Libav
vp3.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2003-2004 the ffmpeg project
3  *
4  * This file is part of Libav.
5  *
6  * Libav is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * Libav is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with Libav; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 
36 #include "libavutil/imgutils.h"
37 
38 #include "avcodec.h"
39 #include "get_bits.h"
40 #include "hpeldsp.h"
41 #include "internal.h"
42 #include "mathops.h"
43 #include "thread.h"
44 #include "videodsp.h"
45 #include "vp3data.h"
46 #include "vp3dsp.h"
47 #include "xiph.h"
48 
49 #define FRAGMENT_PIXELS 8
50 
51 // FIXME split things out into their own arrays
52 typedef struct Vp3Fragment {
53  int16_t dc;
56 } Vp3Fragment;
57 
58 #define SB_NOT_CODED 0
59 #define SB_PARTIALLY_CODED 1
60 #define SB_FULLY_CODED 2
61 
62 // This is the maximum length of a single long bit run that can be encoded
63 // for superblock coding or block qps. Theora special-cases this to read a
64 // bit instead of flipping the current bit to allow for runs longer than 4129.
65 #define MAXIMUM_LONG_BIT_RUN 4129
66 
67 #define MODE_INTER_NO_MV 0
68 #define MODE_INTRA 1
69 #define MODE_INTER_PLUS_MV 2
70 #define MODE_INTER_LAST_MV 3
71 #define MODE_INTER_PRIOR_LAST 4
72 #define MODE_USING_GOLDEN 5
73 #define MODE_GOLDEN_MV 6
74 #define MODE_INTER_FOURMV 7
75 #define CODING_MODE_COUNT 8
76 
77 /* special internal mode */
78 #define MODE_COPY 8
79 
80 /* There are 6 preset schemes, plus a free-form scheme */
81 static const int ModeAlphabet[6][CODING_MODE_COUNT] = {
82  /* scheme 1: Last motion vector dominates */
87 
88  /* scheme 2 */
93 
94  /* scheme 3 */
99 
100  /* scheme 4 */
105 
106  /* scheme 5: No motion vector dominates */
111 
112  /* scheme 6 */
117 };
118 
119 static const uint8_t hilbert_offset[16][2] = {
120  { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 },
121  { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 },
122  { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 },
123  { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 }
124 };
125 
126 #define MIN_DEQUANT_VAL 2
127 
128 typedef struct Vp3DecodeContext {
131  int version;
132  int width, height;
137  int keyframe;
143  DECLARE_ALIGNED(16, int16_t, block)[64];
147 
148  int qps[3];
149  int nqps;
150  int last_qps[3];
151 
161  unsigned char *superblock_coding;
162 
166 
170 
173  int data_offset[3];
174 
175  int8_t (*motion_val[2])[2];
176 
177  /* tables */
178  uint16_t coded_dc_scale_factor[64];
179  uint32_t coded_ac_scale_factor[64];
182  uint8_t qr_size[2][3][64];
183  uint16_t qr_base[2][3][64];
184 
202  int16_t *dct_tokens[3][64];
203  int16_t *dct_tokens_base;
204 #define TOKEN_EOB(eob_run) ((eob_run) << 2)
205 #define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) << 9) + ((zero_run) << 2) + 1)
206 #define TOKEN_COEFF(coeff) (((coeff) << 2) + 2)
207 
212  int num_coded_frags[3][64];
214 
215  /* this is a list of indexes into the all_fragments array indicating
216  * which of the fragments are coded */
218 
219  VLC dc_vlc[16];
224 
229 
230  /* these arrays need to be on 16-byte boundaries since SSE2 operations
231  * index into them */
232  DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64];
233 
234  /* This table contains superblock_count * 16 entries. Each set of 16
235  * numbers corresponds to the fragment indexes 0..15 of the superblock.
236  * An entry will be -1 to indicate that no entry corresponds to that
237  * index. */
239 
240  /* This is an array that indicates how a particular macroblock
241  * is coded. */
242  unsigned char *macroblock_coding;
243 
245 
246  /* Huffman decode */
247  int hti;
248  unsigned int hbits;
249  int entries;
251  uint32_t huffman_table[80][32][2];
252 
256 
257 /************************************************************************
258  * VP3 specific functions
259  ************************************************************************/
260 
261 static void vp3_decode_flush(AVCodecContext *avctx)
262 {
263  Vp3DecodeContext *s = avctx->priv_data;
264 
265  if (s->golden_frame.f)
267  if (s->last_frame.f)
269  if (s->current_frame.f)
271 }
272 
274 {
275  Vp3DecodeContext *s = avctx->priv_data;
276  int i;
277 
279  av_freep(&s->all_fragments);
284  av_freep(&s->motion_val[0]);
285  av_freep(&s->motion_val[1]);
287 
288  /* release all frames */
289  vp3_decode_flush(avctx);
293 
294  if (avctx->internal->is_copy)
295  return 0;
296 
297  for (i = 0; i < 16; i++) {
298  ff_free_vlc(&s->dc_vlc[i]);
299  ff_free_vlc(&s->ac_vlc_1[i]);
300  ff_free_vlc(&s->ac_vlc_2[i]);
301  ff_free_vlc(&s->ac_vlc_3[i]);
302  ff_free_vlc(&s->ac_vlc_4[i]);
303  }
304 
309 
310  return 0;
311 }
312 
313 /*
314  * This function sets up all of the various blocks mappings:
315  * superblocks <-> fragments, macroblocks <-> fragments,
316  * superblocks <-> macroblocks
317  *
318  * @return 0 is successful; returns 1 if *anything* went wrong.
319  */
321 {
322  int sb_x, sb_y, plane;
323  int x, y, i, j = 0;
324 
325  for (plane = 0; plane < 3; plane++) {
326  int sb_width = plane ? s->c_superblock_width
327  : s->y_superblock_width;
328  int sb_height = plane ? s->c_superblock_height
329  : s->y_superblock_height;
330  int frag_width = s->fragment_width[!!plane];
331  int frag_height = s->fragment_height[!!plane];
332 
333  for (sb_y = 0; sb_y < sb_height; sb_y++)
334  for (sb_x = 0; sb_x < sb_width; sb_x++)
335  for (i = 0; i < 16; i++) {
336  x = 4 * sb_x + hilbert_offset[i][0];
337  y = 4 * sb_y + hilbert_offset[i][1];
338 
339  if (x < frag_width && y < frag_height)
340  s->superblock_fragments[j++] = s->fragment_start[plane] +
341  y * frag_width + x;
342  else
343  s->superblock_fragments[j++] = -1;
344  }
345  }
346 
347  return 0; /* successful path out */
348 }
349 
350 /*
351  * This function sets up the dequantization tables used for a particular
352  * frame.
353  */
354 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
355 {
356  int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
357  int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
358  int i, plane, inter, qri, bmi, bmj, qistart;
359 
360  for (inter = 0; inter < 2; inter++) {
361  for (plane = 0; plane < 3; plane++) {
362  int sum = 0;
363  for (qri = 0; qri < s->qr_count[inter][plane]; qri++) {
364  sum += s->qr_size[inter][plane][qri];
365  if (s->qps[qpi] <= sum)
366  break;
367  }
368  qistart = sum - s->qr_size[inter][plane][qri];
369  bmi = s->qr_base[inter][plane][qri];
370  bmj = s->qr_base[inter][plane][qri + 1];
371  for (i = 0; i < 64; i++) {
372  int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] -
373  2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] +
374  s->qr_size[inter][plane][qri]) /
375  (2 * s->qr_size[inter][plane][qri]);
376 
377  int qmin = 8 << (inter + !i);
378  int qscale = i ? ac_scale_factor : dc_scale_factor;
379 
380  s->qmat[qpi][inter][plane][s->idct_permutation[i]] =
381  av_clip((qscale * coeff) / 100 * 4, qmin, 4096);
382  }
383  /* all DC coefficients use the same quant so as not to interfere
384  * with DC prediction */
385  s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
386  }
387  }
388 }
389 
390 /*
391  * This function initializes the loop filter boundary limits if the frame's
392  * quality index is different from the previous frame's.
393  *
394  * The filter_limit_values may not be larger than 127.
395  */
397 {
398  int *bounding_values = s->bounding_values_array + 127;
399  int filter_limit;
400  int x;
401  int value;
402 
403  filter_limit = s->filter_limit_values[s->qps[0]];
404  assert(filter_limit < 128);
405 
406  /* set up the bounding values */
407  memset(s->bounding_values_array, 0, 256 * sizeof(int));
408  for (x = 0; x < filter_limit; x++) {
409  bounding_values[-x] = -x;
410  bounding_values[x] = x;
411  }
412  for (x = value = filter_limit; x < 128 && value; x++, value--) {
413  bounding_values[ x] = value;
414  bounding_values[-x] = -value;
415  }
416  if (value)
417  bounding_values[128] = value;
418  bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
419 }
420 
421 /*
422  * This function unpacks all of the superblock/macroblock/fragment coding
423  * information from the bitstream.
424  */
426 {
427  int superblock_starts[3] = {
429  };
430  int bit = 0;
431  int current_superblock = 0;
432  int current_run = 0;
433  int num_partial_superblocks = 0;
434 
435  int i, j;
436  int current_fragment;
437  int plane;
438 
439  if (s->keyframe) {
441  } else {
442  /* unpack the list of partially-coded superblocks */
443  bit = get_bits1(gb) ^ 1;
444  current_run = 0;
445 
446  while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) {
447  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
448  bit = get_bits1(gb);
449  else
450  bit ^= 1;
451 
452  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
453  6, 2) + 1;
454  if (current_run == 34)
455  current_run += get_bits(gb, 12);
456 
457  if (current_superblock + current_run > s->superblock_count) {
459  "Invalid partially coded superblock run length\n");
460  return -1;
461  }
462 
463  memset(s->superblock_coding + current_superblock, bit, current_run);
464 
465  current_superblock += current_run;
466  if (bit)
467  num_partial_superblocks += current_run;
468  }
469 
470  /* unpack the list of fully coded superblocks if any of the blocks were
471  * not marked as partially coded in the previous step */
472  if (num_partial_superblocks < s->superblock_count) {
473  int superblocks_decoded = 0;
474 
475  current_superblock = 0;
476  bit = get_bits1(gb) ^ 1;
477  current_run = 0;
478 
479  while (superblocks_decoded < s->superblock_count - num_partial_superblocks &&
480  get_bits_left(gb) > 0) {
481  if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN)
482  bit = get_bits1(gb);
483  else
484  bit ^= 1;
485 
486  current_run = get_vlc2(gb, s->superblock_run_length_vlc.table,
487  6, 2) + 1;
488  if (current_run == 34)
489  current_run += get_bits(gb, 12);
490 
491  for (j = 0; j < current_run; current_superblock++) {
492  if (current_superblock >= s->superblock_count) {
494  "Invalid fully coded superblock run length\n");
495  return -1;
496  }
497 
498  /* skip any superblocks already marked as partially coded */
499  if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
500  s->superblock_coding[current_superblock] = 2 * bit;
501  j++;
502  }
503  }
504  superblocks_decoded += current_run;
505  }
506  }
507 
508  /* if there were partial blocks, initialize bitstream for
509  * unpacking fragment codings */
510  if (num_partial_superblocks) {
511  current_run = 0;
512  bit = get_bits1(gb);
513  /* toggle the bit because as soon as the first run length is
514  * fetched the bit will be toggled again */
515  bit ^= 1;
516  }
517  }
518 
519  /* figure out which fragments are coded; iterate through each
520  * superblock (all planes) */
521  s->total_num_coded_frags = 0;
523 
524  for (plane = 0; plane < 3; plane++) {
525  int sb_start = superblock_starts[plane];
526  int sb_end = sb_start + (plane ? s->c_superblock_count
527  : s->y_superblock_count);
528  int num_coded_frags = 0;
529 
530  for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) {
531  /* iterate through all 16 fragments in a superblock */
532  for (j = 0; j < 16; j++) {
533  /* if the fragment is in bounds, check its coding status */
534  current_fragment = s->superblock_fragments[i * 16 + j];
535  if (current_fragment != -1) {
536  int coded = s->superblock_coding[i];
537 
538  if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
539  /* fragment may or may not be coded; this is the case
540  * that cares about the fragment coding runs */
541  if (current_run-- == 0) {
542  bit ^= 1;
543  current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2);
544  }
545  coded = bit;
546  }
547 
548  if (coded) {
549  /* default mode; actual mode will be decoded in
550  * the next phase */
551  s->all_fragments[current_fragment].coding_method =
553  s->coded_fragment_list[plane][num_coded_frags++] =
554  current_fragment;
555  } else {
556  /* not coded; copy this fragment from the prior frame */
557  s->all_fragments[current_fragment].coding_method =
558  MODE_COPY;
559  }
560  }
561  }
562  }
563  s->total_num_coded_frags += num_coded_frags;
564  for (i = 0; i < 64; i++)
565  s->num_coded_frags[plane][i] = num_coded_frags;
566  if (plane < 2)
567  s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] +
568  num_coded_frags;
569  }
570  return 0;
571 }
572 
573 /*
574  * This function unpacks all the coding mode data for individual macroblocks
575  * from the bitstream.
