Tpetra parallel linear algebra  Version of the Day
Public Member Functions | Protected Member Functions | Protected Attributes | Related Functions | List of all members
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > Class Template Referenceabstract

Sparse matrix that presents a row-oriented interface that lets users read or modify entries. More...

#include <Tpetra_CrsMatrix_decl.hpp>

Inheritance diagram for Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >:
Inheritance graph
[legend]

Public Types

Typedefs
typedef Scalar scalar_type
 This class' first template parameter; the type of each entry in the matrix. More...
 
typedef Kokkos::Details::ArithTraits< Scalar >::val_type impl_scalar_type
 The type used internally in place of Scalar. More...
 
typedef LocalOrdinal local_ordinal_type
 This class' second template parameter; the type of local indices. More...
 
typedef GlobalOrdinal global_ordinal_type
 This class' third template parameter; the type of global indices. More...
 
typedef Node node_type
 This class' fourth template parameter; the Kokkos device type. More...
 
typedef Node::device_type device_type
 The Kokkos device type. More...
 
typedef device_type::execution_space execution_space
 The Kokkos execution space. More...
 
typedef Kokkos::Details::ArithTraits< impl_scalar_type >::mag_type mag_type
 Type of a norm result. More...
 
typedef Map< LocalOrdinal, GlobalOrdinal, Node > map_type
 The Map specialization suitable for this CrsMatrix specialization. More...
 
typedef Import< LocalOrdinal, GlobalOrdinal, Node > import_type
 The Import specialization suitable for this CrsMatrix specialization. More...
 
typedef Export< LocalOrdinal, GlobalOrdinal, Node > export_type
 The Export specialization suitable for this CrsMatrix specialization. More...
 
typedef CrsGraph< LocalOrdinal, GlobalOrdinal, Node, classic > crs_graph_type
 The CrsGraph specialization suitable for this CrsMatrix specialization. More...
 
typedef crs_graph_type::local_graph_type local_graph_type
 The part of the sparse matrix's graph on each MPI process. More...
 
typedef Kokkos::CrsMatrix< impl_scalar_type, LocalOrdinal, execution_space, void, typename local_graph_type::size_type > local_matrix_type
 The specialization of Kokkos::CrsMatrix that represents the part of the sparse matrix on each MPI process. More...
 
typedef local_matrix_type::row_map_type t_RowPtrs TPETRA_DEPRECATED
 DEPRECATED; use local_matrix_type::row_map_type instead. More...
 
typedef local_matrix_type::row_map_type::non_const_type t_RowPtrsNC TPETRA_DEPRECATED
 DEPRECATED; use local_matrix_type::row_map_type::non_const_type instead. More...
 
typedef local_graph_type::entries_type::non_const_type t_LocalOrdinal_1D TPETRA_DEPRECATED
 DEPRECATED; use local_graph_type::entries_type::non_const_type instead. More...
 
typedef local_matrix_type::values_type t_ValuesType TPETRA_DEPRECATED
 DEPRECATED; use local_matrix_type::values_type instead. More...
 
typedef local_matrix_type k_local_matrix_type TPETRA_DEPRECATED
 DEPRECATED; use local_matrix_type instead. More...
 
Typedefs
typedef Kokkos::Details::ArithTraits< char >::val_type packet_type
 The type of each datum being sent or received in an Import or Export. More...
 

Public Member Functions

local_matrix_type::values_type getLocalValuesView () const
 Get the Kokkos local values. More...
 
void importAndFillComplete (Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > &destMatrix, const import_type &importer, const Teuchos::RCP< const map_type > &domainMap, const Teuchos::RCP< const map_type > &rangeMap, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null) const
 Import from this to the given destination matrix, and make the result fill complete. More...
 
void exportAndFillComplete (Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > &destMatrix, const export_type &exporter, const Teuchos::RCP< const map_type > &domainMap=Teuchos::null, const Teuchos::RCP< const map_type > &rangeMap=Teuchos::null, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null) const
 Export from this to the given destination matrix, and make the result fill complete. More...
 
Transformational methods
void globalAssemble ()
 Communicate nonlocal contributions to other processes. More...
 
void resumeFill (const RCP< ParameterList > &params=null)
 Resume operations that may change the values or structure of the matrix. More...
 
void fillComplete (const RCP< const map_type > &domainMap, const RCP< const map_type > &rangeMap, const RCP< ParameterList > &params=null)
 Signal that data entry is complete, specifying domain and range maps. More...
 
void fillComplete (const RCP< ParameterList > &params=null)
 Signal that data entry is complete. More...
 
void expertStaticFillComplete (const RCP< const map_type > &domainMap, const RCP< const map_type > &rangeMap, const RCP< const import_type > &importer=Teuchos::null, const RCP< const export_type > &exporter=Teuchos::null, const RCP< ParameterList > &params=Teuchos::null)
 Perform a fillComplete on a matrix that already has data. More...
 
void replaceColMap (const Teuchos::RCP< const map_type > &newColMap)
 Replace the matrix's column Map with the given Map. More...
 
void reindexColumns (crs_graph_type *const graph, const Teuchos::RCP< const map_type > &newColMap, const Teuchos::RCP< const import_type > &newImport=Teuchos::null, const bool sortEachRow=true)
 Reindex the column indices in place, and replace the column Map. Optionally, replace the Import object as well. More...
 
void replaceDomainMapAndImporter (const Teuchos::RCP< const map_type > &newDomainMap, Teuchos::RCP< const import_type > &newImporter)
 Replace the current domain Map and Import with the given objects. More...
 
virtual void removeEmptyProcessesInPlace (const Teuchos::RCP< const map_type > &newMap)
 Remove processes owning zero rows from the Maps and their communicator. More...
 
Methods implementing RowMatrix
Teuchos::RCP< const Teuchos::Comm< int > > getComm () const
 The communicator over which the matrix is distributed. More...
 
Teuchos::RCP< node_typegetNode () const
 The Kokkos Node instance. More...
 
Teuchos::RCP< const map_typegetRowMap () const
 The Map that describes the row distribution in this matrix. More...
 
Teuchos::RCP< const map_typegetColMap () const
 The Map that describes the column distribution in this matrix. More...
 
Teuchos::RCP< const RowGraph< LocalOrdinal, GlobalOrdinal, Node > > getGraph () const
 This matrix's graph, as a RowGraph. More...
 
Teuchos::RCP< const crs_graph_typegetCrsGraph () const
 This matrix's graph, as a CrsGraph. More...
 
local_matrix_type getLocalMatrix () const
 The local sparse matrix. More...
 
global_size_t getGlobalNumRows () const
 Number of global elements in the row map of this matrix. More...
 
global_size_t getGlobalNumCols () const
 The number of global columns in the matrix. More...
 
size_t getNodeNumRows () const
 The number of matrix rows owned by the calling process. More...
 
size_t getNodeNumCols () const
 The number of columns connected to the locally owned rows of this matrix. More...
 
GlobalOrdinal getIndexBase () const
 The index base for global indices for this matrix. More...
 
global_size_t getGlobalNumEntries () const
 The global number of entries in this matrix. More...
 
size_t getNodeNumEntries () const
 The local number of entries in this matrix. More...
 
size_t getNumEntriesInGlobalRow (GlobalOrdinal globalRow) const
 Returns the current number of entries on this node in the specified global row. More...
 
size_t getNumEntriesInLocalRow (LocalOrdinal localRow) const
 Returns the current number of entries on this node in the specified local row. More...
 
global_size_t getGlobalNumDiags () const
 Returns the number of global diagonal entries, based on global row/column index comparisons. More...
 
size_t getNodeNumDiags () const
 Returns the number of local diagonal entries, based on global row/column index comparisons. More...
 
size_t getGlobalMaxNumRowEntries () const
 Returns the maximum number of entries across all rows/columns on all nodes. More...
 
size_t getNodeMaxNumRowEntries () const
 Returns the maximum number of entries across all rows/columns on this node. More...
 
bool hasColMap () const
 Indicates whether the matrix has a well-defined column map. More...
 
bool isLowerTriangular () const
 Indicates whether the matrix is lower triangular. More...
 
bool isUpperTriangular () const
 Indicates whether the matrix is upper triangular. More...
 
bool isLocallyIndexed () const
 Whether the matrix is locally indexed on the calling process. More...
 
bool isGloballyIndexed () const
 Whether the matrix is globally indexed on the calling process. More...
 
bool isFillComplete () const
 Whether the matrix is fill complete. More...
 
bool isFillActive () const
 Whether the matrix is not fill complete. More...
 
bool isStorageOptimized () const
 Returns true if storage has been optimized. More...
 
ProfileType getProfileType () const
 Returns true if the matrix was allocated with static data structures. More...
 
bool isStaticGraph () const
 Indicates that the graph is static, so that new entries cannot be added to this matrix. More...
 
mag_type getFrobeniusNorm () const
 Compute and return the Frobenius norm of the matrix. More...
 
virtual bool supportsRowViews () const
 Return true if getLocalRowView() and getGlobalRowView() are valid for this object. More...
 
void getGlobalRowCopy (GlobalOrdinal GlobalRow, const Teuchos::ArrayView< GlobalOrdinal > &Indices, const Teuchos::ArrayView< Scalar > &Values, size_t &NumEntries) const
 Fill given arrays with a deep copy of the locally owned entries of the matrix in a given row, using global column indices. More...
 
void getLocalRowCopy (LocalOrdinal localRow, const Teuchos::ArrayView< LocalOrdinal > &colInds, const Teuchos::ArrayView< Scalar > &vals, size_t &numEntries) const
 Fill given arrays with a deep copy of the locally owned entries of the matrix in a given row, using local column indices. More...
 
void getGlobalRowView (GlobalOrdinal GlobalRow, Teuchos::ArrayView< const GlobalOrdinal > &indices, Teuchos::ArrayView< const Scalar > &values) const
 Get a constant, nonpersisting view of a row of this matrix, using global row and column indices. More...
 
void getLocalRowView (LocalOrdinal LocalRow, Teuchos::ArrayView< const LocalOrdinal > &indices, Teuchos::ArrayView< const Scalar > &values) const
 Get a constant, nonpersisting view of a row of this matrix, using local row and column indices. More...
 
void getLocalDiagCopy (Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &diag) const
 Get a copy of the diagonal entries of the matrix. More...
 
void getLocalDiagOffsets (Teuchos::ArrayRCP< size_t > &offsets) const
 Get offsets of the diagonal entries in the matrix. More...
 
void getLocalDiagCopy (Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &diag, const Teuchos::ArrayView< const size_t > &offsets) const
 Variant of getLocalDiagCopy() that uses precomputed offsets. More...
 
void leftScale (const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &x)
 
void rightScale (const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &x)
 
Advanced templated methods
template<class DomainScalar , class RangeScalar >
void localMultiply (const MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &Y, Teuchos::ETransp mode, RangeScalar alpha, RangeScalar beta) const
 Compute a sparse matrix-MultiVector product local to each process. More...
 
template<class DomainScalar , class RangeScalar >
void localGaussSeidel (const MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &B, MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &D, const RangeScalar &dampingFactor, const KokkosClassic::ESweepDirection direction) const
 Gauss-Seidel or SOR on $B = A X$. More...
 
template<class DomainScalar , class RangeScalar >
void reorderedLocalGaussSeidel (const MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &B, MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &D, const Teuchos::ArrayView< LocalOrdinal > &rowIndices, const RangeScalar &dampingFactor, const KokkosClassic::ESweepDirection direction) const
 Reordered Gauss-Seidel or SOR on $B = A X$. More...
 
template<class DomainScalar , class RangeScalar >
void localSolve (const MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &Y, MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, Teuchos::ETransp mode) const
 Solves a linear system when the underlying matrix is locally triangular. More...
 
template<class T >
Teuchos::RCP< CrsMatrix< T, LocalOrdinal, GlobalOrdinal, Node, classic > > convert () const
 Return another CrsMatrix with the same entries, but converted to a different Scalar type T. More...
 
Methods implementing Operator
void apply (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &Y, Teuchos::ETransp mode=Teuchos::NO_TRANS, Scalar alpha=ScalarTraits< Scalar >::one(), Scalar beta=ScalarTraits< Scalar >::zero()) const
 Compute a sparse matrix-MultiVector multiply. More...
 
bool hasTransposeApply () const
 Whether apply() allows applying the transpose or conjugate transpose. More...
 
Teuchos::RCP< const map_typegetDomainMap () const
 The domain Map of this matrix. More...
 
Teuchos::RCP< const map_typegetRangeMap () const
 The range Map of this matrix. More...
 
Other "apply"-like methods
void gaussSeidel (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &B, MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &D, const Scalar &dampingFactor, const ESweepDirection direction, const int numSweeps) const
 "Hybrid" Jacobi + (Gauss-Seidel or SOR) on $B = A X$. More...
 
void reorderedGaussSeidel (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &B, MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &D, const Teuchos::ArrayView< LocalOrdinal > &rowIndices, const Scalar &dampingFactor, const ESweepDirection direction, const int numSweeps) const
 Reordered "Hybrid" Jacobi + (Gauss-Seidel or SOR) on $B = A X$. More...
 
void gaussSeidelCopy (MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &B, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &D, const Scalar &dampingFactor, const ESweepDirection direction, const int numSweeps, const bool zeroInitialGuess) const
 Version of gaussSeidel(), with fewer requirements on X. More...
 
void reorderedGaussSeidelCopy (MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &X, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &B, const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &D, const Teuchos::ArrayView< LocalOrdinal > &rowIndices, const Scalar &dampingFactor, const ESweepDirection direction, const int numSweeps, const bool zeroInitialGuess) const
 Version of reorderedGaussSeidel(), with fewer requirements on X. More...
 
virtual Teuchos::RCP< RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node > > add (const Scalar &alpha, const RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node > &A, const Scalar &beta, const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &domainMap, const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &rangeMap, const Teuchos::RCP< Teuchos::ParameterList > &params) const
 Implementation of RowMatrix::add: return alpha*A + beta*this. More...
 
Implementation of Teuchos::Describable interface
std::string description () const
 A one-line description of this object. More...
 
void describe (Teuchos::FancyOStream &out, const Teuchos::EVerbosityLevel verbLevel=Teuchos::Describable::verbLevel_default) const
 Print the object with some verbosity level to an FancyOStream object. More...
 
Extraction Methods
virtual void getGlobalRowView (GlobalOrdinal GlobalRow, ArrayView< const GlobalOrdinal > &indices, ArrayView< const Scalar > &values) const =0
 Get a constant, nonpersisting, globally indexed view of the given row of the matrix. More...
 
virtual void getLocalRowView (LocalOrdinal LocalRow, ArrayView< const LocalOrdinal > &indices, ArrayView< const Scalar > &values) const =0
 Get a constant, nonpersisting, locally indexed view of the given row of the matrix. More...
 
virtual void getLocalDiagCopy (Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, Node::classic > &diag) const =0
 Get a copy of the diagonal entries, distributed by the row Map. More...
 
Mathematical methods
virtual void leftScale (const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, Node::classic > &x)=0
 Scale the RowMatrix on the left with the given Vector x. More...
 
virtual void rightScale (const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, Node::classic > &x)=0
 Scale the RowMatrix on the right with the given Vector x. More...
 
Pure virtual functions to be overridden by subclasses.
virtual void apply (const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &X, MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &Y, Teuchos::ETransp mode=Teuchos::NO_TRANS, Scalar alpha=Teuchos::ScalarTraits< Scalar >::one(), Scalar beta=Teuchos::ScalarTraits< Scalar >::zero()) const =0
 Computes the operator-multivector application. More...
 
Public methods for redistributing data
void doImport (const SrcDistObject &source, const Import< LocalOrdinal, GlobalOrdinal, Node > &importer, CombineMode CM)
 Import data into this object using an Import object ("forward mode"). More...
 
void doImport (const SrcDistObject &source, const Export< LocalOrdinal, GlobalOrdinal, Node > &exporter, CombineMode CM)
 Import data into this object using an Export object ("reverse mode"). More...
 
void doExport (const SrcDistObject &source, const Export< LocalOrdinal, GlobalOrdinal, Node > &exporter, CombineMode CM)
 Export data into this object using an Export object ("forward mode"). More...
 
void doExport (const SrcDistObject &source, const Import< LocalOrdinal, GlobalOrdinal, Node > &importer, CombineMode CM)
 Export data into this object using an Import object ("reverse mode"). More...
 
Attribute accessor methods
bool isDistributed () const
 Whether this is a globally distributed object. More...
 
virtual Teuchos::RCP< const map_typegetMap () const
 The Map describing the parallel distribution of this object. More...
 
I/O methods
void print (std::ostream &os) const
 Print this object to the given output stream. More...
 
Methods for use only by experts
virtual void removeEmptyProcessesInPlace (const Teuchos::RCP< const map_type > &newMap)
 Remove processes which contain no elements in this object's Map. More...
 

Protected Member Functions

void allocateValues (ELocalGlobal lg, GraphAllocationStatus gas)
 Allocate values (and optionally indices) using the Node. More...
 
void sortEntries ()
 Sort the entries of each row by their column indices. More...
 
void mergeRedundantEntries ()
 Merge entries in each row with the same column indices. More...
 
void clearGlobalConstants ()
 Clear matrix properties that require collectives. More...
 
void computeGlobalConstants ()
 Compute matrix properties that require collectives. More...
 
Teuchos::RCP< MVgetColumnMapMultiVector (const MV &X_domainMap, const bool force=false) const
 Create a (or fetch a cached) column Map MultiVector. More...
 
