An Introduction to R

Notes on R: A Programming Environment for Data Analysis and Graphics
Version 3.3.1 (2016-06-21)

W. N. Venables, D. M. Smith
and the R Core Team

This manual is for R, version 3.3.1 (2016-06-21).

Copyright (© 1990 W. N. Venables

Copyright (© 1992 W. N. Venables & D. M. Smith
Copyright (© 1997 R. Gentleman & R. Thaka
Copyright (© 1997, 1998 M. Maechler

Copyright (© 19992016 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

Preface............ 1
1 Introduction and preliminaries................. 2
1.1 The R environmentc.ouuiiiiiiiiiiiiiiieeeeennnnnn. 2
1.2 Related software and documentation............................ 2
1.3 Rand statistics..........coiiinni e 2
1.4 R and the window system.......... i 3
1.5 Using R interactively i i 3
1.6 An introductory Session............ ..ot 4
1.7 Getting help with functions and features........................ 4
1.8 R commands, case sensitivity, etc.l 5
1.9 Recall and correction of previous commands..................... 5
1.10 Executing commands from or diverting output to a file......... 6
1.11 Data permanency and removing objects........................ 6
2 Simple manipulations; numbers and vectors .. 8

2.1 Vectors and assignmento 8
2.2 Vector arithmetic........ 9
2.3 Generating regular sSequUenceso i 9
2.4 Logical vectors e 10
2.5 Missing values.ooun et 11
2.6 Character vectors.ouuuttiini i 11
2.7 Index vectors; selecting and modifying subsets of a data set 12
2.8 Other types of objectso 13

Objects, their modes and attributes.......... 14
3.1 Intrinsic attributes: mode and length 14
3.2 Changing the length of an object 15
3.3 Getting and setting attributesol 15
3.4 The class of an object ... 16

Ordered and unordered factors 17
4.1 A specificexample. ... 17
4.2 The function tapply () and ragged arrays...................... 17
4.3 Ordered factors.o e 18

Arrays and matrices 20
Bl ATTAYS -t ettt et 20
5.2 Array indexing. Subsections of an array........................ 20
5.3 Index matriceso e 21

5.4 The array() function.......... ..o, 22

5.4.1 Mixed vector and array arithmetic. The recycling rule..... 22
5.5 The outer product of two arrays.............cccooviiiii ... 23
5.6 Generalized transpose of an array..............coooiiiiii... 24
5.7 Matrix facilities e 24

5.7.1 Matrix multiplication...........o i 24

5.7.2 Linear equations and inversion................... 25

5.7.3 Eigenvalues and eigenvectors................ ... i 25

5.7.4 Singular value decomposition and determinants 25

5.7.5 Least squares fitting and the QR decomposition........... 26
5.8 Forming partitioned matrices, cbind() and rbind() 26
5.9 The concatenation function, c(), with arrays 27
5.10 Frequency tables from factors............... ..., 27

Lists and data frames.......................... 29
0.1 LSt oot 29
6.2 Constructing and modifying lists............ 30

6.2.1 Concatenating lists ..., 30
6.3 Dataframes....... ... 30

6.3.1 Making data frames i 30

6.3.2 attach() and detach(), 31

6.3.3 Working with data frames 31

6.3.4 Attaching arbitrary lists............. L. 32

6.3.5 Managing the search path, 32

Reading data from files........................ 33
7.1 The read.table() functioncoiiiiiiiiians. 33
7.2 The scan() function i 34
7.3 Accessing builtin datasets i 34

7.3.1 Loading data from other R packages...................... 35

7.4 Editing data. ... 35

Probability distributions 36
8.1 R as a set of statistical tables..................... 36
8.2 Examining the distribution of a set of data..................... 37
8.3 One- and two-sample tests. ... 40

Grouping, loops and conditional execution .. 43

9.1 Grouped eXPressionS.t 43
9.2 Control statementst 43
9.2.1 Conditional execution: if statements 43

9.2.2 Repetitive execution: for loops, repeat and while 43

ii

10

11

12

Writing your own functions.................. 45
10.1 Simple examples.oo i 45
10.2 Defining new binary operators................cooiiiiiii... 46
10.3 Named arguments and defaults................ 46
10.4 The “...7 argumentcooiutiiiiii i 47
10.5 Assignments within functions............... ...l 47
10.6 More advanced examples ... 47

10.6.1 Efficiency factors in block designs........................ 47

10.6.2 Dropping all names in a printed array.................... 48

10.6.3 Recursive numerical integration.......................... 49
10,7 SCOPE et et 49
10.8 Customizing the environment................... ..., 51
10.9 Classes, generic functions and object orientation.............. 52

Statistical models in R 55
11.1 Defining statistical models; formulae.......................... 55

1111 Comtrasts. .o .ve ettt e 57
11.2 Linear modelso e 58
11.3 Generic functions for extracting model information............ 58
11.4 Analysis of variance and model comparison 59

11.4.1 ANOVA tables ... 60
11.5 Updating fitted models.........o i, 60
11.6 Generalized linear models i L. 61

11.6.1 Families. ...t e 61

11.6.2 The glm() function....... i 62
11.7 Nonlinear least squares and maximum likelihood models 64

11.7.1 Least sQUAreS.ovi 65

11.7.2 Maximum likelihood.........o il 66
11.8 Some non-standard models 66

Graphical procedures......................... 68
12.1 High-level plotting commands 68

12.1.1 The plot() function 68

12.1.2 Displaying multivariate data...................... 69

12.1.3 Display graphics...... ... 69

12.1.4 Arguments to high-level plotting functions............... 70
12.2 Low-level plotting commands............. ... oL, 71

12.2.1 Mathematical annotation............... L. 72

12.2.2 Hershey vector fonts......... ... 73
12.3 Interacting with graphics.......... il 73
12.4 Using graphics parameters.o, 74

12.4.1 Permanent changes: The par() function................. 74

12.4.2 Temporary changes: Arguments to graphics functions.... 75
12.5 Graphics parameters list......... ... i 75

12.5.1 Graphical elements....... i 76

12.5.2 Axes and tick marks......... i 7

12.5.3 Figure marginsouuiiiiiiiiiiiiiiiee 7

iii

12.5.4 Multiple figure environment 79

12.6 Device drivers.ottt 80
12.6.1 PostScript diagrams for typeset documents............... 81
12.6.2 Multiple graphics devices ..., 81

12.7 Dynamic graphicso 82
13 Packages............coiiiiiiiii 83
13.1 Standard packages. 83
13.2 Contributed packages and CRAN, 83
13.3 NaImeSPaCES . ¢ v vttt ettt e e 84
14 OS facilities 85
14.1 Files and directories...... ..o 85
14.2 Filepaths.o 85
14.3 System commands. ...t 86
14.4 Compression and Archives........... 87
Appendix A A sample session................... 88
Appendix B Invoking R.......................... 92
B.1 Invoking R from the command line............................ 92
B.2 Invoking R under Windows 96
B.3 Invoking Runder OS X i 97
B.4 Scripting with R.....o o 98
Appendix C The command-line editor 100
C.1 Preliminaries ...ttt 100
C.2 Editing actions ... 100
C.3 Command-line editor summary..............ccooeiiieino ... 101
Appendix D Function and variable index 102
Appendix E Concept index 105

Appendix F References......................... 107

iv

Preface

This introduction to R is derived from an original set of notes describing the S and S-
PLUS environments written in 1990-2 by Bill Venables and David M. Smith when at the
University of Adelaide. We have made a number of small changes to reflect differences
between the R and S programs, and expanded some of the material.

