ipshell.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /*
5 * ABSTRACT:
6 */
7 
8 #include <kernel/mod2.h>
9 
10 #include <omalloc/omalloc.h>
11 
12 #include <factory/factory.h>
13 
14 #include <misc/auxiliary.h>
15 #include <misc/options.h>
16 #include <misc/mylimits.h>
17 #include <misc/intvec.h>
18 #include <misc/prime.h>
19 
20 #include <coeffs/numbers.h>
21 #include <coeffs/coeffs.h>
22 
23 #include <coeffs/rmodulon.h>
24 #include <coeffs/longrat.h>
25 
26 #include <polys/monomials/ring.h>
27 #include <polys/monomials/maps.h>
28 
29 #include <polys/prCopy.h>
30 #include <polys/matpol.h>
31 
32 #include <polys/weight.h>
33 #include <polys/clapsing.h>
34 
35 
38 
39 #include <kernel/polys.h>
40 #include <kernel/ideals.h>
41 
44 
45 #include <kernel/GBEngine/syz.h>
46 #include <kernel/GBEngine/kstd1.h>
47 #include <kernel/GBEngine/kutil.h> // denominator_list
48 
51 
52 #include <kernel/spectrum/semic.h>
53 #include <kernel/spectrum/splist.h>
55 
57 
58 #include <Singular/lists.h>
59 #include <Singular/attrib.h>
60 #include <Singular/ipconv.h>
61 #include <Singular/links/silink.h>
62 #include <Singular/ipshell.h>
63 #include <Singular/maps_ip.h>
64 #include <Singular/tok.h>
65 #include <Singular/ipid.h>
66 #include <Singular/subexpr.h>
67 #include <Singular/fevoices.h>
68 #include <Singular/sdb.h>
69 
70 #include <math.h>
71 #include <ctype.h>
72 
73 // define this if you want to use the fast_map routine for mapping ideals
74 #define FAST_MAP
75 
76 #ifdef FAST_MAP
77 #include <kernel/maps/fast_maps.h>
78 #endif
79 
80 #ifdef SINGULAR_4_1
81 #include <Singular/number2.h>
82 #include <coeffs/bigintmat.h>
83 #endif
86 const char *lastreserved=NULL;
87 
89 
90 /*0 implementation*/
91 
92 const char * iiTwoOps(int t)
93 {
94  if (t<127)
95  {
96  static char ch[2];
97  switch (t)
98  {
99  case '&':
100  return "and";
101  case '|':
102  return "or";
103  default:
104  ch[0]=t;
105  ch[1]='\0';
106  return ch;
107  }
108  }
109  switch (t)
110  {
111  case COLONCOLON: return "::";
112  case DOTDOT: return "..";
113  //case PLUSEQUAL: return "+=";
114  //case MINUSEQUAL: return "-=";
115  case MINUSMINUS: return "--";
116  case PLUSPLUS: return "++";
117  case EQUAL_EQUAL: return "==";
118  case LE: return "<=";
119  case GE: return ">=";
120  case NOTEQUAL: return "<>";
121  default: return Tok2Cmdname(t);
122  }
123 }
124 
125 int iiOpsTwoChar(const char *s)
126 {
127 /* not handling: &&, ||, ** */
128  if (s[1]=='\0') return s[0];
129  else if (s[2]!='\0') return 0;
130  switch(s[0])
131  {
132  case '.': if (s[1]=='.') return DOTDOT;
133  else return 0;
134  case ':': if (s[1]==':') return COLONCOLON;
135  else return 0;
136  case '-': if (s[1]=='-') return MINUSMINUS;
137  else return 0;
138  case '+': if (s[1]=='+') return PLUSPLUS;
139  else return 0;
140  case '=': if (s[1]=='=') return EQUAL_EQUAL;
141  else return 0;
142  case '<': if (s[1]=='=') return LE;
143  else if (s[1]=='>') return NOTEQUAL;
144  else return 0;
145  case '>': if (s[1]=='=') return GE;
146  else return 0;
147  case '!': if (s[1]=='=') return NOTEQUAL;
148  else return 0;
149  }
150  return 0;
151 }
152 
153 static void list1(const char* s, idhdl h,BOOLEAN c, BOOLEAN fullname)
154 {
155  char buffer[22];
156  int l;
157  char buf2[128];
158 
159  if(fullname) sprintf(buf2, "%s::%s", "", IDID(h));
160  else sprintf(buf2, "%s", IDID(h));
161 
162  Print("%s%-30.30s [%d] ",s,buf2,IDLEV(h));
163  if (h == currRingHdl) PrintS("*");
164  PrintS(Tok2Cmdname((int)IDTYP(h)));
165 
166  ipListFlag(h);
167  switch(IDTYP(h))
168  {
169  case ALIAS_CMD: Print(" for %s",IDID((idhdl)IDDATA(h))); break;
170  case INT_CMD: Print(" %d",IDINT(h)); break;
171  case INTVEC_CMD:Print(" (%d)",IDINTVEC(h)->length()); break;
172  case INTMAT_CMD:Print(" %d x %d",IDINTVEC(h)->rows(),IDINTVEC(h)->cols());
173  break;
174  case POLY_CMD:
175  case VECTOR_CMD:if (c)
176  {
177  PrintS(" ");wrp(IDPOLY(h));
178  if(IDPOLY(h) != NULL)
179  {
180  Print(", %d monomial(s)",pLength(IDPOLY(h)));
181  }
182  }
183  break;
184  case MODUL_CMD: Print(", rk %d", (int)(IDIDEAL(h)->rank));
185  case IDEAL_CMD: Print(", %u generator(s)",
186  IDELEMS(IDIDEAL(h))); break;
187  case MAP_CMD:
188  Print(" from %s",IDMAP(h)->preimage); break;
189  case MATRIX_CMD:Print(" %u x %u"
190  ,MATROWS(IDMATRIX(h))
191  ,MATCOLS(IDMATRIX(h))
192  );
193  break;
194  case PACKAGE_CMD:
195  paPrint(IDID(h),IDPACKAGE(h));
196  break;
197  case PROC_CMD: if((IDPROC(h)->libname!=NULL)
198  && (strlen(IDPROC(h)->libname)>0))
199  Print(" from %s",IDPROC(h)->libname);
200  if(IDPROC(h)->is_static)
201  PrintS(" (static)");
202  break;
203  case STRING_CMD:
204  {
205  char *s;
206  l=strlen(IDSTRING(h));
207  memset(buffer,0,22);
208  strncpy(buffer,IDSTRING(h),si_min(l,20));
209  if ((s=strchr(buffer,'\n'))!=NULL)
210  {
211  *s='\0';
212  }
213  PrintS(" ");
214  PrintS(buffer);
215  if((s!=NULL) ||(l>20))
216  {
217  Print("..., %d char(s)",l);
218  }
219  break;
220  }
221  case LIST_CMD: Print(", size: %d",IDLIST(h)->nr+1);
222  break;
223  case QRING_CMD:
224  case RING_CMD:
225  if ((IDRING(h)==currRing) && (currRingHdl!=h))
226  PrintS("(*)"); /* this is an alias to currRing */
227 #ifdef RDEBUG
229  Print(" <%lx>",(long)(IDRING(h)));
230 #endif
231  break;
232 #ifdef SINGULAR_4_1
233  case CNUMBER_CMD:
234  { number2 n=(number2)IDDATA(h);
235  Print(" (%s)",nCoeffName(n->cf));
236  break;
237  }
238  case CMATRIX_CMD:
239  { bigintmat *b=(bigintmat*)IDDATA(h);
240  Print(" %d x %d (%s)",
241  b->rows(),b->cols(),
242  nCoeffName(b->basecoeffs()));
243  break;
244  }
245 #endif
246  /*default: break;*/
247  }
248  PrintLn();
249 }
250 
252 {
253  BOOLEAN oldShortOut = FALSE;
254 
255  if (currRing != NULL)
256  {
257  oldShortOut = currRing->ShortOut;
258  currRing->ShortOut = 1;
259  }
260  int t=v->Typ();
261  Print("// %s %s ",v->Name(),Tok2Cmdname(t));
262  switch (t)
263  {
264  case MAP_CMD:Print(" from %s\n",((map)(v->Data()))->preimage); break;
265  case INTMAT_CMD: Print(" %d x %d\n",((intvec*)(v->Data()))->rows(),
266  ((intvec*)(v->Data()))->cols()); break;
267  case MATRIX_CMD:Print(" %u x %u\n" ,
268  MATROWS((matrix)(v->Data())),
269  MATCOLS((matrix)(v->Data())));break;
270  case MODUL_CMD: Print(", rk %d\n", (int)(((ideal)(v->Data()))->rank));break;
271  case LIST_CMD: Print(", size %d\n",((lists)(v->Data()))->nr+1); break;
272 
273  case PROC_CMD:
274  case RING_CMD:
275  case IDEAL_CMD:
276  case QRING_CMD: PrintLn(); break;
277 
278  //case INT_CMD:
279  //case STRING_CMD:
280  //case INTVEC_CMD:
281  //case POLY_CMD:
282  //case VECTOR_CMD:
283  //case PACKAGE_CMD:
284 
285  default:
286  break;
287  }
288  v->Print();
289  if (currRing != NULL)
290  currRing->ShortOut = oldShortOut;
291 }
292 
293 static void killlocals0(int v, idhdl * localhdl, const ring r)
294 {
295  idhdl h = *localhdl;
296  while (h!=NULL)
297  {
298  int vv;
299  //Print("consider %s, lev: %d:",IDID(h),IDLEV(h));
300  if ((vv=IDLEV(h))>0)
301  {
302  if (vv < v)
303  {
304  if (iiNoKeepRing)
305  {
306  //PrintS(" break\n");
307  return;
308  }
309  h = IDNEXT(h);
310  //PrintLn();
311  }
312  else //if (vv >= v)
313  {
314  idhdl nexth = IDNEXT(h);
315  killhdl2(h,localhdl,r);
316  h = nexth;
317  //PrintS("kill\n");
318  }
319  }
320  else
321  {
322  h = IDNEXT(h);
323  //PrintLn();
324  }
325  }
326 }
327 
328 void killlocals_rec(idhdl *root,int v, ring r)
329 {
330  idhdl h=*root;
331  while (h!=NULL)
332  {
333  if (IDLEV(h)>=v)
334  {
335 // Print("kill %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
336  idhdl n=IDNEXT(h);
337  killhdl2(h,root,r);
338  h=n;
339  }
340  else if (IDTYP(h)==PACKAGE_CMD)
341  {
342  // Print("into pack %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
343  if (IDPACKAGE(h)!=basePack)
344  killlocals_rec(&(IDRING(h)->idroot),v,r);
345  h=IDNEXT(h);
346  }
347  else if ((IDTYP(h)==RING_CMD)
348  ||(IDTYP(h)==QRING_CMD))
349  {
350  if ((IDRING(h)!=NULL) && (IDRING(h)->idroot!=NULL))
351  // we have to test IDRING(h)!=NULL: qring Q=groebner(...): killlocals
352  {
353  // Print("into ring %s, lev %d for lev %d\n",IDID(h),IDLEV(h),v);
354  killlocals_rec(&(IDRING(h)->idroot),v,IDRING(h));
355  }
356  h=IDNEXT(h);
357  }
358  else
359  {
360 // Print("skip %s lev %d for lev %d\n",IDID(h),IDLEV(h),v);
361  h=IDNEXT(h);
362  }
363  }
364 }
366 {
367  if (L==NULL) return FALSE;
368  BOOLEAN changed=FALSE;
369  int n=L->nr;
370  for(;n>=0;n--)
371  {
372  leftv h=&(L->m[n]);
373  void *d=h->data;
374  if (((h->rtyp==RING_CMD) || (h->rtyp==QRING_CMD))
375  && (((ring)d)->idroot!=NULL))
376  {
377  if (d!=currRing) {changed=TRUE;rChangeCurrRing((ring)d);}
378  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
379  }
380  else if (h->rtyp==LIST_CMD)
381  changed|=killlocals_list(v,(lists)d);
382  }
383  return changed;
384 }
385 void killlocals(int v)
386 {
387  BOOLEAN changed=FALSE;
388  idhdl sh=currRingHdl;
389  ring cr=currRing;
390  if (sh!=NULL) changed=((IDLEV(sh)<v) || (IDRING(sh)->ref>0));
391  //if (changed) Print("currRing=%s(%x), lev=%d,ref=%d\n",IDID(sh),IDRING(sh),IDLEV(sh),IDRING(sh)->ref);
392 
393  killlocals_rec(&(basePack->idroot),v,currRing);
394 
396  {
397  int t=iiRETURNEXPR.Typ();
398  if ((/*iiRETURNEXPR.Typ()*/ t==RING_CMD)
399  || (/*iiRETURNEXPR.Typ()*/ t==QRING_CMD))
400  {
402  if (((ring)h->data)->idroot!=NULL)
403  killlocals0(v,&(((ring)h->data)->idroot),(ring)h->data);
404  }
405  else if (/*iiRETURNEXPR.Typ()*/ t==LIST_CMD)
406  {
408  changed |=killlocals_list(v,(lists)h->data);
409  }
410  }
411  if (changed)
412  {
414  if (currRingHdl==NULL)
415  currRing=NULL;
416  else if(cr!=currRing)
417  rChangeCurrRing(cr);
418  }
419 
420  if (myynest<=1) iiNoKeepRing=TRUE;
421  //Print("end killlocals >= %d\n",v);
422  //listall();
423 }
424 
425 void list_cmd(int typ, const char* what, const char *prefix,BOOLEAN iterate, BOOLEAN fullname)
426 {
427  package savePack=currPack;
428  idhdl h,start;
429  BOOLEAN all = typ<0;
430  BOOLEAN really_all=FALSE;
431 
432  if ( typ==0 )
433  {
434  if (strcmp(what,"all")==0)
435  {
436  if (currPack!=basePack)
437  list_cmd(-1,NULL,prefix,iterate,fullname); // list current package
438  really_all=TRUE;
439  h=basePack->idroot;
440  }
441  else
442  {
443  h = ggetid(what);
444  if (h!=NULL)
445  {
446  if (iterate) list1(prefix,h,TRUE,fullname);
447  if (IDTYP(h)==ALIAS_CMD) PrintS("A");
448  if ((IDTYP(h)==RING_CMD)
449  || (IDTYP(h)==QRING_CMD)
450  //|| (IDTYP(h)==PACKE_CMD)
451  )
452  {
453  h=IDRING(h)->idroot;
454  }
455  else if(IDTYP(h)==PACKAGE_CMD)
456  {
457  currPack=IDPACKAGE(h);
458  //Print("list_cmd:package\n");