576  */
578 {
579  int i, j, k, sb_x, sb_y;
580  int scheme;
581  int current_macroblock;
582  int current_fragment;
583  int coding_mode;
584  int custom_mode_alphabet[CODING_MODE_COUNT];
585  const int *alphabet;
586  Vp3Fragment *frag;
587 
588  if (s->keyframe) {
589  for (i = 0; i < s->fragment_count; i++)
591  } else {
592  /* fetch the mode coding scheme for this frame */
593  scheme = get_bits(gb, 3);
594 
595  /* is it a custom coding scheme? */
596  if (scheme == 0) {
597  for (i = 0; i < 8; i++)
598  custom_mode_alphabet[i] = MODE_INTER_NO_MV;
599  for (i = 0; i < 8; i++)
600  custom_mode_alphabet[get_bits(gb, 3)] = i;
601  alphabet = custom_mode_alphabet;
602  } else
603  alphabet = ModeAlphabet[scheme - 1];
604 
605  /* iterate through all of the macroblocks that contain 1 or more
606  * coded fragments */
607  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
608  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
609  if (get_bits_left(gb) <= 0)
610  return -1;
611 
612  for (j = 0; j < 4; j++) {
613  int mb_x = 2 * sb_x + (j >> 1);
614  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
615  current_macroblock = mb_y * s->macroblock_width + mb_x;
616 
617  if (mb_x >= s->macroblock_width ||
618  mb_y >= s->macroblock_height)
619  continue;
620 
621 #define BLOCK_X (2 * mb_x + (k & 1))
622 #define BLOCK_Y (2 * mb_y + (k >> 1))
623  /* coding modes are only stored if the macroblock has
624  * at least one luma block coded, otherwise it must be
625  * INTER_NO_MV */
626  for (k = 0; k < 4; k++) {
627  current_fragment = BLOCK_Y *
628  s->fragment_width[0] + BLOCK_X;
629  if (s->all_fragments[current_fragment].coding_method != MODE_COPY)
630  break;
631  }
632  if (k == 4) {
633  s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV;
634  continue;
635  }
636 
637  /* mode 7 means get 3 bits for each coding mode */
638  if (scheme == 7)
639  coding_mode = get_bits(gb, 3);
640  else
641  coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
642 
643  s->macroblock_coding[current_macroblock] = coding_mode;
644  for (k = 0; k < 4; k++) {
645  frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X;
646  if (frag->coding_method != MODE_COPY)
647  frag->coding_method = coding_mode;
648  }
649 
650 #define SET_CHROMA_MODES \
651  if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \
652  frag[s->fragment_start[1]].coding_method = coding_mode; \
653  if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \
654  frag[s->fragment_start[2]].coding_method = coding_mode;
655 
656  if (s->chroma_y_shift) {
657  frag = s->all_fragments + mb_y *
658  s->fragment_width[1] + mb_x;
660  } else if (s->chroma_x_shift) {
661  frag = s->all_fragments +
662  2 * mb_y * s->fragment_width[1] + mb_x;
663  for (k = 0; k < 2; k++) {
665  frag += s->fragment_width[1];
666  }
667  } else {
668  for (k = 0; k < 4; k++) {
669  frag = s->all_fragments +
670  BLOCK_Y * s->fragment_width[1] + BLOCK_X;
672  }
673  }
674  }
675  }
676  }
677  }
678 
679  return 0;
680 }
681 
682 /*
683  * This function unpacks all the motion vectors for the individual
684  * macroblocks from the bitstream.
685  */
687 {
688  int j, k, sb_x, sb_y;
689  int coding_mode;
690  int motion_x[4];
691  int motion_y[4];
692  int last_motion_x = 0;
693  int last_motion_y = 0;
694  int prior_last_motion_x = 0;
695  int prior_last_motion_y = 0;
696  int current_macroblock;
697  int current_fragment;
698  int frag;
699 
700  if (s->keyframe)
701  return 0;
702 
703  /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
704  coding_mode = get_bits1(gb);
705 
706  /* iterate through all of the macroblocks that contain 1 or more
707  * coded fragments */
708  for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) {
709  for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) {
710  if (get_bits_left(gb) <= 0)
711  return -1;
712 
713  for (j = 0; j < 4; j++) {
714  int mb_x = 2 * sb_x + (j >> 1);
715  int mb_y = 2 * sb_y + (((j >> 1) + j) & 1);
716  current_macroblock = mb_y * s->macroblock_width + mb_x;
717 
718  if (mb_x >= s->macroblock_width ||
719  mb_y >= s->macroblock_height ||
720  s->macroblock_coding[current_macroblock] == MODE_COPY)
721  continue;
722 
723  switch (s->macroblock_coding[current_macroblock]) {
724  case MODE_INTER_PLUS_MV:
725  case MODE_GOLDEN_MV:
726  /* all 6 fragments use the same motion vector */
727  if (coding_mode == 0) {
728  motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
729  motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
730  } else {
731  motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
732  motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
733  }
734 
735  /* vector maintenance, only on MODE_INTER_PLUS_MV */
736  if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) {
737  prior_last_motion_x = last_motion_x;
738  prior_last_motion_y = last_motion_y;
739  last_motion_x = motion_x[0];
740  last_motion_y = motion_y[0];
741  }
742  break;
743 
744  case MODE_INTER_FOURMV:
745  /* vector maintenance */
746  prior_last_motion_x = last_motion_x;
747  prior_last_motion_y = last_motion_y;
748 
749  /* fetch 4 vectors from the bitstream, one for each
750  * Y fragment, then average for the C fragment vectors */
751  for (k = 0; k < 4; k++) {
752  current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X;
753  if (s->all_fragments[current_fragment].coding_method != MODE_COPY) {
754  if (coding_mode == 0) {
755  motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
756  motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
757  } else {
758  motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
759  motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
760  }
761  last_motion_x = motion_x[k];
762  last_motion_y = motion_y[k];
763  } else {
764  motion_x[k] = 0;
765  motion_y[k] = 0;
766  }
767  }
768  break;
769 
770  case MODE_INTER_LAST_MV:
771  /* all 6 fragments use the last motion vector */
772  motion_x[0] = last_motion_x;
773  motion_y[0] = last_motion_y;
774 
775  /* no vector maintenance (last vector remains the
776  * last vector) */
777  break;
778 
780  /* all 6 fragments use the motion vector prior to the
781  * last motion vector */
782  motion_x[0] = prior_last_motion_x;
783  motion_y[0] = prior_last_motion_y;
784 
785  /* vector maintenance */
786  prior_last_motion_x = last_motion_x;
787  prior_last_motion_y = last_motion_y;
788  last_motion_x = motion_x[0];
789  last_motion_y = motion_y[0];
790  break;
791 
792  default:
793  /* covers intra, inter without MV, golden without MV */
794  motion_x[0] = 0;
795  motion_y[0] = 0;
796 
797  /* no vector maintenance */
798  break;
799  }
800 
801  /* assign the motion vectors to the correct fragments */
802  for (k = 0; k < 4; k++) {
803  current_fragment =
804  BLOCK_Y * s->fragment_width[0] + BLOCK_X;
805  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
806  s->motion_val[0][current_fragment][0] = motion_x[k];
807  s->motion_val[0][current_fragment][1] = motion_y[k];
808  } else {
809  s->motion_val[0][current_fragment][0] = motion_x[0];
810  s->motion_val[0][current_fragment][1] = motion_y[0];
811  }
812  }
813 
814  if (s->chroma_y_shift) {
815  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
816  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] +
817  motion_x[2] + motion_x[3], 2);
818  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] +
819  motion_y[2] + motion_y[3], 2);
820  }
821  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
822  motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1);
823  frag = mb_y * s->fragment_width[1] + mb_x;
824  s->motion_val[1][frag][0] = motion_x[0];
825  s->motion_val[1][frag][1] = motion_y[0];
826  } else if (s->chroma_x_shift) {
827  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
828  motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1);
829  motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1);
830  motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1);
831  motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1);
832  } else {
833  motion_x[1] = motion_x[0];
834  motion_y[1] = motion_y[0];
835  }
836  motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1);
837  motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1);
838 
839  frag = 2 * mb_y * s->fragment_width[1] + mb_x;
840  for (k = 0; k < 2; k++) {
841  s->motion_val[1][frag][0] = motion_x[k];
842  s->motion_val[1][frag][1] = motion_y[k];
843  frag += s->fragment_width[1];
844  }
845  } else {
846  for (k = 0; k < 4; k++) {
847  frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X;
848  if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) {
849  s->motion_val[1][frag][0] = motion_x[k];
850  s->motion_val[1][frag][1] = motion_y[k];
851  } else {
852  s->motion_val[1][frag][0] = motion_x[0];
853  s->motion_val[1][frag][1] = motion_y[0];
854  }
855  }
856  }
857  }
858  }
859  }
860 
861  return 0;
862 }
863 
865 {
866  int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
867  int num_blocks = s->total_num_coded_frags;
868 
869  for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) {
870  i = blocks_decoded = num_blocks_at_qpi = 0;
871 
872  bit = get_bits1(gb) ^ 1;
873  run_length = 0;
874 
875  do {
876  if (run_length == MAXIMUM_LONG_BIT_RUN)
877  bit = get_bits1(gb);
878  else
879  bit ^= 1;
880 
881  run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
882  if (run_length == 34)
883  run_length += get_bits(gb, 12);
884  blocks_decoded += run_length;
885 
886  if (!bit)
887  num_blocks_at_qpi += run_length;
888 
889  for (j = 0; j < run_length; i++) {
890  if (i >= s->total_num_coded_frags)
891  return -1;
892 
893  if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) {
894  s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit;
895  j++;
896  }
897  }
898  } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0);
899 
900  num_blocks -= num_blocks_at_qpi;
901  }
902 
903  return 0;
904 }
905 
906 /*
907  * This function is called by unpack_dct_coeffs() to extract the VLCs from
908  * the bitstream. The VLCs encode tokens which are used to unpack DCT
909  * data. This function unpacks all the VLCs for either the Y plane or both
910  * C planes, and is called for DC coefficients or different AC coefficient
911  * levels (since different coefficient types require different VLC tables.
912  *
913  * This function returns a residual eob run. E.g, if a particular token gave
914  * instructions to EOB the next 5 fragments and there were only 2 fragments
915  * left in the current fragment range, 3 would be returned so that it could
916  * be passed into the next call to this same function.