Teuchos::RCP< MVgetRowMapMultiVector (const MV &Y_rangeMap, const bool force=false) const
 Create a (or fetch a cached) row Map MultiVector. More...
 
void applyNonTranspose (const MV &X_in, MV &Y_in, Scalar alpha, Scalar beta) const
 Special case of apply() for mode == Teuchos::NO_TRANS. More...
 
void applyTranspose (const MV &X_in, MV &Y_in, const Teuchos::ETransp mode, Scalar alpha, Scalar beta) const
 Special case of apply() for mode != Teuchos::NO_TRANS. More...
 
Teuchos::ArrayView< const impl_scalar_typegetView (RowInfo rowinfo) const
 Constant view of all entries (including extra space) in the given row. More...
 
Teuchos::ArrayView< impl_scalar_typegetViewNonConst (const RowInfo &rowinfo) const
 Nonconst view of all entries (including extra space) in the given row. More...
 
void fillLocalMatrix (const Teuchos::RCP< Teuchos::ParameterList > &params)
 Fill data into the local matrix. More...
 
void fillLocalGraphAndMatrix (const Teuchos::RCP< Teuchos::ParameterList > &params)
 Fill data into the local graph and matrix. More...
 
void checkInternalState () const
 Check that this object's state is sane; throw if it's not. More...
 
virtual size_t constantNumberOfPackets () const
 Whether the implementation's instance promises always to have a constant number of packets per LID, and if so, how many packets per LID there are. More...
 
virtual void doTransfer (const SrcDistObject &src, CombineMode CM, size_t numSameIDs, const Teuchos::ArrayView< const local_ordinal_type > &permuteToLIDs, const Teuchos::ArrayView< const local_ordinal_type > &permuteFromLIDs, const Teuchos::ArrayView< const local_ordinal_type > &remoteLIDs, const Teuchos::ArrayView< const local_ordinal_type > &exportLIDs, Distributor &distor, ReverseOption revOp)
 Redistribute data across memory images. More...
 
virtual void createViews () const
 Hook for creating a const view. More...
 
virtual void createViewsNonConst (KokkosClassic::ReadWriteOption rwo)
 Hook for creating a nonconst view. More...
 
virtual void releaseViews () const
 Hook for releasing views. More...
 
Methods implemented by subclasses and used by doTransfer().

The doTransfer() method uses the subclass' implementations of these methods to implement data transfer. Subclasses of DistObject must implement these methods. This is an instance of the Template Method Pattern. ("Template" here doesn't mean "C++ template"; it means "pattern with holes that are filled in by the subclass' method implementations.")

virtual bool useNewInterface ()
 Whether lass (???) implements old or new interface. More...
 
virtual void copyAndPermuteNew (const SrcDistObject &source, size_t numSameIDs, const Kokkos::View< const local_ordinal_type *, execution_space > &permuteToLIDs, const Kokkos::View< const local_ordinal_type *, execution_space > &permuteFromLIDs)
 
virtual void packAndPrepare (const SrcDistObject &source, const Teuchos::ArrayView< const local_ordinal_type > &exportLIDs, Teuchos::Array< packet_type > &exports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t &constantNumPackets, Distributor &distor)
 Perform any packing or preparation required for communication. More...
 
virtual void packAndPrepareNew (const SrcDistObject &source, const Kokkos::View< const local_ordinal_type *, execution_space > &exportLIDs, Kokkos::View< packet_type *, execution_space > &exports, const Kokkos::View< size_t *, execution_space > &numPacketsPerLID, size_t &constantNumPackets, Distributor &distor)
 
virtual void unpackAndCombine (const Teuchos::ArrayView< const local_ordinal_type > &importLIDs, const Teuchos::ArrayView< const packet_type > &imports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t constantNumPackets, Distributor &distor, CombineMode CM)
 Perform any unpacking and combining after communication. More...
 
virtual void unpackAndCombineNew (const Kokkos::View< const local_ordinal_type *, execution_space > &importLIDs, const Kokkos::View< const packet_type *, execution_space > &imports, const Kokkos::View< size_t *, execution_space > &numPacketsPerLID, size_t constantNumPackets, Distributor &distor, CombineMode CM)
 

Protected Attributes

Teuchos::RCP< MVimportMV_
 Column Map MultiVector used in apply() and gaussSeidel(). More...
 
Teuchos::RCP< MVexportMV_
 Row Map MultiVector used in apply(). More...
 
local_matrix_type lclMatrix_
 The local sparse matrix. More...
 
Details::EStorageStatus storageStatus_
 Status of the matrix's storage, when not in a fill-complete state. More...
 
bool fillComplete_
 Whether the matrix is fill complete. More...
 
std::map< GlobalOrdinal, std::pair< Teuchos::Array< GlobalOrdinal >, Teuchos::Array< Scalar > > > nonlocals_
 Nonlocal data added using insertGlobalValues(). More...
 
mag_type frobNorm_
 Cached Frobenius norm of the (global) matrix. More...
 
Teuchos::RCP< const map_typemap_
 The Map over which this object is distributed. More...
 
(Global) graph pointers

We keep two graph pointers in order to maintain const correctness. myGraph_ is a graph which we create internally. Operations that change the sparsity structure also modify myGraph_. If myGraph_ != null, then staticGraph_ == myGraph_ pointerwise (we set the pointers equal to each other when we create myGraph_). myGraph_ is only null if this CrsMatrix was created using the constructor with a const CrsGraph input argument. In this case, staticGraph_ is set to the input CrsGraph.

Teuchos::RCP< const GraphstaticGraph_
 
Teuchos::RCP< GraphmyGraph_
 
Sparse matrix values.

k_values1D_ represents the values assuming "1-D" compressed sparse row storage. values2D_ represents the values as an array of arrays, one (inner) array per row of the sparse matrix.

Before allocation, both arrays are null. After allocation, one is null. If static allocation, then values2D_ is null. If dynamic allocation, then k_values1D_ is null. The allocation always matches that of graph_, as the graph does the allocation for the matrix.

local_matrix_type::values_type k_values1D_
 
Teuchos::ArrayRCP< Teuchos::Array< impl_scalar_type > > values2D_
 

Related Functions

(Note that these are not member functions.)

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic = Node::classic>
Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > createCrsMatrix (const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &map, size_t maxNumEntriesPerRow=0, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Non-member function to create an empty CrsMatrix given a row map and a non-zero profile. More...
 
template<class CrsMatrixType >
Teuchos::RCP< CrsMatrixType > importAndFillCompleteCrsMatrix (const Teuchos::RCP< const CrsMatrixType > &sourceMatrix, const Import< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > &importer, const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &domainMap=Teuchos::null, const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &rangeMap=Teuchos::null, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Nonmember CrsMatrix constructor that fuses Import and fillComplete(). More...
 
template<class CrsMatrixType >
Teuchos::RCP< CrsMatrixType > exportAndFillCompleteCrsMatrix (const Teuchos::RCP< const CrsMatrixType > &sourceMatrix, const Export< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > &exporter, const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &domainMap=Teuchos::null, const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &rangeMap=Teuchos::null, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Nonmember CrsMatrix constructor that fuses Export and fillComplete(). More...
 

Constructors and destructor

template<class S2 , class LO2 , class GO2 , class N2 , const bool isClassic>
class CrsMatrix
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, size_t maxNumEntriesPerRow, ProfileType pftype=DynamicProfile, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Constructor specifying fixed number of entries for each row. More...
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, const Teuchos::ArrayRCP< const size_t > &NumEntriesPerRowToAlloc, ProfileType pftype=DynamicProfile, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Constructor specifying (possibly different) number of entries in each row. More...
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, const Teuchos::RCP< const map_type > &colMap, size_t maxNumEntriesPerRow, ProfileType pftype=DynamicProfile, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Constructor specifying column Map and fixed number of entries for each row. More...
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, const Teuchos::RCP< const map_type > &colMap, const Teuchos::ArrayRCP< const size_t > &NumEntriesPerRowToAlloc, ProfileType pftype=DynamicProfile, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Constructor specifying column Map and number of entries in each row. More...
 
 CrsMatrix (const Teuchos::RCP< const crs_graph_type > &graph, const Teuchos::RCP< Teuchos::ParameterList > &params=Teuchos::null)
 Constructor specifying a previously constructed graph. More...
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, const Teuchos::RCP< const map_type > &colMap, const typename local_matrix_type::row_map_type &rowPointers, const typename local_graph_type::entries_type::non_const_type &columnIndices, const typename local_matrix_type::values_type &values, const Teuchos::RCP< Teuchos::ParameterList > &params=null)
 Constructor specifying column Map and arrays containing the matrix in sorted local indices. More...
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, const Teuchos::RCP< const map_type > &colMap, const Teuchos::ArrayRCP< size_t > &rowPointers, const Teuchos::ArrayRCP< LocalOrdinal > &columnIndices, const Teuchos::ArrayRCP< Scalar > &values, const Teuchos::RCP< ParameterList > &params=null)
 Constructor specifying column Map and arrays containing the matrix in sorted, local ids. More...
 
 CrsMatrix (const Teuchos::RCP< const map_type > &rowMap, const Teuchos::RCP< const map_type > &colMap, const local_matrix_type &lclMatrix, const Teuchos::RCP< Teuchos::ParameterList > &params=null)
 Constructor specifying column Map and a local matrix, which the resulting CrsMatrix views. More...
 
template<class Node2 >
Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node2, Node2::classic > > clone (const Teuchos::RCP< Node2 > &node2, const Teuchos::RCP< Teuchos::ParameterList > &params=null) const
 Create a deep copy of this CrsMatrix, where the copy may have a different Node type. More...
 
virtual ~CrsMatrix ()
 Destructor. More...
 

Methods for inserting, modifying, or removing entries

void insertGlobalValues (const GlobalOrdinal globalRow, const Teuchos::ArrayView< const GlobalOrdinal > &cols, const Teuchos::ArrayView< const Scalar > &vals)
 Insert one or more entries into the matrix, using global indices. More...
 
void insertLocalValues (const LocalOrdinal localRow, const ArrayView< const LocalOrdinal > &cols, const ArrayView< const Scalar > &vals)
 Insert one or more entries into the matrix, using local indices. More...
 
LocalOrdinal replaceGlobalValues (const GlobalOrdinal globalRow, const Kokkos::View< const GlobalOrdinal *, device_type, Kokkos::MemoryUnmanaged > &cols, const Kokkos::View< const impl_scalar_type *, device_type, Kokkos::MemoryUnmanaged > &vals) const
 Replace one or more entries' values, using global indices. More...
 
LocalOrdinal replaceGlobalValues (const GlobalOrdinal globalRow, const Teuchos::ArrayView< const GlobalOrdinal > &cols, const Teuchos::ArrayView< const Scalar > &vals) const
 Backwards compatibility version of replaceGlobalValues, that takes Teuchos::ArrayView instead of Kokkos::View. More...
 
template<class LocalIndicesViewType , class ImplScalarViewType >
std::enable_if< Kokkos::is_view< LocalIndicesViewType >::value &&Kokkos::is_view< ImplScalarViewType >::value &&std::is_same< typename LocalIndicesViewType::non_const_value_type, local_ordinal_type >::value &&std::is_same< typename ImplScalarViewType::non_const_value_type, impl_scalar_type >::value, LocalOrdinal >::type replaceLocalValues (const LocalOrdinal localRow, const typename UnmanagedView< LocalIndicesViewType >::type &inputInds, const typename UnmanagedView< ImplScalarViewType >::type &inputVals) const
 Replace one or more entries' values, using local row and column indices. More...
 
LocalOrdinal replaceLocalValues (const LocalOrdinal localRow, const Teuchos::ArrayView< const LocalOrdinal > &cols, const Teuchos::ArrayView< const Scalar > &vals) const
 Backwards compatibility version of replaceLocalValues (see above). More...
 
LocalOrdinal sumIntoGlobalValues (const GlobalOrdinal globalRow, const Teuchos::ArrayView< const GlobalOrdinal > &cols, const Teuchos::ArrayView< const Scalar > &vals, const bool atomic=useAtomicUpdatesByDefault)
 Sum into one or more sparse matrix entries, using global indices. More...
 
template<class LocalIndicesViewType , class ImplScalarViewType >
std::enable_if< Kokkos::is_view< LocalIndicesViewType >::value &&Kokkos::is_view< ImplScalarViewType >::value &&std::is_same< typename LocalIndicesViewType::non_const_value_type, local_ordinal_type >::value &&std::is_same< typename ImplScalarViewType::non_const_value_type, impl_scalar_type >::value, LocalOrdinal >::type sumIntoLocalValues (const LocalOrdinal localRow, const typename UnmanagedView< LocalIndicesViewType >::type &inputInds, const typename UnmanagedView< ImplScalarViewType >::type &inputVals, const bool atomic=useAtomicUpdatesByDefault) const
 Sum into one or more sparse matrix entries, using local row and column indices. More...
 
LocalOrdinal sumIntoLocalValues (const LocalOrdinal localRow, const Teuchos::ArrayView< const LocalOrdinal > &cols, const Teuchos::ArrayView< const Scalar > &vals, const bool atomic=useAtomicUpdatesByDefault) const
 Sum into one or more sparse matrix entries, using local row and column indices. More...
 
template<class LocalIndicesViewType , class ImplScalarViewType , class BinaryFunction >
std::enable_if< Kokkos::is_view< LocalIndicesViewType >::value &&Kokkos::is_view< ImplScalarViewType >::value &&std::is_same< typename LocalIndicesViewType::non_const_value_type, local_ordinal_type >::value &&std::is_same< typename ImplScalarViewType::non_const_value_type, impl_scalar_type >::value, LocalOrdinal >::type transformLocalValues (const LocalOrdinal localRow, const typename UnmanagedView< LocalIndicesViewType >::type &inputInds, const typename UnmanagedView< ImplScalarViewType >::type &inputVals, BinaryFunction f, const bool atomic=useAtomicUpdatesByDefault) const
 Transform CrsMatrix entries in place, using local indices to select the entries in the row to transform. More...
 
template<class BinaryFunction , class InputMemorySpace >
LocalOrdinal transformGlobalValues (const GlobalOrdinal globalRow, const Kokkos::View< const GlobalOrdinal *, InputMemorySpace, Kokkos::MemoryUnmanaged > &inputInds, const Kokkos::View< const impl_scalar_type *, InputMemorySpace, Kokkos::MemoryUnmanaged > &inputVals, BinaryFunction f, const bool atomic=useAtomicUpdatesByDefault) const
 Transform CrsMatrix entries in place, using global indices to select the entries in the row to transform. More...
 
void setAllToScalar (const Scalar &alpha)
 Set all matrix entries equal to alpha. More...
 
void scale (const Scalar &alpha)
 Scale the matrix's values: this := alpha*this. More...
 
void setAllValues (const typename local_matrix_type::row_map_type &rowPointers, const typename local_graph_type::entries_type::non_const_type &columnIndices, const typename local_matrix_type::values_type &values)
 Sets the 1D pointer arrays of the graph. More...
 
void setAllValues (const Teuchos::ArrayRCP< size_t > &rowPointers, const Teuchos::ArrayRCP< LocalOrdinal > &columnIndices, const Teuchos::ArrayRCP< Scalar > &values)
 Sets the 1D pointer arrays of the graph. More...
 
void getAllValues (Teuchos::ArrayRCP< const size_t > &rowPointers, Teuchos::ArrayRCP< const LocalOrdinal > &columnIndices, Teuchos::ArrayRCP< const Scalar > &values) const
 

Implementation of DistObject interface

virtual bool checkSizes (const SrcDistObject &source)
 Compare the source and target (this) objects for compatibility. More...
 
virtual void copyAndPermute (const SrcDistObject &source, size_t numSameIDs, const Teuchos::ArrayView< const LocalOrdinal > &permuteToLIDs, const Teuchos::ArrayView< const LocalOrdinal > &permuteFromLIDs)
 Perform copies and permutations that are local to this process. More...
 
virtual void packAndPrepare (const SrcDistObject &source, const Teuchos::ArrayView< const LocalOrdinal > &exportLIDs, Teuchos::Array< char > &exports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t &constantNumPackets, Distributor &distor)
 
void unpackAndCombine (const Teuchos::ArrayView< const LocalOrdinal > &importLIDs, const Teuchos::ArrayView< const char > &imports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t constantNumPackets, Distributor &distor, CombineMode combineMode)
 Unpack the imported column indices and values, and combine into matrix. More...
 

Implementation of Packable interface

virtual void pack (const Teuchos::ArrayView< const LocalOrdinal > &exportLIDs, Teuchos::Array< char > &exports, const Teuchos::ArrayView< size_t > &numPacketsPerLID, size_t &constantNumPackets, Distributor &distor) const
 Pack this object's data for an Import or Export. More...
 

Detailed Description

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
class Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >

Sparse matrix that presents a row-oriented interface that lets users read or modify entries.

Template Parameters
ScalarThe type of the numerical entries of the matrix. (You can use real-valued or complex-valued types here, unlike in Epetra, where the scalar type is always double.)
LocalOrdinalThe type of local indices. See the documentation of Map for requirements.
GlobalOrdinalThe type of global indices. See the documentation of Map for requirements.
NodeThe Kokkos Node type. See the documentation of Map for requirements.

This class implements a distributed-memory parallel sparse matrix, and provides sparse matrix-vector multiply (including transpose) and sparse triangular solve operations. It provides access by rows to the elements of the matrix, as if the local data were stored in compressed sparse row format. (Implementations are not required to store the data in this way internally.) This class has an interface like that of Epetra_CrsMatrix, but also allows insertion of data into nonowned rows, much like Epetra_FECrsMatrix.

