors.
Also, all of these (up to six) side sectors must have the
same values in this range.
$10-$FF: T/S chains of *each* sector of the data portion. When we
get a $00/$00, we are at the end of the file.

15.7.4 1581 Partitions and Sub-directories

At the beginning of this section it was stated that the 1581 can hold 296 entries "at the
root level". The 1581 also has the ability to partition areas of the disk. Under the right
conditions these can become sub-directories, acting as a small diskette, complete with its
own directory and BAM. When you are inside of a sub-directory, no other files except those
in that directory are visible, or can be affected.

To the 1581, this file will show up as a "CBM" filetype in a directory. All this does is tell
the disk that a file, starting at X/Y track/sector and Z sectors large exists. Doing a validate
will not harm these files as they have a directory entry, and are fully allocated in the BAM.

There are two main uses for partitions. One is to simply allocate a section of the disk
to be used for direct-access reads/writes, and lock it away from being overwritten after a
VALIDATE. The second is as a sub-directory, basically a small "disk within a disk".

In order to use a partition as a sub-directory, it must adhere to the following four rules:

1. If must start on sector O

2. It’s size must be in multiples of 40 sectors

3. It must be a minimum of 120 sectors long (3 tracks)

4. If must not start on or cross track 40, which limits the
biggest directory to 1600 sectors (tracks 1-39).

This is a dump of a sub-directory entry:

00: 00 FF 85 29 00 50 41 52 54 49 54 49 4F 4E 20 31
10: AO AO AO AO AO 00 00 00 00 OO 00 00 00 OO 40 06

It is a partition starting on track 41/0, extends for 1600 sectors, and has been formatted
as a sub-directory. Note that when a partition is created, the area being allocated is not
touched in any way. If you want it set up as a sub-directory, you must issue the FORMAT
command to the 1581 to create the central directory and BAM. Also note that from the

Chapter 15: The emulator file formats 192

directory entry you can’t tell whether it is a sub-directory or not, just that it fits the
sub-directory parameters.

The BAM track for the sub-directory exists on the first track of the partition, and has the
same layout as the disk BAM on track 40. The biggest difference is the "disk name" is
what what given when the partition was formatted rather than what the actual disk name
is. Also, except for the free sectors in the partition area, all other sectors in the BAM will
be allocated.

If the partition size doesn’t match the above rules for a sub-directory, it will simply exist
as a "protected" area of the disk, and can’t be used as a sub-directory. Either way, it still
shows up as a "CBM" type in a directory listing. Below is a dump of a 10-sector partition
starting on track 5/1, which does not qualify as a sub-directory. . .

00: 00 00 85 05 01 53 4D 41 4C 4C 50 41 52 54 20 32
10: AO AO AO AO AO 00 00 00 00 00O OO 00 OO OO OA 00

The master BAM shows the entry for this partition on track 5. . .

00: 28 02 44 BB 43 44 CO 00 00 00 00 00 00 00 00 00
10: 23 C1 FF FF FF FF 28 FF FF FF FF FF 28 FF FF FF
20: FF FF 28 FF FF FF FF FF 1E 01 F8 FF FF FF 28 FF

AAAA~AA~AAA~A~A~A~AAa~a~n~nA~An

The breakdown of the BAM shows the allocation for this track, with sectors 1-10 allocated,
as it should be.

10000000 00011111 11111111 11111111 11111111

~ ~ ~

0 10 20 30 39

Partitions and sub-directories share one very important trait. When created, the sub-
directory entry simply has the starting track/sector and the size of the partition in sectors.
Partitions are created linearly, meaning if one starts on 30/1 and is of size 15 sectors, then
the sector range from 1 through 15 on track 30 will be allocated. If a partition size crosses
a track boundary, the allocation will continue on the next track starting on sector 0, and
going up.

The section allocated will *not* have a track/sector chain like a file would, but rather is
dependant on the directory entry to keep it from being overwritten. You can store whatever
you want to in the allocated area.

15.7.5 AUTO-BOOT LOADER

If byte $07 in the BAM is set, then when the drive is reset (and other circumstances) it will
look for a USR file called "COPYRIGHT CBM 86". This file will then be loaded into the
drive RAM and executed.

The format for this auto-loader file is fairly basic. It starts with a two-byte load address, a
size byte, program data, and a checksum at the end.

Bytes:
$00-$01: Load address, low/high format
$02: Size of program (SZ) (smaller than 256 bytes)
$03-($03+SZ-1) : Program data
$03+SZ: Checksum byte

Chapter 15: The emulator file formats 193

15.8 The D80 disk image format

(This section was contributed by Peter Schepers and slightly edited by Marco van den
Heuvel.)

This is a sector-for-sector copy of an 8050 floppy disk. The file size for an 8050 image is
533248 bytes. It is comprised of 256-byte sectors arranged across 77 tracks, with a varying
number of sectors per track for a total of 2083 sectors. Track counting starts at 1 (not 0)
and sector counting starts at 0 (not 1), therefore a track with 29 sectors will go from 0 to
28.

The original media (a 5.25" disk) has the tracks laid out in circles, with track 1 on the very
outside of the disk (closest to the sides) to track 77 being on the inside of the disk (closest
to the inner hub ring). Commodore, in their infinite wisdom, varied the number of sectors
per track and data densities across the disk to optimize available storage, resulting in the
chart below. It shows the sectors/track for a D80. Since the outside diameter of a circle
is the largest (versus closer to the center), the outside tracks have the largest amount of
storage.

Track Range Sectors/track # Sectors

1-39 29 1131

40-53 27 378

54-64 25 275

65-77 23 299

Track #Sect #SectorsIn D8x Offset
1 29 0 $00000
2 29 29 $01D00
3 29 58 $03A00
4 29 87 $05700
5 29 116 $07400
6 29 145 $09100
7 29 174 $0AE00
8 29 203 $0CB00
9 29 232 $OER00
10 29 261 $10500
11 29 290 $12200
12 29 319 $13F00
13 29 348 $15C00
14 29 377 $17900
15 29 406 $19600
16 29 435 $1B300
17 29 464 $1D000
18 29 493 $1EDOO
19 29 522 $20A00
20 29 551 $22700
21 29 580 $24400
22 29 609 $26100
23 29 638 $27E00
24 29 667 $29B00

Chapter 15: The emulator file formats 194

25 29 696 $2B800
26 29 725 $2D500
27 29 754 $2F200
28 29 783 $30F00
29 29 812 $32C00
30 29 841 $34900
31 29 870 $36600
32 29 899 $38300
33 29 928 $3A000
34 29 957 $3BD00
35 29 986 $3DA00
36 29 1015 $3F700
37 29 1044 $41400
38 29 1073 $43100
39 29 1102 $44E00
40 27 1131 $46B00
41 27 1158 $48600
42 27 1185 $4A100
43 27 1212 $4BC00
44 27 1239 $4D700
45 27 1266 $4F200
46 27 1293 $50D00
47 27 1320 $52800
48 27 1347 $54300
49 27 1374 $55E00
50 27 1401 $57900
51 27 1428 $59400
52 27 1455 $5AF00
53 27 1482 $5CA00
o4 25 1509 $5E500
55 25 1534 $5FE00
56 25 1559 $61700
o7 25 1584 $63000
o8 25 1609 $64900
59 25 1634 $66200
60 25 1659 $67B00
61 25 1684 $69400
62 25 1709 $6ADO00
63 25 1734 $6C600
64 25 1759 $6DF00
65 23 1784 $6F'800
66 23 1807 $70F00
67 23 1830 $72600
68 23 1853 $73D00
69 23 1876 $75400
70 23 1899 $76B00

71 23 1922 $78200

Chapter 15: The emulator file formats

72
73
74
75
76
[

23
23
23
23
23
23

1945
1968
1991
2014
2037
2060

195

$79900
$7B000
$7C700
$7DE00
$7EF500
$80C00

The BAM (Block Availability Map) is on track 38. The D80 is only 77 tracks and so the

BAM is contained on 38/0 and 38/3. The BAM interleave is 3.

The directory is on track 39, with 39/0 contains the header (DOS type, disk name, disk
ID’s) and sectors 1-28 contain the directory entries. Both files and the directory use an
interleave of 1. Since the directory is only 28 sectors large (29 less one for the header),
and each sector can contain only 8 entries (32 bytes per entry), the maximum number of
directory entries is 28 * 8 = 224. The first directory sector is always 39/1. It then follows
a chain structure using a sector interleave of 1 making the links go 39/1, 39/2, 39/3 etc.

When reading a disk, you start with 39/0 (disk label/ID) which points to 38/0 (BAMO),
38/3 (BAM1), and finally to 39/1 (first dir entry sector). When writing a file to a blank
disk, it will start at 38/1 because 38/0 is already allocated.
Below is a dump of the header sector 39/0:

00 01 02 03 04 05 06

00:
10:
20:

FO:

$00-$01
$02

$03
$04-$05
$06-$16
$17
$18-$19
$1A

26 00 43 00 00 00 73
AO AO AO AO AO AO AO
AO 00 00 00 00 00 00

00 00 00 00 00 00 00
Bytes

$1B-$1C

$1D-$20
$21-$FF

00:
10:
20:
30:
40:

00

01

02

03 04 05 06

07 08 09 OA OB 0C 0D OE OF
61 6D 70 6C 65 20 64 38 30
AO 65 72 AO 32 43 AO AO AO
00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

Description

T/S pointer to first BAM sector (38/0)
$43 ’C’ is for DOS format version

Reserved
Unused

Disk name, padded with 0xA0 ("sample d80")
0xA0
Disk ID bytes "er"
0xA0
DOS version bytes "2C"
0xA0

Unused

Below is a dump of the first directory sector, 39/1

07

08 09

OA OB OC 0D

AO

26 01 54 45
A0 AO 00 00
26 02 54 45
A0 AO 00 00
26 04 54 45

AO A0 AO AO
00 00 00 00
AO A0 AO AO
00 00 00 00
AO AO AO AO

Chapter 15: The emulator file formats 196

50: AO AO AO AO AO 00 OO 00 00 00O 0O 00 00 00 05 00
60: 00 00 82 26 OB 54 45 53 54 34 AO AO AO AO AO AO
70: AO AO AO AO AO 00 OO 00 00 OO OO OO 00 00 09 00
80: 00 00 82 26 14 54 45 53 54 35 AO AO AO AO AO AO
90: AO AO AO AO AO 00 OO 00 00 00 00 00 00 00 OC 00
AO: 00 00 82 28 00 54 45 53 54 36 AO AO AO AO AO AO
BO: AO AO AO AO AO 00O 00 00 00 0O OO0 00 00 0O 01 0O
CO: 00 00 82 28 01 54 45 53 54 37 A0 A0 AO AO AO AO
DO: AO AO AO AO AO 00 00 00 00 0O 00 00 00 0O 01 00
EO: 00 00 82 28 02 54 45 53 54 38 AO AO AO AO AO AO
FO: AO AO AO AO AO 00O 00 00 00 0O 00 00 00O 00 01 00

The first two bytes of the directory sector ($27/$02) indicate the location of the next
track/sector of the directory (39/2). If the track is set to $00, then it is the last sector of
the directory.

When the directory is done, the track value will be $00. The sector link should contain a
value of $FF, meaning the whole sector is allocated, but the actual value doesn’t matter.
The drive will return all the available entries anyways. This is a breakdown of a standard
directory sector:

Bytes Description

$00-$1F First directory entry

$20-$3F Second dir entry

$40-35F Third dir entry

$60-$7F Fourth dir entry

$80-$9F Fifth dir entry

$A0-$BF Sixth dir entry

$C0-$DF Seventh dir entry

$EO0-SFF Eighth dir entry

This is a breakdown of a standard directory entry:

Bytes Description

$00-$01 Track/Sector location of next directory sector ($00 $00 if not the first
entry in the sector)

$02 File type

$03-$04 Track/sector location of first sector of file

$05-$14 16 character filename (in PETASCII, padded with $A0)

$15-$16 Track/Sector location of first side-sector block (REL file only)

$17 REL file record length (REL file only, max. value 254)

$18-$1D Unused

$1E-$1F File size in sectors, low/high byte order ($1E+$1F*256). The approx.

filesize in bytes is <= #sectors * 254
The file type field is used as follows:

Bits Description

0-3 The actual file type

4 Unused

5 Used only during SAVE-@ replacement

6 Locked flag (Set produces ">" locked files)

Chapter 15: The emulator file formats 197

7 Closed flag (Not set produces "*", or "splat" files)
The actual file type can be one of the following:

Binary Decimal File type

0000 0 DEL

0001 1 SEQ

0010 2 PRG

0011 3 USR

0100 4 REL

Values 5-15 are illegal, but if used will produce very strange results.

15.8.1 Non-Standard & Long Directories

Most Commdore floppy disk drives use a single dedicated directory track where all filenames
are stored. This limits the number of files stored on a disk based on the number of sectors
on the directory track. There are some disk images that contain more files than would
normally be allowed. This requires extending the directory off the default directory track
by changing the last directory sector pointer to a new track, allocating the new sectors in
the BAM, and manually placing (or moving existing) file entries there. The directory of an
extended disk can be read and the files that reside there can be loaded without problems
on a real drive. However, this is still a very dangerous practice as writing to the extended
portion of the directory will cause directory corruption in the non-extended part. Many
of the floppy drives core ROM routines ignore the track value that the directory is on and
assume the default directory track for operations.

15.8.2 BAM layout

The BAM only occupies up to four sectors on track 38, so the rest of the track is empty and
is available for file storage. Below is a dump of the first BAM block, 38/0. A D80 will only
contain two BAM sectors, 38/0 and 38/3. Each entry takes 5 bytes, 1 for the free count on
that track, and 4 for the BAM bits.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00: 26 03 43 00 01 33 1D FF FF FF 1F 1D FF FF FF 1F
10: 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D
20: FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF
30: FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF
40: FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF
50: 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F
60: 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D
70: FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF
80: FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF
90: FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF
AO: 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F
BO: 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1B
CO: F6 FF FF 1F 1B FC FF FF 1F 1B FF FF FF 07 1B FF
DO: FF FF 07 1B FF FF FF 07 1B FF FF FF 07 1B FF FF
EO: FF 07 1B FF FF FF 07 1B FF FF FF 07 1B FF FF FF
FO: 07 1B FF FF FF 07 1B FF FF FF 07 1B FF FF FF 07

Chapter 15: The emulator file formats 198

Bytes
$00-301
$02

$03

$04

$05
$06-$0A

$0B-$0F

$FB-$FF
Being bit-based, the BAM entries need some explanation. The first track entry in the above
BAM sector is at offset 06, "1D FF FF FF 1F". The first number is how many blocks are
free on this track ($1D=29) and the remainder is the bit representation of the usage map
for the track. These entries must be viewed in binary to make any sense. First convert the
values to binary:

FF=11111111, FF=11111111, FF=11111111, 1F=00011111

In order to make any sense from the binary notation, flip the bits around.

Description

T/S pointer to second BAM sector (38/3)

DOS version byte (0x43="C")

Reserved

Lowest track covered by this BAM (0x01=1)

Highest+1 track covered by this BAM (0x33=51)

BAM for track 1. The first byte shows the "blocks free" for
this track, the remaining 4 show the BAM for the track.
BAM for track 2

BAM for track 50

111111 11112222 222222

01234567 89012345 67890123 456789. ..

11111111 11111111 11111111 11111000

sector

0

sector 28

Since we are on the first track, we have 29 sectors, and only use up to the bit 28 position.
If a bit is on (1), the sector is free. Therefore, track 1 is clean, all sectors are free. Any
leftover bits that refer to sectors that don’t exist, like bits 29-31 in the above example, are
set to allocated.

Second BAM block 38/3.

00

01

02

03

04

05

00: 27
10: 1B
20: FF
30: FF
40: FF
50: 00
60: 17
70: FF
80: FF
90: 00
AO: 00
BO: 00
CO: 00
DO: 00

TF

TF

00 17 FF FF 7F 00 00 00 00

Chapter 15: The emulator file formats 199

EO: 00 00 00 00 00 OO 00 OO0 00O 0O 00 00 OO 0O 00 00
FO: 00 00 00 00 00 OO OO OO0 00O OO OO0 00 OO 00 00 00

Bytes Description

$00-301 T/S pointer to second BAM sector (39/1)

$02 DOS version byte (0x43="C’)

$03 Reserved

$04 Lowest track covered by this BAM (0x33=>51)

$05 Highest+1 track covered by this BAM (0x43=78)

$06-$0A BAM for track 51. The first byte shows the "blocks free" for
this track, the remaining 4 show the BAM for the track.

$0B-$0F BAM for track 52

$88-38C BAM for track 77

$8D-$FF Not used

15.9 The D82 disk image format

(This section was contributed by Peter Schepers and slightly edited by Marco van den
Heuvel.)

This is a sector-for-sector copy of an 8250 floppy disk. The file size for an 8250 image is
1066496 bytes. It is comprised of 256-byte sectors arranged across 154 tracks, with a varying
number of sectors per track for a total of 4166 sectors. Track counting starts at 1 (not 0)
and sector counting starts at 0 (not 1), therefore a track with 29 sectors will go from 0 to
28.

The original media (a 5.25" disk) has the tracks laid out in circles, with track 1 on the very
outside of the disk (closest to the sides) to track 77 being on the inside of the disk (closest
to the inner hub ring). Commodore, in their infinite wisdom, varied the number of sectors
per track and data densities across the disk to optimize available storage, resulting in the
chart below. It shows the sectors/track for a D82. Since the outside diameter of a circle
is the largest (versus closer to the center), the outside tracks have the largest amount of
storage.

Track Range Sectors/track # Sectors

1-39 29 1131

40-53 27 378

55-64 25 275

65-77 23 299

78-116 29 1131

117-130 27 378

131-141 25 275

142-154 23 299

Track #Sect #Sectorsln D82 Offset

1 29 0 $000000
2 29 29 $001D00
3 29 58 $003A00
4 29 87 $005700
5 29 116 $007400

Chapter 15: The emulator file formats 200

6 29 145 $009100
7 29 174 $00AE00
8 29 203 $00CB00
9 29 232 $00E800
10 29 261 $010500
11 29 290 $012200
12 29 319 $013F00
13 29 348 $015C00
14 29 377 $017900
15 29 406 $019600
16 29 435 $01B300
17 29 464 $01D000
18 29 493 $01EDO0
19 29 522 $020A00
20 29 551 $022700
21 29 580 $024400
22 29 609 $026100
23 29 638 $027E00
24 29 667 $029B00
25 29 696 $02B800
26 29 725 $02D500
27 29 754 $02F200
28 29 783 $030F00
29 29 812 $032C00
30 29 841 $034900
31 29 870 $036600
32 29 899 $038300
33 29 928 $03A000
34 29 957 $03BD00
35 29 986 $03DA00
36 29 1015 $03F700
37 29 1044 $041400
38 29 1073 $043100
39 29 1102 $044E00
40 27 1131 $046B00
41 27 1158 $048600
42 27 1185 $04A100
43 27 1212 $04BC00
44 27 1239 $04D700
45 27 1266 $04F200
46 27 1293 $050D00
47 27 1320 $052800
48 27 1347 $054300
49 27 1374 $055E00
50 27 1401 $057900
51 27 1428 $059400

52 27 1455 $05AF00

Chapter 15: The emulator file formats 201

53 27 1482 $05CA00
54 25 1509 $05E500
55 25 1534 $05FE00
56 25 1559 $061700
o7 25 1584 $063000
58 25 1609 $064900
59 25 1634 $066200
60 25 1659 $067B00
61 25 1684 $069400
62 25 1709 $06ADO00
63 25 1734 $06C600
64 25 1759 $06DF00
65 23 1784 $06F'800
66 23 1807 $070F00
67 23 1830 $072600
68 23 1853 $073D00
69 23 1876 $075400
70 23 1899 $076B00
71 23 1922 $078200
72 23 1945 $079900
73 23 1968 $07B000
74 23 1991 $07C700
75 23 2014 $07DE00
76 23 2037 $07EF500
7 23 2060 $080C00
78 29 2083 $082300
79 29 2112 $084000
80 29 2141 $085D00
81 29 2170 $087A00
82 29 2199 $089700
83 29 2228 $08B400
84 29 2257 $08D100
85 29 2286 $08EEO00
86 29 2315 $090600
87 29 2344 $092800
88 29 2373 $094500
89 29 2402 $096200
90 29 2431 $097F00
91 29 2460 $099C00
92 29 2489 $09B900
93 29 2518 $09D600
94 29 2547 $09F'300
95 29 2576 $0A1000
96 29 2605 $0A2D00
97 29 2634 $0A4A00
98 29 2663 $0A6700

99 29 2692 $0A8400

Chapter 15: The emulator file formats 202

100 29 2721 $0AA100
101 29 2750 $0ABE00
102 29 2779 $0ADBO00
103 29 2808 $0AF800
104 29 2837 $0B1500
105 29 2866 $0B3200
106 29 2895 $0B4F00
107 29 2924 $0B6C00
108 29 2953 $0B8900
109 29 2982 $0BA600
110 29 3011 $0BC300
111 29 3040 $0BE000
112 29 3069 $0BFDO00
113 29 3098 $0C1A00
114 29 3137 $0C3700
115 29 3156 $0C5400
116 29 3185 $0C7100
117 27 3214 $0C8E00
118 27 3241 $0CA900
119 27 3268 $0CC400
120 27 3295 $0CDF00
121 27 3322 $0CFA00
122 27 3349 $0D1500
123 27 3376 $0D3000
124 27 3403 $0D4B00
125 27 3430 $0D6600
126 27 3457 $0D8100
127 27 3484 $0D9CO00
128 27 3511 $0DB700
129 27 3538 $0DD200
130 27 3565 $0DEDO00
131 25 3592 $0E0800
132 25 3617 $0E2100
133 25 3642 $0E3A00
134 25 3667 $0E5300
135 25 3692 $0E6C00
136 25 3717 $0E8500
137 25 3742 $O0E9E00
138 25 3767 $OEBT700
139 25 3792 $0EDO000
140 25 3817 $0EE900
141 25 3842 $0F0200
142 23 3867 $0F1B00
143 23 3890 $0F3200
144 23 3913 $0F4900
145 23 3936 $0F6000

146 23 3959 $0F7700

Chapter 15: The emulator file formats 203

147 23 3982 $0F8E00
148 23 4005 $O0FA500
149 23 4028 $OFBCO00
150 23 4051 $0FD300
151 23 4074 $OFEA00
152 23 4097 $100100
153 23 4120 $101800
154 23 4143 $102F00

The BAM (Block Availability Map) is on track 38. The D82 is 154 tracks and so the BAM
is contained on 38/0, 38/3, 38/6 and 38/9. The BAM interleave is 3.

The directory is on track 39, with 39/0 contains the header (DOS type, disk name, disk
ID’s) and sectors 1-28 contain the directory entries. Both files and the directory use an
interleave of 1. Since the directory is only 28 sectors large (29 less one for the header),
and each sector can contain only 8 entries (32 bytes per entry), the maximum number of
directory entries is 28 * 8 = 224. The first directory sector is always 39/1. It then follows
a chain structure using a sector interleave of 1 making the links go 39/1, 39/2, 39/3 etc.

When reading a disk, you start with 39/0 (disk label/ID) which points to 38/0 (BAMO),
38/3 (BAM1), 38/6 (BAM2), 38/9 (BAM3, and finally to 39/1 (first dir entry sector).
When writing a file to a blank disk, it will start at 38/1 because 38/0 is already allocated.
Below is a dump of the header sector 39/0:

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

00: 26 00 43 00 00 00 73 61 6D 70 6C 65 20 64 38 30
10: AO AO AO AO AO AO AO AO 65 72 AO 32 43 AO AO AO
20: A0 00 00 00 00 00 OO OO0 00 OO 00 OO0 00 00 00 00

FO: 00 00 00 00 00 OO OO OO0 00O OO OO0 OO0 OO 0O 00 00

Bytes Description

$00-$01 T/S pointer to first BAM sector (38/0)
$02 $43 °C’ is for DOS format version

$03 Reserved

$04-%05 Unused

$06-$16 Disk name, padded with 0xAQ ("sample d82")
$17 0xA0

$18-$19 Disk ID bytes "er"

$1A 0xA0

$1B-$1C DOS version bytes "2C"

$1D-$20 0xA0

$21-$FF Unused

Below is a dump of the first directory sector, 39/1
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF

00: 27 02 82 26 01 54 45 53 54 AO AO AO AO AO AO AO
10: AO AO AO A0 AO OO 00 00 00O 0O 00 00 00 00 01 00
20: 00 00 82 26 02 54 45 53 54 32 AO AO AO AO AO AO

Chapter 15: The emulator file formats 204

30: AO AO AO AO AO 00 OO 00 00 00O 0O 00 00 00 01 00
40: 00 00 82 26 04 54 45 53 54 33 AO AO AO AO AO AO
50: A0 AO AO AO AO 00 OO 00 00 00O 0O OO 00 00 05 00
60: 00 00 82 26 OB 54 45 53 54 34 AO AO AO AO AO AO
70: AO AO AO AO AO 00 OO 00 00 00 0O 00 00 00 09 00
80: 00 00 82 26 14 54 45 53 54 35 AO AO AO AO AO AO
90: AO AO AO AO AO 00 OO 00 00 00O OO 00 00 00 OC 00
AO: 00 00 82 28 00 54 45 53 54 36 AO AO AO AO AO AO
BO: AO AO AO AO AO 00 00 00 00 0O OO0 00 00 00 01 00
CO: 00 00 82 28 01 54 45 53 54 37 AO AO AO AO AO AO
DO: AO AO AO AO AO 00O 00 00 00 0O OO0 00 00O 00 01 00
EO: 00 00 82 28 02 54 45 53 54 38 AO AO AO AO AO AO
FO: AO AO AO AO AO 00 00 00 00 OO 00 00 00 00 01 00

The first two bytes of the directory sector ($27/$02) indicate the location of the next
track/sector of the directory (39/2). If the track is set to $00, then it is the last sector of
the directory.

When the directory is done, the track value will be $00. The sector link should contain a
value of $FF, meaning the whole sector is allocated, but the actual value doesn’t matter.
The drive will return all the available entries anyways. This is a breakdown of a standard
directory sector:

Bytes Description

$00-$1F First directory entry

$20-$3F Second dir entry

$40-$5F Third dir entry

$60-$7F Fourth dir entry

$80-$9F Fifth dir entry

$A0-$BF Sixth dir entry

$C0-$DF Seventh dir entry

$EO-SFF Eighth dir entry

This is a breakdown of a standard directory entry:

Bytes Description

$00-301 Track/Sector location of next directory sector ($00 $00 if not the first
entry in the sector)

$02 File type

$03-$04 Track/sector location of first sector of file

$05-$14 16 character filename (in PETASCII, padded with $A0)

$15-$16 Track/Sector location of first side-sector block (REL file only)

$17 REL file record length (REL file only, max. value 254)

$18-$1D Unused

$1E-$1F File size in sectors, low/high byte order ($1E+$1F*256). The approx.

filesize in bytes is <= #sectors * 254
The file type field is used as follows:

Bits Description
0-3 The actual file type
4 Unused

Chapter 15: The emulator file formats 205

5 Used only during SAVE-@ replacement

6 Locked flag (Set produces ">" locked files)

7 Closed flag (Not set produces "*", or "splat" files)
The actual file type can be one of the following:

Binary Decimal File type

0000 0 DEL

0001 1 SEQ

0010 2 PRG

0011 3 USR

0100 4 REL

Values 5-15 are illegal, but if used will produce very strange results.

15.9.1 Non-Standard & Long Directories

Most Commdore floppy disk drives use a single dedicated directory track where all filenames
are stored. This limits the number of files stored on a disk based on the number of sectors
on the directory track. There are some disk images that contain more files than would
normally be allowed. This requires extending the directory off the default directory track
by changing the last directory sector pointer to a new track, allocating the new sectors in
the BAM, and manually placing (or moving existing) file entries there. The directory of an
extended disk can be read and the files that reside there can be loaded without problems
on a real drive. However, this is still a very dangerous practice as writing to the extended
portion of the directory will cause directory corruption in the non-extended part. Many
of the floppy drives core ROM routines ignore the track value that the directory is on and
assume the default directory track for operations.

15.9.2 BAM layout

The BAM only occupies up to four sectors on track 38, so the rest of the track is empty
and is available for file storage. Below is a dump of the first BAM block, 38/0. A D82 will
contain four BAM sectors, 38/0, 38/3, 38/6 and 38/9. Each entry takes 5 bytes, 1 for the
free count on that track, and 4 for the BAM bits.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
00: 26 03 43 00 01 33 1D FF FF FF 1F 1D FF FF FF 1F
10: 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D
20: FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF
30: FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF
40: FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF
50: 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F
60: 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D
70: FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF
80: FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF
90: FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF
AO: 1F 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F
BO: 1D FF FF FF 1F 1D FF FF FF 1F 1D FF FF FF 1F 1B
CO: F6 FF FF 1F 1B FC FF FF 1F 1B FF FF FF 07 1B FF
DO: FF FF 07 1B FF FF FF 07 1B FF FF FF 07 1B FF FF

Chapter 15: The emulator file formats 206

EO: FF 07 1B FF FF FF 07 1B FF FF FF 07 1B FF FF FF
FO: 07 1B FF FF FF 07 1B FF FF FF 07 1B FF FF FF 07

Bytes

$00-$01
$02

$03

$04

$05
$06-50A

$0B-$0F

$FB-SFF
Being bit-based, the BAM entries need some explanation. The first track entry in the above
BAM sector is at offset 06, "1D FF FF FF 1F". The first number is how many blocks are
free on this track ($1D=29) and the remainder is the bit representation of the usage map
for the track. These entries must be viewed in binary to make any sense. First convert the
values to binary:

FF=11111111, FF=11111111, FF=11111111, 1F=00011111

In order to make any sense from the binary notation, flip the bits around.