917  */
919  VLC *table, int coeff_index,
920  int plane,
921  int eob_run)
922 {
923  int i, j = 0;
924  int token;
925  int zero_run = 0;
926  int16_t coeff = 0;
927  int bits_to_get;
928  int blocks_ended;
929  int coeff_i = 0;
930  int num_coeffs = s->num_coded_frags[plane][coeff_index];
931  int16_t *dct_tokens = s->dct_tokens[plane][coeff_index];
932 
933  /* local references to structure members to avoid repeated deferences */
934  int *coded_fragment_list = s->coded_fragment_list[plane];
935  Vp3Fragment *all_fragments = s->all_fragments;
936  VLC_TYPE(*vlc_table)[2] = table->table;
937 
938  if (num_coeffs < 0)
940  "Invalid number of coefficents at level %d\n", coeff_index);
941 
942  if (eob_run > num_coeffs) {
943  coeff_i =
944  blocks_ended = num_coeffs;
945  eob_run -= num_coeffs;
946  } else {
947  coeff_i =
948  blocks_ended = eob_run;
949  eob_run = 0;
950  }
951 
952  // insert fake EOB token to cover the split between planes or zzi
953  if (blocks_ended)
954  dct_tokens[j++] = blocks_ended << 2;
955 
956  while (coeff_i < num_coeffs && get_bits_left(gb) > 0) {
957  /* decode a VLC into a token */
958  token = get_vlc2(gb, vlc_table, 11, 3);
959  /* use the token to get a zero run, a coefficient, and an eob run */
960  if ((unsigned) token <= 6U) {
961  eob_run = eob_run_base[token];
962  if (eob_run_get_bits[token])
963  eob_run += get_bits(gb, eob_run_get_bits[token]);
964 
965  // record only the number of blocks ended in this plane,
966  // any spill will be recorded in the next plane.
967  if (eob_run > num_coeffs - coeff_i) {
968  dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i);
969  blocks_ended += num_coeffs - coeff_i;
970  eob_run -= num_coeffs - coeff_i;
971  coeff_i = num_coeffs;
972  } else {
973  dct_tokens[j++] = TOKEN_EOB(eob_run);
974  blocks_ended += eob_run;
975  coeff_i += eob_run;
976  eob_run = 0;
977  }
978  } else if (token >= 0) {
979  bits_to_get = coeff_get_bits[token];
980  if (bits_to_get)
981  bits_to_get = get_bits(gb, bits_to_get);
982  coeff = coeff_tables[token][bits_to_get];
983 
984  zero_run = zero_run_base[token];
985  if (zero_run_get_bits[token])
986  zero_run += get_bits(gb, zero_run_get_bits[token]);
987 
988  if (zero_run) {
989  dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run);
990  } else {
991  // Save DC into the fragment structure. DC prediction is
992  // done in raster order, so the actual DC can't be in with
993  // other tokens. We still need the token in dct_tokens[]
994  // however, or else the structure collapses on itself.
995  if (!coeff_index)
996  all_fragments[coded_fragment_list[coeff_i]].dc = coeff;
997 
998  dct_tokens[j++] = TOKEN_COEFF(coeff);
999  }
1000 
1001  if (coeff_index + zero_run > 64) {
1003  "Invalid zero run of %d with %d coeffs left\n",
1004  zero_run, 64 - coeff_index);
1005  zero_run = 64 - coeff_index;
1006  }
1007 
1008  // zero runs code multiple coefficients,
1009  // so don't try to decode coeffs for those higher levels
1010  for (i = coeff_index + 1; i <= coeff_index + zero_run; i++)
1011  s->num_coded_frags[plane][i]--;
1012  coeff_i++;
1013  } else {
1014  av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token);
1015  return -1;
1016  }
1017  }
1018 
1019  if (blocks_ended > s->num_coded_frags[plane][coeff_index])
1020  av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n");
1021 
1022  // decrement the number of blocks that have higher coeffecients for each
1023  // EOB run at this level
1024  if (blocks_ended)
1025  for (i = coeff_index + 1; i < 64; i++)
1026  s->num_coded_frags[plane][i] -= blocks_ended;
1027 
1028  // setup the next buffer
1029  if (plane < 2)
1030  s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j;
1031  else if (coeff_index < 63)
1032  s->dct_tokens[0][coeff_index + 1] = dct_tokens + j;
1033 
1034  return eob_run;
1035 }
1036 
1038  int first_fragment,
1039  int fragment_width,
1040  int fragment_height);
1041 /*
1042  * This function unpacks all of the DCT coefficient data from the
1043  * bitstream.
1044  */
1046 {
1047  int i;
1048  int dc_y_table;
1049  int dc_c_table;
1050  int ac_y_table;
1051  int ac_c_table;
1052  int residual_eob_run = 0;
1053  VLC *y_tables[64];
1054  VLC *c_tables[64];
1055 
1056  s->dct_tokens[0][0] = s->dct_tokens_base;
1057 
1058  /* fetch the DC table indexes */
1059  dc_y_table = get_bits(gb, 4);
1060  dc_c_table = get_bits(gb, 4);
1061 
1062  /* unpack the Y plane DC coefficients */
1063  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1064  0, residual_eob_run);
1065  if (residual_eob_run < 0)
1066  return residual_eob_run;
1067 
1068  /* reverse prediction of the Y-plane DC coefficients */
1070 
1071  /* unpack the C plane DC coefficients */
1072  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1073  1, residual_eob_run);
1074  if (residual_eob_run < 0)
1075  return residual_eob_run;
1076  residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1077  2, residual_eob_run);
1078  if (residual_eob_run < 0)
1079  return residual_eob_run;
1080 
1081  /* reverse prediction of the C-plane DC coefficients */
1082  if (!(s->avctx->flags & CODEC_FLAG_GRAY)) {
1084  s->fragment_width[1], s->fragment_height[1]);
1086  s->fragment_width[1], s->fragment_height[1]);
1087  }
1088 
1089  /* fetch the AC table indexes */
1090  ac_y_table = get_bits(gb, 4);
1091  ac_c_table = get_bits(gb, 4);
1092 
1093  /* build tables of AC VLC tables */
1094  for (i = 1; i <= 5; i++) {
1095  y_tables[i] = &s->ac_vlc_1[ac_y_table];
1096  c_tables[i] = &s->ac_vlc_1[ac_c_table];
1097  }
1098  for (i = 6; i <= 14; i++) {
1099  y_tables[i] = &s->ac_vlc_2[ac_y_table];
1100  c_tables[i] = &s->ac_vlc_2[ac_c_table];
1101  }
1102  for (i = 15; i <= 27; i++) {
1103  y_tables[i] = &s->ac_vlc_3[ac_y_table];
1104  c_tables[i] = &s->ac_vlc_3[ac_c_table];
1105  }
1106  for (i = 28; i <= 63; i++) {
1107  y_tables[i] = &s->ac_vlc_4[ac_y_table];
1108  c_tables[i] = &s->ac_vlc_4[ac_c_table];
1109  }
1110 
1111  /* decode all AC coefficents */
1112  for (i = 1; i <= 63; i++) {
1113  residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i,
1114  0, residual_eob_run);
1115  if (residual_eob_run < 0)
1116  return residual_eob_run;
1117 
1118  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1119  1, residual_eob_run);
1120  if (residual_eob_run < 0)
1121  return residual_eob_run;
1122  residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i,
1123  2, residual_eob_run);
1124  if (residual_eob_run < 0)
1125  return residual_eob_run;
1126  }
1127 
1128  return 0;
1129 }
1130 
1131 /*
1132  * This function reverses the DC prediction for each coded fragment in
1133  * the frame. Much of this function is adapted directly from the original
1134  * VP3 source code.
1135  */
1136 #define COMPATIBLE_FRAME(x) \
1137  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1138 #define DC_COEFF(u) s->all_fragments[u].dc
1139 
1141  int first_fragment,
1142  int fragment_width,
1143  int fragment_height)
1144 {
1145 #define PUL 8
1146 #define PU 4
1147 #define PUR 2
1148 #define PL 1
1149 
1150  int x, y;
1151  int i = first_fragment;
1152 
1153  int predicted_dc;
1154 
1155  /* DC values for the left, up-left, up, and up-right fragments */
1156  int vl, vul, vu, vur;
1157 
1158  /* indexes for the left, up-left, up, and up-right fragments */
1159  int l, ul, u, ur;
1160 
1161  /*
1162  * The 6 fields mean:
1163  * 0: up-left multiplier
1164  * 1: up multiplier
1165  * 2: up-right multiplier
1166  * 3: left multiplier
1167  */
1168  static const int predictor_transform[16][4] = {
1169  { 0, 0, 0, 0 },
1170  { 0, 0, 0, 128 }, // PL
1171  { 0, 0, 128, 0 }, // PUR
1172  { 0, 0, 53, 75 }, // PUR|PL
1173  { 0, 128, 0, 0 }, // PU
1174  { 0, 64, 0, 64 }, // PU |PL
1175  { 0, 128, 0, 0 }, // PU |PUR
1176  { 0, 0, 53, 75 }, // PU |PUR|PL
1177  { 128, 0, 0, 0 }, // PUL
1178  { 0, 0, 0, 128 }, // PUL|PL
1179  { 64, 0, 64, 0 }, // PUL|PUR
1180  { 0, 0, 53, 75 }, // PUL|PUR|PL
1181  { 0, 128, 0, 0 }, // PUL|PU
1182  { -104, 116, 0, 116 }, // PUL|PU |PL
1183  { 24, 80, 24, 0 }, // PUL|PU |PUR
1184  { -104, 116, 0, 116 } // PUL|PU |PUR|PL
1185  };
1186 
1187  /* This table shows which types of blocks can use other blocks for
1188  * prediction. For example, INTRA is the only mode in this table to
1189  * have a frame number of 0. That means INTRA blocks can only predict
1190  * from other INTRA blocks. There are 2 golden frame coding types;
1191  * blocks encoding in these modes can only predict from other blocks
1192  * that were encoded with these 1 of these 2 modes. */
1193  static const unsigned char compatible_frame[9] = {
1194  1, /* MODE_INTER_NO_MV */
1195  0, /* MODE_INTRA */
1196  1, /* MODE_INTER_PLUS_MV */
1197  1, /* MODE_INTER_LAST_MV */
1198  1, /* MODE_INTER_PRIOR_MV */
1199  2, /* MODE_USING_GOLDEN */
1200  2, /* MODE_GOLDEN_MV */
1201  1, /* MODE_INTER_FOUR_MV */
1202  3 /* MODE_COPY */
1203  };
1204  int current_frame_type;
1205 
1206  /* there is a last DC predictor for each of the 3 frame types */
1207  short last_dc[3];
1208 
1209  int transform = 0;
1210 
1211  vul =
1212  vu =
1213  vur =
1214  vl = 0;
1215  last_dc[0] =
1216  last_dc[1] =
1217  last_dc[2] = 0;
1218 
1219  /* for each fragment row... */
1220  for (y = 0; y < fragment_height; y++) {
1221  /* for each fragment in a row... */
1222  for (x = 0; x < fragment_width; x++, i++) {
1223 
1224  /* reverse prediction if this block was coded */
1225  if (s->all_fragments[i].coding_method != MODE_COPY) {
1226  current_frame_type =
1227  compatible_frame[s->all_fragments[i].coding_method];
1228 
1229  transform = 0;
1230  if (x) {
1231  l = i - 1;
1232  vl = DC_COEFF(l);
1233  if (COMPATIBLE_FRAME(l))
1234  transform |= PL;
1235  }
1236  if (y) {
1237  u = i - fragment_width;
1238  vu = DC_COEFF(u);
1239  if (COMPATIBLE_FRAME(u))
1240  transform |= PU;
1241  if (x) {
1242  ul = i - fragment_width - 1;
1243  vul = DC_COEFF(ul);
1244  if (COMPATIBLE_FRAME(ul))
1245  transform |= PUL;
1246  }
1247  if (x + 1 < fragment_width) {
1248  ur = i - fragment_width + 1;
1249  vur = DC_COEFF(ur);
1250  if (COMPATIBLE_FRAME(ur))
1251  transform |= PUR;
1252  }
1253  }
1254 
1255  if (transform == 0) {
1256  /* if there were no fragments to predict from, use last
1257  * DC saved */
1258  predicted_dc = last_dc[current_frame_type];
1259  } else {
1260  /* apply the appropriate predictor transform */
1261  predicted_dc =
1262  (predictor_transform[transform][0] * vul) +
1263  (predictor_transform[transform][1] * vu) +
1264  (predictor_transform[transform][2] * vur) +
1265  (predictor_transform[transform][3] * vl);
1266 
1267  predicted_dc /= 128;
1268 
1269  /* check for outranging on the [ul u l] and
1270  * [ul u ur l] predictors */
1271  if ((transform == 15) || (transform == 13)) {
1272  if (FFABS(predicted_dc - vu) > 128)
1273  predicted_dc = vu;
1274  else if (FFABS(predicted_dc - vl) > 128)
1275  predicted_dc = vl;
1276  else if (FFABS(predicted_dc - vul) > 128)
1277  predicted_dc = vul;
1278  }
1279  }
1280 
1281  /* at long last, apply the predictor */
1282  DC_COEFF(i) += predicted_dc;
1283  /* save the DC */
1284  last_dc[current_frame_type] = DC_COEFF(i);
1285  }
1286  }
1287  }
1288 }
1289 
1290 static void apply_loop_filter(Vp3DecodeContext *s, int plane,
1291  int ystart, int yend)
1292 {
1293  int x, y;
1294  int *bounding_values = s->bounding_values_array + 127;
1295 
1296  int width = s->fragment_width[!!plane];
1297  int height = s->fragment_height[!!plane];
1298  int fragment = s->fragment_start[plane] + ystart * width;
1299  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1300  uint8_t *plane_data = s->current_frame.f->data[plane];
1301  if (!s->flipped_image)
1302  stride = -stride;
1303  plane_data += s->data_offset[plane] + 8 * ystart * stride;
1304 
1305  for (y = ystart; y < yend; y++) {
1306  for (x = 0; x < width; x++) {
1307  /* This code basically just deblocks on the edges of coded blocks.