459  all=TRUE;typ=PROC_CMD;fullname=TRUE;really_all=TRUE;
460  h=IDPACKAGE(h)->idroot;
461  }
462  else
463  {
464  currPack=savePack;
465  return;
466  }
467  }
468  else
469  {
470  Werror("%s is undefined",what);
471  currPack=savePack;
472  return;
473  }
474  }
475  all=TRUE;
476  }
477  else if (RingDependend(typ))
478  {
479  h = currRing->idroot;
480  }
481  else
482  h = IDROOT;
483  start=h;
484  while (h!=NULL)
485  {
486  if ((all
487  && (IDTYP(h)!=PROC_CMD)
488  &&(IDTYP(h)!=PACKAGE_CMD)
489  #ifdef SINGULAR_4_1
490  &&(IDTYP(h)!=CRING_CMD)
491  #endif
492  )
493  || (typ == IDTYP(h))
494  #ifdef SINGULAR_4_1
495  || ((IDTYP(h)==CRING_CMD) && (typ==RING_CMD))
496  #else
497  || ((IDTYP(h)==QRING_CMD) && (typ==RING_CMD))
498  #endif
499  )
500  {
501  list1(prefix,h,start==currRingHdl, fullname);
502  if (((IDTYP(h)==RING_CMD)||(IDTYP(h)==QRING_CMD))
503  && (really_all || (all && (h==currRingHdl)))
504  && ((IDLEV(h)==0)||(IDLEV(h)==myynest)))
505  {
506  list_cmd(0,IDID(h),"// ",FALSE);
507  }
508  if (IDTYP(h)==PACKAGE_CMD && really_all)
509  {
510  package save_p=currPack;
511  currPack=IDPACKAGE(h);
512  list_cmd(0,IDID(h),"// ",FALSE);
513  currPack=save_p;
514  }
515  }
516  h = IDNEXT(h);
517  }
518  currPack=savePack;
519 }
520 
521 void test_cmd(int i)
522 {
523  int ii;
524 
525  if (i<0)
526  {
527  ii= -i;
528  if (ii < 32)
529  {
530  si_opt_1 &= ~Sy_bit(ii);
531  }
532  else if (ii < 64)
533  {
534  si_opt_2 &= ~Sy_bit(ii-32);
535  }
536  else
537  WerrorS("out of bounds\n");
538  }
539  else if (i<32)
540  {
541  ii=i;
542  if (Sy_bit(ii) & kOptions)
543  {
544  Warn("Gerhard, use the option command");
545  si_opt_1 |= Sy_bit(ii);
546  }
547  else if (Sy_bit(ii) & validOpts)
548  si_opt_1 |= Sy_bit(ii);
549  }
550  else if (i<64)
551  {
552  ii=i-32;
553  si_opt_2 |= Sy_bit(ii);
554  }
555  else
556  WerrorS("out of bounds\n");
557 }
558 
560 {
561  int rc = 0;
562  while (v!=NULL)
563  {
564  switch (v->Typ())
565  {
566  case INT_CMD:
567  case POLY_CMD:
568  case VECTOR_CMD:
569  case NUMBER_CMD:
570  rc++;
571  break;
572  case INTVEC_CMD:
573  case INTMAT_CMD:
574  rc += ((intvec *)(v->Data()))->length();
575  break;
576  case MATRIX_CMD:
577  case IDEAL_CMD:
578  case MODUL_CMD:
579  {
580  matrix mm = (matrix)(v->Data());
581  rc += mm->rows() * mm->cols();
582  }
583  break;
584  case LIST_CMD:
585  rc+=((lists)v->Data())->nr+1;
586  break;
587  default:
588  rc++;
589  }
590  v = v->next;
591  }
592  return rc;
593 }
594 
596 {
597  sleftv vf;
598  if (iiConvert(v->Typ(),LINK_CMD,iiTestConvert(v->Typ(),LINK_CMD),v,&vf))
599  {
600  WerrorS("link expected");
601  return TRUE;
602  }
603  si_link l=(si_link)vf.Data();
604  if (vf.next == NULL)
605  {
606  WerrorS("write: need at least two arguments");
607  return TRUE;
608  }
609 
610  BOOLEAN b=slWrite(l,vf.next); /* iiConvert preserves next */
611  if (b)
612  {
613  const char *s;
614  if ((l!=NULL)&&(l->name!=NULL)) s=l->name;
615  else s=sNoName;
616  Werror("cannot write to %s",s);
617  }
618  vf.CleanUp();
619  return b;
620 }
621 
622 leftv iiMap(map theMap, const char * what)
623 {
624  idhdl w,r;
625  leftv v;
626  int i;
627  nMapFunc nMap;
628 
629  r=IDROOT->get(theMap->preimage,myynest);
630  if ((currPack!=basePack)
631  &&((r==NULL) || ((r->typ != RING_CMD) && (r->typ != QRING_CMD))))
632  r=basePack->idroot->get(theMap->preimage,myynest);
633  if ((r==NULL) && (currRingHdl!=NULL)
634  && (strcmp(theMap->preimage,IDID(currRingHdl))==0))
635  {
636  r=currRingHdl;
637  }
638  if ((r!=NULL) && ((r->typ == RING_CMD) || (r->typ== QRING_CMD)))
639  {
640  ring src_ring=IDRING(r);
641  if ((nMap=n_SetMap(src_ring->cf, currRing->cf))==NULL)
642  {
643  Werror("can not map from ground field of %s to current ground field",
644  theMap->preimage);
645  return NULL;
646  }
647  if (IDELEMS(theMap)<src_ring->N)
648  {
649  theMap->m=(polyset)omReallocSize((ADDRESS)theMap->m,
650  IDELEMS(theMap)*sizeof(poly),
651  (src_ring->N)*sizeof(poly));
652  for(i=IDELEMS(theMap);i<src_ring->N;i++)
653  theMap->m[i]=NULL;
654  IDELEMS(theMap)=src_ring->N;
655  }
656  if (what==NULL)
657  {
658  WerrorS("argument of a map must have a name");
659  }
660  else if ((w=src_ring->idroot->get(what,myynest))!=NULL)
661  {
662  char *save_r=NULL;
664  sleftv tmpW;
665  memset(&tmpW,0,sizeof(sleftv));
666  tmpW.rtyp=IDTYP(w);
667  if (tmpW.rtyp==MAP_CMD)
668  {
669  tmpW.rtyp=IDEAL_CMD;
670  save_r=IDMAP(w)->preimage;
671  IDMAP(w)->preimage=0;
672  }
673  tmpW.data=IDDATA(w);
674  // check overflow
675  BOOLEAN overflow=FALSE;
676  if ((tmpW.rtyp==IDEAL_CMD)
677  || (tmpW.rtyp==MODUL_CMD)
678  || (tmpW.rtyp==MAP_CMD))
679  {
680  ideal id=(ideal)tmpW.data;
681  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
682  {
683  if (theMap->m[j]!=NULL)
684  {
685  long deg_monexp=pTotaldegree(theMap->m[j]);
686  for(int i=IDELEMS(id)-1;i>=0;i--)
687  {
688  poly p=id->m[i];
689  if ((p!=NULL) && (p_Totaldegree(p,src_ring)!=0) &&
690  ((unsigned long)deg_monexp > (currRing->bitmask / (unsigned long)p_Totaldegree(p,src_ring)/2)))
691  {
692  overflow=TRUE;
693  break;
694  }
695  }
696  }
697  }
698  }
699  else if (tmpW.rtyp==POLY_CMD)
700  {
701  for(int j=IDELEMS(theMap)-1;j>=0 && !overflow;j--)
702  {
703  if (theMap->m[j]!=NULL)
704  {
705  long deg_monexp=pTotaldegree(theMap->m[j]);
706  poly p=(poly)tmpW.data;
707  if ((p!=NULL) && (p_Totaldegree(p,src_ring)!=0) &&
708  ((unsigned long)deg_monexp > (currRing->bitmask / (unsigned long)p_Totaldegree(p,src_ring)/2)))
709  {
710  overflow=TRUE;
711  break;
712  }
713  }
714  }
715  }
716  if (overflow)
717  Warn("possible OVERFLOW in map, max exponent is %ld",currRing->bitmask/2);
718 #if 0
719  if (((tmpW.rtyp==IDEAL_CMD)||(tmpW.rtyp==MODUL_CMD)) && idIs0(IDIDEAL(w)))
720  {
721  v->rtyp=tmpW.rtyp;
722  v->data=idInit(IDELEMS(IDIDEAL(w)),IDIDEAL(w)->rank);
723  }
724  else
725 #endif
726  {
727 #ifdef FAST_MAP
728  if ((tmpW.rtyp==IDEAL_CMD) && (nMap == ndCopyMap)
729 #ifdef HAVE_PLURAL
730  && (!rIsPluralRing(currRing))
731 #endif
732  )
733  {
734  v->rtyp=IDEAL_CMD;
735  char *tmp = theMap->preimage;
736  theMap->preimage=(char*)1L;
737  // map gets 1 as its rank (as an ideal)
738  v->data=fast_map(IDIDEAL(w), src_ring, (ideal)theMap, currRing);
739  theMap->preimage=tmp; // map gets its preimage back
740  }
741  else
742 #endif
743  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,src_ring,NULL,NULL,0,nMap))
744  {
745  Werror("cannot map %s(%d)",Tok2Cmdname(w->typ),w->typ);
747  if (save_r!=NULL) IDMAP(w)->preimage=save_r;
748  return NULL;
749  }
750  }
751  if (save_r!=NULL)
752  {
753  IDMAP(w)->preimage=save_r;
754  IDMAP((idhdl)v)->preimage=omStrDup(save_r);
755  v->rtyp=MAP_CMD;
756  }
757  return v;
758  }
759  else
760  {
761  Werror("%s undefined in %s",what,theMap->preimage);
762  }
763  }
764  else
765  {
766  Werror("cannot find preimage %s",theMap->preimage);
767  }
768  return NULL;
769 }
770 
771 #ifdef OLD_RES
772 void iiMakeResolv(resolvente r, int length, int rlen, char * name, int typ0,
773  intvec ** weights)
774 {
775  lists L=liMakeResolv(r,length,rlen,typ0,weights);
776  int i=0;
777  idhdl h;
778  char * s=(char *)omAlloc(strlen(name)+5);
779 
780  while (i<=L->nr)
781  {
782  sprintf(s,"%s(%d)",name,i+1);
783  if (i==0)
784  h=enterid(s,myynest,typ0,&(currRing->idroot), FALSE);
785  else
786  h=enterid(s,myynest,MODUL_CMD,&(currRing->idroot), FALSE);
787  if (h!=NULL)
788  {
789  h->data.uideal=(ideal)L->m[i].data;
790  h->attribute=L->m[i].attribute;
792  Print("//defining: %s as %d-th syzygy module\n",s,i+1);
793  }
794  else
795  {
796  idDelete((ideal *)&(L->m[i].data));
797  Warn("cannot define %s",s);
798  }
799  //L->m[i].data=NULL;
800  //L->m[i].rtyp=0;
801  //L->m[i].attribute=NULL;
802  i++;
803  }
804  omFreeSize((ADDRESS)L->m,(L->nr+1)*sizeof(sleftv));
806  omFreeSize((ADDRESS)s,strlen(name)+5);
807 }
808 #endif
809 
810 //resolvente iiFindRes(char * name, int * len, int *typ0)
811 //{
812 // char *s=(char *)omAlloc(strlen(name)+5);
813 // int i=-1;
814 // resolvente r;
815 // idhdl h;
816 //
817 // do
818 // {
819 // i++;
820 // sprintf(s,"%s(%d)",name,i+1);
821 // h=currRing->idroot->get(s,myynest);
822 // } while (h!=NULL);
823 // *len=i-1;
824 // if (*len<=0)
825 // {
826 // Werror("no objects %s(1),.. found",name);
827 // omFreeSize((ADDRESS)s,strlen(name)+5);
828 // return NULL;
829 // }
830 // r=(ideal *)omAlloc(/*(len+1)*/ i*sizeof(ideal));
831 // memset(r,0,(*len)*sizeof(ideal));
832 // i=-1;
833 // *typ0=MODUL_CMD;
834 // while (i<(*len))
835 // {
836 // i++;
837 // sprintf(s,"%s(%d)",name,i+1);
838 // h=currRing->idroot->get(s,myynest);
839 // if (h->typ != MODUL_CMD)
840 // {
841 // if ((i!=0) || (h->typ!=IDEAL_CMD))
842 // {
843 // Werror("%s is not of type module",s);
844 // omFreeSize((ADDRESS)r,(*len)*sizeof(ideal));
845 // omFreeSize((ADDRESS)s,strlen(name)+5);
846 // return NULL;
847 // }
848 // *typ0=IDEAL_CMD;
849 // }
850 // if ((i>0) && (idIs0(r[i-1])))
851 // {
852 // *len=i-1;
853 // break;
854 // }
855 // r[i]=IDIDEAL(h);
856 // }
857 // omFreeSize((ADDRESS)s,strlen(name)+5);
858 // return r;
859 //}
860 
862 {
863  int i;
864  resolvente res=(ideal *)omAlloc0((l+1)*sizeof(ideal));
865 
866  for (i=0; i<l; i++)
867  if (r[i]!=NULL) res[i]=idCopy(r[i]);
868  return res;
869 }
870 
872 {
873  int len=0;
874  int typ0;
875  lists L=(lists)v->Data();
876  intvec *weights=(intvec*)atGet(v,"isHomog",INTVEC_CMD);
877  int add_row_shift = 0;
878  if (weights==NULL)
879  weights=(intvec*)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
880  if (weights!=NULL) add_row_shift=weights->min_in();
881  resolvente rr=liFindRes(L,&len,&typ0);
882  if (rr==NULL) return TRUE;
883  resolvente r=iiCopyRes(rr,len);
884 
885  syMinimizeResolvente(r,len,0);
886  omFreeSize((ADDRESS)rr,len*sizeof(ideal));
887  len++;
888  res->data=(char *)liMakeResolv(r,len,-1,typ0,NULL,add_row_shift);
889  return FALSE;
890 }
891 
893 {
894  sleftv tmp;
895  memset(&tmp,0,sizeof(tmp));
896  tmp.rtyp=INT_CMD;
897  tmp.data=(void *)1;
898  if ((u->Typ()==IDEAL_CMD)
899  || (u->Typ()==MODUL_CMD))
900  return jjBETTI2_ID(res,u,&tmp);
901  else
902  return jjBETTI2(res,u,&tmp);
903 }
904 
906 {
908  l->Init(1);
909  l->m[0].rtyp=u->Typ();
910  l->m[0].data=u->Data();
911  attr *a=u->Attribute();
912  if (a!=NULL)
913  l->m[0].attribute=*a;
914  sleftv tmp2;
915  memset(&tmp2,0,sizeof(tmp2));
916  tmp2.rtyp=LIST_CMD;
917  tmp2.data=(void *)l;
918  BOOLEAN r=jjBETTI2(res,&tmp2,v);
919  l->m[0].data=NULL;
920  l->m[0].attribute=NULL;
921  l->m[0].rtyp=DEF_CMD;
922  l->Clean();
923  return r;