We would like to extend warm thanks to Bill Venables (and David Smith) for granting
permission to distribute this modified version of the notes in this way, and for being a
supporter of R from way back.

Comments and corrections are always welcome. Please address email correspondence to
R-core@R-project.org.

Suggestions to the reader

Most R novices will start with the introductory session in Appendix A. This should give
some familiarity with the style of R sessions and more importantly some instant feedback
on what actually happens.

Many users will come to R mainly for its graphical facilities. See Chapter 12 [Graphics],
page 68, which can be read at almost any time and need not wait until all the preceding
sections have been digested.

mailto:R-core@R-project.org

1 Introduction and preliminaries

1.1 The R environment

R is an integrated suite of software facilities for data manipulation, calculation and graphical
display. Among other things it has

e an effective data handling and storage facility,
e a suite of operators for calculations on arrays, in particular matrices,
e a large, coherent, integrated collection of intermediate tools for data analysis,

e graphical facilities for data analysis and display either directly at the computer or on
hardcopy, and

e a well developed, simple and effective programming language (called ‘S’) which includes
conditionals, loops, user defined recursive functions and input and output facilities.
(Indeed most of the system supplied functions are themselves written in the S language.)

The term “environment” is intended to characterize it as a fully planned and coherent
system, rather than an incremental accretion of very specific and inflexible tools, as is
frequently the case with other data analysis software.

R is very much a vehicle for newly developing methods of interactive data analysis. It
has developed rapidly, and has been extended by a large collection of packages. However,
most programs written in R are essentially ephemeral, written for a single piece of data
analysis.

1.2 Related software and documentation

R can be regarded as an implementation of the S language which was developed at Bell
Laboratories by Rick Becker, John Chambers and Allan Wilks, and also forms the basis of
the S-PLUS systems.

The evolution of the S language is characterized by four books by John Chambers and
coauthors. For R, the basic reference is The New S Language: A Programming Environment
for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R.
Wilks. The new features of the 1991 release of S are covered in Statistical Models in S
edited by John M. Chambers and Trevor J. Hastie. The formal methods and classes of
the methods package are based on those described in Programming with Data by John M.
Chambers. See Appendix F [References|, page 107, for precise references.

There are now a number of books which describe how to use R for data analysis and
statistics, and documentation for S/S-PLUS can typically be used with R, keeping the
differences between the S implementations in mind. See Section “What documentation
exists for R?” in The R statistical system FAQ.

1.3 R and statistics

Our introduction to the R environment did not mention statistics, yet many people use
R as a statistics system. We prefer to think of it of an environment within which many
classical and modern statistical techniques have been implemented. A few of these are
built into the base R environment, but many are supplied as packages. There are about 25

Chapter 1: Introduction and preliminaries 3

packages supplied with R (called “standard” and “recommended” packages) and many more
are available through the CRAN family of Internet sites (via https://CRAN.R-project.
org) and elsewhere. More details on packages are given later (see Chapter 13 [Packages],
page 83).

Most classical statistics and much of the latest methodology is available for use with R,
but users may need to be prepared to do a little work to find it.

There is an important difference in philosophy between S (and hence R) and the other
main statistical systems. In S a statistical analysis is normally done as a series of steps,
with intermediate results being stored in objects. Thus whereas SAS and SPSS will give
copious output from a regression or discriminant analysis, R will give minimal output and
store the results in a fit object for subsequent interrogation by further R functions.

1.4 R and the window system

The most convenient way to use R is at a graphics workstation running a windowing system.
This guide is aimed at users who have this facility. In particular we will occasionally refer to
the use of R on an X window system although the vast bulk of what is said applies generally
to any implementation of the R environment.

Most users will find it necessary to interact directly with the operating system on their
computer from time to time. In this guide, we mainly discuss interaction with the operating
system on UNIX machines. If you are running R under Windows or OS X you will need to
make some small adjustments.

Setting up a workstation to take full advantage of the customizable features of R is a
straightforward if somewhat tedious procedure, and will not be considered further here.
Users in difficulty should seek local expert help.

1.5 Using R interactively

When you use the R program it issues a prompt when it expects input commands. The
default prompt is ‘>’, which on UNIX might be the same as the shell prompt, and so it
may appear that nothing is happening. However, as we shall see, it is easy to change to a
different R prompt if you wish. We will assume that the UNIX shell prompt is ‘$’.
In using R under UNIX the suggested procedure for the first occasion is as follows:
1. Create a separate sub-directory, say work, to hold data files on which you will use R for
this problem. This will be the working directory whenever you use R for this particular
problem.

$ mkdir work
$ cd work

2. Start the R program with the command
$ R
3. At this point R commands may be issued (see later).
4. To quit the R program the command is
> q0
At this point you will be asked whether you want to save the data from your R session.
On some systems this will bring up a dialog box, and on others you will receive a text

https://CRAN.R-project.org
https://CRAN.R-project.org

Chapter 1: Introduction and preliminaries 4

prompt to which you can respond yes, no or cancel (a single letter abbreviation will
do) to save the data before quitting, quit without saving, or return to the R session.
Data which is saved will be available in future R sessions.
Further R sessions are simple.
1. Make work the working directory and start the program as before:

$ cd work
$ R

2. Use the R program, terminating with the q() command at the end of the session.
To use R under Windows the procedure to follow is basically the same. Create a folder

as the working directory, and set that in the Start In field in your R shortcut. Then launch
R by double clicking on the icon.

1.6 An introductory session

Readers wishing to get a feel for R at a computer before proceeding are strongly advised to
work through the introductory session given in Appendix A [A sample session], page 88.

1.7 Getting help with functions and features
R has an inbuilt help facility similar to the man facility of UNIX. To get more information
on any specific named function, for example solve, the command is
> help(solve)
An alternative is
> 7solve

For a feature specified by special characters, the argument must be enclosed in double
or single quotes, making it a “character string”: This is also necessary for a few words with
syntactic meaning including if, for and function.

> help(" [[n)

Either form of quote mark may be used to escape the other, as in the string "It’s
important". Our convention is to use double quote marks for preference.

On most R installations help is available in HTML format by running

> help.start()

which will launch a Web browser that allows the help pages to be browsed with hyperlinks.
On UNIX, subsequent help requests are sent to the HTML-based help system. The ‘Search
Engine and Keywords’ link in the page loaded by help.start() is particularly useful as
it is contains a high-level concept list which searches though available functions. It can be
a great way to get your bearings quickly and to understand the breadth of what R has to
offer.

The help.search command (alternatively 77) allows searching for help in various ways.
For example,

> ?7solve

Try 7help.search for details and more examples.

Chapter 1: Introduction and preliminaries 5

The examples on a help topic can normally be run by
> example(topic)
Windows versions of R have other optional help systems: use
> 7help
for further details.

1.8 R commands, case sensitivity, etc.

Technically R is an expression language with a very simple syntax. It is case sensitive as
are most UNIX based packages, so A and a are different symbols and would refer to different
variables. The set of symbols which can be used in R names depends on the operating system
and country within which R is being run (technically on the locale in use). Normally all
alphanumeric symbols are allowed' (and in some countries this includes accented letters)
plus ‘.” and ‘_’, with the restriction that a name must start with ‘.” or a letter, and if it
starts with ‘.’ the second character must not be a digit. Names are effectively unlimited in

length.