1308  * However, it has to be much more complicated because of the
1309  * braindamaged deblock ordering used in VP3/Theora. Order matters
1310  * because some pixels get filtered twice. */
1311  if (s->all_fragments[fragment].coding_method != MODE_COPY) {
1312  /* do not perform left edge filter for left columns frags */
1313  if (x > 0) {
1314  s->vp3dsp.h_loop_filter(
1315  plane_data + 8 * x,
1316  stride, bounding_values);
1317  }
1318 
1319  /* do not perform top edge filter for top row fragments */
1320  if (y > 0) {
1321  s->vp3dsp.v_loop_filter(
1322  plane_data + 8 * x,
1323  stride, bounding_values);
1324  }
1325 
1326  /* do not perform right edge filter for right column
1327  * fragments or if right fragment neighbor is also coded
1328  * in this frame (it will be filtered in next iteration) */
1329  if ((x < width - 1) &&
1330  (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1331  s->vp3dsp.h_loop_filter(
1332  plane_data + 8 * x + 8,
1333  stride, bounding_values);
1334  }
1335 
1336  /* do not perform bottom edge filter for bottom row
1337  * fragments or if bottom fragment neighbor is also coded
1338  * in this frame (it will be filtered in the next row) */
1339  if ((y < height - 1) &&
1340  (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1341  s->vp3dsp.v_loop_filter(
1342  plane_data + 8 * x + 8 * stride,
1343  stride, bounding_values);
1344  }
1345  }
1346 
1347  fragment++;
1348  }
1349  plane_data += 8 * stride;
1350  }
1351 }
1352 
1357 static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag,
1358  int plane, int inter, int16_t block[64])
1359 {
1360  int16_t *dequantizer = s->qmat[frag->qpi][inter][plane];
1361  uint8_t *perm = s->idct_scantable;
1362  int i = 0;
1363 
1364  do {
1365  int token = *s->dct_tokens[plane][i];
1366  switch (token & 3) {
1367  case 0: // EOB
1368  if (--token < 4) // 0-3 are token types so the EOB run must now be 0
1369  s->dct_tokens[plane][i]++;
1370  else
1371  *s->dct_tokens[plane][i] = token & ~3;
1372  goto end;
1373  case 1: // zero run
1374  s->dct_tokens[plane][i]++;
1375  i += (token >> 2) & 0x7f;
1376  if (i > 63) {
1377  av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n");
1378  return i;
1379  }
1380  block[perm[i]] = (token >> 9) * dequantizer[perm[i]];
1381  i++;
1382  break;
1383  case 2: // coeff
1384  block[perm[i]] = (token >> 2) * dequantizer[perm[i]];
1385  s->dct_tokens[plane][i++]++;
1386  break;
1387  default: // shouldn't happen
1388  return i;
1389  }
1390  } while (i < 64);
1391  // return value is expected to be a valid level
1392  i--;
1393 end:
1394  // the actual DC+prediction is in the fragment structure
1395  block[0] = frag->dc * s->qmat[0][inter][plane][0];
1396  return i;
1397 }
1398 
1403 {
1404  int h, cy, i;
1405  int offset[AV_NUM_DATA_POINTERS];
1406 
1408  int y_flipped = s->flipped_image ? s->avctx->height - y : y;
1409 
1410  /* At the end of the frame, report INT_MAX instead of the height of
1411  * the frame. This makes the other threads' ff_thread_await_progress()
1412  * calls cheaper, because they don't have to clip their values. */
1414  y_flipped == s->avctx->height ? INT_MAX
1415  : y_flipped - 1,
1416  0);
1417  }
1418 
1419  if (!s->avctx->draw_horiz_band)
1420  return;
1421 
1422  h = y - s->last_slice_end;
1423  s->last_slice_end = y;
1424  y -= h;
1425 
1426  if (!s->flipped_image)
1427  y = s->avctx->height - y - h;
1428 
1429  cy = y >> s->chroma_y_shift;
1430  offset[0] = s->current_frame.f->linesize[0] * y;
1431  offset[1] = s->current_frame.f->linesize[1] * cy;
1432  offset[2] = s->current_frame.f->linesize[2] * cy;
1433  for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
1434  offset[i] = 0;
1435 
1436  emms_c();
1437  s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h);
1438 }
1439 
1445  int motion_y, int y)
1446 {
1448  int ref_row;
1449  int border = motion_y & 1;
1450 
1451  if (fragment->coding_method == MODE_USING_GOLDEN ||
1452  fragment->coding_method == MODE_GOLDEN_MV)
1453  ref_frame = &s->golden_frame;
1454  else
1455  ref_frame = &s->last_frame;
1456 
1457  ref_row = y + (motion_y >> 1);
1458  ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border);
1459 
1460  ff_thread_await_progress(ref_frame, ref_row, 0);
1461 }
1462 
1463 /*
1464  * Perform the final rendering for a particular slice of data.
1465  * The slice number ranges from 0..(c_superblock_height - 1).
1466  */
1467 static void render_slice(Vp3DecodeContext *s, int slice)
1468 {
1469  int x, y, i, j, fragment;
1470  int16_t *block = s->block;
1471  int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1472  int motion_halfpel_index;
1473  uint8_t *motion_source;
1474  int plane, first_pixel;
1475 
1476  if (slice >= s->c_superblock_height)
1477  return;
1478 
1479  for (plane = 0; plane < 3; plane++) {
1480  uint8_t *output_plane = s->current_frame.f->data[plane] +
1481  s->data_offset[plane];
1482  uint8_t *last_plane = s->last_frame.f->data[plane] +
1483  s->data_offset[plane];
1484  uint8_t *golden_plane = s->golden_frame.f->data[plane] +
1485  s->data_offset[plane];
1486  ptrdiff_t stride = s->current_frame.f->linesize[plane];
1487  int plane_width = s->width >> (plane && s->chroma_x_shift);
1488  int plane_height = s->height >> (plane && s->chroma_y_shift);
1489  int8_t(*motion_val)[2] = s->motion_val[!!plane];
1490 
1491  int sb_x, sb_y = slice << (!plane && s->chroma_y_shift);
1492  int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift);
1493  int slice_width = plane ? s->c_superblock_width
1494  : s->y_superblock_width;
1495 
1496  int fragment_width = s->fragment_width[!!plane];
1497  int fragment_height = s->fragment_height[!!plane];
1498  int fragment_start = s->fragment_start[plane];
1499 
1500  int do_await = !plane && HAVE_THREADS &&
1502 
1503  if (!s->flipped_image)
1504  stride = -stride;
1505  if (CONFIG_GRAY && plane && (s->avctx->flags & CODEC_FLAG_GRAY))
1506  continue;
1507 
1508  /* for each superblock row in the slice (both of them)... */
1509  for (; sb_y < slice_height; sb_y++) {
1510  /* for each superblock in a row... */
1511  for (sb_x = 0; sb_x < slice_width; sb_x++) {
1512  /* for each block in a superblock... */
1513  for (j = 0; j < 16; j++) {
1514  x = 4 * sb_x + hilbert_offset[j][0];
1515  y = 4 * sb_y + hilbert_offset[j][1];
1516  fragment = y * fragment_width + x;
1517 
1518  i = fragment_start + fragment;
1519 
1520  // bounds check
1521  if (x >= fragment_width || y >= fragment_height)
1522  continue;
1523 
1524  first_pixel = 8 * y * stride + 8 * x;
1525 
1526  if (do_await &&
1529  motion_val[fragment][1],
1530  (16 * y) >> s->chroma_y_shift);
1531 
1532  /* transform if this block was coded */
1533  if (s->all_fragments[i].coding_method != MODE_COPY) {
1536  motion_source = golden_plane;
1537  else
1538  motion_source = last_plane;
1539 
1540  motion_source += first_pixel;
1541  motion_halfpel_index = 0;
1542 
1543  /* sort out the motion vector if this fragment is coded
1544  * using a motion vector method */
1545  if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1547  int src_x, src_y;
1548  motion_x = motion_val[fragment][0];
1549  motion_y = motion_val[fragment][1];
1550 
1551  src_x = (motion_x >> 1) + 8 * x;
1552  src_y = (motion_y >> 1) + 8 * y;
1553 
1554  motion_halfpel_index = motion_x & 0x01;
1555  motion_source += (motion_x >> 1);
1556 
1557  motion_halfpel_index |= (motion_y & 0x01) << 1;
1558  motion_source += ((motion_y >> 1) * stride);
1559 
1560  if (src_x < 0 || src_y < 0 ||
1561  src_x + 9 >= plane_width ||
1562  src_y + 9 >= plane_height) {
1563  uint8_t *temp = s->edge_emu_buffer;
1564  if (stride < 0)
1565  temp -= 8 * stride;
1566 
1567  s->vdsp.emulated_edge_mc(temp, motion_source,
1568  stride, stride,
1569  9, 9, src_x, src_y,
1570  plane_width,
1571  plane_height);
1572  motion_source = temp;
1573  }
1574  }
1575 
1576  /* first, take care of copying a block from either the
1577  * previous or the golden frame */
1578  if (s->all_fragments[i].coding_method != MODE_INTRA) {
1579  /* Note, it is possible to implement all MC cases
1580  * with put_no_rnd_pixels_l2 which would look more
1581  * like the VP3 source but this would be slower as
1582  * put_no_rnd_pixels_tab is better optimzed */
1583  if (motion_halfpel_index != 3) {
1584  s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1585  output_plane + first_pixel,
1586  motion_source, stride, 8);
1587  } else {
1588  /* d is 0 if motion_x and _y have the same sign,
1589  * else -1 */
1590  int d = (motion_x ^ motion_y) >> 31;
1591  s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel,
1592  motion_source - d,
1593  motion_source + stride + 1 + d,
1594  stride, 8);
1595  }
1596  }
1597 
1598  /* invert DCT and place (or add) in final output */
1599 
1600  if (s->all_fragments[i].coding_method == MODE_INTRA) {
1601  int index;
1602  index = vp3_dequant(s, s->all_fragments + i,
1603  plane, 0, block);
1604  if (index > 63)
1605  continue;
1606  s->vp3dsp.idct_put(output_plane + first_pixel,
1607  stride,
1608  block);
1609  } else {
1610  int index = vp3_dequant(s, s->all_fragments + i,
1611  plane, 1, block);
1612  if (index > 63)
1613  continue;
1614  if (index > 0) {
1615  s->vp3dsp.idct_add(output_plane + first_pixel,
1616  stride,
1617  block);
1618  } else {
1619  s->vp3dsp.idct_dc_add(output_plane + first_pixel,
1620  stride, block);
1621  }
1622  }
1623  } else {
1624  /* copy directly from the previous frame */
1625  s->hdsp.put_pixels_tab[1][0](
1626  output_plane + first_pixel,
1627  last_plane + first_pixel,
1628  stride, 8);
1629  }
1630  }
1631  }
1632 
1633  // Filter up to the last row in the superblock row
1634  if (!s->skip_loop_filter)
1635  apply_loop_filter(s, plane, 4 * sb_y - !!sb_y,
1636  FFMIN(4 * sb_y + 3, fragment_height - 1));
1637  }
1638  }
1639 
1640  /* this looks like a good place for slice dispatch... */
1641  /* algorithm:
1642  * if (slice == s->macroblock_height - 1)
1643  * dispatch (both last slice & 2nd-to-last slice);
1644  * else if (slice > 0)
1645  * dispatch (slice - 1);
1646  */
1647 
1648  vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16,
1649  s->height - 16));
1650 }
1651 
1654 {
1655  Vp3DecodeContext *s = avctx->priv_data;
1656  int y_fragment_count, c_fragment_count;
1657 
1658  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1659  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1660 
1663 
1664  s->coded_fragment_list[0] = av_malloc(s->fragment_count * sizeof(int));
1665 
1667  sizeof(*s->dct_tokens_base));
1668  s->motion_val[0] = av_malloc(y_fragment_count * sizeof(*s->motion_val[0]));