Prerequisites

Before reading the rest of this documentation, it helps to know something about the Teuchos memory management classes, in particular Teuchos::RCP, Teuchos::ArrayRCP, and Teuchos::ArrayView. You should also know a little bit about MPI (the Message Passing Interface for distributed-memory programming). You won't have to use MPI directly to use CrsMatrix, but it helps to be familiar with the general idea of distributed storage of data over a communicator. Finally, you should read the documentation of Map and MultiVector.

Local and global indices

The distinction between local and global indices might confuse new Tpetra users. Please refer to the documentation of Map for a detailed explanation. This is important because many of CrsMatrix's methods for adding, modifying, or accessing entries come in versions that take either local or global indices. The matrix itself may store indices either as local or global, and the same matrix may use global indices or local indices at different points in its life. You should only use the method version corresponding to the current state of the matrix. For example, getGlobalRowView() returns a view to the indices represented as global; it is incorrect to call this method if the matrix is storing indices as local. Call isGloballyIndexed() or isLocallyIndexed() to find out whether the matrix currently stores indices as local or global.

It may also help to read CrsGraph's documentation.

Insertion into nonowned rows

All methods (except for insertGlobalValues() and sumIntoGlobalValues(); see below) that work with global indices only allow operations on indices owned by the calling process. For example, methods that take a global row index expect that row to be owned by the calling process. Access to nonowned rows, that is, rows not owned by the calling process, requires performing an explicit communication via the Import / Export capabilities of the CrsMatrix object. See the documentation of DistObject for more details.

The methods insertGlobalValues() and sumIntoGlobalValues() are exceptions to this rule. They both allows you to add data to nonowned rows. These data are stored locally and communicated to the appropriate process on the next call to globalAssemble() or fillComplete(). This means that CrsMatrix provides the same nonowned insertion functionality that Epetra provides via Epetra_FECrsMatrix.

Note for developers on DistObject

DistObject only takes a single Map as input to its constructor. MultiVector is an example of a subclass for which a single Map suffices to describe its data distribution. In that case, DistObject's getMap() method obviously must return that Map. CrsMatrix is an example of a subclass that requires two Map objects: a row Map and a column Map. For CrsMatrix, getMap() returns the row Map. This means that doTransfer() (which CrsMatrix does not override) uses the row Map objects of the source and target CrsMatrix objects. CrsMatrix in turn uses its column Map (if it has one) to "filter" incoming sparse matrix entries whose column indices are not in that process' column Map. This means that CrsMatrix may perform extra communication, though the Import and Export operations are still correct.

This is necessary if the CrsMatrix does not yet have a column Map. Other processes might have added new entries to the matrix; the calling process has to see them in order to accept them. However, the CrsMatrix may already have a column Map, for example, if it was created with the constructor that takes both a row and a column Map, or if it is fill complete (which creates the column Map if the matrix does not yet have one). In this case, it could be possible to "filter" on the sender (instead of on the receiver, as CrsMatrix currently does) and avoid sending data corresponding to columns that the receiver does not own. Doing this would require revising the Import or Export object (instead of the incoming data) using the column Map, to remove global indices and their target process ranks from the send lists if the target process does not own those columns, and to remove global indices and their source process ranks from the receive lists if the calling process does not own those columns. (Abstractly, this is a kind of set difference between an Import or Export object for the row Maps, and the Import resp. Export object for the column Maps.) This could be done separate from DistObject, by creating a new "filtered" Import or Export object, that keeps the same source and target Map objects but has a different communication plan. We have not yet implemented this optimization.

Definition at line 191 of file Tpetra_CrsMatrix_decl.hpp.

Member Typedef Documentation

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Scalar Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::scalar_type

This class' first template parameter; the type of each entry in the matrix.

Definition at line 201 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Kokkos::Details::ArithTraits<Scalar>::val_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::impl_scalar_type

The type used internally in place of Scalar.

Some Scalar types might not work with Kokkos on all execution spaces, due to missing CUDA device macros or volatile overloads. The C++ standard type std::complex<T> has this problem. To fix this, we replace std::complex<T> values internally with the (usually) bitwise identical type Kokkos::complex<T>. The latter is the impl_scalar_type corresponding to Scalar = std::complex.

Definition at line 211 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::local_ordinal_type

This class' second template parameter; the type of local indices.

Definition at line 213 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef GlobalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::global_ordinal_type

This class' third template parameter; the type of global indices.

Definition at line 215 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Node Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::node_type

This class' fourth template parameter; the Kokkos device type.

Definition at line 217 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Node::device_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::device_type

The Kokkos device type.

Definition at line 220 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef device_type::execution_space Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::execution_space

The Kokkos execution space.

Definition at line 222 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Kokkos::Details::ArithTraits<impl_scalar_type>::mag_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::mag_type

Type of a norm result.

This is usually the same as the type of the magnitude (absolute value) of Scalar, but may differ for certain Scalar types.

Definition at line 229 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Map<LocalOrdinal, GlobalOrdinal, Node> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::map_type

The Map specialization suitable for this CrsMatrix specialization.

Definition at line 232 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Import<LocalOrdinal, GlobalOrdinal, Node> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::import_type

The Import specialization suitable for this CrsMatrix specialization.

Definition at line 235 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Export<LocalOrdinal, GlobalOrdinal, Node> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::export_type

The Export specialization suitable for this CrsMatrix specialization.

Definition at line 238 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef CrsGraph<LocalOrdinal, GlobalOrdinal, Node, classic> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::crs_graph_type

The CrsGraph specialization suitable for this CrsMatrix specialization.

Definition at line 241 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef crs_graph_type::local_graph_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::local_graph_type

The part of the sparse matrix's graph on each MPI process.

Definition at line 244 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef Kokkos::CrsMatrix<impl_scalar_type, LocalOrdinal, execution_space, void, typename local_graph_type::size_type> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::local_matrix_type

The specialization of Kokkos::CrsMatrix that represents the part of the sparse matrix on each MPI process.

Definition at line 249 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef local_matrix_type::row_map_type t_RowPtrs Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::TPETRA_DEPRECATED

DEPRECATED; use local_matrix_type::row_map_type instead.

Definition at line 252 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef local_matrix_type::row_map_type::non_const_type t_RowPtrsNC Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::TPETRA_DEPRECATED

DEPRECATED; use local_matrix_type::row_map_type::non_const_type instead.

Definition at line 254 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef local_graph_type::entries_type::non_const_type t_LocalOrdinal_1D Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::TPETRA_DEPRECATED

DEPRECATED; use local_graph_type::entries_type::non_const_type instead.

Definition at line 256 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef local_matrix_type::values_type t_ValuesType Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::TPETRA_DEPRECATED

DEPRECATED; use local_matrix_type::values_type instead.

Definition at line 258 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
typedef local_matrix_type k_local_matrix_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::TPETRA_DEPRECATED

DEPRECATED; use local_matrix_type instead.

Definition at line 261 of file Tpetra_CrsMatrix_decl.hpp.

typedef Kokkos::Details::ArithTraits<char >::val_type Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::packet_type
inherited

The type of each datum being sent or received in an Import or Export.

Note that this type does not always correspond to the Scalar template parameter of subclasses.

Definition at line 202 of file Tpetra_DistObject_decl.hpp.

Member Enumeration Documentation

enum Tpetra::DistObject::ReverseOption
protectedinherited

Whether the data transfer should be performed in forward or reverse mode.

"Reverse mode" means calling doExport() with an Import object, or calling doImport() with an Export object. "Forward mode" means calling doExport() with an Export object, or calling doImport() with an Import object.

Definition at line 449 of file Tpetra_DistObject_decl.hpp.

Constructor & Destructor Documentation

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
size_t  maxNumEntriesPerRow,
ProfileType  pftype = DynamicProfile,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)

Constructor specifying fixed number of entries for each row.

Parameters
rowMap[in] Distribution of rows of the matrix.
maxNumEntriesPerRow[in] Maximum number of matrix entries per row. If pftype==DynamicProfile, this is only a hint, and you can set this to zero without affecting correctness. If pftype==StaticProfile, this sets the amount of storage allocated, and you cannot exceed this number of entries in any row.
pftype[in] Whether to allocate storage dynamically (DynamicProfile) or statically (StaticProfile).
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.
template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
const Teuchos::ArrayRCP< const size_t > &  NumEntriesPerRowToAlloc,
ProfileType  pftype = DynamicProfile,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)

Constructor specifying (possibly different) number of entries in each row.

Parameters
rowMap[in] Distribution of rows of the matrix.
NumEntriesPerRowToAlloc[in] Maximum number of matrix entries to allocate for each row. If pftype==DynamicProfile, this is only a hint. If pftype==StaticProfile, this sets the amount of storage allocated, and you cannot exceed the allocated number of entries for any row.
pftype[in] Whether to allocate storage dynamically (DynamicProfile) or statically (StaticProfile).
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 199 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
const Teuchos::RCP< const map_type > &  colMap,
size_t  maxNumEntriesPerRow,
ProfileType  pftype = DynamicProfile,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)

Constructor specifying column Map and fixed number of entries for each row.

The column Map will be used to filter any matrix entries inserted using insertLocalValues() or insertGlobalValues().

Parameters
rowMap[in] Distribution of rows of the matrix.
colMap[in] Distribution of columns of the matrix.
maxNumEntriesPerRow[in] Maximum number of matrix entries per row. If pftype==DynamicProfile, this is only a hint, and you can set this to zero without affecting correctness. If pftype==StaticProfile, this sets the amount of storage allocated, and you cannot exceed this number of entries in any row.
pftype[in] Whether to allocate storage dynamically (DynamicProfile) or statically (StaticProfile).
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 226 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
const Teuchos::RCP< const map_type > &  colMap,
const Teuchos::ArrayRCP< const size_t > &  NumEntriesPerRowToAlloc,
ProfileType  pftype = DynamicProfile,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)

Constructor specifying column Map and number of entries in each row.

The column Map will be used to filter any matrix indices inserted using insertLocalValues() or insertGlobalValues().

Parameters
rowMap[in] Distribution of rows of the matrix.
colMap[in] Distribution of columns of the matrix.
NumEntriesPerRowToAlloc[in] Maximum number of matrix entries to allocate for each row. If pftype==DynamicProfile, this is only a hint. If pftype==StaticProfile, this sets the amount of storage allocated, and you cannot exceed the allocated number of entries for any row.
pftype[in] Whether to allocate storage dynamically (DynamicProfile) or statically (StaticProfile).
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 263 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const crs_graph_type > &  graph,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)
explicit

Constructor specifying a previously constructed graph.

Calling this constructor fixes the graph structure of the sparse matrix. We say in this case that the matrix has a "static graph." If you create a CrsMatrix with this constructor, you are not allowed to insert new entries into the matrix, but you are allowed to change values in the matrix.

The given graph must be fill complete. Note that calling resumeFill() on the graph makes it not fill complete, even if you had previously called fillComplete() on the graph. In that case, you must call fillComplete() on the graph again before invoking this CrsMatrix constructor.

This constructor is marked explicit so that you can't create a CrsMatrix by accident when passing a CrsGraph into a function that takes a CrsMatrix.

Parameters
graph[in] The graph structure of the sparse matrix. The graph must be fill complete.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 291 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
const Teuchos::RCP< const map_type > &  colMap,
const typename local_matrix_type::row_map_type &  rowPointers,
const typename local_graph_type::entries_type::non_const_type &  columnIndices,
const typename local_matrix_type::values_type &  values,
const Teuchos::RCP< Teuchos::ParameterList > &  params = null 
)

Constructor specifying column Map and arrays containing the matrix in sorted local indices.

Parameters
rowMap[in] Distribution of rows of the matrix.
colMap[in] Distribution of columns of the matrix.
rowPointers[in] The beginning of each row in the matrix, as in a CSR "rowptr" array. The length of this vector should be equal to the number of rows in the graph, plus one. This last entry should store the nunber of nonzeros in the matrix.
columnIndices[in] The local indices of the columns, as in a CSR "colind" array. The length of this vector should be equal to the number of unknowns in the matrix.
values[in] The local entries in the matrix, as in a CSR "vals" array. The length of this vector should be equal to the number of unknowns in the matrix.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 319 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
const Teuchos::RCP< const map_type > &  colMap,
const Teuchos::ArrayRCP< size_t > &  rowPointers,
const Teuchos::ArrayRCP< LocalOrdinal > &  columnIndices,
const Teuchos::ArrayRCP< Scalar > &  values,
const Teuchos::RCP< ParameterList > &  params = null 
)

Constructor specifying column Map and arrays containing the matrix in sorted, local ids.

Parameters
rowMap[in] Distribution of rows of the matrix.
colMap[in] Distribution of columns of the matrix.
rowPointers[in] The beginning of each row in the matrix, as in a CSR "rowptr" array. The length of this vector should be equal to the number of rows in the graph, plus one. This last entry should store the nunber of nonzeros in the matrix.
columnIndices[in] The local indices of the columns, as in a CSR "colind" array. The length of this vector should be equal to the number of unknowns in the matrix.
values[in] The local entries in the matrix, as in a CSR "vals" array. The length of this vector should be equal to the number of unknowns in the matrix.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.
template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::CrsMatrix ( const Teuchos::RCP< const map_type > &  rowMap,
const Teuchos::RCP< const map_type > &  colMap,
const local_matrix_type lclMatrix,
const Teuchos::RCP< Teuchos::ParameterList > &  params = null 
)

Constructor specifying column Map and a local matrix, which the resulting CrsMatrix views.

Unlike most other CrsMatrix constructors, successful completion of this constructor will result in a fill-complete matrix.

Parameters
rowMap[in] Distribution of rows of the matrix.
colMap[in] Distribution of columns of the matrix.
lclMatrix[in] A local CrsMatrix containing all local matrix values as well as a local graph. The graph's local row indices must come from the specified row Map, and its local column indices must come from the specified column Map.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 382 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::~CrsMatrix ( )
virtual

Destructor.

Definition at line 430 of file Tpetra_CrsMatrix_def.hpp.

Member Function Documentation

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class Node2 >
Teuchos::RCP<CrsMatrix<Scalar, LocalOrdinal, GlobalOrdinal, Node2, Node2::classic> > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::clone ( const Teuchos::RCP< Node2 > &  node2,
const Teuchos::RCP< Teuchos::ParameterList > &  params = null 
) const
inline

Create a deep copy of this CrsMatrix, where the copy may have a different Node type.

Parameters
node2[in] Kokkos Node instance for the returned copy.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Parameters to params:

  • "Static profile clone" [boolean, default: true] If true, create the copy with a static allocation profile. If false, use a dynamic allocation profile.
  • "Locally indexed clone" [boolean] If true, fill clone using this matrix's column Map and local indices. This matrix must have a column Map in order for this to work. If false, fill clone using global indices. By default, this will use local indices only if this matrix is using local indices.
  • "fillComplete clone" [boolean, default: true] If true, call fillComplete() on the cloned CrsMatrix object, with parameters from the input parameters' "CrsMatrix" sublist The domain Map and range Map passed to fillComplete() are those of the map being cloned, if they exist. Otherwise, the row Map is used.

Definition at line 509 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::insertGlobalValues ( const GlobalOrdinal  globalRow,
const Teuchos::ArrayView< const GlobalOrdinal > &  cols,
const Teuchos::ArrayView< const Scalar > &  vals 
)

Insert one or more entries into the matrix, using global indices.

Parameters
globalRow[in] Global index of the row into which to insert the entries.
cols[in] Global indices of the columns into which to insert the entries.
values[in] Values to insert into the above columns.

For all k in 0, ..., col.size()-1, insert the value values[k] into entry (globalRow, cols[k]) of the matrix. If that entry already exists, add the new value to the old value.

This is a local operation. It does not communicate (using MPI). If row globalRow is owned by the calling process, the entries will be inserted immediately. Otherwise, if that row is not owned by the calling process, then the entries will be stored locally for now, and only communicated to the process that owns the row when either fillComplete() or globalAssemble() is called. If that process already has an entry, the incoming value will be added to the old value, just as if it were inserted on the owning process. If the matrix has a column Map (hasColMap() == true), and if globalRow is owned by process p, then it is forbidden to insert column indices that are not in the column Map on process p. Tpetra will test the input column indices to ensure this is the case, but if globalRow is not owned by the calling process, the test will be deferred until the next call to globalAssemble() or fillComplete().

Warning
The behavior described in the above paragraph differs from that of Epetra. If the matrix has a column Map, Epetra_CrsMatrix "filters" column indices not in the column Map. Many users found this confusing, so we changed it so that nonowned column indices are forbidden.

It is legal to call this method whether the matrix's column indices are globally or locally indexed. If the matrix's column indices are locally indexed (isLocallyIndexed() == true), then this method will convert the input global column indices to local column indices.

For better performance when filling entries into a sparse matrix, consider the following tips:

  1. Use local indices (e.g., insertLocalValues()) if you know the column Map in advance. Converting global indices to local indices is expensive. Of course, if you don't know the column Map in advance, you must use global indices.
  2. When invoking the CrsMatrix constructor, give the best possible upper bounds on the number of entries in each row of the matrix. This will avoid expensive reallocation if your bound was not large enough.
  3. If your upper bound on the number of entries in each row will always be correct, create the matrix with StaticProfile. This uses a faster and more compact data structure to store the matrix.
  4. If you plan to reuse a matrix's graph structure, but change its values, in repeated fillComplete() / resumeFill() cycles, you can get the best performance by creating the matrix with a const CrsGraph. Do this by using the CrsMatrix constructor that accepts an RCP of a const CrsGraph. If you do this, you must use the "replace" or "sumInto" methods to change the values of the matrix; you may not use insertGlobalValues() or insertLocalValues().