924 }
925 
927 {
928  resolvente r;
929  int len;
930  int reg,typ0;
931  lists l=(lists)u->Data();
932 
933  intvec *weights=NULL;
934  int add_row_shift=0;
935  intvec *ww=(intvec *)atGet(&(l->m[0]),"isHomog",INTVEC_CMD);
936  if (ww!=NULL)
937  {
938  weights=ivCopy(ww);
939  add_row_shift = ww->min_in();
940  (*weights) -= add_row_shift;
941  }
942  //Print("attr:%x\n",weights);
943 
944  r=liFindRes(l,&len,&typ0);
945  if (r==NULL) return TRUE;
946  res->data=(char *)syBetti(r,len,&reg,weights,(int)(long)v->Data());
947  omFreeSize((ADDRESS)r,(len)*sizeof(ideal));
948  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
949  if (weights!=NULL) delete weights;
950  return FALSE;
951 }
952 
954 {
955  int len,reg,typ0;
956 
957  resolvente r=liFindRes(L,&len,&typ0);
958 
959  if (r==NULL)
960  return -2;
961  intvec *weights=NULL;
962  int add_row_shift=0;
963  intvec *ww=(intvec *)atGet(&(L->m[0]),"isHomog",INTVEC_CMD);
964  if (ww!=NULL)
965  {
966  weights=ivCopy(ww);
967  add_row_shift = ww->min_in();
968  (*weights) -= add_row_shift;
969  }
970  //Print("attr:%x\n",weights);
971 
972  intvec *dummy=syBetti(r,len,&reg,weights);
973  if (weights!=NULL) delete weights;
974  delete dummy;
975  omFreeSize((ADDRESS)r,len*sizeof(ideal));
976  return reg+1+add_row_shift;
977 }
978 
980 #define BREAK_LINE_LENGTH 80
981 void iiDebug()
982 {
983 #ifdef HAVE_SDB
984  sdb_flags=1;
985 #endif
986  Print("\n-- break point in %s --\n",VoiceName());
987  if (iiDebugMarker) VoiceBackTrack();
988  char * s;
989  iiDebugMarker=FALSE;
990  s = (char *)omAlloc(BREAK_LINE_LENGTH+4);
991  loop
992  {
993  memset(s,0,80);
995  if (s[BREAK_LINE_LENGTH-1]!='\0')
996  {
997  Print("line too long, max is %d chars\n",BREAK_LINE_LENGTH);
998  }
999  else
1000  break;
1001  }
1002  if (*s=='\n')
1003  {
1004  iiDebugMarker=TRUE;
1005  }
1006 #if MDEBUG
1007  else if(strncmp(s,"cont;",5)==0)
1008  {
1009  iiDebugMarker=TRUE;
1010  }
1011 #endif /* MDEBUG */
1012  else
1013  {
1014  strcat( s, "\n;~\n");
1015  newBuffer(s,BT_execute);
1016  }
1017 }
1018 
1019 lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
1020 {
1021  int i;
1022  indset save;
1024 
1025  hexist = hInit(S, Q, &hNexist, currRing);
1026  if (hNexist == 0)
1027  {
1028  intvec *iv=new intvec(rVar(currRing));
1029  for(i=0; i<rVar(currRing); i++) (*iv)[i]=1;
1030  res->Init(1);
1031  res->m[0].rtyp=INTVEC_CMD;
1032  res->m[0].data=(intvec*)iv;
1033  return res;
1034  }
1035  else if (hisModule!=0)
1036  {
1037  res->Init(0);
1038  return res;
1039  }
1040  save = ISet = (indset)omAlloc0Bin(indlist_bin);
1041  hMu = 0;
1042  hwork = (scfmon)omAlloc(hNexist * sizeof(scmon));
1043  hvar = (varset)omAlloc((rVar(currRing) + 1) * sizeof(int));
1044  hpure = (scmon)omAlloc((1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1045  hrad = hexist;
1046  hNrad = hNexist;
1047  radmem = hCreate(rVar(currRing) - 1);
1048  hCo = rVar(currRing) + 1;
1049  hNvar = rVar(currRing);
1050  hRadical(hrad, &hNrad, hNvar);
1051  hSupp(hrad, hNrad, hvar, &hNvar);
1052  if (hNvar)
1053  {
1054  hCo = hNvar;
1055  memset(hpure, 0, (rVar(currRing) + 1) * sizeof(long));
1056  hPure(hrad, 0, &hNrad, hvar, hNvar, hpure, &hNpure);
1057  hLexR(hrad, hNrad, hvar, hNvar);
1059  }
1060  if (hCo && (hCo < rVar(currRing)))
1061  {
1063  }
1064  if (hMu!=0)
1065  {
1066  ISet = save;
1067  hMu2 = 0;
1068  if (all && (hCo+1 < rVar(currRing)))
1069  {
1072  i=hMu+hMu2;
1073  res->Init(i);
1074  if (hMu2 == 0)
1075  {
1077  }
1078  }
1079  else
1080  {
1081  res->Init(hMu);
1082  }
1083  for (i=0;i<hMu;i++)
1084  {
1085  res->m[i].data = (void *)save->set;
1086  res->m[i].rtyp = INTVEC_CMD;
1087  ISet = save;
1088  save = save->nx;
1090  }
1091  omFreeBin((ADDRESS)save, indlist_bin);
1092  if (hMu2 != 0)
1093  {
1094  save = JSet;
1095  for (i=hMu;i<hMu+hMu2;i++)
1096  {
1097  res->m[i].data = (void *)save->set;
1098  res->m[i].rtyp = INTVEC_CMD;
1099  JSet = save;
1100  save = save->nx;
1102  }
1103  omFreeBin((ADDRESS)save, indlist_bin);
1104  }
1105  }
1106  else
1107  {
1108  res->Init(0);
1110  }
1111  hKill(radmem, rVar(currRing) - 1);
1112  omFreeSize((ADDRESS)hpure, (1 + (rVar(currRing) * rVar(currRing))) * sizeof(long));
1113  omFreeSize((ADDRESS)hvar, (rVar(currRing) + 1) * sizeof(int));
1114  omFreeSize((ADDRESS)hwork, hNexist * sizeof(scmon));
1116  return res;
1117 }
1118 
1119 int iiDeclCommand(leftv sy, leftv name, int lev,int t, idhdl* root,BOOLEAN isring, BOOLEAN init_b)
1120 {
1121  BOOLEAN res=FALSE;
1122  const char *id = name->name;
1123 
1124  memset(sy,0,sizeof(sleftv));
1125  if ((name->name==NULL)||(isdigit(name->name[0])))
1126  {
1127  WerrorS("object to declare is not a name");
1128  res=TRUE;
1129  }
1130  else
1131  {
1132  if (TEST_V_ALLWARN
1133  && (name->rtyp!=0)
1134  && (name->rtyp!=IDHDL)
1135  && (currRingHdl!=NULL) && (IDLEV(currRingHdl)==myynest))
1136  {
1137  Warn("`%s` is %s in %s:%d:%s",name->name,Tok2Cmdname(name->rtyp),
1139  }
1140  {
1141  sy->data = (char *)enterid(id,lev,t,root,init_b);
1142  }
1143  if (sy->data!=NULL)
1144  {
1145  sy->rtyp=IDHDL;
1146  currid=sy->name=IDID((idhdl)sy->data);
1147  // name->name=NULL; /* used in enterid */
1148  //sy->e = NULL;
1149  if (name->next!=NULL)
1150  {
1152  res=iiDeclCommand(sy->next,name->next,lev,t,root, isring);
1153  }
1154  }
1155  else res=TRUE;
1156  }
1157  name->CleanUp();
1158  return res;
1159 }
1160 
1162 {
1163  attr at=NULL;
1164  if (iiCurrProc!=NULL)
1165  at=iiCurrProc->attribute->get("default_arg");
1166  if (at==NULL)
1167  return FALSE;
1168  sleftv tmp;
1169  memset(&tmp,0,sizeof(sleftv));
1170  tmp.rtyp=at->atyp;
1171  tmp.data=at->CopyA();
1172  return iiAssign(p,&tmp);
1173 }
1175 {
1176  // <string1...stringN>,<proc>
1177  // known: args!=NULL, l>=1
1178  int l=args->listLength();
1179  int ll=0;
1180  if (iiCurrArgs!=NULL) ll=iiCurrArgs->listLength();
1181  if (ll!=(l-1)) return FALSE;
1182  leftv h=args;
1183  short *t=(short*)omAlloc(l*sizeof(short));
1184  t[0]=l-1;
1185  int b;
1186  int i;
1187  for(i=1;i<l;i++,h=h->next)
1188  {
1189  if (h->Typ()!=STRING_CMD)
1190  {
1191  omFree(t);
1192  Werror("arg %d is not a string",i);
1193  return TRUE;
1194  }
1195  int tt;
1196  b=IsCmd((char *)h->Data(),tt);
1197  if(b) t[i]=tt;
1198  else
1199  {
1200  omFree(t);
1201  Werror("arg %d is not a type name",i);
1202  return TRUE;
1203  }
1204  }
1205  if (h->Typ()!=PROC_CMD)
1206  {
1207  omFree(t);
1208  Werror("last arg (%d) is not a proc",i);
1209  return TRUE;
1210  }
1211  b=iiCheckTypes(iiCurrArgs,t,0);
1212  omFree(t);
1213  if (b && (h->rtyp==IDHDL) && (h->e==NULL))
1214  {
1215  BOOLEAN err;
1216  //Print("branchTo: %s\n",h->Name());
1217  iiCurrProc=(idhdl)h->data;
1218  procinfo * pi=IDPROC(iiCurrProc);
1219  if( pi->data.s.body==NULL )
1220  {
1222  if (pi->data.s.body==NULL) return TRUE;
1223  }
1224  if ((pi->pack!=NULL)&&(currPack!=pi->pack))
1225  {
1226  currPack=pi->pack;
1229  //Print("set pack=%s\n",IDID(currPackHdl));
1230  }
1231  err=iiAllStart(pi,pi->data.s.body,BT_proc,pi->data.s.body_lineno-(iiCurrArgs==NULL));
1233  if (iiCurrArgs!=NULL)
1234  {
1235  if (!err) Warn("too many arguments for %s",IDID(iiCurrProc));
1236  iiCurrArgs->CleanUp();
1237  omFreeBin((ADDRESS)iiCurrArgs, sleftv_bin);
1238  iiCurrArgs=NULL;
1239  }
1240  return 2-err;
1241  }
1242  return FALSE;
1243 }
1245 {
1246  if (iiCurrArgs==NULL)
1247  {
1248  if (strcmp(p->name,"#")==0)
1249  return iiDefaultParameter(p);
1250  Werror("not enough arguments for proc %s",VoiceName());
1251  p->CleanUp();
1252  return TRUE;
1253  }
1254  leftv h=iiCurrArgs;
1255  leftv rest=h->next; /*iiCurrArgs is not NULL here*/
1256  BOOLEAN is_default_list=FALSE;
1257  if (strcmp(p->name,"#")==0)
1258  {
1259  is_default_list=TRUE;
1260  rest=NULL;
1261  }
1262  else
1263  {
1264  h->next=NULL;
1265  }
1266  BOOLEAN res=iiAssign(p,h);
1267  if (is_default_list)
1268  {
1269  iiCurrArgs=NULL;
1270  }
1271  else
1272  {
1273  iiCurrArgs=rest;
1274  }
1275  h->CleanUp();
1277  return res;
1278 }
1279 
1280 static BOOLEAN iiInternalExport (leftv v, int toLev)
1281 {
1282  idhdl h=(idhdl)v->data;
1283  //Print("iiInternalExport('%s',%d)%s\n", v->name, toLev,"");
1284  if (IDLEV(h)==0)
1285  {
1286  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(h));
1287  }
1288  else
1289  {
1290  h=IDROOT->get(v->name,toLev);
1291  idhdl *root=&IDROOT;
1292  if ((h==NULL)&&(currRing!=NULL))
1293  {
1294  h=currRing->idroot->get(v->name,toLev);
1295  root=&currRing->idroot;
1296  }
1297  BOOLEAN keepring=FALSE;
1298  if ((h!=NULL)&&(IDLEV(h)==toLev))
1299  {
1300  if (IDTYP(h)==v->Typ())
1301  {
1302  if (((IDTYP(h)==RING_CMD)||(IDTYP(h)==QRING_CMD))
1303  && (v->Data()==IDDATA(h)))
1304  {
1305  IDRING(h)->ref++;
1306  keepring=TRUE;
1307  IDLEV(h)=toLev;
1308  //WarnS("keepring");
1309  return FALSE;
1310  }
1311  if (BVERBOSE(V_REDEFINE))
1312  {
1313  Warn("redefining %s",IDID(h));
1314  }
1315 #ifdef USE_IILOCALRING
1316  if (iiLocalRing[0]==IDRING(h) && (!keepring)) iiLocalRing[0]=NULL;
1317 #else
1319  while (p->next!=NULL) p=p->next;
1320  if ((p->cRing==IDRING(h)) && (!keepring))
1321  {
1322  p->cRing=NULL;
1323  p->cRingHdl=NULL;
1324  }
1325 #endif
1326  killhdl2(h,root,currRing);
1327  }
1328  else
1329  {
1330  return TRUE;
1331  }
1332  }
1333  h=(idhdl)v->data;
1334  IDLEV(h)=toLev;
1335  if (keepring) IDRING(h)->ref--;
1337  //Print("export %s\n",IDID(h));
1338  }
1339  return FALSE;
1340 }
1341 
1342 BOOLEAN iiInternalExport (leftv v, int toLev, package rootpack)
1343 {
1344  idhdl h=(idhdl)v->data;
1345  if(h==NULL)
1346  {
1347  Warn("'%s': no such identifier\n", v->name);
1348  return FALSE;
1349  }
1350  package frompack=v->req_packhdl;
1351  if (frompack==NULL) frompack=currPack;
1352  if ((RingDependend(IDTYP(h)))
1353  || ((IDTYP(h)==LIST_CMD)
1354  && (lRingDependend(IDLIST(h)))
1355  )
1356  )
1357  {
1358  //Print("// ==> Ringdependent set nesting to 0\n");
1359  return (iiInternalExport(v, toLev));
1360  }
1361  else
1362  {
1363  IDLEV(h)=toLev;
1364  v->req_packhdl=rootpack;
1365  if (h==frompack->idroot)
1366  {
1367  frompack->idroot=h->next;
1368  }
1369  else
1370  {
1371  idhdl hh=frompack->idroot;
1372  while ((hh!=NULL) && (hh->next!=h))
1373  hh=hh->next;
1374  if ((hh!=NULL) && (hh->next==h))
1375  hh->next=h->next;
1376  else
1377  {
1378  Werror("`%s` not found",v->Name());
1379  return TRUE;
1380  }
1381  }
1382  h->next=rootpack->idroot;
1383  rootpack->idroot=h;
1384  }
1385  return FALSE;
1386 }
1387 
1388 BOOLEAN iiExport (leftv v, int toLev)
1389 {
1390  BOOLEAN nok=FALSE;
1391  leftv r=v;
1392  while (v!=NULL)