Elementary commands consist of either expressions or assignments. If an expression is
given as a command, it is evaluated, printed (unless specifically made invisible), and the
value is lost. An assignment also evaluates an expression and passes the value to a variable
but the result is not automatically printed.

¢

Commands are separated either by a semi-colon (‘;’), or by a newline. Elementary
commands can be grouped together into one compound expression by braces (‘{’ and ‘}’).
Comments can be put almost? anywhere, starting with a hashmark (‘#’), everything to the
end of the line is a comment.

If a command is not complete at the end of a line, R will give a different prompt, by
default

+

on second and subsequent lines and continue to read input until the command is syntactically
complete. This prompt may be changed by the user. We will generally omit the continuation
prompt and indicate continuation by simple indenting.

Command lines entered at the console are limited® to about 4095 bytes (not characters).

1.9 Recall and correction of previous commands

Under many versions of UNIX and on Windows, R provides a mechanism for recalling and
re-executing previous commands. The vertical arrow keys on the keyboard can be used to
scroll forward and backward through a command history. Once a command is located in
this way, the cursor can be moved within the command using the horizontal arrow keys,
and characters can be removed with the DEL key or added with the other keys. More details
are provided later: see Appendix C [The command-line editor], page 100.

1 For portable R code (including that to be used in R packages) only A-Za—z0-9 should be used.

2 ot inside strings, nor within the argument list of a function definition

3 some of the consoles will not allow you to enter more, and amongst those which do some will silently
discard the excess and some will use it as the start of the next line.

Chapter 1: Introduction and preliminaries 6

The recall and editing capabilities under UNIX are highly customizable. You can find
out how to do this by reading the manual entry for the readline library.

Alternatively, the Emacs text editor provides more general support mechanisms (via
ESS, Emacs Speaks Statistics) for working interactively with R. See Section “R and Emacs”
in The R statistical system FAQ.

1.10 Executing commands from or diverting output to a file
If commands? are stored in an external file, say commands.R in the working directory work,
they may be executed at any time in an R session with the command

> source("commands.R")

For Windows Source is also available on the File menu. The function sink,

> sink("record.lis")
will divert all subsequent output from the console to an external file, record.lis. The
command

> sink()

restores it to the console once again.

1.11 Data permanency and removing objects

The entities that R creates and manipulates are known as objects. These may be variables,
arrays of numbers, character strings, functions, or more general structures built from such
components.

During an R session, objects are created and stored by name (we discuss this process in
the next session). The R command

> objects()

(alternatively, 1s()) can be used to display the names of (most of) the objects which are
currently stored within R. The collection of objects currently stored is called the workspace.

To remove objects the function rm is available:
> rm(x, y, z, ink, junk, temp, foo, bar)
All objects created during an R session can be stored permanently in a file for use in
future R sessions. At the end of each R session you are given the opportunity to save all
the currently available objects. If you indicate that you want to do this, the objects are

written to a file called .RData® in the current directory, and the command lines used in the
session are saved to a file called .Rhistory.

When R is started at later time from the same directory it reloads the workspace from
this file. At the same time the associated commands history is reloaded.

It is recommended that you should use separate working directories for analyses con-
ducted with R. It is quite common for objects with names x and y to be created during an
analysis. Names like this are often meaningful in the context of a single analysis, but it can

4 of unlimited length.

5 The leading “dot” in this file name makes it invisible in normal file listings in UNIX, and in default GUI
file listings on OS X and Windows.

be quite hard to decide what they might be when the several analyses have been conducted
in the same directory.

2 Simple manipulations; numbers and vectors

2.1 Vectors and assignment

R operates on named data structures. The simplest such structure is the numeric vector,
which is a single entity consisting of an ordered collection of numbers. To set up a vector
named x, say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R
command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

This is an assignment statement using the function c¢() which in this context can take
an arbitrary number of vector arguments and whose value is a vector got by concatenating
its arguments end to end.?

A number occurring by itself in an expression is taken as a vector of length one.

Notice that the assignment operator (‘<-’), which consists of the two characters ‘<’ (“less
than”) and ‘-’ (“minus”) occurring strictly side-by-side and it ‘points’ to the object receiving
the value of the expression. In most contexts the ‘=" operator can be used as an alternative.

Assignment can also be made using the function assign(). An equivalent way of making
the same assignment as above is with:

> assign("x", c(10.4, 5.6, 3.1, 6.4, 21.7))
The usual operator, <-, can be thought of as a syntactic short-cut to this.

Assignments can also be made in the other direction, using the obvious change in the
assignment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) > x

If an expression is used as a complete command, the value is printed and lost®. So now
if we were to use the command

> 1/x

the reciprocals of the five values would be printed at the terminal (and the value of x, of
course, unchanged).

The further assignment
>y <= c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x with a zero in the
middle place.

1 With other than vector types of argument, such as 1ist mode arguments, the action of c() is rather
different. See Section 6.2.1 [Concatenating lists], page 30.

2 Actually, it is still available as .Last.value before any other statements are executed.

Chapter 2: Simple manipulations; numbers and vectors 9

2.2 Vector arithmetic

Vectors can be used in arithmetic expressions, in which case the operations are performed
element by element. Vectors occurring in the same expression need not all be of the same
length. If they are not, the value of the expression is a vector with the same length as the
longest vector which occurs in the expression. Shorter vectors in the expression are recycled
as often as need be (perhaps fractionally) until they match the length of the longest vector.
In particular a constant is simply repeated. So with the above assignments the command

> v <-2xx +y + 1

generates a new vector v of length 11 constructed by adding together, element by element,
2xx repeated 2.2 times, y repeated just once, and 1 repeated 11 times.

The elementary arithmetic operators are the usual +, -, *, / and ~ for raising to a power.
In addition all of the common arithmetic functions are available. log, exp, sin, cos, tan,
sqrt, and so on, all have their usual meaning. max and min select the largest and smallest
elements of a vector respectively. range is a function whose value is a vector of length two,
namely c(min(x), max(x)). length(x) is the number of elements in x, sum(x) gives the
total of the elements in x, and prod(x) their product.

Two statistical functions are mean(x) which calculates the sample mean, which is the
same as sum(x)/length(x), and var(x) which gives
sum((x-mean(x))~2)/(length(x)-1)
or sample variance. If the argument to var () is an n-by-p matrix the value is a p-by-p sample
covariance matrix got by regarding the rows as independent p-variate sample vectors.

sort (x) returns a vector of the same size as x with the elements arranged in increasing
order; however there are other more flexible sorting facilities available (see order() or
sort.list () which produce a permutation to do the sorting).

Note that max and min select the largest and smallest values in their arguments, even
if they are given several vectors. The parallel maximum and minimum functions pmax
and pmin return a vector (of length equal to their longest argument) that contains in each
element the largest (smallest) element in that position in any of the input vectors.

For most purposes the user will not be concerned if the “numbers” in a numeric vector
are integers, reals or even complex. Internally calculations are done as double precision real
numbers, or double precision complex numbers if the input data are complex.

To work with complex numbers, supply an explicit complex part. Thus
sqrt (-17)
will give NaN and a warning, but
sqrt (-17+01)

will do the computations as complex numbers.

2.3 Generating regular sequences

R has a number of facilities for generating commonly used sequences of numbers. For
example 1:30 is the vector c(1, 2, ..., 29, 30). The colon operator has high priority
within an expression, so, for example 2*1:15 is the vector c(2, 4, ..., 28, 30). Putn
<- 10 and compare the sequences 1:n-1 and 1:(n-1).