Definition at line 1680 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::insertLocalValues ( const LocalOrdinal  localRow,
const ArrayView< const LocalOrdinal > &  cols,
const ArrayView< const Scalar > &  vals 
)

Insert one or more entries into the matrix, using local indices.

Parameters
LocalRow[in] Local index of the row into which to insert the entries. It must be owned by the row Map on the calling process.
cols[in] Local indices of the columns into which to insert the entries. All of the column indices must be owned by the column Map on the calling process.
values[in] Values to insert into the above columns.

For all k in 0, ..., cols.size()-1, insert the value values[k] into entry (globalRow, cols[k]) of the matrix. If that entry already exists, add the new value to the old value.

In order to call this method, the matrix must be locally indexed, and it must have a column Map.

For better performance when filling entries into a sparse matrix, consider the following tips:

  1. When invoking the CrsMatrix constructor, give the best possible upper bounds on the number of entries in each row of the matrix. This will avoid expensive reallocation if your bound was not large enough.
  2. If your upper bound on the number of entries in each row will always be correct, create the matrix with StaticProfile. This uses a faster and more compact data structure to store the matrix.
  3. If you plan to reuse a matrix's graph structure, but change its values, in repeated fillComplete() / resumeFill() cycles, you can get the best performance by creating the matrix with a const CrsGraph. Do this by using the CrsMatrix constructor that accepts an RCP of a const CrsGraph. If you do this, you must use the "replace" or "sumInto" methods to change the values of the matrix; you may not use insertGlobalValues() or insertLocalValues().

Definition at line 1456 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::replaceGlobalValues ( const GlobalOrdinal  globalRow,
const Kokkos::View< const GlobalOrdinal *, device_type, Kokkos::MemoryUnmanaged > &  cols,
const Kokkos::View< const impl_scalar_type *, device_type, Kokkos::MemoryUnmanaged > &  vals 
) const

Replace one or more entries' values, using global indices.

Parameters
globalRow[in] Global index of the row in which to replace the entries. This row must be owned by the calling process.
cols[in] Global indices of the columns in which to replace the entries.
vals[in] Values to use for replacing the entries.

For all k in 0, ..., cols.dimension_0()-1, replace the value at entry (globalRow, cols(k)) of the matrix with vals(k). That entry must exist in the matrix already.

If (globalRow, cols(k)) corresponds to an entry that is duplicated in this matrix row (likely because it was inserted more than once and fillComplete() has not been called in the interim), the behavior of this method is not defined.

Returns
The number of indices for which values were actually replaced; the number of "correct" indices.

If the returned value N satisfies

0 <= N < cols.dimension_0(),

then cols.dimension_0() - N of the entries of cols are not valid global column indices. If the returned value is Teuchos::OrdinalTraits<LocalOrdinal>::invalid(), then at least one of the following is true:

  • ! isFillActive ()
  • cols.dimension_0 () != vals.dimension_0 ()

Definition at line 2029 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::replaceGlobalValues ( const GlobalOrdinal  globalRow,
const Teuchos::ArrayView< const GlobalOrdinal > &  cols,
const Teuchos::ArrayView< const Scalar > &  vals 
) const

Backwards compatibility version of replaceGlobalValues, that takes Teuchos::ArrayView instead of Kokkos::View.

Definition at line 2053 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class LocalIndicesViewType , class ImplScalarViewType >
std::enable_if<Kokkos::is_view<LocalIndicesViewType>::value && Kokkos::is_view<ImplScalarViewType>::value && std::is_same<typename LocalIndicesViewType::non_const_value_type, local_ordinal_type>::value && std::is_same<typename ImplScalarViewType::non_const_value_type, impl_scalar_type>::value, LocalOrdinal>::type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::replaceLocalValues ( const LocalOrdinal  localRow,
const typename UnmanagedView< LocalIndicesViewType >::type &  inputInds,
const typename UnmanagedView< ImplScalarViewType >::type &  inputVals 
) const
inline

Replace one or more entries' values, using local row and column indices.

Parameters
localRow[in] local index of the row in which to replace the entries. This row must be owned by the calling process.
cols[in] Local indices of the columns in which to replace the entries.
vals[in] Values to use for replacing the entries.

For local row index localRow and local column indices cols, do A(localRow, cols(k)) = vals(k). The row index and column indices must be valid on the calling process, and all matrix entries A(localRow, cols(k)) must already exist. (This method does not change the matrix's structure.) If the row index is valid, any invalid column indices are ignored, but counted in the return value.

Returns
The number of indices for which values were actually replaced; the number of "correct" indices.

If the returned value N satisfies

0 <= N < cols.dimension_0(),

then cols.dimension_0() - N of the entries of cols are not valid local column indices. If the returned value is Teuchos::OrdinalTraits<LocalOrdinal>::invalid(), then at least one of the following is true:

  • ! isFillActive ()
  • ! hasColMap ()
  • cols.dimension_0 () != vals.dimension_0 ()

Definition at line 938 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::replaceLocalValues ( const LocalOrdinal  localRow,
const Teuchos::ArrayView< const LocalOrdinal > &  cols,
const Teuchos::ArrayView< const Scalar > &  vals 
) const

Backwards compatibility version of replaceLocalValues (see above).

Definition at line 1989 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::sumIntoGlobalValues ( const GlobalOrdinal  globalRow,
const Teuchos::ArrayView< const GlobalOrdinal > &  cols,
const Teuchos::ArrayView< const Scalar > &  vals,
const bool  atomic = useAtomicUpdatesByDefault 
)

Sum into one or more sparse matrix entries, using global indices.

This is a local operation; it does not involve communication. However, if you sum into rows not owned by the calling process, it may result in future communication in globalAssemble() (which is called by fillComplete()).

If globalRow is owned by the calling process, then this method performs the sum-into operation right away. Otherwise, if the row is not owned by the calling process, this method defers the sum-into operation until globalAssemble(). That method communicates data for nonowned rows to the processes that own those rows. Then, globalAssemble() does one of the following:

  • It calls insertGlobalValues() for that data if the matrix has a dynamic graph.
  • It calls sumIntoGlobalValues() for that data if the matrix has a static graph. The matrix silently ignores (row,column) pairs that do not exist in the graph.
Parameters
globalRow[in] The global index of the row in which to sum into the matrix entries.
cols[in] One or more column indices.
vals[in] One or more values corresponding to those column indices. vals[k] corresponds to cols[k].
atomic[in] Whether to use atomic updates.
Returns
The number of indices for which values were actually modified; the number of "correct" indices.

This method has the same preconditions and return value meaning as replaceGlobalValues() (which see).

Definition at line 2086 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class LocalIndicesViewType , class ImplScalarViewType >
std::enable_if<Kokkos::is_view<LocalIndicesViewType>::value && Kokkos::is_view<ImplScalarViewType>::value && std::is_same<typename LocalIndicesViewType::non_const_value_type, local_ordinal_type>::value && std::is_same<typename ImplScalarViewType::non_const_value_type, impl_scalar_type>::value, LocalOrdinal>::type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::sumIntoLocalValues ( const LocalOrdinal  localRow,
const typename UnmanagedView< LocalIndicesViewType >::type &  inputInds,
const typename UnmanagedView< ImplScalarViewType >::type &  inputVals,
const bool  atomic = useAtomicUpdatesByDefault 
) const
inline

Sum into one or more sparse matrix entries, using local row and column indices.

For local row index localRow and local column indices cols, perform the update A(localRow, cols[k]) += vals[k]. The row index and column indices must be valid on the calling process, and all matrix entries A(localRow, cols[k]) must already exist. (This method does not change the matrix's structure.) If the row index is valid, any invalid column indices are ignored, but counted in the return value.

This overload of the method takes the column indices and values as Kokkos::View. See below for an overload that takes Teuchos::ArrayView instead.

Template Parameters
LocalIndicesViewTypeKokkos::View specialization that is a 1-D array of LocalOrdinal.
ImplScalarViewTypeKokkos::View specialization that is a 1-D array of impl_scalar_type (usually the same as Scalar, unless Scalar is std::complex<T> for some T, in which case it is Kokkos::complex<T>).
Parameters
localRow[in] Local index of a row. This row must be owned by the calling process.
cols[in] Local indices of the columns whose entries we want to modify.
vals[in] Values corresponding to the above column indices. vals(k) corresponds to cols(k).
atomic[in] Whether to use atomic updates.
Returns
The number of indices for which values were actually modified; the number of "correct" indices.

This method has the same preconditions and return value meaning as replaceLocalValues() (which see).

Definition at line 1069 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::sumIntoLocalValues ( const LocalOrdinal  localRow,
const Teuchos::ArrayView< const LocalOrdinal > &  cols,
const Teuchos::ArrayView< const Scalar > &  vals,
const bool  atomic = useAtomicUpdatesByDefault 
) const

Sum into one or more sparse matrix entries, using local row and column indices.

For local row index localRow and local column indices cols, perform the update A(localRow, cols[k]) += vals[k]. The row index and column indices must be valid on the calling process, and all matrix entries A(localRow, cols[k]) must already exist. (This method does not change the matrix's structure.) If the row index is valid, any invalid column indices are ignored, but counted in the return value.

This overload of the method takes the column indices and values as Teuchos::ArrayView. See above for an overload that takes Kokkos::View instead.

Parameters
localRow[in] Local index of a row. This row must be owned by the calling process.
cols[in] Local indices of the columns whose entries we want to modify.
vals[in] Values corresponding to the above column indices. vals[k] corresponds to cols[k].
atomic[in] Whether to use atomic updates.
Returns
The number of indices for which values were actually modified; the number of "correct" indices.

This method has the same preconditions and return value meaning as replaceLocalValues() (which see).

Definition at line 2149 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class LocalIndicesViewType , class ImplScalarViewType , class BinaryFunction >
std::enable_if<Kokkos::is_view<LocalIndicesViewType>::value && Kokkos::is_view<ImplScalarViewType>::value && std::is_same<typename LocalIndicesViewType::non_const_value_type, local_ordinal_type>::value && std::is_same<typename ImplScalarViewType::non_const_value_type, impl_scalar_type>::value, LocalOrdinal>::type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::transformLocalValues ( const LocalOrdinal  localRow,
const typename UnmanagedView< LocalIndicesViewType >::type &  inputInds,
const typename UnmanagedView< ImplScalarViewType >::type &  inputVals,
BinaryFunction  f,
const bool  atomic = useAtomicUpdatesByDefault 
) const
inline

Transform CrsMatrix entries in place, using local indices to select the entries in the row to transform.

For every entry $A(i,j)$ to transform, if $v_{ij}$ is the corresponding entry of the inputVals array, then we apply the binary function f to $A(i,j)$ as follows:

\[ A(i,j) := f(A(i,j), v_{ij}). \]

For example, BinaryFunction = std::plus<impl_scalar_type> does the same thing as sumIntoLocalValues, and BinaryFunction = project2nd<impl_scalar_type,impl_scalar_type> does the same thing as replaceLocalValues. (It is generally more efficient to call sumIntoLocalValues resp. replaceLocalValues than to do this.)

This overload of the method takes the column indices and values as Kokkos::View. See below for an overload that takes Teuchos::ArrayView instead.

Template Parameters
LocalIndicesViewTypeKokkos::View specialization that is a 1-D array of LocalOrdinal.
ImplScalarViewTypeKokkos::View specialization that is a 1-D array of impl_scalar_type (usually the same as Scalar, unless Scalar is std::complex<T> for some T, in which case it is Kokkos::complex<T>).
BinaryFunctionThe type of the binary function f to use for updating the sparse matrix's value(s). This should be convertible to std::function<impl_scalar_type (const impl_scalar_type&, const impl_scalar_type&)>.
Parameters
localRow[in] (Local) index of the row to modify. This row must</t> be owned by the calling process. (This is a stricter requirement than for sumIntoGlobalValues.)
inputInds[in] (Local) indices in the row to modify. Indices not in the row on the calling process, and their corresponding values, will be ignored.
inputVals[in] Values to use for modification.
f[in] The binary function to use for updating the sparse matrix's value. It takes two impl_scalar_type values and returns impl_scalar_type. atomic [in] Whether to use atomic updates.

Definition at line 1186 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class BinaryFunction , class InputMemorySpace >
LocalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::transformGlobalValues ( const GlobalOrdinal  globalRow,
const Kokkos::View< const GlobalOrdinal *, InputMemorySpace, Kokkos::MemoryUnmanaged > &  inputInds,
const Kokkos::View< const impl_scalar_type *, InputMemorySpace, Kokkos::MemoryUnmanaged > &  inputVals,
BinaryFunction  f,
const bool  atomic = useAtomicUpdatesByDefault 
) const
inline

Transform CrsMatrix entries in place, using global indices to select the entries in the row to transform.

For every entry $A(i,j)$ to transform, if $v_{ij}$ is the corresponding entry of the inputVals array, then we apply the binary function f to $A(i,j)$ as follows:

\[ A(i,j) := f(A(i,j), v_{ij}). \]

For example, BinaryFunction = std::plus<impl_scalar_type> does the same thing as sumIntoLocalValues, and BinaryFunction = project2nd<impl_scalar_type,impl_scalar_type> does the same thing as replaceLocalValues. (It is generally more efficient to call sumIntoLocalValues resp. replaceLocalValues than to do this.)

Template Parameters
BinaryFunctionThe type of the binary function f to use for updating the sparse matrix's value(s). This should be convertible to std::function<impl_scalar_type (const impl_scalar_type&, const impl_scalar_type&)>.
InputMemorySpaceKokkos memory space / device in which the input data live. This may differ from the memory space in which the current matrix's row's values live.
Parameters
globalRow[in] (Global) index of the row to modify. This row must</t> be owned by the calling process. (This is a stricter requirement than for sumIntoGlobalValues.)
inputInds[in] (Global) indices in the row to modify. Indices not in the row on the calling process, and their corresponding values, will be ignored.
inputVals[in] Values to use for modification.

This method works whether indices are local or global. However, it will cost more if indices are local, since it will have to convert the input global indices to local indices in that case.

Definition at line 1257 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::setAllToScalar ( const Scalar &  alpha)

Set all matrix entries equal to alpha.

Definition at line 2581 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::scale ( const Scalar &  alpha)

Scale the matrix's values: this := alpha*this.

Definition at line 2535 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::setAllValues ( const typename local_matrix_type::row_map_type &  rowPointers,
const typename local_graph_type::entries_type::non_const_type &  columnIndices,
const typename local_matrix_type::values_type &  values 
)

Sets the 1D pointer arrays of the graph.

Precondition
hasColMap() == true
getGraph() != Teuchos::null
No insert/sum routines have been called
Warning
This method is intended for expert developer use only, and should never be called by user code.

Definition at line 2619 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::setAllValues ( const Teuchos::ArrayRCP< size_t > &  rowPointers,
const Teuchos::ArrayRCP< LocalOrdinal > &  columnIndices,
const Teuchos::ArrayRCP< Scalar > &  values 
)

Sets the 1D pointer arrays of the graph.

Precondition
hasColMap() == true
getGraph() != Teuchos::null
No insert/sum routines have been called

FIXME (mfh 24 Feb 2014) Why is the third prerequisites above different than the third prerequisite from the original class? The original is that fillComplete() must have been called.

Warning
This method is intended for expert developer use only, and should never be called by user code.

Definition at line 2646 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::globalAssemble ( )

Communicate nonlocal contributions to other processes.

Users do not normally need to call this method. fillComplete always calls this method, unless you specifically tell fillComplete to do otherwise by setting its "No Nonlocal Changes" parameter to true. Thus, it suffices to call fillComplete.

Methods like insertGlobalValues and sumIntoGlobalValues let you add or modify entries in rows that are not owned by the calling process. These entries are called "nonlocal contributions." The methods that allow nonlocal contributions store the entries on the calling process, until globalAssemble is called. globalAssemble sends these nonlocal contributions to the process(es) that own them, where they then become part of the matrix.

This method only does global assembly if there are nonlocal entries on at least one process. It does an all-reduce to find that out. If not, it returns early, without doing any more communication or work.

If you previously inserted into a row which is not owned by any process in the row Map, the behavior of this method is undefined. It may detect the invalid row indices and throw an exception, or it may silently drop the entries inserted into invalid rows. Behavior may vary, depending on whether Tpetra was built with debug checking enabled.

Definition at line 3180 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::resumeFill ( const RCP< ParameterList > &  params = null)

Resume operations that may change the values or structure of the matrix.

This method must be called as a collective operation.

Calling fillComplete "freezes" both the values and the structure of the matrix. If you want to modify the matrix again, you must first call resumeFill. You then may not call resumeFill again on that matrix until you first call fillComplete. You may make sequences of fillComplete, resumeFill calls as many times as you wish.

Postcondition
isFillActive() && ! isFillComplete()

Definition at line 3486 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::fillComplete ( const RCP< const map_type > &  domainMap,
const RCP< const map_type > &  rangeMap,
const RCP< ParameterList > &  params = null 
)

Signal that data entry is complete, specifying domain and range maps.

Off-node indices are distributed (via globalAssemble()), indices are sorted, redundant indices are eliminated, and global indices are transformed to local indices.

Precondition
isFillActive() == true
isFillComplete()() == false
Postcondition
isFillActive() == false
isFillComplete() == true

Parameters:

  • "No Nonlocal Changes" (bool): Default is false. If true, the caller promises that no modifications to nonowned rows have happened on any process since the last call to fillComplete. This saves a global all-reduce to check whether any process did a nonlocal insert. Nonlocal changes include any sumIntoGlobalValues or insertGlobalValues call with a row index that is not in the row Map of the calling process.
  • "Sort column Map ghost GIDs" (bool): Default is true. makeColMap() (which fillComplete may call) always groups remote GIDs by process rank, so that all remote GIDs with the same owning rank occur contiguously. By default, it always sorts remote GIDs in increasing order within those groups. This behavior differs from Epetra, which does not sort remote GIDs with the same owning process. If you don't want to sort (for compatibility with Epetra), set this parameter to false. This parameter only takes effect if the matrix owns the graph. This is an expert mode parameter ONLY. We make no promises about backwards compatibility of this parameter. It may change or disappear at any time.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::fillComplete ( const RCP< ParameterList > &  params = null)

Signal that data entry is complete.

