Primitive Type i32 [−]
The 32-bit signed integer type.
Methods
impl i32
1.0.0fn min_value() -> i32
Returns the smallest value that can be represented by this integer type.
1.0.0fn max_value() -> i32
Returns the largest value that can be represented by this integer type.
1.0.0fn from_str_radix(src: &str, radix: u32) -> Result<i32, ParseIntError>
Converts a string slice in a given base to an integer.
Leading and trailing whitespace represent an error.
Examples
Basic usage:
fn main() { assert_eq!(u32::from_str_radix("A", 16), Ok(10)); }assert_eq!(u32::from_str_radix("A", 16), Ok(10));
1.0.0fn count_ones(self) -> u32
Returns the number of ones in the binary representation of self
.
Examples
Basic usage:
fn main() { let n = 0b01001100u8; assert_eq!(n.count_ones(), 3); }let n = 0b01001100u8; assert_eq!(n.count_ones(), 3);
1.0.0fn count_zeros(self) -> u32
Returns the number of zeros in the binary representation of self
.
Examples
Basic usage:
fn main() { let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5); }let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5);
1.0.0fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation
of self
.
Examples
Basic usage:
fn main() { let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10); }let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10);
1.0.0fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self
.
Examples
Basic usage:
fn main() { let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3); }let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3);
1.0.0fn rotate_left(self, n: u32) -> i32
Shifts the bits to the left by a specified amount, n
,
wrapping the truncated bits to the end of the resulting integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m); }let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m);
1.0.0fn rotate_right(self, n: u32) -> i32
Shifts the bits to the right by a specified amount, n
,
wrapping the truncated bits to the beginning of the resulting
integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m); }let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m);
1.0.0fn swap_bytes(self) -> i32
Reverses the byte order of the integer.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m); }let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m);
1.0.0fn from_be(x: i32) -> i32
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) }
1.0.0fn from_le(x: i32) -> i32
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) }
1.0.0fn to_be(self) -> i32
Converts self
to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }
1.0.0fn to_le(self) -> i32
Converts self
to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
Basic usage:
fn main() { let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) } }let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }
1.0.0fn checked_add(self, other: i32) -> Option<i32>
Checked integer addition. Computes self + other
, returning None
if overflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None); }assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None);
1.0.0fn checked_sub(self, other: i32) -> Option<i32>
Checked integer subtraction. Computes self - other
, returning
None
if underflow occurred.
Examples
Basic usage:
fn main() { assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None); }assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None);
1.0.0fn checked_mul(self, other: i32) -> Option<i32>
Checked integer multiplication. Computes self * other
, returning
None
if underflow or overflow occurred.
Examples
Basic usage:
fn main() { assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None); }assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None);
1.0.0fn checked_div(self, other: i32) -> Option<i32>
Checked integer division. Computes self / other
, returning None
if other == 0
or the operation results in underflow or overflow.
Examples
Basic usage:
fn main() { assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None); }assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None);
1.7.0fn checked_rem(self, other: i32) -> Option<i32>
Checked integer remainder. Computes self % other
, returning None
if other == 0
or the operation results in underflow or overflow.
Examples
Basic usage:
fn main() { use std::i32; assert_eq!(5i32.checked_rem(2), Some(1)); assert_eq!(5i32.checked_rem(0), None); assert_eq!(i32::MIN.checked_rem(-1), None); }use std::i32; assert_eq!(5i32.checked_rem(2), Some(1)); assert_eq!(5i32.checked_rem(0), None); assert_eq!(i32::MIN.checked_rem(-1), None);
1.7.0fn checked_neg(self) -> Option<i32>
Checked negation. Computes -self
, returning None
if self == MIN
.