Description

T/S pointer to second BAM sector (38/3)

DOS version byte (0x43="C’)

Reserved

Lowest track covered by this BAM (0x01=1)

Highest+1 track covered by this BAM (0x33=51)

BAM for track 1. The first byte shows the "blocks free" for
this track, the remaining 4 show the BAM for the track.
BAM for track 2

BAM for track 50

111111 11112222 222222

01234567 89012345 67890123 456789. ..

11111111 11111111 11111111 11111000

sector O

sector 28

Since we are on the first track, we have 29 sectors, and only use up to the bit 28 position.
If a bit is on (1), the sector is free. Therefore, track 1 is clean, all sectors are free. Any
leftover bits that refer to sectors that don’t exist, like bits 29-31 in the above example, are
set to allocated.

Second BAM block 38/3

00:
10:
20:
30:
40:
50:
60:
70:
80:
90:
AO:
BO:

00

01

02

03

04 05

Chapter 15: The emulator file formats 207

CO: FF FF FF 1F 1D FF
DO: FF FF 1F 1D FF FF
EO: FF 1F 1D FF FF FF
FO: 1F 1D FF FF FF 1F
Bytes

$00-301

$02

$03

$04

$05

$06-$0A

$0B-$0F

$FB-SFF
Third BAM block 38/6
00 01 02 03 04 05

FF
FF
1F
1D

FF 1F 1D FF FF FF 1F 1D FF
1F 1D FF FF FF 1F 1D FF FF
1D FF FF FF 1F 1D FF FF FF
FF FF FF 1F 1D FF FF FF 1F

Description

T/S pointer to third BAM sector (38/6)

DOS version byte (0x43="C’)

Reserved

Lowest track covered by this BAM (0x33=51)

Highest+1 track covered by this BAM (0x65=101)

BAM for track 51. The first byte shows the "blocks free" for
this track, the remaining 4 show the BAM for the track.
BAM for track 52

BAM for track 100

00: 26 09 43 00 65 97
10: 1D FF FF FF 1F 1D
20: FF FF FF 1F 1D FF
30: FF FF 1F 1D FF FF
40: FF 1F 1D FF FF FF
50: 1F 1D FF FF FF 1F
60: 1B FF FF FF 07 1B
70: FF FF FF 07 1B FF
80: FF FF 07 1B FF FF
90: FF 07 1B FF FF FF
AO: 01 19 FF FF FF 01
BO: 19 FF FF FF 01 19
CO: FF FF FF 01 19 FF
DO: FF FF 01 17 FF FF
EO: 7F 00 17 FF FF 7F
FO: 00 17 FF FF 7F 00
Bytes

$00-301

$02

$03

$04

$05

$06-$0A

$0B-$0F

$FB-SFF
Fourth BAM block 38/9

FF FF 7F 00 17 FF FF 7F 00

Description

T/S pointer to fourth BAM sector (38/9)

DOS version byte (0x43="C")

Reserved

Lowest track covered by this BAM (0x65=101)

Highest+1 track covered by this BAM (0x97=151)

BAM for track 101. The first byte shows the "blocks free" for
this track, the remaining 4 show the BAM for the track.
BAM for track 102

BAM for track 150

Chapter 15: The emulator file formats 208

00: 27 01 43 00 97 9B 17 FF FF 7F 00 17 FF FF 7F 00
10: 17 FF FF 7F 00 17 FF FF 7F 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 OO OO0 00 00O 00 00 00 00 00 00
30: 00 00 00 00O 00 00O OO OO 00 OO OO OO0 00 00 00 00
40: 00 00 00 00 00 OO OO0 OO 00O OO OO0 00 OO 0O 00 00

Bytes Description

$00-$01 T/S pointer to first directory sector (39/1)

$02 DOS version byte (0x43="C’)

$03 Reserved

$04 Lowest track covered by this BAM (0x97=151)

$05 Highest+1 track covered by this BAM (0x9B=155)

$06-$0A BAM for track 151. The first byte shows the "blocks free" for
this track, the remaining 4 show the BAM for the track.

$0B-$0F BAM for track 152

$15-$19 BAM for track 154

$1A-$FF Not used

15.10 The P00 image format

(This section was contributed by Peter Schepers and slightly edited by Marco van den
Heuvel.)

These files were created for use in the PC64 emulator, written by Wolfgang Lorenz. Each
one has the same layout with the filetype being stored in the DOS extension (i.e. Pxx is a
PRG, Sxx is a SEQ, Uxx is a USR and Rxx is a RELative file), and the header is only 26

bytes long.
This is a dump of a Pxx file (PRG). ..
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

0000: 43 36 34 46 69 6C 65 00 43 52 49 53 49 53 20 4D
0010: 4F 55 4E 54 41 49 4E 00 00 00

Bytes Description

$00-306 ASCII string "C64File"

$07 Always $00

$08-$17 Filename in PETASCII, padded with $00 (not $AO0, like a
D64)

$18 Always $00

$19 REL file record size ($00 if not a REL file)

$1A-77 Program data

The 'xx’ in the extension of the file is usually 00, except when we have two DOS filenames
which would be the same, but the C64 filenames are different! If we have two C64 filenames
which are the same, they *cannot* co-exist in the same directory. If we have two files which
do convert down to be the same DOS filename, the extension is incremented until an unused

Chapter 15: The emulator file formats 209

one is found (x01, x02, x03, up to x99). We can have up to 99 different C64 files with the
same corresponding DOS names as that’s all the extension will hold (from P00 to P99).

Each PC64 file only has one entry, there are no multi-file containers allowed. This could
result in a large number of these files in a directory, even for only a few programs, as each
C64 file will result in a PC64 file entry. The best use for a PC64 file is a single-file program,
one which does not load anything else.

15.11 The CRT cartridge image format

This chapter is based on CRT.txt (revl.14) compiled by Peter Schepers, with additional
contributions from Per Hakan Sundell, Markus Brenner, Marco Van Den Heuvel, Groepaz.

Cartridge files were introduced in the CCS64 emulator, written by Per Hakan Sundell,
and use the ".CRT" file extension. This format was created to handle the various ROM
cartridges that exist, such as Action Replay, the Power cartridge, and the Final Cartridge.

Normal game cartridges can load into several different memory ranges ($8000-9FFF, $A000-
BFFF or $E000-FFFF). Newer utility and freezer cartridges were less intrusive, hiding
themselves until called upon, and still others used bank-switching techniques to allow much
larger ROM’s than normal. Because of these "stealthing" and bank-switching methods, a
special cartridge format was necessary, to let the emulator know where the cartridge should
reside, the control line states to enable it and any special hardware features it uses.

15.11.1 Header contents

Here is a dump of a sample 8K normal cartridge, "Attack Of The Mutant Camels". . .
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 00 00 01 OO0 OO0 OO OO 00 00 7?77Q@77??77777777
0020: 41 54 54 41 43 4B 20 4F 46 20 54 48 45 20 4D 55 ATTACK?QF?THE?MU
0030: 54 41 4E 54 20 43 41 4D 45 4C 53 00 00 00 00 00 TANT?CAMELS?7?777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: D3 9B BC FE C3 C2 CD 38 30 EA EA EA A9 01 85 13 .?....80....77
0060: 4C B3 9B A9 08 85 5A 83 DO FD C6 5A DO F9 60 DO L.?Z...Z.7°.

Bytes:$0000-000F - 16-byte cartridge signature "C64 CARTRIDGE" (padded
with space characters)

0010-0013 - File header length ($00000040, in high/low format,
calculated from offset $0000). The default (also the
minimum) value is $40. Some cartridges exist which
show a value of $00000020 which is wrong.

0014-0015 - Cartridge version (high/low, presently 01.00)

0016-0017 - Cartridge hardware type ($0000, high/low)

0 - Normal cartridge

1 - Action Replay
- KCS Power Cartridge
- Final Cartridge III
Simons’ BASIC
- Ocean type 1%

g wN
[

Chapter 15: The emulator file formats 210

© 00 N O

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52

Expert Cartridge

Fun Play, Power Play
Super Games

Atomic Power

Epyx Fastload
Westermann Learning
Rex Utility

Final Cartridge I
Magic Formel

C64 Game System, System 3
Warp Speed

Dinamic**

Zaxxon, Super Zaxxon (SEGA)
Magic Desk, Domark, HES Australia
Super Snapshot V5
Comal-80

Structured BASIC
Ross

Dela EP64

Dela EP7x8

Dela EP256

Rex EP256

Mikro Assembler
Final Cartridge Plus
Action Replay 4
Stardos

EasyFlash

EasyFlash Xbank
Capture

Action Replay 3
Retro Replay

MMC64

MMC Replay

IDE64

Super Snapshot V4
IEEE-488

Game Killer
Prophet64

EX0S

Freeze Frame

Freeze Machine
Snapshot64

Super Explode V5.0
Magic Voice

Action Replay 2
MACH 5

Diashow-Maker

Chapter 15: The emulator file formats

0018

0019

001A-001F

0020-003F

0040-xxxx

211

53 - Pagefox
Cartridge port EXROM line status
0 - inactive
1 - active
Cartridge port GAME line status
0 - inactive
1 - active
Reserved for future use
32-byte cartridge name
with null characters)
Cartridge contents (called CHIP PACKETS, as there
be more than one per CRT file). See below for
breakdown of the CHIP format.

"CCSMON" (uppercase, padded
can

a

(*Note: Ocean type 1 includes Navy Seals, Robocop 2 & 3, Shadow of the Beast, Toki,
Terminator 2 and more)

(**Note: Dinamic includes Narco Police and more)

15.11.2 CHIP Contents

The following is the contents of the CHIP packet, from position $0040 on in the CRT file.
Note I have re-adjusted the starting address to be $0000, since we are now looking at a file
contained in the .CRT file, and all size references are from where it starts.

00 01 02 03
0000:
0010:
0020:
0030:

0040:

05 06 07 08 09 OA OB OC OD OE OF ASCII

00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
C2 CD 38 30 EA EA EA A9 01 85 13 .?....80....77
85 5A 83 DO FD C6 5A DO F9 60 DO L.?Z...Z.7°¢

49 A9 00 85 48 A2 00 A5 48 9D 40 7¢.7I.7H.7H@

03 A5 48 18 69 28 85 48 A5 49 69 7?I‘7H7i(HIi

18 DO E4 60 A6 03 A4 02 BD 40 03 ?7I?77.7¢77777Q7

0050:
Bytes:$0000-0003

0004-0007

0008-0009

000A-000B
000C-000D
OOOE-O00Q0F

0010—-xxxx

Contained ROM signature "CHIP" (note there can be more
than one image in a .CRT file)

Total packet length ($00002010, ROM image size and
header combined) (high/low format)
Chip type
0 - ROM
1 - RAM, no ROM data
2 - Flash ROM
Bank number ($0000 - normal cartridge)
Starting load address (high/low format)
ROM image size in bytes (high/low format, typically

$2000 or $4000)
ROM data

The following is a chart taken from the "Commodore Programmers Reference Guide". It
details the state of various areas of memory depending on the state of the control lines.

Legend: L - ROML (low) H - ROMH (high) G - GAME E - EXROM

Chapter 15: The emulator file formats 212

Addr LHGE LHGE LHGE LHGE LHGE LHGE LHGE LHGE LHGE
Range
1111 101X 1000 011X 001X 1110 0100 1100 XX01

default 00X0 Ultimax
EOOO-FFFF Kernal RAM RAM Kernal RAM Kernal Kernal Kernal ROMH(x*)
DOOO-DFFF IO/CHR IO/CHR IO/RAM IO/CHR RAM IO/CHR IO/CHR IO/CHR I/0
CO00-CFFF RAM RAM RAM RAM RAM RAM RAM RAM -
AOOO-BFFF BASIC RAM RAM RAM RAM BASIC ROMH ROMH -
8000-9FFF RAM RAM RAM RAM RAM ROML RAM ROML ROML (*)
4000-7FFF RAM RAM RAM RAM RAM RAM RAM RAM -
1000-3FFF RAM RAM RAM RAM RAM RAM RAM RAM -
0000-0FFF RAM RAM RAM RAM RAM RAM RAM RAM RAM

(*) Internal memory does not respond to write accesses in these areas

From the above chart, the following table can be built. It shows standard cartridges, either
8K or 16K in size, and the memory ranges they load into.

Type Size Game EXRom Low Bank High Bank
in K Line Line (ROML) (ROMH)
Normal 8k hi lo $8000 -
Normal 16k lo lo $8000 $A000
Ultimax 8k lo hi $E000 -——

The ROMH and ROML lines are CPU-controlled status lines, used to bank in/out RAM,
ROM or I/0O, depending on what is needed at the time.

Ultimax cartridges typically are situated in the $E000-FFFF (8K) ROM address range.
There are some cartridges which only use 4K of the 8K allocation. If the cartridge is 16K
in size, then it will reside in both $8000-9FFF and $E000-FFFF.

15.11.3 Cartridge Specifics
15.11.3.1 0 - Normal cartridge

Size 8Kb
GAME active (1)
EXROM inactive (0)
Load address $8000-9FFF

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII
0000: 43 36 34 20 43 41 52 b4 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 00 00 01 OO OO 00 00O 00 00 ?PPQTTYTYYYYYYYNY
0020: 41 54 54 41 43 4B 20 4F 46 20 54 48 45 20 4D 55 ATTACK?0F?THE?MU
0030: 54 41 4E 54 20 43 41 4D 45 4C 53 00 00 00 00 00 TANT?CAMELS?7777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP??7?77?77?7.777
0050: D3 9B BC FE C3 C2 CD 38 30 EA EA EA A9 01 85 13 .?7....80....77

The second sample below is a dump of "Music Machine", a 4Kb ULTIMAX mode cartridge.
It is still identified as a "standard cartridge" according to the ID.

Chapter 15: The emulator file formats 213

Normal cartridge

Size 4Kb (ULTIMAX mode)
GAME inactive (0)
EXROM active (1)
Load address $F000-F7FF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 00 01 OO OO0 OO0 00O OO 00 00 7?77?Q@?7??7?77777777
0020: 4D 55 53 49 43 20 4D 41 43 48 49 4E 45 00 00 00 MUSIC?MACHINE???
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO OO0 OO OO 00 00 7?77???777277777777
0040: 43 48 49 50 00 00 10 10 00 OO0 OO0 00 FO 00 10 00 CHIP????77777777
0050: 3C 66 C3 C3 66 3C FF FF 18 3C 66 7E 66 66 66 00 <f..f<??7<f"fff?

The third sample is a dump of "Adventure Creator", a 16Kb standard cartridge.

Normal cartridge

Size 16Kb
GAME inactive (0)
EXROM inactive (0)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 00 00 OO OO0 OO0 OO OO 00 00 7?7?Q@77?777777777
0020: 41 64 76 65 6E 74 75 72 65 20 43 72 65 61 74 6F Adventure?Creato
0030: 72 00 00 00 00 OO 0O OO0 OO OO OO OO0 OO OO OO0 00 r7???7??77777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP???7777.7Q7

0050: 09 80 81 EA C3 C2 CD 38 30 A2 00 78 D8 8E 11 DO oo 80.7x.7.
15.11.3.2 1 - Action Replay
Size 32Kb (4 banks of 8Kb each)
GAME inactive (0)
EXROM inactive (0)
Load address $8000-9FFF (all modules)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 01 00 0O 00 00 00 0O 00 00 ?PTQTTTTTTITYYTYY
0020: 41 63 74 69 6F 6E 20 52 65 70 6C 61 79 20 56 00 Action?Replay?V?
0030: 00 00 00 00 00 OO OO 00 00 OO 00 00 00 0O 00 00 TeRTTOYTYONYYYYNY
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 09 80 0C 80 C3 C2 CD 38 30 4C 60 80 4C 63 80 4C 7.7....80L¢.Lc.L

This cart has 32Kb of ROM, and 8Kb of RAM. The bank switching is done by writing to
the I/O-1 range as follows:

bit meaning

Chapter 15: The emulator file formats 214

7 extra ROM bank selector (A15) (unused)

6 1 = resets FREEZE-mode (turns back to normal mode)
5 1 = enable RAM at ROML ($8000-$9FFF) &
I/0-2 ($DFOO0-$DFFF = $9F00-$9FFF)
4 ROM bank selector high (A14)
3 ROM bank selector low (A13)
2 1 = disable cartridge (turn off $DE0O)
1 1 = /EXROM high

0 1 = /GAME low
Additionally the RAM or ROM can be available through a window in the I/0O-2 range.

15.11.3.3 2 - KCS Power Cartridge

Size 16Kb (2 banks of 8K each)

GAME inactive (0)

EXROM inactive (0)

Load address module #1 - $8000-9FFF module #2 - $A000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 20 01 00 00 02 00 OO OO0 OO0 OO OO OO0 00 7?77??7777277777777
0020: 4B 43 53 20 50 6F 77 65 72 20 43 61 72 74 72 69 KCS?Power?Cartri
0030: 64 67 65 00 00 00 00O OO0 00O OO OO OO OO OO OO0 00 dge?????77?777777
0040: 43 48 49 50 00 00 20 10 00 OO0 00 00 80 00 20 00 CHIP????7777.777
0050: 09 80 5E FE C3 C2 CD 38 30 78 D8 A2 FF 9A A9 27 7.7....80x..7..°

2050: 43 48 49 50 00 00 20 10 00 00 00 OO AO 00 20 00 CHIP??7?7??77777
2060: 97 E3 16 Al FF FF FF 20 13 AO A5 01 09 01 85 01 LPLTRTTTTRTY

15.11.3.4 3 - Final Cartridge III

Size 64Kb (4 banks of 16Kb each)
GAME active (1)
EXROM active (1)
Load address $8000-BFFF (all modules)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 03 01 01 00 OO0 00 OO0 00 00 7?77?Q@???7777777777
0020: 46 69 6E 61 6C 20 43 61 72 74 72 69 64 67 65 20 Final?Cartridge?
0030: 49 49 49 20 31 39 38 37 00 00 00 00 00 00 00 00 ITI?1987777727777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP?77@?7777.7Q@7
0050: 09 80 5E FE C3 C2 CD 38 30 4C 4C 80 4C 55 95 4C 7.7....80LL.LUL

4050: 43 48 49 50 00 00 40 10 00 00 00 01 80 00 40 00 CHIP??@?7777.7Q7
4060: 01 02 00 81 5D 81 61 81 99 81 D8 81 OB 82 33 82 ?777]a.?3

8060: 43 48 49 50 00 00 40 10 00 00 00 02 80 00 40 00 CHIP??7@7??777.707

Chapter 15: The emulator file formats 215

8070: 20 43 80 20 52 80 A9 4E 20 05 DE 20 FD BF AD 39 7C.7R..N7?7.7..9

CO070: 43 48 49 50 00 00 40 10 00 00 00 03 80 00 40 00 CHIP?77@?7777.7Q@7
C080: A2 06 BD DD 85 95 05 CA 10 F8 AE A0 02 E8 EC A2 R G A

A total of 64 kB of ROM memory is organized into four $4000 banks located at $8000-
$BFFF.

The banks are arranged in the following way:

Bank 0: BASIC, Monitor, Disk-Turbo

Bank 1: Notepad, BASIC (Menu Bar)

Bank 2: Desktop, Freezer/Print

Bank 3: Freezer, Compression
The cartridges uses the entire I/O-1 and I/0O-2 range. Bank switching is done by writing
the bank number plus $40 into memory location $DFFF. For instance, to select bank 2,
$DFFF is set to $42.
The CRT file contains four CHIP blocks, each block with a start address of $8000, length
$4000 and the bank number in the bank field. In the cartridge header, both EXROM ($18)
and GAME ($19) are set to 1 to enable the 16 kB ROM configuration.
The registers are arranged in the following way:
One register at $DFFF:

bit meaning

7 Hide this register (1 = hidden)
6 NMI line (0 = low = active) *1)
5 GAME line (0 = low = active) *2)
4 EXROM line (0 = low = active)
2-3 unassigned (usually set to 0)
0-1 number of bank to show at $8000
1) if either the freezer button is pressed, or bit 6 is 0, then an NMI is generated
2) if the freezer button is pressed, GAME is also forced low
The rest of I/O-1/1/0O-2 contain a mirror of the last 2 pages of the currently selected ROM
bank (also at $dfff, contrary to what some other documents say)

15.11.3.5 4 - Simons’ Basic

Size 16Kb (2 banks of 8kb each)

GAME active (1)

EXROM inactive (0)

Load address module #1 - $8000-9FFF module #2 - $A000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 04 00 01 OO0 OO0 00O OO0 00 00 7?77?Q@???7?77777777
0020: 63 69 6D 6F 6E 27 73 20 42 61 73 69 63 00 00 00 Simon’s?Basic???
0030: 00 00 00 00 00 OO OO0 OO0 OO OO OO OO0 OO OO 00 00 ?77?7?7777277777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777

Chapter 15: The emulator file formats 216

0050: 52 81 52 81 C3 C2 CD 38 30 41 4C 52 81 20 2C 81 RR...80ALR?,

2050: 43 48 49 50 00 00 20 10 00 00 OO0 00 AO 00 20 00 CHIP???77777777
2060: 20 A4 A6 99 9E CB AO 05 A5 A8 91 20 A4 A6 99 A2 ?eT.PT.OTY.

Simons’ BASIC permanently uses 16 kB ($4000) bytes of cartridge memory from
$8000-$BFFF. However, through some custom bank-switching logic the upper area
($A000-$BFFF) may be disabled so Simons’ BASIC may use it as additional RAM.
Writing a value of $01 to address location $DE00 banks in ROM, $00 disables ROM and
enables RAM.

The CRT file contains two CHIP blocks of length $2000 each, the first block having a start
address of $8000, the second block $A000. In the cartridge header, EXROM ($18) is set to
0, GAME ($19) is set to 1 to indicate the RESET /power-up configuration of 8 kB ROM.

15.11.3.6 5 - Ocean type 1

Size 32Kb, 128Kb, 256Kb or 512Kb sizes (4, 16, 32 or 64 banks of
SKb)
GAME inactive (0)
EXROM inactive (0)
Load address Banks 00-15 - $8000-9FFF Banks 16-31 - $A000-BFFF (ex-
cept Terminator 2)
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF ASCII

00000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
00010: 00 00 00 40 01 00 00 05 00 00 00 OO OO OO0 00 OO0 ??77Q@?7?7?7?777?77777
00020: 53 48 41 44 4F 57 20 4F 46 20 54 48 45 20 42 45 SHADOW?OF?THE?BE
00030: 41 53 54 00 00 00 00 00 OO OO OO0 OO OO OO0 00 OO AST??7?7?7?77777777
00040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP??7?77777.777
00050: 09 80 83 81 C3 C2 CD 38 30 4C 83 81 4C 76 82 80 7....80LLv.

02050: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00 CHIP??7?7?7777.777
02060: 59 6D 00 56 AD 00 55 AE FO 00 01 AO FE 00 01 F8 Ym?7V?7U?77.777

20140: 43 48 49 50 00 00 20 10 00 00 00 10 AO 00 20 00 CHIP???7?7?777777
20150: OA 9A 55 FF 9B 69 57 FE AA 65 96 FE 65 OF D6 D9 7.U%iW.e.e?..

Here is a list of the known OCEAN cartridges:
Batman The Movie (128 kB)

Battle Command (128 kB)
Double Dragon (128 kB)
Navy Seals (128 kB)
Pang (128 kB)
Robocop 3 (128 kB)
Space Gun (128 kB)
Toki (128 kB)
Chase H.Q. II (256 kB)
Robocop 2 (256 kB)

Shadow of the Beast (256 kB)

Chapter 15: The emulator file formats 217

Terminator 2 (5612 kB)
The 32Kb type of cart has 4 banks of 8Kb ($2000), banked in at $8000-$9FFF.
The 128Kb type of cart has 16 banks of 8Kb ($2000), banked in at $8000-$9FFF.

The 256Kb type of cart has 32 banks of 8Kb ($2000), 16 banked in at $8000-$9FFF, and
16 banked in at $A000-$BFFF.

The 512Kb type of cart has 64 banks of 8Kb ($2000), banked in at $83000-$9FFF.

Bank switching is done by writing to $DE00. The lower six bits give the bank number
(ranging from 0-63). Bit 8 in this selection word is always set.

15.11.3.7 6 - Expert Cartridge

Size 8Kb
GAME active (1)
EXROM active (1)
Load address $8000-9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 06 01 01 00 00 OO0 OO 00 00 ?77Q@777?777777777
0020: 45 78 70 65 72 74 20 43 61 72 74 72 69 64 67 65 Expert?Cartridge
0030: 00 00 00 00 00 00 OO0 OO 00 00 00 OO0 OO0 OO 00 00 ?7??777777?77777
0040: 43 48 49 50 00 00 40 10 00 02 00 00 80 00 20 00 CHIP??7@?7777.777
0050: 00 00 00 OA F3 00 00 00 00O 00 00 OO OO OO 00 00 ?77?2777777777777

15.11.3.8 7 - Fun Play, Power Play

Size 128Kb (16 banks of 8Kb modules)
GAME inactive (0)
EXROM inactive (0)
Load address $8000-9FFF (all modules)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

00000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
00010: 00 00 00 40 01 00 00 07 OO OO0 OO0 OO OO 00 00 OO0 ??77Q@?7?7?7?777?77777
00020: 46 55 4E 20 50 4C 41 59 00 00 00 00 OO0 00 00 OO0 FUN?PLAY??777777
00030: 00 00 00 OO0 00 OO 00 OO0 OO OO0 OO0 OO OO 00 00 OO0 ???27777777777777
00040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP??777777.777
00050: 1E 80 86 EA C3 C2 CD 38 30 1B 00 81 OD 08 80 00 7..... 807777.7

02050: 43 48 49 50 00 00 20 10 00 00 00 08 80 00 20 00 CHIP??7?77777.777
02060: 78 A2 FO 86 01 BD 1D 08 9D F8 00 CA DO F7 4C 00 x.7777777..7L7

04060: 43 48 49 50 00 00 20 10 00 00 00 10 80 00 20 00 CHIP??7?7?7777.777
04070: 38 E5 68 85 03 BO 11 27 03 12 CO 18 69 27 42 90 87h?7?’77.7i’B

06070: 43 48 49 50 00 00 20 10 00 00 00 18 80 00 20 00 CHIP??7?77777.777
06080: 44 DO 5E 06 02 CO 44 11 40 04 11 44 01 5F 1C 73 D."?7.D?@7?7D7?_7s

Chapter 15: The emulator file formats 218

1E130: 43 48 49 50 00 00 20 10 00 00 00 39 80 00 20 00 CHIP?7?777779.777
1E140: 85 EB 41 EA 9E 08 03 00 CO 06 18 01 00 CO 08 03 7A.777.7777.77

The FUN PLAY Cartridge uses $DEQO for bank selection, and uses 8Kb banks ($2000) at
$8000-$9FFF. There are 16 banks of ROM memory and are referenced by the following
values:

$00 -> Bank
$08 -> Bank
$10 -> Bank
$18 -> Bank
$20 -> Bank
$28 -> Bank
$30 -> Bank
$38 -> Bank
$01 -> Bank
$09 -> Bank
$11 -> Bank
$19 -> Bank
$21 -> Bank
$29 -> Bank
$31 -> Bank
$39 -> Bank 15

The bank field in the chip headers is set according to the value written to $DE00. The
following bits are used for bank decoding in $DE00 (0 being the LSB, 3 being the MSB).

Bit# 76543210
xx210xx3

© 00 ~NO Ok WNDH+~-O

= o
= O

e o
S ow N

After copying memory from the ROM banks, the selection program writes a value of $86
to $DE00. This seems either to reset or disable the cartridge ROM.

15.11.3.9 8 - Super Games

Size 64Kb (4 banks of 16Kb each)
GAME inactive (0)
EXROM inactive (0)
Load address $8000-BFFF (all modules)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00O 00 08 00 OO0 00 OO0 00O OO0 00 00 7?77Q@777777777777
0020: 53 55 50 45 52 20 47 41 4D 45 53 00 00 00 00 00 SUPER?GAMES?7777
0030: 00 00 00 00 00 OO OO OO0 OO OO OO OO0 OO OO 00 00 7?77??727727277777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP?7Q@?7?777.7Q7
0050: OA 80 OA 80 C3 C2 CD 38 30 00 A9 80 AO 00 85 FB 7.7....807..7.

4050: 43 48 49 50 00 00 40 10 00 00 00 01 80 00 40 OO0 CHIP?7@?7777.7Q7
4060: 27 80 A8 80 C3 C2 CD 38 30 00 40 CO 40 CO 40 CO ’.7....8070.0.0.

Chapter 15: The emulator file formats

8060:
8070:
C070:
C080:
The Super Games cartridge uses 4 16Kb banks ($8000-$BFFF) of ROM memory. Bank

43 48 49 50 00 00 40 10 00 00 00 02 80 00 40 00
00 00 00 49 4D C7 64 47 46 45 F3 48 DC 08 7E OB

43 48 49 50 00 00 40 10 00 00 OO0 03 80 00 40 00
D5 F9 FO C1 D5 F7 FO BD E8 B5 02 FO FB C9 05 30

selecting is done by writing to $DF00.

$DFO00 register is as follows:

bit meaning

bank bit O
bank bit 1
inverted GAME line
inverted EXROM line

-7 unused

15.11.3.10 9 - Atomic Power

Size

GAME

32Kb (4 banks of 8Kb modules)
inactive (0)

EXROM inactive (0)
Load address $8000-9FFF (all modules)

0000:
0010:
0020:
0030:
0040:
0050:
2050:
2060:
4060:
4070:
6070:
6080:

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00
09 80 OC 80 C3 C2 CD 38 30 4C 3F 80 4C 91 80 4C

43 48 49 50 00 00 20 10 00 00 00 02 80 00 20 00
EF FC 09 80 C3 C2 CD 38 30 4C 27 80 4C DB 81 4C

43 48 49 50 00 00 20 10 00 00 0O 03 80 00 20 00
09 80 0C 80 C3 C2 CD 38 30 4C 73 86 4C 30 80 4C

This cart has 32Kb of ROM and 8Kb of RAM
Writing to I/O-1 will do the following;:

bit meaning

extra ROM bank selector (A15) (unused)

Atomic?Power?777?
PPPPPPPPRP?RP???