Chapter 2: Simple manipulations; numbers and vectors 10

The construction 30:1 may be used to generate a sequence backwards.

The function seq() is a more general facility for generating sequences. It has five
arguments, only some of which may be specified in any one call. The first two arguments, if
given, specify the beginning and end of the sequence, and if these are the only two arguments
given the result is the same as the colon operator. That is seq(2,10) is the same vector as
2:10.

Arguments to seq(), and to many other R functions, can also be given in named form,
in which case the order in which they appear is irrelevant. The first two arguments may be
named from=value and to=value; thus seq(1,30), seq(from=1, to=30) and seq(to=30,
from=1) are all the same as 1:30. The next two arguments to seq() may be named
by=value and length=value, which specify a step size and a length for the sequence re-
spectively. If neither of these is given, the default by=1 is assumed.

For example

> seq(-5, 5, by=.2) -> s3

generates in s3 the vector c(-5.0, -4.8, -4.6, ..., 4.6, 4.8, 5.0). Similarly
> s4 <- seq(length=51, from=-5, by=.2)

generates the same vector in s4.

The fifth argument may be named along=vector, which is normally used as the only
argument to create the sequence 1, 2, ..., length(vector), or the empty sequence if the
vector is empty (as it can be).

A related function is rep() which can be used for replicating an object in various com-
plicated ways. The simplest form is

> sb <- rep(x, times=5)
which will put five copies of x end-to-end in s5. Another useful version is
> s6 <- rep(x, each=b)

which repeats each element of x five times before moving on to the next.

2.4 Logical vectors

As well as numerical vectors, R allows manipulation of logical quantities. The elements of
a logical vector can have the values TRUE, FALSE, and NA (for “not available”, see below).
The first two are often abbreviated as T and F, respectively. Note however that T and F are
just variables which are set to TRUE and FALSE by default, but are not reserved words and
hence can be overwritten by the user. Hence, you should always use TRUE and FALSE.

Logical vectors are generated by conditions. For example
> temp <- x > 13

sets temp as a vector of the same length as x with values FALSE corresponding to elements
of x where the condition is not met and TRUE where it is.

The logical operators are <, <=, >, >= == for exact equality and !'= for inequality. In
addition if c1 and c2 are logical expressions, then c1 & c2 is their intersection (“and”),
cl | ¢2 is their union (“or”), and !c1 is the negation of c1.

Logical vectors may be used in ordinary arithmetic, in which case they are coerced into
numeric vectors, FALSE becoming 0 and TRUE becoming 1. However there are situations

Chapter 2: Simple manipulations; numbers and vectors 11

where logical vectors and their coerced numeric counterparts are not equivalent, for example
see the next subsection.

2.5 Missing values

In some cases the components of a vector may not be completely known. When an element
or value is “not available” or a “missing value” in the statistical sense, a place within a
vector may be reserved for it by assigning it the special value NA. In general any operation
on an NA becomes an NA. The motivation for this rule is simply that if the specification of
an operation is incomplete, the result cannot be known and hence is not available.

The function is.na(x) gives a logical vector of the same size as x with value TRUE if
and only if the corresponding element in x is NA.

>z <- ¢(1:3,NA); ind <- is.na(z)

Notice that the logical expression x == NA is quite different from is.na(x) since NA is not
really a value but a marker for a quantity that is not available. Thus x == NA is a vector of
the same length as x all of whose values are NA as the logical expression itself is incomplete
and hence undecidable.

Note that there is a second kind of “missing” values which are produced by numerical
computation, the so-called Not a Number, NaN, values. Examples are

> 0/0
or
> Inf - Inf
which both give NaN since the result cannot be defined sensibly.

In summary, is.na(xx) is TRUE both for NA and NaN values. To differentiate these,
is.nan(xx) is only TRUE for NaNs.

Missing values are sometimes printed as <NA> when character vectors are printed without
quotes.

2.6 Character vectors

Character quantities and character vectors are used frequently in R, for example as plot
labels. Where needed they are denoted by a sequence of characters delimited by the double
quote character, e.g., "x-values", "New iteration results".

Character strings are entered using either matching double (") or single (?) quotes, but
are printed using double quotes (or sometimes without quotes). They use C-style escape
sequences, using \ as the escape character, so \\ is entered and printed as \\, and inside
double quotes " is entered as \". Other useful escape sequences are \n, newline, \t, tab
and \b, backspace—see 7Quotes for a full list.

Character vectors may be concatenated into a vector by the c() function; examples of
their use will emerge frequently.

The paste() function takes an arbitrary number of arguments and concatenates them
one by one into character strings. Any numbers given among the arguments are coerced
into character strings in the evident way, that is, in the same way they would be if they were
printed. The arguments are by default separated in the result by a single blank character,

Chapter 2: Simple manipulations; numbers and vectors 12

but this can be changed by the named argument, sep=string, which changes it to string,
possibly empty.
For example
> labs <- paste(c("X","Y"), 1:10, sep="")
makes labs into the character vector
C("X:I.“, II'Y2||’ IIX3"’ ||Y4ll’ IIXSII, "Y6||, llX?II, IIY8"’ lng", ||Y10’l)
Note particularly that recycling of short lists takes place here too; thus c("X", "Y") is
repeated 5 times to match the sequence 1:10.3

2.7 Index vectors; selecting and modifying subsets of a data
set

Subsets of the elements of a vector may be selected by appending to the name of the vector

an indez vector in square brackets. More generally any expression that evaluates to a vector

may have subsets of its elements similarly selected by appending an index vector in square
brackets immediately after the expression.

Such index vectors can be any of four distinct types.

1. A logical vector. In this case the index vector is recycled to the same length as the
vector from which elements are to be selected. Values corresponding to TRUE in the
index vector are selected and those corresponding to FALSE are omitted. For example

>y <= x[!is.na(x)]
creates (or re-creates) an object y which will contain the non-missing values of x, in
the same order. Note that if x has missing values, y will be shorter than x. Also

> (x+1)[('is.na(x)) & x>0] -> z
creates an object z and places in it the values of the vector x+1 for which the corre-
sponding value in x was both non-missing and positive.

2. A vector of positive integral quantities. In this case the values in the index vector must
lie in the set {1, 2, ..., length(x)}. The corresponding elements of the vector are
selected and concatenated, in that order, in the result. The index vector can be of any
length and the result is of the same length as the index vector. For example x[6] is
the sixth component of x and

> x[1:10]
selects the first 10 elements of x (assuming length(x) is not less than 10). Also

> c("x","y") [rep(c(1,2,2,1), times=4)]
(an admittedly unlikely thing to do) produces a character vector of length 16 consisting
of "x", "y", "y", "x" repeated four times.

3. A vector of negative integral quantities. Such an index vector specifies the values to
be excluded rather than included. Thus

>y <= x[-(1:5)]

gives y all but the first five elements of x.

3 paste(..., collapse=ss) joins the arguments into a single character string putting ss in between, e.g.,
ss <= "|". There are more tools for character manipulation, see the help for sub and substring.

Chapter 2: Simple manipulations; numbers and vectors 13

4. A vector of character strings. This possibility only applies where an object has a names
attribute to identify its components. In this case a sub-vector of the names vector may
be used in the same way as the positive integral labels in item 2 further above.

> fruit <- c(5, 10, 1, 20)
> names (fruit) <- c("orange", "banana", "apple", "peach")
> lunch <- fruit[c("apple","orange")]

The advantage is that alphanumeric names are often easier to remember than numeric
indices. This option is particularly useful in connection with data frames, as we shall
see later.

