Tpetra parallel linear algebra  Version of the Day
Protected Member Functions | Protected Attributes | List of all members
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node > Class Template Reference

MultiVector for multiple degrees of freedom per mesh point. More...

#include <Tpetra_Experimental_BlockMultiVector_decl.hpp>

Inheritance diagram for Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >:
Inheritance graph
[legend]

Public Types

Typedefs to facilitate template metaprogramming.
typedef Tpetra::Map< LO, GO, Node > map_type
 The specialization of Tpetra::Map that this class uses. More...
 
typedef Tpetra::MultiVector< Scalar, LO, GO, Node > mv_type
 The specialization of Tpetra::MultiVector that this class uses. More...
 
typedef Scalar scalar_type
 The type of entries in the matrix. More...
 
typedef mv_type::impl_scalar_type impl_scalar_type
 The implementation type of entries in the matrix. More...
 
typedef LO local_ordinal_type
 The type of local indices. More...
 
typedef GO global_ordinal_type
 The type of global indices. More...
 
typedef Node node_type
 The Kokkos Node type. More...
 
typedef LittleVector< impl_scalar_type, LO > little_vec_type
 "Block view" of all degrees of freedom at a mesh point, for a single column of the MultiVector. More...
 
typedef LittleVector< const impl_scalar_type, LO > const_little_vec_type
 "Const block view" of all degrees of freedom at a mesh point, for a single column of the MultiVector. More...
 
Typedefs
typedef Node::device_type device_type
 The Kokkos Device type. More...
 
typedef device_type::execution_space execution_space
 The Kokkos execution space. More...
 

Public Member Functions

Constructors
 BlockMultiVector (const map_type &meshMap, const LO blockSize, const LO numVecs)
 Constructor that takes a mesh Map, a block size, and a number of vectors (columns). More...
 
 BlockMultiVector (const map_type &meshMap, const map_type &pointMap, const LO blockSize, const LO numVecs)
 Constructor that takes a mesh Map, a point Map, a block size, and a number of vectors (columns). More...
 
 BlockMultiVector (const mv_type &X_mv, const map_type &meshMap, const LO blockSize)
 View an existing MultiVector. More...
 
 BlockMultiVector (const BlockMultiVector< Scalar, LO, GO, Node > &X, const map_type &newMeshMap, const map_type &newPointMap, const size_t offset=0)
 View an existing BlockMultiVector using a different mesh Map, supplying the corresponding point Map. More...
 
 BlockMultiVector (const BlockMultiVector< Scalar, LO, GO, Node > &X, const map_type &newMeshMap, const size_t offset=0)
 View an existing BlockMultiVector using a different mesh Map; compute the new point Map. More...
 
 BlockMultiVector ()
 Default constructor. More...
 
Coarse-grained operations
void putScalar (const Scalar &val)
 Fill all entries with the given value val. More...
 
void scale (const Scalar &val)
 Multiply all entries in place by the given value val. More...
 
Fine-grained data access
bool replaceLocalValues (const LO localRowIndex, const LO colIndex, const Scalar vals[]) const
 Replace all values at the given mesh point, using local row and column indices. More...
 
bool replaceGlobalValues (const GO globalRowIndex, const LO colIndex, const Scalar vals[]) const
 Replace all values at the given mesh point, using a global index. More...
 
bool sumIntoLocalValues (const LO localRowIndex, const LO colIndex, const Scalar vals[]) const
 Sum into all values at the given mesh point, using a local index. More...
 
bool sumIntoGlobalValues (const GO globalRowIndex, const LO colIndex, const Scalar vals[]) const
 Sum into all values at the given mesh point, using a global index. More...
 
bool getLocalRowView (const LO localRowIndex, const LO colIndex, Scalar *&vals) const
 Get a writeable view of the entries at the given mesh point, using a local index. More...
 
bool getGlobalRowView (const GO globalRowIndex, const LO colIndex, Scalar *&vals) const
 Get a writeable view of the entries at the given mesh point, using a global index. More...
 
little_vec_type getLocalBlock (const LO localRowIndex, const LO colIndex) const
 Get a view of the degrees of freedom at the given mesh point. More...
 
Public methods for redistributing data
void doImport (const SrcDistObject &source, const Import< LO, GO, Node > &importer, CombineMode CM)
 Import data into this object using an Import object ("forward mode"). More...
 
void doImport (const SrcDistObject &source, const Export< LO, GO, Node > &exporter, CombineMode CM)
 Import data into this object using an Export object ("reverse mode"). More...
 
void doExport (const SrcDistObject &source, const Export< LO, GO, Node > &exporter, CombineMode CM)
 Export data into this object using an Export object ("forward mode"). More...
 
void doExport (const SrcDistObject &source, const Import< LO, GO, Node > &importer, CombineMode CM)
 Export data into this object using an Import object ("reverse mode"). More...
 