Examples
Basic usage:
fn main() { use std::i32; assert_eq!(5i32.checked_neg(), Some(-5)); assert_eq!(i32::MIN.checked_neg(), None); }use std::i32; assert_eq!(5i32.checked_neg(), Some(-5)); assert_eq!(i32::MIN.checked_neg(), None);
1.7.0fn checked_shl(self, rhs: u32) -> Option<i32>
Checked shift left. Computes self << rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
fn main() { assert_eq!(0x10i32.checked_shl(4), Some(0x100)); assert_eq!(0x10i32.checked_shl(33), None); }assert_eq!(0x10i32.checked_shl(4), Some(0x100)); assert_eq!(0x10i32.checked_shl(33), None);
1.7.0fn checked_shr(self, rhs: u32) -> Option<i32>
Checked shift right. Computes self >> rhs
, returning None
if rhs
is larger than or equal to the number of bits in self
.
Examples
Basic usage:
fn main() { assert_eq!(0x10i32.checked_shr(4), Some(0x1)); assert_eq!(0x10i32.checked_shr(33), None); }assert_eq!(0x10i32.checked_shr(4), Some(0x1)); assert_eq!(0x10i32.checked_shr(33), None);
1.0.0fn saturating_add(self, other: i32) -> i32
Saturating integer addition. Computes self + other
, saturating at
the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { assert_eq!(100i8.saturating_add(1), 101); assert_eq!(100i8.saturating_add(127), 127); }assert_eq!(100i8.saturating_add(1), 101); assert_eq!(100i8.saturating_add(127), 127);
1.0.0fn saturating_sub(self, other: i32) -> i32
Saturating integer subtraction. Computes self - other
, saturating
at the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { assert_eq!(100i8.saturating_sub(127), -27); assert_eq!((-100i8).saturating_sub(127), -128); }assert_eq!(100i8.saturating_sub(127), -27); assert_eq!((-100i8).saturating_sub(127), -128);
1.7.0fn saturating_mul(self, other: i32) -> i32
Saturating integer multiplication. Computes self * other
,
saturating at the numeric bounds instead of overflowing.
Examples
Basic usage:
fn main() { use std::i32; assert_eq!(100i32.saturating_mul(127), 12700); assert_eq!((1i32 << 23).saturating_mul(1 << 23), i32::MAX); assert_eq!((-1i32 << 23).saturating_mul(1 << 23), i32::MIN); }use std::i32; assert_eq!(100i32.saturating_mul(127), 12700); assert_eq!((1i32 << 23).saturating_mul(1 << 23), i32::MAX); assert_eq!((-1i32 << 23).saturating_mul(1 << 23), i32::MIN);
1.0.0fn wrapping_add(self, rhs: i32) -> i32
Wrapping (modular) addition. Computes self + other
,
wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(100i8.wrapping_add(27), 127); assert_eq!(100i8.wrapping_add(127), -29); }assert_eq!(100i8.wrapping_add(27), 127); assert_eq!(100i8.wrapping_add(127), -29);
1.0.0fn wrapping_sub(self, rhs: i32) -> i32
Wrapping (modular) subtraction. Computes self - other
,
wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(0i8.wrapping_sub(127), -127); assert_eq!((-2i8).wrapping_sub(127), 127); }assert_eq!(0i8.wrapping_sub(127), -127); assert_eq!((-2i8).wrapping_sub(127), 127);
1.0.0fn wrapping_mul(self, rhs: i32) -> i32
Wrapping (modular) multiplication. Computes self * other
, wrapping around at the boundary of the type.
Examples
Basic usage:
fn main() { assert_eq!(10i8.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124); }assert_eq!(10i8.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124);
1.2.0fn wrapping_div(self, rhs: i32) -> i32
Wrapping (modular) division. Computes self / other
,
wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one
divides MIN / -1
on a signed type (where MIN
is the
negative minimal value for the type); this is equivalent
to -MIN
, a positive value that is too large to represent
in the type. In such a case, this function returns MIN
itself.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
fn main() { assert_eq!(100u8.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128); }assert_eq!(100u8.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128);
1.2.0fn wrapping_rem(self, rhs: i32) -> i32
Wrapping (modular) remainder. Computes self % other
,
wrapping around at the boundary of the type.
Such wrap-around never actually occurs mathematically;
implementation artifacts make x % y
invalid for MIN / -1
on a signed type (where MIN
is the negative
minimal value). In such a case, this function returns 0
.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage:
fn main() { assert_eq!(100i8.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0); }assert_eq!(100i8.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0);
1.2.0fn wrapping_neg(self) -> i32
Wrapping (modular) negation. Computes -self
,
wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one
negates MIN
on a signed type (where MIN
is the
negative minimal value for the type); this is a positive
value that is too large to represent in the type. In such
a case, this function returns MIN
itself.