1 = resets FREEZE-mode (turns back to normal mode)

Chapter 15: The emulator file formats 220

5 1 = enable RAM at ROML ($8000-$9FFF) &
I/0-2 ($DFOO-$DFFF = $9F00-$9FFF)
ROM bank selector high (A14)
ROM bank selector low (A13)
= disable cartridge (turn off $DEO0O)
1 = /EXROM high
1 = /GAME low
If bit 5 (RAM enable) is 1, bit 0,1 (exrom/game) is == 2 (cart off), bit 2,6,7 (cart disable,
freeze clear) are 0, then cart ROM (Bank 0..3) is mapped at 8000-9FFF, and cart RAM
(Bank 0) is mapped at A0O00-BFFF and cart RAM (Bank 0) is is enabled in the I/O-2 area
using 16Kb game config.

The cart RAM or ROM is available through a window in the I/O-2 range.

O, N Wb
=
[

15.11.3.11 10 - Epyx Fastload

Size 8Kb
GAME active (1)
EXROM active (1)
Load address $8000-9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO OA 01 01 OO0 OO0 OO OO 00 00 7?77Q@777777777777
0020: 45 50 59 58 20 46 41 53 54 4C 4F 41 44 00 00 00 EPYX7FASTLOAD7?7?
0030: 00 00 00 OO0 00 OO OO OO0 OO OO OO OO0 OO OO 00 00 7?7?7??7727277777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 30 80 BE FE C3 C2 CD 38 30 20 04 90 4C 38 DF AB 0.7....8077L87

The Epyx FastLoad cart uses a simple capacitor to toggle the ROM on and off:

the capacitor is discharged, and 8k game config enabled, by either reading ROML or reading
I/O-1. If none of those accesses happen the capacitor will charge, and if it is charged (after
512 cycles) then the ROM will get disabled.

15.11.3.12 11 - Westermann Learning

Size 16Kb
GAME inactive (0)
EXROM inactive (0)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO OB 00 00 00 00 00 OO0 00 00 7?77Q@77?7777777777
0020: 57 45 53 54 45 52 4D 41 4E 4E 00 00 00 00 00 00 WESTERMANN??77?77
0030: 00 00 00 OO0 00O OO OO OO0 OO OO OO OO0 OO OO 00 00 7?7??????77777777
0040: 43 48 49 50 00 00 20 10 00 00 OO0 00 80 00 40 00 CHIP????7777.7Q@7
0050: 09 80 9C 80 C3 C2 CD 38 30 A2 00 8E 16 DO 20 84 7..... 80.77.7

Any read from the I/0O-2 range will switch the cart off.

Chapter 15: The emulator file formats 221

15.11.3.13 12 - Rex Utility

Size 8K
GAME active (1)
EXROM inactive (0)
Load address $8000-9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 OC 00 01 00 00 00 0O 00 00 TPTQTTTTTTIYYYTYY
0020: 52 45 58 00 00 00 00 00 00 OO OO OO0 00O OO OO0 OO0 REX???7?7?777777777
0030: 00 00 00 00 00 OO 0O 00 00O OO OO0 00 00 0O 00 00 TeRTTONTYONYYYYNY
0040: 43 48 49 50 00 00 20 10 00 OO0 00 00 80 00 20 00 CHIP????7777.777
0050: 08 80 C1 FE C3 C2 CD 38 30 6C 95 E3 20 A3 FD 20 oo 801.7.7

Reading from $DF00-DFBF disables ROM, reading from $DFCO-DFFF enables ROM (8k

game config).

15.11.3.14 13 - Final Cartridge 1

Size 16KDb
GAME active (1)
EXROM active (1)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO OD 01 01 OO0 OO0 00 OO0 00 00 7?77?Q@?7??777777777
0020: 54 68 65 20 46 69 6E 61 6C 20 43 61 72 74 72 69 The?Final?Cartri
0030: 64 67 65 20 49 00 00 00 00 OO 00 00 OO OO0 00 00 dge?I???7?7777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP?77@?7777.7Q@7
0050: 80 BA 5E FE C3 C2 CD 38 30 00 AO AO 20 2D FE 58 .7....8077-.X

Any access to I/O-1 turns cartridge ROM off. Any access to I/O-2 turns cartridge ROM
on.

The cart ROM is visible in I/O-1 and I/0O-2.
15.11.3.15 14 - Magic Formel

Size 64Kb (8 banks of 8Kb)
GAME Inactive (0)
EXROM Inactive (0)
Load Address $E000-FFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO0 OE 01 01 OO0 OO0 OO OO0 00 00 7?77Q@??7?7?77777777
0020: 4D 61 67 69 63 20 46 6F 72 6D 65 6C 00 00 00 00 Magic?Formel??777?
0030: 00 00 00 00 00 OO OO0 OO0 OO OO OO0 OO0 OO OO0 00 00 7?77????77?77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 OO EO 00 20 00 CHIP???7?7°??77777

Chapter 15: The emulator file formats

0050:
2050:
2060:
4060:
4070:
6070:
6080:
8080:
8090:
A090:
AOAO:
COAOQ:
COBO:
EOBO:
EO0CO:

4D

43
4C

43
4D

43
4D

43
4D

43
4D

43
4D

43
4D

46

48
5F

48
46

48
46

48
46

48
46

48
46

48
46

30

49
E4

49
32

49
33

49
34

49
35

49
36

49
37

8D

50
8D

50
8D

50
8D

50
8D

50
8D

50
8D

50
8D

00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

DF

00
DF

00
DF

00
DF

00
DF

00
DF

00
DF

00
DF

60

20
60

20
60

20
60

20
60

20
60

20
60

20
60

8D

10
8D

10
8D

10
8D

10
8D

10
8D

10
8D

10
8D

01

00
01

00
01

00
01

00
01

00
01

00
01

00
01

DF

00
DF

00
DF

00
DF

00
DF

00
DF

00
DF

00
DF

60

00
60

00
60

00
60

00
60

00
60

00
60

00
60

8D

01
8D

02
8D

03
8D

04
8D

05
8D

06
8D

07
8D

02

EO
02

EO
02

EO
02

EO
02

EO
02

EO
02

EO
02

DF

00
DF

00
DF

00
DF

00
DF

00
DF

00
DF

00
DF

60

20
60

20
60

20
60

20
60

20
60

20
60

20
60

8D

00
8D

00
8D

00
8D

00
8D

00
8D

00
8D

00
8D

15.11.3.16 15 - C64 Game System, System 3

512Kb (64 banks of 8Kb each)
inactive (0)

Size
GAME

EXROM
Load address

000000:
000010:
000020:
000030:
000040:
000050:

002050:
002060:

004060:
004070:

006070:
006080:

active (1)
$8000-9FFF (all modules)

43
18

43
EO

43
CcO

48
DO

48
08

48
08

49
A9

49
19

49
1C

50
FF

50
21

50
1D

00
8D

00
77

00
AO

00
15

00
84

00
92

20
DO

20
52

20
03

10
8D

10
98

10
03

00
1D

00
oF

00
D8

00
DO

00
80

00
AA

00
8D

00
A5

00
04

01
17

02
21

03
Cco

80
DO

80
31

80
B8

00
A2

00
01

00
01

20
07

20
31

20
40

00
A9

00
89

00
EA

MFQO?77¢?7¢77¢

ME7?7¢77¢77¢

222

C64GS7Cartridge?
PPPPPPPPIVVPPPY?

Chapter 15: The emulator file formats 223

O7E440: 45 20 41 20 42 49 47 20 58 FE 4F 4E 20 54 48 49 E7A?BIG?X.0N?THI

Here is a list of the known cartridges:

C64GS 4-in-1 (Commodore) (512 kB)
Last Ninja Remix (System 3) (512 kB)
Myth (System 3) (512 kB)

ROM memory is organized in 8Kb ($2000) banks located at $8000-$9FFF. Bank switching
is done by writing to address $DE00+X, where X is the bank number (STA $DE00,X). For
instance, to read from bank 3, address $DEO03 is written to. Reading from anywhere in the
I/O-1 range will disable the cart.

The CRT file contains a string of CHIP blocks, each block with a start address of $8000,
length $2000 and the bank number in the bank field. In the cartridge header, EXROM
($18) is set to 0, GAME ($19) is set to 1 to enable the 8 kB ROM configuration.

15.11.3.17 16 - Warp Speed

Size 16Kb
GAME inactive (0)
EXROM inactive (0)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 10 01 01 OO0 OO0 OO OO0 00 00 7?77Q@??7777777777
0020: 57 61 72 70 73 70 65 65 64 00 00 00 00 00 OO0 OO Warpspeed?????7?77
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO0 OO OO OO 00 00 7?7?7?????7?77777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP??7Q@?7?777.7Q7
0050: 4C 22 80 4C 22 80 FF 43 42 4D 20 53 E4 20 18 E5 L".L".?CBM?37777

After RESET or POWER ON, 16kB of cartridge ROM is visible at $8000-$BFFF. Ad-
ditionally, ROM normally located at $9E00-$9FFF is mirrored into I/O-1 and 1/0-2 at
$DE00-$SDFFF. ROM at $8000-$BFFF is disabled by writing into the I/0O-2 area (typically
$DF00) and may be re-enabled by writing into I/O-1 ($DE00). However, the $DE00-$DFFF
(I/0-1/1/0-2) area itself always remains mapped to cartridge ROM.

15.11.3.18 17 - Dinamic

Size 128Kb (16 banks of 8Kb each)
GAME inactive (0)
EXROM active (1)
Load address $8000-9FFF (all modules)
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF ASCII

000000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
000010: 00 00 00 40 01 00 00 11 00 01 OO0 OO OO 00 00 OO ??7@?7?7?7?777?77777
000020: 4E 61 72 63 6F 20 50 6F 6C 69 63 65 00 00 00 00 Narco?Police??7?7?
000030: 00 00 00 00 00 0O OO0 00 OO OO0 OO OO 0O OO0 00 OO ‘???27777777777777
000040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 OO0 CHIP??7?77777.777

Chapter 15: The emulator file formats 224

000050: 0B 80 OB 80 C3 C2 CD 38 30 00 00 78 A2 FF 9A D8 7.7....8077x.7..

002050: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 OO0 CHIP??777777.777
002060: 1C 8C 1B 8C 16 16 8F 16 16 88 1C 1C 86 1C 1C 89 7777777777

004060: 43 48 49 50 00 00 20 10 00 00 00 02 80 00 20 OO CHIP??7?7?7777.777
004070: B6 02 07 08 07 07 00 OA OA B6 00 05 OA 00 07 07 7272727777 7777777

01E130: 43 48 49 50 00 00 20 10 00 00 00 OF 80 00 20 00 CHIP???7?7777.777
01E140: 00 D5 70 03 F5 70 OF 5F 70 OF F7 70 35 FD FO 37 7.p?7p?_p?7p5.77

Here is a list of the known DINAMIC cartridges:

Narco Police (128 kB)
Satan (128 kB)

ROM memory is organized in 8Kb ($2000) banks located at $8000-$9FFF. Bank switching
is done by reading from address $DE00+X, where X is the bank number (LDA $DE00,X).
For instance, to read from bank 3, address $DEO03 is accessed.

The CRT file contains a string of CHIP blocks, each block with a start address of $8000,
length $2000 and the bank number in the bank field. In the cartridge header, EXROM
($18) is set to 0, GAME ($19) is set to 1 to enable the 8 kB ROM configuration.

15.11.3.19 18 - Zaxxon, Super Zaxxon (SEGA)

Size 20KD (3 banks of different sizes)
GAME active (1)
EXROM active (1)
Load address $8000-8FFF (mirrored in $9000-9FFF, module 0, chip Ul)
$A000-BFFF (banked modules 1 and 2, chip U2)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

000000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
000010: 00 00 00 40 01 00 00 12 00 00 OO0 00 OO0 00 00 OO0 ??77Q@??7?7?7?77?77777
000020: 5A 61 78 78 6F 6E 00 00 00 00 00 00 00 00 00 00 Zaxxon?7?7777777?77
000030: 00 00 00 00 OO 0O OO0 00 OO OO0 OO OO OO 00 00 OO ‘?????77777777777
000040: 43 48 49 50 00 00 10 10 00 00 00 00O 80 00 10 OO CHIP??7?7?7777.777
000050: OD 80 29 80 C3 C2 CD 38 30 78 4C 09 80 78 A9 00 7.)....80xL7.x.7

001050: 43 48 49 50 00 00 20 10 00 00 00 00 AO OO0 20 00 CHIP???7?7?7?77777
001060: A2 OF BD 00 20 DO 04 CA 10 F8 60 BD 70 20 FO OD .?7777.7.77¢7p??7

003060: 43 48 49 50 00 00 20 10 00 00 00 01 AO 00 20 00 CHIP???77777777
003070: 65 A2 36 A3 E7 A3 CB A4 94 A5 86 A6 BE A7 35 A8 e.67.77757

The (Super) Zaxxon carts use a 4Kb ($1000) ROM at $8000-$8FFF (mirrored in $9000-
$9FFF) along with two 8Kb ($2000) cartridge banks located at $A000-$BFFF. One of the
two banks is selected by doing a read access to either the $8000-$8FFF area (bank 0 is
selected) or to $9000-$9FFF area (bank 1 is selected). EXROM ($18 = $00) and GAME
($19 = $00) lines are always pulled to GND to select the 16 kB ROM configuration.

Chapter 15: The emulator file formats 225

The CRT file includes three CHIP blocks:

a) bank = 0, load address = $8000, size = $1000

b) bank = 0, load address = $A000, size = $2000

c) bank = 1, load address = $A000, size = $2000
15.11.3.20 19 - Magic Desk, Domark, HES Australia
Size 32Kb, 64Kb or 128Kb sizes (4 to 16 banks of 8Kb each)
GAME inactive (0)
EXROM active (1)
Load address (banks 00-15) - $8000-9FFF

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 13 00 01 00 OO OO0 OO0 00 00 7?77Q@??7777?777777
0020: 4D 61 67 69 63 20 44 65 73 6B 00 00 00 00 00 00 Magic?Desk??77777?
0030: 00 00 00 00 00 OO OO0 OO0 OO OO OO OO OO OO 00 00 7?7???????77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 09 80 C6 CA C3 C2 CD 38 30 8E 16 DO 20 A3 FD 20 7...... 807.7.7

2050: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00 CHIP????7777.777
2060: 00 3F OA 01 00 86 4E 24 28 31 30 29 3A 4A 4F 59 77777N$(10):J0Y

4060: 43 48 49 50 00 00 20 10 00 00 00 02 80 00 20 OO0 CHIP?7?77?7777.777
4070: 00 8B C9 28 4E 24 2C 31 29 B3 Bl 22 FF 22 A7 32 7.(N$,1)"?"2

6070: 43 48 49 50 00 00 20 10 00 00 00 03 80 00 20 00 CHIP????7?77.777
6080: AE 01 83 33 2C 37 2C 22 32 29 20 44 45 4C 20 4B 73,7,"2)7DEL?K

This cartridge type is very similar to the OCEAN cart type: ROM memory is organized in
8Kb ($2000) banks located at $8000-$9FFF. Bank switching is done by writing the bank
number to $DE00. Deviant from the Ocean type, bit 8 is cleared for selecting one of the
ROM banks. If bit 8 is set ($DE00 = $80), the GAME/EXROM lines are disabled, turning
on RAM at $8000-$9FFF instead of ROM.

In the cartridge header, EXROM ($18) is set to 0, GAME ($19) is set to 1 to indicate the
RESET /power-up configuration of 8 kB ROM.

Here is a list of the known cartridges:

Ghosbusters (HES Australia) (32 kB)
Magic Desk (Commodore) (32 kB)
Badlands (Domark) (64 kB)
Vindicators (Domark) (64 kB)
Wonderboy (HES Australia) (64 kB)
Cyberball (Domark) (128 kB)

15.11.3.21 20 - Super Snapshot V5

Size 64Kb (4 banks of 16Kb each)
GAME active (1)

Chapter 15: The emulator file formats 226

EXROM active (1)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 14 01 01 OO0 OO0 OO OO0 00 00 7?77?Q@??7?7?77777777
0020: 63 75 70 65 72 20 53 6E 61 70 73 68 6F 74 20 35 Super?Snapshot?5
0030: 20 4E 54 53 43 00 00 00 00 00 OO0 00 OO 00 00 00 7?NTSC???77777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP??7Q@?7?7?77.7Q7
0050: 09 80 59 80 C3 C2 CD 38 30 20 03 9F 00 FA F4 20 7.Y....80777777

4050: 43 48 49 50 00 00 40 10 00 00 00 01 80 00 40 00 CHIP?7@?7777.7Q7
4060: 79 DE BC FE C3 C2 CD 38 30 A9 05 8D 20 DO 8D 21 y.7....80.77.!

8060: 43 48 49 50 00 00 40 10 00 00 00 02 80 00 40 00 CHIP??7Q@?7?777.7Q7
8070: 50 DE BC FE C3 C2 CD 38 30 A9 OA 85 6A A9 OD 85 P.7....80.7j.7

CO070: 43 48 49 50 00 00 40 10 00 00 00 03 80 00 40 OO0 CHIP??7@77?777.7Q@7
C080: 50 DE BC FE C3 C2 CD 38 30 85 07 20 1A AD A5 76 P.7....80777v

The first page of the currently selected ROM bank is mirrored in the I/O-1 range when
reading.

The control Register is the I/O-1 range when writing:

bit meaning

7-5 unused

4 ROM/RAM bank bit 1

3 ROM enable

2 ROM/RAM bank bit O

1 RAM enable, EXROM

0 release freeze, !GAME

15.11.3.22 21 - Comal-80

Size 64Kb (4 banks of 16Kb each)
GAME active (1)
EXROM active (1)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 15 01 01 OO0 OO0 OO OO0 00 00 7?77Q@??7?7?77777777
0020: 43 6F 6D 61 6C 20 38 30 00 00 00 00 00 00 00 00 Comal?8077777777
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO0 OO OO OO 00 00 7?7??????2?77?777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP??7Q@?7?777.7Q7
0050: 87 87 70 CF C3 C2 CD 38 30 4C AA CF 4C 70 CF 4C ..p....80L.Lp.L

4050: 43 48 49 50 00 00 40 10 00 00 00 01 80 00 40 00 CHIP??7@7?777.707

Chapter 15: The emulator file formats 227

4060: AA CF 70 CF C3 C2 CD 38 30 01 29 01 28 01 2C 04 .p....807)7(7,7

8060: 43 48 49 50 00 00 40 10 00 00 00 02 80 00 40 00 CHIP?7@?7777.7Q@7
8070: AA CF 70 CF C3 C2 CD 38 30 91 92 92 92 92 92 92 .p....80.......

CO70: 43 48 49 50 00 00 40 10 00 00 00 03 80 00 40 00 CHIP?7Q@?7777.7Q7
C080: 7B C8 7E C8 C3 C2 CD 38 30 43 4F 4D 41 4C 80 93 ..7....80COMAL..

The Comal-80 Cartridge uses $DE00 for bank selection, and uses 16Kb banks ($4000) at
$8000-$BFFF. There are 4 banks of ROM memory and are referenced by the following
values:

$80 -> Bank O
$81 -> Bank 1
$82 -> Bank 2
$83 -> Bank 3

15.11.3.23 22 - Structured Basic

Size 16Kb (2 banks of 8Kb each)
GAME active (0)

EXROM active (1)

Load address $8000-9FFF

No sample data/file available.

Any read/write access to $DE00 or $DE01 will switch in bank 0. Any read/write access to
$DE02 will switch in bank 1. Any read/write access to $DE03 will switch off EXROM.

15.11.3.24 23 - Ross

Size 16Kb or 32Kb sizes (1 or 2 banks of 16Kb each)
GAME active (1)
EXROM active (1)
Load address $8000-BFFF
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 17 00 OO OO0 OO0 OO OO0 00 00 7?7?7Q@??7?7?77777777
0020: 52 6F 73 73 20 31 34 00 00 00 00 00 00 00 00 OO0 Ross?714777777777
0030: 00 00 00 00 00 OO 00 00 OO OO OO0 OO0 OO OO0 00 00 7?77???777?77777777
0040: 43 48 49 50 00 00 40 10 00 00 00 00 80 00 40 00 CHIP??7Q@?7?7?77.7Q7
0050: 09 80 09 80 C3 C2 CD 38 30 A2 00 BD 20 80 4D OE 7.7....80.777.M7

4050: 43 48 49 50 00 00 40 10 00 00 00 01 80 00 40 00 CHIP?7@?777?7.7Q7
4060: 3F 5A 4D 4D 50 4D 8D 25 3F 1A 1F 77 3F CD EO 3F 7ZMMPM),7?77w?.77

Any read access to $DE00 will switch in bank 1 (if cart is 32Kb). Any read access to $DF00
will switch off EXROM and GAME.

15.11.3.25 24 - Dela EP64

Size 8Kb to 72kb sizes (1 to 9 banks of 8Kb each, or 1 bank of
8Kb and 1 or 2 banks of 32Kb each)

Chapter 15: The emulator file formats 228

GAME inactive (0)
EXROM active (1)
Load address $8000-9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO0 18 00 01 OO0 OO0 OO OO0 00 00 7?77Q@7???77777777
0020: 44 45 4C 41 20 45 50 36 34 00 00 00 00 00 00 OO DELATEP647777777
0030: 00 00 00 00 00O OO 00 OO0 OO OO OO0 OO0 OO OO0 00 00 7?7????77?77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP???7?7777.777
0050: 00 85 B5E FE C3 C2 CD 38 30 FF FF FF FF FF FF FF 77....807777777

2050: 43 48 49 50 00 00 80 10 00 0O 00 01 80 00 80 00 CHIP??.77777.7.7
2060: 54 45 53 54 0D 2A OD 54 45 20 36 34 OD 00 00 00 TEST?*7?TE7?647777

This is an eprom cartridge. It has 1 2764 (8Kb) which holds the base eprom with the base
menu, and 2 27256 eproms of which 8Kb parts are banked into the $8000-9FFF area.

The bank selecting is done by writing to $DE00. The following bits are used for bank
decoding in $DE00 (0 being the LSB, 3 being the MSB).

Bit# 76543210
xx10xx32

Any bank value below 4 or above 11 switches in the base bank (bank 0).
The bit values for each eprom bank are :

eprom bank 1 : xx00xx01

eprom bank 2 : xx01xx01
eprom bank 3 : xx10xx01
eprom bank 4 : xx11xx01
eprom bank 5 : xx00xx10
eprom bank 6 : xx01xx10
eprom bank 7 : xx10xx10
eprom bank 8 : xx11xx10

Setting bit 7 high will switch off EXROM.
15.11.3.26 25 - Dela EP7x8

Size 8Kb to 64kb sizes (1 to 8 banks of 8Kb each)
GAME inactive (0)
EXROM active (1)
Load address $8000-9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 19 00 01 00 OO OO0 OO0 00 00 7?77Q@7?7??77?777777
0020: 44 45 4C 41 20 45 50 37 78 38 00 00 00 00 00 00 DELATEP7x8777777
0030: 00 00 00 00 00 OO 00 OO0 OO OO OO0 OO OO OO 00 00 7?7?7?????7277777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 09 80 B5E FE C3 C2 CD 38 30 78 A2 FF 9A D8 8E 16 7.7....80x.7..7

Chapter 15: The emulator file formats 229

2060: 94 83 A0 83 C3 C2 CD 38 30 02 BB 5A 30 5F EE 3D ...807Z0_7=

This is an eprom cartridge. It has 8 8Kb banks of which the first holds the base menu, the
other eproms can be banked into the $8000-9FFF area.

The bank selecting is done by writing to $DE00. Each low bit is used to bank in the
respective eprom. If all bits are high then the EXROM is switched off.

The bit values for each eprom bank is:
eprom bank 1 : 11111110 ($FE) (base eprom)

eprom bank 2 : 11111101 ($FD)

eprom bank 3 : 11111011 ($FB)

eprom bank 4 : 11110111 ($F7)

eprom bank 5 : 11101111 ($EF)

eprom bank 6 : 11011111 ($DF)

eprom bank 7 : 10111111 ($BF)

eprom bank 8 : 01111111 ($7F)

EXROM off : 11111111 ($FF)
15.11.3.27 26 - Dela EP256
Size 8Kb to 262kb sizes (1 to 33 banks of 8Kb each)
GAME inactive (0)
EXROM active (1)
Load address $8000-9FFF

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO0 1A 00 01 OO0 OO OO OO0 00 00 7?77Q@??77?77777777
0020: 44 45 4C 41 20 45 50 32 35 36 00 00 00 00 00 00 DELA?TEP256777777
0030: 00 00 00 00 00 OO 00 OO0 OO OO OO0 OO OO OO0 00 00 7?7???????277777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 00 85 BE FE C3 C2 CD 38 30 93 0D 2B 2B 2B 20 45 77....80.7+++7E

2050: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00 CHIP????7777.777
2060: 09 80 28 80 C3 C2 CD 38 30 78 A2 05 8E 16 DO 20 7.(....80x.77.7

4060: 43 48 49 50 00 00 20 10 00 00 00 02 80 00 20 00 CHIP??7?7??777.777
4070: OB 80 BC FE C3 C2 CD 38 30 DC 10 8E 16 DO 20 87 7.7....80.77.7.

6070: 43 48 49 50 00 00 20 10 00 00 00 03 80 00 20 00 CHIP????7777.777
6080: 09 80 F6 8E C3 C2 CD 38 30 A2 C8 8E 16 DO 20 .. 7.7...80..7.7.

8080: 43 48 49 50 00 00 20 10 00 00 00 04 80 00 20 00 CHIP???777??7.777
8090: 94 83 AO 83 C3 C2 CD 38 30 02 BB 5A 30 5F EE 3D ...807Z0_7=

This is an eprom cartridge. It has 33 8Kb banks of which the first holds the base menu,
the other eproms can be banked into the $8000-9FFF area.

Chapter 15: The emulator file formats

The bank selecting is done by writing to $DE0O.

The values for the (extra) eprom banks are:
1- 8 : $38-3F
: $28-2F
17-24
25-32 :
Setting bit 7 high will switch off EXROM.

15.11.3.28 27 - Rex EP256
8Kb to 262kb sizes (1 bank of 8Kb and 1 to 8 banks of either

Size

eprom
eprom
eprom
eprom

GAME
EXROM
Load address

0000:
0010:
0020:
0030:
0040:
0050:
2050:
2060:
4060:
4070:

00

43
09

43
09

bank
bank
bank
bank

01

48
80

49
F2

48
80

49
09

S
S
S
S

50
8F

50
80

9-16

00
C3

00
C3

00
Cc2

00
c2

$18-1F
$08-0F

8Kb, 16Kb or 32Kb)

inactive (0)
active (1)
$8000-9FFF

06 07 08 09

20
CD

40
CD

10
38

10
38

00
30

00
30

00
A2

00
58

00
c8

00
D8

01
8E

02

80
16

80

00
DO

00

20
20

40

00
A3

00

20 84 FF 20 8A

This is an eprom cartridge. It has 9 eprom sockets, of which the first holds the base eprom
with the base menu which is an 8Kb eprom, the other eprom sockets can handle 8Kb, 16Kb
or 32Kb eproms, of which 8kb can be banked into the $8000-9FFF area.
The bank selecting is done by writing to $DFA0. Bits 2, 1 and 0 determine which socket is
used and bits 5 and 4 are used to select an 8Kb piece of the eprom.

The possible values for bits 5 and 4 for the (extra) eprom banks are:
. 3,

8Kb

16Kb
16Kb

32Kb
32Kb
32Kb
32Kb

bank
bank

bank
bank
bank
bank

[y

W N = O

w N

b

b

w N = O

2,

0
1

1,

0

230

Reading from $DFCO switches off the EXROM. Reading from $DFEQ switches on the
EXROM.

Chapter 15: The emulator file formats 231

15.11.3.29 28 - Mikro Assembler

Size 8Kb (1 bank of 8Kb)
GAME inactive (0)
EXROM active (1)
Load address $8000-9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 1C 00 01 OO0 OO OO OO0 00 00 7?7?7?Q@???7?77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE CART?7?77777
0030: 00 00 00 00 00 OO OO OO0 OO OO OO0 OO0 OO OO0 00 00 7?77????77?77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????77?77.777
0050: 60 80 FE 80 C3 C2 CD 38 30 4C 07 87 4C CA 82 41 “...... 80L7.L.A

The $9E00-$9EFF range is mirrored at $DE00-$DEFF. The $9F00-$9FFF range is mirrored
at $DF00-$DFFF.

15.11.3.30 29 - Final Cartridge Plus

Size 32Kb (1 bank of 32Kb)
GAME active (1)
EXROM active (1)
Load address $0000-$7FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 OO0 1D 00 01 OO0 OO OO OO0 00 00 7?77Q@7?7??77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO0 OO0 OO OO0 OO0 00 7?7?????7?77777777
0040: 43 48 49 50 00 00 80 10 00 00 OO0 00 OO OO 80 00 CHIP??.7777777.7
0050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF ?27777727277°7?77777

This cart has 32Kb of ROM, bank 0 is in the cart image but is unused. The first 8Kb of
the cart image is unused, the second 8Kb of the cart image is mapped to $E000-$FFFF,
the third 8Kb of the cart image is mapped to $8000-$9FFF and the fourth 8Kb of the
cart image is mapped to $A000-$BFFF. An NMI can be triggered by the cart, if address
$0001 is written to and the cartridge is enabled. The cart can be disabled by software, by
clearing bit 4 when writing to $DF00-$DFFF. Cart ROM at $E000-$SFFFF can be disabled
by setting bit 5 to 0 when writing to $DF00-$DFFF. Cart ROM at $8000-$BFFF can be
disabled by setting bit 6 to 1 when writing to $DF00-$DFFF. Bit 7 of a byte written to
$DF00-$DFFF can be read back from the cartridge if enabled (like a memory cell).