Attribute accessor methods
bool isDistributed () const
 Whether this is a globally distributed object. More...
 
virtual Teuchos::RCP< const map_typegetMap () const
 The Map describing the parallel distribution of this object. More...
 
I/O methods
void print (std::ostream &os) const
 Print this object to the given output stream. More...
 
Implementation of Teuchos::Describable
virtual std::string description () const
 One-line descriptiion of this object. More...
 
virtual void describe (Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const
 Print a descriptiion of this object to the given output stream. More...
 
Methods for use only by experts
virtual void removeEmptyProcessesInPlace (const Teuchos::RCP< const map_type > &newMap)
 Remove processes which contain no elements in this object's Map. More...
 

Protected Member Functions

impl_scalar_typegetRawPtr () const
 Raw pointer to the MultiVector's data. More...
 
size_t getStrideX () const
 Stride between consecutive local entries in the same column. More...
 
size_t getStrideY () const
 Stride between consecutive local entries in the same row. More...
 
bool isValidLocalMeshIndex (const LO meshLocalIndex) const
 True if and only if meshLocalIndex is a valid local index in the mesh Map. More...
 
virtual size_t constantNumberOfPackets () const
 Whether the implementation's instance promises always to have a constant number of packets per LID, and if so, how many packets per LID there are. More...
 
virtual void doTransfer (const SrcDistObject &src, CombineMode CM, size_t numSameIDs, const Teuchos::ArrayView< const local_ordinal_type > &permuteToLIDs, const Teuchos::ArrayView< const local_ordinal_type > &permuteFromLIDs, const Teuchos::ArrayView< const local_ordinal_type > &remoteLIDs, const Teuchos::ArrayView< const local_ordinal_type > &exportLIDs, Distributor &distor, ReverseOption revOp)
 Redistribute data across memory images. More...
 
virtual void createViews () const
 Hook for creating a const view. More...
 
virtual void createViewsNonConst (KokkosClassic::ReadWriteOption rwo)
 Hook for creating a nonconst view. More...
 
virtual void releaseViews () const
 Hook for releasing views. More...
 
Implementation of DistObject (or DistObjectKA).

The methods here implement Tpetra::DistObject or Tpetra::DistObjectKA, depending on a configure-time option. They let BlockMultiVector participate in Import and Export operations. Users don't have to worry about these methods.

virtual bool checkSizes (const Tpetra::SrcDistObject &source)
 Compare the source and target (this) objects for compatibility. More...
 
virtual void copyAndPermute (const Tpetra::SrcDistObject &source, size_t numSameIDs, const Teuchos::ArrayView< const LO > &permuteToLIDs, const Teuchos::ArrayView< const LO > &permuteFromLIDs)
 Perform copies and permutations that are local to this process. More...
 
virtual void packAndPrepare (const Tpetra::SrcDistObject &source, const Teuchos::ArrayView< const LO > &exportLIDs, Teuchos::Array< impl_scalar_type > &exports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t &constantNumPackets, Tpetra::Distributor &distor)
 Perform any packing or preparation required for communication. More...
 
virtual void unpackAndCombine (const Teuchos::ArrayView< const LO > &importLIDs, const Teuchos::ArrayView< const impl_scalar_type > &imports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t constantNumPackets, Tpetra::Distributor &distor, Tpetra::CombineMode CM)
 Perform any unpacking and combining after communication. More...
 
Methods implemented by subclasses and used by doTransfer().

The doTransfer() method uses the subclass' implementations of these methods to implement data transfer. Subclasses of DistObject must implement these methods. This is an instance of the Template Method Pattern. ("Template" here doesn't mean "C++ template"; it means "pattern with holes that are filled in by the subclass' method implementations.")

virtual bool useNewInterface ()
 Whether lass (???) implements old or new interface. More...
 
virtual void copyAndPermuteNew (const SrcDistObject &source, size_t numSameIDs, const Kokkos::View< const local_ordinal_type *, execution_space > &permuteToLIDs, const Kokkos::View< const local_ordinal_type *, execution_space > &permuteFromLIDs)
 
virtual void packAndPrepareNew (const SrcDistObject &source, const Kokkos::View< const local_ordinal_type *, execution_space > &exportLIDs, Kokkos::View< packet_type *, execution_space > &exports, const Kokkos::View< size_t *, execution_space > &numPacketsPerLID, size_t &constantNumPackets, Distributor &distor)
 
virtual void unpackAndCombineNew (const Kokkos::View< const local_ordinal_type *, execution_space > &importLIDs, const Kokkos::View< const packet_type *, execution_space > &imports, const Kokkos::View< size_t *, execution_space > &numPacketsPerLID, size_t constantNumPackets, Distributor &distor, CombineMode CM)
 

Protected Attributes

mv_type mv_
 The Tpetra::MultiVector used to represent the data. More...
 