1393  {
1394  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL))
1395  {
1396  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1397  nok=TRUE;
1398  }
1399  else
1400  {
1401  if(iiInternalExport(v, toLev))
1402  {
1403  r->CleanUp();
1404  return TRUE;
1405  }
1406  }
1407  v=v->next;
1408  }
1409  r->CleanUp();
1410  return nok;
1411 }
1412 
1413 /*assume root!=idroot*/
1414 BOOLEAN iiExport (leftv v, int toLev, package pack)
1415 {
1416 #ifdef SINGULAR_4_1
1417  if ((pack==basePack)&&(pack!=currPack))
1418  { Warn("'exportto' to Top is depreciated in >>%s<<",my_yylinebuf);}
1419 #endif
1420  BOOLEAN nok=FALSE;
1421  leftv rv=v;
1422  while (v!=NULL)
1423  {
1424  if ((v->name==NULL)||(v->rtyp==0)||(v->e!=NULL)
1425  )
1426  {
1427  Werror("cannot export:%s of internal type %d",v->name,v->rtyp);
1428  nok=TRUE;
1429  }
1430  else
1431  {
1432  idhdl old=pack->idroot->get( v->name,toLev);
1433  if (old!=NULL)
1434  {
1435  if ((pack==currPack) && (old==(idhdl)v->data))
1436  {
1437  if (BVERBOSE(V_REDEFINE)) Warn("`%s` is already global",IDID(old));
1438  break;
1439  }
1440  else if (IDTYP(old)==v->Typ())
1441  {
1442  if (BVERBOSE(V_REDEFINE))
1443  {
1444  Warn("redefining %s",IDID(old));
1445  }
1446  v->name=omStrDup(v->name);
1447  killhdl2(old,&(pack->idroot),currRing);
1448  }
1449  else
1450  {
1451  rv->CleanUp();
1452  return TRUE;
1453  }
1454  }
1455  //Print("iiExport: pack=%s\n",IDID(root));
1456  if(iiInternalExport(v, toLev, pack))
1457  {
1458  rv->CleanUp();
1459  return TRUE;
1460  }
1461  }
1462  v=v->next;
1463  }
1464  rv->CleanUp();
1465  return nok;
1466 }
1467 
1469 {
1470  if (currRing==NULL)
1471  {
1472  #ifdef SIQ
1473  if (siq<=0)
1474  {
1475  #endif
1476  if (RingDependend(i))
1477  {
1478  WerrorS("no ring active");
1479  return TRUE;
1480  }
1481  #ifdef SIQ
1482  }
1483  #endif
1484  }
1485  return FALSE;
1486 }
1487 
1488 poly iiHighCorner(ideal I, int ak)
1489 {
1490  int i;
1491  if(!idIsZeroDim(I)) return NULL; // not zero-dim.
1492  poly po=NULL;
1494  {
1495  scComputeHC(I,currRing->qideal,ak,po);
1496  if (po!=NULL)
1497  {
1498  pGetCoeff(po)=nInit(1);
1499  for (i=rVar(currRing); i>0; i--)
1500  {
1501  if (pGetExp(po, i) > 0) pDecrExp(po,i);
1502  }
1503  pSetComp(po,ak);
1504  pSetm(po);
1505  }
1506  }
1507  else
1508  po=pOne();
1509  return po;
1510 }
1511 
1513 {
1514  if (p==basePack) return;
1515 
1516  idhdl t=basePack->idroot;
1517 
1518  while ((t!=NULL) && (IDTYP(t)!=PACKAGE_CMD) && (IDPACKAGE(t)!=p)) t=t->next;
1519 
1520  if (t==NULL)
1521  {
1522  WarnS("package not found\n");
1523  p=basePack;
1524  }
1525  return;
1526 }
1527 
1528 idhdl rDefault(const char *s)
1529 {
1530  idhdl tmp=NULL;
1531 
1532  if (s!=NULL) tmp = enterid(s, myynest, RING_CMD, &IDROOT);
1533  if (tmp==NULL) return NULL;
1534 
1535 // if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
1537  {
1539  memset(&sLastPrinted,0,sizeof(sleftv));
1540  }
1541 
1542  ring r = IDRING(tmp);
1543 
1544  r->cf = nInitChar(n_Zp, (void*)32003); // r->cf->ch = 32003;
1545  r->N = 3;
1546  /*r->P = 0; Alloc0 in idhdl::set, ipid.cc*/
1547  /*names*/
1548  r->names = (char **) omAlloc0(3 * sizeof(char_ptr));
1549  r->names[0] = omStrDup("x");
1550  r->names[1] = omStrDup("y");
1551  r->names[2] = omStrDup("z");
1552  /*weights: entries for 3 blocks: NULL*/
1553  r->wvhdl = (int **)omAlloc0(3 * sizeof(int_ptr));
1554  /*order: dp,C,0*/
1555  r->order = (int *) omAlloc(3 * sizeof(int *));
1556  r->block0 = (int *)omAlloc0(3 * sizeof(int *));
1557  r->block1 = (int *)omAlloc0(3 * sizeof(int *));
1558  /* ringorder dp for the first block: var 1..3 */
1559  r->order[0] = ringorder_dp;
1560  r->block0[0] = 1;
1561  r->block1[0] = 3;
1562  /* ringorder C for the second block: no vars */
1563  r->order[1] = ringorder_C;
1564  /* the last block: everything is 0 */
1565  r->order[2] = 0;
1566 
1567  /* complete ring intializations */
1568  rComplete(r);
1569  rSetHdl(tmp);
1570  return currRingHdl;
1571 }
1572 
1574 {
1575  idhdl h=rSimpleFindHdl(r,IDROOT,n);
1576  if (h!=NULL) return h;
1577  if (IDROOT!=basePack->idroot) h=rSimpleFindHdl(r,basePack->idroot,n);
1578  if (h!=NULL) return h;
1580  while(p!=NULL)
1581  {
1582  if ((p->cPack!=basePack)
1583  && (p->cPack!=currPack))
1584  h=rSimpleFindHdl(r,p->cPack->idroot,n);
1585  if (h!=NULL) return h;
1586  p=p->next;
1587  }
1588  idhdl tmp=basePack->idroot;
1589  while (tmp!=NULL)
1590  {
1591  if (IDTYP(tmp)==PACKAGE_CMD)
1592  h=rSimpleFindHdl(r,IDPACKAGE(tmp)->idroot,n);
1593  if (h!=NULL) return h;
1594  tmp=IDNEXT(tmp);
1595  }
1596  return NULL;
1597 }
1598 
1599 void rDecomposeCF(leftv h,const ring r,const ring R)
1600 {
1602  L->Init(4);
1603  h->rtyp=LIST_CMD;
1604  h->data=(void *)L;
1605  // 0: char/ cf - ring
1606  // 1: list (var)
1607  // 2: list (ord)
1608  // 3: qideal
1609  // ----------------------------------------
1610  // 0: char/ cf - ring
1611  L->m[0].rtyp=INT_CMD;
1612  L->m[0].data=(void *)(long)r->cf->ch;
1613  // ----------------------------------------
1614  // 1: list (var)
1616  LL->Init(r->N);
1617  int i;
1618  for(i=0; i<r->N; i++)
1619  {
1620  LL->m[i].rtyp=STRING_CMD;
1621  LL->m[i].data=(void *)omStrDup(r->names[i]);
1622  }
1623  L->m[1].rtyp=LIST_CMD;
1624  L->m[1].data=(void *)LL;
1625  // ----------------------------------------
1626  // 2: list (ord)
1628  i=rBlocks(r)-1;
1629  LL->Init(i);
1630  i--;
1631  lists LLL;
1632  for(; i>=0; i--)
1633  {
1634  intvec *iv;
1635  int j;
1636  LL->m[i].rtyp=LIST_CMD;
1638  LLL->Init(2);
1639  LLL->m[0].rtyp=STRING_CMD;
1640  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1641  if (r->block1[i]-r->block0[i] >=0 )
1642  {
1643  j=r->block1[i]-r->block0[i];
1644  if(r->order[i]==ringorder_M) j=(j+1)*(j+1)-1;
1645  iv=new intvec(j+1);
1646  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1647  {
1648  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j];
1649  }
1650  else switch (r->order[i])
1651  {
1652  case ringorder_dp:
1653  case ringorder_Dp:
1654  case ringorder_ds:
1655  case ringorder_Ds:
1656  case ringorder_lp:
1657  for(;j>=0; j--) (*iv)[j]=1;
1658  break;
1659  default: /* do nothing */;
1660  }
1661  }
1662  else
1663  {
1664  iv=new intvec(1);
1665  }
1666  LLL->m[1].rtyp=INTVEC_CMD;
1667  LLL->m[1].data=(void *)iv;
1668  LL->m[i].data=(void *)LLL;
1669  }
1670  L->m[2].rtyp=LIST_CMD;
1671  L->m[2].data=(void *)LL;
1672  // ----------------------------------------
1673  // 3: qideal
1674  L->m[3].rtyp=IDEAL_CMD;
1675  if (nCoeff_is_transExt(R->cf))
1676  L->m[3].data=(void *)idInit(1,1);
1677  else
1678  {
1679  ideal q=idInit(IDELEMS(r->qideal));
1680  q->m[0]=p_Init(R);
1681  pSetCoeff0(q->m[0],(number)(r->qideal->m[0]));
1682  L->m[3].data=(void *)q;
1683 // I->m[0] = pNSet(R->minpoly);
1684  }
1685  // ----------------------------------------
1686 }
1687 #ifdef SINGULAR_4_1
1688 static void rDecomposeC(leftv h,const coeffs C)
1689 /* field is R or C */
1690 {
1692  if (nCoeff_is_long_C(C)) L->Init(3);
1693  else L->Init(2);
1694  h->rtyp=LIST_CMD;
1695  h->data=(void *)L;
1696  // 0: char/ cf - ring
1697  // 1: list (var)
1698  // 2: list (ord)
1699  // ----------------------------------------
1700  // 0: char/ cf - ring
1701  L->m[0].rtyp=INT_CMD;
1702  L->m[0].data=(void *)0;
1703  // ----------------------------------------
1704  // 1:
1706  LL->Init(2);
1707  LL->m[0].rtyp=INT_CMD;
1708  LL->m[0].data=(void *)(long)si_max(C->float_len,SHORT_REAL_LENGTH/2);
1709  LL->m[1].rtyp=INT_CMD;
1710  LL->m[1].data=(void *)(long)si_max(C->float_len2,SHORT_REAL_LENGTH);
1711  L->m[1].rtyp=LIST_CMD;
1712  L->m[1].data=(void *)LL;
1713  // ----------------------------------------
1714  // 2: list (par)
1715  if (nCoeff_is_long_C(C))
1716  {
1717  L->m[2].rtyp=STRING_CMD;
1718  L->m[2].data=(void *)omStrDup(*n_ParameterNames(C));
1719  }
1720  // ----------------------------------------
1721 }
1722 #else
1723 static void rDecomposeC(leftv h,const ring R)
1724 /* field is R or C */
1725 {
1727  if (rField_is_long_C(R)) L->Init(3);
1728  else L->Init(2);
1729  h->rtyp=LIST_CMD;
1730  h->data=(void *)L;
1731  // 0: char/ cf - ring
1732  // 1: list (var)
1733  // 2: list (ord)
1734  // ----------------------------------------
1735  // 0: char/ cf - ring
1736  L->m[0].rtyp=INT_CMD;
1737  L->m[0].data=(void *)0;
1738  // ----------------------------------------
1739  // 1:
1741  LL->Init(2);
1742  LL->m[0].rtyp=INT_CMD;
1743  LL->m[0].data=(void *)(long)si_max(R->cf->float_len,SHORT_REAL_LENGTH/2);
1744  LL->m[1].rtyp=INT_CMD;
1745  LL->m[1].data=(void *)(long)si_max(R->cf->float_len2,SHORT_REAL_LENGTH);
1746  L->m[1].rtyp=LIST_CMD;
1747  L->m[1].data=(void *)LL;
1748  // ----------------------------------------
1749  // 2: list (par)
1750  if (rField_is_long_C(R))
1751  {
1752  L->m[2].rtyp=STRING_CMD;
1753  L->m[2].data=(void *)omStrDup(*rParameter(R));
1754  }
1755  // ----------------------------------------
1756 }
1757 #endif
1758 
1759 #ifdef SINGULAR_4_1
1760 #ifdef HAVE_RINGS
1761 void rDecomposeRing(leftv h,const coeffs C)
1762 /* field is R or C */
1763 {
1765  if (nCoeff_is_Ring(C)) L->Init(1);
1766  else L->Init(2);
1767  h->rtyp=LIST_CMD;
1768  h->data=(void *)L;
1769  // 0: char/ cf - ring
1770  // 1: list (module)
1771  // ----------------------------------------
1772  // 0: char/ cf - ring
1773  L->m[0].rtyp=STRING_CMD;
1774  L->m[0].data=(void *)omStrDup("integer");
1775  // ----------------------------------------
1776  // 1: modulo
1777  if (nCoeff_is_Ring_Z(C)) return;
1779  LL->Init(2);
1780  LL->m[0].rtyp=BIGINT_CMD;
1781  LL->m[0].data=nlMapGMP((number) C->modBase, C, coeffs_BIGINT);
1782  LL->m[1].rtyp=INT_CMD;
1783  LL->m[1].data=(void *) C->modExponent;
1784  L->m[1].rtyp=LIST_CMD;
1785  L->m[1].data=(void *)LL;
1786 }
1787 #endif
1788 #else
1789 #ifdef HAVE_RINGS
1790 void rDecomposeRing(leftv h,const ring R)
1791 /* field is R or C */
1792 {
1794  if (rField_is_Ring_Z(R)) L->Init(1);
1795  else L->Init(2);
1796  h->rtyp=LIST_CMD;
1797  h->data=(void *)L;
1798  // 0: char/ cf - ring
1799  // 1: list (module)
1800  // ----------------------------------------
1801  // 0: char/ cf - ring
1802  L->m[0].rtyp=STRING_CMD;
1803  L->m[0].data=(void *)omStrDup("integer");
1804  // ----------------------------------------
1805  // 1: module
1806  if (rField_is_Ring_Z(R)) return;
1808  LL->Init(2);
1809  LL->m[0].rtyp=BIGINT_CMD;
1810  LL->m[0].data=nlMapGMP((number) R->cf->modBase, R->cf, R->cf); // TODO: what is this?? // extern number nlMapGMP(number from, const coeffs src, const coeffs dst); // FIXME: replace with n_InitMPZ(R->cf->modBase, coeffs_BIGINT); ?