15.11.3.31 30 - Action Replay 4

Size 32Kb (4 banks of 8Kb)
GAME active (1)

EXROM inactive (0)

Load address $8000-$9FFF

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

Chapter 15: The emulator file formats

0000:
0010:
0020:
0030:
0040:
0050:

2050:
2060:

4060:
4070:

6070:
6080:
The control register is the I/O-1 range:

43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00
09 80 0C 80 C3 C2 CD 38 30 4C E9 80 4C 81 81 4C

43 48 49 50 00 00 20 10 00 00 00 02 80 00 20 00
09 80 OE 80 C3 C2 CD 38 30 A2 00 4C EF FC 20 BC

43 48 49 50 00 00 20 10 00 00 00 03 80 00 20 00
09 80 0C 80 C3 C2 CD 38 30 4C 70 88 4C 3F 80 4C

bit meaning

w N = O

4

5-

Eprom banking bit O (bank address 13)

Controls the GAME line (O sets GAME low, 1 sets GAME high)
Freeze-end bit (disables the register and hides any rom bank)
Controls the Exrom line (1 sets EXROM low, O sets EXROM high)

Eprom banking bit 1 (bank address 14)
7 Unused

The first page of the currently banked ROM block can be read in the I/0O-2 range.
15.11.3.32 31 - Stardos

Size 16Kb (2 banks of 8Kb)
GAME active (1)
EXROM inactive (0)

Load address

0000:
0010:
0020:
0030:
0040:
0050:

2050:
2060: 85 56 20 OF BC A5 61 C9 88 90 03 20 D4 BA 20 CC
This cart has 16Kb of ROM, of which the first 8Kb is mapped in at $8000-$9FFF and the

second 8Kb is used as a kernel replacement. The kernel replacement is achieved by a clip
that needs to be installed inside the C64.

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF

43 48 49 50 00 00 20 10 00 00 OO OO0 EO 00 20 00

$8000-$9FFF (bank 0), $£000-$FFFF (bank 1)

ASCII

oo 80...L7

232

Chapter 15: The emulator file formats 233

Reading from I/O-1 causes a capacitor to get charged with every read, once the capacitor
is charged enough it switches the cart on.

Reading from 1/0-2 causes a different capacitor to get charged with every read, once the
capacitor is charged enough it switched the cart off.

15.11.3.33 32 - EasyFlash

Size 1024Kb (64 banks of 2 * 8Kb)
GAME inactive (0)
EXROM active (1)
Load address $8000-$9FFF (ROML), $A000-$BFFF or $E000-SFFFF
(ROMH)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 20 00 01 OO0 OO0 OO OO0 OO0 OO0 7??7@7?7?7?77?7777
0020: 45 61 73 79 46 6C 61 73 68 20 43 61 72 74 72 69 EasyFlash?Cartri
0030: 64 67 65 00 00 00 OO0 OO0 0O OO OO OO OO OO OO0 00 dge?????77?777777
0040: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 OO0 CHIP????7??77.777
0050: 00 85 5E FE C3 C2 CD 38 30 93 0D 2B 2B 2B 20 45 7~....80.7+++7E
EasyFlash is a 1 MByte Flash EPROM card with multiple configurations and banks possible,
it also has 256 bytes of RAM which is mapped into the I/O-2 range.

There are two control registers, one at $DE00 and one at $DE02.
The register at $DEO00 does the following:

bit meaning

7 LED control

6-3 Unused

2 Mode (0/1)

1 Exrom line control
0 Game line control

The register at $DE02 controls which bank is mapped into ROMH and ROML.

15.11.3.34 33 - EasyFlash Xbank
Size ,
GAME .

EXROM -
Load address -

This CRT type is not actually related to a seperate hardware, it is used by some EasyFlash
related tools as a container format. Consequently VICE does (can) not load files of this

type.

15.11.3.35 34 - Capture

Size 8Kb (1 bank of 8Kb)
GAME inactive (0)
EXROM inactive (0)

Chapter 15: The emulator file formats 234

Load address $E000-$FFFF
00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 22 00 01 00 00 OO0 OO0 00 00 7?77@77?7"77777777
0020: 4D 61 67 69 63 20 46 6F 72 6D 65 6C 00 00 00 00 Magic?Formel???7?
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO OO OO OO OO0 00 7?7??????77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 01 EO 00 20 00 CHIP????77777777
0050: 00 OA OD 8A B4 A1 20 80 00 OA 82 8A 8D 20 9E 20 7777.7.7777

This cart has 8Kb of ROM which is mapped to $E000, and 8Kb of RAM which is mapped
to $6000. The cartridge is disabled after a reset.
When the freeze button is pressed the following happens:

e an NMI is generated

e as soon as the current adress is in bank Oxfe the cart switches to ultimax mode. The
cart ROM then contains one page full of "jmp $eaea", which ultimately calls the freezer
code.

o the SFFF7/SFFFS "register" logic is enabled and any access (read or write) to $SFFF7
will turn the cart_enabled off (leave ultimax mode), and an access to $FFF8 will turn
the cart back on (enter ultimax mode). the "register logic" that causes this can only
be disabled again by a hardware reset.

15.11.3.36 35 - Action Replay 3

Size 16Kb (2 banks of 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 23 00 01 00 00 OO0 OO0 00 00 7?77Q@??7#77?7?77777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO OO OO OO 00 00 7?7??????277?777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: EA A9 E3 48 A9 7B 48 08 4C 1A 80 EA EA EA 48 AD ...H..H?L?....H

20560: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00 CHIP???7?77?7?7.777
2060: 09 80 BE FE C3 C2 CD 38 30 78 A2 FB D8 9A A9 27 7.7....80x..... ?

This cart has 16Kb of ROM of which 8Kb is mapped in at both ROML and ROMH. Bank
switching and control register is done through the I/O-1 range:

bit meaning

7-4 unused

3 Exrom line control
2 Disable cart

1 Unused

Chapter 15: The emulator file formats 235

0 Bank

15.11.3.37 36 - Retro Replay

Size 32Kb, 64Kb or 128Kb (4, 8 or 16 banks of 8Kb)
GAME inactive (0)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 24 00 00 00 00 00 00 00 00 7?77@777$77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO 00 OO0 OO OO OO0 OO OO OO0 00 00 7?7???????77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 09 80 OC 80 C3 C2 CD 38 30 4C 7F 81 4C 87 81 4C 7.7....80L7L.L

The Retro Replay has three registers: Two write-only ($DE00 & $DE01) and one read-only
register ($DE00 & $DEO01 giving the same results).

The register at $DEO0O is reset to $00 on a hard reset if not in flash mode. If in flash mode,
it is set to $02 in order to prevent the computer from starting the normal cartridge. Flash
mode is selected with a jumper.

Register at $DE00:

bit meaning

0 Controls the GAME line: A 1 asserts the line, a O will deassert

it.

1 Controls the EXROM line: A O will assert it, a 1 will deassert
it.

2 Writing a 1 will disable further write accesses to all registers

of the Retro Replay, and set the memory map of the C64 to
standard, as if there is no cartridge installed at all.

Controls bank-address 13 for ROM and RAM banking.

Controls bank-address 14 for ROM and RAM banking.

Switches between ROM and RAM: O=ROM, 1=RAM

Must be written once to "1" after a successful freeze in order to
set the correct memory map and enable bits 0O and 1 of this
register. Otherwise no effect.

7 Controls bank-address 15 for ROM banking.

The register at $DE01 is the extended control register. If not in Flash mode, bits 1, 2 and
6 can only be written once. If in Flash mode, the REUcomp bit cannot be set, but the
register will not be disabled by the first write. Bit 5 is always set to 0 if not in Flash mode.

Register at $DEO01:

bit meaning

o O bk W

0 Enable clockport connector.
1 AllowBank (1 allows banking of RAM in $DFO00/$DEO2 area)

Chapter 15: The emulator file formats 236

NoFreeze (1 disables Freeze function)

Bank-address 13 for RAM and ROM (mirror of $DE0O)

Bank-address 14 for RAM and ROM (mirror of $DE0O)

Bank-address 16 for ROM (only in flash mode)

REU compatibility bit. O=standard memory map, 1 = REU compatible
memory map

7 Bank-address 15 for ROM (mirror of $DE0O)

Ok WN

Reading from the registers at either $DE00 or $DE01 will return the content of the status
register.

Status register:

The

bit meaning

1=Flashmode active (jumper set)
feedback of AllowBank bit

1=Freeze button pressed

feedback of banking bit 13
feedback of banking bit 14
feedback of banking bit 16

1=REU compatible memory map active
feedback of banking bit 15

~NOo Ok WN = O

following memory maps are available:

standard - $DE00 and $DEO01 registers are active, $DF00-$DFFF contain the last page
of the selected 8Kb bank of either ROM or RAM, whatever is selected. RAM can only
be accessed in $8000-$9FFF. ROM can be mapped to $8000, $A000 or $E000 with the
corresponding status on GAME and EXROM.

Note: If the AllowBank bit is not set, the $DF00-$DFFF area will always access bank
0 of the RAM, so the older cartridge images will work. The AllowBank bit does not
have any effect on the ROM mirror in that area.

Freeze - ROM is mapped to $E000-$FFFF, bank 0 is active directly after Freeze.
Writing to bits 0 and 1 of the $DEOQO register will have no effect on GAME and EXROM.
RAM can be selected and used in $DF00 or $DE02, respectively, but not in $8000.
Banking bits work, so you have full read access to the ROM, and access to up to four
RAM pages with the AllowBank bit set (minus 2 bytes if REU compatible bit is set).
You should leave this memory map ASAP by setting bit 6 of $DE00, because C64
RAM in the $E000 area is not available, and you don’t have control of the GAME and
EXROM lines.

REU compatible - $DE00 and $DEO01 registers are active, $DE02-$DEFF contain a
mirror of $9E02-$9EFF of the selected 8K-bank of either ROM or RAM, whatever is
selected. RAM can only be accessed in $8000-$9FFF. ROM can be mapped to $8000,
$A000 or $E000 with the corresponding status on GAME and EXROM. The $DF00
stays free for use with the 1764 Ram Expansion Unit (REU).

Note: If the AllowBank bit is not set, the $DE02-$DEFF area will always access bank
0 of the RAM, so the older cartridge images will work. The AllowBank bit does not
have any effect on the ROM mirror in that area.

Chapter 15: The emulator file formats 237

15.11.3.38 37 - MMC64

Size 8Kb (1 bank of 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 25 00 01 00 00 00 00 00 00 ??77@777%4?7777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO OO0 00 OO OO OO0 OO OO OO0 00 00 7?7?7????77?77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 09 80 64 97 C3 C2 CD 38 30 78 D8 A2 FF 9A 20 D4 7.d...80x..7.7.

The clockport registers of this cart can be switched to either $DE01-$DEOF or $DF21-
$DF2F. The control registers are available at $DF10-$DF13.

The register at $DE01 / $DF21 is write only:

bit meaning

7-1 TUnused
0 0 = disable clock port, 1 = enable clockport

The registers at $DE02-$DEOF / $DF22-$DF2F are for the clock port and are read/write.

The register at $DF10 is the MMC64 SPI transfer register, a byte written to this registers
is sent to the card & response from the card is read here.

The register at $DF11 is the MMC64 control register:

bit meaning

= MMC64 BIOS active, 1 = external ROM active

= card selected, 1 = card not selected

= 250khz transfer, 1 = 8mhz transfer

= clock port @ $DE0OO, 1 = clock port @ $DF20

= normal Operation, 1 = flash mode (*)

= allow external rom when BIOS is disabled,

= disable external ROM

6 = SPI write trigger mode, 1 = SPI read trigger mode

7 = MMC64 is active, 1 = MMC64 is completely disabled (**)

(*) bit can only be programmed when flash jumper is set (**) bit can only be modified after
unlocking

The register at $DF12 is the MMC64 status register, which is read-only:

bit meaning

g d W N~ O
O r OO OO OO0

o

0 = SPI ready, 1 = SPI busy

external GAME line

external EXROM line

0 = card inserted, 1 = no card inserted

w NN = O

Chapter 15: The emulator file formats 238

4 0 = card write enabled, 1 = card write disabled
5 0 = flash jumper not set, 1 = flash jumper set
6-7 unused
The register at $DF13 is the MMC64 identification register, which when reading from it
can have the following values:

$64 when bit 1 of $DF11 is 0. $01 when bit 1 of $DF11 is 1 and REV A hardware is used.
$02 when bit 1 of $DF11 is 1 and REV B hardware is used.

when writing to it it can be used to unlock bit 7 of $DF11 or to re-enable the cart:

Write $55 & $AA into this register to unlock bit 7 of $DF11. Write $0A & $1C into this
register to re-enable MMC64 hardware.

15.11.3.39 38 - MMC Replay

Size 64Kb or 512Kb (8 or 64 banks of 8Kb)
GAME inactive (0)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 26 00 00 OO0 00 OO OO0 00 00 7?77Q@??7&7?7?777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO OO OO0 OO OO OO0 OO0 OO OO0 00 00 7?77???7277277777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????77?77.777
0050: 1A 80 6E 9E C3 C2 CD 38 30 4D 4D 43 52 45 50 4C 7.n...80MMCREPL

The cart uses the following registers:
$DEO0O - RR control register write

bit meaning

GAME line

EXROM line

1 = disable RR, bit can be reset by setting bit 6 of $DF12
bank address 13

bank address 14

0 = rom enable, 1 = ram enable

1 = exit freeze mode

7 bank address 15

$DEO01 - extended RR control register write

bit meaning

Ok W N O

0 0 = disable clockport, 1 = enable clockport

1 0 = disable I/0 RAM banking, 1 = enable I/0 RAM banking
2 0 = enable freeze, 1 = disable freeze

3 bank address 13 (mirror of $DEOO)

4 bank address 14 (mirror of $DEOO)

Chapter 15: The emulator file formats 239

6
7

0 = enable MMC registers, 1 = disable MMC registers. Can only be
written when bit 6 of $DF12 is 1. Register becomes effective when
bit 0 of $DF11 is 1.

0 = RAM/ROM at $DFxx, 1 = RAM/ROM at $DExx

bank address 15 (mirror of $DEO0O)

$DE02-$DEOF - Clockport memory area (when enabled)

$DF10 - MMC SPI transfer register, a byte written is sent to the card & response from the
card is read here.

$DF11 - MMC control register

bit meaning

0

g W N

6
7

0 = MMC BIOS enabled, 1 = MMC BIOS disabled. Enabling MMC BIOS
sets ROM banking to the last 64Kb bank.
0 = card selected, 1 = card not selected. This bit also controls
the green activity LED.
0 = 250khz transfer, 1 = 8mhz transfer
ALWAYS O
ALWAYS O
(in RR-Mode:)
0 = allow RR rom when MMC BIOS disabled , 1 = disable RR ROM
(in mmcreplay bios mode:)
RAM banking (0 = $E000 - $FFFF, 1 = $8000 - $9FFF)
(in 16K mode:)
enable RAM at $A000 - $BFFF
0 = SPI write trigger mode, 1 = SPI read trigger mode
ALWAYS O

$DF12 - MMC status register

bit meaning

0

g W=

7

0 = SPI ready, 1 = SPI busy (read)

1 = forbid ROM write accesses (write). Setting
this bit will disable writes to ROM wuntil mnext
reset

feedback of $DEOO bit O (GAME)

feedback of $DEOO bit 1 (EXROM)

0 = card inserted, 1 = no card inserted

0 = card write enabled, 1 = card write disabled

EEPROM DATA line / DDR register. Setting DATA to "1" enables

reading data bit from EEPROM at this position.

0 = RR compatibility mode, 1 = Extended mode

Selecting RR compatibility mode limits RAM to 32Kb and disables

writes to extended banking register. Selecting Extended mode

enables full RAM banking and enables Nordic Power mode in RR mode.

EEPROM CLK line

$DF13 - Extended banking register Can only be read/written to when bit 6 of $DF12 is 1

Chapter 15: The emulator file formats

bit

o Ok W~ O

7

meaning
bank address 16
bank address 17
bank address 18
ALWAYS O

ALWAYS O

16K rom mapping
1 = enable

ROM/RAM banking too.

ALWAYS O

15.11.3.40 39 - IDE64

Size

GAME

EXROM
Load address

0000:
0010:
0020:
0030:
0040:
0050:

The IDE64 cart uses the following registers:
$DE20 - $DE2F IDE BUS Registers

$DE30 - Low Data HDD register

RR register.

Disabling RR register

disables

64Kb or 128Kb (4 or 8 banks of 16Kb)

active (1)

inactive (0)
$8000-$BFFF

63

80 5E FE C3 C2

CD

38

30

20

$DE31 - High Data HDD register
$DE32 register:

bit meaning

=N WP 0o N

0

$DE32 - $DE35
$DESF
$DE60 - $DEFF
$DEFB
$DEFC - $DEFF

unused (0)
unused (0)
unused (0)

version number (1)

romaddril5
romaddri4
game
exrom

IDE64 ROM bank select registers

RTC access (bit O only to serial accessed RTC)
ROM used by software
IDE64 clock reset, kill the cartridge
IDE64 memory configuration registers

IDE64 CARTRIDGE?
IDEDOS 201312127

c.”....807IDE647

240

ALL

Chapter 15: The emulator file formats 241

15.11.3.41 40 - Super Snapshot V4

Size 32Kb (4 banks of 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 28 00 01 00 00 00 00 00 00 7??77Q@?77(?77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE7?CART??77777
0030: 00 00 00 00 00O OO OO0 00 OO OO OO OO OO OO 00 00 7?7???P???7?77?777777
0040: 43 48 49 50 00 00 20 10 00 00 OO0 00 80 00 20 00 CHIP????7777.777
0050: 80 AD B5 80 C3 C2 CD 38 30 08 48 A9 06 8D 00 DF 807P. 777

2050: 43 48 49 50 00 00 20 10 00 00 00 OO AO 00 20 00 CHIP???7?7???7777
2060: 4C FA AO A9 O7 8D 00 DD 2C 00 DD 50 FB 2C 00 DD L7.77.,7.P.,7.

4060: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 OO0 CHIP?7?7?7?7777.777
4070: 13 80 BC FE C3 C2 CD 38 30 08 48 A9 02 8D 00 DF 7.7....807H.777

6070: 43 48 49 50 00 00 20 10 00 00 00 01 AO 00 20 00 CHIP?????7?7?7777
6080: FO 8A 48 A9 00 85 22 85 23 8D 53 OF 20 0C A1 BO 7H.7"#3777.

This cart has 32Kb of ROM and 8Kb of RAM, it uses I/O-1 as a mirror of the last page of
cart RAM. It has the following registers in the I/O-2 range:
ROM config register at $DF00 (can only be written to):

bit meaning

? (write 1 to release freeze mode)

ROM bank select

write 1 to disable cartridge
-6 unused

?
Note: if bit0, bit1l, bit7 are all 0, then ultimax mapping is selected and RAM is enabled at
ROML, otherwise if bit 0 is 0, then 16Kb mapping is enabled, or if bit 0 is 1, then 8Kb
mapping is enabled.

RAM config register at $DF01 (read/write):

If written value == last value - 1, then ultimax mapping is selected and RAM is enabled
at ROML, if written value == last value + 1, then ROM is enabled at ROML and exrom
is deasserted (switch to either 8k or 16k mapping)

$DF02-$DFFF holds the last page of the first 8kb of the current bank.

15.11.3.42 41 - IEEE-488

Size 4Kb (1 bank of 4Kb)
GAME active (1)

NP WO

Chapter 15: The emulator file formats 242

EXROM inactive (0)
Load address $8000-$8FFF
00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 29 00 01 00 00 00 00 00 00 ??77Q@??7)77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO OO0 OO0 OO OO OO OO OO OO 00 00 7?7??????77?777777
0040: 43 48 49 50 00 00 10 10 00 0O OO0 00 80 00 10 00 CHIP????7777.777
0050: 09 80 7A 80 C3 C2 CD 38 30 8E 16 DO 20 84 FF 20 7.z....807.777

The cart uses a TPI for the IEEE488 interface/communication in the I/O-2 range:
$DFO00 - Port A Data

$DF01 - Port B Data
$DF02 - Port C Data
$DF03 - Port A Direction
$DF04 - Port B Direction

$DF05 - Port C Direction
$DF06 - Control register
$DFO7 - Active Interrupt register

15.11.3.43 42 - Game Killer

Size 8Kb (1 bank of 8Kb)
GAME inactive (0)
EXROM inactive (0)
Load address $E000-SFFFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 2A 00 00 00 00 OO OO0 00 00 7?77Q@7?7*77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO0 OO OO OO 00 00 7?7???????77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 EO 00 20 00 CHIP????77777777
0050: 00 25 08 CF 07 9E 32 30 38 38 20 4D 43 2E 43 52 7%7.720887MC.CR

When the cartridge is active, ultimax is enabled when the address being accessed is is the
$E000-$FFFF range, so the ROM is visible at $E000, below is normal C64 RAM. The cart
can be disabled by writing to either I/O-1 or I/O-2 range. When the freezer button is
pressed, the cartridge will be enabled and an NMI will be triggered.

15.11.3.44 43 - Prophet64

Size 256KDb (32 banks of 8Kb)
GAME active (1)

EXROM inactive (0)

Load address $8000-$9FFF

00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

Chapter 15: The emulator file formats

0000:
0010:
0020:
0030:
0040:
0050:

The control register is the I/O-2 range:

43
00
56
00
43
09

36
00
49
00
48
80

34
00
43
00
49
09

20
40
45
00
50
80

bit meaning

7-6 unused
disable cart

5

43
01
20
00
00
C3

4-0 Dbank select

41
00
43
00
00
c2

52
00
41
00
20
CD

15.11.3.45 44 - EXOS

Size

GAME
EXROM
Load address

0000:
0010:
0020:
0030:
0040:
0050:

This cart has 8Kb of ROM, mapped in at $E000-$FFFF only when hirom is selected.
cart uses a clip that needs to be installed inside the C64.

15.11.3.46 45 - Freeze Frame

Size

85

GAME
EXROM
Load address

0000:
0010:
0020:
0030:
0040:
0050:

56

20

OF

BC

A5

54
2B
52
00
10
38

52
00
54
00
00
30

49
01
00
00
00
78

44
00
00
00
00
AO

47
00
00
00
00
00

45
00
00
00
80
84

8Kb (1 bank of 8Kb)
inactive (0)

active (1)

$E000-SFFFF
06 07 08 09 OA OB

61

C9

88

90

03

20

D4

8Kb (1 bank of 8Kb)

active (1)

inactive (0)

$8000-$9FFF

06

07

08

09

0A

20
00
00
00
00
F8

BA

20
00
00
00
20
84

20
00
00
00
00
FA

10

80

10

80

C3

Cc2

CD

38

30

20

When reading from the I/O-1 range the

00

00

00

00

00

00
00

C647CARTRIDGE??7?

243

The

cart is enabled, when reading from the I/0-2
range the cart is disabled. When the freeze button is pressed the ROM is mapped to both
$8000-$9FFF and $E000-SFFFF.

Chapter 15: The emulator file formats 244

15.11.3.47 46 - Freeze Machine

Size 16Kb or 32Kb (2 or 4 banks of 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 2E 00 01 00 00 OO0 00 00 00 7?77Q@77?7.77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO0 OO OO OO 00 00 7?7?7?????7?77?777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: 3A 83 60 80 C3 C2 CD 38 30 20 00 00 40 00 00 00 :°¢....80777@777

2050: 43 48 49 50 00 00 20 10 00 00 OO0 00 AO OO0 20 00 CHIP????7777 777
2060: 78 A9 34 85 01 AO 00 B1 F8 91 F6 E6 F8 DO 02 E6 x.4777.77.7

4060: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00 CHIP?7?7?7?7777.777
4070: 3A 83 60 80 C3 C2 CD 38 30 20 00 00 40 00 00 00 :¢....80777Q@777

6070: 43 48 49 50 00 00 20 10 00 00 00 01 AO 00 20 00 CHIP????77?77 777
6080: 78 A9 34 85 01 AO 00 B1 F8 91 F6 E6 F8 DO 02 E6 x.4777.77.7

Warning, the following information is based on guess-work and might be incorrect, any
further information and/or corrections are appreciated.

When reading from the I/0O-1 range ROM bank 0(/2) is mapped to $8000-$9FFF and ROM
bank 1(/3) is mapped to $A000-$BFFF. When reading from the I/O-2 range the cart is
disabled. When a reset happens the ROM banks get switched and ROM bank 0(/2) is
mapped to $8000-$9FFF. When a freeze happens ROM bank 0(/2) is mapped to both
$8000-$9FFF and $E000-$FFFF.

15.11.3.48 47 - Snapshot 64

Size 4Kb (1 bank of 4Kb)
GAME inactive (0)
EXROM inactive (0)
Load address $E000-SEFFF
00 01 02 03 04 05 06 07 08 09 OA OB 0OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 2F 00 00 00 00 00 00 00 00 ??77@?77/77777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO OO0 OO0 OO OO OO0 OO0 OO OO 00 00 7?77???27277277777777
0040: 43 48 49 50 00 00 10 10 00 00 00 00 EO OO0 10 00 CHIP????77?777777
0050: 78 D8 48 8A 48 98 48 AC OD DD 10 03 4C EE F2 AD x.HHH??7.?77L77

Warning, the following information is based on guess-work and might be incorrect, any
further information and/or corrections are appreciated.

Chapter 15: The emulator file formats 245

The cart has a control bit (bit 0) in the I/O-2 range which is used to disable or enable the
cart.

15.11.3.49 48 - Super Explode V5.0

Size 16Kb (2 banks of 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 30 00 01 OO0 OO OO OO0 00 00 7?77@777077777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO 00 OO0 OO OO OO0 OO OO OO0 OO0 00 7?77??????77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: D7 86 BE FE C3 C2 CD 38 30 A9 00 2C A9 FF 85 FE .7....80.7,.7.

2050: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 00 CHIP????7777.777
2060: E8 96 5E FE C3 C2 CD 38 30 20 6C 81 A9 09 8D 99 77....8071.7

Warning, the following information is based on guess-work and might be incorrect, any
further information and/or corrections are appreciated.

The cart has 16Kb of ROM which are used as two banks of 8Kb, they are mapped into
$8000-$9FFF and the last page of the current ROM bank is mirrored in $DF00-$DFFF.
The cart has a control bit (bit 7) at $DF00, which is used to select what ROM bank is used.

15.11.3.50 49 - Magic Voice

Size 16Kb (2 banks of 8Kb)

GAME active (1)

EXROM inactive (0)

Load address $8000-$9FFF (bank 1), $A000-$BFFF (bank 2)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 31 00 01 00 OO OO0 00 OO0 00 ??7@7?7177?777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00O OO OO0 OO0 OO OO OO OO OO OO 00 00 7?7??????77777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????7777.777
0050: EA 2C 80 DF 50 FB A0 00 8C 80 DF B9 E3 A3 29 OF .,.7P. 7.7.)7

2050: 43 48 49 50 00 00 20 10 00 00 00 OO0 AO 00 20 00 CHIP????7?777 777
2060: 4A EB CO 49 6A EA BB FB 4E CA 43 1E 75 63 156 97 J7.Ij..N.C%uc?

This cart has 16Kb of ROM, mapped in at reset at $8000-$BFFF. The cart is controled
through a TPI at $DF80-$DF8T:

$DF80 - Port A Data
$DF81 - Port B Data

Chapter 15: The emulator file formats 246

$DF82 - Port C Data

$DF83 - Port A Direction

$DF84 - Port B Direction

$DF85 - Port C Direction

$DF86 - Control register

$DF87 - Active Interrupt register

The cart has a pass-through port and does the following at start-up:

e Program starts after reset at $FFD3, and copies code from $FF36-$FFD2 to $0200-
$029C (157 bytes)

e Program continues at $021A, copies $A000-$BFFF from EPROM to RAM at $A000-
SBFFF (SKb), copies $E000-SFFFF from EPROM to RAM at $E000-SFFFF (SKb),
copies $AE62-$B461 from RAM to RAM at $C000-$C5FF (Magic Voice Code)

e Jump to beginning of Magic Voice code at $C000
15.11.3.51 50 - Action Replay 2

Size 16Kb (2 banks of 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$9FFF
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

0000: 43 36 34 20 43 41 52 54 52 49 44 47 45 20 20 20 C647CARTRIDGE???
0010: 00 00 00 40 01 00 00 32 00 01 00 00 OO OO0 00 00 7?77Q@777277777777
0020: 56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00 VICE?CART?7?77777
0030: 00 00 00 00 00 OO 00 OO0 OO OO OO0 OO0 OO OO0 00 00 7?77????77277777777
0040: 43 48 49 50 00 00 20 10 00 00 00 00 80 00 20 00 CHIP????77?77.777
0050: EA EA 68 AA 68 85 94 68 85 95 68 85 96 68 85 97 ..hhhhh

2050: 43 48 49 50 00 00 20 10 00 00 00 01 80 00 20 OO0 CHIP????7??77.777
2060: 30 80 5E FE C3 C2 CD 38 30 20 04 90 4C 38 DF 1A 0.7....8077L877
Warning, the following information is based on guess-work and might be incorrect, any
further information and/or corrections are appreciated.

I/0O-1 is somehow used to enable the cart, the exact way in which this is done is unknown.
Reading from the I/O-2 range will give you the last page of the current ROM bank, and
writing to it will disable the cart.

15.11.3.52 51 - MACH 5

Size 4Kb or 8Kb (1 bank of 4Kb or 8Kb)
GAME active (1)
EXROM inactive (0)
Load address $8000-$8FFF (4Kb), $8000-$9FFF (SKb)
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF ASCII

Chapter 15: The emulator file formats

0020:
0030:
0040:
0050:

This cart has 8Kb ROM mapped at $8000-$9FFF, the $9E00-$9EFF range is mirrored at

56 49 43 45 20 43 41 52 54 00 00 00 00 00 00 00
00 00 00 00 00 00 00 OO0 00 00 0O 00 00 00 00 00
43 48 49 50 00 00 20 10 00 00 OO0 00 80 00 20 00
AF 83 5E FE C3 C2 CD 38 30 4D 41 43 48 35 A5 93

~....80MACHS.