Teuchos::RCP< const map_typemap_
 The Map over which this object is distributed. More...
 

Access to Maps, the block size, and a MultiVector view.

map_type getPointMap () const
 Get this BlockMultiVector's (previously computed) point Map. More...
 
LO getBlockSize () const
 Get the number of degrees of freedom per mesh point. More...
 
LO getNumVectors () const
 Get the number of columns (vectors) in the BlockMultiVector. More...
 
mv_type getMultiVectorView ()
 Get a Tpetra::MultiVector that views this BlockMultiVector's data. More...
 
static map_type makePointMap (const map_type &meshMap, const LO blockSize)
 Create and return the point Map corresponding to the given mesh Map and block size. More...
 

Detailed Description

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
class Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >

MultiVector for multiple degrees of freedom per mesh point.

Author
Mark Hoemmen
Template Parameters
ScalarThe type of each entry of the block multivector. (You can use real-valued or complex-valued types here, unlike in Epetra, where the scalar type is always double.)
LOThe type of local indices. See the documentation of the first template parameter of Map for requirements.
GOThe type of global indices. See the documentation of the second template parameter of Map for requirements.
NodeThe Kokkos Node type. See the documentation of the third template parameter of Map for requirements.

BlockMultiVector is like Tpetra::MultiVector, but its interface supports multiple degrees of freedom per mesh point. You can specify a mesh point by its local or global index, and read or write the values at that point. Every mesh point must have the same number of degrees of freedom. We call the number of degrees of freedom per mesh point the block size.

BlockMultiVector has view semantics. This means that the copy constructor and assignment operator (operator=) all do shallow copies. If you want to create a deep copy, call createCopy(); if you want to copy deeply between two BlockMultiVector objects, call deep_copy().

The replace*, sumInto*, and get* methods all are meant to be thread-safe. They don't throw exceptions on error; instead, they return an error code. They are marked "const" because Kokkos requires this in order to use them in parallel kernels. "Const" is legitimate here, even though some of these methods may modify entries of the vector. This is because they do not change any constants or pointers (e.g., they do not reallocate memory).

BlockMultiVector stores entries in a column corresponding to degrees of freedom for the same mesh point contiguously. This is not strictly necessary; we could generalize so that they are stored in a strided fashion, or even take away the layout assumption and only allow access to entries by copy (e.g., getLocalRowCopy() instead of getLocalRowView()).

Here is how you are supposed to use this class:

  1. Fill the BlockMultiVector.
  2. Do global assembly with BlockMultiVector, if necessary. (It implements Tpetra::DistObject, so you can use it with Import or Export.)
  3. Call getMultiVectorView() to get a Tpetra::MultiVector which views the BlockMultiVector's data.
  4. Give the Tpetra::MultiVector to Trilinos' solvers.

Note that BlockMultiVector is not a subclass of Tpetra::MultiVector. I did this on purpose, for simplicity. You should really think of BlockMultiVector as an in-place reinterpretation of a Tpetra::MultiVector.

This is the first Tpetra class to assume view semantics of all Tpetra objects. In particular, it assumes that Map has have view semantics, so that its copy constructor and assignment operator do shallow copies, and its default constructor (that takes no arguments) compiles and succeeds, creating a meaningful empty object.

Design philosophy of the new block objects:

  1. Each mesh point has the same number of degrees of freedom
  2. A BlockMultiVector views a MultiVector, but is not a MultiVector (that is, BlockMultiVector is not a subclass of MultiVector)

Point 1 means that users fill by mesh points, not degrees of freedom. Thus, they mainly care about the distribution of mesh points, not so much about what GID we assign to which degree of freedom. The latter is just another Map (the "point Map") from their perspective, if they care at all. Preconditioners that respect the block structure also just want the mesh Map. Iterative linear solvers treat the matrix and preconditioner as black-box operators. This means that they only care about the domain and range point Maps.

The latter motivates Point 2. BlockMultiVector views a MultiVector, and iterative solvers (and users) can access the MultiVector and work with it directly, along with its (point) Map. It doesn't make sense for BlockMultiVector to implement MultiVector, because the desired fill interfaces of the two classes are different.

Definition at line 148 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

Member Typedef Documentation

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef Tpetra::Map<LO, GO, Node> Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::map_type

The specialization of Tpetra::Map that this class uses.

Definition at line 163 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef Tpetra::MultiVector<Scalar, LO, GO, Node> Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::mv_type

The specialization of Tpetra::MultiVector that this class uses.

Definition at line 165 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef Scalar Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::scalar_type

The type of entries in the matrix.