An indexed expression can also appear on the receiving end of an assignment, in which
case the assignment operation is performed only on those elements of the vector. The
expression must be of the form vector[index_vector] as having an arbitrary expression
in place of the vector name does not make much sense here.

For example
> x[is.na(x)] <- 0
replaces any missing values in x by zeros and
> yly < 0] <= -y[y < 0]
has the same effect as
> y <- abs(y)

2.8 Other types of objects

Vectors are the most important type of object in R, but there are several others which we
will meet more formally in later sections.

e matrices or more generally arrays are multi-dimensional generalizations of vectors. In
fact, they are vectors that can be indexed by two or more indices and will be printed
in special ways. See Chapter 5 [Arrays and matrices], page 20.

e factors provide compact ways to handle categorical data. See Chapter 4 [Factors],
page 17.

e lists are a general form of vector in which the various elements need not be of the same
type, and are often themselves vectors or lists. Lists provide a convenient way to return
the results of a statistical computation. See Section 6.1 [Lists|, page 29.

e data frames are matrix-like structures, in which the columns can be of different types.
Think of data frames as ‘data matrices’ with one row per observational unit but with
(possibly) both numerical and categorical variables. Many experiments are best de-
scribed by data frames: the treatments are categorical but the response is numeric.
See Section 6.3 [Data frames|, page 30.

e functions are themselves objects in R which can be stored in the project’s workspace.
This provides a simple and convenient way to extend R. See Chapter 10 [Writing your
own functions|, page 45.

14

3 Objects, their modes and attributes

3.1 Intrinsic attributes: mode and length

The entities R operates on are technically known as objects. Examples are vectors of numeric
(real) or complex values, vectors of logical values and vectors of character strings. These
are known as “atomic” structures since their components are all of the same type, or mode,
namely numerict, complez, logical, character and raw.

Vectors must have their values all of the same mode. Thus any given vector must be
unambiguously either logical, numeric, complex, character or raw. (The only apparent
exception to this rule is the special “value” listed as NA for quantities not available, but in
fact there are several types of NA). Note that a vector can be empty and still have a mode.
For example the empty character string vector is listed as character(0) and the empty
numeric vector as numeric(0).

R also operates on objects called lists, which are of mode list. These are ordered sequences
of objects which individually can be of any mode. lists are known as “recursive” rather
than atomic structures since their components can themselves be lists in their own right.

The other recursive structures are those of mode function and expression. Functions are
the objects that form part of the R system along with similar user written functions, which
we discuss in some detail later. Expressions as objects form an advanced part of R which
will not be discussed in this guide, except indirectly when we discuss formulae used with
modeling in R.

By the mode of an object we mean the basic type of its fundamental constituents. This
is a special case of a “property” of an object. Another property of every object is its length.
The functions mode (object) and length(object) can be used to find out the mode and
length of any defined structure?.

Further properties of an object are usually provided by attributes(object), see
Section 3.3 [Getting and setting attributes], page 15. Because of this, mode and length are
also called “intrinsic attributes” of an object.

For example, if z is a complex vector of length 100, then in an expression mode (z) is the
character string "complex" and length(z) is 100.

R caters for changes of mode almost anywhere it could be considered sensible to do so,
(and a few where it might not be). For example with

>z <-0:9
we could put
> digits <- as.character(z)

after which digits is the character vector c("0", "1", "2", ..., "9"). A further coer-
cton, or change of mode, reconstructs the numerical vector again:

> d <- as.integer(digits)

L' numeric mode is actually an amalgam of two distinct modes, namely integer and double precision, as
explained in the manual.

2 Note however that length(object) does not always contain intrinsic useful information, e.g., when
object is a function.

Chapter 3: Objects, their modes and attributes 15

Now d and z are the same.®> There is a large collection of functions of the form
as.something() for either coercion from one mode to another, or for investing an object
with some other attribute it may not already possess. The reader should consult the
different help files to become familiar with them.

3.2 Changing the length of an object

An “empty” object may still have a mode. For example
> e <- numeric()

makes e an empty vector structure of mode numeric. Similarly character() is a empty
character vector, and so on. Once an object of any size has been created, new components
may be added to it simply by giving it an index value outside its previous range. Thus

> e[3] <- 17

now makes e a vector of length 3, (the first two components of which are at this point both
NA). This applies to any structure at all, provided the mode of the additional component(s)
agrees with the mode of the object in the first place.

This automatic adjustment of lengths of an object is used often, for example in the
scan() function for input. (see Section 7.2 [The scan() function], page 34.)

Conversely to truncate the size of an object requires only an assignment to do so. Hence
if alpha is an object of length 10, then

> alpha <- alphal[2 * 1:5]

makes it an object of length 5 consisting of just the former components with even index.
(The old indices are not retained, of course.) We can then retain just the first three values
by

> length(alpha) <- 3

and vectors can be extended (by missing values) in the same way.

3.3 Getting and setting attributes

The function attributes(object) returns a list of all the non-intrinsic attributes currently
defined for that object. The function attr(object, name) can be used to select a specific
attribute. These functions are rarely used, except in rather special circumstances when
some new attribute is being created for some particular purpose, for example to associate
a creation date or an operator with an R object. The concept, however, is very important.

Some care should be exercised when assigning or deleting attributes since they are an
integral part of the object system used in R.

When it is used on the left hand side of an assignment it can be used either to associate
a new attribute with object or to change an existing one. For example

> attr(z, "dim") <- c(10,10)

allows R to treat z as if it were a 10-by-10 matrix.

3 In general, coercion from numeric to character and back again will not be exactly reversible, because of
roundoff errors in the character representation.

Chapter 3: Objects, their modes and attributes 16

3.4 The class of an object

All objects in R have a class, reported by the function class. For simple vectors this is
just the mode, for example "numeric", "logical", "character" or "list", but "matrix",
"array", "factor" and "data.frame" are other possible values.

A special attribute known as the class of the object is used to allow for an object-oriented
style! of programming in R. For example if an object has class "data.frame", it will be
printed in a certain way, the plot() function will display it graphically in a certain way,
and other so-called generic functions such as summary () will react to it as an argument in
a way sensitive to its class.

To remove temporarily the effects of class, use the function unclass(). For example if
winter has the class "data.frame" then

> winter
will print it in data frame form, which is rather like a matrix, whereas
> unclass(winter)

will print it as an ordinary list. Only in rather special situations do you need to use this
facility, but one is when you are learning to come to terms with the idea of class and generic
functions.

Generic functions and classes will be discussed further in Section 10.9 [Object orienta-
tion], page 52, but only briefly.

4 A different style using ‘formal’ or ‘S4’ classes is provided in package methods.

17

4 Ordered and unordered factors

A factor is a vector object used to specify a discrete classification (grouping) of the compo-
nents of other vectors of the same length. R provides both ordered and unordered factors.
While the “real” application of factors is with model formulae (see Section 11.1.1 [Con-
trasts|, page 57), we here look at a specific example.