1811  LL->m[1].rtyp=INT_CMD;
1812  LL->m[1].data=(void *) R->cf->modExponent;
1813  L->m[1].rtyp=LIST_CMD;
1814  L->m[1].data=(void *)LL;
1815 }
1816 #endif
1817 #endif
1818 
1819 
1820 #ifdef SINGULAR_4_1
1822 {
1823  assume( C != NULL );
1824 
1825  // sanity check: require currRing==r for rings with polynomial data
1826  if ( nCoeff_is_algExt(C) && (C != currRing->cf))
1827  {
1828  WerrorS("ring with polynomial data must be the base ring or compatible");
1829  return TRUE;
1830  }
1831  if (nCoeff_is_numeric(C))
1832  {
1833  rDecomposeC(res,C);
1834  }
1835 #ifdef HAVE_RINGS
1836  else if (nCoeff_is_Ring(C))
1837  {
1838  rDecomposeRing(res,C);
1839  }
1840 #endif
1841  else if ( C->extRing!=NULL )// nCoeff_is_algExt(r->cf))
1842  {
1843  rDecomposeCF(res, C->extRing, currRing);
1844  }
1845  else if(nCoeff_is_GF(C))
1846  {
1848  Lc->Init(4);
1849  // char:
1850  Lc->m[0].rtyp=INT_CMD;
1851  Lc->m[0].data=(void*)(long)C->m_nfCharQ;
1852  // var:
1854  Lv->Init(1);
1855  Lv->m[0].rtyp=STRING_CMD;
1856  Lv->m[0].data=(void *)omStrDup(*n_ParameterNames(C));
1857  Lc->m[1].rtyp=LIST_CMD;
1858  Lc->m[1].data=(void*)Lv;
1859  // ord:
1861  Lo->Init(1);
1863  Loo->Init(2);
1864  Loo->m[0].rtyp=STRING_CMD;
1865  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
1866 
1867  intvec *iv=new intvec(1); (*iv)[0]=1;
1868  Loo->m[1].rtyp=INTVEC_CMD;
1869  Loo->m[1].data=(void *)iv;
1870 
1871  Lo->m[0].rtyp=LIST_CMD;
1872  Lo->m[0].data=(void*)Loo;
1873 
1874  Lc->m[2].rtyp=LIST_CMD;
1875  Lc->m[2].data=(void*)Lo;
1876  // q-ideal:
1877  Lc->m[3].rtyp=IDEAL_CMD;
1878  Lc->m[3].data=(void *)idInit(1,1);
1879  // ----------------------
1880  res->rtyp=LIST_CMD;
1881  res->data=(void*)Lc;
1882  }
1883  else
1884  {
1885  res->rtyp=INT_CMD;
1886  res->data=(void *)(long)C->ch;
1887  }
1888  // ----------------------------------------
1889  return FALSE;
1890 }
1891 #endif
1892 
1893 #ifdef SINGULAR_4_1
1894 lists rDecompose(const ring r)
1895 {
1896  assume( r != NULL );
1897  const coeffs C = r->cf;
1898  assume( C != NULL );
1899 
1900  // sanity check: require currRing==r for rings with polynomial data
1901  if ( (r!=currRing) && (
1902  (nCoeff_is_algExt(C) && (C != currRing->cf))
1903  || (r->qideal != NULL)
1904 #ifdef HAVE_PLURAL
1905  || (rIsPluralRing(r))
1906 #endif
1907  )
1908  )
1909  {
1910  WerrorS("ring with polynomial data must be the base ring or compatible");
1911  return NULL;
1912  }
1913  // 0: char/ cf - ring
1914  // 1: list (var)
1915  // 2: list (ord)
1916  // 3: qideal
1917  // possibly:
1918  // 4: C
1919  // 5: D
1921  if (rIsPluralRing(r))
1922  L->Init(6);
1923  else
1924  L->Init(4);
1925  // ----------------------------------------
1926  // 0: char/ cf - ring
1927  L->m[0].rtyp=CRING_CMD;
1928  L->m[0].data=(char*)r->cf; r->cf->ref++;
1929  // ----------------------------------------
1930  // 1: list (var)
1932  LL->Init(r->N);
1933  int i;
1934  for(i=0; i<r->N; i++)
1935  {
1936  LL->m[i].rtyp=STRING_CMD;
1937  LL->m[i].data=(void *)omStrDup(r->names[i]);
1938  }
1939  L->m[1].rtyp=LIST_CMD;
1940  L->m[1].data=(void *)LL;
1941  // ----------------------------------------
1942  // 2: list (ord)
1944  i=rBlocks(r)-1;
1945  LL->Init(i);
1946  i--;
1947  lists LLL;
1948  for(; i>=0; i--)
1949  {
1950  intvec *iv;
1951  int j;
1952  LL->m[i].rtyp=LIST_CMD;
1954  LLL->Init(2);
1955  LLL->m[0].rtyp=STRING_CMD;
1956  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
1957 
1958  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
1959  {
1960  assume( r->block0[i] == r->block1[i] );
1961  const int s = r->block0[i];
1962  assume( -2 < s && s < 2);
1963 
1964  iv=new intvec(1);
1965  (*iv)[0] = s;
1966  }
1967  else if (r->block1[i]-r->block0[i] >=0 )
1968  {
1969  int bl=j=r->block1[i]-r->block0[i];
1970  if (r->order[i]==ringorder_M)
1971  {
1972  j=(j+1)*(j+1)-1;
1973  bl=j+1;
1974  }
1975  else if (r->order[i]==ringorder_am)
1976  {
1977  j+=r->wvhdl[i][bl+1];
1978  }
1979  iv=new intvec(j+1);
1980  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
1981  {
1982  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
1983  }
1984  else switch (r->order[i])
1985  {
1986  case ringorder_dp:
1987  case ringorder_Dp:
1988  case ringorder_ds:
1989  case ringorder_Ds:
1990  case ringorder_lp:
1991  for(;j>=0; j--) (*iv)[j]=1;
1992  break;
1993  default: /* do nothing */;
1994  }
1995  }
1996  else
1997  {
1998  iv=new intvec(1);
1999  }
2000  LLL->m[1].rtyp=INTVEC_CMD;
2001  LLL->m[1].data=(void *)iv;
2002  LL->m[i].data=(void *)LLL;
2003  }
2004  L->m[2].rtyp=LIST_CMD;
2005  L->m[2].data=(void *)LL;
2006  // ----------------------------------------
2007  // 3: qideal
2008  L->m[3].rtyp=IDEAL_CMD;
2009  if (r->qideal==NULL)
2010  L->m[3].data=(void *)idInit(1,1);
2011  else
2012  L->m[3].data=(void *)idCopy(r->qideal);
2013  // ----------------------------------------
2014 #ifdef HAVE_PLURAL // NC! in rDecompose
2015  if (rIsPluralRing(r))
2016  {
2017  L->m[4].rtyp=MATRIX_CMD;
2018  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2019  L->m[5].rtyp=MATRIX_CMD;
2020  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2021  }
2022 #endif
2023  return L;
2024 }
2025 #endif
2026 
2027 #ifndef SINGULAR_4_1
2028 lists rDecompose(const ring r)
2029 {
2030  assume( r != NULL );
2031  const coeffs C = r->cf;
2032  assume( C != NULL );
2033 
2034  // sanity check: require currRing==r for rings with polynomial data
2035  if ( (r!=currRing) && (
2036  (nCoeff_is_algExt(C) && (C != currRing->cf))
2037  || (r->qideal != NULL)
2038 #ifdef HAVE_PLURAL
2039  || (rIsPluralRing(r))
2040 #endif
2041  )
2042  )
2043  {
2044  WerrorS("ring with polynomial data must be the base ring or compatible");
2045  return NULL;
2046  }
2047  // 0: char/ cf - ring
2048  // 1: list (var)
2049  // 2: list (ord)
2050  // 3: qideal
2051  // possibly:
2052  // 4: C
2053  // 5: D
2055  if (rIsPluralRing(r))
2056  L->Init(6);
2057  else
2058  L->Init(4);
2059  // ----------------------------------------
2060  // 0: char/ cf - ring
2061  if (rField_is_numeric(r))
2062  {
2063  rDecomposeC(&(L->m[0]),r);
2064  }
2065 #ifdef HAVE_RINGS
2066  else if (rField_is_Ring(r))
2067  {
2068  rDecomposeRing(&(L->m[0]),r);
2069  }
2070 #endif
2071  else if ( r->cf->extRing!=NULL )// nCoeff_is_algExt(r->cf))
2072  {
2073  rDecomposeCF(&(L->m[0]), r->cf->extRing, r);
2074  }
2075  else if(rField_is_GF(r))
2076  {
2078  Lc->Init(4);
2079  // char:
2080  Lc->m[0].rtyp=INT_CMD;
2081  Lc->m[0].data=(void*)(long)r->cf->m_nfCharQ;
2082  // var:
2084  Lv->Init(1);
2085  Lv->m[0].rtyp=STRING_CMD;
2086  Lv->m[0].data=(void *)omStrDup(*rParameter(r));
2087  Lc->m[1].rtyp=LIST_CMD;
2088  Lc->m[1].data=(void*)Lv;
2089  // ord:
2091  Lo->Init(1);
2093  Loo->Init(2);
2094  Loo->m[0].rtyp=STRING_CMD;
2095  Loo->m[0].data=(void *)omStrDup(rSimpleOrdStr(ringorder_lp));
2096 
2097  intvec *iv=new intvec(1); (*iv)[0]=1;
2098  Loo->m[1].rtyp=INTVEC_CMD;
2099  Loo->m[1].data=(void *)iv;
2100 
2101  Lo->m[0].rtyp=LIST_CMD;
2102  Lo->m[0].data=(void*)Loo;
2103 
2104  Lc->m[2].rtyp=LIST_CMD;
2105  Lc->m[2].data=(void*)Lo;
2106  // q-ideal:
2107  Lc->m[3].rtyp=IDEAL_CMD;
2108  Lc->m[3].data=(void *)idInit(1,1);
2109  // ----------------------
2110  L->m[0].rtyp=LIST_CMD;
2111  L->m[0].data=(void*)Lc;
2112  }
2113  else
2114  {
2115  L->m[0].rtyp=INT_CMD;
2116  L->m[0].data=(void *)(long)r->cf->ch;
2117  }
2118  // ----------------------------------------
2119  // 1: list (var)
2121  LL->Init(r->N);
2122  int i;
2123  for(i=0; i<r->N; i++)
2124  {
2125  LL->m[i].rtyp=STRING_CMD;
2126  LL->m[i].data=(void *)omStrDup(r->names[i]);
2127  }
2128  L->m[1].rtyp=LIST_CMD;
2129  L->m[1].data=(void *)LL;
2130  // ----------------------------------------
2131  // 2: list (ord)
2133  i=rBlocks(r)-1;
2134  LL->Init(i);
2135  i--;
2136  lists LLL;
2137  for(; i>=0; i--)
2138  {
2139  intvec *iv;
2140  int j;
2141  LL->m[i].rtyp=LIST_CMD;
2143  LLL->Init(2);
2144  LLL->m[0].rtyp=STRING_CMD;
2145  LLL->m[0].data=(void *)omStrDup(rSimpleOrdStr(r->order[i]));
2146 
2147  if(r->order[i] == ringorder_IS) // || r->order[i] == ringorder_s || r->order[i] == ringorder_S)
2148  {
2149  assume( r->block0[i] == r->block1[i] );
2150  const int s = r->block0[i];
2151  assume( -2 < s && s < 2);
2152 
2153  iv=new intvec(1);
2154  (*iv)[0] = s;
2155  }
2156  else if (r->block1[i]-r->block0[i] >=0 )
2157  {
2158  int bl=j=r->block1[i]-r->block0[i];
2159  if (r->order[i]==ringorder_M)
2160  {
2161  j=(j+1)*(j+1)-1;
2162  bl=j+1;
2163  }
