Actual source code: test3.c
slepc-3.6.3 2016-03-29
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-2015, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
8: SLEPc is free software: you can redistribute it and/or modify it under the
9: terms of version 3 of the GNU Lesser General Public License as published by
10: the Free Software Foundation.
12: SLEPc is distributed in the hope that it will be useful, but WITHOUT ANY
13: WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14: FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
15: more details.
17: You should have received a copy of the GNU Lesser General Public License
18: along with SLEPc. If not, see <http://www.gnu.org/licenses/>.
19: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
20: */
22: static char help[] = "Test BV operations with non-standard inner product.\n\n";
24: #include <slepcbv.h>
28: int main(int argc,char **argv)
29: {
31: Vec t,v;
32: Mat B,M;
33: BV X;
34: PetscInt i,j,n=10,k=5,Istart,Iend;
35: PetscScalar alpha;
36: PetscReal nrm;
37: PetscViewer view;
38: PetscBool verbose;
40: SlepcInitialize(&argc,&argv,(char*)0,help);
41: PetscOptionsGetInt(NULL,"-n",&n,NULL);
42: PetscOptionsGetInt(NULL,"-k",&k,NULL);
43: PetscOptionsHasName(NULL,"-verbose",&verbose);
44: PetscPrintf(PETSC_COMM_WORLD,"Test BV with non-standard inner product (n=%D, k=%D).\n",n,k);
46: /* Create inner product matrix */
47: MatCreate(PETSC_COMM_WORLD,&B);
48: MatSetSizes(B,PETSC_DECIDE,PETSC_DECIDE,n,n);
49: MatSetFromOptions(B);
50: MatSetUp(B);
51: PetscObjectSetName((PetscObject)B,"B");
53: MatGetOwnershipRange(B,&Istart,&Iend);
54: for (i=Istart;i<Iend;i++) {
55: if (i>0) { MatSetValue(B,i,i-1,-1.0,INSERT_VALUES); }
56: if (i<n-1) { MatSetValue(B,i,i+1,-1.0,INSERT_VALUES); }
57: MatSetValue(B,i,i,2.0,INSERT_VALUES);
58: }
59: MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
60: MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
61: MatCreateVecs(B,&t,NULL);
63: /* Create BV object X */
64: BVCreate(PETSC_COMM_WORLD,&X);
65: PetscObjectSetName((PetscObject)X,"X");
66: BVSetSizesFromVec(X,t,k);
67: BVSetFromOptions(X);
68: BVSetMatrix(X,B,PETSC_FALSE);
70: /* Set up viewer */
71: PetscViewerASCIIGetStdout(PETSC_COMM_WORLD,&view);
72: if (verbose) {
73: PetscViewerPushFormat(view,PETSC_VIEWER_ASCII_MATLAB);
74: }
76: /* Fill X entries */
77: for (j=0;j<k;j++) {
78: BVGetColumn(X,j,&v);
79: VecSet(v,0.0);
80: for (i=0;i<4;i++) {
81: if (i+j<n) {
82: VecSetValue(v,i+j,(PetscScalar)(3*i+j-2),INSERT_VALUES);
83: }
84: }
85: VecAssemblyBegin(v);
86: VecAssemblyEnd(v);
87: BVRestoreColumn(X,j,&v);
88: }
89: if (verbose) {
90: MatView(B,view);
91: BVView(X,view);
92: }
94: /* Test BVNormColumn */
95: BVNormColumn(X,0,NORM_2,&nrm);
96: PetscPrintf(PETSC_COMM_WORLD,"B-Norm or X[0] = %g\n",(double)nrm);
98: /* Test BVOrthogonalizeColumn */
99: for (j=0;j<k;j++) {
100: BVOrthogonalizeColumn(X,j,NULL,&nrm,NULL);
101: alpha = 1.0/nrm;
102: BVScaleColumn(X,j,alpha);
103: }
104: if (verbose) {
105: BVView(X,view);
106: }
108: /* Check orthogonality */
109: MatCreateSeqDense(PETSC_COMM_SELF,k,k,NULL,&M);
110: BVDot(X,X,M);
111: MatShift(M,-1.0);
112: MatNorm(M,NORM_1,&nrm);
113: if (nrm<100*PETSC_MACHINE_EPSILON) {
114: PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality < 100*eps\n");
115: } else {
116: PetscPrintf(PETSC_COMM_WORLD,"Level of orthogonality: %g\n",(double)nrm);
117: }
119: BVDestroy(&X);
120: MatDestroy(&M);
121: MatDestroy(&B);
122: VecDestroy(&t);
123: SlepcFinalize();
124: return 0;
125: }