4.1 A specific example

Suppose, for example, we have a sample of 30 tax accountants from all the states and
territories of Australia’ and their individual state of origin is specified by a character vector
of state mnemonics as

> State <- C(Iltasll R "Sa" s |Iq1dll . IInst . IInsw" s I|ntll s "Wa" s "Wa" s
llqldll, "ViC", IIHSWII’ "ViC", IIqldll’ IIqldll, "S&", "taS",
“Sa." s ||nt n s “Wa" B IIViCII s IIqldll s "IISW" , "nSW" , Ilwall ,
“Sa", ||actll, “IISW", “ViC", “ViC", “a.Ct")

Notice that in the case of a character vector, “sorted” means sorted in alphabetical order.
A factor is similarly created using the factor () function:

> statef <- factor(state)
The print () function handles factors slightly differently from other objects:

> statef

[1] tas sa qld nsw nsw nt wa wa qld vic nsw vic gld qld sa
[16] tas sa nt wa vic qld nsw nsw wa sa act nsw vic vic act
Levels: act nsw nt gqld sa tas vic wa

To find out the levels of a factor the function levels() can be used.

> levels(statef)
[1] IIaCt n Ilnswll llntll llqldll “Sa" |Itasll "ViC" llwall

4.2 The function tapply() and ragged arrays
To continue the previous example, suppose we have the incomes of the same tax accountants
in another vector (in suitably large units of money)

> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56,
61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48, 52, 46,
59, 46, 58, 43)
To calculate the sample mean income for each state we can now use the special function
tapply O:
> incmeans <- tapply(incomes, statef, mean)
giving a means vector with the components labelled by the levels

act nsw nt qld sa tas vic wa
44.500 57.333 55.500 53.600 55.000 60.500 56.000 52.250

! Readers should note that there are eight states and territories in Australia, namely the Australian Capital
Territory, New South Wales, the Northern Territory, Queensland, South Australia, Tasmania, Victoria
and Western Australia.

Chapter 4: Ordered and unordered factors 18

The function tapply() is used to apply a function, here mean(), to each group of com-
ponents of the first argument, here incomes, defined by the levels of the second component,
here statef?, as if they were separate vector structures. The result is a structure of the
same length as the levels attribute of the factor containing the results. The reader should
consult the help document for more details.

Suppose further we needed to calculate the standard errors of the state income means.
To do this we need to write an R function to calculate the standard error for any given
vector. Since there is an builtin function var() to calculate the sample variance, such a
function is a very simple one liner, specified by the assignment:

> stderr <- function(x) sqrt(var(x)/length(x))

(Writing functions will be considered later in Chapter 10 [Writing your own functions],
page 45, and in this case was unnecessary as R also has a builtin function sd().) After this
assignment, the standard errors are calculated by

> incster <- tapply(incomes, statef, stderr)
and the values calculated are then

> incster
act nsw nt qld sa tas vic wa
1.5 4.3102 4.5 4.1061 2.7386 0.5 5.244 2.6575

As an exercise you may care to find the usual 95% confidence limits for the state mean
incomes. To do this you could use tapply() once more with the length() function to find
the sample sizes, and the qt () function to find the percentage points of the appropriate
t-distributions. (You could also investigate R’s facilities for ¢-tests.)

The function tapply () can also be used to handle more complicated indexing of a vector
by multiple categories. For example, we might wish to split the tax accountants by both
state and sex. However in this simple instance (just one factor) what happens can be
thought of as follows. The values in the vector are collected into groups corresponding
to the distinct entries in the factor. The function is then applied to each of these groups
individually. The value is a vector of function results, labelled by the levels attribute of
the factor.

The combination of a vector and a labelling factor is an example of what is sometimes
called a ragged array, since the subclass sizes are possibly irregular. When the subclass sizes
are all the same the indexing may be done implicitly and much more efficiently, as we see
in the next section.

4.3 Ordered factors

The levels of factors are stored in alphabetical order, or in the order they were specified to
factor if they were specified explicitly.

Sometimes the levels will have a natural ordering that we want to record and want our
statistical analysis to make use of. The ordered() function creates such ordered factors
but is otherwise identical to factor. For most purposes the only difference between ordered

2 Note that tapply() also works in this case when its second argument is not a factor, e.g.,
‘tapply(incomes, state)’, and this is true for quite a few other functions, since arguments are coerced
to factors when necessary (using as.factor()).

19

and unordered factors is that the former are printed showing the ordering of the levels, but
the contrasts generated for them in fitting linear models are different.

20

5 Arrays and matrices

5.1 Arrays

An array can be considered as a multiply subscripted collection of data entries, for example
numeric. R allows simple facilities for creating and handling arrays, and in particular the
special case of matrices.

A dimension vector is a vector of non-negative integers. If its length is k£ then the array
is k-dimensional, e.g. a matrix is a 2-dimensional array. The dimensions are indexed from
one up to the values given in the dimension vector.

A vector can be used by R as an array only if it has a dimension vector as its dim
attribute. Suppose, for example, z is a vector of 1500 elements. The assignment

> dim(z) <- ¢(3,5,100)
gives it the dim attribute that allows it to be treated as a 3 by 5 by 100 array.

Other functions such asmatrix () and array () are available for simpler and more natural
looking assignments, as we shall see in Section 5.4 [The array() function], page 22.

The values in the data vector give the values in the array in the same order as they
would occur in FORTRAN, that is “column major order,” with the first subscript moving
fastest and the last subscript slowest.

For example if the dimension vector for an array, say a, is c¢(3,4,2) then there are
3x4x2 = 24 entries in a and the data vector holds them in the order a[1,1,1], al[2,1,1],

., al2,4,2], al3,4,2].

Arrays can be one-dimensional: such arrays are usually treated in the same way as
vectors (including when printing), but the exceptions can cause confusion.

5.2 Array indexing. Subsections of an array

Individual elements of an array may be referenced by giving the name of the array followed
by the subscripts in square brackets, separated by commas.

More generally, subsections of an array may be specified by giving a sequence of index
vectors in place of subscripts; however if any index position is given an empty index vector,
then the full range of that subscript is taken.

Continuing the previous example, a[2,,] is a 4 x 2 array with dimension vector c(4,2)
and data vector containing the values
c(al2,1,1], al2,2,1], al2,3,1], al2,4,1],
al2,1,2], al2,2,2], al2,3,2], al2,4,2])
in that order. a[,,] stands for the entire array, which is the same as omitting the subscripts
entirely and using a alone.

For any array, say Z, the dimension vector may be referenced explicitly as dim(Z) (on
either side of an assignment).

Also, if an array name is given with just one subscript or index vector, then the cor-
responding values of the data vector only are used; in this case the dimension vector is
ignored. This is not the case, however, if the single index is not a vector but itself an array,
as we next discuss.

Chapter 5: Arrays and matrices 21

5.3 Index matrices

As well as an index vector in any subscript position, a matrix may be used with a single
index matriz in order either to assign a vector of quantities to an irregular collection of
elements in the array, or to extract an irregular collection as a vector.

A matrix example makes the process clear. In the case of a doubly indexed array, an
index matrix may be given consisting of two columns and as many rows as desired. The
entries in the index matrix are the row and column indices for the doubly indexed array.
Suppose for example we have a 4 by 5 array X and we wish to do the following:

e Extract elements X[1,3], X[2,2] and X[3,1] as a vector structure, and
e Replace these entries in the array X by zeroes.