2164  else if (r->order[i]==ringorder_am)
2165  {
2166  j+=r->wvhdl[i][bl+1];
2167  }
2168  iv=new intvec(j+1);
2169  if ((r->wvhdl!=NULL) && (r->wvhdl[i]!=NULL))
2170  {
2171  for(;j>=0; j--) (*iv)[j]=r->wvhdl[i][j+(j>bl)];
2172  }
2173  else switch (r->order[i])
2174  {
2175  case ringorder_dp:
2176  case ringorder_Dp:
2177  case ringorder_ds:
2178  case ringorder_Ds:
2179  case ringorder_lp:
2180  for(;j>=0; j--) (*iv)[j]=1;
2181  break;
2182  default: /* do nothing */;
2183  }
2184  }
2185  else
2186  {
2187  iv=new intvec(1);
2188  }
2189  LLL->m[1].rtyp=INTVEC_CMD;
2190  LLL->m[1].data=(void *)iv;
2191  LL->m[i].data=(void *)LLL;
2192  }
2193  L->m[2].rtyp=LIST_CMD;
2194  L->m[2].data=(void *)LL;
2195  // ----------------------------------------
2196  // 3: qideal
2197  L->m[3].rtyp=IDEAL_CMD;
2198  if (r->qideal==NULL)
2199  L->m[3].data=(void *)idInit(1,1);
2200  else
2201  L->m[3].data=(void *)idCopy(r->qideal);
2202  // ----------------------------------------
2203 #ifdef HAVE_PLURAL // NC! in rDecompose
2204  if (rIsPluralRing(r))
2205  {
2206  L->m[4].rtyp=MATRIX_CMD;
2207  L->m[4].data=(void *)mp_Copy(r->GetNC()->C, r, r);
2208  L->m[5].rtyp=MATRIX_CMD;
2209  L->m[5].data=(void *)mp_Copy(r->GetNC()->D, r, r);
2210  }
2211 #endif
2212  return L;
2213 }
2214 #endif
2215 
2216 void rComposeC(lists L, ring R)
2217 /* field is R or C */
2218 {
2219  // ----------------------------------------
2220  // 0: char/ cf - ring
2221  if ((L->m[0].rtyp!=INT_CMD) || (L->m[0].data!=(char *)0))
2222  {
2223  Werror("invald coeff. field description, expecting 0");
2224  return;
2225  }
2226 // R->cf->ch=0;
2227  // ----------------------------------------
2228  // 1:
2229  if (L->m[1].rtyp!=LIST_CMD)
2230  Werror("invald coeff. field description, expecting precision list");
2231  lists LL=(lists)L->m[1].data;
2232  int r1=(int)(long)LL->m[0].data;
2233  int r2=(int)(long)LL->m[1].data;
2234  if (L->nr==2) // complex
2235  R->cf = nInitChar(n_long_C, NULL);
2236  else if ((r1<=SHORT_REAL_LENGTH)
2237  && (r2=SHORT_REAL_LENGTH))
2238  R->cf = nInitChar(n_R, NULL);
2239  else
2240  {
2242  p->float_len=r1;
2243  p->float_len2=r2;
2244  R->cf = nInitChar(n_long_R, NULL);
2245  }
2246 
2247  if ((r1<=SHORT_REAL_LENGTH) // should go into nInitChar
2248  && (r2=SHORT_REAL_LENGTH))
2249  {
2250  R->cf->float_len=SHORT_REAL_LENGTH/2;
2251  R->cf->float_len2=SHORT_REAL_LENGTH;
2252  }
2253  else
2254  {
2255  R->cf->float_len=si_min(r1,32767);
2256  R->cf->float_len2=si_min(r2,32767);
2257  }
2258  // ----------------------------------------
2259  // 2: list (par)
2260  if (L->nr==2)
2261  {
2262  //R->cf->extRing->N=1;
2263  if (L->m[2].rtyp!=STRING_CMD)
2264  {
2265  Werror("invald coeff. field description, expecting parameter name");
2266  return;
2267  }
2268  //(rParameter(R))=(char**)omAlloc0(rPar(R)*sizeof(char_ptr));
2269  rParameter(R)[0]=omStrDup((char *)L->m[2].data);
2270  }
2271  // ----------------------------------------
2272 }
2273 
2274 #ifdef HAVE_RINGS
2275 void rComposeRing(lists L, ring R)
2276 /* field is R or C */
2277 {
2278  // ----------------------------------------
2279  // 0: string: integer
2280  // no further entries --> Z
2281  mpz_ptr modBase = NULL;
2282  unsigned int modExponent = 1;
2283 
2284  modBase = (mpz_ptr) omAlloc(sizeof(mpz_t));
2285  if (L->nr == 0)
2286  {
2287  mpz_init_set_ui(modBase,0);
2288  modExponent = 1;
2289  }
2290  // ----------------------------------------
2291  // 1:
2292  else
2293  {
2294  if (L->m[1].rtyp!=LIST_CMD) Werror("invald data, expecting list of numbers");
2295  lists LL=(lists)L->m[1].data;
2296  if ((LL->nr >= 0) && LL->m[0].rtyp == BIGINT_CMD)
2297  {
2298  number tmp= (number) LL->m[0].data; // never use CopyD() on list elements
2299  // assume that tmp is integer, not rational
2300  n_MPZ (modBase, tmp, coeffs_BIGINT);
2301  }
2302  else if (LL->nr >= 0 && LL->m[0].rtyp == INT_CMD)
2303  {
2304  mpz_init_set_ui(modBase,(unsigned long) LL->m[0].data);
2305  }
2306  else
2307  {
2308  mpz_init_set_ui(modBase,0);
2309  }
2310  if (LL->nr >= 1)
2311  {
2312  modExponent = (unsigned long) LL->m[1].data;
2313  }
2314  else
2315  {
2316  modExponent = 1;
2317  }
2318  }
2319  // ----------------------------------------
2320  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_cmp_ui(modBase, 0) < 0))
2321  {
2322  Werror("Wrong ground ring specification (module is 1)");
2323  return;
2324  }
2325  if (modExponent < 1)
2326  {
2327  Werror("Wrong ground ring specification (exponent smaller than 1");
2328  return;
2329  }
2330  // module is 0 ---> integers
2331  if (mpz_cmp_ui(modBase, 0) == 0)
2332  {
2333  R->cf=nInitChar(n_Z,NULL);
2334  }
2335  // we have an exponent
2336  else if (modExponent > 1)
2337  {
2338  //R->cf->ch = R->cf->modExponent;
2339  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
2340  {
2341  /* this branch should be active for modExponent = 2..32 resp. 2..64,
2342  depending on the size of a long on the respective platform */
2343  R->cf=nInitChar(n_Z2m,(void*)(long)modExponent); // Use Z/2^ch
2344  omFreeSize (modBase, sizeof(mpz_t));
2345  }
2346  else
2347  {
2348  //ringtype 3
2349  ZnmInfo info;
2350  info.base= modBase;
2351  info.exp= modExponent;
2352  R->cf=nInitChar(n_Znm,(void*) &info);
2353  }
2354  }
2355  // just a module m > 1
2356  else
2357  {
2358  //ringtype = 2;
2359  //const int ch = mpz_get_ui(modBase);
2360  ZnmInfo info;
2361  info.base= modBase;
2362  info.exp= modExponent;
2363  R->cf=nInitChar(n_Zn,(void*) &info);
2364  }
2365 }
2366 #endif
2367 
2368 static void rRenameVars(ring R)
2369 {
2370  int i,j;
2371  BOOLEAN ch;
2372  do
2373  {
2374  ch=0;
2375  for(i=0;i<R->N-1;i++)
2376  {
2377  for(j=i+1;j<R->N;j++)
2378  {
2379  if (strcmp(R->names[i],R->names[j])==0)
2380  {
2381  ch=TRUE;
2382  Warn("name conflict var(%d) and var(%d): `%s`, rename to `@%s`",i+1,j+1,R->names[i],R->names[i]);
2383  omFree(R->names[j]);
2384  R->names[j]=(char *)omAlloc(2+strlen(R->names[i]));
2385  sprintf(R->names[j],"@%s",R->names[i]);
2386  }
2387  }
2388  }
2389  }
2390  while (ch);
2391  for(i=0;i<rPar(R); i++)
2392  {
2393  for(j=0;j<R->N;j++)
2394  {
2395  if (strcmp(rParameter(R)[i],R->names[j])==0)
2396  {
2397  Warn("name conflict par(%d) and var(%d): `%s`, renaming the VARIABLE to `@@(%d)`",i+1,j+1,R->names[j],i+1);
2398 // omFree(rParameter(R)[i]);
2399 // rParameter(R)[i]=(char *)omAlloc(10);
2400 // sprintf(rParameter(R)[i],"@@(%d)",i+1);
2401  omFree(R->names[j]);
2402  R->names[j]=(char *)omAlloc(10);
2403  sprintf(R->names[j],"@@(%d)",i+1);
2404  }
2405  }
2406  }
2407 }
2408 
2409 ring rCompose(const lists L, const BOOLEAN check_comp)
2410 {
2411  if ((L->nr!=3)
2412 #ifdef HAVE_PLURAL
2413  &&(L->nr!=5)
2414 #endif
2415  )
2416  return NULL;
2417  int is_gf_char=0;
2418  // 0: char/ cf - ring
2419  // 1: list (var)
2420  // 2: list (ord)
2421  // 3: qideal
2422  // possibly:
2423  // 4: C
2424  // 5: D
2425 
2426  ring R = (ring) omAlloc0Bin(sip_sring_bin);
2427 
2428 
2429  // ------------------------------------------------------------------
2430  // 0: char:
2431 #ifdef SINGULAR_4_1
2432  if (L->m[0].Typ()==CRING_CMD)
2433  {
2434  R->cf=(coeffs)L->m[0].Data();
2435  R->cf->ref++;
2436  }
2437  else
2438 #endif
2439  if (L->m[0].Typ()==INT_CMD)
2440  {
2441  int ch = (int)(long)L->m[0].Data();
2442  assume( ch >= 0 );
2443 
2444  if (ch == 0) // Q?
2445  R->cf = nInitChar(n_Q, NULL);
2446  else
2447  {
2448  int l = IsPrime(ch); // Zp?
2449  if( l != ch )
2450  {
2451  Warn("%d is invalid characteristic of ground field. %d is used.", ch, l);
2452  ch = l;
2453  }
2454  R->cf = nInitChar(n_Zp, (void*)(long)ch);
2455  }
2456  }
2457  else if (L->m[0].Typ()==LIST_CMD) // something complicated...
2458  {
2459  lists LL=(lists)L->m[0].Data();
2460 
2461 #ifdef HAVE_RINGS
2462  if (LL->m[0].Typ() == STRING_CMD) // 1st comes a string?
2463  {
2464  rComposeRing(LL, R); // Ring!?
2465  }
2466  else
2467 #endif
2468  if (LL->nr < 3)
2469  rComposeC(LL,R); // R, long_R, long_C
2470  else
2471  {
2472  if (LL->m[0].Typ()==INT_CMD)
2473  {
2474  int ch = (int)(long)LL->m[0].Data();
2475  while ((ch!=fftable[is_gf_char]) && (fftable[is_gf_char])) is_gf_char++;
2476  if (fftable[is_gf_char]==0) is_gf_char=-1;
2477 
2478  if(is_gf_char!= -1)
2479  {
2480  GFInfo param;
2481 
2482  param.GFChar = ch;
2483  param.GFDegree = 1;
2484  param.GFPar_name = (const char*)(((lists)(LL->m[1].Data()))->m[0].Data());
2485 
2486  // nfInitChar should be able to handle the case when ch is in fftables!