Examples
Basic usage:
fn main() { assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128); }assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);
1.2.0fn wrapping_shl(self, rhs: u32) -> i32
Panic-free bitwise shift-left; yields self << mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_left
function, which may
be what you want instead.
Examples
Basic usage:
fn main() { assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1); }assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(8), 1);
1.2.0fn wrapping_shr(self, rhs: u32) -> i32
Panic-free bitwise shift-right; yields self >> mask(rhs)
,
where mask
removes any high-order bits of rhs
that
would cause the shift to exceed the bitwidth of the type.
Note that this is not the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a rotate_right
function, which may
be what you want instead.
Examples
Basic usage:
fn main() { assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128); }assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(8), 128);
1.7.0fn overflowing_add(self, rhs: i32) -> (i32, bool)
Calculates self
+ rhs
Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_add(2), (7, false)); assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true)); }use std::i32; assert_eq!(5i32.overflowing_add(2), (7, false)); assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true));
1.7.0fn overflowing_sub(self, rhs: i32) -> (i32, bool)
Calculates self
- rhs
Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_sub(2), (3, false)); assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true)); }use std::i32; assert_eq!(5i32.overflowing_sub(2), (3, false)); assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true));
1.7.0fn overflowing_mul(self, rhs: i32) -> (i32, bool)
Calculates the multiplication of self
and rhs
.
Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.
Examples
Basic usage
fn main() { assert_eq!(5i32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true)); }assert_eq!(5i32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
1.7.0fn overflowing_div(self, rhs: i32) -> (i32, bool)
Calculates the divisor when self
is divided by rhs
.
Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_div(2), (2, false)); assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true)); }use std::i32; assert_eq!(5i32.overflowing_div(2), (2, false)); assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true));
1.7.0fn overflowing_rem(self, rhs: i32) -> (i32, bool)
Calculates the remainder when self
is divided by rhs
.
Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.
Panics
This function will panic if rhs
is 0.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(5i32.overflowing_rem(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem(-1), (0, true)); }use std::i32; assert_eq!(5i32.overflowing_rem(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem(-1), (0, true));
1.7.0fn overflowing_neg(self) -> (i32, bool)
Negates self, overflowing if this is equal to the minimum value.
Returns a tuple of the negated version of self along with a boolean
indicating whether an overflow happened. If self
is the minimum
value (e.g. i32::MIN
for values of type i32
), then the minimum
value will be returned again and true
will be returned for an
overflow happening.
Examples
Basic usage
fn main() { use std::i32; assert_eq!(2i32.overflowing_neg(), (-2, false)); assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true)); }use std::i32; assert_eq!(2i32.overflowing_neg(), (-2, false)); assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true));
1.7.0fn overflowing_shl(self, rhs: u32) -> (i32, bool)
Shifts self left by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
fn main() { assert_eq!(0x10i32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10i32.overflowing_shl(36), (0x100, true)); }assert_eq!(0x10i32.overflowing_shl(4), (0x100, false)); assert_eq!(0x10i32.overflowing_shl(36), (0x100, true));
1.7.0fn overflowing_shr(self, rhs: u32) -> (i32, bool)
Shifts self right by rhs
bits.
Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.
Examples
Basic usage
fn main() { assert_eq!(0x10i32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true)); }assert_eq!(0x10i32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
1.0.0fn pow(self, exp: u32) -> i32
Raises self to the power of exp
, using exponentiation by squaring.
Examples
Basic usage:
fn main() { let x: i32 = 2; // or any other integer type assert_eq!(x.pow(4), 16); }let x: i32 = 2; // or any other integer type assert_eq!(x.pow(4), 16);
1.0.0fn abs(self) -> i32
Computes the absolute value of self
.
Overflow behavior
The absolute value of i32::min_value()
cannot be represented as an
i32
, and attempting to calculate it will cause an overflow. This
means that code in debug mode will trigger a panic on this case and
optimized code will return i32::min_value()
without a panic.
Examples
Basic usage:
fn main() { assert_eq!(10i8.abs(), 10); assert_eq!((-10i8).abs(), 10); }assert_eq!(10i8.abs(), 10); assert_eq!((-10i8).abs(), 10);
1.0.0fn signum(self) -> i32
Returns a number representing sign of self
.
0
if the number is zero1
if the number is positive-1
if the number is negative
Examples
Basic usage:
fn main() { assert_eq!(10i8.signum(), 1); assert_eq!(0i8.signum(), 0); assert_eq!((-10i8).signum(), -1); }assert_eq!(10i8.signum(), 1); assert_eq!(0i8.signum(), 0); assert_eq!((-10i8).signum(), -1);
1.0.0fn is_positive(self) -> bool
Returns true
if self
is positive and false
if the number
is zero or negative.
Examples
Basic usage:
fn main() { assert!(10i8.is_positive()); assert!(!(-10i8).is_positive()); }assert!(10i8.is_positive()); assert!(!(-10i8).is_positive());
1.0.0fn is_negative(self) -> bool
Returns true
if self
is negative and false
if the number
is zero or positive.
Examples
Basic usage:
fn main() { assert!((-10i8).is_negative()); assert!(!10i8.is_negative()); }assert!((-10i8).is_negative()); assert!(!10i8.is_negative());
Trait Implementations
impl Display for i32
1.0.0
impl Debug for i32
1.0.0
impl UpperHex for i32
1.0.0
impl LowerHex for i32
1.0.0
impl Octal for i32
1.0.0
impl Binary for i32
1.0.0
impl Hash for i32
1.0.0
fn hash<H>(&self, state: &mut H) where H: Hasher
fn hash_slice<H>(data: &[i32], state: &mut H) where H: Hasher
impl Step for i32
fn step(&self, by: &i32) -> Option<i32>
fn steps_between(start: &i32, end: &i32, by: &i32) -> Option<usize>
impl Default for i32
1.0.0
impl Clone for i32
1.0.0
fn clone(&self) -> i32
1.0.0fn clone_from(&mut self, source: &Self)
impl Ord for i32
1.0.0
impl PartialOrd<i32> for i32
1.0.0
fn partial_cmp(&self, other: &i32) -> Option<Ordering>
fn lt(&self, other: &i32) -> bool
fn le(&self, other: &i32) -> bool
fn ge(&self, other: &i32) -> bool
fn gt(&self, other: &i32) -> bool
impl Eq for i32
1.0.0
impl PartialEq<i32> for i32
1.0.0
impl ShrAssign<isize> for i32
1.8.0
fn shr_assign(&mut self, other: isize)
impl ShrAssign<i64> for i32
1.8.0
fn shr_assign(&mut self, other: i64)
impl ShrAssign<i32> for i32
1.8.0
fn shr_assign(&mut self, other: i32)
impl ShrAssign<i16> for i32
1.8.0
fn shr_assign(&mut self, other: i16)
impl ShrAssign<i8> for i32
1.8.0
fn shr_assign(&mut self, other: i8)
impl ShrAssign<usize> for i32
1.8.0
fn shr_assign(&mut self, other: usize)
impl ShrAssign<u64> for i32
1.8.0
fn shr_assign(&mut self, other: u64)
impl ShrAssign<u32> for i32
1.8.0
fn shr_assign(&mut self, other: u32)
impl ShrAssign<u16> for i32
1.8.0
fn shr_assign(&mut self, other: u16)
impl ShrAssign<u8> for i32
1.8.0
fn shr_assign(&mut self, other: u8)
impl ShlAssign<isize> for i32
1.8.0
fn shl_assign(&mut self, other: isize)
impl ShlAssign<i64> for i32
1.8.0
fn shl_assign(&mut self, other: i64)
impl ShlAssign<i32> for i32
1.8.0
fn shl_assign(&mut self, other: i32)
impl ShlAssign<i16> for i32
1.8.0
fn shl_assign(&mut self, other: i16)
impl ShlAssign<i8> for i32
1.8.0
fn shl_assign(&mut self, other: i8)
impl ShlAssign<usize> for i32
1.8.0
fn shl_assign(&mut self, other: usize)
impl ShlAssign<u64> for i32
1.8.0
fn shl_assign(&mut self, other: u64)
impl ShlAssign<u32> for i32
1.8.0
fn shl_assign(&mut self, other: u32)
impl ShlAssign<u16> for i32
1.8.0
fn shl_assign(&mut self, other: u16)
impl ShlAssign<u8> for i32
1.8.0
fn shl_assign(&mut self, other: u8)
impl BitXorAssign<i32> for i32
1.8.0
fn bitxor_assign(&mut self, other: i32)
impl BitOrAssign<i32> for i32
1.8.0
fn bitor_assign(&mut self, other: i32)
impl BitAndAssign<i32> for i32
1.8.0
fn bitand_assign(&mut self, other: i32)
impl RemAssign<i32> for i32
1.8.0
fn rem_assign(&mut self, other: i32)
impl DivAssign<i32> for i32
1.8.0
fn div_assign(&mut self, other: i32)
impl MulAssign<i32> for i32
1.8.0
fn mul_assign(&mut self, other: i32)
impl SubAssign<i32> for i32
1.8.0
fn sub_assign(&mut self, other: i32)
impl AddAssign<i32> for i32
1.8.0
fn add_assign(&mut self, other: i32)
impl<'a, 'b> Shr<&'a isize> for &'b i32
1.0.0
impl<'a> Shr<&'a isize> for i32
1.0.0
impl<'a> Shr<isize> for &'a i32
1.0.0
impl Shr<isize> for i32
1.0.0
impl<'a, 'b> Shr<&'a i64> for &'b i32
1.0.0
impl<'a> Shr<&'a i64> for i32
1.0.0
impl<'a> Shr<i64> for &'a i32
1.0.0
impl Shr<i64> for i32
1.0.0
impl<'a, 'b> Shr<&'a i32> for &'b i32
1.0.0
impl<'a> Shr<&'a i32> for i32
1.0.0
impl<'a> Shr<i32> for &'a i32
1.0.0
impl Shr<i32> for i32
1.0.0
impl<'a, 'b> Shr<&'a i16> for &'b i32
1.0.0
impl<'a> Shr<&'a i16> for i32
1.0.0
impl<'a> Shr<i16> for &'a i32
1.0.0
impl Shr<i16> for i32
1.0.0
impl<'a, 'b> Shr<&'a i8> for &'b i32
1.0.0
impl<'a> Shr<&'a i8> for i32
1.0.0
impl<'a> Shr<i8> for &'a i32
1.0.0
impl Shr<i8> for i32
1.0.0
impl<'a, 'b> Shr<&'a usize> for &'b i32
1.0.0
impl<'a> Shr<&'a usize> for i32
1.0.0
impl<'a> Shr<usize> for &'a i32
1.0.0
impl Shr<usize> for i32
1.0.0
impl<'a, 'b> Shr<&'a u64> for &'b i32
1.0.0
impl<'a> Shr<&'a u64> for i32
1.0.0
impl<'a> Shr<u64> for &'a i32
1.0.0
impl Shr<u64> for i32
1.0.0
impl<'a, 'b> Shr<&'a u32> for &'b i32
1.0.0
impl<'a> Shr<&'a u32> for i32
1.0.0
impl<'a> Shr<u32> for &'a i32
1.0.0
impl Shr<u32> for i32
1.0.0
impl<'a, 'b> Shr<&'a u16> for &'b i32
1.0.0
impl<'a> Shr<&'a u16> for i32
1.0.0
impl<'a> Shr<u16> for &'a i32
1.0.0
impl Shr<u16> for i32
1.0.0
impl<'a, 'b> Shr<&'a u8> for &'b i32
1.0.0
impl<'a> Shr<&'a u8> for i32
1.0.0
impl<'a> Shr<u8> for &'a i32
1.0.0
impl Shr<u8> for i32
1.0.0
impl<'a, 'b> Shl<&'a isize> for &'b i32
1.0.0
impl<'a> Shl<&'a isize> for i32
1.0.0
impl<'a> Shl<isize> for &'a i32
1.0.0
impl Shl<isize> for i32
1.0.0
impl<'a, 'b> Shl<&'a i64> for &'b i32
1.0.0
impl<'a> Shl<&'a i64> for i32
1.0.0
impl<'a> Shl<i64> for &'a i32
1.0.0
impl Shl<i64> for i32
1.0.0
impl<'a, 'b> Shl<&'a i32> for &'b i32
1.0.0
impl<'a> Shl<&'a i32> for i32
1.0.0
impl<'a> Shl<i32> for &'a i32
1.0.0
impl Shl<i32> for i32
1.0.0
impl<'a, 'b> Shl<&'a i16> for &'b i32
1.0.0
impl<'a> Shl<&'a i16> for i32
1.0.0
impl<'a> Shl<i16> for &'a i32
1.0.0
impl Shl<i16> for i32
1.0.0
impl<'a, 'b> Shl<&'a i8> for &'b i32
1.0.0
impl<'a> Shl<&'a i8> for i32
1.0.0
impl<'a> Shl<i8> for &'a i32
1.0.0
impl Shl<i8> for i32
1.0.0
impl<'a, 'b> Shl<&'a usize> for &'b i32
1.0.0
impl<'a> Shl<&'a usize> for i32
1.0.0
impl<'a> Shl<usize> for &'a i32
1.0.0
impl Shl<usize> for i32
1.0.0
impl<'a, 'b> Shl<&'a u64> for &'b i32
1.0.0
impl<'a> Shl<&'a u64> for i32
1.0.0
impl<'a> Shl<u64> for &'a i32
1.0.0
impl Shl<u64> for i32
1.0.0
impl<'a, 'b> Shl<&'a u32> for &'b i32
1.0.0
impl<'a> Shl<&'a u32> for i32
1.0.0
impl<'a> Shl<u32> for &'a i32
1.0.0
impl Shl<u32> for i32
1.0.0
impl<'a, 'b> Shl<&'a u16> for &'b i32
1.0.0
impl<'a> Shl<&'a u16> for i32
1.0.0
impl<'a> Shl<u16> for &'a i32
1.0.0
impl Shl<u16> for i32
1.0.0
impl<'a, 'b> Shl<&'a u8> for &'b i32
1.0.0
impl<'a> Shl<&'a u8> for i32
1.0.0
impl<'a> Shl<u8> for &'a i32
1.0.0
impl Shl<u8> for i32
1.0.0
impl<'a, 'b> BitXor<&'a i32> for &'b i32
1.0.0
impl<'a> BitXor<&'a i32> for i32
1.0.0
impl<'a> BitXor<i32> for &'a i32
1.0.0
impl BitXor<i32> for i32
1.0.0
impl<'a, 'b> BitOr<&'a i32> for &'b i32
1.0.0
impl<'a> BitOr<&'a i32> for i32
1.0.0
impl<'a> BitOr<i32> for &'a i32
1.0.0
impl BitOr<i32> for i32
1.0.0
impl<'a, 'b> BitAnd<&'a i32> for &'b i32
1.0.0
impl<'a> BitAnd<&'a i32> for i32
1.0.0
impl<'a> BitAnd<i32> for &'a i32
1.0.0
impl BitAnd<i32> for i32
1.0.0
impl<'a> Not for &'a i32
1.0.0
impl Not for i32
1.0.0
impl<'a> Neg for &'a i32
1.0.0
impl Neg for i32
1.0.0
impl<'a, 'b> Rem<&'a i32> for &'b i32
1.0.0
impl<'a> Rem<&'a i32> for i32
1.0.0
impl<'a> Rem<i32> for &'a i32
1.0.0
impl Rem<i32> for i32
1.0.0
This operation satisfies n % d == n - (n / d) * d
. The
result has the same sign as the left operand.
impl<'a, 'b> Div<&'a i32> for &'b i32
1.0.0
impl<'a> Div<&'a i32> for i32
1.0.0
impl<'a> Div<i32> for &'a i32
1.0.0
impl Div<i32> for i32
1.0.0
This operation rounds towards zero, truncating any fractional part of the exact result.