In this case we need a 3 by 2 subscript array, as in the following example.
> x <- array(1:20, dim=c(4,5)) # Generate a 4 by 5 array.
> X
[,11 [,21 [,31 [,4]1 [,5]

[1,] 1 5 9 13 17

[2,] 2 6 10 14 18

(3,] 3 7 11 15 19

[4,] 4 8 12 16 20

> i <- array(c(1:3,3:1), dim=c(3,2))

> i # iis a 3 by 2 index array.
[,11 [,2]

[1,] 1 3

[2,] 2 2

[3,] 3 1

> x[i] # Extract those elements

[1] 9 6 3

> x[i] <- 0 # Replace those elements by zeros.
> X

(,11 [,21 [,3] [,4] [,8]
[1,] 1 5 0 13 17

[2,] 2 0 10 14 18
[3,] 0 7 11 15 19
[4,] 4 8 12 16 20
>

Negative indices are not allowed in index matrices. NA and zero values are allowed: rows in

the index matrix containing a zero are ignored, and rows containing an NA produce an NA
in the result.

As a less trivial example, suppose we wish to generate an (unreduced) design matrix
for a block design defined by factors blocks (b levels) and varieties (v levels). Further
suppose there are n plots in the experiment. We could proceed as follows:

> Xb <- matrix(0, n, b)

> Xv <- matrix(0, n, v)

> ib <- cbind(1:n, blocks)

> iv <- cbind(1:n, varieties)

Chapter 5: Arrays and matrices 22

> Xb[ib] <- 1
> Xvliv] <- 1
> X <- cbind(Xb, Xv)
To construct the incidence matrix, N say, we could use
> N <- crossprod(Xb, Xv)
However a simpler direct way of producing this matrix is to use table():
> N <- table(blocks, varieties)

Index matrices must be numerical: any other form of matrix (e.g. a logical or character
matrix) supplied as a matrix is treated as an indexing vector.

5.4 The array() function
As well as giving a vector structure a dim attribute, arrays can be constructed from vectors
by the array function, which has the form

> Z <- array(data_vector, dim_vector)

For example, if the vector h contains 24 or fewer, numbers then the command

> Z <- array(h, dim=c(3,4,2))
would use h to set up 3 by 4 by 2 array in Z. If the size of h is exactly 24 the result is the
same as

> Z <- h ; dim(Z) <- c(3,4,2)

However if h is shorter than 24, its values are recycled from the beginning again to make
it up to size 24 (see Section 5.4.1 [The recycling rule], page 22) but dim(h) <- ¢(3,4,2)
would signal an error about mismatching length. As an extreme but common example

> Z <- array(0, c(3,4,2))
makes Z an array of all zeros.
At this point dim(Z) stands for the dimension vector c(3,4,2), and Z[1:24] stands

for the data vector as it was in h, and Z[] with an empty subscript or Z with no subscript
stands for the entire array as an array.

Arrays may be used in arithmetic expressions and the result is an array formed by
element-by-element operations on the data vector. The dim attributes of operands generally
need to be the same, and this becomes the dimension vector of the result. So if A, B and C
are all similar arrays, then

>D <- 2%¥AxB + C + 1

makes D a similar array with its data vector being the result of the given element-by-element
operations. However the precise rule concerning mixed array and vector calculations has to
be considered a little more carefully.

5.4.1 Mixed vector and array arithmetic. The recycling rule

The precise rule affecting element by element mixed calculations with vectors and arrays is
somewhat quirky and hard to find in the references. From experience we have found the
following to be a reliable guide.

e The expression is scanned from left to right.

Chapter 5: Arrays and matrices 23

e Any short vector operands are extended by recycling their values until they match the
size of any other operands.

e As long as short vectors and arrays only are encountered, the arrays must all have the
same dim attribute or an error results.

e Any vector operand longer than a matrix or array operand generates an error.

e If array structures are present and no error or coercion to vector has been precipitated,
the result is an array structure with the common dim attribute of its array operands.

5.5 The outer product of two arrays

An important operation on arrays is the outer product. If a and b are two numeric arrays,
their outer product is an array whose dimension vector is obtained by concatenating their
two dimension vectors (order is important), and whose data vector is got by forming all
possible products of elements of the data vector of a with those of b. The outer product is
formed by the special operator %o%:

> ab <- a %o0% b
An alternative is
> ab <- outer(a, b, "x")

The multiplication function can be replaced by an arbitrary function of two variables.
For example if we wished to evaluate the function f(z;y) = cos(y)/(1 + x*) over a regular
grid of values with z- and y-coordinates defined by the R vectors x and y respectively, we
could proceed as follows:

> f <- function(x, y) cos(y)/(1 + x72)
> z <- outer(x, y, f)

In particular the outer product of two ordinary vectors is a doubly subscripted array
(that is a matrix, of rank at most 1). Notice that the outer product operator is of course
non-commutative. Defining your own R functions will be considered further in Chapter 10
[Writing your own functions|, page 45.

An example: Determinants of 2 by 2 single-digit matrices

As an artificial but cute example, consider the determinants of 2 by 2 matrices [a, b; ¢, d]
where each entry is a non-negative integer in the range 0,1,...,9, that is a digit.

The problem is to find the determinants, ad — be, of all possible matrices of this form
and represent the frequency with which each value occurs as a high density plot. This
amounts to finding the probability distribution of the determinant if each digit is chosen
independently and uniformly at random.

A neat way of doing this uses the outer () function twice:

> d <- outer(0:9, 0:9)

> fr <- table(outer(d, 4, "-"))

> plot(as.numeric(names(fr)), fr, type="h",
xlab="Determinant", ylab="Frequency")

Notice the coercion of the names attribute of the frequency table to numeric in order to
recover the range of the determinant values. The “obvious” way of doing this problem with

Chapter 5: Arrays and matrices 24

for loops, to be discussed in Chapter 9 [Loops and conditional execution], page 43, is so
inefficient as to be impractical.

It is also perhaps surprising that about 1 in 20 such matrices is singular.

5.6 Generalized transpose of an array

The function aperm(a, perm) may be used to permute an array, a. The argument perm
must be a permutation of the integers {1, ..., k}, where k is the number of subscripts in a.
The result of the function is an array of the same size as a but with old dimension given by
perm[j] becoming the new j-th dimension. The easiest way to think of this operation is
as a generalization of transposition for matrices. Indeed if A is a matrix, (that is, a doubly
subscripted array) then B given by

> B <- aperm(A, c(2,1))

is just the transpose of A. For this special case a simpler function t() is available, so we
could have used B <- t(4).

5.7 Matrix facilities

As noted above, a matrix is just an array with two subscripts. However it is such an
important special case it needs a separate discussion. R contains many operators and
functions that are available only for matrices. For example t(X) is the matrix transpose
function, as noted above. The functions nrow(A) and ncol(A) give the number of rows and
columns in the matrix A respectively.

5.7.1 Matrix multiplication

The operator %% is used for matrix multiplication. An n by 1 or 1 by n matrix may of
course be used as an n-vector if in the context such is appropriate. Conversely, vectors
which occur in matrix multiplication expressions are automatically promoted either to row
or column vectors, whichever is multiplicatively coherent, if possible, (although this is not
always unambiguously possible, as we see later).
If, for example, A and B are square matrices of the same size, then

>A xB
is the matrix of element by element products and

> A Yx% B
is the matrix product. If x is a vector, then

> x hx% A %xh x
is a quadratic form.!

The function crossprod() forms “crossproducts”, meaning that crossprod(X, y) is
the same as t(X) %*% y but the operation is more efficient. If the second argument to
crossprod() is omitted it is taken to be the same as the first.

1 Note that x %*% x is ambiguous, as it could mean either x''x or xxT, where x is the column form. In such
cases the smaller matrix seems implicitly to be the interpretation adopted, so the scalar x''x is in this
case the result. The matrix xx* may be calculated either by cbind(x) %*% x or x %*% rbind(x) since
the result of rbind() or cbind() is always a matrix. However, the best way to compute x* x or xx* is
crossprod(x) or x %o% x respectively.