Off-node entries are distributed (via globalAssemble()), repeated entries are summed, and global indices are transformed to local indices.

Note
This method calls fillComplete( getRowMap(), getRowMap(), os ).
Precondition
isFillActive() == true
isFillComplete()() == false
Postcondition
isFillActive() == false
isFillComplete() == true

Definition at line 3527 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::expertStaticFillComplete ( const RCP< const map_type > &  domainMap,
const RCP< const map_type > &  rangeMap,
const RCP< const import_type > &  importer = Teuchos::null,
const RCP< const export_type > &  exporter = Teuchos::null,
const RCP< ParameterList > &  params = Teuchos::null 
)

Perform a fillComplete on a matrix that already has data.

The matrix must already have filled local 1-D storage (k_clInds1D_ and k_rowPtrs_ for the graph, and k_values1D_ in the matrix). If the matrix has been constructed in any other way, this method will throw an exception. This routine is needed to support other Trilinos packages and should not be called by ordinary users.

Warning
This method is intended for expert developer use only, and should never be called by user code.

Definition at line 3701 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::replaceColMap ( const Teuchos::RCP< const map_type > &  newColMap)

Replace the matrix's column Map with the given Map.

Parameters
newColMap[in] New column Map. Must be nonnull.
Precondition
The matrix must have no entries inserted yet, on any process in the row Map's communicator.
The matrix must not have been created with a constant (a.k.a. "static") CrsGraph.

Definition at line 3089 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::reindexColumns ( crs_graph_type *const  graph,
const Teuchos::RCP< const map_type > &  newColMap,
const Teuchos::RCP< const import_type > &  newImport = Teuchos::null,
const bool  sortEachRow = true 
)

Reindex the column indices in place, and replace the column Map. Optionally, replace the Import object as well.

Precondition
The matrix is not fill complete: ! this->isFillComplete() .
Either the input graph is NULL, or it is not fill complete: graph == NULL || ! graph->isFillComplete().
On every calling process, every index owned by the current column Map must also be owned by the new column Map.
If the new Import object is provided, the new Import object's source Map must be the same as the current domain Map, and the new Import's target Map must be the same as the new column Map.
Parameters
graph[in] The matrix's graph. If you don't provide this (i.e., if graph == NULL), then the matrix must own its graph, which will be modified in place. (That is, you must not have created the matrix with a constant graph.) If you do provide this, then the method will assume that it is the same graph as the matrix's graph, and the provided graph will be modified in place.
newColMap[in] New column Map. Must be nonnull.
newImport[in] New Import object. Optional; computed if not provided or if null. Computing an Import is expensive, so it is worth providing this if you can.
sortEachRow[in] If true, sort the indices (and their corresponding values) in each row after reindexing.

Why would you want to use this method? Well, for example, you might need to use an Ifpack2 preconditioner that only accepts a matrix with a certain kind of column Map. Your matrix has the wrong kind of column Map, but you know how to compute the right kind of column Map. You might also know an efficient way to compute an Import object from the current domain Map to the new column Map. (For an instance of the latter, see the Details::makeOptimizedColMapAndImport function in Tpetra_Details_makeOptimizedColMap.hpp.)

Suppose that you created this CrsMatrix with a constant graph; that is, that you called the CrsMatrix constructor that takes a CrsGraph as input:

RCP<CrsGraph<> > G (new CrsGraph<> (rowMap, origColMap, ...));
// ... fill G ...
G->fillComplete (domMap, ranMap);
CrsMatrix<> A (G);
// ... fill A ...

Now suppose that you want to give A to a preconditioner that can't handle a matrix with an arbitrary column Map (in the example above, origColMap). You first must create a new suitable column Map newColMap, and optionally a new Import object newImport from the matrix's current domain Map to the new column Map. Then, call this method, passing in G (which must not be fill complete) while the matrix is not fill complete. Be sure to save the graph's original Import object; you'll need that later.

RCP<const CrsGraph<>::import_type> origImport = G->getImporter ();
G->resumeFill ();
A.reindexColumns (G.getRawPtr (), newColMap, newImport);
G.fillComplete (domMap, ranMap);
A.fillComplete (domMap, ranMap);

Now you may give the matrix A to the preconditioner in question. After doing so, and after you solve the linear system using the preconditioner, you might want to put the matrix back like it originally was. You can do that, too!

A.resumeFill ();
G->resumeFill ();
A.reindexColumns (G.getRawPtr (), origColMap, origImport);
G->fillComplete (domMap, ranMap);
A->fillComplete (domMap, ranMap);

Definition at line 3107 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::replaceDomainMapAndImporter ( const Teuchos::RCP< const map_type > &  newDomainMap,
Teuchos::RCP< const import_type > &  newImporter 
)

Replace the current domain Map and Import with the given objects.

Parameters
newDomainMap[in] New domain Map. Must be nonnull.
newImporter[in] Optional Import object. If null, we will compute it.
Precondition
The matrix must be fill complete: isFillComplete() == true.
If the Import is provided, its target Map must be the same as the column Map of the matrix.
If the Import is provided, its source Map must be the same as the provided new domain Map.

Definition at line 3138 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::removeEmptyProcessesInPlace ( const Teuchos::RCP< const map_type > &  newMap)
virtual

Remove processes owning zero rows from the Maps and their communicator.

Warning
This method is ONLY for use by experts. We highly recommend using the nonmember function of the same name defined in Tpetra_DistObject_decl.hpp.
We make NO promises of backwards compatibility. This method may change or disappear at any time.
Parameters
newMap[in] This must be the result of calling the removeEmptyProcesses() method on the row Map. If it is not, this method's behavior is undefined. This pointer will be null on excluded processes.

Definition at line 6066 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const Teuchos::Comm< int > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getComm ( ) const
virtual

The communicator over which the matrix is distributed.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 436 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< Node > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNode ( ) const
virtual

The Kokkos Node instance.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 443 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getRowMap ( ) const
virtual

The Map that describes the row distribution in this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 590 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getColMap ( ) const
virtual

The Map that describes the column distribution in this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 597 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const RowGraph< LocalOrdinal, GlobalOrdinal, Node > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGraph ( ) const
virtual

This matrix's graph, as a RowGraph.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 618 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const CrsGraph< LocalOrdinal, GlobalOrdinal, Node, classic > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getCrsGraph ( ) const

This matrix's graph, as a CrsGraph.

Definition at line 628 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
local_matrix_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalMatrix ( ) const
inline

The local sparse matrix.

Definition at line 1609 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
global_size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalNumRows ( ) const
virtual

Number of global elements in the row map of this matrix.

This is <it>not</it> the number of rows in the matrix as a mathematical object. This method returns the global sum of the number of local elements in the row map on each processor, which is the row map's getGlobalNumElements(). Since the row map is not one-to-one in general, that global sum could be different than the number of rows in the matrix. If you want the number of rows in the matrix, ask the range map for its global number of elements, using the following code: global_size_t globalNumRows = getRangeMap()->getGlobalNumElements(); This method retains the behavior of Epetra, which also asks the row map for the global number of rows, rather than asking the range map.

Warning
Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 513 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
global_size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalNumCols ( ) const
virtual

The number of global columns in the matrix.

This equals the number of entries in the matrix's domain Map.

Warning
Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 520 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNodeNumRows ( ) const
virtual

The number of matrix rows owned by the calling process.

Note that the sum of all the return values over all processes in the row Map's communicator does not necessarily equal the global number of rows in the matrix, if the row Map is overlapping.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 527 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNodeNumCols ( ) const
virtual

The number of columns connected to the locally owned rows of this matrix.

Throws std::runtime_error if ! hasColMap ().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 534 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
GlobalOrdinal Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getIndexBase ( ) const
virtual

The index base for global indices for this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 583 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
global_size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalNumEntries ( ) const
virtual

The global number of entries in this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 499 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNodeNumEntries ( ) const
virtual

The local number of entries in this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 506 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNumEntriesInGlobalRow ( GlobalOrdinal  globalRow) const
virtual

Returns the current number of entries on this node in the specified global row.

Returns OrdinalTraits<size_t>::invalid() if the specified global row does not belong to this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 555 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNumEntriesInLocalRow ( LocalOrdinal  localRow) const
virtual

Returns the current number of entries on this node in the specified local row.

Returns OrdinalTraits<size_t>::invalid() if the specified local row is not valid for this matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 562 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
global_size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalNumDiags ( ) const
virtual

Returns the number of global diagonal entries, based on global row/column index comparisons.

Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 541 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNodeNumDiags ( ) const
virtual

Returns the number of local diagonal entries, based on global row/column index comparisons.

Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 548 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalMaxNumRowEntries ( ) const
virtual

Returns the maximum number of entries across all rows/columns on all nodes.

Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 569 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
size_t Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getNodeMaxNumRowEntries ( ) const
virtual

Returns the maximum number of entries across all rows/columns on this node.

Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 576 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::hasColMap ( ) const
virtual

Indicates whether the matrix has a well-defined column map.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 492 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isLowerTriangular ( ) const
virtual

Indicates whether the matrix is lower triangular.

Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 638 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isUpperTriangular ( ) const
virtual

Indicates whether the matrix is upper triangular.

Undefined if isFillActive().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 645 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isLocallyIndexed ( ) const
virtual

Whether the matrix is locally indexed on the calling process.

The matrix is locally indexed on the calling process if and only if all of the following hold:

  1. The matrix is not empty on the calling process
  2. The matrix has a column Map

The following is always true:

(! locallyIndexed() && ! globallyIndexed()) || (locallyIndexed() || globallyIndexed());

That is, a matrix may be neither locally nor globally indexed, but it can never be both. Furthermore a matrix that is not fill complete, might have some processes that are neither locally nor globally indexed, and some processes that are globally indexed. The processes that are neither do not have any entries.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 478 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isGloballyIndexed ( ) const
virtual

Whether the matrix is globally indexed on the calling process.

The matrix is globally indexed on the calling process if and only if all of the following hold:

  1. The matrix is not empty on the calling process
  2. The matrix does not yet have a column Map

The following is always true:

(! locallyIndexed() && ! globallyIndexed()) || (locallyIndexed() || globallyIndexed());

That is, a matrix may be neither locally nor globally indexed, but it can never be both. Furthermore a matrix that is not fill complete, might have some processes that are neither locally nor globally indexed, and some processes that are globally indexed. The processes that are neither do not have any entries.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 485 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isFillComplete ( ) const
virtual

Whether the matrix is fill complete.

A matrix is fill complete (or "in compute mode") when fillComplete() has been called without an intervening call to resumeFill(). A matrix must be fill complete in order to call computational kernels like sparse matrix-vector multiply and sparse triangular solve. A matrix must be not fill complete ("in edit mode") in order to call methods that insert, modify, or remove entries.

The following are always true:

A matrix starts out (after its constructor returns) as not fill complete. It becomes fill complete after fillComplete() returns, and becomes not fill complete again if resumeFill() is called. Some methods like clone() and some of the "nonmember constructors" (like importAndFillComplete() and exportAndFillComplete()) may return a fill-complete matrix.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 457 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isFillActive ( ) const

Whether the matrix is not fill complete.

A matrix is fill complete (or "in compute mode") when fillComplete() has been called without an intervening call to resumeFill(). A matrix must be fill complete in order to call computational kernels like sparse matrix-vector multiply and sparse triangular solve. A matrix must be not fill complete ("in edit mode") in order to call methods that insert, modify, or remove entries.

The following are always true:

A matrix starts out (after its constructor returns) as not fill complete. It becomes fill complete after fillComplete() returns, and becomes not fill complete again if resumeFill() is called. Some methods like clone() and some of the "nonmember constructors" (like importAndFillComplete() and exportAndFillComplete()) may return a fill-complete matrix.

Definition at line 464 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isStorageOptimized ( ) const

Returns true if storage has been optimized.

Optimized storage means that the allocation of each row is equal to the number of entries. The effect is that a pass through the matrix, i.e., during a mat-vec, requires minimal memory traffic. One limitation of optimized storage is that no new indices can be added to the matrix.

Definition at line 471 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
ProfileType Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getProfileType ( ) const

Returns true if the matrix was allocated with static data structures.

Definition at line 450 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::isStaticGraph ( ) const

Indicates that the graph is static, so that new entries cannot be added to this matrix.

Definition at line 652 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::mag_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getFrobeniusNorm ( ) const
virtual

Compute and return the Frobenius norm of the matrix.

The Frobenius norm of the matrix is defined as [ |A|_F = {{i,j} |A(i,j)|^2}. ].

If the matrix is fill complete, then the computed value is cached; the cache is cleared whenever resumeFill() is called. Otherwise, the value is computed every time the method is called.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 3024 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::supportsRowViews ( ) const
virtual

Return true if getLocalRowView() and getGlobalRowView() are valid for this object.

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 666 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalRowCopy ( GlobalOrdinal  GlobalRow,
const Teuchos::ArrayView< GlobalOrdinal > &  Indices,
const Teuchos::ArrayView< Scalar > &  Values,
size_t &  NumEntries 
) const
virtual

Fill given arrays with a deep copy of the locally owned entries of the matrix in a given row, using global column indices.

Parameters
GlobalRow[in] Global index of the row for which to return entries.
Indices[out] Global column indices corresponding to values.
Values[out] Matrix values.
NumEntries[out] Number of entries.
Note
To Tpetra developers: Discussion of whether to use Scalar or impl_scalar_type for output array of matrix values.

If Scalar differs from impl_scalar_type, as for example with std::complex<T> and Kokkos::complex<T>, we must choose which type to use. We must make the same choice as RowMatrix does, else CrsMatrix won't compile, because it won't implement a pure virtual method. We choose Scalar, for the following reasons. First, Scalar is the user's preferred type, and impl_scalar_type an implementation detail that makes Tpetra work with Kokkos. Second, Tpetra's public interface provides a host-only interface, which eliminates some reasons for requiring implementation-specific types like Kokkos::complex.

We do eventually want to put Tpetra methods in Kokkos kernels, but we only need to put them in host kernels, since Tpetra is a host-only interface. Users can still manually handle conversion from Scalar to impl_scalar_type for reductions.

The right thing to do would be to rewrite RowMatrix so that getGlobalRowCopy is NOT inherited, but is implemented by a pure virtual "hook" getGlobalRowCopyImpl. The latter takes raw pointers. That would give us the freedom to overload getGlobalRowCopy, which one normally can't do with virtual methods. It would make sense for one getGlobalRowCopyImpl method to implement both Teuchos::ArrayView and Kokos::View versions of getGlobalRowCopy.

Note: A std::runtime_error exception is thrown if either Indices or Values is not large enough to hold the data associated with row GlobalRow. If row GlobalRow is not owned by the calling process, then Indices and Values are unchanged and NumIndices is returned as Teuchos::OrdinalTraits<size_t>::invalid().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 2371 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalRowCopy ( LocalOrdinal  localRow,
const Teuchos::ArrayView< LocalOrdinal > &  colInds,
const Teuchos::ArrayView< Scalar > &  vals,
size_t &  numEntries 
) const
virtual

Fill given arrays with a deep copy of the locally owned entries of the matrix in a given row, using local column indices.

Parameters
localRow[in] Local index of the row for which to return entries.
colInds[out] Local column indices corresponding to values.
vals[out] Matrix values.
numEntries[out] Number of entries returned.

Note: A std::runtime_error exception is thrown if either colInds or vals is not large enough to hold the data associated with row localRow. If row localRow is not owned by the calling process, then colInds and vals are unchanged and numEntries is returned as Teuchos::OrdinalTraits<size_t>::invalid().

Implements Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 2302 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal, class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getGlobalRowView ( GlobalOrdinal  GlobalRow,
Teuchos::ArrayView< const GlobalOrdinal > &  indices,
Teuchos::ArrayView< const Scalar > &  values 
) const

Get a constant, nonpersisting view of a row of this matrix, using global row and column indices.

Parameters
GlobalRow[in] Global index of the row to view.
indices[out] On output: view of the global column indices in the row.
values[out] On output: view of the values in the row.
Precondition
isLocallyIndexed () == false
Postcondition
indices.size () == this->getNumEntriesInGlobalRow (GlobalRow)

If GlobalRow is not a valid global row index on the calling process, then indices is set to null.

Definition at line 2495 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalRowView ( LocalOrdinal  LocalRow,
Teuchos::ArrayView< const LocalOrdinal > &  indices,
Teuchos::ArrayView< const Scalar > &  values 
) const

Get a constant, nonpersisting view of a row of this matrix, using local row and column indices.

Parameters
LocalRow[in] Local index of the row to view.
indices[out] On output: view of the local column indices in the row.
values[out] On output: view of the values in the row.
Precondition
isGloballyIndexed () == false
Postcondition
indices.size () == this->getNumEntriesInLocalRow (LocalRow)

If LocalRow is not a valid local row index on the calling process, then indices is set to null.

Definition at line 2436 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalDiagCopy ( Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  diag) const

Get a copy of the diagonal entries of the matrix.

This method returns a Vector with the same Map as this matrix's row Map. On each process, it contains the diagonal entries owned by the calling process.

Definition at line 2769 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalDiagOffsets ( Teuchos::ArrayRCP< size_t > &  offsets) const

Get offsets of the diagonal entries in the matrix.