$DE00-$DEFF and the $9F00-$9FFF range is mirrored at $DF00-$DFFF.

15.11.3.53 52 - Diashow maker
8Kb (1 bank of 8Kb)

Size

GAME

EXROM
Load address

0000:
0010:
0020:
0030:
0040:
0050:

Accessing I/O-1 (the software uses $DE00 only it seems) disables cartridge ROM. A reset
enables 8K game mode and the ROM bank is mapped to $8000. A freeze causes ROM to
be mapped to $8000.

15.11.3.54 53 - Pagefox

64Kb (4 banks of 16Kb)
active (1)

Size

GAME

00

01

active (1)

inactive (0)

$8000-$9FFF

06

07

08

09

09

EXROM
Load address

0000:
0010:
0020:
0030:
0040:
0050:
4050:
4060:
8060:
8070:
C070:
C080:

00

80

01

09

80

C3

Cc2

CD

active (1)

38

30

AD

00
11

$8000-$BFFF

06

07

08

09

0A

DO

29

10

DO

00
62

43
A2

43
5A

43
1E

48
FE

48
01

48
03

49
9A

49
02

49
14

50
20

50
03

50
82

00
EC

00
04

00
09

00
AE

00
06

00
05

40
20

40
0A

40
09

10
82

10
0B

10
OF

00
80

00
10

00
ocC

00
20

00
14

00
0D

00
74

00
1E

00
OF

01
86

02
28

03
05

80
20

80
3C

80
09

00
A5

00
00

00
09

40
8B

40
00

40
0B

00
4C

00
00

00
0A

Chapter 15: The emulator file formats 248

This cart has 64Kb ROM (2 32Kb Eproms, mapped to $8000 and $A000 in 16Kb Game
Mode), and 32Kb RAM (mapped to $8000 and $A000 in 16K Game Mode). The cart has 1
(write-only) bank control register which is located at $DE80 and mirrored throughout the
$DE80-$DEFF range:

Bit O: unused/don’t care

Bit 1: Bank select: O=upper, 1l=lower (not correct 7!)
Bit 2: chip select O
Bit 3: chip select 1
Bit 4: cartridge enable/disable: O=enable, 1=disable

Bits 5-7: unused/don’t care
Chip select combinations of 0/1 are:

00: Eprom "79"

01: Eprom "ZS3"

10: Ram

11: empty space (reading returns VIC-II data)
note: on the original hardware "disabling" the cartridge by setting bit 4 of the control
register does NOT prevent write accesses to the cartridge RAM!. So to actually disable the
RAM, it is suggested to write $FF to the register.

15.11.3.55 54 - Kingsoft

Size -
GAME -
EXROM -
Load address -

15.11.3.56 55 - Silverrock 128

Size 128k (16 banks of 8k)
GAME active (1)

EXROM inactive (0)

Load address $8000-$9FFF

15.11.3.57 56 - Formel 64

Size 32kb (4 banks of 8k)
GAME inactive (0)
EXROM inactive (0)

Load address $E000-SFFFF

15.12 The PSID image format for ripped SID tunes

This section describes the SID file format used for SID tunes in the HVSC (High Voltage
SID Collection - http://hvsc.de). It is based mostly on Michael Schwendt’s document that
describes the file format and the PSID v2NG extensions described by Simon White and Dag
Lem and was further extended by Wilfred Bos (PSID v3, RSID v3) and Lala (assembled
most of the following text) and last not least tweaked a bit by Groepaz to fit into the VICE
documentation.

SID files use the .sid file extension.

Chapter 15: The emulator file formats 249

Since PSID v2 is simply an extension of PSID v1, PSID v2NG is an extension of PSID v2,
RSID is a restricted version of PSID v2NG, PSID v3 and RSID v3 are extentions of PSID
v2NG and RSID v2, all of the formats are discussed together below. RSID in specific is
discussed in detail under the 'magicID’ field description.

The information presented here targets programmers or other people with reasonable back-
ground. It is not suitable for newbies who have never before used a machine code monitor,
a disassembler, or a hexadecimal editor.

15.12.1 The SID file header v1

The detailed structure of the SID header looks like the following. Header offsets are in
hexadecimal notation. Other integer values are decimal unless explicitly marked otherwise.
Any stored integer values are in big-endian format:

+00 magicID: ‘‘PSID’’ or ‘‘RSID’’

This is a four byte long ASCII character string containing the value 0x50534944 or
0x52534944. "RSID’ (Real SID) denotes that the file strictly requires a true Commodore-64
environment to run properly. 'PSID’ files will generally run trouble-free on older PlaySID
and libsidplayl based emulators, too.

Some words about the Real C64 SID file format (RSID):

The RSID format was designed to contain tunes that are not PlaySID compatible, but
strictly require a real C64 environment to run. Tunes that are multi-speed and/or contain
samples and/or use additional interrupt sources or do busy looping will cause older SID
emulators to lock up or play very wrongly (if at all).

By using the name RSID for such rips all existing SID emulators will reject these tunes
safely until they can be upgraded to cope with the additional requirements.

Due to the nature of these tunes, every effort must be made to make sure they are directly
runnable on an actual C64 computer. As such the tunes will only be presented with the
default C64 power-on environment and expected to configure and use all hardware appro-
priately.
RSID is based on PSIDv2NG with the following modifications:

e magicID = RSID

e version = 2 and 3 only

e loadAddress = 0 (reserved)

e playAddress = 0 (reserved)

e speed = 0 (reserved)

e psidSpecific flag is called C64BASIC flag
The above fields MUST be checked and if any differ from the above then the tune MUST

be rejected. The definitions above will force tunes to contain proper hardware configuration
code and install valid interrupt handlers.

The default C64 environment is as follows:
e VIC - IRQ set to raster $137, but not enabled.
e CIA 1 timer A - set to 60Hz with the counter running and IRQs active.
e Other timers - disabled and loaded with $FFFF.

Chapter 15: The emulator file formats 250

e Bank register - $37

A side effect of the bank register is that init MUST NOT be located under a ROM/IO
memory area (addresses $A000-$BFFF and $D000-$FFFF) or outside the load image. Since
every effort needs to be made to run the tune on a real C64 the load address of the image
MUST NOT be set lower than $07ES.

+04 WORD version

Available version number can be 0001, 0002 or 0003. Headers of version 2 and 3 provide
additional fields. RSID and PSID v2NG files must have 0002 or 0003 here.

+06 WORD dataOffset

This is the offset from the start of the file to the C64 binary data area. Because of the fixed
size of the header, this is either 0x0076 for version 1 and 0x007C for version 2 and 3.

+08 WORD loadAddress

The C64 memory location where to put the C64 data. 0 means the data are in original C64
binary file format, i.e. the first two bytes of the data contain the little-endian load address
(low byte, high byte). This must always be true for RSID files. Furthermore, the actual
load address must NOT be less than $07E8 in RSID files.

You must be absolutely sure what to enter here. There is no way to detect automatically
whether the first two bytes in a C64 data file are meant to be a load address or some
arbitrary bytes of code or data. Unless your C64 file is not a normal binary file and thus
has no load address in front, you need not enter anything else than 0 here. The SID tune
will not play if you specify a load address which is present in the C64 file already.

Normal C64 binary data files have a load address in their first two bytes, so they can be
loaded to a pre-defined destination address by executing LOAD"FILE",8,1, for instance. If
a load address is explicitly specified in the sidtune info file, some sidtune converters and
utilities conjecture that the C64 data don’t have a load address in their first two bytes.
Hence, the explicit load address from the info file is moved in front of the C64 data to
create a valid C64 binary file which can be easily loaded on a C64, too. If that C64 file
were to be saved, it would contain two superfluous data bytes at offset 2 if an original load
address had been in the first two bytes of the old file. This process of adding a duplicate
load address can be repeated. The file loader strips off the first two bytes (the used load
address) and puts the rest of the file contents (including the now obsolete load address at
file offset 2) into memory. If the new load address is the same than the old one the two
added bytes cause the whole data to be displaced by two bytes, which most likely results
in malfunctioning code. Also, superfluous bytes in memory then can confuse disassemblers
which start at the beginning of the file or memory buffer.

+0A WORD initAddress
The start address of the machine code subroutine that initializes a song, accepting the

contents of the 8-bit 6510 Accumulator as the song number parameter. 0 means the address
is equal to the effective load address.

In RSID files initAddress must never point to a ROM area ($A000-$BFFF or $D000-$FFFF)
or be lower than $07ES. Also, if the C64 BASIC flag is set, initAddress must be 0.

+0C WORD playAddress

The start address of the machine code subroutine that can be called frequently to produce
a continuous sound. 0 means the initialization subroutine is expected to install an interrupt

Chapter 15: The emulator file formats 251

handler, which then calls the music player at some place. This must always be true for
RSID files.

+0E WORD songs

The number of songs (or sound effects) that can be initialized by calling the init address.
The minimum is 1. The maximum is 256.

+10 WORD startSong

The song number to be played by default. This value is optional. It often specifies the first

song you would hear upon starting the program is has been taken from. It has a default of
1.

+12 LONGWORD speed
This is a 32 bit big endian number.

For version 1 and 2 and for version 2NG and 3 with PlaySID specific flag (+76) set, the
'speed’ should be handled as follows:

Each bit in 'speed’ specifies the speed for the corresponding tune number, i.e. bit 0 specifies
the speed for tune 1. If there are more than 32 tunes, the speed specified for tune 32 is the
same as tune 1, for tune 33 it is the same as tune 2, etc.

For version 2NG and 3 with PlaySID specific flag (+76) cleared, the ’speed’ should be
handled as follows:

Each bit in ’speed’ specifies the speed for the corresponding tune number, i.e. bit 0 specifies
the speed for tune 1. If there are more than 32 tunes, the speed specified for tune 32 is also
used for all higher numbered tunes.

For all version counts:

e A 0 bit specifies vertical blank interrupt (50Hz PAL, 60Hz NTSC), and a 1 bit specifies
CIA 1 timer interrupt (default 60Hz).

e Surplus bits in ’speed’ should be set to 0.
e For RSID files ’speed’ must always be set to 0.

Note that if 'play’ = 0, the bits in ’speed’ should still be set for backwards compatibility
with older SID players. New SID players running in a C64 environment will ignore the
speed bits in this case.

WARNING: This field does not work in PlaySID for Amiga like it was intended, therefore

the above is a redefinition of the original ’speed’ field in SID v2NG! See also the ’clock’
(video standard) field described below for 'flags’.

+16 ¢ “<name>’’
+36 ¢ “<author>’’
+56 ‘‘<released>’’ (once known as ‘‘<copyright>’’)

These are 32 byte long ASCII character strings. Upon evaluating the header, these fields
may hold a character string of 32 bytes which is not zero terminated. For less than 32
characters the string should be zero terminated. The maximum number of available free
characters is 32.

+76 <data>
Version 1 of the SID header is complete at this point. The binary C64 data starts here.

Chapter 15: The emulator file formats 252

15.12.2 The SID file header v2 and v3

Version 2 and 3 of the header incorporates the v1 header fields and provides additional
fields. Some of these are actually v2NG or v3 specific - those are noted below.

+76 WORD flags
This is a 16 bit big endian number containing the following bitfields:

e Bit 0 specifies format of the binary data (musPlayer): 0 = built-in music player, 1 =
Compute!’s Sidplayer MUS data, music player must be merged.

If this bit is set, the appended binary data are in Compute!’s Sidplayer MUS format, and
does not contain a built-in music player. An external player machine code must be merged
to replay such a sidtune.

e Bit 1 specifies whether the tune is PlaySID specific, e.g. uses PlaySID samples (psid-
Specific): 0 = C64 compatible, 1 = PlaySID specific (PSID v2NG, v3) 1 = C64 BASIC
flag (RSID)

This is a v2NG and RSID specific field.

PlaySID samples were invented to facilitate playback of C64 volume register samples with
the original Amiga PlaySID software. PlaySID samples made samples a reality on slow
Amiga hardware with a player that was updated only once a frame.

Unfortunately, converting C64 volume samples to PlaySID samples means that they can
no longer be played on a C64, and furthermore the conversion might potentially break the
non-sample part of a tune if the timing between writes to the SID registers is at all altered.
This follows from the ADSR bugs in the SID chip.

Today, the speed of common hardware and the sophistication of the SID players is such
that there is little need for PlaySID samples. However, with all the PlaySID sample PSIDs
in existence there’s a need to differentiate between SID files containing only original C64
code and PSID files containing PlaySID samples or having other PlaySID specific issues.
As stated above, bit 1 in ’flags’ is reserved for this purpose.

Since RSID files do not have the need for PlaySID samples, this flag is used for a different
purpose: tunes that include a BASIC executable portion will be played (with the BASIC
portion executed) if the C64 BASIC flag is set. At the same time, initAddress must be 0.

e Bits 2-3 specify the video standard (clock): 00 = Unknown, 01 = PAL, 10 = NTSC,
11 = PAL and NTSC.

This is a v2NG specific field.

As can be seen from the ’speed’ field, it is not possible to specify NTSC C64 playback. This
is unfortunate, since the different clock speeds means that a tune written for the NTSC
C64 will be slightly detuned if played back on a PAL C64. Furthermore, NTSC C64 tunes
driven by a vertical blank interrupt have to be converted to use the CIA 1 timer to fit into
this scheme. This can cause severe problems, as the NTSC refresh rate is once every 17045
cycles, while the CIA 1 timer A is latched with 17095 cycles. Apart from the difference in
timing itself, the SID ADSR bugs can actually break the tune.

The ’clock’ (video standard) field was introduced to circumvent this problem.

e Bits 4-5 specify the SID version (sidModel): 00 = Unknown, 01 = MOS6581, 10 =
MOS8580, 11 = MOS6581 and MOS8580.

Chapter 15: The emulator file formats 253

This is a v2NG specific field.

e Bits 6-7 specify the SID version (sidModel) of the second SID: 00 = Unknown, 01 =
MOS6581, 10 = MOS8580, 11 = MOS6581 and MOS8580.

This is a v3 specific field.

The MOS6581 and the MOS8580 have three notable differences. First, combined waveforms
are generally louder on a MOS8580, to the extent that some combinations that are clearly
audible on a MOS8580 are completely silent on a MOS6581. Second, the internal DC levels
in the MOS8580 are so small that software or hardware tricks must be used to play volume
samples. Third, the MOS8580 analog filter has totally different characteristics from the
MOS6581 analog filter.
To ensure that music specifically written for one of the two SID versions can be played back
correctly, bits 4-7 in 'flags’ are used as stated above.
If bits 6-7 are set to Unknown then the second SID will be set to the same SID model as
the first SID.

e Bits 8-15 are reserved and should be set to 0.
+78 BYTE startPage (relocStartPage)
This is a v2NG specific field.
This is an 8 bit number. If ’startPage’ is 0, the SID file is clean, i.e. it does not write outside
its data range within the driver ranges. In this case the largest free memory range can be
determined from the start address and the data length of the SID binary data. If 'startPage’
is OxF'F, there is not even a single free page, and driver relocation is impossible. Otherwise,
‘startPage’ specifies the start page of the single largest free memory range within the driver
ranges. For example, if 'startPage’ is 0x1E, this free memory range starts at $1E00.
+79 BYTE pagelength (relocPages)
This is a v2NG specific field.
This is an 8 bit number indicating the number of free pages after ’startPage’. If 'startPage’
is not 0 or OxFF, 'pageLength’ is set to the number of free pages starting at 'startPage’. If
'startPage’ is 0 or OxFF, 'pageLength’ must be set to 0.
The relocation range indicated by ’startPage’ and 'pageLength’ should never overlap or
encompass the load range of the C64 data. For RSID files, the relocation range should also
not overlap or encompass any of the ROM areas ($A000-$BFFF and $D000-$SFFFF) or the
reserved memory area ($0000-$03FF).
+7A BYTE secondSIDAddress
This is a v3 specific field. For v2NG, it should be set to 0.
This is an 8 bit number indicating the address of the second SID. It specifies the middle
part of the address, $Dxx0, starting from value $42 for $D420 to $FE for $DFE0). Only
even values are valid. Ranges $00-$41 ($D000-$D410) and $80-$DF ($D800-$DDFO0) are
invalid. Any invalid value means that no second SID is used, like $00.
+7B BYTE reserved
This is a 8 bit number and is reserved and should be set to 0.
+7C <data>
Version 2 and 3 of the SID header ends here. This offset is the start of the binary C64 data.
See also ’loadAddress’ for what the first 2 bytes of 'data’ might indicate.

Chapter 16: Acknowledgments 254

16 Acknowledgments

VICE derives from X64, the first Commodore 64 emulator for the X Window System. Here
is an informal list of the people who were mostly involved in the development of X64 and
VICE:

The VICE core team:

Dag Lem Implemented the reSID SID emulation engine and video hardware scaling.

Andreas Matthies Improved the datasette support, the VIC20 video emulation and
some Ul stuff in the Win32 and DOS ports. He also wrote the BeOS port and im-
plemented video/audio capture support. Improved history recording/playback and
implemented support for video recording and the netlink feature. Made the Win32
user changable keyboard shortcut system. Improved CIA and VIA emulation. Worked
on x64sc, especially interrupt timing. Wrote test programs. Various bug(fixe)s. ;-)

Martin Pottendorfer Implemented the Gnome Port based on Oliver Schaertels GTK+
port. Added support code for internationalization based on gettext. Improved the
*nix fullscreen support. Translated the UI to German. Implemented the fliplists + Ul
(*nix).

Marco van den Heuvel Translated the UI to Dutch. Made the internationalization
support for the Win32 and Amiga ports. Wrote the GEO-RAM and RamCart cartridge
code. Wrote the c64 +60K, +256K and 256K memory expansions code. Wrote the pet
REU code. Wrote the plus4d memory expansions code. Made the ethernet support
for the DOS port. Maintains the QNX 4.x, QNX 6.x, Solaris, Openserver, Unixware,
Minix 3.x, Amiga, Syllable and OS/2 binary ports. Maintains the Win64 and Open
Watcom project files. Maintains the SDL port(s). Added new .crt support. Added
new screenshot formats. Added new sound recording support. Added SIDcart support
for xpet, xplus4 and xvic. Improved the MMC64 emulation. Added 2 MHz mode and
banks 2/3 support for x128. Added the various userport joystick emulations. Added
text copy and paste support to the Amiga and BeOS ports. Added DQBB and ISEPIC
cartridge support. Added SFX Sound Sampler and SFX Sound Expander support.
Added PCI support to the Amiga and DOS ports. Rewrote the sound system into
a modular one, added always mono and always stereo support for the sound output.
Added the RTC system. Added digiblaster support. Added 3rd SID support. Added
the 6309 CPU emulation. Added the 65(S)C02 emulation. And lots of other fixes and

improvements.

Christian Vogelgsang Maintains the Mac OS X port. Added Intel Mac support and
universal binary creation. Wrote the build scripts for all external Mac libraries and the
bindist bundle tool. Improved the TFE chip emulation. Added some GTK+ fixes.

Fabrizio Gennari Added some improvements to the DOS and GTK+ ports. Changed
the Windows video to use GDI as fallback, making it compile without DX if needed.
Fixed the t64 support. Added monitor window support using VTE to the GTK+ GUI.

Daniel Kahlin Worked on DTV VIC emulation, palette, DTV SID support in resid,
better DMA /Blitter support and did lots of refactoring. Added new monitor commands
and features. Improved the VIC emulation for xvic. Made MIDI driver code for
Win32. Rewrote the xvic cartridge system. Added Mega-Cart and Final Expansion
V3.2 support to xvic. Wrote large parts of the new VIC-II emulation used in x64sc,

Chapter 16: Acknowledgments 255

especially the dot clock domain emulation. Wrote many test programs for hardware
analysis.

e Antti S. Lankila Made the ReSID-fp engine, rewrote the PAL emulation code and fixed
the sound core for lower latency. Rewrote DTV SID support (ReSID-dtv). Improved
1541 drive rotation emulation. Worked on x64sc.

e Groepaz Added new more precise CRT emulation. Added support for the new cartridge
system and many new cartridges. Fixed up parts of cartconv, c1541 and petcat. Added
video to audio leak sound support. Implemented many bug fixes. Wrote test programs.
Updated this document after a long period of outdated mess.

e Ingo Korb Corrected block allocation and interleave for ¢1541/vdrive, added rudimen-
tary xplus4 tape recording support, corrected a case of missing Pi symbols in petcat,
changed the trap opcode byte, stopped the high-level serial drive code from responding
to addresses 16-30 and was forced to update this entry himself.

e Errol Smith Improved VDC emulation.
e Olaf Seibert Contributed some PET, including PET DWW hires, Xaw, lightpen, hard-

ware scaling, and disk drive patches. Added proper SuperPET support, including
6809/6309 CPU emulation. Maintains the Xaw UL

e Stefan Haubenthal Added some Amiga fixes.
e Thomas Giesel Added new monitor commands, features and improvements.

e Marcus Sutton Made some console, dialog and joystick fixes for the BeOS port. Main-
tains the BeOS port.

e Ulrich Schulz Maintains the Dingoo port(s).

e Kajtar Zsolt Wrote the IDE64 interface emulation, FD2000/4000 drive emulation,
SCPU64 emulation and alot of fixes. Improved the mouse support. Added drive burst
modification support. Added 1541 drive sounds emulation. Improved c64 cart emula-
tion.

Former /inactive team members:

e Spiro Trikaliotis Copyright (©) 2000-2011 Wrote the Win32 console implementation for
the built-in monitor, corrected some REU related bugs, improved the CIA emulation,
added com-port CIA support to the Win32 port, added text copy and paste support
to the Win32 port, added support for the TFE and RR-Net (¢s8900a), and wrote some
further patches.

e Hannu Nuotio Copyright (© 2007-2011 Implemented DTV flash emulation, DTV sup-
port in the monitor, large parts of the DTV VIC, burst mode and skip cycle emulation
as well as many other things. Added NEOS and Amiga mouse, paddle and light pen
support. Added new monitor commands and features, including memmap. Made
MIDI support and OSS MIDI driver. Implemented most of the SDL UI. Rewrote xvic
CPU/VIC-I core for cycle based emulation. Implemented C64 cartridge snapshot sup-
port. Initiated and worked on all parts of implementing x64sc. Wrote test programs.

e Andreas Boose Copyright (© 1998-2010 Gave lots of information and bug reports about
the VIC-II, the 6510 and the CIAs; moreover, he wrote several test-routines that were
used to improve the emulation. He also added cartridge support and has been the
main head behind the drive and datasette emulation since version 0.15. Also added
several Ul elements to the DOS, Win32 and *nix ports. He rewrote the C128 emulation

Chapter 16: Acknowledgments 256

adding Z80 mode, C64 mode and function ROM support, wrote the screenshot and the
event system and started the plus4 emulator. Restructured the serial bus emulation
and added realdrive and rawdrive support.

e Tibor Biczo Copyright (© 1998-2010 Improved the Win32 port and plus4 emulation.

e M. Kiesel Copyright (© 2007-2010 Started implementing x64dtv. The C64DTV mem-
ory model and early versions of the DMA and Blitter engine have been implemented
by him. Added new monitor commands and features.

e Andreas Dehmel Copyright (© 1999-2007 Wrote the Acorn RISC OS port.

e David Hansel Copyright (©) 2003-2005 Wrote the Star NL10 printer driver, implemented
IEC devices and improved the tape emulation.

e Markus Brenner Copyright © 2000-2004 Added VDC emulation to x128 and added
support for some more cartridges.

e Thomas Bretz Copyright (©) 1999-2004 Started the OS/2 port.

e Daniel Sladic Copyright (© 1997-2001 Started the work on hardware-level 1541 emula-
tion and wrote the new monitor introduced with VICE 0.15.

e Andr Fachat Copyright (© 1996-2001 Wrote the PET and CBM-II emulators, the CTA
and VIA emulation, the IEEE488 interface, implemented the IEC serial bus in ‘xvic’
and made tons of bug fixes.

e Ettore Perazzoli Copyright (© 1996-1999 Made the 6510, VIC-II, VIC-I and CRTC
emulations, part of the hardware-level 1541 emulation, speed optimizations, bug fixes,
the event-driven cycle-exact engine, the Xt/Xaw/Xfwf-based GUI for X11, a general
code reorganization, the new resource handling, most of the documentation. He also
wrote the DOS port and the initial Win32 port (well, somebody had to do it).

e Teemu Rantanen Copyright (© 1993-1994, 1997-1999 Implemented the SID emulation
and the trap-based disk drive and serial bus implementation; added support for multiple
display depths under X11. Also wrote c1541

e Jouko Valta Copyright © 1993-1996 Wrote petcat and c1541, T64 handling, user
service and maintenance (most of the work in x64 0.3.x was made by him); retired
from the project in July 96, after VICE 0.10.0.

e Jarkko Sonninen Copyright (©) 1993-1994 He was the founder of the project, wrote the
old version of the 6502 emulation and the XDebugger, and retired from the project
after x64 0.2.1.

Internationalization Team:

e Mikkel Holm Olsen Provided the Danish user interface translations and fixed a few
monitor bugs.

Manuel Antonio Rodriguez Bas Provided the Spanish user interface translations.
Paul Dub From Rivire-du-Loup, Qubec, provided the French user interface translations.
Czirkos Zoltan and Karai Csaba Provided the Hungarian user interface translations.
Andrea Musuruane Provided the Italian user interface translations.

Jesse Lee Provided the Korean user interface translations.

Jarek Sobolewski Provided the new Polish user interface translations.

Michael Litvinov Provided the Russian user interface translations.

Chapter 16: Acknowledgments 257

Peter Krefting Provided the Swedish user interface translations.

Emir Akaydin Provided the Turkish user interface translations (in world record time).

External contributors:

Christian Bauer Wrote the very interesting “VIC article” from which we got invaluable
information about the VIC-II chip: without this, the VIC-II implementation would not
have been possible.

Eliseo Bianchi Provided the italian Amiga translations.

ck! Provided a win32 cbm character font.

iAN CooG Added win32 vsid GUI and contributed various patches.

Mike Dawson Provided the GP2X port.

Paul David Doherty Wrote zip2disk, on which the Zipcode support in c1541 is based.
Sven A. Droll Added Supergrafik support to petcat.

Peter Edwards Implemented the SDL UI slider control and fixed some GP2X/Dingoo
SDL UI issues.

Daniel Fandrich Contributed some disk drive patches.

Dirk Farin Rewrote the MITSHM code.

Georg Feil Added support for toggling CB2 sound output line in the PET emulator.
Peter Andrew Felvegi aka Petschy Fixed a couple of bugs in the fast serial emulation.

Ricardo Ferreira Contributed the unlynx and system commands in c1541 and added
aRts sound support.

Flooder Provided parts of the Polish user interface translations.

Robert H. Forsman Jr. Provided parts of the widget set for implementing the Xaw
GUI

Ian Gledhill Added support for the catweasel.device driver.
Peter Gordon Provided support for native AmigaOS4 compiling.
Richard Hable Contributed the initial version of the REU emulation.

Shawn Hargreaves Wrote Allegro, the graphics and audio library used in the DOS
version.

Ville-Matias Heikkila Rewrote the vic20 sound code.
David Holz Provided a label file which gives the built-in monitor the labels for the C64.
Nathan Huizinga Added support for Expert and Super Snapshot carts.

Derrick Inksley Fixed loading of zip files with brackets ([]) in the filename for the
windows port. Added drive selection functionality to the window sdl port.

Craig Jackson Contributed miscellaneous patches in the old X64 times.
Dirk Jagdmann Wrote the Catweasel sound driver.

Uffe Jakobsen Wrote the Silverrock cartridge emulation and fixed the ocean cartridge
bank wrap.

Lasse Jyrkinen Contributed miscellaneous patches in the old X64 times.

Peter Karlsson Provided the swedish Ul translations in the past.

Chapter 16: Acknowledgments 258

e Greg King Added a working RTC to the emulation of the IDE64 cartridge. Provided
some vdrive fixes.

e Michael Klein Contributed the ESD sound driver, basic support for the OPENCBM
library and some other patches.

e Frank Knig Contributed the Win32 joystick autofire feature.
e Bernd Kortz Provided some fixes for ZETA and the ZETA binary package.
e Bernhard Kuhn Made some joystick improvements for Linux.

e Alexander Lehmann Added complete support for all the VIC20 memory configurations
for the old VICE 0.12.

e Ilkka "itix" Lehtoranta Provided the routines for the cybergraphics support for the
Amiga ports.

e Magnus Lind Atari ST mouse and Atari CX-22 trackball emulation and pixel aspect
fixes. Improved the Amiga mouse emulation. Improved the vic20 sound output. Added
windows POV hat support. Improved sound fragment size handling.

e Locnet Made the initial android port of x64.

o Wolfgang Lorenz Wrote an excellent 6510 test suite that helped us to debug the CPU
emulation.

e Marko Mkel Wrote lots of CPU documentation. Wrote the VIC Flash Plugin cartridge
emulation in xvic.

e mar77i Fixed some resource handling issues.
e Robert W. McMullen Provided parts of the widget set for implementing the Xaw GUI.

e Jennifer Medkief Is in charge of checking up on the GUIs for elements that are wrong,
unaccessable, and missing.

e Dan Miner Contributed some patches to the fast disk drive emulation.
e Luca Montecchiani Contributed a new Unix joystick driver.

o Wolfgang Moser Provided small optimization fixes to the GCR code, provided an ex-
cellent REU test suite and added REU fixes, and is always the good guy reviewing and
commenting changes in the background.

e Roberto Muscedere Improved support for REL files.

e Tomi Ollila Donated findpath.c.

e Per Olofsson Digitalized the C64 colors used in the (old) default palette.
e Lasse rni Contributed the Windows Multimedia sound driver

e Helfried Peyrl Supplied a patch that fixes REL file records larger 256 bytes when using
vdrive.

e Frank Prindle Contributed some patches.

e Giuliano Procida Used to maintain the VICE deb package for the Debian distribution,
and also helped proofreading the documentation.

e Vesa-Matti Puro Wrote the very first 6502 CPU emulator in x64 0.1.0. That was the
beginning of the story. ..

e Rami Rasanen Rewrote the VIC20 sound code.

e David Roden Fixed various issues related to ffmpeg settings.