Chapter 5: Arrays and matrices 25

The meaning of diag() depends on its argument. diag(v), where v is a vector, gives
a diagonal matrix with elements of the vector as the diagonal entries. On the other hand
diag(M), where M is a matrix, gives the vector of main diagonal entries of M. This is the
same convention as that used for diag() in MATLAB. Also, somewhat confusingly, if k is a
single numeric value then diag(k) is the k by k identity matrix!

5.7.2 Linear equations and inversion

Solving linear equations is the inverse of matrix multiplication. When after
>b <= A %% x

only A and b are given, the vector x is the solution of that linear equation system. In R,
> solve(A,Db)

solves the system, returning x (up to some accuracy loss). Note that in linear algebra,
formally x = A~!'b where A~! denotes the inverse of A, which can be computed by

solve(A)

but rarely is needed. Numerically, it is both inefficient and potentially unstable to compute
x <- solve(A) %x*% b instead of solve(A,b).

The quadratic form xTA~'x which is used in multivariate computations, should be com-
puted by something like? x %*J, solve(A,x), rather than computing the inverse of A.

5.7.3 Eigenvalues and eigenvectors

The function eigen(Sm) calculates the eigenvalues and eigenvectors of a symmetric matrix
Sm. The result of this function is a list of two components named values and vectors.
The assignment

> ev <- eigen(Sm)
will assign this list to ev. Then ev$val is the vector of eigenvalues of Sm and ev$vec is the
matrix of corresponding eigenvectors. Had we only needed the eigenvalues we could have
used the assignment:

> evals <- eigen(Sm)$values
evals now holds the vector of eigenvalues and the second component is discarded. If the
expression

> eigen(Sm)

is used by itself as a command the two components are printed, with their names. For large
matrices it is better to avoid computing the eigenvectors if they are not needed by using
the expression

> evals <- eigen(Sm, only.values = TRUE)$values

5.7.4 Singular value decomposition and determinants

The function svd(M) takes an arbitrary matrix argument, M, and calculates the singular
value decomposition of M. This consists of a matrix of orthonormal columns U with the
same column space as M, a second matrix of orthonormal columns V whose column space
is the row space of M and a diagonal matrix of positive entries D such that M = U %*% D %*%

2 Even better would be to form a matrix square root B with A = BBT and find the squared length of the
solution of By = = , perhaps using the Cholesky or eigen decomposition of A.

Chapter 5: Arrays and matrices 26

t (V). D is actually returned as a vector of the diagonal elements. The result of svd(M) is
actually a list of three components named d, u and v, with evident meanings.

If M is in fact square, then, it is not hard to see that
> absdetM <- prod(svd(M)$d)

calculates the absolute value of the determinant of M. If this calculation were needed often
with a variety of matrices it could be defined as an R function

> absdet <- function(M) prod(svd(M)$d)

after which we could use absdet() as just another R function. As a further trivial but
potentially useful example, you might like to consider writing a function, say tr(), to
calculate the trace of a square matrix. [Hint: You will not need to use an explicit loop.
Look again at the diag() function.]

R has a builtin function det to calculate a determinant, including the sign, and another,
determinant, to give the sign and modulus (optionally on log scale),

5.7.5 Least squares fitting and the QR decomposition

The function 1sfit () returns a list giving results of a least squares fitting procedure. An
assignment such as

> ans <- lsfit(X, y)

gives the results of a least squares fit where y is the vector of observations and X is the
design matrix. See the help facility for more details, and also for the follow-up function
1s.diag() for, among other things, regression diagnostics. Note that a grand mean term is
automatically included and need not be included explicitly as a column of X. Further note
that you almost always will prefer using Im(.) (see Section 11.2 [Linear models], page 58)
to 1sfit () for regression modelling.

Another closely related function is qr () and its allies. Consider the following assignments

> Xplus <- qr(X)

> b <- qr.coef (Xplus, y)

> fit <- qr.fitted(Xplus, y)
> res <- gr.resid(Xplus, y)

These compute the orthogonal projection of y onto the range of X in fit, the projection
onto the orthogonal complement in res and the coefficient vector for the projection in b,
that is, b is essentially the result of the MATLAB ‘backslash’ operator.

It is not assumed that X has full column rank. Redundancies will be discovered and
removed as they are found.

This alternative is the older, low-level way to perform least squares calculations. Al-
though still useful in some contexts, it would now generally be replaced by the statistical
models features, as will be discussed in Chapter 11 [Statistical models in R], page 55.

5.8 Forming partitioned matrices, cbind() and rbind()

As we have already seen informally, matrices can be built up from other vectors and ma-
trices by the functions cbind() and rbind(). Roughly cbind () forms matrices by binding
together matrices horizontally, or column-wise, and rbind () vertically, or row-wise.

Chapter 5: Arrays and matrices 27

In the assignment
> X <- cbind(arg_1, arg_2, arg_3, ...)

the arguments to cbind () must be either vectors of any length, or matrices with the same
column size, that is the same number of rows. The result is a matrix with the concatenated
arguments arg_1, arg_2, ... forming the columns.

If some of the arguments to cbind() are vectors they may be shorter than the column
size of any matrices present, in which case they are cyclically extended to match the matrix
column size (or the length of the longest vector if no matrices are given).

The function rbind () does the corresponding operation for rows. In this case any vector
argument, possibly cyclically extended, are of course taken as row vectors.

Suppose X1 and X2 have the same number of rows. To combine these by columns into a
matrix X, together with an initial column of 1s we can use

> X <- cbind(1, X1, X2)

The result of rbind() or cbind() always has matrix status. Hence cbind(x) and
rbind(x) are possibly the simplest ways explicitly to allow the vector x to be treated as a
column or row matrix respectively.

5.9 The concatenation function, c(), with arrays

It should be noted that whereas cbind() and rbind() are concatenation functions that
respect dim attributes, the basic c¢() function does not, but rather clears numeric objects
of all dim and dimnames attributes. This is occasionally useful in its own right.

The official way to coerce an array back to a simple vector object is to use as.vector ()
> vec <- as.vector(X)

However a similar result can be achieved by using c() with just one argument, simply
for this side-effect:

> vec <- c(X)

There are slight differences between the two, but ultimately the choice between them is
largely a matter of style (with the former being preferable).

5.10 Frequency tables from factors

Recall that a factor defines a partition into groups. Similarly a pair of factors defines a
two way cross classification, and so on. The function table () allows frequency tables to be
calculated from equal length factors. If there are k factor arguments, the result is a k-way
array of frequencies.

Suppose, for example, that statef is a factor giving the state code for each entry in a
data vector. The assignment

> statefr <- table(statef)

gives in statefr a table of frequencies of each state in the sample. The frequencies are
ordered and labelled by the levels attribute of the factor. This simple case is equivalent
to, but more convenient than,

> statefr <- tapply(statef, statef, length)

28

Further suppose that incomef is a factor giving a suitably defined “income class” for
each entry in the data vector, for example with the cut () function:

> factor(cut(incomes, breaks = 35+10%(0:7))) -> incomef
Then to calculate a two-way table of frequencies:

> table(incomef,statef)
statef
incomef act nsw nt qld sa tas vic wa
(35,45] 1 1 0 1 0 0 1 0
(45,55] 1 1 1 1 2 0 1 3
(65,65] 0