1669  s->motion_val[1] = av_malloc(c_fragment_count * sizeof(*s->motion_val[1]));
1670 
1671  /* work out the block mapping tables */
1672  s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1674 
1675  if (!s->superblock_coding || !s->all_fragments ||
1676  !s->dct_tokens_base || !s->coded_fragment_list[0] ||
1678  !s->motion_val[0] || !s->motion_val[1]) {
1679  vp3_decode_end(avctx);
1680  return -1;
1681  }
1682 
1683  init_block_mapping(s);
1684 
1685  return 0;
1686 }
1687 
1689 {
1691  s->last_frame.f = av_frame_alloc();
1692  s->golden_frame.f = av_frame_alloc();
1693 
1694  if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) {
1696  av_frame_free(&s->last_frame.f);
1698  return AVERROR(ENOMEM);
1699  }
1700 
1701  return 0;
1702 }
1703 
1705 {
1706  Vp3DecodeContext *s = avctx->priv_data;
1707  int i, inter, plane, ret;
1708  int c_width;
1709  int c_height;
1710  int y_fragment_count, c_fragment_count;
1711 
1712  ret = init_frames(s);
1713  if (ret < 0)
1714  return ret;
1715 
1716  avctx->internal->allocate_progress = 1;
1717 
1718  if (avctx->codec_tag == MKTAG('V', 'P', '3', '0'))
1719  s->version = 0;
1720  else
1721  s->version = 1;
1722 
1723  s->avctx = avctx;
1724  s->width = FFALIGN(avctx->width, 16);
1725  s->height = FFALIGN(avctx->height, 16);
1726  if (avctx->pix_fmt == AV_PIX_FMT_NONE)
1727  avctx->pix_fmt = AV_PIX_FMT_YUV420P;
1730  ff_videodsp_init(&s->vdsp, 8);
1731  ff_vp3dsp_init(&s->vp3dsp, avctx->flags);
1732 
1733  for (i = 0; i < 64; i++) {
1734 #define TRANSPOSE(x) (x >> 3) | ((x & 7) << 3)
1735  s->idct_permutation[i] = TRANSPOSE(i);
1737 #undef TRANSPOSE
1738  }
1739 
1740  /* initialize to an impossible value which will force a recalculation
1741  * in the first frame decode */
1742  for (i = 0; i < 3; i++)
1743  s->qps[i] = -1;
1744 
1746  &s->chroma_y_shift);
1747 
1748  s->y_superblock_width = (s->width + 31) / 32;
1749  s->y_superblock_height = (s->height + 31) / 32;
1751 
1752  /* work out the dimensions for the C planes */
1753  c_width = s->width >> s->chroma_x_shift;
1754  c_height = s->height >> s->chroma_y_shift;
1755  s->c_superblock_width = (c_width + 31) / 32;
1756  s->c_superblock_height = (c_height + 31) / 32;
1758 
1762 
1763  s->macroblock_width = (s->width + 15) / 16;
1764  s->macroblock_height = (s->height + 15) / 16;
1766 
1767  s->fragment_width[0] = s->width / FRAGMENT_PIXELS;
1768  s->fragment_height[0] = s->height / FRAGMENT_PIXELS;
1769  s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift;
1770  s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift;
1771 
1772  /* fragment count covers all 8x8 blocks for all 3 planes */
1773  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1774  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1775  s->fragment_count = y_fragment_count + 2 * c_fragment_count;
1776  s->fragment_start[1] = y_fragment_count;
1777  s->fragment_start[2] = y_fragment_count + c_fragment_count;
1778 
1779  if (!s->theora_tables) {
1780  for (i = 0; i < 64; i++) {
1783  s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1784  s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1785  s->base_matrix[2][i] = vp31_inter_dequant[i];
1787  }
1788 
1789  for (inter = 0; inter < 2; inter++) {
1790  for (plane = 0; plane < 3; plane++) {
1791  s->qr_count[inter][plane] = 1;
1792  s->qr_size[inter][plane][0] = 63;
1793  s->qr_base[inter][plane][0] =
1794  s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter;
1795  }
1796  }
1797 
1798  /* init VLC tables */
1799  for (i = 0; i < 16; i++) {
1800  /* DC histograms */
1801  init_vlc(&s->dc_vlc[i], 11, 32,
1802  &dc_bias[i][0][1], 4, 2,
1803  &dc_bias[i][0][0], 4, 2, 0);
1804 
1805  /* group 1 AC histograms */
1806  init_vlc(&s->ac_vlc_1[i], 11, 32,
1807  &ac_bias_0[i][0][1], 4, 2,
1808  &ac_bias_0[i][0][0], 4, 2, 0);
1809 
1810  /* group 2 AC histograms */
1811  init_vlc(&s->ac_vlc_2[i], 11, 32,
1812  &ac_bias_1[i][0][1], 4, 2,
1813  &ac_bias_1[i][0][0], 4, 2, 0);
1814 
1815  /* group 3 AC histograms */
1816  init_vlc(&s->ac_vlc_3[i], 11, 32,
1817  &ac_bias_2[i][0][1], 4, 2,
1818  &ac_bias_2[i][0][0], 4, 2, 0);
1819 
1820  /* group 4 AC histograms */
1821  init_vlc(&s->ac_vlc_4[i], 11, 32,
1822  &ac_bias_3[i][0][1], 4, 2,
1823  &ac_bias_3[i][0][0], 4, 2, 0);
1824  }
1825  } else {
1826  for (i = 0; i < 16; i++) {
1827  /* DC histograms */
1828  if (init_vlc(&s->dc_vlc[i], 11, 32,
1829  &s->huffman_table[i][0][1], 8, 4,
1830  &s->huffman_table[i][0][0], 8, 4, 0) < 0)
1831  goto vlc_fail;
1832 
1833  /* group 1 AC histograms */
1834  if (init_vlc(&s->ac_vlc_1[i], 11, 32,
1835  &s->huffman_table[i + 16][0][1], 8, 4,
1836  &s->huffman_table[i + 16][0][0], 8, 4, 0) < 0)
1837  goto vlc_fail;
1838 
1839  /* group 2 AC histograms */
1840  if (init_vlc(&s->ac_vlc_2[i], 11, 32,
1841  &s->huffman_table[i + 16 * 2][0][1], 8, 4,
1842  &s->huffman_table[i + 16 * 2][0][0], 8, 4, 0) < 0)
1843  goto vlc_fail;
1844 
1845  /* group 3 AC histograms */
1846  if (init_vlc(&s->ac_vlc_3[i], 11, 32,
1847  &s->huffman_table[i + 16 * 3][0][1], 8, 4,
1848  &s->huffman_table[i + 16 * 3][0][0], 8, 4, 0) < 0)
1849  goto vlc_fail;
1850 
1851  /* group 4 AC histograms */
1852  if (init_vlc(&s->ac_vlc_4[i], 11, 32,
1853  &s->huffman_table[i + 16 * 4][0][1], 8, 4,
1854  &s->huffman_table[i + 16 * 4][0][0], 8, 4, 0) < 0)
1855  goto vlc_fail;
1856  }
1857  }
1858 
1860  &superblock_run_length_vlc_table[0][1], 4, 2,
1861  &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1862 
1863  init_vlc(&s->fragment_run_length_vlc, 5, 30,
1864  &fragment_run_length_vlc_table[0][1], 4, 2,
1865  &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1866 
1867  init_vlc(&s->mode_code_vlc, 3, 8,
1868  &mode_code_vlc_table[0][1], 2, 1,
1869  &mode_code_vlc_table[0][0], 2, 1, 0);
1870 
1871  init_vlc(&s->motion_vector_vlc, 6, 63,
1872  &motion_vector_vlc_table[0][1], 2, 1,
1873  &motion_vector_vlc_table[0][0], 2, 1, 0);
1874 
1875  return allocate_tables(avctx);
1876 
1877 vlc_fail:
1878  av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1879  return -1;
1880 }
1881 
1883 static int update_frames(AVCodecContext *avctx)
1884 {
1885  Vp3DecodeContext *s = avctx->priv_data;
1886  int ret = 0;
1887 
1888  /* shuffle frames (last = current) */
1891  if (ret < 0)
1892  goto fail;
1893 
1894  if (s->keyframe) {
1897  }
1898 
1899 fail:
1901  return ret;
1902 }
1903 
1905 {
1907  if (src->f->data[0])
1908  return ff_thread_ref_frame(dst, src);
1909  return 0;
1910 }
1911 
1913 {
1914  int ret;
1915  if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 ||
1916  (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 ||
1917  (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0)
1918  return ret;
1919  return 0;
1920 }
1921 
1923 {
1924  Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data;
1925  int qps_changed = 0, i, err;
1926 
1927 #define copy_fields(to, from, start_field, end_field) \
1928  memcpy(&to->start_field, &from->start_field, \
1929  (char *) &to->end_field - (char *) &to->start_field)
1930 
1931  if (!s1->current_frame.f->data[0] ||
1932  s->width != s1->width || s->height != s1->height) {
1933  if (s != s1)
1934  ref_frames(s, s1);
1935  return -1;
1936  }
1937 
1938  if (s != s1) {
1939  // init tables if the first frame hasn't been decoded
1940  if (!s->current_frame.f->data[0]) {
1941  int y_fragment_count, c_fragment_count;
1942  s->avctx = dst;
1943  err = allocate_tables(dst);
1944  if (err)
1945  return err;
1946  y_fragment_count = s->fragment_width[0] * s->fragment_height[0];
1947  c_fragment_count = s->fragment_width[1] * s->fragment_height[1];
1948  memcpy(s->motion_val[0], s1->motion_val[0],
1949  y_fragment_count * sizeof(*s->motion_val[0]));
1950  memcpy(s->motion_val[1], s1->motion_val[1],
1951  c_fragment_count * sizeof(*s->motion_val[1]));
1952  }
1953 
1954  // copy previous frame data
1955  if ((err = ref_frames(s, s1)) < 0)
1956  return err;
1957 
1958  s->keyframe = s1->keyframe;
1959 
1960  // copy qscale data if necessary
1961  for (i = 0; i < 3; i++) {
1962  if (s->qps[i] != s1->qps[1]) {
1963  qps_changed = 1;
1964  memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i]));
1965  }
1966  }
1967 
1968  if (s->qps[0] != s1->qps[0])
1969  memcpy(&s->bounding_values_array, &s1->bounding_values_array,
1970  sizeof(s->bounding_values_array));
1971 
1972  if (qps_changed)
1973  copy_fields(s, s1, qps, superblock_count);
1974 #undef copy_fields
1975  }
1976 
1977  return update_frames(dst);
1978 }
1979 
1981  void *data, int *got_frame,
1982  AVPacket *avpkt)
1983 {
1984  const uint8_t *buf = avpkt->data;
1985  int buf_size = avpkt->size;
1986  Vp3DecodeContext *s = avctx->priv_data;
1987  GetBitContext gb;
1988  int i, ret;
1989 
1990  init_get_bits(&gb, buf, buf_size * 8);
1991 
1992  if (s->theora && get_bits1(&gb)) {
1993  av_log(avctx, AV_LOG_ERROR,
1994  "Header packet passed to frame decoder, skipping\n");
1995  return -1;
1996  }
1997 
1998  s->keyframe = !get_bits1(&gb);
1999  if (!s->theora)
2000  skip_bits(&gb, 1);
2001  for (i = 0; i < 3; i++)
2002  s->last_qps[i] = s->qps[i];
2003 
2004  s->nqps = 0;
2005  do {
2006  s->qps[s->nqps++] = get_bits(&gb, 6);
2007  } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb));
2008  for (i = s->nqps; i < 3; i++)
2009  s->qps[i] = -1;
2010 
2011  if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2012  av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2013  s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]);
2014 
2015  s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] ||
2016  avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL
2017  : AVDISCARD_NONKEY);
2018 
2019  if (s->qps[0] != s->last_qps[0])
2020  init_loop_filter(s);
2021 
2022  for (i = 0; i < s->nqps; i++)
2023  // reinit all dequantizers if the first one changed, because
2024  // the DC of the first quantizer must be used for all matrices
2025  if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
2026  init_dequantizer(s, i);
2027 
2028  if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
2029  return buf_size;
2030 
2031  s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I
2033  if (ff_thread_get_buffer(avctx, &s->current_frame, AV_GET_BUFFER_FLAG_REF) < 0) {
2034  av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
2035  goto error;
2036  }
2037 
2038  if (!s->edge_emu_buffer)
2039  s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0]));
2040 
2041  if (s->keyframe) {
2042  if (!s->theora) {
2043  skip_bits(&gb, 4); /* width code */
2044  skip_bits(&gb, 4); /* height code */
2045  if (s->version) {
2046  s->version = get_bits(&gb, 5);
2047  if (avctx->frame_number == 0)