Chapter 16: Acknowledgments 259

e Pablo Roldn Contributed initial patch for VIC-II PAL-N model selection.
e Mathias Roslund Provided the AmigaOS4 port.

¢ Gunnar Ruthenberg Provided some VIC-II enhancements and improved the Win32
port.

e Johan Samuelsson Provided the Swedish Amiga translations.

e Oliver Schaertel Wrote the X11 full screen, parts of custom ROM set support and 1351
mouse emulation for unix.

e Peter Schepers Contributed a document describing the G64 image format.

e Michael Schwendt Helped with the SID (audio) chip emulation, bringing important
suggestions and bug reports, as well as the wave tables and filter emulation from his
SIDplay emulator.

e Heiko Selber Contributed some VIC20 I/O patches.

e John Selck Improved the video rendering and added the fast PAL emulation. Imple-
mented new color generation based on P. Timmermanns knowledge.

e Chris Sharp Wrote the AIX sound driver.

e Andr351 "JoBBo" Siegel Provided the native MorphOS icons.

e Harry "Piru" Sintonen Provided lots of fixes and improvements for the Amiga ports.
e Manfred Spraul Wrote the Win32 text lister.

e Markus Stehr Provided the MMC64 emulation.

e Dominique Strigl Contributed miscellaneous patches in the old X64 times.

e Samuli Suominen Fixed XShm includes for newer xextproto versions and updated
libpng check for newer versions.

e Steven Tieu Added initial support for 16/24 bpp X11 displays.

e Philip Timmermann Did a lot of research about the VIC-II colors.

e Brian Totty Provided parts of the widget set for implementing the Xaw GUI.
e Mustafa "GnoStiC" Tufan Made improvements to the GP2x port.

e Lionel Ulmer Implemented joystick support for Linux and a first try of a SID emulation
for SGI machines.

e Krister Walfridsson Implemented joystick and sound support for NetBSD.
e webulator Provided Win32 drag & drop support

e Robert Willie Added some additional commands to the fsdevice emulation.
e Peter Weighill Gave many ideas and contributed the ROM patcher.

e Gerhard Wesp Contributed the extract command in c1541.

e Maciej Witkowiak Did some IDE64 and C1541 fixes.

e Peter Rittwage Made 1541 GCR hardware tests.

e Robert MclIntyre Bugged people enough to get the improved g64 support rolling, up-
dated g64 support to allow variable-length tracks, and performed initial development
of half-track support.

e Istvn Fbin Contributed a initial patch with the more correct 1541 bus timing code and
which gave us hints for to improving the 1541 emulation.

Chapter 16: Acknowledgments 260

(We hope we have not forgotten anybody; if you think we have, please tell us.)

The people around the world providing results from running our test programs on various
machines deserve a special mention:

hedning (Drean C64 PAL-N, various C64 PAL boxes)
Jason Compton (Various C64 and C128 NTSC boxes)
The Woz (Drean C64 PAL-N)

Thierry (Drean C64 PAL-N)

MO0S6569 (C64C PAL)

Mike (VIC-20 PAL)

Wilson (VIC-20 NTSC)

Vicassembly (VIC-20 NTSC)

David "jbevren" Wood (C64 NTSC-OLD)

Thanks also to everyone else for sending suggestions, ideas, bug reports, questions and
requests. In particular, a warm thanks goes to the following people:

Lutz Sammer

Ralph Mason

George Caswell
Jasper Phillips

Luca Forcucci

Asger Alstrup
Bernhard Schwall
Salvatore Valente
Arthur Hagen
Douglas Carmichael
Ferenc Veres

Frank Reichel

Ullrich von Bassewitz
Holger Busse

David "jbevren" Wood
Gary Glenn

Last but not least, a very special thank to Andreas Arens, Lutz Sammer, Edgar Tornig,
Christian Bauer, Wolfgang Lorenz, Miha Peternel, Per Hkan Sundell and David Horrocks
for writing cool emulators to compete with. :-)

Chapter 17: Copyright 261

17 Copyright

Copyright (©) 1998-2014 Dag Lem

Copyright (© 1999-2014 Andreas Matthies
Copyright (©) 1999-2014 Martin Pottendorfer
Copyright (© 2005-2014 Marco van den Heuvel
Copyright (©) 2006-2014 Christian Vogelgsang
Copyright (©) 2007-2014 Fabrizio Gennari
Copyright (©) 2007-2014 Daniel Kahlin
Copyright (©) 2009-2014 Groepaz

Copyright (©) 2009-2014 Ingo Korb

Copyright (©) 2009-2014 Errol Smith
Copyright (©) 2010-2014 Olaf Seibert
Copyright (©) 2011-2014 Marcus Sutton
Copyright (©) 2011-2014 Ulrich Schulz
Copyright (©) 2011-2014 Stefan Haubenthal
Copyright (©) 2011-2014 Thomas Giesel
Copyright (©) 2011-2014 Kajtar Zsolt
Copyright (©) 2012-2014 Benjamin 'BeRo’ Rosseaux
Copyright (©) 2000-2011 Spiro Trikaliotis
Copyright (©) 1998-2010 Tibor Biczo
Copyright (©) 1998-2010 Andreas Boose
Copyright (©) 2007-2010 M. Kiesel

Copyright (© 2007-2011 Hannu Nuotio
Copyright (©) 1999-2007 Andreas Dehmel
Copyright (©) 2003-2005 David Hansel
Copyright (©) 2000-2004 Markus Brenner
Copyright (© 1999-2004 Thomas Bretz
Copyright (©) 1997-2001 Daniel Sladic
Copyright (©) 1996-1999 Ettore Perazzoli
Copyright (©) 1996-1999 Andr Fachat
Copyright (©) 1993-1994, 1997-1999 Teemu Rantanen
Copyright (©) 1993-1996 Jouko Valta

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;

if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Chapter 18: Contact information 262

18 Contact information

18.1 VICE home page
You can find the latest news about VICE at the official VICE home page:

http://vice-emu.sourceforge.net/

VICE has moved its source repository to public services provided by SourceForge. You can
find it at

http://sf.net/projects/vice-emu.

We would like to thank the SourceForge staff for that help.

If you are going to report a bug, please check those pages first; it is possible that the
problem you encountered has already been fixed with a newer version.

18.2 How to send feedback

Before contacting us, have a look at this manual and see if your question is answered there.
Keep in mind that we work on VICE in our spare-time, so the more time we don’t need
to answer the same questions over and over again, the more time we have to improve the
emulation itself. On the other hand, that does not mean that you should not contact us,
especially if you find bugs or have suggestions which might improve the emulation.

Bug reports, suggestions, support requests should be directed to the SourceForge trackers
at

e http://sourceforge.net/tracker/?group_id=223021.
This way, you, the users, and we, the developers, can track what has been reported and

what has been already fixed. Ideally, also sent the report to the mailing address of the Vice
team at

e VICE Mailing List (vice-emu-mail@lists.sourceforge.net) for all general ques-
tions, bug reports, suggestions.
You can also contact (some of) us on IRC, at #vice-dev on freenode.

It’s always nice to receive feedback and/or bugreports about VICE, but please read these
few notes before sending mail to anybody in the team.

e Please put the word ‘VICE' in all capitals in your subject line (e.g., ‘VICE fails to
run game XXX’). This helps mail splitting and reduces chances that your message is
unintentionally deleted, forgotten or lost.

e Please don’t send any HTML mail (we really hate that!). If you use M$ Outlook or
Netscape Communicator, make sure you turn off the "rich text" (HTML) feature.

e Please don’t send any binaries without asking first.

e Please read the following documents carefully before reporting a bug or a problem you
cannot solve:

e the VICE documentation (you are reading it!);

e the VICE FAQ (it is available on the Internet, and reachable from the VICE home
page: http://vice-emu.sourceforge.net/);

http://vice-emu.sourceforge.net/
http://sf.net/projects/vice-emu
http://sourceforge.net/tracker/?group_id=223021
mailto:vice-emu-mail@lists.sourceforge.net
http://vice-emu.sourceforge.net/

Chapter 18: Contact information 263

e the comp.emulators.cbm and comp.sys.cbm FAQs (see Section 18.5 [FAQs you
should read], page 264).

e When you report a bug, please try to be as accurate as possible and describe how it
can be reproduced to the very detail. You should also tell us what machine you are
running on, what operating system you are using as well as the version of it.

e Please don’t ask us how to transfer original C64 disk or tapes to your PC; this has
been asked a gazillion times through email. To transfer disks, you can use the Star
Commander (http://sta.c64.org/sc.html) on DOS, and OpenCBM (http://www.
trikaliotis.net/opencbm) on Windows and Linux. And no, you cannot read C64
disks with your old 5"1/4 PC drive.

e Please don’t ask us where to find games for the emulator on the Internet.
e Please don’t ask us when the next version will be out, because we really don’t know.
e Please write in English.
In any case, we would be really glad to receive your comments about VICE. We cannot
always answer all the email, but we surely read all of it.
Thanks!

18.3 How to contribute

If you want to make a major contribution, please ask first. It has already happened a couple
of times that somebody started working at something that had already been done but not
released to the public yet, and we really do not want anybody to waste time.

If you are going to make a patch, please make sure the patch is relative to the very latest
version, and provide us with the following:

e Make sure you are giving us a diff against the latest Subversion trunk version of
VICE. For instructions on accessing the Subversion repository, first read http://
sourceforge.net/svn/?group_id=223021 and get it with the command:

‘svn co https://vice-emu.svn.sourceforge.net/svnroot/vice-emu/trunk vice-src’|]

e send a unified diff file against the trunk version of VICE (see above bullet point) by
using the command: ‘svn diff’ inside of the SVN workspace you checked out before.

e If you cannot use SVN for one or the other reason, send a unified diff file containing all
the changes you have made ‘diff -u’; please don’t use plain ‘diff’), as it adds much
work for us to get it working;

e GNU-style ‘ChangeLog’ entries with a description of the changes you have made (look
at the ‘ChangeLog’s provided with the original VICE sources for an example).
This is very important, and makes adding patches much smoother and safer.

People willing to port VICE to other platforms are always welcome. But notice from
experience it will take at least a full year of continuous work to write a well working and
stable port.

18.4 Interesting newsgroups

There are some Usenet newsgroups you might be interested in:

http://sta.c64.org/sc.html
http://www.trikaliotis.net/opencbm
http://www.trikaliotis.net/opencbm
http://sourceforge.net/svn/?group_id=223021
http://sourceforge.net/svn/?group_id=223021

Chapter 18: Contact information 264

e comp.emulators.cbm, discussing about emulators of Commodore 8-bit machines (def-
initely not Amiga emulators).

e comp.sys.cbm, discussing various topics regarding real Commodore 8-bit machines.
This newsgroup is mainly for people who actually use original Commodore equipment
(so please don’t talk about emulation here).

e comp.emulators.misc, discussing emulators in general.

18.5 FAQs you should read

We recommend reading the comp.emulators.cbm and comp.sys.cbm FAQs, which are
posted regularly on the corresponding newsgroups and are also available via FTP from
ftp://rtfm.mit.edu.

ftp://rtfm.mit.edu

Concept Index

Concept Index

+
Heart ... 66, 104
PP 16
P 17
8 P 17
P 17
=256k, 256K . .. 84
S256KDbAase ... 84
-256kimage 84
S40COL L e e 89
-6809r0mA 111
-6809romB 111
-6809romC ... 111
-6809romD 111
-6809romE 111
-6809romFE 111
S 17
S80COL . e 89
SO 17
—ACIA, FACIA . i 105
—acial, +acial ... o 81
—attachlOro. ... 17
—attachlOrw ... 17
—attachllro. ... 17
—;attachllrw ... 17
—attach8ro. ... i 17
—attach8rw ... 17
—attach9ro. ... i 17
—attach9rw ... o 17
—;autoload 17
—;autostart. ... o 17, 18
—autostart-delay oL 17
-autostart-delay-random, +autostart-delay-random
... 17
-autostart-handle-tde, +autostart-handle-tde ... 17
-autostart-warp, +autostart-warp............... 17
-autostartprgdiskimage oo 17
-autostartprgmode.......... ... oL 17
-autostartwithcolon, +autostartwithcolon....... 17
SbasiC. . 83, 100, 114
-basicl, +basicl...........ccoiiiiiii i 112
-basiclchar, +basiclchar 112
Sbasich4 .. 88
sbasichi.......o oo 88
sbasiclo. ... 88
-basicload, +basicload.......................... 17
-bdesymkeymap, -bdeposkeymap............... 36
-buksymkeymap, -bukposkeymap 35
burstmod 82
P 153

265
~CLO 104
—C2hi L. 105
“C2l0 105
-c64dtvromimage 90
-c64dtvromrw, +c64ddtvromrw.................. 90
SCATD ¢ 104
—cartl L 114
—CArtlh .. 67
“CATt2 . o 94, 100, 114
—cartd . . 94, 100, 114
—cartb. ... 94, 100, 114
—cart8 L 67
—cartA L 94, 100
SCAT AD « vt e 67
—cartar2 ... 67
—cartard ... 67
—cartard ... 67
—cartard ... 67
—cartB oo 94, 100
—CArtCaAD . o 67
—cartcomal. 67
—CartCrt . L 67
—cartdep256. .. 67
—cartdepb4. ... 67
—cartdeprx8 ..o 67
—cartdin 67
—cartdgbb 67
—cartdsm 67
—CAIteASY .\ 68
AT DY X ottt 68
SCATEEXOS + v vttt e 68
—cartexpert ... 68
—cartfBd ... 68
—cartfel. .o 68
—cartfe3. . 68
—cartfeplus.o 68
—cartfe. ... 94
—cartfl . . 68
—cartfm. ... 68
—cartfp .. 68, 94
—cartgeneric. i i 94
—CArt@EOTAM . .ottt 81
—cartgk ... 68
SCATtES oo 69
—cartideBd ... 69
—CArtICEE . . 70
~CArtiSEPIC . v vttt 70
—cartkes ... 70
—CArtKS ¢t 70
~cartmachb 70
—cartmd ... 70
—cartmega 94
—cartmf. ... 70
—cartmikro. ... 70

Concept Index

—cartmme64 ... 70
SCArtMIMCT . .o e 71
SCATtINV .o 71
—CATtOCEAN . . ottt 71
—cartpBd ..o 71
—cartpl L 71
—cartramcart......... . 71
—cartrep256 71
-cartreset, +cartreset................. 66, 104
SCATETEU .« ot vt e 81
—CATETOSS . o vt T2
CAT T . 72
SCATET U o 72
—CArtSO4 .o 72
—cartSh ..o 72
—CAItSED L 72
—cartsg ... 72
—cartsilver 72
—CArtSIMON . ..ottt 72
—CATESSA . ot 72
—CATtSS . L 72
—cartstar. ... 72
—cartultimax 67
—cartwl ... 72
AT WS . et 72
—CATEZAXKON . vttt e 72
~chargch....... 89
~chargde........ i 88
~chargen..................... 83, 88, 100, 111, 114
~chargfr 89
—chargse........ i 89
chdir ... 16
-cialmodel 73
—ciaZmodel 73
—clamodel....... 73
—config. ..o 16
-confirmexit, +confirmexit...................... 58
—COMSOLE ..ottt 16
SCOTE, FCOT@ . ..ottt ittt 58
—cpubdb02 ... 112
CpUBB09 ... 112
SCPUPTOE o e vee ettt et e 112
-Crtcaudioleak, +Crtcaudioleak 109
-Crtcbrightness............... L. 109
-Crtecontrast ... 109
-Crteertblur 109
-Crteertscanlineshade 109
-Crtedscan, +Crtedscan, 108
-Crtedsize, +Crtedsizeooovviiiioit 108
-Crteextpal 109
Crtefilter ... 108
-Crtefulldevice. ..o 109
SOrtegamma. ..o 109
-Crtchwscale, +Crtchwscale 108
-Crteintpal 109
-Crtcoddlinesoffset. ..., 109
-Crtcoddlinesphaseo 109
-Crtepaletteooovii i 109

266
-Crtesaturationo.oviii i 109
-CRT Cstretchvertical, +CRT Cstretchvertical .. 108
SCrtetint ..o 109
-Crtecvcache, +Crtevecachet 108
-CrtcVidmodefullmode 109
-CrtcXRANDRfullmode 109
SCS256K . L 105
~default ... 16
—devicelO . ..o 49
-devicell ... o 49
~deviced .. 51
~AEVICED .. 51
—devICe8 .. 49
—deviceD .. 49
-diagpin, +diagpin 112
-digiblaster, +digiblaster 104
-digimax, +digimax.............. 81, 95
-digimaxbase............ol 81, 95
~directory ... 58
~displaydepth....... ... 34
-doodlecrtctextcolor 134
-doodlemc. ... 133
-doodleoversize 133
-doodletedlum............ L 133
=dos1001. ..o 46
~dos1BAl. o 46
~dos1B41IT. oo 46
-dos1Bbl. ... 46
~dos1BT0. ..o 46
~dosIBTL. o 46
~dOSIBTICT . oot 46
~doS1B81 . o 46
-dos2000. 46
=dos2031. ..o 46
~dos2040. ..o 46
-dos3040. ..o 46
-dos4000. 46
-dos4040. ... 46
-dgbb, +dgbb....... 67
-dgbbimage.......... o 67
-dgbbimagerw, +dgbbimagerw 68
-drivelOextend..........o 46
~drivelOidle. i 45
-drivelOprofdos, +drivelOprofdos............... 47
-drivel0ram2000, +drivel0ram2000............. 46
-drivel0ram4000, +drivelOram4000............. 46
-drive1l0ram6000, +drivel0ram6000............. 46
-drivel0ram8000, +drivel0ram8000............. 46
-drivelOrama000, +drivelOrama000............. 47
~drivelOtype . ..o 45
~drivellextend............ ..., 46
~drivellidle. 45
-drivellprofdos, +drivellprofdos............... 47
-drivellram2000, +drivellram2000............. 46
-drivellram4000, +drivellram4000............. 46
-drivellram6000, +drivel1lram6000............. 46
-drivellram8000, +drivellram8000............. 46
-drivellrama000, +drivellrama000............. 47

Concept Index 267

~drivelltype. . o.ovoii 45 -g064, +go64 89
-drive8extend......... il 46 -grsymkeymap, -grposkeymap.................. 36
~drive8idle. ... 45 Sho 153
-drive8profdos, +drive8profdos 47 Sh1024k .o 105
-drive8ram2000, +drive8ram2000............... 46 Sh256K .. 105
-drive8ram4000, +drive8ram4000............... 46 Sh4096K ... 105
-drive8ram6000, +drive8ram6000............... 46 chelp oo 16, 153
-drive8ram8000, +drive8ram8000............... 46 -htmlbrowser o i 58
-drive8rama000, +drive8rama000............... 47 -hummeradc, +hummeradc..................... 91
~drive8type . .o 45 P 150
-drivedextend.......... ... o il 46 S (PP 153
~drivedidle.o 45 -IDE64autosizel, +IDE64autosizel 69
-drive9profdos, +drive9profdos 47 -IDE64autosize2, +IDE64autosize2 69
-drive9ram2000, +drive9ram2000............... 46 -IDE64autosize3, +IDE64autosized 69
-drive9ram4000, +drive9ram4000............... 46 -IDE64autosized, +IDE64autosized 69
-drive9ram6000, +drive9ram6000............... 46 AIDE6G4eyll .o 69
-drive9ram8000, +drive9ram8000............... 46 AIDE64cyl2 .o 69
-drive9rama000, +drive9rama000............... 47 AIDE6G4cyl3 oo 69
~drivedtype . .o 45 AIDE64cyld oo 69
-drivesound, +drivesound 45 -IDE64hdsl ..o 69
-dsresetwithcpu, +dsresetwithcpu............... 41 AIDE64hds2 oo 69
-dsspeedtuning o il 41 -IDE64hds3 69
-dszerogapdelay oL 41 -IDE64hdsd ..o 69
-dtvblitterlog, +dtvblitterlog................... 91 -IDE64imagel 69
-dtvdmalog, +dtvdmalog....................... 91 -IDE64image2 ... 69
-dtvflashlog, +dtvflashlog 91 -IDE64image3 i 69
SAEVTEV . ottt 90 -IDE64imaged 69
-easyflashcrtwrite, +easyflashertwrite........... 68 AIDE64sec] .o 69
-easyflashjumper, +easyflashjumper 68 IDEG4SEC2 ..o 69
—editor .. 111 IDE6G4secd ..o 69
-eoiblank, +eoiblank oo L 112 AIDE6G4secd ..o 69
—eXpert, +eXPert 68 -IDE64USB, +IDE64USB ... 69
—exXpertimagenamec.oeiiiiiiaaan. 68 -IDE64USBAddress.oovvveiiiiiie i 69
-expertimagerw, +expertimagerw............... 68 -IDE64version4, +IDE64versiond 69
—extfrom. 89 -iecdevicel0, +iecdevicelO...............ooouun. 49
—extfunc 89 -iecdevicell, +Hecdevicell...................... 49
—extrajoydevl..... ... 37 -iecdeviced, +iecdeviced ... 51
—extrajoydev2. ... 37 -iecdeviceb, +iecdeviceb 51
N 150, 153 -iecdevice6, +iecdevice6 oL 51
-fewriteback, +fewriteback 94 -iecdevice7, +iecdeviceT ..., 51
-ffmpegaudiobitrate............. oL 134 -iecdevice8, +iecdevice8ol 49
-ffmpegvideobitrate........................... 134 -iecdevice9, +iecdevice9, 49
flipname....... ... 49 -ieeed88, +ieeed88l 70, 95
-fpwriteback, +fpwriteback 95 -ieeed88Image. ... i i 70
810 49 -initbreak ... oo 55
£ PPt 49 -install, +install...........o 34
< PP 49 Sintfrom ... 89
1 49 Sintfunc ... 89
fsflash ..o 90 siocollision 66, 94
-fullscreen, +fullscreen 34 -isepic, HiSePiC . .. v vttt 70
~functionhi oo 104 -isepicimagename............. ...l 70
~functionlo 104 -isepicimagerw, +isepicimagerw 70
-georaml, +ZEOTAIllvvureeeeeeennnnnnn.n 81, 95 Sjoydevl. .. 37
—georamimaget 81, 96 SJoydev2. .. 37
-georamimagerw, +georamimagerw 81, 96 K 153
-georamioswap, +georamioswap 95 Sk<version> 153
SGEOTAIMISIZE . o oot v vttt 81, 96 skeepenv ... 115

-gluelogictype 84 -kernall 83, 88, 100, 111, 114

Concept Index 268

“kernal64 ... 88 -petram9, +petram9 112
-kernalch ... 88 -petramA, +petramA 112
“kernalde 88 -petreu, +petreu........... ... ool 110
“kernmalfi ..o 88 -petreuimageol 110
“kernmalfr. ... 88 -petreuramsize ... 110
“kernalit. ... oo 88 -playback. ... 137
“kernalno. ... 88 -plus256k, +plus256k. ...t 84
“kernalrev oo 83 -plus256kimage oo 84
“kernalse ... 88 -plus60k, +plus60k 84
“keybuf. ..o 16 -plus60kbase. ... 84
keymap. ... 35 -plus60kimagecoooiiii 84
S 150, 153 -poskeymap 35
-lightpen, +lightpen................. 38 PrAATV . 51
-lightpentype ... 38 -prdoutput ... 51
slogfile. oo 16 SPratxtdev. ... 51
-menvramfile ... 94 SPEBAIV . 51
-mcnvramwriteback, +mcnvramwriteback. 94 -prooutput ... 51
B 10151 10701 1) A 99 Sprotxtdev. ... 51
-midi, tmidi. .. 81 -profdos1B7l. ..o 47
-mididrv. .. 81 —prixtdevl. ... 51
—midiin ... 81 sprixtdev2. .o 51
—midiout. ..o 81 Sprixtdev3. .o 51
~miditype. ..o 81 ~PIUSET, +PIUSETL ..\ iiiiiiiiiiieiieieennns 51
-mitshm, +mitshm 14, 34 SPTUSEIAIV . oot e 51
-mmc64, +mmc64. ... 70 —pruseroutput....... ... 51
-mmc64bios ... 70 -prusertxtdev. ... i 51
-mmc64bioswrite 71 -pS2mouse, +PS2MOUSE .+« v v v v v e e e eee e e 91
-mme64image. ... 70 L [P PP 150
-mmc64readonlyl 70 PPt 150
-mmc64readwrite i 70 -ram08, +ramO08 o 114
-mmcercardimage.oooi i 71 -raml, +raml. ... 114
-mmcrcardrw, +mmercardrw 71 ram2, TamM2. ..o 114
~INIMCIEEPTOMIMAZE .« .« evvvveteeaen 71 sramd, ramd. ..o 114
-mmecreepromrw, +mmcreepromrw 71 -ramb, +ram6. ... 114
-mmerimagerw, +mmerimagerw 71 -ramC, +ramC....... o 115
-IMCITESCUEe, +MINCITESCUE . ..o e vveeeenn.. 71 -ramcart, +ramecart ... 71
-model ... 112, 115 -ramcartimage.......... ..o oo 71
~MONCOMMANAS . + ottt ettt 55 -ramcartimagerw, +ramcartimagerw............ 71
SINOUSE, +IMOUSE . ot v voe ettt iie e eeens 38 -rameartsize 71
SINOUSEPOTt . oot 38 -raminitpatterninvert ...l 56
SIMOUSEtYPEe. .o 38 -raminitstartvalue oL 56
-myaciadev 54 -raminitvalueinvert oL 56
S 150 STAMSIZE « v v 105, 114
SIIC e 153 srefresh. ... 31
Snh. 153 -remotemonitor, +remotemonitor............... 55
SIESC ¢t 56 -remotemonitoraddress. 55
—ntscold .o 56 -residfilterbiaso oo 79
S0 150 -residgain. ... oo 79
O IR 0 T2 001> 153 STeSIAPaSS. .o 78
-OEMjoy, +OEMjoy, 100 SresidSamp. . oo 78
SpAl 56 STEU, FTEU . ottt ettt et 81
—paln .. 56 STEUIMAZE « o v v v v ettt et ettt 81
-parallel10. ... 45 -reuimagerw, +reuimagerw 81
—parallel1l. ... oo 45 STEUSIZE .+ v v et ettt e e e 82
—parallel8. ..o 45 STOMY Lo 111
—parallel9. ... 45 STOMA . 111
-petdww, +petdww oo 110 -romBL 111

-petdwwimage. ... 110 -rrbankjumper, +rrbankjumper................. 72

Concept Index 269

-rrbioswrite, +rrbioswrite 72 -TEDoddlinesoffset 103
-rrflashjumper, +rrflashjumper 72 -TEDoddlinesphase........................... 103
rsdevl. 54 -TEDpalette.......coooiiiiiiiii .. 102
-rsdevlbaud ... oo 54 -TEDsaturationcoooiiiiiia.. 102
SISOV L oo 54 S-TEDtint. ..o 103
-rsdev2baud ... 54 -TEDvcache, +TEDvcache.................... 102
ISAEVS L oo 54 -TEDVidmodefullmode 102
—rsdev3baud 54 -TEDXRANDRfullmode...................... 102
ISAEVA L oo 54 “HeXt 153
-rsdevdbaud ... 54 “tfe, +tfe. . oo 82, 95
STSUSET, FTSUSET « .ttt v e eeeee e e eeeeeeannenns 54 Stfeif . 82, 95
—rsuserbaud. ... 54 -tfeioswap, +tfeioswapol 95
SISUSEIAeV ..ttt 54 -tferrnet, +tferrnet oL 82, 95
~SAVETES, FSAVETES . o vt ev et teiiee e 58 -truedrive, +truedrive........... 45
-sfxse, +sfXse ... 82, 95 -trueflashfs, +trueflashfs........................ 90
-sfxseioswap, +sfxseioswap 95 -tune <number> ... 115
—sfxsetype. ..o 82, 95 -userportdac, +userportdac 110
—sfxss, #8fXSS ..o 82, 95 A PP 153
-sfxssioswap, +sfxssioswap...................... 95 SVDCI6KB. ..o 86
-sidcart, +sidcart 95, 104, 110 SVDCG4KB . .o 86
-sidcartjoy, +sidcartjoy............. 104 -VDCaudioleak, +VDCaudioleak 87
-sidenginemodelo il 78 -VDCbrightnessl 86
-sidfilters, +sidfilters............... 78 -VDCcontrastooi i 86
-SIdStereo. ... 78 -VDCertblur. ... 87
-sidstereoaddress oot 78 -VDCecrtscanlineshade 87
-sidtripleaddress......... ... i 78 -VDCdscan, +VDCdscan....................... 86
=sKip N> 153 -VDCdsize, +VDCdsize 86
—sound, +sound 40 -VDCextpal ..o 86
SSOUNAATE vttt ettt e 41 -VDCfulldevicecovviiiii i 86
-soundbufsize......... il 41 SVDCgamma ... o.ee e 86
—sounddev ... 41 -VDChwscale, +VDChwscale................... 86
-soundfragsize i 41 -VDCintpal 86
~SOUNAOULPUL .« vt v v vttt 41 -VDCoddlinesoffsetl 87
=SOUNATate. . ..ot 41 -VDCoddlinesphase...............ccoiiiiii... 87
—SOUNAIECarg. . .ot 41 -VDCpalette. ... 86
—soundrecdev 41 -VDCRevISION . ..o oo 86
SSOUNASYNC v v vt 40 -VDCsaturationc.ooiiiiiiiiiiin, 86
-speech, +speech........... 104 -VDCstretchvertical, +VDCstretchvertical 86
-speechrom............ il 104 SVDCHNt . 87
SSPEEA . e 31 -VDCvcache, +VDCvcache..................... 86
-superpet, +superpet.............. .. oL 112 -VDCVidmodefullmode........................ 86
-symdekeymap......... .. oo 35 -VDCXRANDRfullmode....................... 86
SSYMKEYINAD -« e 35 -verbose 16
L T 150 -VICaudioleak, +VICaudioleak................. 98
-TEDaudioleak, +TEDaudioleak 103 -VICborders. ..o 98
-TEDborders.........coouiiiiiiiinienn... 102 -VICbrightness ..o 98
-TEDbrightnesscccooiviiiiiiin.. 103 SVICCONETASt « e e e 98
-TEDcontrast ... 103 SVICertblur ..o 98
-TEDcrtblur. ... 103 -VICecrtscanlineshade 98
-TEDcrtscanlineshade 103 -VICdscan, +VICdscan 97
-TEDdscan, +TEDdscan...................... 102 -VICdsize, +VICdsize, 97
-TEDdsize, +TEDdsize 102 VICextpal ..o 98
S-TEDextpal ..o 102 SVICHIber. ..o 97
STEDAflter. ..ot 102 -VICfulldevicecooiiiiiiii .. 98
-TEDfulldeviceooiiii .. 102 SVICgamma . ..o 98
S-TEDgamma . ..o 103 -VIChwscale, +VIChwscale..................... 97
-TEDhwscale, +TEDhwscale.................. 102 -VICIIaudioleak, +VICIlaudioleak.............. 76