Warning
This method is only for expert users.
We make no promises about backwards compatibility for this method. It may disappear or change at any time.
This method must be called collectively. We reserve the right to do extra checking in a debug build that will require collectives.
Precondition
The matrix must be locally indexed (which means that it has a column Map).
All diagonal entries of the matrix's graph must be populated on this process. Results are undefined otherwise.
Postcondition
offsets.size() == getNodeNumRows()

This method creates an array of offsets of the local diagonal entries in the matrix. This array is suitable for use in the two-argument version of getLocalDiagCopy(). However, its contents are not defined in any other context. For example, you should not rely on offsets[i] being the index of the diagonal entry in the views returned by getLocalRowView(). This may be the case, but it need not be. (For example, we may choose to optimize the lookups down to the optimized storage level, in which case the offsets will be computed with respect to the underlying storage format, rather than with respect to the views.)

Calling any of the following invalidates the output array:

If the matrix has a const ("static") graph, and if that graph is fill complete, then the offsets array remains valid through calls to fillComplete() and resumeFill(). "Invalidates" means that you must call this method again to recompute the offsets.

Definition at line 2675 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalDiagCopy ( Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  diag,
const Teuchos::ArrayView< const size_t > &  offsets 
) const

Variant of getLocalDiagCopy() that uses precomputed offsets.

Warning
This method is only for expert users.
We make no promises about backwards compatibility for this method. It may disappear or change at any time.

This method uses the offsets of the diagonal entries, as precomputed by getLocalDiagOffsets(), to speed up copying the diagonal of the matrix. The offsets must be recomputed if any of the following methods are called:

If the matrix has a const ("static") graph, and if that graph is fill complete, then the offsets array remains valid through calls to fillComplete() and resumeFill().

Definition at line 2845 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::leftScale ( const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  x)

Definition at line 2910 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::rightScale ( const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  x)

Definition at line 2968 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class DomainScalar , class RangeScalar >
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::localMultiply ( const MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  Y,
Teuchos::ETransp  mode,
RangeScalar  alpha,
RangeScalar  beta 
) const
inline

Compute a sparse matrix-MultiVector product local to each process.

This method computes the local part of Y := beta*Y

  • alpha*Op(A)*X, where Op(A) is either $A$, $A^T$ (the transpose), or $A^H$ (the conjugate transpose). "The local part" means that this method does no communication between processes, even if this is necessary for correctness of the matrix-vector multiply. Use the apply() method if you want to compute the mathematical sparse matrix-vector multiply.

This method is mainly of use to Tpetra developers, though some users may find it helpful if they plan to reuse the result of doing an Import on the input MultiVector for several sparse matrix-vector multiplies with matrices that have the same column Map.

When Op(A) is $A$ (trans == Teuchos::NO_TRANS), then X's Map must be the same as the column Map of this matrix, and Y's Map must be the same as the row Map of this matrix. We say in this case that X is "post-Imported," and Y is "pre-Exported." When Op(A) is $A^T$ or $A^H$ (trans is Teuchos::TRANS or Teuchos::CONJ_TRANS, then X's Map must be the same as the row Map of this matrix, and Y's Map must be the same as the column Map of this matrix.

Both X and Y must have constant stride, and they may not alias one another (that is, occupy overlapping space in memory). We may not necessarily check for aliasing, and if we do, we will only do this in a debug build. Aliasing X and Y may cause nondeterministically incorrect results.

This method is templated on the type of entries in both the input MultiVector (DomainScalar) and the output MultiVector (RangeScalar). Thus, this method works for MultiVector objects of arbitrary type. However, this method only performs computation local to each MPI process. Use CrsMatrixMultiplyOp to handle global communication (the Import and Export operations for the input resp. output MultiVector), if you have a matrix with entries of a different type than the input and output MultiVector objects.

If beta == 0, this operation will enjoy overwrite semantics: Y will be overwritten with the result of the multiplication, even if it contains NaN (not-a-number) floating-point entries. Otherwise, the multiply result will be accumulated into Y.

Definition at line 2069 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class DomainScalar , class RangeScalar >
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::localGaussSeidel ( const MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  B,
MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  D,
const RangeScalar &  dampingFactor,
const KokkosClassic::ESweepDirection  direction 
) const
inline

Gauss-Seidel or SOR on $B = A X$.

Apply a forward or backward sweep of Gauss-Seidel or Successive Over-Relaxation (SOR) to the linear system(s) $B = A X$. For Gauss-Seidel, set the damping factor omega to 1.

Template Parameters
DomainScalarThe type of entries in the input multivector X. This may differ from the type of entries in A or in B.
RangeScalarThe type of entries in the output multivector B. This may differ from the type of entries in A or in X.
Parameters
B[in] Right-hand side(s).
X[in/out] On input: initial guess(es). On output: result multivector(s).
D[in] Inverse of diagonal entries of the matrix A.
omega[in] SOR damping factor. omega = 1 results in Gauss-Seidel.
direction[in] Sweep direction: KokkosClassic::Forward or KokkosClassic::Backward. ("Symmetric" requires interprocess communication (before each sweep), which is not part of the local kernel.)

Definition at line 2178 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class DomainScalar , class RangeScalar >
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::reorderedLocalGaussSeidel ( const MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  B,
MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  D,
const Teuchos::ArrayView< LocalOrdinal > &  rowIndices,
const RangeScalar &  dampingFactor,
const KokkosClassic::ESweepDirection  direction 
) const
inline

Reordered Gauss-Seidel or SOR on $B = A X$.

Apply a forward or backward sweep of reordered Gauss-Seidel or Successive Over-Relaxation (SOR) to the linear system(s) $B = A X$. For Gauss-Seidel, set the damping factor omega to 1. The ordering can be a partial one, in which case the Gauss-Seidel is only executed on a local subset of unknowns.

Template Parameters
DomainScalarThe type of entries in the input multivector X. This may differ from the type of entries in A or in B.
RangeScalarThe type of entries in the output multivector B. This may differ from the type of entries in A or in X.
Parameters
B[in] Right-hand side(s).
X[in/out] On input: initial guess(es). On output: result multivector(s).
D[in] Inverse of diagonal entries of the matrix A.
rowIndices[in] Ordered list of indices on which to execute GS.
omega[in] SOR damping factor. omega = 1 results in Gauss-Seidel.
direction[in] Sweep direction: KokkosClassic::Forward or KokkosClassic::Backward. ("Symmetric" requires interprocess communication (before each sweep), which is not part of the local kernel.)

Definition at line 2265 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
template<class DomainScalar , class RangeScalar >
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::localSolve ( const MultiVector< RangeScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  Y,
MultiVector< DomainScalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
Teuchos::ETransp  mode 
) const
inline

Solves a linear system when the underlying matrix is locally triangular.

X is required to be post-imported, i.e., described by the column map of the matrix. Y is required to be pre-exported, i.e., described by the row map of the matrix.

This method is templated on the scalar type of MultiVector objects, allowing this method to be applied to MultiVector objects of arbitrary type. However, if you intend to use this with template parameters not equal to Scalar, we recommend that you wrap this matrix in a CrsMatrixSolveOp. That class will handle the Import/Export operations required to apply a matrix with non-trivial communication needs.

Both X and Y are required to have constant stride. However, unlike multiply(), it is permissible for &X == &Y. No run-time checking will be performed in a non-debug build.

Definition at line 2354 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
template<class T >
Teuchos::RCP< CrsMatrix< T, LocalOrdinal, GlobalOrdinal, Node, classic > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::convert ( ) const

Return another CrsMatrix with the same entries, but converted to a different Scalar type T.

Definition at line 4734 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::apply ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  Y,
Teuchos::ETransp  mode = Teuchos::NO_TRANS,
Scalar  alpha = ScalarTraits<Scalar>::one(),
Scalar  beta = ScalarTraits<Scalar>::zero() 
) const

Compute a sparse matrix-MultiVector multiply.

This method computes Y := beta*Y + alpha*Op(A)*X, where Op(A) is either $A$, $A^T$ (the transpose), or $A^H$ (the conjugate transpose).

If beta == 0, this operation will enjoy overwrite semantics: Y's entries will be ignored, and Y will be overwritten with the result of the multiplication, even if it contains NaN (not-a-number) floating-point entries.

Definition at line 4100 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::hasTransposeApply ( ) const
virtual

Whether apply() allows applying the transpose or conjugate transpose.

Reimplemented from Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 659 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getDomainMap ( ) const
virtual

The domain Map of this matrix.

This method implements Tpetra::Operator. If fillComplete() has not yet been called at least once on this matrix, or if the matrix was not constructed with a domain Map, then this method returns Teuchos::null.

Implements Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 604 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getRangeMap ( ) const
virtual

The range Map of this matrix.

This method implements Tpetra::Operator. If fillComplete() has not yet been called at least once on this matrix, or if the matrix was not constructed with a domain Map, then this method returns Teuchos::null.

Implements Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 611 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::gaussSeidel ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  B,
MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  D,
const Scalar &  dampingFactor,
const ESweepDirection  direction,
const int  numSweeps 
) const

"Hybrid" Jacobi + (Gauss-Seidel or SOR) on $B = A X$.

"Hybrid" means Successive Over-Relaxation (SOR) or Gauss-Seidel within an (MPI) process, but Jacobi between processes. Gauss-Seidel is a special case of SOR, where the damping factor is one.

The Forward or Backward sweep directions have their usual SOR meaning within the process. Interprocess communication occurs once before the sweep, as it normally would in Jacobi.

The Symmetric sweep option means two sweeps: first Forward, then Backward. Interprocess communication occurs before each sweep, as in Jacobi. Thus, Symmetric results in two interprocess communication steps.

Parameters
B[in] Right-hand side(s).
X[in/out] On input: initial guess(es). On output: result multivector(s).
D[in] Inverse of diagonal entries of the matrix A.
dampingFactor[in] SOR damping factor. A damping factor of one results in Gauss-Seidel.
direction[in] Sweep direction: Forward, Backward, or Symmetric.
numSweeps[in] Number of sweeps. We count each Symmetric sweep (including both its Forward and its Backward sweep) as one.

Requirements

This method has the following requirements:

  1. X is in the domain Map of the matrix.
  2. The domain and row Maps of the matrix are the same.
  3. The column Map contains the domain Map, and both start at the same place.
  4. The row Map is uniquely owned.
  5. D is in the row Map of the matrix.
  6. X is actually a view of a column Map multivector.
  7. Neither B nor D alias X.

#1 is just the usual requirement for operators: the input multivector must always be in the domain Map. The Gauss-Seidel kernel imposes additional requirements, since it

  • overwrites the input multivector with the output (which implies #2), and
  • uses the same local indices for the input and output multivector (which implies #2 and #3).

#3 is reasonable if the matrix constructed the column Map, because the method that does this (CrsGraph::makeColMap) puts the local GIDs (those in the domain Map) in front and the remote GIDs (not in the domain Map) at the end of the column Map. However, if you constructed the column Map yourself, you are responsible for maintaining this invariant. #6 lets us do the Import from the domain Map to the column Map in place.

The Gauss-Seidel kernel also assumes that each process has the entire value (not a partial value to sum) of all the diagonal elements in the rows in its row Map. (We guarantee this anyway though the separate D vector.) This is because each element of the output multivector depends nonlinearly on the diagonal elements. Shared ownership of off-diagonal elements would produce different results.

Definition at line 4129 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::reorderedGaussSeidel ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  B,
MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  D,
const Teuchos::ArrayView< LocalOrdinal > &  rowIndices,
const Scalar &  dampingFactor,
const ESweepDirection  direction,
const int  numSweeps 
) const

Reordered "Hybrid" Jacobi + (Gauss-Seidel or SOR) on $B = A X$.

"Hybrid" means Successive Over-Relaxation (SOR) or Gauss-Seidel within an (MPI) process, but Jacobi between processes. Gauss-Seidel is a special case of SOR, where the damping factor is one. The ordering can be a partial one, in which case the Gauss-Seidel is only executed on a local subset of unknowns.

The Forward or Backward sweep directions have their usual SOR meaning within the process. Interprocess communication occurs once before the sweep, as it normally would in Jacobi.

The Symmetric sweep option means two sweeps: first Forward, then Backward. Interprocess communication occurs before each sweep, as in Jacobi. Thus, Symmetric results in two interprocess communication steps.

Parameters
B[in] Right-hand side(s).
X[in/out] On input: initial guess(es). On output: result multivector(s).
D[in] Inverse of diagonal entries of the matrix A.
rowIndices[in] Ordered list of indices on which to execute GS.
dampingFactor[in] SOR damping factor. A damping factor of one results in Gauss-Seidel.
direction[in] Sweep direction: Forward, Backward, or Symmetric.
numSweeps[in] Number of sweeps. We count each Symmetric sweep (including both its Forward and its Backward sweep) as one.

Requirements

This method has the following requirements:

  1. X is in the domain Map of the matrix.
  2. The domain and row Maps of the matrix are the same.
  3. The column Map contains the domain Map, and both start at the same place.
  4. The row Map is uniquely owned.
  5. D is in the row Map of the matrix.
  6. X is actually a view of a column Map multivector.
  7. Neither B nor D alias X.

#1 is just the usual requirement for operators: the input multivector must always be in the domain Map. The Gauss-Seidel kernel imposes additional requirements, since it

  • overwrites the input multivector with the output (which implies #2), and
  • uses the same local indices for the input and output multivector (which implies #2 and #3).

#3 is reasonable if the matrix constructed the column Map, because the method that does this (CrsGraph::makeColMap) puts the local GIDs (those in the domain Map) in front and the remote GIDs (not in the domain Map) at the end of the column Map. However, if you constructed the column Map yourself, you are responsible for maintaining this invariant. #6 lets us do the Import from the domain Map to the column Map in place.

The Gauss-Seidel kernel also assumes that each process has the entire value (not a partial value to sum) of all the diagonal elements in the rows in its row Map. (We guarantee this anyway though the separate D vector.) This is because each element of the output multivector depends nonlinearly on the diagonal elements. Shared ownership of off-diagonal elements would produce different results.

Definition at line 4142 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::gaussSeidelCopy ( MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  B,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  D,
const Scalar &  dampingFactor,
const ESweepDirection  direction,
const int  numSweeps,
const bool  zeroInitialGuess 
) const

Version of gaussSeidel(), with fewer requirements on X.

This method is just like gaussSeidel(), except that X need only be in the domain Map. This method does not require that X be a domain Map view of a column Map multivector. As a result, this method must copy X into a domain Map multivector before operating on it.

Parameters
X[in/out] On input: initial guess(es). On output: result multivector(s).
B[in] Right-hand side(s), in the range Map.
D[in] Inverse of diagonal entries of the matrix, in the row Map.
dampingFactor[in] SOR damping factor. A damping factor of one results in Gauss-Seidel.
direction[in] Sweep direction: Forward, Backward, or Symmetric.
numSweeps[in] Number of sweeps. We count each Symmetric sweep (including both its Forward and its Backward sweep) as one.
zeroInitialGuess[in] If true, this method will fill X with zeros initially. If false, this method will assume that X contains a possibly nonzero initial guess on input. Note that a nonzero initial guess may impose an additional nontrivial communication cost (an additional Import).
Precondition
Domain, range, and row Maps of the sparse matrix are all the same.
No other argument aliases X.

Definition at line 4411 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::reorderedGaussSeidelCopy ( MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  X,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  B,
const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > &  D,
const Teuchos::ArrayView< LocalOrdinal > &  rowIndices,
const Scalar &  dampingFactor,
const ESweepDirection  direction,
const int  numSweeps,
const bool  zeroInitialGuess 
) const

Version of reorderedGaussSeidel(), with fewer requirements on X.

This method is just like reorderedGaussSeidel(), except that X need only be in the domain Map. This method does not require that X be a domain Map view of a column Map multivector. As a result, this method must copy X into a domain Map multivector before operating on it.

Parameters
X[in/out] On input: initial guess(es). On output: result multivector(s).
B[in] Right-hand side(s), in the range Map.
D[in] Inverse of diagonal entries of the matrix, in the row Map.
rowIndices[in] Ordered list of indices on which to execute GS.
dampingFactor[in] SOR damping factor. A damping factor of one results in Gauss-Seidel.
direction[in] Sweep direction: Forward, Backward, or Symmetric.
numSweeps[in] Number of sweeps. We count each Symmetric sweep (including both its Forward and its Backward sweep) as one.
zeroInitialGuess[in] If true, this method will fill X with zeros initially. If false, this method will assume that X contains a possibly nonzero initial guess on input. Note that a nonzero initial guess may impose an additional nontrivial communication cost (an additional Import).
Precondition
Domain, range, and row Maps of the sparse matrix are all the same.
No other argument aliases X.

Definition at line 4426 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
Teuchos::RCP< RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::add ( const Scalar &  alpha,
const RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  A,
const Scalar &  beta,
const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  domainMap,
const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  rangeMap,
const Teuchos::RCP< Teuchos::ParameterList > &  params 
) const
virtual

Implementation of RowMatrix::add: return alpha*A + beta*this.

This override of the default implementation ensures that, when called on a CrsMatrix, this method always returns a CrsMatrix of exactly the same type as *this. "Exactly the same type" means that all the template parameters match, including the fifth template parameter. The input matrix A need not necessarily be a CrsMatrix or a CrsMatrix of the same type as *this, though this method may be able to optimize further in that case.

Reimplemented from Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 6089 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
std::string Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::description ( ) const
virtual

A one-line description of this object.

Reimplemented from Tpetra::DistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic >.