Definition at line 168 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef mv_type::impl_scalar_type Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::impl_scalar_type

The implementation type of entries in the matrix.

Letting scalar_type and impl_scalar_type differ addresses a work-around that the new ("Kokkos refactor," as opposed to "classic") version of Tpetra uses, to deal with missing device macros and volatile overloads in types like std::complex<T>.

Definition at line 175 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef LO Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::local_ordinal_type

The type of local indices.

Definition at line 177 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef GO Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::global_ordinal_type

The type of global indices.

Definition at line 179 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef Node Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::node_type

The Kokkos Node type.

Definition at line 181 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef LittleVector<impl_scalar_type, LO> Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::little_vec_type

"Block view" of all degrees of freedom at a mesh point, for a single column of the MultiVector.

A "block view" lets you address all degrees of freedom at a mesh point. You don't have to use this class to access the degrees of freedom. If you do choose to use this class, it implements operator()(LO i), so you can access and modify its entries.

The preferred way to refer to the little_vec_type and const_little_vec_type types, is to get them from the typedefs below. This is because different specializations of BlockVector reserve the right to use different types to implement little_vec_type or const_little_vec_type. This gives us a porting strategy to move from "classic" Tpetra to the Kokkos refactor version.

Definition at line 198 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
typedef LittleVector<const impl_scalar_type, LO> Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::const_little_vec_type

"Const block view" of all degrees of freedom at a mesh point, for a single column of the MultiVector.

This is just like little_vec_type, except that you can't modify its entries.

Definition at line 205 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

typedef Node::device_type Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::device_type
inherited

The Kokkos Device type.

Definition at line 211 of file Tpetra_DistObject_decl.hpp.

typedef device_type::execution_space Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::execution_space
inherited

The Kokkos execution space.

Definition at line 213 of file Tpetra_DistObject_decl.hpp.

Member Enumeration Documentation

enum Tpetra::DistObject::ReverseOption
protectedinherited

Whether the data transfer should be performed in forward or reverse mode.

"Reverse mode" means calling doExport() with an Import object, or calling doImport() with an Export object. "Forward mode" means calling doExport() with an Export object, or calling doImport() with an Import object.

Definition at line 449 of file Tpetra_DistObject_decl.hpp.

Constructor & Destructor Documentation

template<class Scalar , class LO, class GO , class Node >
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::BlockMultiVector ( const map_type meshMap,
const LO  blockSize,
const LO  numVecs 
)

Constructor that takes a mesh Map, a block size, and a number of vectors (columns).

Parameters
meshMap[in] Map that describes the distribution of mesh points (rather than the distribution of unknowns for those mesh points).
blockSize[in] The number of degrees of freedom per mesh point. We assume that this is the same for all mesh points in the above Map.
numVecs[in] Number of vectors (columns) in the MultiVector.

The mesh Map describes the distribution of mesh points. Its corresponding point Map describes the distribution of degrees of freedom corresponding to those mesh points. If you have already computed the point Map corresponding to the above mesh Map, then it is more efficient to call the four-argument constructor below, that takes both the mesh Map and the point Map.

There are two ways to get the point Map corresponding to a given mesh Map and block size. You may either call the class method makePointMap(), or you may call this three-argument constructor, and then call getPointMap().

The point Map enables reinterpretation of a BlockMultiVector as a standard Tpetra::MultiVector. This lets users solve linear systems with Trilinos' solvers and preconditioners, that expect vectors as Tpetra::MultiVector instances.

Definition at line 131 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO, class GO , class Node >
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::BlockMultiVector ( const map_type meshMap,
const map_type pointMap,
const LO  blockSize,
const LO  numVecs 
)

Constructor that takes a mesh Map, a point Map, a block size, and a number of vectors (columns).

See the documentation of the three-argument constructor above.

Definition at line 147 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO, class GO , class Node >
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::BlockMultiVector ( const mv_type X_mv,
const map_type meshMap,
const LO  blockSize 
)

View an existing MultiVector.

Parameters
X_mv[in/out] The MultiVector to view. It MUST have view semantics; otherwise this constructor throws. Its Map must be the same (in the sense of isSameAs) as the point Map corresponding to the given mesh Map and block size.
meshMap[in] The mesh Map to use for interpreting the given MultiVector (in place) as a BlockMultiVector.
blockSize[in] The number of degrees of freedom per mesh point. We assume that this is the same for all mesh points.

Definition at line 164 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO, class Node>
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::BlockMultiVector ( const BlockMultiVector< Scalar, LO, GO, Node > &  X,
const map_type newMeshMap,
const map_type newPointMap,
const size_t  offset = 0 
)

View an existing BlockMultiVector using a different mesh Map, supplying the corresponding point Map.