-TEDintpal...........ooiii 102 -VICIIborders ..o 76

Concept Index

-VICIIbrightness. ..., 76
-VICIIchecksb, +VICIIchecksb 75
-VICIIcheckss, +VICIIcheckss.................. 75
-VICIIcontrast.oovveiiiii . 76
-VICIIertblur. .. .oovvii e 76
-VIClIIcrtscanlineshadeo. ... 76
-VICIIdscan, +VICIIdscan 75
-VICIIdsize, +VICIIdsize............cccooiiinn.. 75
SVICIextpal oo 76
SVICIHIflter . oo 75
-VICIIfulldevice 76
SVICIIgamma . vvv e et e eeee e eiiiee e 76
-VICIIhwscale, +VICIThwscale 75
SVICIHntpal . oo 75
SVICIHmodel. ... 76
-VICIInewluminance, +VICIInewluminance 76
-VICIIoddlinesoffsetccooiiiin.. 76
-VICIIoddlinesphaseoooiiiian. 76
-VICIIpalette.covvvii i 76
-VICIIsaturationcoiiiiiiin.. 76
SVICIIHNG e 76
-VICIIvcache, +VICIIvcache 75
-VICIIVidmodefullmode 76
-VICIIXRANDRfullmode 76
SVICintpal oo 97
-VICoddlinesoffsetcooiiiiiiat. 98
-VICoddlinesphase.ccooviiiiinan. 98
-VICpalette ... 97
-VICsaturation ..., 98
SVICHD . o 98
-VICvcache, +VICvcache....................... 97
-VICVidmodefullmode......................... 98
-VICXRANDRfullmode........................ 98
-virtualdev, +virtualdev........................ 52
SWSVETSIOND Lo 153
SWAIP, FWATD « e ov ettt et e 31
SXSYINIC, FXSYIIC . v et ettee ettt e e e 34

A

ACIA (Swiftlink, Turbo232) 79
Audio buffer size i 38

C

Converting X64 files into D64.................. 13
D

DIGIMAX ..ottt 79
Double-scan mode. oL 32
Double-size mode................cooiiiii.. 32
E

Ethernet (The Final Ethernet, RR-Net)........ 79

270

G
GEO-RAM 79
H
HP-UX and Solaris audio problems 14
L
Limiting emulation speed 31
Loosing control on low-end systems............ 32
M
MIDI (Passport, Datel, Maplin, Namesoft,

Sequential)..............oooiiiiiiiL, 79
MITSHM. ..o 14
O
OSS/Linux problems 14
R
Refreshrate........ ...t 31
reSID resampling passband 7T
reSID samping method 7
REU .. 79
Samplerate ... 38
Second SIDo 7
Second SID base address................coo... 7
SFX Sound Expander.......................... 79
SFX Sound Sampler...............coooiii... 79
SID filtersooueeiei e 77
SIDmodels. ... 7
Sound buffer sizeol 38
Sound speed adjustment 38
Sound suspend timel 38
Sound syncronization............ ..., 38
Sprite collision detection....................... 73
T
Toggling reSID emulation...................... 77
Turning sound playback on/off................. 38
U
Using XSync()..oveeenein i 32
\%
VIC-II color sets.ovviiiiiiinienn.. 73

Videocache i, 32

Concept Index 271

A%

Warp speed mode ... 31

Index of Resources

Index of Resources

4

40/80ColumnKeyovvniiniiiiia 89
A

AcialBase. ...t e 79
AcialDev. ..ot 53
AcialEnable............. ...l 79, 105
Aciallrq.......coooviiiiiiiiiiiiiiiiiiii. 53
AcialMode.ovviiiii i i 79
AttachDevicelOReadonly...............coooonn. 58
AttachDevicellReadonly................ooo.t. 58
AttachDevice8Readonly....................... 58
AttachDevice9Readonly....................... 58
AutostartBasicLoadciiiiiin.. 30
AutostartDelay.....................ll 30
AutostartDelayRandom........................ 30
AutostartHandleTrueDriveEmulation......... 30
AutostartPrgDiskImage....................... 30
AutostartPrgMode........... ..., 30
AutostartRunWithColon....................... 30
AutostartWarp..........cooiiiiiiiiiiiiinn, 30
B

Basicl ... 106
BasiclCharscoiiiniiiiniinennnenn . 106
BasicB4Name ..ot 87
BasicHiNamecoiiiiiniiininnnnn.n. 87
BasicLoNamecooviiiiinnenninnnnnnnn. 87
BasicName...........ooiiiiiiniiinennnn.n. 82, 100
BurstMod......viiiii 83
C

Cl128FullBankscovviiiii it 89
clhiName. ...ttt 104
clloName.ovviiiii ittt 104
c2hiName.ooviii i it 104
C2loName . . ottt e, 104
CBA_256K . ..ottt e 83
CB4_256Kbaseovviiiiiiiii i 83
C64_256Kfilename..........couvernnennnennnnn. 83
c64dtvromfilename............couiiiiiiainn... 91
COAQEVIOMEW « ot o ettt ee e et iee e ieeeeenns 92
CartiName.ovvmiiineiie e, 113
Cart2Name.ovvtin et 113
CartdName. ...ttt et e 113
CartBName.ooviiiin it e i 113
CartridgeFile 63, 93
CartridgeReset....................... 63, 93, 103
CartridgeType ...t 63, 93
ChargenCHName 87

ChargenDENamecoiiinnn.... 87

272
ChargenFRName 87
ChargenIntName...................ccoiiiinnnnn. 87
ChargenNameccoovvuvean.. 82, 100, 106
ChargenSENamevvviiiiiiiinnnnans 87
CIAIModelot e e e 73
CIA2Model.ottt 73
ConfirmOnExit, 57
CPUSWitCh. .. ovti e 112
CrEC et 107
CrtcAudioleakovviiiniiinnennnannn 108
CrtcColorBrightness 108
CrtcColorContrastovvvivivnnnnnn... 108
CrtcColorGamma.c.vuuvumennunennenannn 108
CrtcColorSaturation........................ 107
CrtcColoxrTinto, 108
CrtcDoubleScan........covuiviniennennnnenn. 107
CrtcDoubleSize.........covviiiiiinnennnnnn.. 107
CrtcExternalPalette........................ 107
CrtcFilter o, 108
CrtcFullscreen.........c.oouiiiiiiennenennnnnn 107
CrtcFullscreenDevice..............covvnn... 107
CrtcFullscreenStatusbar 107
CrtcHWScale ..ot i 107
CrtcPALBLUY ...ttt et 108
CrtcPaletteFile.............. ..., 107
CrtcPALOddLineOffset....................... 108
CrtcPALOddLinePhasec.oou... 108
CrtcPALScanLineShade....................... 108
CrtcStretchVertical 107
CrtcVideoCache.............iiiiiininnnn. 107
CrtcVidmodeFullscreenMode 107
CrtcXRANDRFullscreenMode 107
(015521512 N 105
D
DatasetteResetWithCPU....................... 41
DatasetteSpeedTuning 41
DatasetteZeroGapDelay....................... 41
DiagPin.......... il 106
DIGIBLASTER ... oottt 103
DIGIMAX .ttt e e e 79
DIGIMAXDASE .o ovteee et iiiee e 79
Directory. ..o 56
DisplayDepth.................. ...l 33
DoCoreDump................ooiiiiiiiii.... 57
DoodleCRTCTextColorovvvvvneninnnnnnn. 133
DoodleMultiColorHandling 133
DoodleOversizeHandling..................... 133
DoodleTEDLumHandling....................... 133
DosNamel001ot 44
DosNamel1541ttt 44
DosNamel541iiot 44
DosNamelb551 i 44
DosNamel570oviiiiiii it ie e 44

Index of Resources

DosNamelb71t 44
DosNamelb71Cr ..o ovvii et 44
DosNamel581ottt 44
DosName2000ottt 44
DosName2031ottt 44
DosName2040ovieetiiie i 44
DosName3040ovviniiin ittt eiie e 44
DosName4000oviiiiin it eiie i 44
DosNamed040ttt 44
DOBB . .ottt e 63
DOBBfilenameouuiiiinennanannnnnn. 63
DQBBImageWrite..............ccoiiiiiiiinnnn. 63
DrivelOExtendImagePolicy 44
DrivelOIdleMethod...............ccviininnn.. 44
DrivelOParallelCable.................con.... 43
DrivelOProfDOS......coviiiiie i 43
DrivelORAM2000 oot 43
DrivelORAM4000ottt 43
DrivelORAMB000ottt 43
DrivelORAMBO0Ocvvviiie i 43
DrivelORAMAOOOovi i 43
DrivelOType ...ttt 43
DrivellExtendImagePolicy 44
DrivellIdleMethod..............ccvvveeeinnn.. 44
DrivellParallelCable............covvuuunn... 43
DrivellProfDOS...... ..ot 43
DrivellRAM2000ottt 43
DrivellRAM4000ottt 43
DrivellRAMB000o vitiie i 43
DrivellRAMB000ottt 43
DrivellRAMAOOOttt 43
DrivellType ... 43
Drive8ExtendImagePolicy..................... 44
Drive8IdleMethod................cvoviiinnn... 44
Drive8ParallelCableccouuun... 43
Drive8ProfDOSot 43
Drive8RAM2000citiii it 43
Drive8RAMAOO00ottt 43
Drive8RAMBO00coiiti i 43
Drive8RAMBO00Ocvii it 43
Drive8RAMAOOOottt 43
Drive8Type.ot 43
Drive9ExtendImagePolicy..................... 44
Drive9IdleMethod................c.iiinnn... 44
Drive9ParallelCableccovnun... 43
Drive9ProfDOSo 43
Drive9RAM2000ttt 43
Drive9RAM4A000ot i 43
Drive9RAM6G000vti i 43
Drive9RAMBO00t 43
DriveQRAMAOOOotiit i 43
DrivedType. . ..o ovviiiiiiiiiiii i 43
DriveProfD0OS1571Nameccvvvrnenn. 45
DriveSoundEmulation......................... 43
DriveTrueEmulation 43
DtvBlitterLog......covviiiiiiiiiiiiiiiia 92
DEVDMALOG . . . 92

DtvFlashLog, 92

273
DtvRevisionciiiiiiiiiiii i 91
E
EasyFlashJumper................... ... 0. 63
EasyFlashWriteCRT............................ 63
EditorNameoiiiiiiiiinii i, 106
EoiBlanK......ooviiiin i 106
ETHERNET _ACTIVE.........iiiiiininnnnn. 79
ETHERNET_AS_RR ..ottt 80
ETHERNET _DISABLED..........ccoiiiiiennnnnnn.. 80
ETHERNET_INTERFACE, 79
EventEndSnapshot................, 136
EventImageInclude 136
EventSnapshotDir................ 136
EventStartMode............. ..., 136
EventStartSnapshot 136
ExpertCartridgeEnabled...................... 63
ExpertCartridgeMode 63
Expertfilename............................... 63
ExpertImageWrite............................. 63
ExternalFunctionName........................ 88
ExternalFunctionROM......................... 88
ExtraJoy..........ooooiiiiiiiiiiiii L 36
ExtraJoyType ..., 36
F
FFMPEGAudioBitrate 133
FFMPEGAudioCodecC...........ovviivninennnn.. 133
FFMPEGFormatovviiniininiieinennnn, 133
FFMPEGVideoBitratecovun... 133
FFMPEGVideoCodecC.........ovvviivninnnnnn.. 133
FFMPEGVideoHalveFramerate 133
FileSystemDevicelO 48
FileSystemDevicell 48
FileSystemDevice8............................ 48
FileSystemDevice9............................ 48
FinalExpansionWriteBack..................... 93
FlashTrueFS i 92
FliplistName, 57
FSDevicelOConvertPOOccoviin.. 48
FSDevicelODir ..., 48
FSDevicelOHideCBMFiles...................... 48
FSDevicel0SavePO0O...........ccviviiinennnn.. 48
FSDevicellConvertPOO........... ..., 48
FSDevicellDiro, 48
FSDevicellHideCBMFiles...................... 48
FSDevicel1SavePO0O.............coviiinennnn.. 48
FSDevice8ConvertPOOccvvuin... 48
FSDevice8Diro, 48
FSDevice8HideCBMFiles.............ccoovuvn.n. 48
FSDevice8SaveP0O0..........coviiiiniiinnnnnn. 48
FSDevice9ConvertPOOcovvnon... 48
FSDeviceODirciiiiiiii i, 48
FSDevice9HideCBMFiles..........ccvvunvnnnn.. 48
FSDevice9SaveP00..........civiiiiniinnnnn. 48
FSFlashDir........ ..o, 92

Index of Resources

FunctionHighName............................ 104
FunctionLowName..............coiviinneunn... 104
G

GenericCartridgeFile2000 93
GenericCartridgeFile4000 93
GenericCartridgeFile6000 93
GenericCartridgeFileAOOO 93
GenericCartridgeFileB0OO 93
GEORAM e 80
GEORAMfilenamecovuunmeinnennnennnnnn. 80
GEORAMImageWrite.........coouunnnnnnnnnnn. 80
GEORAMIOSWAD ..o vvii it 94
GEORAMSIiZE. ..ottt ittt 80
GlueLogic......... ... i 83
GOBAMOdE . . .\t 89
H

H256K .ottt 105
HE80ORomANAmMEottt 111
H6809RomBNamevveiieeiieeiie s, 111
H6809RomCNamecovviviiii i 111
HE80ORomMDNAMEot ie e ie e eie e 111
H6809RomENamecovviiiennenannn 111
H6809RomFNameccoviitiiiiinnnnn. 111
HTMLBrowserCommandcovveunnn.. 57
HummerADC.ttt 92
HwScalePossible........ooiiiiieineinnnnnn.. 33
I

IDE64AutodetectSizell 64
IDE64AutodetectSize2............coiiin.. 64
IDE64AutodetectSize3.......... ..., 64
IDE64AutodetectSized ..., 64
IDE64Config ... 64
IDE64Cylindersl..........ooiiiiiiiniinnnnnn. 64
IDE64Cylinders2. ..., 64
IDE64Cylinders3..........ooiiiiiiiiiinnn... 64
IDE64Cylinders4........coiiiiiiiiiiinnnnnnn. 64
IDE6G4Headslcviiii i 64
IDEG4Heads2covinii i 64
IDE6G4Heads3oiiii i 64
IDEG4HEAdS4 . oottt e 64
IDE64Imagel ...t 64
IDEGATIMAge2 . ..o oviviiiii i 64
IDE64Image3 ...t 64
IDE64Imagedcooiiiinniniiiiie 64
IDEGARTCOffset ... 64
IDE64Sectorslt 64
IDE6B4SeCtorS2 .ottt 64
IDEG4SectorsS3 ...ttt 64
IDEGASECtOrsSd .o vvie et 64
IDEGAUSBS eI Ve . ot e et et ie e iie e iee e 64
IDE64USBServerAddress........covvvvunennnn... 64
IDE6G4versiondouuiiiininennnnannnnn. 64

274
IECDevicelO ..., 48
IECDevicell ..., 48
TECDeVICE4. ..o 50
IECDeviceb. ... 50
IECDeviceB. ... 50
IECDevice7.o 50
TECDevice8. 48
TECDEVICE. ..t 48
IEEE488 o 65
TEEE488Imageooovniiieeiiiiee ... 65
InternalFunctionName........................ 88
InternalFunctionROM......................... 87
I0CollisionHandling...................... 63, 93
T0SiZEe . vt 105
IsepicCartridgeEnabled...................... 65
Isepicfilename...........c.coviiiiuninnnnnnnn, 65
IsepicImageWrite............................. 65
IsepicSwitch.... ..o 65
J
JoyDevicel...... ... 36
JoyDevice2. ... 36
JoyDevice3.o 36
JoyDeviced. 36
JoyOpposite 36
K
KeepAspectRatio............... ... il 34
KeepMonitorOpen.................ooooiiiii.. 55
Kernal64Nameooiiuiiiiniiinn..n. 87
KernalCHNameooiiiiiiniiinn..n. 87
KernalDENamec.ovviiiiiiiinnnnnnnnnn, 87
KernalFINameoviiiiiiiiinnnnnnnnn. 87
KernalFRNameooiiiiiiiiiiiii., 87
KernalIntNamecoiiiiiiiiinnnnnn.. 87
KernalITNameooviiiiiiininnnnnnn, 87
KernalNamec.coovvieennnn.. 82, 100, 106
KernalNONameoviiniiiiniiinn. . 87
KernalRev.......... ..., 82
KernalSENameccovviiiiiiiininnnnnnn, 87
KeymapBusinessDEPosFile..................... 35
KeymapBusinessDESymFile..................... 35
KeymapBusinessUKPosFile..................... 35
KeymapBusinessUKSymFile..................... 35
KeymapGraphicsPosFile....................... 35
KeymapGraphicsSymFile....................... 35
KeymapIndexo..oiiiiiiiii., 35
KeymapPosFile 35
KeymapSymDeFile................ 35
KeymapSymFile ..., 35
KeySetlEast ..., 37
KeySetlFirecoiiiuiiiiiiiiiii i, 37
KeySetiNorth............ ...t 37
KeySetiNorthEast............................. 37
KeySetiNorthWest............................. 37

KeySetlSouth............. ..., 37

Index of Resources

KeySetlSouthEast............................. 37
KeySetlSouthWest...........coooiiiiiinna... 37
KeySetlWesto.vviiiinii i, 37
KeySet2East ... 37
KeySet2Fire ..., 37
KeySet2North 37
KeySet2NorthEast............................. 37
KeySet2NorthWest............................. 37
KeySet2South................... 37
KeySet2SouthEast............................. 37
KeySet2SouthWest..............ooiiiiina... 37
KeySet2Westovviiiiiiii .. 37
KeySetEnable ..., 37
L

Lightpen.......coooiuiiiiiiiii i 37
LightpenTypeoouviiiiini e 37
LogFileNameoiiuiniiiiiiiiiiinnn. 57
M

MachineType ..., 89
MachineVideoStandard 56
MagicVoiceCartridgeEnabled 65
MagicVoiceImage.............................. 65
MegaCartNvRAMfilename....................... 93
MegaCartNvRAMWriteBack...................... 93
MIDIDITAVETr. . ..ottt 80
MIDIEnable..... ..ottt 80
MIDIINDEV\ttt e 80
MIDIMode...... ..ottt 80
MIDIOUEDEV. . ..ottt 80
MITSHM . ..o e 33
MMCB4 ..o 65
MMC64_bios_write.............coiiiiiiinnnn.. 65
MMC64_flashjumper............................ 65
MMCB4_revisSionc.uuiriniiiiinennnnanann 65
MMCB4_RO ... 65
MMCB4 _SA_type .. vvvviiiiiiiiiiiiiiiaas 65
MMC64BI0Sfilename...........couiiiuniinnennn. 65
MMC64imagefilename 65
MMCRCardImageuvuuuummunnnnnnnnnnnnns 65
MMCRCardRW......... ... 66
MMCREEPROMImagecovviiiiinnninnninn.. 65
MMCREEPROMRW, 66
MMCRImageWrite......................., 66
MMCRRescueModeooiiiiiiina... 65
MMCRSDTYPE. .o oo e 66
ModelLine...........oiiuiiiiiiiniiinnn... 113
MonitorServerol 55
MonitorServerAddress 55
Mouse .. .ot 36
MOUSEPOT L . .. 37
Mousetype. ... 37

NetworkControl
NetworkServerBindAddress
NetworkServerName
NetworkServerPort

openGL_sync

PETDWWfilename

PETREUfilename

PLUS256Kfilename

PLUS60Kbase
PLUS60Kfilename

Printer4Driver
Printer40utput
Printer4TextDevice

PrinterbDriver
Printer50utput
PrinterbTextDevice
PrinterTextDevicel
PrinterTextDevice2
PrinterTextDevice3
PrinterUserport
PrinterUserportDriver
PrinterUserportOutput
PrinterUserportTextDevice
PrivateColormap

PSIDKeepEnv

275

OpPenGL_NO_SYNC 34
.................................. 33

Index of Resources

RAMCART ..ot e e e 66
RAMCART _RO. ... ot e e 66
RAMCARTfilename...........c.couiirninennennnn.. 66
RAMCARTImageWrite............................ 66
RAMCARTSIZE .o ii it e i 66
RAMInitPatternInvert........................ 56
RAMInitStartValue.............covvinvinnennn. 56
RAMInitValueInvertcovvuvnn.n. 56
RamSizecooiiiiiniin i 105, 113
RawDriveDriver................cciuiiinninann. 43
RefreshRate 31
REU. .o e 80
REUfilenamecoiiiineinennnnnnnnn. 80
REUImageWriteccoiiiiiiiiiiinnn, 80
REUSiZE .. i e i e 80
RomModuleOName............coiiininennennnn.. 106
RomModuleANameccoiiiiininenennnnn. 106
RomModuleBNamecovvveiinennnnnnn. 106
RomsetArchiveActive 58
RomsetArchiveName............................ 58
RomsetFileName..............cooiiiiinennnnann. 58
RomsetSourceFile...........o i, 58
RRBankJumper, 66
RRBiosWriteooiiiiiniiin i, 66
RRFlashJumperccoiviuiniinnnnnnnnnn. 66
RRrevision..........coouiiiiiiinininennnn, 66
RsDevicel..... ...t 53
RsDevicelBaudo, 53
RSDeVIiCe2. . it i i 53
RsDevice2Baudcoviiiiininnennnnnn. 53
RsDevice3.t 53
RsDevice3Baudcooviiniininnnnannnn. 53
RsDevicesd. ... e e 53
RsDevicedBaudcoviviininnnnnnnnnnnn. 53
RsUserBaud..........cooviiiiiniiieinnnennn. 53
RsUserDev...... ..ottt 53
RsUserEnable, 53
S

SaveResourcesOnExit 57
SFXSoundExpander............................. 80
SFXSoundExpanderChip........................ 80
SFXSoundExpanderIOSwap...................... 93
SFXSoundSampler................ooiiuinnnnnnnn. 81
SFXSoundSamplerIOSwap...........oovvuvunnnnn. 93
SidAddresscoiiiiiiiiian., 94, 103, 110
SidCart........covviiiiiiii i 94, 103, 110
SIDCartJoy ...ovviiiii i 103
SidCLOCK « vt 94, 103, 110
SidEngine...........o it 78
SidFilters.......cvuiiii i 78
SidModelt 78
SidResidFilterBiasccuniiun.n. 78
SidResidGainot 78
SidResidPassband...............oiiiiiiii... 78
SidResidSampling...................ooi., 78
SidStereo. ...t e 7

276
SidStereoAddressStart.............c.oiin.... 7
SidTripleAddressStart....................... 7
SoUNd ... 38
SoundBufferSize..............oiiiiiiiii., 39
SoundDeviceArg............ ...l 40
SoundDeviceName............covviivrnenennnn.. 39
SoundFragmentSize........................ ... 40
SoundOutput ... 40
SoundRecordDeviceArg........................ 40
SoundRecordDeviceName....................... 40
SoundSampleRate................ 39
SoundSpeedAdjustment 38
SoundSuspendTime.............ccviiiiiiiina... 39
SoundVolumeooiiiiineiineinieennnn, 40
SpeechEnabled............................... 103
SpeechImageooiiiiiii.... 103
Speed ... 31
SuperPET. 106
T
TEDAudioLeakovviiien i ieieannnnn 102
TEDBorderModecovviiinvinnnnnnnn. 102
TEDColorBrightness 101
TEDColorContrast............cooviueinennnn.. 101
TEDCOLOYGammMa . . .ot vv v ee et et ieeeeieeennns 101
TEDColorSaturationcovvvevunnenn.. 101
TEDColoxrTintooiiii i 101
TEDDoubleScanovvuniiineenennnnnnnn 101
TEDDouUbleSizeovviieeiieiieeiieeannn 101
TEDExternalPalette 101
TEDFilter. ..o i 102
TEDFULLlSCIreen ... ovvvti et ie e 101
TEDFullscreenDeviceccovuuneunn... 101
TEDFullscreenStatusbar..................... 101
TEDHWSCaleottt i 101
TEDPALBLUTL ..ottt ettt et i 101
TEDPaletteFile............cooiiiiiiinnnnn.. 101
TEDPALOddLineOffset 102
TEDPALOddLinePhaseccovvvnenn.. 101
TEDPALScanLineShade, 101
TEDVideoCacheciiiiininennnnann. 101
TEDVidmodeFullscreenMode 101
TEDXRANDRFullscreenMode 101
TFEIOSWAD . . oo oottt 93
TrueAspectRatio............... 34
U
USeFULLSCreen .. ovvvietiee e iie e ieeeaeenns 33
UserportDAC...................iiiiiia, 110
USeXSYNC .. 33
.\/

VDCBAKB . .ottt e e 84
VDCAudioLeakovvenieieiieieeieieeenn 85

VDCColorBrightness 85

Index of Resources

VDCColorContrast........covvviniininnenennan. 85
VDCCOLorGammavvve e et ee e eieeeeaannn 85
VDCColorSaturationcovuvenvunn.. 85
VDCColoxrTintvvvt i 85
VDCDoubleScanvvvte et ie e ie i 84
VDCDoubleSizeovvvieiiie e 84
VDCExternalPalette, 85
VDCFilter. 85
VDCFULlSCreenovvieeiee e iieeieeannn 85
VDCFullscreenDevicecoovvvnennn. 85
VDCFullscreenStatusbar...................... 85
VDCHWSCAle. .. oottt et i eie e 84
VDCPALBIUT .« ittt ettt et et e 85
VDCPaletteFile............iiiiiinnnnnn, 84
VDCPALOddLineOffsetccvvvinnann.. 85
VDCPALOddLinePhasecoviiiinunnnn. 85
VDCPALScanLineShade 85
VDCREVASION « vt ie it ie e it iie i 84
VDCStretchVerticalcconn.. 84
VDCVideoCachecciiiiiiiniinnannnn. 84
VDCVidmodeFullscreenMode 85
VDCXRANDRFullscreenMode..................... 85
VICAudioLeako i, 97
VICBorderModec.ovveiiiininnennnnnnnnnn 97
VICColorBrightness 96
VICColorContrast.........cvvvivinunnnnnnnnn. 96
VICCOlorGammaovvveeeeeeeiiieeeeeinnnn 97
VICColorSaturationccouvneunn.. 96
VICColorTint i, 97
VICDoUbleScamvvviie e ieeieeennn 96
VICDoubleSizecouiiiiniiiniienanannn 96
VICExternalPalette, 96
VICFilter. .ottt 97
VicFlashPluginWriteBack..................... 93
VICFULLSCIEeen ..o vtvti ettt ieieeiaens 96
VICFullscreenDevicecovineunnenn.. 96
VICFullscreenStatusbar...................... 96
VICHWSCAlE . . ittt ittt i 96
VICITAudioLeaK.........iviiniunenenanannannn 75
VICIIBorderMode...........cciviiriinennnnann.. 75
VICIICheckSbColl......... ..., 73
VICIICheckSSCOLll.....oivuiiniieineannnnn. 73
VICIIColorBrightness........................ 74
VICIIColorContrastcovvvueennnnnnnnn. 74

277
VICIIColorGamma.ovuvrernennnnennennnn 74
VICIIColorSaturation.............ccovuvunnn. 74
VICIIColorTintooviiiiieeiiiineennnnn. 74
VICIIDoubleScan...........couriiinnenennannn. 74
VICIIDoubleSize..........cciiiiiiiinnnnn.n 74
VICIIExternalPalette................coooo... 74
VICIIFiltero, 75
VICIIFULLSCIeen .. vvvieeiieeieeeieeeeeannnnn 74
VICIIFullscreenDevice..........covuuuunnnn.. 74
VICIIFullscreenStatusbar 74
VICITHWSCAlE .o voie e etiiee e iiiee e 74
VICIIModel....... ..o, 73
VICIINewLuminancescoovvueunennen.. 74
VICIIPALBIUT ...ttt i e 75
VICIIPaletteFile.............iiiiiiinnnnann. 74
VICIIPALOddLineOffset....................... 75
VICIIPALOddLinePhasecccvvuunnn.. 75
VICIIPALScanLineShade....................... 74
VICIIVideoCache.........ooveiiiiinnnennunnnnnn 74
VICIIVidmodeFullscreenMode 74
VICIIXRANDRFullscreenMode 74
VICPALBlLUL . ..ottt e e e e 97
VICPaletteFile..........oooiiiiiiinnnnnnn. 96
VICPALOddLineOffsetcciivunvenn.. 97
VICPALOddLinePhasec.civiinunnnnnn. 97
VICPALScanLineShadeccovuvun... 97
VICVideoCachec.coviiiiineiineinennnnn. 96
VICVidmodeFullscreenMode 96
VICXRANDRFullscreenMode..................... 96
VideoSize. ...t 105
VirtualDevices.........coiiiiiniienennnnnnn. 52
W
WarpMode........... ... 31
WindowOHeighto, 34
WindowOWidth 34
WindowWwOXPOS . oottt 34
WindowOYpos ... 34
WindowlHeight 34
WindowiWidth, 34
WindowlXpos 34

WindowlYpos ... 34

Table of Contents

1 GNU GENERAL PUBLIC LICENSE 1
Preamble.o 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . ..o e 2
How to Apply These Terms to Your New Programs.................. 6

2 About VICE 7
2.1 (€64 emulator features........ ... 7
2.2 C64DTV emulator features.......... ..., 7
2.3 Cl128 emulator features. ... 8
2.4 VIC20 emulator features ..o 8
2.5 PET emulator features............ ..o, 8
2.6 CBM-II emulator features.............coooiiiiiiiiiiiiii.. 9
2.7 SCPU64 emulator features ..., 10
2.8 The keyboard emulationo 10
2.9 The joystick emulation.........o 11
2.10 The disk drive emulation............... ..., 11
2.11 Supported file formats o i 13
2.12 Common problemsc.uviiiii i 13

2.12.1 Sound problems........ ... 14
2.12.2 Shared memory problems 14
2.12.3 Printer problems i 14
2.12.4 PET keyboard problemst 15

3 Invoking the emulators........................ 16
3.1 Command-line options used during initialization............... 16
3.2 Autostarting programs from the command-line 18

4 Systemfiles.......... ... L. 19
4.1 ROM files. .o 19
4.2 Keymap files. ... e 22
4.3 Palette files. ... 23
4.4 Romset files.o 23

5 Basicoperation................................ 25
5.1 The emulation window, 25
5.2 Using the menus.......... ... i 25
5.3 Getting helpo 25
5.4 Using the file selector i i 26
5.5 Using disk and tape imagesccooviiiiiiiiiiiiiiea... 26

5.5.1 Previewing the image contents............................ 27

5.5.2 “Autostarting” an imageciiiiiiiiii 27

5.5.3 Using compressed files.
5.5.4 Using Zipcode and Lynx imagescoooovnn...

5.6 Resetting the

machine.