2048  av_log(s->avctx, AV_LOG_DEBUG,
2049  "VP version: %d\n", s->version);
2050  }
2051  }
2052  if (s->version || s->theora) {
2053  if (get_bits1(&gb))
2054  av_log(s->avctx, AV_LOG_ERROR,
2055  "Warning, unsupported keyframe coding type?!\n");
2056  skip_bits(&gb, 2); /* reserved? */
2057  }
2058  } else {
2059  if (!s->golden_frame.f->data[0]) {
2060  av_log(s->avctx, AV_LOG_WARNING,
2061  "vp3: first frame not a keyframe\n");
2062 
2063  s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I;
2064  if (ff_thread_get_buffer(avctx, &s->golden_frame,
2065  AV_GET_BUFFER_FLAG_REF) < 0) {
2066  av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
2067  goto error;
2068  }
2069  ff_thread_release_buffer(avctx, &s->last_frame);
2070  if ((ret = ff_thread_ref_frame(&s->last_frame,
2071  &s->golden_frame)) < 0)
2072  goto error;
2073  ff_thread_report_progress(&s->last_frame, INT_MAX, 0);
2074  }
2075  }
2076 
2077  memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment));
2078  ff_thread_finish_setup(avctx);
2079 
2080  if (unpack_superblocks(s, &gb)) {
2081  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2082  goto error;
2083  }
2084  if (unpack_modes(s, &gb)) {
2085  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2086  goto error;
2087  }
2088  if (unpack_vectors(s, &gb)) {
2089  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2090  goto error;
2091  }
2092  if (unpack_block_qpis(s, &gb)) {
2093  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2094  goto error;
2095  }
2096  if (unpack_dct_coeffs(s, &gb)) {
2097  av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2098  goto error;
2099  }
2100 
2101  for (i = 0; i < 3; i++) {
2102  int height = s->height >> (i && s->chroma_y_shift);
2103  if (s->flipped_image)
2104  s->data_offset[i] = 0;
2105  else
2106  s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i];
2107  }
2108 
2109  s->last_slice_end = 0;
2110  for (i = 0; i < s->c_superblock_height; i++)
2111  render_slice(s, i);
2112 
2113  // filter the last row
2114  for (i = 0; i < 3; i++) {
2115  int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1;
2116  apply_loop_filter(s, i, row, row + 1);
2117  }
2118  vp3_draw_horiz_band(s, s->avctx->height);
2119 
2120  if ((ret = av_frame_ref(data, s->current_frame.f)) < 0)
2121  return ret;
2122  *got_frame = 1;
2123 
2124  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) {
2125  ret = update_frames(avctx);
2126  if (ret < 0)
2127  return ret;
2128  }
2129 
2130  return buf_size;
2131 
2132 error:
2133  ff_thread_report_progress(&s->current_frame, INT_MAX, 0);
2134 
2135  if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME))
2136  av_frame_unref(s->current_frame.f);
2137 
2138  return -1;
2139 }
2140 
2142 {
2143  Vp3DecodeContext *s = avctx->priv_data;
2144 
2145  if (get_bits1(gb)) {
2146  int token;
2147  if (s->entries >= 32) { /* overflow */
2148  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2149  return -1;
2150  }
2151  token = get_bits(gb, 5);
2152  av_dlog(avctx, "hti %d hbits %x token %d entry : %d size %d\n",
2153  s->hti, s->hbits, token, s->entries, s->huff_code_size);
2154  s->huffman_table[s->hti][token][0] = s->hbits;
2155  s->huffman_table[s->hti][token][1] = s->huff_code_size;
2156  s->entries++;
2157  } else {
2158  if (s->huff_code_size >= 32) { /* overflow */
2159  av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2160  return -1;
2161  }
2162  s->huff_code_size++;
2163  s->hbits <<= 1;
2164  if (read_huffman_tree(avctx, gb))
2165  return -1;
2166  s->hbits |= 1;
2167  if (read_huffman_tree(avctx, gb))
2168  return -1;
2169  s->hbits >>= 1;
2170  s->huff_code_size--;
2171  }
2172  return 0;
2173 }
2174 
2176 {
2177  Vp3DecodeContext *s = avctx->priv_data;
2178 
2179  s->superblock_coding = NULL;
2180  s->all_fragments = NULL;
2181  s->coded_fragment_list[0] = NULL;
2182  s->dct_tokens_base = NULL;
2184  s->macroblock_coding = NULL;
2185  s->motion_val[0] = NULL;
2186  s->motion_val[1] = NULL;
2187  s->edge_emu_buffer = NULL;
2188 
2189  return init_frames(s);
2190 }
2191 
2192 #if CONFIG_THEORA_DECODER
2193 static const enum AVPixelFormat theora_pix_fmts[4] = {
2195 };
2196 
2197 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2198 {
2199  Vp3DecodeContext *s = avctx->priv_data;
2200  int visible_width, visible_height, colorspace;
2201  int offset_x = 0, offset_y = 0;
2202  int ret;
2203  AVRational fps, aspect;
2204 
2205  s->theora = get_bits_long(gb, 24);
2206  av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2207 
2208  /* 3.2.0 aka alpha3 has the same frame orientation as original vp3
2209  * but previous versions have the image flipped relative to vp3 */
2210  if (s->theora < 0x030200) {
2211  s->flipped_image = 1;
2212  av_log(avctx, AV_LOG_DEBUG,
2213  "Old (<alpha3) Theora bitstream, flipped image\n");
2214  }
2215 
2216  visible_width =
2217  s->width = get_bits(gb, 16) << 4;
2218  visible_height =
2219  s->height = get_bits(gb, 16) << 4;
2220 
2221  if (s->theora >= 0x030200) {
2222  visible_width = get_bits_long(gb, 24);
2223  visible_height = get_bits_long(gb, 24);
2224 
2225  offset_x = get_bits(gb, 8); /* offset x */
2226  offset_y = get_bits(gb, 8); /* offset y, from bottom */
2227  }
2228 
2229  fps.num = get_bits_long(gb, 32);
2230  fps.den = get_bits_long(gb, 32);
2231  if (fps.num && fps.den) {
2232  if (fps.num < 0 || fps.den < 0) {
2233  av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n");
2234  return AVERROR_INVALIDDATA;
2235  }
2236  av_reduce(&avctx->time_base.num, &avctx->time_base.den,
2237  fps.den, fps.num, 1 << 30);
2238  }
2239 
2240  aspect.num = get_bits_long(gb, 24);
2241  aspect.den = get_bits_long(gb, 24);
2242  if (aspect.num && aspect.den) {
2244  &avctx->sample_aspect_ratio.den,
2245  aspect.num, aspect.den, 1 << 30);
2246  ff_set_sar(avctx, avctx->sample_aspect_ratio);
2247  }
2248 
2249  if (s->theora < 0x030200)
2250  skip_bits(gb, 5); /* keyframe frequency force */
2251  colorspace = get_bits(gb, 8);
2252  skip_bits(gb, 24); /* bitrate */
2253 
2254  skip_bits(gb, 6); /* quality hint */
2255 
2256  if (s->theora >= 0x030200) {
2257  skip_bits(gb, 5); /* keyframe frequency force */
2258  avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)];
2259  skip_bits(gb, 3); /* reserved */
2260  }
2261 
2262 // align_get_bits(gb);
2263 
2264  if (visible_width <= s->width && visible_width > s->width - 16 &&
2265  visible_height <= s->height && visible_height > s->height - 16 &&
2266  !offset_x && (offset_y == s->height - visible_height))
2267  ret = ff_set_dimensions(avctx, visible_width, visible_height);
2268  else
2269  ret = ff_set_dimensions(avctx, s->width, s->height);
2270  if (ret < 0)
2271  return ret;
2272 
2273  if (colorspace == 1)
2275  else if (colorspace == 2)
2277 
2278  if (colorspace == 1 || colorspace == 2) {
2279  avctx->colorspace = AVCOL_SPC_BT470BG;
2280  avctx->color_trc = AVCOL_TRC_BT709;
2281  }
2282 
2283  return 0;
2284 }
2285 
2286 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2287 {
2288  Vp3DecodeContext *s = avctx->priv_data;
2289  int i, n, matrices, inter, plane;
2290 
2291  if (s->theora >= 0x030200) {
2292  n = get_bits(gb, 3);
2293  /* loop filter limit values table */
2294  if (n)
2295  for (i = 0; i < 64; i++)
2296  s->filter_limit_values[i] = get_bits(gb, n);
2297  }
2298 
2299  if (s->theora >= 0x030200)
2300  n = get_bits(gb, 4) + 1;
2301  else
2302  n = 16;
2303  /* quality threshold table */
2304  for (i = 0; i < 64; i++)
2305  s->coded_ac_scale_factor[i] = get_bits(gb, n);
2306 
2307  if (s->theora >= 0x030200)
2308  n = get_bits(gb, 4) + 1;
2309  else
2310  n = 16;
2311  /* dc scale factor table */
2312  for (i = 0; i < 64; i++)
2313  s->coded_dc_scale_factor[i] = get_bits(gb, n);
2314 
2315  if (s->theora >= 0x030200)
2316  matrices = get_bits(gb, 9) + 1;
2317  else
2318  matrices = 3;
2319 
2320  if (matrices > 384) {
2321  av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2322  return -1;
2323  }
2324 
2325  for (n = 0; n < matrices; n++)
2326  for (i = 0; i < 64; i++)
2327  s->base_matrix[n][i] = get_bits(gb, 8);
2328 
2329  for (inter = 0; inter <= 1; inter++) {
2330  for (plane = 0; plane <= 2; plane++) {
2331  int newqr = 1;
2332  if (inter || plane > 0)
2333  newqr = get_bits1(gb);
2334  if (!newqr) {
2335  int qtj, plj;
2336  if (inter && get_bits1(gb)) {
2337  qtj = 0;
2338  plj = plane;
2339  } else {
2340  qtj = (3 * inter + plane - 1) / 3;
2341  plj = (plane + 2) % 3;
2342  }
2343  s->qr_count[inter][plane] = s->qr_count[qtj][plj];
2344  memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj],
2345  sizeof(s->qr_size[0][0]));
2346  memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj],
2347  sizeof(s->qr_base[0][0]));
2348  } else {
2349  int qri = 0;
2350  int qi = 0;
2351 
2352  for (;;) {
2353  i = get_bits(gb, av_log2(matrices - 1) + 1);
2354  if (i >= matrices) {
2355  av_log(avctx, AV_LOG_ERROR,
2356  "invalid base matrix index\n");
2357  return -1;
2358  }
2359  s->qr_base[inter][plane][qri] = i;
2360  if (qi >= 63)
2361  break;
2362  i = get_bits(gb, av_log2(63 - qi) + 1) + 1;
2363  s->qr_size[inter][plane][qri++] = i;
2364  qi += i;
2365  }
2366 
2367  if (qi > 63) {
2368  av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2369  return -1;
2370  }
2371  s->qr_count[inter][plane] = qri;
2372  }
2373  }
2374  }
2375 
2376  /* Huffman tables */
2377  for (s->hti = 0; s->hti < 80; s->hti++) {
2378  s->entries = 0;
2379  s->huff_code_size = 1;
2380  if (!get_bits1(gb)) {
2381  s->hbits = 0;
2382  if (read_huffman_tree(avctx, gb))
2383  return -1;
2384  s->hbits = 1;
2385  if (read_huffman_tree(avctx, gb))
2386  return -1;
2387  }
2388  }
2389 
2390  s->theora_tables = 1;
2391 
2392  return 0;
2393 }
2394 
2395 static av_cold int theora_decode_init(AVCodecContext *avctx)
2396 {
2397  Vp3DecodeContext *s = avctx->priv_data;
2398  GetBitContext gb;
2399  int ptype;
2400  uint8_t *header_start[3];
2401  int header_len[3];
2402  int i;
2403 
2404  s->theora = 1;
2405 
2406  if (!avctx->extradata_size) {
2407  av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2408  return -1;
2409  }
2410 
2412  42, header_start, header_len) < 0) {
2413  av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2414  return -1;
2415  }
2416 
2417  for (i = 0; i < 3; i++) {
2418  if (header_len[i] <= 0)
2419  continue;
2420  init_get_bits(&gb, header_start[i], header_len[i] * 8);
2421 
2422  ptype = get_bits(&gb, 8);
2423 
2424  if (!(ptype & 0x80)) {
2425  av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2426 // return -1;
2427  }
2428 
2429  // FIXME: Check for this as well.
2430  skip_bits_long(&gb, 6 * 8); /* "theora" */
2431 
2432  switch (ptype) {
2433  case 0x80:
2434  theora_decode_header(avctx, &gb);
2435  break;
2436  case 0x81:
2437 // FIXME: is this needed? it breaks sometimes
2438 // theora_decode_comments(avctx, gb);
2439  break;
2440  case 0x82:
2441  if (theora_decode_tables(avctx, &gb))
2442  return -1;
2443  break;
2444  default:
2445  av_log(avctx, AV_LOG_ERROR,
2446  "Unknown Theora config packet: %d\n", ptype & ~0x80);
2447  break;
2448  }
2449  if (ptype != 0x81 && 8 * header_len[i] != get_bits_count(&gb))
2450  av_log(avctx, AV_LOG_WARNING,
2451  "%d bits left in packet %X\n",
2452  8 * header_len[i] - get_bits_count(&gb), ptype);
2453  if (s->theora < 0x030200)
2454  break;
2455  }
2456 
2457  return vp3_decode_init(avctx);
2458 }
2459 
2460 AVCodec ff_theora_decoder = {
2461  .name = "theora",
2462  .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2463  .type = AVMEDIA_TYPE_VIDEO,
2464  .id = AV_CODEC_ID_THEORA,
2465  .priv_data_size = sizeof(Vp3DecodeContext),
2466  .init = theora_decode_init,
2467  .close = vp3_decode_end,
2469  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2472  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2473  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context)
2474 };
2475 #endif
2476 
2478  .name = "vp3",
2479  .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2480  .type = AVMEDIA_TYPE_VIDEO,
2481  .id = AV_CODEC_ID_VP3,
2482  .priv_data_size = sizeof(Vp3DecodeContext),
2483  .init = vp3_decode_init,
2484  .close = vp3_decode_end,
2486  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
2489  .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp3_init_thread_copy),
2490  .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context),
2491 };
#define BLOCK_Y
static const int16_t vp31_intra_y_dequant[64]
Definition: vp3data.h:29
void(* put_no_rnd_pixels_l2)(uint8_t *dst, const uint8_t *a, const uint8_t *b, ptrdiff_t stride, int h)
Copy 8xH pixels from source to destination buffer using a bilinear filter with no rounding (i...
Definition: vp3dsp.h:36
int last_slice_end
Definition: vp3.c:145
uint8_t idct_scantable[64]
Definition: vp3.c:139
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:62
discard all frames except keyframes
Definition: avcodec.h:567
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:54
#define AV_NUM_DATA_POINTERS
Definition: frame.h:136
int16_t qmat[3][2][3][64]
qmat[qpi][is_inter][plane]
Definition: vp3.c:232
static int init_block_mapping(Vp3DecodeContext *s)
Definition: vp3.c:320
void(* idct_put)(uint8_t *dest, int line_size, int16_t *block)
Definition: vp3dsp.h:41
void(* h_loop_filter)(uint8_t *src, int stride, int *bounding_values)
Definition: vp3dsp.h:45
#define SB_NOT_CODED
Definition: vp3.c:58
#define TOKEN_EOB(eob_run)
Definition: vp3.c:204
static void render_slice(Vp3DecodeContext *s, int slice)
Definition: vp3.c:1467
#define PUR
int y_superblock_count
Definition: vp3.c:155
int bounding_values_array[256+2]
Definition: vp3.c:254
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:70
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:240
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:129
uint16_t qr_base[2][3][64]
Definition: vp3.c:183
AVFrame * f
Definition: thread.h:36
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
Definition: utils.c:133
static void skip_bits_long(GetBitContext *s, int n)
Definition: get_bits.h:199
VLC mode_code_vlc
Definition: vp3.c:227
int y_superblock_width
Definition: vp3.c:153
static const uint16_t fragment_run_length_vlc_table[30][2]
Definition: vp3data.h:119
HpelDSPContext hdsp
Definition: vp3.c:140
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM / IEC 61966-2-4 xvYCC601 ...
Definition: pixfmt.h:350
Definition: vf_drawbox.c:37
#define MODE_INTER_PLUS_MV
Definition: vp3.c:69
int num
numerator
Definition: rational.h:44
int size
Definition: avcodec.h:974
static av_cold int init_frames(Vp3DecodeContext *s)
Definition: vp3.c:1688
int u_superblock_start
Definition: vp3.c:159
#define BLOCK_X
#define DECLARE_ALIGNED(n, t, v)
Definition: mem.h:58
AVRational sample_aspect_ratio
sample aspect ratio (0 if unknown) That is the width of a pixel divided by the height of the pixel...
Definition: avcodec.h:1445
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:577
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1270
uint8_t coding_method
Definition: vp3.c:54
static av_cold int vp3_decode_init(AVCodecContext *avctx)
Definition: vp3.c:1704
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:425
#define VLC_TYPE
Definition: get_bits.h:62
av_dlog(ac->avr,"%d samples - audio_convert: %s to %s (%s)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt), use_generic?ac->func_descr_generic:ac->func_descr)
static void reverse_dc_prediction(Vp3DecodeContext *s, int first_fragment, int fragment_width, int fragment_height)
Definition: vp3.c:1140
discard all
Definition: avcodec.h:568
VLC ac_vlc_4[16]
Definition: vp3.c:223
VLC motion_vector_vlc
Definition: vp3.c:228
static av_cold int vp3_decode_end(AVCodecContext *avctx)
Definition: vp3.c:273
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
int huff_code_size
Definition: vp3.c:250
int * superblock_fragments
Definition: vp3.c:238
VLC superblock_run_length_vlc
Definition: vp3.c:225
int stride
Definition: mace.c:144
AVCodec.
Definition: avcodec.h:2812
static const uint32_t vp31_ac_scale_factor[64]
Definition: vp3data.h:76
#define MAXIMUM_LONG_BIT_RUN
Definition: vp3.c:65
static const int motion_vector_table[63]
Definition: vp3data.h:179
static const uint16_t ac_bias_3[16][32][2]
Definition: vp3data.h:2634
static const uint16_t dc_bias[16][32][2]
Definition: vp3data.h:446
Vp3Fragment * all_fragments
Definition: vp3.c:171
#define FFALIGN(x, a)
Definition: common.h:62
static void init_loop_filter(Vp3DecodeContext *s)
Definition: vp3.c:396
#define COMPATIBLE_FRAME(x)
Definition: vp3.c:1136
AVRational time_base
This is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented...
Definition: avcodec.h:1175
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
void(* idct_dc_add)(uint8_t *dest, int line_size, int16_t *block)
Definition: vp3dsp.h:43
int y_superblock_height
Definition: vp3.c:154
static int decode(MimicContext *ctx, int quality, int num_coeffs, int is_iframe)
Definition: mimic.c:275
#define TRANSPOSE(x)
uint8_t
#define av_cold
Definition: attributes.h:66
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:686
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:57
VLC ac_vlc_1[16]
Definition: vp3.c:220
#define TOKEN_ZERO_RUN(coeff, zero_run)
Definition: vp3.c:205
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2379
static int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, int plane, int inter, int16_t block[64])
Pull DCT tokens from the 64 levels to decode and dequant the coefficients for the next block in codin...
Definition: vp3.c:1357
unsigned int hbits
Definition: vp3.c:248
Multithreading support functions.
int macroblock_width
Definition: vp3.c:164
uint8_t idct_permutation[64]
Definition: vp3.c:138
#define HAVE_THREADS
Definition: config.h:302
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:188
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
Definition: vp3.c:354
#define emms_c()
Definition: internal.h:47
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1164
uint8_t qpi
Definition: vp3.c:55
static void vp3_decode_flush(AVCodecContext *avctx)
Definition: vp3.c:261
#define CODEC_CAP_DR1
Codec uses get_buffer() for allocating buffers and supports custom allocators.
Definition: avcodec.h:684
#define DC_COEFF(u)
Definition: vp3.c:1138
const char data[16]
Definition: mxf.c:70
uint8_t * data
Definition: avcodec.h:973
uint8_t filter_limit_values[64]
Definition: vp3.c:253
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:194
int ff_thread_ref_frame(ThreadFrame *dst, ThreadFrame *src)
Definition: utils.c:2328
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:145
bitstream reader API header.
#define CODEC_FLAG_BITEXACT
Use only bitexact stuff (except (I)DCT).
Definition: avcodec.h:658
VLC ac_vlc_2[16]
Definition: vp3.c:221
void ff_thread_finish_setup(AVCodecContext *avctx)
If the codec defines update_thread_context(), call this when they are ready for the next thread to st...
static const uint8_t mode_code_vlc_table[8][2]
Definition: vp3data.h:144
enum AVChromaLocation chroma_sample_location
This defines the location of chroma samples.