This method corresponds to MultiVector's "offset view" constructor.

Definition at line 223 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO, class Node>
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::BlockMultiVector ( const BlockMultiVector< Scalar, LO, GO, Node > &  X,
const map_type newMeshMap,
const size_t  offset = 0 
)

View an existing BlockMultiVector using a different mesh Map; compute the new point Map.

This method corresponds to MultiVector's "offset view" constructor.

Definition at line 240 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO, class Node>
Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::BlockMultiVector ( )

Default constructor.

Creates an empty BlockMultiVector. An empty BlockMultiVector has zero rows, and block size zero.

Definition at line 256 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

Member Function Documentation

template<class Scalar , class LO, class GO , class Node >
BlockMultiVector< Scalar, LO, GO, Node >::map_type Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::makePointMap ( const map_type meshMap,
const LO  blockSize 
)
static

Create and return the point Map corresponding to the given mesh Map and block size.

This is a class ("static") method so that you can make and reuse a point Map for creating different BlockMultiVector instances, using the more efficient four-argument constructor.

Definition at line 268 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
map_type Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getPointMap ( ) const
inline

Get this BlockMultiVector's (previously computed) point Map.

It is always valid to call this method. A BlockMultiVector always has a point Map. We do not compute the point Map lazily.

Definition at line 310 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
LO Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getBlockSize ( ) const
inline

Get the number of degrees of freedom per mesh point.

Definition at line 315 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
LO Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getNumVectors ( ) const
inline

Get the number of columns (vectors) in the BlockMultiVector.

Definition at line 320 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar , class LO , class GO , class Node >
BlockMultiVector< Scalar, LO, GO, Node >::mv_type Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getMultiVectorView ( )

Get a Tpetra::MultiVector that views this BlockMultiVector's data.

This is how you can give a BlockMultiVector to Trilinos' solvers and preconditioners.

Definition at line 106 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO , class GO , class Node >
void Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::putScalar ( const Scalar &  val)

Fill all entries with the given value val.

Definition at line 638 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO , class GO , class Node >
void Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::scale ( const Scalar &  val)

Multiply all entries in place by the given value val.

Definition at line 645 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO , class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::replaceLocalValues ( const LO  localRowIndex,
const LO  colIndex,
const Scalar  vals[] 
) const

Replace all values at the given mesh point, using local row and column indices.

Parameters
localRowIndex[in] Local index of the mesh point.
colIndex[in] Column (vector) to modify.
vals[in] Input values with which to replace whatever existing values are at the mesh point.
Returns
true if successful, else false. This method will not succeed if the given local index of the mesh point is invalid on the calling process.
Note
This method, the other "replace" and "sumInto" methods, and the view methods, are marked const. This is because they do not change pointers. They do, of course, change the values in the BlockMultiVector, but that does not require marking the methods as nonconst.

Definition at line 328 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO, class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::replaceGlobalValues ( const GO  globalRowIndex,
const LO  colIndex,
const Scalar  vals[] 
) const

Replace all values at the given mesh point, using a global index.

Parameters
globalRowIndex[in] Global index of the mesh point.
colIndex[in] Column (vector) to modify.
vals[in] Input values with which to sum into whatever existing values are at the mesh point.
Returns
true if successful, else false. This method will not succeed if the given global index of the mesh point is invalid on the calling process.

Definition at line 343 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO , class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::sumIntoLocalValues ( const LO  localRowIndex,
const LO  colIndex,
const Scalar  vals[] 
) const

Sum into all values at the given mesh point, using a local index.

Parameters
localRowIndex[in] Local index of the mesh point.
colIndex[in] Column (vector) to modify.
vals[in] Input values with which to replace whatever existing values are at the mesh point.
Returns
true if successful, else false. This method will not succeed if the given local index of the mesh point is invalid on the calling process.

Definition at line 373 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO, class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::sumIntoGlobalValues ( const GO  globalRowIndex,
const LO  colIndex,
const Scalar  vals[] 
) const

Sum into all values at the given mesh point, using a global index.

Parameters
globalRowIndex[in] Global index of the mesh point.
colIndex[in] Column (vector) to modify.
vals[in] Input values with which to replace whatever existing values are at the mesh point.
Returns
true if successful, else false. This method will not succeed if the given global index of the mesh point is invalid on the calling process.

Definition at line 388 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO , class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getLocalRowView ( const LO  localRowIndex,
const LO  colIndex,
Scalar *&  vals 
) const

Get a writeable view of the entries at the given mesh point, using a local index.

Parameters
localRowIndex[in] Local index of the mesh point.
colIndex[in] Column (vector) to view.
vals[out] View of the entries at the given mesh point.
Returns
true if successful, else false. This method will not succeed if the given local index of the mesh point is invalid on the calling process.