6 Settings and resources

6.1 Format of resource files.......... ... i
6.2 Using command-line options to change resources...............

6.3 Autostart sett

IS e oot

6.3.1 Autostart reSOUTrCES oottt

6.4 Performance s
6.4.1 Performa
6.4.2 Performa

6.5 Video settings

ettings
NICE TESOUTCES -« v vt vvvteeeeeeeeeeeeieeeeeenns
nce command-line options.......................

6.5.1 wusing openGL Rastersynchronization under X11
6.5.2 Video IreSOUTCeSvvui e
6.5.3 Video command-line options...............
6.6 Keyboard settings........ ..o
6.6.1 Keyboard resourceso
6.6.2 Keyboard command-line options..........................
6.7 Joystick settings
6.7.1 Joystick resources
6.7.2 Joystick command-line options
6.8 Sound Settingsot
6.8.1 SOUN TESOUTCES - .« vt ettt ettt et e eieee e

6.8.2 Sound co
6.9 Tape settings

mmand-line options ...,

6.9.1 Tape reSOUICES ..ttt
6.9.2 Tape command-line options,

6.10 Drive setting
6.10.1 Drive re

1
SOUT C S . vttt ittt it e e e e e e e

6.10.2 Drive command-line options................ ... L.

6.11 Peripheral se
6.11.1 Settings

TEINgS . oo
for file system devices,

6.11.1.1 Resources for file system devices....................
6.11.1.2 Command-line options for file system devices
6.11.2 Printer settings ...

6.11.2.1 Pri
6.11.2.2 Pri

NEEr TESOUTCES .. oottt et
nter command-line options

6.11.3 Disabling kernal traps............cooiiiiiiiiiii ..
6.11.3.1 Resources to control Kernal traps...................

6.11.3.2 Command-line options to control Kernal traps......
6.12 RS232 Settingsvvinit i

6.12.1 RS232r

(57310 20 B]

6.12.2 RS232 command-line options.................
6.12.3 RS232 usage example ...
6.13 Monitor settingso

6.13.1 Monitor
6.13.2 Monitor

TESOUTLCES « « v v v v vt e e ettt e e e e
command-line options

ii

6.14 Machine settingsccoviiiiiiiiii 56

6.14.1 Machine reSOUTCESvvvttt ettt eeeen e 56
6.14.2 Machine command-line options.......................... 56
6.15 Memory settingsccoviiiiiii 56
6.15.1 Memory TESOUICES . . .« vt vvtttt e 56
6.15.2 Memory command-line options.......................... 56
6.16 Miscellaneous settings........ ... 56
6.16.1 Miscellaneous reSourcesovvvueiiiiiieeeeenn... 56
6.16.2 Miscellaneous command-line options..................... 58

7 Machine-specific features 59
7.1 (C64/128-specific commands and settings....................... 59
7.1.1 Using cartridges.coovriiiiii i 59
TLLL Slot O 59
7112 Slot 1. 60
7.1.1.3 Main Slot ... oo 60
T7.1.1.4 T/O Slot. .o 61
7.1.1.5 Expected behaviour 62
7.1.1.6 Common problemst 62
7.1.1.7 IEEE-488 interface 62
7.1.1.8 The Final Cartridge 3............ 63

7.1.2 (€64 cartridge settingsc.covviiiiii i, 63
7.1.2.1 C64 cartridge reSouUrces.oouvviieenneenneann.. 63
7.1.2.2 (C64 cartridge command-line options................. 66

T1.3 CIA settingsovvnei i e 73
T7.1.3.1 CIA reSOUICES . . vt vttt e 73
7.1.3.2 CIA command-line options 73

714 VIC-II Settingso.vvinuii e 73
7.1.4.1 VIC-II 1€SOUTCES . .« vt vi et 73
7.1.4.2 VIC-II command-line options........................ 75

7.1.5 SID Settings.covriiiin i 7
7.1.5.1 SID IeSOUICES « v vttt et e e et e eeie e 7
7.1.5.2 SID command-line options........................... 78

7.1.6 C64 1/0O extension settingscovviiiian... 79
7.1.6.1 C64 I/O extension resources......................... 79
7.1.6.2 C64 I/O extension command-line options............ 81

7.1.7 C64/128 system ROM settingscoovuvuienenen... 82
7.1.7.1 C64/128 system ROM resources 82
7.1.7.2 (C64/128 system ROM command-line options 83

T.1.8 G064 settings. .. o.veei i e 83
7.1.8.1 B4 TESOUTCES .« v oottt et e e 83
7.1.8.2 C64 command-line options.................., 84

7.2 (C128-specific commands and settings.......................... 84
721 VDO Settingsvvvi i 84
7.2.1.1 VDO reSOUICES . .o oo vttt 84
7.2.1.2 VDC command-line options 86

7.2.2 (128 system ROM settings...............ooiiiiiiii.. 87

7.2.2.1 C128 system ROM resources.ooeveviueea.n.. 87

7.2.2.2 (C128 system ROM command-line options............ 88
7.2.3 ClI28 8ettings .. ovvueei i 89
7.2.3.1 Cl28 TESOUTCES « . vt e vttt et et et 89
7.2.3.2 (C128 command-line options 89
7.3 C64DTV-specific commands and settings...................... 89
7.3.1 C64DTV ROM imagecvvvveiie i 90
7.3.2 DTV revisionoouuiii e 90
7.3.3 LumaFix. ... 90
T7.3.4 USEIPOTt . oot e 91
7.3.5 Debug ... 91
7.3.6 Monitor DTV features..............cooiiiiiiii ... 91
7.3.7 DTV Ie80UTCES . . ottt 91
7.4 VIC20-specific commands and settings......................... 92
7.4.1 Using cartridge imagescooviiiiiiiiiiiinnn... 92
7.4.2 VIC20 cartridge settings. ..o 93
7.4.2.1 VIC20 cartridge resourcesocoeuevueon.. 93
7.4.2.2 VIC20 cartridge command-line options............... 94
743 VIC settings .. ooveiiii 96
7.4.3.1 VIC reSOUrCeS « . vvvt ittt 96
7.4.3.2 VIC command-line options 97
7.4.4 Changing memory configuration.......................... 98
7.4.4.1 VIC20 memory configuration resources............... 99
7.4.4.2 VIC20 memory configuration command-line options.. 99
7.4.5 VIC20 system ROM settings ...t 100
7.4.5.1 VIC20 system ROM resources...................... 100
7.4.5.2 VIC20 system ROM command-line options 100
7.4.6 VIC20 Settings.....oovviteintii i 100
7.4.6.1 VIC20 command-line options....................... 100
7.5 PLUS4-specific commands and settings....................... 100
7.5.1 TED settingsovvinriiiiiiiii e 100
7.5.1.1 TED resourcesouueeeeaaaann. 101
7.5.1.2 TED command-line options 102
7.5.2 PLUS4 I/0 extension settings..............cooovvvni.... 103
7.5.2.1 PLUS4 I/O extension resources..................... 103
7.5.2.2 PLUS4 I/O extension command-line options........ 104
7.5.3 PLUS4 system ROM settings................cooiiiii... 104
7.5.3.1 PLUS4 system ROM resources 104
7.5.3.2 PLUS4 system ROM command-line options......... 104
7.5.4 PLUS4 settingscouintiiiniiii i 105
7.5.4.1 PLUS4 resourcesovueiiiiiiiiiiiiennean.. 105
7.5.4.2 PLUS4 command-line options 105
7.6 PET-specific commands and settings......................... 105
7.6.1 Changing PET model settings........................... 105
7.6.2 CRTC Settings.ovviniii e 107
7.6.2.1 CRTC I€SOUICES . . vttt et eee et et e e 107
7.6.2.2 CRTC command-line options....................... 108
7.6.3 PET I/O extension settingsc.couviinean... 109

7.6.3.1 PET I/O extension resources....................... 110

iv

7.6.3.2 PET I/O extension command-line options 110

7.6.4 PET system ROM settings............c..oooiiiiia.. 110
7.6.4.1 PET system ROM resources.................oouuun. 111
7.6.4.2 PET system ROM command-line options........... 111

7.6.5 The PET diagnostic pin..............ccoiiiiiiiii., 111

7.6.6 PET settings.......ccooiuiiiiiiiiiiiiiiii ., 111
7.6.6.1 PET resourcesooviiiiiiiiiiiiinnnnnn... 112
7.6.6.2 PET command line options......................... 112

7.6.7 Changing screen colors....... ... 112

7.7 CBM-II-specific commands and settings...................... 112

7.7.1 Changing CBM-ITmodel 113

7.7.2 CBM-II system ROM settings.............coooviiiin.t. 114
7.7.2.1 CBM-II system ROM resources..................... 114
7.7.2.2 CBM-II system ROM command line options........ 114

7.7.3 CBM-II command line options 114

7.7.4 Changing screen colorsot 115

7.8 VSID-specific commands and settings 115

7.8.1 VSID settings.....oouuuiiin e 115
7.8.1.1 VSID resources.vvvutieeiiiie e, 115
7.8.1.2 VSID command-line options........................ 115

8 Snapshots..................... 116
8.1 Snapshot usage ... 116
8.2 Snapshot format 116

8.2.1 Emulator modules............. i 116
8.2.1.1 x64modulescoooiiiiiiiiii 116
8.2.1.2 x128modules 117
8.2.1.3 xvicmodules............. . 117
8.2.1.4 xpet modules.......... ... i 118
8.2.1.5 xcbm2 and xcbmbx0 modules....................... 118
8.2.1.6 Drive modules............ ... 119

8.2.2 Module formats..........coiiiiiiii 119
8.2.2.1 Terminologyccoviiiiiiiiiiiiiiii i 119
8.2.2.2 Module framework 119
8.2.2.3 CPUGH02module.........cooviiiiiiiiiiiii... 120
8.2.24 CPUG6809 module..........cooviiiiiiiiiiiii... 121
8225 CIAmodule..............o ... 121
8226 VIAmodule............. .. i 122
8227 PIAmodule.............. ... 123
8228 TPImodule........coooiiiii i 123
8229 RIOTmodule..........ccoiiiiiiiii i 124
8.2.2.10 SIDmodule........ ... 124
82211 ACIAmodule............ 124
8.2.2.12 VIC-Imodule...........cooiiiiiii. 124
82213 VIC-IImodule...........oooiiiiiiiii i, 125
82214 CRTCmodule..........oooiiiiiiiiiiiiii... 125
8.2.2.15 (€64 memory module.............. ... oL, 126

8.2.2.16 C128 memory module........., 127

8.2.2.17 VIC20 memory module............................ 127

8.2.2.18 PET memory module 129

8.2.2.19 CBM-II memory module 131

8.2.2.20 (€500 datamodule............. ... 132

9 Mediaimages..................iiiii.. 133
9.1 Media images TESOUITES vovurtttt it 133
9.2 Media images command-line options.......................... 133
10 Event history............. 135
10.1 Recommended Settingsc.ocoiuiiiiiiiii .. 135
10.2 Recorded Events....... ..o 135
10.3 Recording an Event History............ oL, 135
10.4 Setting and Returning to Milestones 135
10.5 Continuing an Event History.............. ...t 136
10.6 Playing Back an Event History.............................. 136
10.7 Limitations and Suggestions i 136
10.8 Event history resourcescooviiiiiiiiiiiiiiie... 136
10.9 Event history command-line options......................... 137
11 Monitor.......... 138
11.1 Terminologycouueiin 138
11.2 Machine state commands ...ttt 139
11.3 Memory commandsoouuuuetiniteteniieenien 140
11.4 Assembly commands.............cooiiiiiiiiiniii.. 142
11.5 Checkpoint commandsoouiiiieiiiieeninaann. 142
11.6 General commands., 143
11.7 Disk commands.........couiiiiiiiieiiii 144
11.8 Command file commands, 145
11.9 Label commands.......... ..o, 145
11.10 Miscellaneous commands.oeiiieeenniiiinn... 146
12 1841 147
12.1 Specifying files in ¢1541 i 147
12.2 Using quotes and backslashes 147
12.3 ¢1541 commands and options ..., 148
12.4 Executing shell commands L. 149
12.5 ¢1541 exampleso 149
13 cartconv........ 150
13.1 cartconv command line options................ 150
13.2 cartconv examples ... 152
14 petcat..... 153
14.1 petcat command line options............. 153
14.2 petcat examples ... 154

vi

vii

15 The emulator file formats.................. 155
15.1 The T64 tape image format............., 155
15.1.1 T64 File structure ..., 155
15.1.2 Tape Record........ ..o 155
15.1.3 Filerecord.o 155
15.2 The G64 GCR-encoded disk image format................... 156
15.3 The P64 NRZI flux pulse disk image format................. 160
15.3.1 P64 Header Layout ..., 160
15.3.2 P64 Chunk Header Layout 161
15.3.3 P64 Chunk '"HTPx’ Layout...................c.oiut. 161
15.3.4 ’HTPx’ Range encoded data format 161
15.3.5 P64 Chunk 'DONE’ Layoutot 165
15.4 The D64 disk image formatl 165
15.4.1 Non-Standard & Long Directories...................... 168
15.4.2 BAM layoutooviii i 169
15.4.3 Variations on the D64 layout........................... 171
15.4.4 EIror COdeS . ..ovvnni it 173
15.5 The X64 disk image format L. 175
15.6 The D71 disk image format, 176
15.6.1 Non-Standard & Long Directories...................... 180
15.6.2 Bam layout The BAM is somewhat different as it now has to
... 181
15.7 The D81 disk image format oL 183
15.7.1 Non-Standard & Long Directories...................... 188
15.7.2 BAM layoutooouii 188
15.7.3 REL files The REL filetype requires some extra explaining.
... 190
15.7.4 1581 Partitions and Sub-directories..................... 191
15.7.5 AUTO-BOOT LOADER..........cooii i 192
15.8 The D80 disk image formatol 193
15.8.1 Non-Standard & Long Directories...................... 197
15.8.2 BAM Iayoutouuii e 197
15.9 The D82 disk image format oL 199
15.9.1 Non-Standard & Long Directories...................... 205
15.9.2 BAM layoutcooiini i 205
15.10 The P00 image format............ ..., 208
15.11 The CRT cartridge image format 209
15.11.1 Header contents. ..., 209
15.11.2 CHIP Contentscooviiiiiiii ... 211
15.11.3 Cartridge Specifics...... .o 212
15.11.3.1 0 - Normal cartridge ..., 212
15.11.3.2 1-ActionReplayooiiiii .. 213
15.11.3.3 2 - KCS Power Cartridge................ooii... 214
15.11.3.4 3 - Final Cartridge IIT............ oL, 214
15.11.3.5 4 - Simons’ Basic............ ..o i 215
15.11.3.6 5-Ocean type 1......cooiiiiiiiiiii .. 216
15.11.3.7 6 - Expert Cartridge ...t 217

15.11.3.8 7 - Fun Play, Power Play......................... 217

15.11.3.9 8 -Super Gamesooueiiiiiiieiiii. 218
15.11.3.10 9 - Atomic Power 219
15.11.3.11 10 - Epyx Fastload............t 220
15.11.3.12 11 - Westermann Learning 220
15.11.3.13 12-Rex Utility ..o 221
15.11.3.14 13 - Final Cartridge I........................... 221
15.11.3.15 14 - Magic Formel 221
15.11.3.16 15 - C64 Game System, System 3 222
15.11.3.17 16 - Warp Speed ooviiiiiii 223
15.11.3.18 17 -Dinamic.........covviiiiiiiiiiiiiiii .. 223
15.11.3.19 18 - Zaxxon, Super Zaxxon (SEGA)............. 224
15.11.3.20 19 - Magic Desk, Domark, HES Australia 225
15.11.3.21 20 - Super Snapshot V5............ 225
15.11.3.22 21 - Comal-80........oouiiiiiii i, 226
15.11.3.23 22 - Structured Basic ol 227
15.11.3.24 23 - ROSS vttt 227
15.11.3.25 24 -Dela EP64 227
15.11.3.26 25-Dela EPTx8o 228
15.11.3.27 26 -Dela EP256 ... 229
15.11.3.28 27-Rex EP256..........coiiiiiii i 230
15.11.3.29 28 - Mikro Assembler 231
15.11.3.30 29 - Final Cartridge Plus........................ 231
15.11.3.31 30 - Action Replay 4...........cooiiiiii ... 231
15.11.3.32 31 -Stardos ...cvvvni 232
15.11.3.33 32-EasyFlash............. ... oL 233
15.11.3.34 33 - EasyFlash Xbank...................... ... 233
15.11.3.35 34 -Capture.......cooviuiiiiiii i 233
15.11.3.36 35 - Action Replay 3 234
15.11.3.37 36 - RetroReplay...............oooiiiiiiiit. 235
15.11.3.38 37 -MMCO4o 237
15.11.3.39 38 -MMC Replay.......ovveiiiiiiiiii.. 238
15.11.3.40 39 -1IDEG4.o 240
15.11.3.41 40 - Super Snapshot V4................... 241
15.11.3.42 41 -IEEE-488 ... 241
15.11.3.43 42 - Game Killer...............ooiiiiiiii... 242
15.11.3.44 43 - Prophet64........ ... i 242
15.11.3.45 44 - EXOS . ..o 243
15.11.3.46 45 - Freeze Frame............ot 243
15.11.3.47 46 - Freeze Machine............................. 244
15.11.3.48 47 -Snapshot 64.........o ..., 244
15.11.3.49 48 - Super Explode V5.0 245
15.11.3.50 49 - Magic Voice........c.oviiiiiiiiiin. 245
15.11.3.51 50 - Action Replay 2.............coiiiiiii. ... 246
15.11.3.52 51 -MACH b5 ... o 246
15.11.3.53 52 - Diashow maker............................. 247
15.11.3.54 53 -Pagefox ... 247
15.11.3.55 54 - Kingsoft........ ..o 248

15.11.3.56

55 - Silverrock 128o 248

viii

15.11.3.57 56 - Formel 64 i 248

15.12 The PSID image format for ripped SID tunes.............. 248
15.12.1 The SID file header v1.......... 249
15.12.2 The SID file header v2 and v3......................... 252

16 Acknowledgments........................ ... 254
17 Copyright........ ... 261
18 Contact information........................ 262
18.1 VICE home pageot 262
18.2 How to send feedback......... i 262
18.3 How to contributeo i i 263
18.4 Interesting NEWSZIOUDPS.vtttttttnnniiiiiieeeennnn. 263
18.5 FAQs youshouldread, 264
Concept Index.............. ... i, 265

Index of Resources. 272

ix

	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Programs

	About VICE
	C64 emulator features
	C64DTV emulator features
	C128 emulator features
	VIC20 emulator features
	PET emulator features
	CBM-II emulator features
	SCPU64 emulator features
	The keyboard emulation
	The joystick emulation
	The disk drive emulation
	Supported file formats
	Common problems
	Sound problems
	Shared memory problems
	Printer problems
	PET keyboard problems

	Invoking the emulators
	Command-line options used during initialization
	Autostarting programs from the command-line

	System files
	ROM files
	Keymap files
	Palette files
	Romset files

	Basic operation
	The emulation window
	Using the menus
	Getting help
	Using the file selector
	Using disk and tape images
	Previewing the image contents
	``Autostarting'' an image
	Using compressed files
	Using Zipcode and Lynx images

	Resetting the machine

	Settings and resources
	Format of resource files
	Using command-line options to change resources
	Autostart settings
	Autostart resources

	Performance settings
	Performance resources
	Performance command-line options

	Video settings
	using openGL Rastersynchronization under X11
	Video resources
	Video command-line options

	Keyboard settings
	Keyboard resources
	Keyboard command-line options

	Joystick settings
	Joystick resources
	Joystick command-line options

	Sound settings
	Sound resources
	Sound command-line options

	Tape settings
	Tape resources
	Tape command-line options

	Drive settings
	Drive resources
	Drive command-line options

	Peripheral settings
	Settings for file system devices
	Resources for file system devices
	Command-line options for file system devices

	Printer settings
	Printer resources
	Printer command-line options

	Disabling kernal traps
	Resources to control Kernal traps
	Command-line options to control Kernal traps

	RS232 settings
	RS232 resources
	RS232 command-line options
	RS232 usage example

	Monitor settings
	Monitor resources
	Monitor command-line options

	Machine settings
	Machine resources
	Machine command-line options

	Memory settings
	Memory resources
	Memory command-line options

	Miscellaneous settings
	Miscellaneous resources
	Miscellaneous command-line options

	Machine-specific features
	C64/128-specific commands and settings
	Using cartridges
	Slot 0
	Slot 1
	Main Slot
	I/O Slot
	Expected behaviour
	Common problems
	IEEE-488 interface
	The Final Cartridge 3

	C64 cartridge settings
	C64 cartridge resources
	C64 cartridge command-line options

	CIA settings
	CIA resources
	CIA command-line options

	VIC-II settings
	VIC-II resources
	VIC-II command-line options

	SID settings
	SID resources
	SID command-line options

	C64 I/O extension settings
	C64 I/O extension resources
	C64 I/O extension command-line options

	C64/128 system ROM settings
	C64/128 system ROM resources
	C64/128 system ROM command-line options

	C64 settings
	C64 resources
	C64 command-line options

	C128-specific commands and settings
	VDC settings
	VDC resources
	VDC command-line options

	C128 system ROM settings
	C128 system ROM resources
	C128 system ROM command-line options

	C128 settings
	C128 resources
	C128 command-line options

	C64DTV-specific commands and settings
	C64DTV ROM image
	DTV revision
	LumaFix
	Userport
	Debug
	Monitor DTV features
	DTV resources

	VIC20-specific commands and settings
	Using cartridge images
	VIC20 cartridge settings
	VIC20 cartridge resources
	VIC20 cartridge command-line options

	VIC settings
	VIC resources
	VIC command-line options

	Changing memory configuration
	VIC20 memory configuration resources
	VIC20 memory configuration command-line options

	VIC20 system ROM settings
	VIC20 system ROM resources
	VIC20 system ROM command-line options

	VIC20 settings
	VIC20 command-line options

	PLUS4-specific commands and settings
	TED settings
	TED resources
	TED command-line options

	PLUS4 I/O extension settings
	PLUS4 I/O extension resources
	PLUS4 I/O extension command-line options

	PLUS4 system ROM settings
	PLUS4 system ROM resources
	PLUS4 system ROM command-line options

	PLUS4 settings
	PLUS4 resources
	PLUS4 command-line options

	PET-specific commands and settings
	Changing PET model settings
	CRTC Settings
	CRTC resources
	CRTC command-line options

	PET I/O extension settings
	PET I/O extension resources
	PET I/O extension command-line options

	PET system ROM settings
	PET system ROM resources
	PET system ROM command-line options

	The PET diagnostic pin
	PET settings
	PET resources
	PET command line options

	Changing screen colors

	CBM-II-specific commands and settings
	Changing CBM-II model
	CBM-II system ROM settings
	CBM-II system ROM resources
	CBM-II system ROM command line options

	CBM-II command line options
	Changing screen colors

	VSID-specific commands and settings
	VSID settings
	VSID resources
	VSID command-line options

	Snapshots
	Snapshot usage
	Snapshot format
	Emulator modules
	x64 modules
	x128 modules
	xvic modules
	xpet modules
	xcbm2 and xcbm5x0 modules
	Drive modules

	Module formats
	Terminology
	Module framework
	CPU 6502 module
	CPU 6809 module
	CIA module
	VIA module
	PIA module
	TPI module
	RIOT module
	SID module
	ACIA module
	VIC-I module
	VIC-II module
	CRTC module
	C64 memory module
	C128 memory module
	VIC20 memory module
	PET memory module
	CBM-II memory module
	C500 data module

	Media images
	Media images resources
	Media images command-line options

	Event history
	Recommended Settings
	Recorded Events
	Recording an Event History
	Setting and Returning to Milestones
	Continuing an Event History
	Playing Back an Event History
	Limitations and Suggestions
	Event history resources
	Event history command-line options

	Monitor
	Terminology
	Machine state commands
	Memory commands
	Assembly commands
	Checkpoint commands
	General commands
	Disk commands
	Command file commands
	Label commands
	Miscellaneous commands

	c1541
	Specifying files in c1541
	Using quotes and backslashes
	c1541 commands and options
	Executing shell commands
	c1541 examples

	cartconv
	cartconv command line options
	cartconv examples

	petcat
	petcat command line options
	petcat examples

	The emulator file formats
	The T64 tape image format
	T64 File structure
	Tape Record
	File record

	The G64 GCR-encoded disk image format
	The P64 NRZI flux pulse disk image format
	P64 Header Layout
	P64 Chunk Header Layout
	P64 Chunk 'HTPx' Layout
	'HTPx' Range encoded data format
	P64 Chunk 'DONE' Layout

	The D64 disk image format
	Non-Standard & Long Directories
	BAM layout
	Variations on the D64 layout
	Error codes

	The X64 disk image format
	The D71 disk image format
	Non-Standard & Long Directories
	Bam layout The BAM is somewhat different as it now has to

	The D81 disk image format
	Non-Standard & Long Directories
	BAM layout
	REL files The REL filetype requires some extra explaining.
	1581 Partitions and Sub-directories
	AUTO-BOOT LOADER

	The D80 disk image format
	Non-Standard & Long Directories
	BAM layout

	The D82 disk image format
	Non-Standard & Long Directories
	BAM layout

	The P00 image format
	The CRT cartridge image format
	Header contents
	CHIP Contents
	Cartridge Specifics
	0 - Normal cartridge
	1 - Action Replay
	2 - KCS Power Cartridge
	3 - Final Cartridge III
	4 - Simons' Basic
	5 - Ocean type 1
	6 - Expert Cartridge
	7 - Fun Play, Power Play
	8 - Super Games
	9 - Atomic Power
	10 - Epyx Fastload
	11 - Westermann Learning
	12 - Rex Utility
	13 - Final Cartridge I
	14 - Magic Formel
	15 - C64 Game System, System 3
	16 - Warp Speed
	17 - Dinamic
	18 - Zaxxon, Super Zaxxon (SEGA)
	19 - Magic Desk, Domark, HES Australia
	20 - Super Snapshot V5
	21 - Comal-80
	22 - Structured Basic
	23 - Ross
	24 - Dela EP64
	25 - Dela EP7x8
	26 - Dela EP256
	27 - Rex EP256
	28 - Mikro Assembler
	29 - Final Cartridge Plus
	30 - Action Replay 4
	31 - Stardos
	32 - EasyFlash
	33 - EasyFlash Xbank
	34 - Capture
	35 - Action Replay 3
	36 - Retro Replay
	37 - MMC64
	38 - MMC Replay
	39 - IDE64
	40 - Super Snapshot V4
	41 - IEEE-488
	42 - Game Killer
	43 - Prophet64
	44 - EXOS
	45 - Freeze Frame
	46 - Freeze Machine
	47 - Snapshot 64
	48 - Super Explode V5.0
	49 - Magic Voice
	50 - Action Replay 2
	51 - MACH 5
	52 - Diashow maker
	53 - Pagefox
	54 - Kingsoft
	55 - Silverrock 128
	56 - Formel 64

	The PSID image format for ripped SID tunes
	The SID file header v1
	The SID file header v2 and v3

	Acknowledgments
	Copyright
	Contact information
	VICE home page
	How to send feedback
	How to contribute
	Interesting newsgroups
	FAQs you should read

	Concept Index
	Index of Resources