Definition at line 4912 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::describe ( Teuchos::FancyOStream &  out,
const Teuchos::EVerbosityLevel  verbLevel = Teuchos::Describable::verbLevel_default 
) const
virtual

Print the object with some verbosity level to an FancyOStream object.

Reimplemented from Tpetra::DistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic >.

Definition at line 4938 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::checkSizes ( const SrcDistObject source)
virtual

Compare the source and target (this) objects for compatibility.

Returns
True if they are compatible, else false.

Implements Tpetra::DistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic >.

Definition at line 5176 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::copyAndPermute ( const SrcDistObject source,
size_t  numSameIDs,
const Teuchos::ArrayView< const LocalOrdinal > &  permuteToLIDs,
const Teuchos::ArrayView< const LocalOrdinal > &  permuteFromLIDs 
)
virtual

Perform copies and permutations that are local to this process.

Parameters
source[in] On entry, the source object, from which we are distributing. We distribute to the destination object, which is *this object.
numSameIDs[in] The umber of elements that are the same on the source and destination (this) objects. These elements are owned by the same process in both the source and destination objects. No permutation occurs.
numPermuteIDs[in] The number of elements that are locally permuted between the source and destination objects.
permuteToLIDs[in] List of the elements that are permuted. They are listed by their LID in the destination object.
permuteFromLIDs[in] List of the elements that are permuted. They are listed by their LID in the source object.

Reimplemented from Tpetra::DistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic >.

Definition at line 5194 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::unpackAndCombine ( const Teuchos::ArrayView< const LocalOrdinal > &  importLIDs,
const Teuchos::ArrayView< const char > &  imports,
const Teuchos::ArrayView< size_t > &  numPacketsPerLID,
size_t  constantNumPackets,
Distributor distor,
CombineMode  combineMode 
)

Unpack the imported column indices and values, and combine into matrix.

Warning
The allowed combineMode depends on whether the matrix's graph is static or dynamic. ADD, REPLACE, and ABSMAX are valid for a static graph, but INSERT is not. ADD and INSERT are valid for a dynamic graph; ABSMAX and REPLACE have not yet been implemented (and would require serious changes to matrix assembly in order to implement sensibly).

Definition at line 5737 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal, class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::pack ( const Teuchos::ArrayView< const LocalOrdinal > &  exportLIDs,
Teuchos::Array< char > &  exports,
const Teuchos::ArrayView< size_t > &  numPacketsPerLID,
size_t &  constantNumPackets,
Distributor distor 
) const
virtual

Pack this object's data for an Import or Export.

Warning
To be called only by the packAndPrepare method of appropriate classes of DistObject.
Parameters
exportLIDs[in] Local indices of the rows to pack.
exports[out] On output: array of packed matrix entries; allocated by method.
numPacketsPerLID[out] On output: numPacketsPerLID[i] is the number of bytes of the exports array used for storing packed local row exportLIDs[i].
constantNumPackets[out] If zero on output, the packed rows may have different numbers of entries. If nonzero on output, then that number gives the constant number of entries for all packed rows on all processes in the matrix's communicator.
distor[in/out] The Distributor object which implements the Import or Export operation that is calling this method.

The number of "packets" per row is the number of bytes per row. Each row has the following storage format:

[numEnt, vals, inds],

where:

  • numEnt (LocalOrdinal): number of entries in the row.
  • vals: array of Scalar. For the k-th entry in the row, vals[k] is its value and inds[k] its global column index.
  • inds: array of GlobalOrdinal. For the k-th entry in the row, vals[k] is its value and inds[k] its global column index.

We reserve the right to pad for alignment in the future. In that case, the number of bytes reported by numPacketsPerLID will reflect padding to align each datum to its size, and the row will have final padding as well to ensure that the next row is aligned. Rows with zero entries will still take zero bytes, however.

RowMatrix::pack will always use the same packing scheme as this method. This ensures correct Import / Export from a RowMatrix to a CrsMatrix.

We do not recommend relying on the details of this packing scheme. We describe it here more for Tpetra developers and less for users.

DistObject requires packing an object's entries as type Packet, which is the first template parameter of DistObject. Since sparse matrices have both values and indices, we use Packet=char and pack them into buffers of char (really "byte"). Indices are stored as global indices, in case the source and target matrices have different column Maps (or don't have a column Map yet).

Currently, we only pack values and column indices. Row indices are stored implicitly as the local indices (LIDs) to pack (see exportLIDs). This is because a DistObject instance only has one Map, and currently we use the row Map for CrsMatrix (and RowMatrix). This makes redistribution of matrices with 2-D distributions less efficient, but it works for now. This may change in the future.

On output, numPacketsPerLID[i] gives the number of bytes used to pack local row exportLIDs[i] of this object (the source object of an Import or Export). If offset is the exclusive prefix sum-scan of numPacketsPerLID, then on output, exports[offset[i] .. offset[i+1]] (half-exclusive range) contains the packed entries for local row exportLIDs[i].

Entries for each row use a "struct of arrays" pattern to match how sparse matrices actually store their data. The number of entries in the row goes first, all values go next, and all column indices (stored as global indices) go last. Values and column indices occur in the same order. Rows with zero entries always take zero bytes (we do not store their number of entries explicitly). This ensures sparsity of storage and communication in case most rows are empty.

GCC >= 4.9 and recent-future versions of the Intel compiler implement stricter aliasing rules that forbid unaligned type punning. If we were to pack as an "array of structs" – in this case, an array of (Scalar, GlobalOrdinal) pairs – then we would either have to pad each matrix entry for alignment, or call memcpy twice per matrix entry to pack and unpack. The "struct of arrays" storage scheme reduces the padding requirement to a constant per row, or reduces the number of memcpy calls to two per row.

We include the number of entries in each row in that row's packed data, to make unpacking easier. This saves us from an error-prone computation to find the number of entries from the number of bytes. That computation gets even more difficult if we have to introduce padding for alignment in the future. Knowing the number of entries for each row also makes parallelizing packing and unpacking easier.

  • sizeof(Scalar) says how much data were used to represent a Scalar in its packed form.
  • sizeof returns the same value on all processes for Scalar, LocalOrdinal, and GlobalOrdinal.

Reimplemented from Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >.

Definition at line 5553 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
local_matrix_type::values_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getLocalValuesView ( ) const
inline

Get the Kokkos local values.

Definition at line 2983 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::importAndFillComplete ( Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > &  destMatrix,
const import_type importer,
const Teuchos::RCP< const map_type > &  domainMap,
const Teuchos::RCP< const map_type > &  rangeMap,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
) const

Import from this to the given destination matrix, and make the result fill complete.

If destMatrix.is_null(), this creates a new matrix as the destination. (This is why destMatrix is passed in by nonconst reference to RCP.) Otherwise it checks for "pristine" status and throws if that is not the case. "Pristine" means that the matrix has no entries and is not fill complete.

Use of the "non-member constructor" version of this method, exportAndFillCompleteCrsMatrix, is preferred for user applications.

Warning
This method is intended for expert developer use only, and should never be called by user code.

Definition at line 6925 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal, class GlobalOrdinal, class Node, const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::exportAndFillComplete ( Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > &  destMatrix,
const export_type exporter,
const Teuchos::RCP< const map_type > &  domainMap = Teuchos::null,
const Teuchos::RCP< const map_type > &  rangeMap = Teuchos::null,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
) const

Export from this to the given destination matrix, and make the result fill complete.

If destMatrix.is_null(), this creates a new matrix as the destination. (This is why destMatrix is passed in by nonconst reference to RCP.) Otherwise it checks for "pristine" status and throws if that is not the case. "Pristine" means that the matrix has no entries and is not fill complete.

Use of the "non-member constructor" version of this method, exportAndFillCompleteCrsMatrix, is preferred for user applications.

Warning
This method is intended for expert developer use only, and should never be called by user code.

Definition at line 6938 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::allocateValues ( ELocalGlobal  lg,
GraphAllocationStatus  gas 
)
protected

Allocate values (and optionally indices) using the Node.

Parameters
gas[in] If GraphNotYetAllocated, allocate the indices of myGraph_ via allocateIndices(lg) before allocating values.
lg[in] Argument passed into myGraph_->allocateIndices(), if applicable.
Precondition
If the graph (that is, staticGraph_) indices are already allocated, then gas must be GraphAlreadyAllocated. Otherwise, gas must be GraphNotYetAllocated. We only check for this precondition in debug mode.
If the graph indices are not already allocated, then the graph must be owned by the matrix.

Definition at line 673 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::sortEntries ( )
protected

Sort the entries of each row by their column indices.

This only does anything if the graph isn't already sorted (i.e., ! myGraph_->isSorted ()). This method is called in fillComplete().

Definition at line 3765 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::mergeRedundantEntries ( )
protected

Merge entries in each row with the same column indices.

This only does anything if the graph isn't already merged (i.e., ! myGraph_->isMerged ()). This method is called in fillComplete().

Definition at line 3786 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::clearGlobalConstants ( )
protected

Clear matrix properties that require collectives.

This clears whatever computeGlobalConstants() (which see) computed, in preparation for changes to the matrix. The current implementation of this method does nothing.

This method is called in resumeFill().

Definition at line 3512 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::computeGlobalConstants ( )
protected

Compute matrix properties that require collectives.

The corresponding Epetra_CrsGraph method computes things like the global number of nonzero entries, that require collectives over the matrix's communicator. The current Tpetra implementation of this method does nothing.

This method is called in fillComplete().

Definition at line 3498 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getColumnMapMultiVector ( const MV X_domainMap,
const bool  force = false 
) const
protected

Create a (or fetch a cached) column Map MultiVector.

Parameters
X_domainMap[in] A domain Map Multivector. The returned MultiVector, if nonnull, will have the same number of columns as Y_domainMap.
force[in] Force creating the MultiVector if it hasn't been created already.

The force parameter is helpful when the domain Map and the column Map are the same (so that normally we wouldn't need the column Map MultiVector), but the following (for example) holds:

  1. The kernel needs a constant stride input MultiVector, but the given input MultiVector is not constant stride.

We don't test for the above in this method, because it depends on the specific kernel.

Definition at line 5963 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::RCP< MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getRowMapMultiVector ( const MV Y_rangeMap,
const bool  force = false 
) const
protected

Create a (or fetch a cached) row Map MultiVector.

Parameters
Y_rangeMap[in] A range Map Multivector. The returned MultiVector, if nonnull, will have the same number of columns as Y_rangeMap.
force[in] Force creating the MultiVector if it hasn't been created already.

The force parameter is helpful when the range Map and the row Map are the same (so that normally we wouldn't need the row Map MultiVector), but one of the following holds:

  1. The kernel needs a constant stride output MultiVector, but the given output MultiVector is not constant stride.
  2. The kernel does not permit aliasing of its input and output MultiVector arguments, but they do alias each other.

We don't test for the above in this method, because it depends on the specific kernel.

Definition at line 6020 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::applyNonTranspose ( const MV X_in,
MV Y_in,
Scalar  alpha,
Scalar  beta 
) const
protected

Special case of apply() for mode == Teuchos::NO_TRANS.

Definition at line 3806 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar, class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::applyTranspose ( const MV X_in,
MV Y_in,
const Teuchos::ETransp  mode,
Scalar  alpha,
Scalar  beta 
) const
protected

Special case of apply() for mode != Teuchos::NO_TRANS.

Definition at line 3970 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::ArrayView< const typename CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::impl_scalar_type > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getView ( RowInfo  rowinfo) const
protected

Constant view of all entries (including extra space) in the given row.

Unlike getGlobalRowView(), this method returns impl_scalar_type, not Scalar. This is because this method is not part of the public interface of CrsMatrix.

Definition at line 2174 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
Teuchos::ArrayView< typename CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::impl_scalar_type > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::getViewNonConst ( const RowInfo rowinfo) const
protected

Nonconst view of all entries (including extra space) in the given row.

Unlike getGlobalRowView(), this method returns impl_scalar_type, not Scalar. This is because this method is not part of the public interface of CrsMatrix.

This method is const because it doesn't change allocations (and thus doesn't change pointers). Consider the difference between const double* and double* const.

Definition at line 2294 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::fillLocalMatrix ( const Teuchos::RCP< Teuchos::ParameterList > &  params)
protected

Fill data into the local matrix.

This method is only called in fillComplete(), and it is only called if the graph's structure is already fixed (that is, if the matrix does not own the graph).

Definition at line 1223 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::fillLocalGraphAndMatrix ( const Teuchos::RCP< Teuchos::ParameterList > &  params)
protected

Fill data into the local graph and matrix.

This method is only called in fillComplete(), and it is only called if the graph's structure is not already fixed (that is, if the matrix does own the graph).

Definition at line 787 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic>
void Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::checkInternalState ( ) const
protected

Check that this object's state is sane; throw if it's not.

Definition at line 4855 of file Tpetra_CrsMatrix_def.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
virtual void Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getGlobalRowView ( GlobalOrdinal  GlobalRow,
ArrayView< const GlobalOrdinal > &  indices,
ArrayView< const Scalar > &  values 
) const
pure virtualinherited

Get a constant, nonpersisting, globally indexed view of the given row of the matrix.

The returned views of the column indices and values are not guaranteed to persist beyond the lifetime of this. Furthermore, some RowMatrix implementations allow changing the values, or the indices and values. Any such changes invalidate the returned views.

This method only gets the entries in the given row that are stored on the calling process. Note that if the matrix has an overlapping row Map, it is possible that the calling process does not store all the entries in that row.

Precondition
isGloballyIndexed () && supportsRowViews ()
Postcondition
indices.size () == getNumEntriesInGlobalRow (GlobalRow)
Parameters
GlobalRow[in] Global index of the row.
Indices[out] Global indices of the columns corresponding to values.
Values[out] Matrix values.

If GlobalRow does not belong to this node, then indices is set to null.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
virtual void Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getLocalRowView ( LocalOrdinal  LocalRow,
ArrayView< const LocalOrdinal > &  indices,
ArrayView< const Scalar > &  values 
) const
pure virtualinherited

Get a constant, nonpersisting, locally indexed view of the given row of the matrix.

The returned views of the column indices and values are not guaranteed to persist beyond the lifetime of this. Furthermore, some RowMatrix implementations allow changing the values, or the indices and values. Any such changes invalidate the returned views.

This method only gets the entries in the given row that are stored on the calling process. Note that if the matrix has an overlapping row Map, it is possible that the calling process does not store all the entries in that row.

Precondition
isLocallyIndexed () && supportsRowViews ()
Postcondition
indices.size () == getNumEntriesInGlobalRow (LocalRow)
Parameters
LocalRow[in] Local index of the row.
Indices[out] Local indices of the columns corresponding to values.
Values[out] Matrix values.

If LocalRow does not belong to this node, then indices is set to null.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
virtual void Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::getLocalDiagCopy ( Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, Node::classic > &  diag) const
pure virtualinherited

Get a copy of the diagonal entries, distributed by the row Map.

On input, the Vector's Map must be the same as the row Map of the matrix. (That is, this->getRowMap ()->isSameAs (* (diag.getMap ())) == true.)

On return, the entries of diag are filled with the diagonal entries of the matrix stored on this process. Note that if the row Map is overlapping, multiple processes may own the same diagonal element. You may combine these overlapping diagonal elements by doing an Export from the row Map Vector to a range Map Vector.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
virtual void Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::leftScale ( const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, Node::classic > &  x)
pure virtualinherited

Scale the RowMatrix on the left with the given Vector x.

On return, for all entries i,j in the matrix, $A(i,j) = x(i)*A(i,j)$.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
virtual void Tpetra::RowMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node >::rightScale ( const Vector< Scalar, LocalOrdinal, GlobalOrdinal, Node, Node::classic > &  x)
pure virtualinherited

Scale the RowMatrix on the right with the given Vector x.

On return, for all entries i,j in the matrix, $A(i,j) = x(j)*A(i,j)$.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type>
virtual void Tpetra::Operator< Scalar, LocalOrdinal, GlobalOrdinal, Node >::apply ( const MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  X,
MultiVector< Scalar, LocalOrdinal, GlobalOrdinal, Node > &  Y,
Teuchos::ETransp  mode = Teuchos::NO_TRANS,
Scalar  alpha = Teuchos::ScalarTraits< Scalar >::one(),
Scalar  beta = Teuchos::ScalarTraits< Scalar >::zero() 
) const
pure virtualinherited

Computes the operator-multivector application.

Loosely, performs $Y = \alpha \cdot A^{\textrm{mode}} \cdot X + \beta \cdot Y$. However, the details of operation vary according to the values of alpha and beta. Specifically

  • if beta == 0, apply() must overwrite Y, so that any values in Y (including NaNs) are ignored.
  • if alpha == 0, apply() may short-circuit the operator, so that any values in X (including NaNs) are ignored.

Implemented in Tpetra::CrsMatrixMultiplyOp< Scalar, MatScalar, LocalOrdinal, GlobalOrdinal, Node >, Tpetra::details::ApplyOp< Scalar, OperatorType >, Tpetra::CrsMatrixSolveOp< Scalar, MatScalar, LocalOrdinal, GlobalOrdinal, Node >, Tpetra::RTI::KernelOp< S, LO, GO, Node, Kernel >, and Tpetra::RTI::KernelOp< S, LO, GO, Node, Tpetra::RTI::detail::BinaryFunctorAdapterWithAlphaBeta< Op, S > >.

void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::doImport ( const SrcDistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic > &  source,
const Import< LocalOrdinal, GlobalOrdinal, Node > &  importer,
CombineMode  CM 
)
inherited

Import data into this object using an Import object ("forward mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use this method with your precomputed Import object if you want to do an Import, else use doExport() with a precomputed Export object.