Definition: avcodec.h:1789
#define MODE_INTRA
Definition: vp3.c:68
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:1045
static const int16_t vp31_inter_dequant[64]
Definition: vp3data.h:54
static const uint16_t ac_bias_1[16][32][2]
Definition: vp3data.h:1540
int height
Definition: vp3.c:132
static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src)
Definition: vp3.c:1912
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:555
static int vp3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt)
Definition: vp3.c:1980
static const uint8_t motion_vector_vlc_table[63][2]
Definition: vp3data.h:151
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch, int dst_height)
Convert and output the current plane.
Definition: indeo3.c:1013
VP3DSPContext vp3dsp
Definition: vp3.c:142
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
int c_superblock_width
Definition: vp3.c:156
uint8_t qr_count[2][3]
Definition: vp3.c:181
int fragment_height[2]
Definition: vp3.c:169
int is_copy
Whether the parent AVCodecContext is a copy of the context which had init() called on it...
Definition: internal.h:66
#define AVERROR(e)
Definition: error.h:43
VLC ac_vlc_3[16]
Definition: vp3.c:222
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:69
#define CODING_MODE_COUNT
Definition: vp3.c:75
static const int zero_run_base[32]
Definition: vp3data.h:208
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:145
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2575
static const int8_t fixed_motion_vector_table[64]
Definition: vp3data.h:189
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:144
int flags
CODEC_FLAG_*.
Definition: avcodec.h:1144
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
int theora
Definition: vp3.c:130
const char * name
Name of the codec implementation.
Definition: avcodec.h:2819
#define FFMAX(a, b)
Definition: common.h:55
int qps[3]
Definition: vp3.c:148
static const int ModeAlphabet[6][CODING_MODE_COUNT]
Definition: vp3.c:81
static const int16_t vp31_intra_c_dequant[64]
Definition: vp3data.h:42
Definition: get_bits.h:64
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:69
#define ONLY_IF_THREADS_ENABLED(x)
Define a function with only the non-default version specified.
Definition: internal.h:185
av_cold void ff_hpeldsp_init(HpelDSPContext *c, int flags)
Definition: hpeldsp.c:338
static const int coeff_get_bits[32]
Definition: vp3data.h:223
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
static const int16_t *const coeff_tables[32]
Definition: vp3data.h:408
int chroma_y_shift
Definition: vp3.c:133
int flipped_image
Definition: vp3.c:144
unsigned char * macroblock_coding
Definition: vp3.c:242
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:37
Half-pel DSP context.
Definition: hpeldsp.h:45
int fragment_width[2]
Definition: vp3.c:168
void(* draw_horiz_band)(struct AVCodecContext *s, const AVFrame *src, int offset[AV_NUM_DATA_POINTERS], int y, int type, int height)
If non NULL, 'draw_horiz_band' is called by the libavcodec decoder to draw a horizontal band...
Definition: avcodec.h:1304
#define SET_CHROMA_MODES
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2567
#define CODEC_CAP_DRAW_HORIZ_BAND
Decoder can use draw_horiz_band callback.
Definition: avcodec.h:678
#define FFMIN(a, b)
Definition: common.h:57
VLC fragment_run_length_vlc
Definition: vp3.c:226
#define PU
int macroblock_height
Definition: vp3.c:165
int width
picture width / height.
Definition: avcodec.h:1229
#define SB_PARTIALLY_CODED
Definition: vp3.c:59
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, VLC *table, int coeff_index, int plane, int eob_run)
Definition: vp3.c:918
also ITU-R BT601-6 625 / ITU-R BT1358 625 / ITU-R BT1700 625 PAL & SECAM
Definition: pixfmt.h:311
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
uint8_t * edge_emu_buffer
Definition: vp3.c:244
void(* idct_add)(uint8_t *dest, int line_size, int16_t *block)
Definition: vp3dsp.h:42
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1761
#define MODE_COPY
Definition: vp3.c:78
#define FFABS(a)
Definition: common.h:52
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:522
static const uint16_t ac_bias_2[16][32][2]
Definition: vp3data.h:2087
static const uint8_t hilbert_offset[16][2]
Definition: vp3.c:119
int macroblock_count
Definition: vp3.c:163
int c_superblock_height
Definition: vp3.c:157
int total_num_coded_frags
Definition: vp3.c:213
int c_superblock_count
Definition: vp3.c:158
if(ac->has_optimized_func)
AVCodec ff_vp3_decoder
Definition: vp3.c:2477
static void apply_loop_filter(Vp3DecodeContext *s, int plane, int ystart, int yend)
Definition: vp3.c:1290
static const int8_t transform[32][32]
Definition: hevcdsp.c:25
also ITU-R BT1361
Definition: pixfmt.h:323
NULL
Definition: eval.c:55
Half-pel DSP functions.
static int width
Definition: utils.c:156
#define AV_LOG_INFO
Standard information.
Definition: log.h:134
int superblock_count
Definition: vp3.c:152
Libavcodec external API header.
int entries
Definition: vp3.c:249
static const uint16_t ac_bias_0[16][32][2]
Definition: vp3data.h:993
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:153
int16_t * dct_tokens[3][64]
This is a list of all tokens in bitstream order.
Definition: vp3.c:202
int skip_loop_filter
Definition: vp3.c:146
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
ThreadFrame current_frame
Definition: vp3.c:136
main external API structure.
Definition: avcodec.h:1050
static void close(AVCodecParserContext *s)
Definition: h264_parser.c:490
#define RSHIFT(a, b)
Definition: common.h:49
int last_qps[3]
Definition: vp3.c:150
unsigned int codec_tag
fourcc (LSB first, so "ABCD" -> ('D'<<24) + ('C'<<16) + ('B'<<8) + 'A').
Definition: avcodec.h:1082
uint8_t qr_size[2][3][64]
Definition: vp3.c:182
#define init_vlc(vlc, nb_bits, nb_codes,bits, bits_wrap, bits_size,codes, codes_wrap, codes_size,flags)
Definition: get_bits.h:424
op_pixels_func put_pixels_tab[4][4]
Halfpel motion compensation with rounding (a+b+1)>>1.
Definition: hpeldsp.h:56
#define PUL
static av_cold int allocate_tables(AVCodecContext *avctx)
Allocate tables for per-frame data in Vp3DecodeContext.
Definition: vp3.c:1653
int data_offset[3]
Definition: vp3.c:173
int extradata_size
Definition: avcodec.h:1165
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:271
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:263
int index
Definition: gxfenc.c:72
#define SB_FULLY_CODED
Definition: vp3.c:60
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1775
rational number numerator/denominator
Definition: rational.h:43
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1768
op_pixels_func put_no_rnd_pixels_tab[2][4]
Halfpel motion compensation with no rounding (a+b)>>1.
Definition: hpeldsp.h:80
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:375
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:115
int avpriv_split_xiph_headers(uint8_t *extradata, int extradata_size, int first_header_size, uint8_t *header_start[3], int header_len[3])
Split a single extradata buffer into the three headers that most Xiph codecs use. ...
Definition: xiph.c:24
int num_coded_frags[3][64]
number of blocks that contain DCT coefficients at the given level or higher
Definition: vp3.c:212
int keyframe
Definition: vp3.c:137
#define TOKEN_COEFF(coeff)
Definition: vp3.c:206
#define MODE_GOLDEN_MV
Definition: vp3.c:73
int allocate_progress
Whether to allocate progress for frame threading.
Definition: internal.h:81
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
Definition: get_bits.h:304
#define FRAGMENT_PIXELS
Definition: vp3.c:49
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
Definition: vp3.c:2141
static int update_frames(AVCodecContext *avctx)
Release and shuffle frames after decode finishes.
Definition: vp3.c:1883
static const uint16_t superblock_run_length_vlc_table[34][2]
Definition: vp3data.h:98
#define MODE_USING_GOLDEN
Definition: vp3.c:72
uint32_t huffman_table[80][32][2]
Definition: vp3.c:251
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:283
#define MODE_INTER_FOURMV
Definition: vp3.c:74
int16_t block[64]
Definition: vp3.c:143
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
#define copy_fields(to, from, start_field, end_field)
int v_superblock_start
Definition: vp3.c:160
int height
Definition: gxfenc.c:72
int version
Definition: vp3.c:131
int * coded_fragment_list[3]
Definition: vp3.c:217
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
unsigned char * superblock_coding
Definition: vp3.c:161
common internal api header.
ThreadFrame last_frame
Definition: vp3.c:135
#define CODEC_CAP_FRAME_THREADS
Codec supports frame-level multithreading.
Definition: avcodec.h:755
void(* v_loop_filter)(uint8_t *src, int stride, int *bounding_values)
Definition: vp3dsp.h:44
#define CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:637
int16_t * dct_tokens_base
Definition: vp3.c:203
static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src)
Definition: vp3.c:1904
AVCodecContext * avctx
Definition: vp3.c:129
static av_cold void flush(AVCodecContext *avctx)
Flush (reset) the frame ID after seeking.
Definition: alsdec.c:1797
VideoDSPContext vdsp
Definition: vp3.c:141
static const int eob_run_get_bits[7]
Definition: vp3data.h:204
FF_ENABLE_DEPRECATION_WARNINGS int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:1625
static int vp3_init_thread_copy(AVCodecContext *avctx)
Definition: vp3.c:2175
static const int16_t vp31_dc_scale_factor[64]
Definition: vp3data.h:65
uint16_t coded_dc_scale_factor[64]
Definition: vp3.c:178
int den
denominator
Definition: rational.h:45
static av_cold int init(AVCodecParserContext *s)
Definition: h264_parser.c:499
Core video DSP helper functions.
uint8_t base_matrix[384][64]
Definition: vp3.c:180
int fragment_count
Definition: vp3.c:167
void * priv_data
Definition: avcodec.h:1092
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
Definition: vp3.c:864
static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, int motion_y, int y)
Wait for the reference frame of the current fragment.
Definition: vp3.c:1444
#define av_log2
Definition: intmath.h:85
struct AVCodecInternal * internal
Private context used for internal data.
Definition: avcodec.h:1100
VLC_TYPE(* table)[2]
code, bits
Definition: get_bits.h:66
#define MODE_INTER_PRIOR_LAST
Definition: vp3.c:71
#define MODE_INTER_NO_MV
Definition: vp3.c:67
static const int eob_run_base[7]
Definition: vp3data.h:201
int fragment_start[3]
Definition: vp3.c:172
int theora_tables
Definition: vp3.c:130
#define CONFIG_GRAY
Definition: config.h:359
static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: vp3.c:1922
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
Definition: log.h:117
mpeg1, jpeg, h263
Definition: pixfmt.h:379
#define MODE_INTER_LAST_MV
Definition: vp3.c:70
ThreadFrame golden_frame
Definition: vp3.c:134
int chroma_x_shift
Definition: vp3.c:133
enum AVColorSpace colorspace
Definition: dirac.c:100
static const int zero_run_get_bits[32]
Definition: vp3data.h:215
av_cold void ff_vp3dsp_init(VP3DSPContext *c, int flags)
Definition: vp3dsp.c:281
static const uint8_t vp31_filter_limit_values[64]
Definition: vp3data.h:87
#define MKTAG(a, b, c, d)
Definition: common.h:238
AVPixelFormat
Pixel format.
Definition: pixfmt.h:63
This structure stores compressed data.
Definition: avcodec.h:950
static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y)
called when all pixels up to row y are complete
Definition: vp3.c:1402
void ff_free_vlc(VLC *vlc)
Definition: bitstream.c:333
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:850
int16_t dc
Definition: vp3.c:53
void(* emulated_edge_mc)(uint8_t *buf, const uint8_t *src, ptrdiff_t buf_linesize, ptrdiff_t src_linesize, int block_w, int block_h, int src_x, int src_y, int w, int h)
Copy a rectangular area of samples to a temporary buffer and replicate the border samples...
Definition: videodsp.h:52
uint32_t coded_ac_scale_factor[64]
Definition: vp3.c:179
Predicted.
Definition: avutil.h:254
VLC dc_vlc[16]
Definition: vp3.c:219
#define PL
int8_t(*[2] motion_val)[2]
Definition: vp3.c:175
static int16_t block[64]
Definition: dct-test.c:88