Definition at line 404 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar, class LO, class GO, class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getGlobalRowView ( const GO  globalRowIndex,
const LO  colIndex,
Scalar *&  vals 
) const

Get a writeable view of the entries at the given mesh point, using a global index.

Parameters
globalRowIndex[in] Global index of the mesh point.
colIndex[in] Column (vector) to view.
vals[out] View of the entries at the given mesh point.
Returns
true if successful, else false. This method will not succeed if the given global index of the mesh point is invalid on the calling process.

Definition at line 418 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO, class GO , class Node >
BlockMultiVector< Scalar, LO, GO, Node >::little_vec_type Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getLocalBlock ( const LO  localRowIndex,
const LO  colIndex 
) const

Get a view of the degrees of freedom at the given mesh point.

Warning
This method's interface may change or disappear at any time. Please do not rely on it in your code yet.

The preferred way to refer to little_vec_type is to get it from BlockMultiVector's typedef. This is because different specializations of BlockMultiVector reserve the right to use different types to implement little_vec_type. This gives us a porting strategy to move from "classic" Tpetra to the Kokkos refactor version.

Definition at line 433 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO , class GO , class Node >
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::checkSizes ( const Tpetra::SrcDistObject source)
protectedvirtual

Compare the source and target (this) objects for compatibility.

Returns
True if they are compatible, else false.

Implements Tpetra::DistObject< Scalar, LO, GO, Node >.

Definition at line 479 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO, class GO , class Node >
void Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::copyAndPermute ( const Tpetra::SrcDistObject source,
size_t  numSameIDs,
const Teuchos::ArrayView< const LO > &  permuteToLIDs,
const Teuchos::ArrayView< const LO > &  permuteFromLIDs 
)
protectedvirtual

Perform copies and permutations that are local to this process.

Parameters
source[in] On entry, the source object, from which we are distributing. We distribute to the destination object, which is *this object.
numSameIDs[in] The umber of elements that are the same on the source and destination (this) objects. These elements are owned by the same process in both the source and destination objects. No permutation occurs.
numPermuteIDs[in] The number of elements that are locally permuted between the source and destination objects.
permuteToLIDs[in] List of the elements that are permuted. They are listed by their LID in the destination object.
permuteFromLIDs[in] List of the elements that are permuted. They are listed by their LID in the source object.

Reimplemented from Tpetra::DistObject< Scalar, LO, GO, Node >.

Definition at line 486 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO, class GO , class Node >
void Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::packAndPrepare ( const Tpetra::SrcDistObject source,
const Teuchos::ArrayView< const LO > &  exportLIDs,
Teuchos::Array< impl_scalar_type > &  exports,
const Teuchos::ArrayView< size_t > &  numPacketsPerLID,
size_t &  constantNumPackets,
Tpetra::Distributor distor 
)
protectedvirtual

Perform any packing or preparation required for communication.

Parameters
source[in] Source object for the redistribution.
exportLIDs[in] List of the entries (as local IDs in the source object) we will be sending to other images.
exports[out] On exit, the buffer for data to send.
numPacketsPerLID[out] On exit, the implementation of this method must do one of two things: set numPacketsPerLID[i] to contain the number of packets to be exported for exportLIDs[i] and set constantNumPackets to zero, or set constantNumPackets to a nonzero value. If the latter, the implementation need not fill numPacketsPerLID.
constantNumPackets[out] On exit, 0 if numPacketsPerLID has variable contents (different size for each LID). If nonzero, then it is expected that the number of packets per LID is constant, and that constantNumPackets is that value.
distor[in] The Distributor object we are using.

Reimplemented from Tpetra::DistObject< Scalar, LO, GO, Node >.

Definition at line 530 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar , class LO, class GO , class Node >
void Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::unpackAndCombine ( const Teuchos::ArrayView< const LO > &  importLIDs,
const Teuchos::ArrayView< const impl_scalar_type > &  imports,
const Teuchos::ArrayView< size_t > &  numPacketsPerLID,
size_t  constantNumPackets,
Tpetra::Distributor distor,
Tpetra::CombineMode  CM 
)
protectedvirtual

Perform any unpacking and combining after communication.

Parameters
importLIDs[in] List of the entries (as LIDs in the destination object) we received from other images.
imports[in] Buffer containing data we received.
numPacketsPerLID[in] If constantNumPackets is zero, then numPacketsPerLID[i] contains the number of packets imported for importLIDs[i].
constantNumPackets[in] If nonzero, then numPacketsPerLID is constant (same value in all entries) and constantNumPackets is that value. If zero, then numPacketsPerLID[i] is the number of packets imported for importLIDs[i].
distor[in] The Distributor object we are using.
CM[in] The combine mode to use when combining the imported entries with existing entries.

Reimplemented from Tpetra::DistObject< Scalar, LO, GO, Node >.

Definition at line 584 of file Tpetra_Experimental_BlockMultiVector_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
impl_scalar_type* Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getRawPtr ( ) const
inlineprotected

Raw pointer to the MultiVector's data.

Definition at line 475 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
size_t Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getStrideX ( ) const
inlineprotected

Stride between consecutive local entries in the same column.

Definition at line 480 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
size_t Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::getStrideY ( ) const
inlineprotected

Stride between consecutive local entries in the same row.

Definition at line 485 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
bool Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::isValidLocalMeshIndex ( const LO  meshLocalIndex) const
inlineprotected

True if and only if meshLocalIndex is a valid local index in the mesh Map.

Definition at line 491 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::doImport ( const SrcDistObject< Scalar, LO, GO, Node > &  source,
const Import< LO , GO , Node > &  importer,
CombineMode  CM 
)
inherited

Import data into this object using an Import object ("forward mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use this method with your precomputed Import object if you want to do an Import, else use doExport() with a precomputed Export object.

Parameters
source[in] The "source" object for redistribution.
importer[in] Precomputed data redistribution plan. Its source Map must be the same as the input DistObject's Map, and its target Map must be the same as this->getMap().
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::doImport ( const SrcDistObject< Scalar, LO, GO, Node > &  source,
const Export< LO , GO , Node > &  exporter,
CombineMode  CM 
)
inherited

Import data into this object using an Export object ("reverse mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use the version of doImport() that takes a precomputed Import object in that case.

Parameters
source[in] The "source" object for redistribution.
exporter[in] Precomputed data redistribution plan. Its target Map must be the same as the input DistObject's Map, and its source Map must be the same as this->getMap(). (Note the difference from forward mode.)
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::doExport ( const SrcDistObject< Scalar, LO, GO, Node > &  source,
const Export< LO , GO , Node > &  exporter,
CombineMode  CM 
)
inherited

Export data into this object using an Export object ("forward mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use this method with your precomputed Export object if you want to do an Export, else use doImport() with a precomputed Import object.

Parameters
source[in] The "source" object for redistribution.
exporter[in] Precomputed data redistribution plan. Its source Map must be the same as the input DistObject's Map, and its target Map must be the same as this->getMap().
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::doExport ( const SrcDistObject< Scalar, LO, GO, Node > &  source,
const Import< LO , GO , Node > &  importer,
CombineMode  CM 
)
inherited

Export data into this object using an Import object ("reverse mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use the version of doExport() that takes a precomputed Export object in that case.

Parameters
source[in] The "source" object for redistribution.
importer[in] Precomputed data redistribution plan. Its target Map must be the same as the input DistObject's Map, and its source Map must be the same as this->getMap(). (Note the difference from forward mode.)
CM[in] How to combine incoming data with the same global index.
bool Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::isDistributed ( ) const
inherited

Whether this is a globally distributed object.

For a definition of "globally distributed" (and its opposite, "locally replicated"), see the documentation of Map's isDistributed() method.

virtual Teuchos::RCP<const map_type> Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::getMap ( ) const
inlinevirtualinherited

The Map describing the parallel distribution of this object.

Note that some Tpetra objects might be distributed using multiple Map objects. For example, CrsMatrix has both a row Map and a column Map. It is up to the subclass to decide which Map to use when invoking the DistObject constructor.

Definition at line 347 of file Tpetra_DistObject_decl.hpp.

void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::print ( std::ostream &  os) const
inherited

Print this object to the given output stream.

We generally assume that all MPI processes can print to the given stream.

virtual std::string Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::description ( ) const
virtualinherited

One-line descriptiion of this object.

We declare this method virtual so that subclasses of DistObject may override it.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

virtual void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::describe ( Teuchos::FancyOStream &  out,
const Teuchos::EVerbosityLevel  verbLevel = Teuchos::Describable::verbLevel_default 
) const
virtualinherited

Print a descriptiion of this object to the given output stream.

We declare this method virtual so that subclasses of Distobject may override it.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

virtual void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::removeEmptyProcessesInPlace ( const Teuchos::RCP< const map_type > &  newMap)
virtualinherited

Remove processes which contain no elements in this object's Map.

Warning
This method is ONLY for use by experts. We highly recommend using the nonmember function of the same name defined in this file.
We make NO promises of backwards compatibility. This method may change or disappear at any time.

On input, this object is distributed over the Map returned by getMap() (the "original Map," with its communicator, the "original communicator"). The input newMap of this method must be the same as the result of calling getMap()->removeEmptyProcesses(). On processes in the original communicator which contain zero elements ("excluded processes," as opposed to "included processes"), the input newMap must be Teuchos::null (which is what getMap()->removeEmptyProcesses() returns anyway).