Parameters
source[in] The "source" object for redistribution.
importer[in] Precomputed data redistribution plan. Its source Map must be the same as the input DistObject's Map, and its target Map must be the same as this->getMap().
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::doImport ( const SrcDistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic > &  source,
const Export< LocalOrdinal, GlobalOrdinal, Node > &  exporter,
CombineMode  CM 
)
inherited

Import data into this object using an Export object ("reverse mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use the version of doImport() that takes a precomputed Import object in that case.

Parameters
source[in] The "source" object for redistribution.
exporter[in] Precomputed data redistribution plan. Its target Map must be the same as the input DistObject's Map, and its source Map must be the same as this->getMap(). (Note the difference from forward mode.)
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::doExport ( const SrcDistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic > &  source,
const Export< LocalOrdinal, GlobalOrdinal, Node > &  exporter,
CombineMode  CM 
)
inherited

Export data into this object using an Export object ("forward mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use this method with your precomputed Export object if you want to do an Export, else use doImport() with a precomputed Import object.

Parameters
source[in] The "source" object for redistribution.
exporter[in] Precomputed data redistribution plan. Its source Map must be the same as the input DistObject's Map, and its target Map must be the same as this->getMap().
CM[in] How to combine incoming data with the same global index.
void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::doExport ( const SrcDistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic > &  source,
const Import< LocalOrdinal, GlobalOrdinal, Node > &  importer,
CombineMode  CM 
)
inherited

Export data into this object using an Import object ("reverse mode").

The input DistObject is always the source of the data redistribution operation, and the *this object is always the target.

If you don't know the difference between forward and reverse mode, then you probably want forward mode. Use the version of doExport() that takes a precomputed Export object in that case.

Parameters
source[in] The "source" object for redistribution.
importer[in] Precomputed data redistribution plan. Its target Map must be the same as the input DistObject's Map, and its source Map must be the same as this->getMap(). (Note the difference from forward mode.)
CM[in] How to combine incoming data with the same global index.
bool Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::isDistributed ( ) const
inherited

Whether this is a globally distributed object.

For a definition of "globally distributed" (and its opposite, "locally replicated"), see the documentation of Map's isDistributed() method.

virtual Teuchos::RCP<const map_type> Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::getMap ( ) const
inlinevirtualinherited

The Map describing the parallel distribution of this object.

Note that some Tpetra objects might be distributed using multiple Map objects. For example, CrsMatrix has both a row Map and a column Map. It is up to the subclass to decide which Map to use when invoking the DistObject constructor.

Definition at line 347 of file Tpetra_DistObject_decl.hpp.

void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::print ( std::ostream &  os) const
inherited

Print this object to the given output stream.

We generally assume that all MPI processes can print to the given stream.

virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::removeEmptyProcessesInPlace ( const Teuchos::RCP< const map_type > &  newMap)
virtualinherited

Remove processes which contain no elements in this object's Map.

Warning
This method is ONLY for use by experts. We highly recommend using the nonmember function of the same name defined in this file.
We make NO promises of backwards compatibility. This method may change or disappear at any time.

On input, this object is distributed over the Map returned by getMap() (the "original Map," with its communicator, the "original communicator"). The input newMap of this method must be the same as the result of calling getMap()->removeEmptyProcesses(). On processes in the original communicator which contain zero elements ("excluded processes," as opposed to "included processes"), the input newMap must be Teuchos::null (which is what getMap()->removeEmptyProcesses() returns anyway).

On included processes, reassign this object's Map (that would be returned by getMap()) to the input newMap, and do any work that needs to be done to restore correct semantics. On excluded processes, free any data that needs freeing, and do any other work that needs to be done to restore correct semantics.

This method has collective semantics over the original communicator. On exit, the only method of this object which is safe to call on excluded processes is the destructor. This implies that subclasses' destructors must not contain communication operations.

Returns
The object's new Map. Its communicator is a new communicator, distinct from the old Map's communicator, which contains a subset of the processes in the old communicator.
Note
The name differs from Map's method removeEmptyProcesses(), in order to emphasize that the operation on DistObject happens in place, modifying the input, whereas the operation removeEmptyProcess() on Map does not modify the input.
To implementers of DistObject subclasses: The default implementation of this class throws std::logic_error.
virtual size_t Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::constantNumberOfPackets ( ) const
protectedvirtualinherited

Whether the implementation's instance promises always to have a constant number of packets per LID, and if so, how many packets per LID there are.

If this method returns zero, the instance says that it might possibly have a different number of packets for each LID to send or receive. If it returns nonzero, the instance promises that the number of packets is the same for all LIDs, and that the return value is this number of packets per LID.

The default implementation of this method returns zero. This does not affect the behavior of doTransfer() in any way. If a nondefault implementation returns nonzero, doTransfer() will use this information to avoid unnecessary allocation and / or resizing of arrays.

virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::doTransfer ( const SrcDistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic > &  src,
CombineMode  CM,
size_t  numSameIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  permuteToLIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  permuteFromLIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  remoteLIDs,
const Teuchos::ArrayView< const local_ordinal_type > &  exportLIDs,
Distributor distor,
ReverseOption  revOp 
)
protectedvirtualinherited

Redistribute data across memory images.

Parameters
src[in] The source object, to redistribute into the target object, which is *this object.
CM[in] The combine mode that describes how to combine values that map to the same global ID on the same process.
permuteToLIDs[in] See copyAndPermute().
permuteFromLIDs[in] See copyAndPermute().
remoteLIDs[in] List of entries (as local IDs) in the destination object to receive from other processes.
exportLIDs[in] See packAndPrepare().
distor[in/out] The Distributor object that knows how to redistribute data.
revOp[in] Whether to do a forward or reverse mode redistribution.
virtual bool Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::useNewInterface ( )
inlineprotectedvirtualinherited

Whether lass (???) implements old or new interface.

Definition at line 545 of file Tpetra_DistObject_decl.hpp.

virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::packAndPrepare ( const SrcDistObject< char, LocalOrdinal, GlobalOrdinal, Node, classic > &  source,
const Teuchos::ArrayView< const local_ordinal_type > &  exportLIDs,
Teuchos::Array< packet_type > &  exports,
const Teuchos::ArrayView< size_t > &  numPacketsPerLID,
size_t &  constantNumPackets,
Distributor distor 
)
inlineprotectedvirtualinherited

Perform any packing or preparation required for communication.

Parameters
source[in] Source object for the redistribution.
exportLIDs[in] List of the entries (as local IDs in the source object) we will be sending to other images.
exports[out] On exit, the buffer for data to send.
numPacketsPerLID[out] On exit, the implementation of this method must do one of two things: set numPacketsPerLID[i] to contain the number of packets to be exported for exportLIDs[i] and set constantNumPackets to zero, or set constantNumPackets to a nonzero value. If the latter, the implementation need not fill numPacketsPerLID.
constantNumPackets[out] On exit, 0 if numPacketsPerLID has variable contents (different size for each LID). If nonzero, then it is expected that the number of packets per LID is constant, and that constantNumPackets is that value.
distor[in] The Distributor object we are using.

Definition at line 600 of file Tpetra_DistObject_decl.hpp.

virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::unpackAndCombine ( const Teuchos::ArrayView< const local_ordinal_type > &  importLIDs,
const Teuchos::ArrayView< const packet_type > &  imports,
const Teuchos::ArrayView< size_t > &  numPacketsPerLID,
size_t  constantNumPackets,
Distributor distor,
CombineMode  CM 
)
inlineprotectedvirtualinherited

Perform any unpacking and combining after communication.

Parameters
importLIDs[in] List of the entries (as LIDs in the destination object) we received from other images.
imports[in] Buffer containing data we received.
numPacketsPerLID[in] If constantNumPackets is zero, then numPacketsPerLID[i] contains the number of packets imported for importLIDs[i].
constantNumPackets[in] If nonzero, then numPacketsPerLID is constant (same value in all entries) and constantNumPackets is that value. If zero, then numPacketsPerLID[i] is the number of packets imported for importLIDs[i].
distor[in] The Distributor object we are using.
CM[in] The combine mode to use when combining the imported entries with existing entries.

Definition at line 638 of file Tpetra_DistObject_decl.hpp.

virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::createViews ( ) const
protectedvirtualinherited

Hook for creating a const view.

doTransfer() calls this on the source object. By default, it does nothing, but the source object can use this as a hint to fetch data from a compute buffer on an off-CPU device (such as a GPU) into host memory.

virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::createViewsNonConst ( KokkosClassic::ReadWriteOption  rwo)
protectedvirtualinherited

Hook for creating a nonconst view.

doTransfer() calls this on the destination (*this) object. By default, it does nothing, but the destination object can use this as a hint to fetch data from a compute buffer on an off-CPU device (such as a GPU) into host memory.

Parameters
rwo[in] Whether to create a write-only or a read-and-write view. For Kokkos Node types where compute buffers live in a separate memory space (e.g., in the device memory of a discrete accelerator like a GPU), a write-only view only requires copying from host memory to the compute buffer, whereas a read-and-write view requires copying both ways (once to read, from the compute buffer to host memory, and once to write, back to the compute buffer).
virtual void Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::releaseViews ( ) const
protectedvirtualinherited

Hook for releasing views.

doTransfer() calls this on both the source and destination objects, once it no longer needs to access that object's data. By default, this method does nothing. Implementations may use this as a hint to free host memory which is a view of a compute buffer, once the host memory view is no longer needed. Some implementations may prefer to mirror compute buffers in host memory; for these implementations, releaseViews() may do nothing.

Friends And Related Function Documentation

template<class Scalar , class LocalOrdinal , class GlobalOrdinal , class Node , const bool classic = Node::classic>
Teuchos::RCP< CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic > > createCrsMatrix ( const Teuchos::RCP< const Map< LocalOrdinal, GlobalOrdinal, Node > > &  map,
size_t  maxNumEntriesPerRow = 0,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)
related

Non-member function to create an empty CrsMatrix given a row map and a non-zero profile.

Returns
A dynamically allocated (DynamicProfile) matrix with specified number of nonzeros per row (defaults to zero).

Definition at line 3559 of file Tpetra_CrsMatrix_decl.hpp.

template<class CrsMatrixType >
Teuchos::RCP< CrsMatrixType > importAndFillCompleteCrsMatrix ( const Teuchos::RCP< const CrsMatrixType > &  sourceMatrix,
const Import< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > &  importer,
const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &  domainMap = Teuchos::null,
const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &  rangeMap = Teuchos::null,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)
related

Nonmember CrsMatrix constructor that fuses Import and fillComplete().

Template Parameters
CrsMatrixTypeA specialization of CrsMatrix.

A common use case is to create an empty destination CrsMatrix, redistribute from a source CrsMatrix (by an Import or Export operation), then call fillComplete() on the destination CrsMatrix. This constructor fuses these three cases, for an Import redistribution.

Fusing redistribution and fillComplete() exposes potential optimizations. For example, it may make constructing the column Map faster, and it may avoid intermediate unoptimized storage in the destination CrsMatrix. These optimizations may improve performance for specialized kernels like sparse matrix-matrix multiply, as well as for redistributing data after doing load balancing.

The resulting matrix is fill complete (in the sense of isFillComplete()) and has optimized storage (in the sense of isStorageOptimized()). By default, its domain Map is the domain Map of the source matrix, and its range Map is the range Map of the source matrix.

Warning
If the target Map of the Import is a subset of the source Map of the Import, then you cannot use the default range Map. You should instead construct a nonoverlapping version of the target Map and supply that as the nondefault value of the range Map.
Parameters
sourceMatrix[in] The source matrix from which to import. The source of an Import must have a nonoverlapping distribution.
importer[in] The Import instance containing a precomputed redistribution plan. The source Map of the Import must be the same as the rowMap of sourceMatrix unless the "Reverse Mode" option on the params list, in which case the targetMap of Import must match the rowMap of the sourceMatrix
domainMap[in] Domain Map of the returned matrix. If null, we use the default, which is the domain Map of the source matrix.
rangeMap[in] Range Map of the returned matrix. If null, we use the default, which is the range Map of the source matrix.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 3621 of file Tpetra_CrsMatrix_decl.hpp.

template<class CrsMatrixType >
Teuchos::RCP< CrsMatrixType > exportAndFillCompleteCrsMatrix ( const Teuchos::RCP< const CrsMatrixType > &  sourceMatrix,
const Export< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > &  exporter,
const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &  domainMap = Teuchos::null,
const Teuchos::RCP< const Map< typename CrsMatrixType::local_ordinal_type, typename CrsMatrixType::global_ordinal_type, typename CrsMatrixType::node_type > > &  rangeMap = Teuchos::null,
const Teuchos::RCP< Teuchos::ParameterList > &  params = Teuchos::null 
)
related

Nonmember CrsMatrix constructor that fuses Export and fillComplete().

Template Parameters
CrsMatrixTypeA specialization of CrsMatrix.

For justification, see the documentation of importAndFillCompleteCrsMatrix() (which is the Import analog of this function).

The resulting matrix is fill complete (in the sense of isFillComplete()) and has optimized storage (in the sense of isStorageOptimized()). By default, its domain Map is the domain Map of the source matrix, and its range Map is the range Map of the source matrix.

Parameters
sourceMatrix[in] The source matrix from which to export. Its row Map may be overlapping, since the source of an Export may be overlapping.
exporter[in] The Export instance containing a precomputed redistribution plan. The source Map of the Export must be the same as the row Map of sourceMatrix.
domainMap[in] Domain Map of the returned matrix. If null, we use the default, which is the domain Map of the source matrix.
rangeMap[in] Range Map of the returned matrix. If null, we use the default, which is the range Map of the source matrix.
params[in/out] Optional list of parameters. If not null, any missing parameters will be filled in with their default values.

Definition at line 3673 of file Tpetra_CrsMatrix_decl.hpp.

Member Data Documentation

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
Teuchos::RCP<MV> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::importMV_
mutableprotected

Column Map MultiVector used in apply() and gaussSeidel().

This is a column Map MultiVector. It is used as the target of the forward mode Import operation (if necessary) in apply() and gaussSeidel(), and the source of the reverse mode Export operation (if necessary) in these methods. Both of these methods create this MultiVector on demand if needed, and reuse it (if possible) for subsequent calls.

This is declared mutable because the methods in question are const, yet want to cache the MultiVector for later use.

Definition at line 3280 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
Teuchos::RCP<MV> Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::exportMV_
mutableprotected

Row Map MultiVector used in apply().

This is a row Map MultiVector. It is uses as the source of the forward mode Export operation (if necessary) in apply() and gaussSeidel(), and the target of the reverse mode Import operation (if necessary) in these methods. Both of these methods create this MultiVector on demand if needed, and reuse it (if possible) for subsequent calls.

This is declared mutable because the methods in question are const, yet want to cache the MultiVector for later use.

Definition at line 3294 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
local_matrix_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::lclMatrix_
protected

The local sparse matrix.

Definition at line 3444 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
Details::EStorageStatus Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::storageStatus_
protected

Status of the matrix's storage, when not in a fill-complete state.

The phrase "When not in a fill-complete state" is important. When the matrix is fill complete, it always uses 1-D "packed" storage. However, if the "Optimize Storage" parameter to fillComplete was false, the matrix may keep unpacked 1-D or 2-D storage around and resume it on the next resumeFill call.

Definition at line 3472 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
bool Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::fillComplete_
protected

Whether the matrix is fill complete.

Definition at line 3475 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
std::map<GlobalOrdinal, std::pair<Teuchos::Array<GlobalOrdinal>, Teuchos::Array<Scalar> > > Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::nonlocals_
protected

Nonlocal data added using insertGlobalValues().

These data are cleared by globalAssemble(), once it finishes redistributing them to their owning processes.

For a given nonowned global row gRow which was given to insertGlobalValues() or sumIntoGlobalValues(), nonlocals_[gRow].first[k] is the column index of an inserted entry, and nonlocals_[gRow].second[k] is its value. Duplicate column indices for the same row index are allowed and will be summed during globalAssemble().

This used to be a map from GlobalOrdinal to (GlobalOrdinal, Scalar) pairs. This makes gcc issue a "note" about the ABI of structs containing std::complex members changing. CDash reports this as a warning, even though it's a "note," not a warning. However, I don't want it to show up, so I rearranged the map's value type to a pair of arrays, rather than an array of pairs.

Note
For Epetra developers: Tpetra::CrsMatrix corresponds more to Epetra_FECrsMatrix than to Epetra_CrsMatrix. The insertGlobalValues() method in Tpetra::CrsMatrix, unlike its corresponding method in Epetra_CrsMatrix, allows insertion into rows which are not owned by the calling process. The globalAssemble() method redistributes these to their owning processes.

Definition at line 3505 of file Tpetra_CrsMatrix_decl.hpp.

template<class Scalar = Details::DefaultTypes::scalar_type, class LocalOrdinal = Details::DefaultTypes::local_ordinal_type, class GlobalOrdinal = Details::DefaultTypes::global_ordinal_type, class Node = Details::DefaultTypes::node_type, const bool classic = Node::classic>
mag_type Tpetra::CrsMatrix< Scalar, LocalOrdinal, GlobalOrdinal, Node, classic >::frobNorm_
mutableprotected

Cached Frobenius norm of the (global) matrix.

The value -1 means that the norm has not yet been computed, or that the values in the matrix may have changed and the norm must be recomputed.

Definition at line 3512 of file Tpetra_CrsMatrix_decl.hpp.

Teuchos::RCP<const map_type> Tpetra::DistObject< char , LocalOrdinal, GlobalOrdinal, Node, classic >::map_
protectedinherited

The Map over which this object is distributed.

Definition at line 695 of file Tpetra_DistObject_decl.hpp.


The documentation for this class was generated from the following files: