ROL
|
Defines the linear algebra of vector space on a generic partitioned vector. More...
#include <ROL_PartitionedVector.hpp>
Public Types | |
typedef std::vector< PV >::size_type | size_type |
Public Member Functions | |
PartitionedVector (const Teuchos::RCP< std::vector< RCPV > > &vecs) | |
void | set (const V &x) |
Set \(y \leftarrow x\) where \(y = \mathtt{*this}\). More... | |
void | plus (const V &x) |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\). More... | |
void | scale (const Real alpha) |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\). More... | |
void | axpy (const Real alpha, const V &x) |
Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\). More... | |
Real | dot (const V &x) const |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\). More... | |
Real | norm () const |
Returns \( \| y \| \) where \(y = \mathtt{*this}\). More... | |
RCPV | clone () const |
Clone to make a new (uninitialized) vector. More... | |
const V & | dual (void) const |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout. More... | |
RCPV | basis (const int i) const |
Return i-th basis vector. More... | |
int | dimension () const |
Return dimension of the vector space. More... | |
void | zero () |
Set to zero vector. More... | |
void | applyUnary (const Elementwise::UnaryFunction< Real > &f) |
void | applyBinary (const Elementwise::BinaryFunction< Real > &f, const V &x) |
Real | reduce (const Elementwise::ReductionOp< Real > &r) const |
Teuchos::RCP< const Vector< Real > > | get (size_type i) const |
Teuchos::RCP< Vector< Real > > | get (size_type i) |
void | set (size_type i, const V &x) |
void | zero (size_type i) |
size_type | numVectors () const |
![]() | |
virtual | ~Vector () |
virtual std::vector< Real > | checkVector (const Vector< Real > &x, const Vector< Real > &y, const bool printToStream=true, std::ostream &outStream=std::cout) const |
Verify vector-space methods. More... | |
Private Types | |
typedef Vector< Real > | V |
typedef Teuchos::RCP< V > | RCPV |
typedef PartitionedVector< Real > | PV |
Private Attributes | |
Teuchos::RCP< std::vector< RCPV > > | vecs_ |
std::vector< RCPV > | dual_vecs_ |
Teuchos::RCP< PV > | dual_pvec_ |
Defines the linear algebra of vector space on a generic partitioned vector.
Definition at line 58 of file ROL_PartitionedVector.hpp.
|
private |
Definition at line 60 of file ROL_PartitionedVector.hpp.
|
private |
Definition at line 61 of file ROL_PartitionedVector.hpp.
|
private |
Definition at line 62 of file ROL_PartitionedVector.hpp.
typedef std::vector<PV>::size_type ROL::PartitionedVector< Real >::size_type |
Definition at line 70 of file ROL_PartitionedVector.hpp.
|
inline |
Definition at line 72 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::clone(), and ROL::PartitionedVector< Real >::dual().
|
inlinevirtual |
Set \(y \leftarrow x\) where \(y = \mathtt{*this}\).
[in] | x | is a vector. |
On return \(\mathtt{*this} = x\). Uses zero and plus methods for the computation. Please overload if a more efficient implementation is needed.
Reimplemented from ROL::Vector< Real >.
Definition at line 79 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::get(), and ROL::PartitionedVector< Real >::numVectors().
Referenced by ROL::PartitionedVector< Real >::basis().
|
inlinevirtual |
Compute \(y \leftarrow y + x\), where \(y = \mathtt{*this}\).
[in] | x | is the vector to be added to \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \mathtt{*this} + x\).
Implements ROL::Vector< Real >.
Definition at line 94 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::get(), and ROL::PartitionedVector< Real >::numVectors().
|
inlinevirtual |
Compute \(y \leftarrow \alpha y\) where \(y = \mathtt{*this}\).
[in] | alpha | is the scaling of \(\mathtt{*this}\). |
On return \(\mathtt{*this} = \alpha (\mathtt{*this}) \).
Implements ROL::Vector< Real >.
Definition at line 107 of file ROL_PartitionedVector.hpp.
|
inlinevirtual |
Compute \(y \leftarrow \alpha x + y\) where \(y = \mathtt{*this}\).
[in] | alpha | is the scaling of x. |
[in] | x | is a vector. |
On return \(\mathtt{*this} = \mathtt{*this} + \alpha x \). Uses clone, set, scale and plus for the computation. Please overload if a more efficient implementation is needed.
Reimplemented from ROL::Vector< Real >.
Definition at line 113 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::get(), and ROL::PartitionedVector< Real >::numVectors().
|
inlinevirtual |
Compute \( \langle y,x \rangle \) where \(y = \mathtt{*this}\).
[in] | x | is the vector that forms the dot product with \(\mathtt{*this}\). |
Implements ROL::Vector< Real >.
Definition at line 126 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::get(), and ROL::PartitionedVector< Real >::numVectors().
|
inlinevirtual |
Returns \( \| y \| \) where \(y = \mathtt{*this}\).
Implements ROL::Vector< Real >.
Definition at line 141 of file ROL_PartitionedVector.hpp.
|
inlinevirtual |
Clone to make a new (uninitialized) vector.
Provides the means of allocating temporary memory in ROL.
Implements ROL::Vector< Real >.
Definition at line 149 of file ROL_PartitionedVector.hpp.
Referenced by ROL::PartitionedVector< Real >::basis(), ROL::PartitionedVector< Real >::PartitionedVector(), and ROL::InteriorPoint::PenalizedObjective< Real >::PenalizedObjective().
|
inlinevirtual |
Return dual representation of \(\mathtt{*this}\), for example, the result of applying a Riesz map, or change of basis, or change of memory layout.
By default, returns the current object. Please overload if you need a dual representation.
Reimplemented from ROL::Vector< Real >.
Definition at line 161 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::dual_pvec_, and ROL::Vector< Real >::set().
Referenced by ROL::PartitionedVector< Real >::PartitionedVector(), and ROL::InteriorPoint::PenalizedObjective< Real >::PenalizedObjective().
|
inlinevirtual |
Return i-th basis vector.
[in] | i | is the index of the basis function. |
Overloading the basis is only required if the default gradient implementation is used, which computes a finite-difference approximation.
Reimplemented from ROL::Vector< Real >.
Definition at line 172 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::clone(), ROL::PartitionedVector< Real >::dimension(), ROL::PartitionedVector< Real >::set(), and ROL::PartitionedVector< Real >::zero().
|
inlinevirtual |
Return dimension of the vector space.
Overload if the basis is overloaded.
Reimplemented from ROL::Vector< Real >.
Definition at line 208 of file ROL_PartitionedVector.hpp.
Referenced by ROL::PartitionedVector< Real >::basis().
|
inlinevirtual |
Set to zero vector.
Uses scale by zero for the computation. Please overload if a more efficient implementation is needed.
Reimplemented from ROL::Vector< Real >.
Definition at line 216 of file ROL_PartitionedVector.hpp.
Referenced by ROL::PartitionedVector< Real >::basis().
|
inlinevirtual |
Reimplemented from ROL::Vector< Real >.
Definition at line 223 of file ROL_PartitionedVector.hpp.
|
inlinevirtual |
Reimplemented from ROL::Vector< Real >.
Definition at line 230 of file ROL_PartitionedVector.hpp.
References ROL::PartitionedVector< Real >::get().
|
inlinevirtual |
Reimplemented from ROL::Vector< Real >.
Definition at line 238 of file ROL_PartitionedVector.hpp.
|
inline |
Definition at line 255 of file ROL_PartitionedVector.hpp.
Referenced by ROL::BlockOperator< Real >::apply(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::apply(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointHessian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyAdjointJacobian(), ROL::PartitionedVector< Real >::applyBinary(), ROL::InteriorPoint::PrimalDualSymmetrizer< Real >::applyInverse(), ROL::InteriorPoint::PrimalDualResidual< Real >::applyJacobian(), ROL::InteriorPoint::CompositeConstraint< Real >::applyJacobian(), ROL::PartitionedVector< Real >::axpy(), ROL::PartitionedVector< Real >::dot(), ROL::InteriorPoint::PenalizedObjective< Real >::gradient(), ROL::InteriorPoint::PenalizedObjective< Real >::hessVec(), ROL::PartitionedVector< Real >::plus(), ROL::InteriorPoint::PrimalDualResidual< Real >::PrimalDualResidual(), ROL::PartitionedVector< Real >::set(), ROL::InteriorPoint::PenalizedObjective< Real >::update(), ROL::InteriorPoint::CompositeConstraint< Real >::update(), ROL::InteriorPoint::PrimalDualResidual< Real >::value(), ROL::InteriorPoint::PenalizedObjective< Real >::value(), and ROL::InteriorPoint::CompositeConstraint< Real >::value().
|
inline |
Definition at line 259 of file ROL_PartitionedVector.hpp.
|
inline |
Definition at line 263 of file ROL_PartitionedVector.hpp.
|
inline |
Definition at line 267 of file ROL_PartitionedVector.hpp.
|
inline |
Definition at line 271 of file ROL_PartitionedVector.hpp.
Referenced by ROL::BlockOperator< Real >::apply(), ROL::PartitionedVector< Real >::axpy(), ROL::PartitionedVector< Real >::dot(), ROL::PartitionedVector< Real >::plus(), print_vector(), and ROL::PartitionedVector< Real >::set().
|
private |
Definition at line 65 of file ROL_PartitionedVector.hpp.
|
mutableprivate |
Definition at line 66 of file ROL_PartitionedVector.hpp.
|
mutableprivate |
Definition at line 67 of file ROL_PartitionedVector.hpp.
Referenced by ROL::PartitionedVector< Real >::dual().