On included processes, reassign this object's Map (that would be returned by getMap()) to the input newMap, and do any work that needs to be done to restore correct semantics. On excluded processes, free any data that needs freeing, and do any other work that needs to be done to restore correct semantics.

This method has collective semantics over the original communicator. On exit, the only method of this object which is safe to call on excluded processes is the destructor. This implies that subclasses' destructors must not contain communication operations.

Returns
The object's new Map. Its communicator is a new communicator, distinct from the old Map's communicator, which contains a subset of the processes in the old communicator.
Note
The name differs from Map's method removeEmptyProcesses(), in order to emphasize that the operation on DistObject happens in place, modifying the input, whereas the operation removeEmptyProcess() on Map does not modify the input.
To implementers of DistObject subclasses: The default implementation of this class throws std::logic_error.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

virtual size_t Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::constantNumberOfPackets ( ) const
protectedvirtualinherited

Whether the implementation's instance promises always to have a constant number of packets per LID, and if so, how many packets per LID there are.

If this method returns zero, the instance says that it might possibly have a different number of packets for each LID to send or receive. If it returns nonzero, the instance promises that the number of packets is the same for all LIDs, and that the return value is this number of packets per LID.

The default implementation of this method returns zero. This does not affect the behavior of doTransfer() in any way. If a nondefault implementation returns nonzero, doTransfer() will use this information to avoid unnecessary allocation and / or resizing of arrays.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

virtual void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::doTransfer ( const SrcDistObject< Scalar, LO, GO, Node > &  src,
CombineMode  CM,
size_t  numSameIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  permuteToLIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  permuteFromLIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  remoteLIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  exportLIDs,
Distributor distor,
ReverseOption  revOp 
)
protectedvirtualinherited

Redistribute data across memory images.

Parameters
src[in] The source object, to redistribute into the target object, which is *this object.
CM[in] The combine mode that describes how to combine values that map to the same global ID on the same process.
permuteToLIDs[in] See copyAndPermute().
permuteFromLIDs[in] See copyAndPermute().
remoteLIDs[in] List of entries (as local IDs) in the destination object to receive from other processes.
exportLIDs[in] See packAndPrepare().
distor[in/out] The Distributor object that knows how to redistribute data.
revOp[in] Whether to do a forward or reverse mode redistribution.
virtual bool Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::useNewInterface ( )
inlineprotectedvirtualinherited

Whether lass (???) implements old or new interface.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

Definition at line 545 of file Tpetra_DistObject_decl.hpp.

virtual void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::createViews ( ) const
protectedvirtualinherited

Hook for creating a const view.

doTransfer() calls this on the source object. By default, it does nothing, but the source object can use this as a hint to fetch data from a compute buffer on an off-CPU device (such as a GPU) into host memory.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

virtual void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::createViewsNonConst ( KokkosClassic::ReadWriteOption  rwo)
protectedvirtualinherited

Hook for creating a nonconst view.

doTransfer() calls this on the destination (*this) object. By default, it does nothing, but the destination object can use this as a hint to fetch data from a compute buffer on an off-CPU device (such as a GPU) into host memory.

Parameters
rwo[in] Whether to create a write-only or a read-and-write view. For Kokkos Node types where compute buffers live in a separate memory space (e.g., in the device memory of a discrete accelerator like a GPU), a write-only view only requires copying from host memory to the compute buffer, whereas a read-and-write view requires copying both ways (once to read, from the compute buffer to host memory, and once to write, back to the compute buffer).

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

virtual void Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::releaseViews ( ) const
protectedvirtualinherited

Hook for releasing views.

doTransfer() calls this on both the source and destination objects, once it no longer needs to access that object's data. By default, this method does nothing. Implementations may use this as a hint to free host memory which is a view of a compute buffer, once the host memory view is no longer needed. Some implementations may prefer to mirror compute buffers in host memory; for these implementations, releaseViews() may do nothing.

Reimplemented in Tpetra::MultiVector< Scalar, LO, GO, Node >.

Member Data Documentation

template<class Scalar = Details::DefaultTypes::scalar_type, class LO = Details::DefaultTypes::local_ordinal_type, class GO = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
mv_type Tpetra::Experimental::BlockMultiVector< Scalar, LO, GO, Node >::mv_
protected

The Tpetra::MultiVector used to represent the data.

Definition at line 513 of file Tpetra_Experimental_BlockMultiVector_decl.hpp.

Teuchos::RCP<const map_type> Tpetra::DistObject< Scalar , LO , GO , Node, Node::classic >::map_
protectedinherited

The Map over which this object is distributed.

Definition at line 695 of file Tpetra_DistObject_decl.hpp.


The documentation for this class was generated from the following files: