105 coeffs C = O->basecoeffs();
150 t2 =
new bigintmat(O->getDim(), O->getDim(), C);
151 t2->
copySubmatInto(r, 1, O->getDim()+1, O->getDim(), O->getDim(), 1,1);
void concatcol(bigintmat *a, bigintmat *b)
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ...
number det()
det (via LaPlace in general, hnf for euc. rings)
void simplifyContentDen(number *den)
ensures that Gcd(den, content)=1 < enden hier wieder
void setMinTransfer(number a, number b)
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
void setNormTransfer(number a, number b)
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
void copySubmatInto(bigintmat *, int sr, int sc, int nr, int nc, int tr, int tc)
copy the submatrix of b, staring at (a,b) having n rows, m cols into the given matrix at pos...
The main handler for Singular numbers which are suitable for Singular polynomials.
bool skalmult(number b, coeffs c)
Multipliziert zur Matrix den Skalar b hinzu.
void setBasisDenTransfer(number a)
void hnf()
transforms INPLACE to HNF
bigintmat * modhnf(number p, coeffs c)
computes HNF(this | p*I)
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
number get(int i, int j) const
get a copy of an entry. NOTE: starts at [1,1]