2487  R->cf = nInitChar(n_GF, (void*)&param);
2488  }
2489  }
2490 
2491  if( R->cf == NULL )
2492  {
2493  ring extRing = rCompose((lists)L->m[0].Data(),FALSE);
2494 
2495  if (extRing==NULL)
2496  {
2497  WerrorS("could not create the specified coefficient field");
2498  goto rCompose_err;
2499  }
2500 
2501  if( extRing->qideal != NULL ) // Algebraic extension
2502  {
2503  AlgExtInfo extParam;
2504 
2505  extParam.r = extRing;
2506 
2507  R->cf = nInitChar(n_algExt, (void*)&extParam);
2508  }
2509  else // Transcendental extension
2510  {
2511  TransExtInfo extParam;
2512  extParam.r = extRing;
2513  assume( extRing->qideal == NULL );
2514 
2515  R->cf = nInitChar(n_transExt, &extParam);
2516  }
2517  }
2518  }
2519  }
2520  #ifdef SINGULAR_4_1
2521  else if (L->m[0].Typ()==CRING_CMD)
2522  {
2523  R->cf=(coeffs)L->m[0].Data();
2524  R->cf->ref++;
2525  }
2526  #endif
2527  else
2528  {
2529  WerrorS("coefficient field must be described by `int` or `list`");
2530  goto rCompose_err;
2531  }
2532 
2533  if( R->cf == NULL )
2534  {
2535  WerrorS("could not create coefficient field described by the input!");
2536  goto rCompose_err;
2537  }
2538 
2539  // ------------------------- VARS ---------------------------
2540  if (L->m[1].Typ()==LIST_CMD)
2541  {
2542  lists v=(lists)L->m[1].Data();
2543  R->N = v->nr+1;
2544  if (R->N<=0)
2545  {
2546  WerrorS("no ring variables");
2547  goto rCompose_err;
2548  }
2549  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
2550  int i;
2551  for(i=0;i<R->N;i++)
2552  {
2553  if (v->m[i].Typ()==STRING_CMD)
2554  R->names[i]=omStrDup((char *)v->m[i].Data());
2555  else if (v->m[i].Typ()==POLY_CMD)
2556  {
2557  poly p=(poly)v->m[i].Data();
2558  int nr=pIsPurePower(p);
2559  if (nr>0)
2560  R->names[i]=omStrDup(currRing->names[nr-1]);
2561  else
2562  {
2563  Werror("var name %d must be a string or a ring variable",i+1);
2564  goto rCompose_err;
2565  }
2566  }
2567  else
2568  {
2569  Werror("var name %d must be `string`",i+1);
2570  goto rCompose_err;
2571  }
2572  }
2573  }
2574  else
2575  {
2576  WerrorS("variable must be given as `list`");
2577  goto rCompose_err;
2578  }
2579  // ------------------------ ORDER ------------------------------
2580  if (L->m[2].Typ()==LIST_CMD)
2581  {
2582  lists v=(lists)L->m[2].Data();
2583  int n= v->nr+2;
2584  int j;
2585  // initialize fields of R
2586  R->order=(int *)omAlloc0(n*sizeof(int));
2587  R->block0=(int *)omAlloc0(n*sizeof(int));
2588  R->block1=(int *)omAlloc0(n*sizeof(int));
2589  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
2590  // init order, so that rBlocks works correctly
2591  for (j=0; j < n-1; j++)
2592  R->order[j] = (int) ringorder_unspec;
2593  // orderings
2594  for(j=0;j<n-1;j++)
2595  {
2596  // todo: a(..), M
2597  if (v->m[j].Typ()!=LIST_CMD)
2598  {
2599  WerrorS("ordering must be list of lists");
2600  goto rCompose_err;
2601  }
2602  lists vv=(lists)v->m[j].Data();
2603  if ((vv->nr!=1)
2604  || (vv->m[0].Typ()!=STRING_CMD)
2605  || ((vv->m[1].Typ()!=INTVEC_CMD) && (vv->m[1].Typ()!=INT_CMD)))
2606  {
2607  WerrorS("ordering name must be a (string,intvec)");
2608  goto rCompose_err;
2609  }
2610  R->order[j]=rOrderName(omStrDup((char*)vv->m[0].Data())); // assume STRING
2611 
2612  if (j==0) R->block0[0]=1;
2613  else
2614  {
2615  int jj=j-1;
2616  while((jj>=0)
2617  && ((R->order[jj]== ringorder_a)
2618  || (R->order[jj]== ringorder_aa)
2619  || (R->order[jj]== ringorder_am)
2620  || (R->order[jj]== ringorder_c)
2621  || (R->order[jj]== ringorder_C)
2622  || (R->order[jj]== ringorder_s)
2623  || (R->order[jj]== ringorder_S)
2624  ))
2625  {
2626  //Print("jj=%, skip %s\n",rSimpleOrdStr(R->order[jj]));
2627  jj--;
2628  }
2629  if (jj<0) R->block0[j]=1;
2630  else R->block0[j]=R->block1[jj]+1;
2631  }
2632  intvec *iv;
2633  if (vv->m[1].Typ()==INT_CMD)
2634  iv=new intvec((int)(long)vv->m[1].Data(),(int)(long)vv->m[1].Data());
2635  else
2636  iv=ivCopy((intvec*)vv->m[1].Data()); //assume INTVEC
2637  int iv_len=iv->length();
2638  R->block1[j]=si_max(R->block0[j],R->block0[j]+iv_len-1);
2639  if (R->block1[j]>R->N)
2640  {
2641  R->block1[j]=R->N;
2642  iv_len=R->block1[j]-R->block0[j]+1;
2643  }
2644  //Print("block %d from %d to %d\n",j,R->block0[j], R->block1[j]);
2645  int i;
2646  switch (R->order[j])
2647  {
2648  case ringorder_ws:
2649  case ringorder_Ws:
2650  R->OrdSgn=-1;
2651  case ringorder_aa:
2652  case ringorder_a:
2653  case ringorder_wp:
2654  case ringorder_Wp:
2655  R->wvhdl[j] =( int *)omAlloc(iv_len*sizeof(int));
2656  for (i=0; i<iv_len;i++)
2657  {
2658  R->wvhdl[j][i]=(*iv)[i];
2659  }
2660  break;
2661  case ringorder_am:
2662  R->wvhdl[j] =( int *)omAlloc((iv->length()+1)*sizeof(int));
2663  for (i=0; i<iv_len;i++)
2664  {
2665  R->wvhdl[j][i]=(*iv)[i];
2666  }
2667  R->wvhdl[j][i]=iv->length() - iv_len;
2668  //printf("ivlen:%d,iv->len:%d,mod:%d\n",iv_len,iv->length(),R->wvhdl[j][i]);
2669  for (; i<iv->length(); i++)
2670  {
2671  R->wvhdl[j][i+1]=(*iv)[i];
2672  }
2673  break;
2674  case ringorder_M:
2675  R->wvhdl[j] =( int *)omAlloc((iv->length())*sizeof(int));
2676  for (i=0; i<iv->length();i++) R->wvhdl[j][i]=(*iv)[i];
2677  R->block1[j]=si_max(R->block0[j],R->block0[j]+(int)sqrt((double)(iv->length()-1)));
2678  if (R->block1[j]>R->N)
2679  {
2680  WerrorS("ordering matrix too big");
2681  goto rCompose_err;
2682  }
2683  break;
2684  case ringorder_ls:
2685  case ringorder_ds:
2686  case ringorder_Ds:
2687  case ringorder_rs:
2688  R->OrdSgn=-1;
2689  case ringorder_lp:
2690  case ringorder_dp:
2691  case ringorder_Dp:
2692  case ringorder_rp:
2693  break;
2694  case ringorder_S:
2695  break;
2696  case ringorder_c:
2697  case ringorder_C:
2698  R->block1[j]=R->block0[j]=0;
2699  break;
2700 
2701  case ringorder_s:
2702  break;
2703 
2704  case ringorder_IS:
2705  {
2706  R->block1[j] = R->block0[j] = 0;
2707  if( iv->length() > 0 )
2708  {
2709  const int s = (*iv)[0];
2710  assume( -2 < s && s < 2 );
2711  R->block1[j] = R->block0[j] = s;
2712  }
2713  break;
2714  }
2715  case 0:
2716  case ringorder_unspec:
2717  break;
2718  }
2719  delete iv;
2720  }
2721  // sanity check
2722  j=n-2;
2723  if ((R->order[j]==ringorder_c)
2724  || (R->order[j]==ringorder_C)
2725  || (R->order[j]==ringorder_unspec)) j--;
2726  if (R->block1[j] != R->N)
2727  {
2728  if (((R->order[j]==ringorder_dp) ||
2729  (R->order[j]==ringorder_ds) ||
2730  (R->order[j]==ringorder_Dp) ||
2731  (R->order[j]==ringorder_Ds) ||
2732  (R->order[j]==ringorder_rp) ||
2733  (R->order[j]==ringorder_rs) ||
2734  (R->order[j]==ringorder_lp) ||
2735  (R->order[j]==ringorder_ls))
2736  &&
2737  R->block0[j] <= R->N)
2738  {
2739  R->block1[j] = R->N;
2740  }
2741  else
2742  {
2743  Werror("ordering incomplete: size (%d) should be %d",R->block1[j],R->N);
2744  goto rCompose_err;
2745  }
2746  }
2747  if (R->block0[j]>R->N)
2748  {
2749  Werror("not enough variables (%d) for ordering block %d, scanned so far:",R->N,j+1);
2750  for(int ii=0;ii<=j;ii++)
2751  Werror("ord[%d]: %s from v%d to v%d",ii+1,rSimpleOrdStr(R->order[ii]),R->block0[ii],R->block1[ii]);
2752  goto rCompose_err;
2753  }
2754  if (check_comp)
2755  {
2756  BOOLEAN comp_order=FALSE;
2757  int jj;
2758  for(jj=0;jj<n;jj++)
2759  {
2760  if ((R->order[jj]==ringorder_c) ||
2761  (R->order[jj]==ringorder_C)) { comp_order=TRUE; break; }
2762  }
2763  if (!comp_order)
2764  {
2765  R->order=(int*)omRealloc0Size(R->order,n*sizeof(int),(n+1)*sizeof(int));
2766  R->block0=(int*)omRealloc0Size(R->block0,n*sizeof(int),(n+1)*sizeof(int));
2767  R->block1=(int*)omRealloc0Size(R->block1,n*sizeof(int),(n+1)*sizeof(int));
2768  R->wvhdl=(int**)omRealloc0Size(R->wvhdl,n*sizeof(int_ptr),(n+1)*sizeof(int_ptr));
2769  R->order[n-1]=ringorder_C;
2770  R->block0[n-1]=0;
2771  R->block1[n-1]=0;
2772  R->wvhdl[n-1]=NULL;
2773  n++;
2774  }
2775  }
2776  }
2777  else
2778  {
2779  WerrorS("ordering must be given as `list`");
2780  goto rCompose_err;
2781  }
2782 
2783  // ------------------------ ??????? --------------------
2784 
2785  rRenameVars(R);
2786  rComplete(R);
2787 
2788 /*#ifdef HAVE_RINGS
2789 // currently, coefficients which are ring elements require a global ordering:
2790  if (rField_is_Ring(R) && (R->OrdSgn==-1))
2791  {
2792  WerrorS("global ordering required for these coefficients");
2793  goto rCompose_err;
2794  }
2795 #endif*/
2796 
2797 
2798  // ------------------------ Q-IDEAL ------------------------
2799 
2800  if (L->m[3].Typ()==IDEAL_CMD)
2801  {
2802  ideal q=(ideal)L->m[3].Data();
2803  if (q->m[0]!=NULL)
2804  {
2805  if (R->cf != currRing->cf) //->cf->ch!=currRing->cf->ch)
2806  {
2807  #if 0
2808  WerrorS("coefficient fields must be equal if q-ideal !=0");
2809  goto rCompose_err;
2810  #else
2811  ring orig_ring=currRing;
2812  rChangeCurrRing(R);
2813  int *perm=NULL;
2814  int *par_perm=NULL;
2815  int par_perm_size=0;
2816  nMapFunc nMap;
2817 
2818  if ((nMap=nSetMap(orig_ring->cf))==NULL)
2819  {
2820  if (rEqual(orig_ring,currRing))
2821  {
2822  nMap=n_SetMap(currRing->cf, currRing->cf);
2823  }
2824  else
2825  // Allow imap/fetch to be make an exception only for:
2826  if ( (rField_is_Q_a(orig_ring) && // Q(a..) -> Q(a..) || Q || Zp || Zp(a)
2829  ||
2830  (rField_is_Zp_a(orig_ring) && // Zp(a..) -> Zp(a..) || Zp
2831  (rField_is_Zp(currRing, rInternalChar(orig_ring)) ||
2832  rField_is_Zp_a(currRing, rInternalChar(orig_ring)))) )
2833  {
2834  par_perm_size=rPar(orig_ring);
2835 
2836 // if ((orig_ring->minpoly != NULL) || (orig_ring->qideal != NULL))
2837 // naSetChar(rInternalChar(orig_ring),orig_ring);
2838 // else ntSetChar(rInternalChar(orig_ring),orig_ring);
2839 
2840  nSetChar(currRing->cf);
2841  }
2842  else
2843  {
2844  WerrorS("coefficient fields must be equal if q-ideal !=0");
2845  goto rCompose_err;
2846  }
2847  }
2848  perm=(int *)omAlloc0((orig_ring->N+1)*sizeof(int));
2849  if (par_perm_size!=0)
2850  par_perm=(int *)omAlloc0(par_perm_size*sizeof(int));
2851  int i;
2852  #if 0
2853  // use imap:
2854  maFindPerm(orig_ring->names,orig_ring->N,orig_ring->parameter,orig_ring->P,
2855  currRing->names,currRing->N,currRing->parameter, currRing->P,
2856  perm,par_perm, currRing->ch);
2857  #else
2858  // use fetch
2859  if ((rPar(orig_ring)>0) && (rPar(currRing)==0))
2860  {
2861  for(i=si_min(rPar(orig_ring),rVar(currRing))-1;i>=0;i--) par_perm[i]=i+1;
2862  }
2863  else if (par_perm_size!=0)
2864  for(i=si_min(rPar(orig_ring),rPar(currRing))-1;i>=0;i--) par_perm[i]=-(i+1);
2865  for(i=si_min(orig_ring->N,rVar(currRing));i>0;i--) perm[i]=i;
2866  #endif
2867  ideal dest_id=idInit(IDELEMS(q),1);
2868  for(i=IDELEMS(q)-1; i>=0; i--)
2869  {
2870  dest_id->m[i]=p_PermPoly(q->m[i],perm,orig_ring, currRing,nMap,
2871  par_perm,par_perm_size);
2872  // PrintS("map:");pWrite(dest_id->m[i]);PrintLn();
2873  pTest(dest_id->m[i]);
2874  }
2875  R->qideal=dest_id;
2876  if (perm!=NULL)
2877  omFreeSize((ADDRESS)perm,(orig_ring->N+1)*sizeof(int));
2878  if (par_perm!=NULL)
2879  omFreeSize((ADDRESS)par_perm,par_perm_size*sizeof(int));
2880  rChangeCurrRing(orig_ring);
2881  #endif
2882  }
2883  else
2884  R->qideal=idrCopyR(q,currRing,R);
2885  }
2886  }
2887  else
2888  {
2889  WerrorS("q-ideal must be given as `ideal`");
2890  goto rCompose_err;
2891  }
2892 
2893 
2894  // ---------------------------------------------------------------
2895  #ifdef HAVE_PLURAL
2896  if (L->nr==5)
2897  {
2898  if (nc_CallPlural((matrix)L->m[4].Data(),
2899  (matrix)L->m[5].Data(),
2900  NULL,NULL,
2901  R,
2902  true, // !!!
2903  true, false,
2904  currRing, FALSE)) goto rCompose_err;
2905  // takes care about non-comm. quotient! i.e. calls "nc_SetupQuotient" due to last true
2906  }
2907  #endif
2908  return R;
2909 
2910 rCompose_err:
2911  if (R->N>0)
2912  {
2913  int i;
2914  if (R->names!=NULL)
2915  {
2916  i=R->N-1;
2917  while (i>=0) { if (R->names[i]!=NULL) omFree(R->names[i]); i--; }
2918  omFree(R->names);
2919  }
2920  }
2921  if (R->order!=NULL) omFree(R->order);
2922  if (R->block0!=NULL) omFree(R->block0);
2923  if (R->block1!=NULL) omFree(R->block1);
2924  if (R->wvhdl!=NULL) omFree(R->wvhdl);
2925  omFree(R);
2926  return NULL;
2927 }
2928 
2929 // from matpol.cc
2930 
2931 /*2
2932 * compute the jacobi matrix of an ideal
2933 */
2935 {
2936  int i,j;
2937  matrix result;
2938  ideal id=(ideal)a->Data();
2939 
2940  result =mpNew(IDELEMS(id),rVar(currRing));
2941  for (i=1; i<=IDELEMS(id); i++)
2942  {
2943  for (j=1; j<=rVar(currRing); j++)
2944  {
2945  MATELEM(result,i,j) = pDiff(id->m[i-1],j);
2946  }
2947  }
2948  res->data=(char *)result;
2949  return FALSE;
2950 }
2951 
2952 /*2
2953 * returns the Koszul-matrix of degree d of a vectorspace with dimension n
2954 * uses the first n entrees of id, if id <> NULL
2955 */
2957 {
2958  int n=(int)(long)b->Data();
2959  int d=(int)(long)c->Data();
2960  int k,l,sign,row,col;
2961  matrix result;
2962  ideal temp;
2963  BOOLEAN bo;
2964  poly p;
2965 
2966  if ((d>n) || (d<1) || (n<1))
2967  {
2968  res->data=(char *)mpNew(1,1);
2969  return FALSE;
2970  }
2971  int *choise = (int*)omAlloc(d*sizeof(int));
2972  if (id==NULL)
2973  temp=idMaxIdeal(1);
2974  else
2975  temp=(ideal)id->Data();
2976 
2977  k = binom(n,d);
2978  l = k*d;
2979  l /= n-d+1;
2980  result =mpNew(l,k);
2981  col = 1;
2982  idInitChoise(d,1,n,&bo,choise);
2983  while (!bo)
2984  {
2985  sign = 1;
2986  for (l=1;l<=d;l++)
2987  {
2988  if (choise[l-1]<=IDELEMS(temp))
2989  {
2990  p = pCopy(temp->m[choise[l-1]-1]);
2991  if (sign == -1) p = pNeg(p);
2992  sign *= -1;
2993  row = idGetNumberOfChoise(l-1,d,1,n,choise);
2994  MATELEM(result,row,col) = p;
2995  }
2996  }
2997  col++;
2998  idGetNextChoise(d,n,&bo,choise);
2999  }
3000  if (id==NULL) idDelete(&temp);
3001 
3002  res->data=(char *)result;
3003  return FALSE;
3004 }
3005 
3006 // from syz1.cc
3007 /*2
3008 * read out the Betti numbers from resolution
3009 * (interpreter interface)
3010 */
3012 {
3013  syStrategy syzstr=(syStrategy)u->Data();
3014 
3015  BOOLEAN minim=(int)(long)w->Data();
3016  int row_shift=0;
3017  int add_row_shift=0;
3018  intvec *weights=NULL;
3019  intvec *ww=(intvec *)atGet(u,"isHomog",INTVEC_CMD);
3020  if (ww!=NULL)
3021  {
3022  weights=ivCopy(ww);
3023  add_row_shift = ww->min_in();
3024  (*weights) -= add_row_shift;
3025  }
3026 
3027  res->data=(void *)syBettiOfComputation(syzstr,minim,&row_shift,weights);
3028  //row_shift += add_row_shift;
3029  //Print("row_shift=%d, add_row_shift=%d\n",row_shift,add_row_shift);
3030  atSet(res,omStrDup("rowShift"),(void*)(long)add_row_shift,INT_CMD);
3031 
3032  return FALSE;
3033 }
3035 {
3036  sleftv tmp;
3037  memset(&tmp,0,sizeof(tmp));
3038  tmp.rtyp=INT_CMD;
3039  tmp.data=(void *)1;
3040  return syBetti2(res,u,&tmp);
3041 }
3042 
3043 /*3
3044 * converts a resolution into a list of modules
3045 */
3046 lists syConvRes(syStrategy syzstr,BOOLEAN toDel,int add_row_shift)
3047 {
3048  resolvente fullres = syzstr->fullres;
3049  resolvente minres = syzstr->minres;
3050 
3051  const int length = syzstr->length;
3052 
3053  if ((fullres==NULL) && (minres==NULL))
3054  {
3055  if (syzstr->hilb_coeffs==NULL)
3056  { // La Scala
3057  fullres = syReorder(syzstr->res, length, syzstr);
3058  }
3059  else
3060  { // HRES
3061  minres = syReorder(syzstr->orderedRes, length, syzstr);
3062  syKillEmptyEntres(minres, length);
3063  }
3064  }
3065 
3066  resolvente tr;
3067  int typ0=IDEAL_CMD;
3068 
3069  if (minres!=NULL)
3070  tr = minres;
3071  else
3072  tr = fullres;
3073 
3074  resolvente trueres=NULL; intvec ** w=NULL;
3075 
3076  if (length>0)
3077  {
3078  trueres = (resolvente)omAlloc0((length)*sizeof(ideal));
3079  for (int i=(length)-1;i>=0;i--)
3080  {
3081  if (tr[i]!=NULL)
3082  {
3083  trueres[i] = idCopy(tr[i]);
3084  }
3085  }
3086  if ( id_RankFreeModule(trueres[0], currRing) > 0)
3087  typ0 = MODUL_CMD;
3088  if (syzstr->weights!=NULL)
3089  {
3090  w = (intvec**)omAlloc0(length*sizeof(intvec*));
3091  for (int i=length-1;i>=0;i--)
3092  {
3093  if (syzstr->weights[i]!=NULL) w[i] = ivCopy(syzstr->weights[i]);
3094  }
3095  }
3096  }
3097 
3098  lists li = liMakeResolv(trueres, length, syzstr->list_length,typ0,
3099  w, add_row_shift);
3100 
3101  if (w != NULL) omFreeSize(w, length*sizeof(intvec*));
3102 
3103  if (toDel)
3104  syKillComputation(syzstr);
3105  else
3106  {
3107  if( fullres != NULL && syzstr->fullres == NULL )
3108  syzstr->fullres = fullres;
3109 
3110  if( minres != NULL && syzstr->minres == NULL )
3111  syzstr->minres = minres;
3112  }
3113  return li;
3114 }
3115 
3116 /*3
3117 * converts a list of modules into a resolution
3118 */
3120 {
3121  int typ0;
3123 
3124  resolvente fr = liFindRes(li,&(result->length),&typ0,&(result->weights));
3125  if (fr != NULL)
3126  {
3127 
3128  result->fullres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3129  for (int i=result->length-1;i>=0;i--)
3130  {
3131  if (fr[i]!=NULL)
3132  result->fullres[i] = idCopy(fr[i]);
3133  }
3134  result->list_length=result->length;
3135  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3136  }
3137  else
3138  {
3139  omFreeSize(result, sizeof(ssyStrategy));
3140  result = NULL;
3141  }
3142  if (toDel) li->Clean();
3143  return result;
3144 }
3145 
3146 /*3
3147 * converts a list of modules into a minimal resolution
3148 */
3150 {
3151  int typ0;
3153 
3154  resolvente fr = liFindRes(li,&(result->length),&typ0);
3155  result->minres = (resolvente)omAlloc0((result->length+1)*sizeof(ideal));
3156  for (int i=result->length-1;i>=0;i--)
3157  {
3158  if (fr[i]!=NULL)
3159  result->minres[i] = idCopy(fr[i]);
3160  }
3161  omFreeSize((ADDRESS)fr,(result->length)*sizeof(ideal));
3162  return result;
3163 }
3164 // from weight.cc
3166 {
3167  ideal F=(ideal)id->Data();
3168  intvec * iv = new intvec(rVar(currRing));
3169  polyset s;
3170  int sl, n, i;
3171  int *x;
3172 
3173  res->data=(char *)iv;
3174  s = F->m;
3175  sl = IDELEMS(F) - 1;
3176  n = rVar(currRing);
3177  double wNsqr = (double)2.0 / (double)n;
3179  x = (int * )omAlloc(2 * (n + 1) * sizeof(int));
3180  wCall(s, sl, x, wNsqr, currRing);
3181  for (i = n; i!=0; i--)
3182  (*iv)[i-1] = x[i + n + 1];
3183  omFreeSize((ADDRESS)x, 2 * (n + 1) * sizeof(int));
3184  return FALSE;
3185 }
3186 
3188 {
3189  res->data=(char *)id_QHomWeight((ideal)v->Data(), currRing);
3190  if (res->data==NULL)
3191  res->data=(char *)new intvec(rVar(currRing));
3192  return FALSE;
3193 }
3194 /*==============================================================*/
3195 // from clapsing.cc
3196 #if 0
3197 BOOLEAN jjIS_SQR_FREE(leftv res, leftv u)
3198 {
3199  BOOLEAN b=singclap_factorize((poly)(u->CopyD()), &v, 0);
3200  res->data=(void *)b;
3201 }
3202 #endif
3203 
3205 {
3206  res->data=singclap_resultant((poly)u->CopyD(),(poly)v->CopyD(),
3207  (poly)w->CopyD(), currRing);
3208  return errorreported;
3209 }
3210 
3212 {
3213  res->data=singclap_irrCharSeries((ideal)u->Data(), currRing);
3214  return (res->data==NULL);
3215 }
3216 
3217 // from semic.cc
3218 #ifdef HAVE_SPECTRUM
3219 
3220 // ----------------------------------------------------------------------------
3221 // Initialize a spectrum deep from a singular lists
3222 // ----------------------------------------------------------------------------
3223 
3224 void copy_deep( spectrum& spec, lists l )
3225 {
3226  spec.mu = (int)(long)(l->m[0].Data( ));
3227  spec.pg = (int)(long)(l->m[1].Data( ));
3228  spec.n = (int)(long)(l->m[2].Data( ));
3229 
3230  spec.copy_new( spec.n );
3231 
3232  intvec *num = (intvec*)l->m[3].Data( );
3233  intvec *den = (intvec*)l->m[4].Data( );
3234  intvec *mul = (intvec*)l->m[5].Data( );
3235 
3236  for( int i=0; i<spec.n; i++ )
3237  {
3238  spec.s[i] = (Rational)((*num)[i])/(Rational)((*den)[i]);
3239  spec.w[i] = (*mul)[i];
3240  }
3241 }
3242 
3243 // ----------------------------------------------------------------------------
3244 // singular lists constructor for spectrum
3245 // ----------------------------------------------------------------------------
3246 
3247 spectrum /*former spectrum::spectrum ( lists l )*/
3249 {
3250  spectrum result;
3251  copy_deep( result, l );
3252  return result;
3253 }
3254 
3255 // ----------------------------------------------------------------------------
3256 // generate a Singular lists from a spectrum
3257 // ----------------------------------------------------------------------------
3258 
3259 /* former spectrum::thelist ( void )*/
3261 {
3263 
3264  L->Init( 6 );
3265 
3266  intvec *num = new intvec( spec.n );
3267  intvec *den = new intvec( spec.n );
3268  intvec *mult = new intvec( spec.n );
3269 
3270  for( int i=0; i<spec.n; i++ )
3271  {
3272  (*num) [i] = spec.s[i].get_num_si( );
3273  (*den) [i] = spec.s[i].get_den_si( );
3274  (*mult)[i] = spec.w[i];
3275  }
3276 
3277  L->m[0].rtyp = INT_CMD; // milnor number
3278  L->m[1].rtyp = INT_CMD; // geometrical genus
3279  L->m[2].rtyp = INT_CMD; // # of spectrum numbers
3280  L->m[3].rtyp = INTVEC_CMD; // numerators
3281  L->m[4].rtyp = INTVEC_CMD; // denomiantors
3282  L->m[5].rtyp = INTVEC_CMD; // multiplicities
3283 
3284  L->m[0].data = (void*)(long)spec.mu;
3285  L->m[1].data = (void*)(long)spec.pg;
3286  L->m[2].data = (void*)(long)spec.n;
3287  L->m[3].data = (void*)num;
3288  L->m[4].data = (void*)den;
3289  L->m[5].data = (void*)mult;
3290 
3291  return L;
3292 }
3293 // from spectrum.cc
3294 // ----------------------------------------------------------------------------
3295 // print out an error message for a spectrum list
3296 // ----------------------------------------------------------------------------
3297 
3298 typedef enum
3299 {
3302 
3305 
3312 
3317 
3323 
3326 
3329 
3330 } semicState;
3331 
3332 void list_error( semicState state )
3333 {
3334  switch( state )
3335  {
3336  case semicListTooShort:
3337  WerrorS( "the list is too short" );
3338  break;
3339  case semicListTooLong:
3340  WerrorS( "the list is too long" );
3341  break;
3342 
3344  WerrorS( "first element of the list should be int" );
3345  break;
3347  WerrorS( "second element of the list should be int" );
3348  break;
3350  WerrorS( "third element of the list should be int" );
3351  break;
3353  WerrorS( "fourth element of the list should be intvec" );
3354  break;
3356  WerrorS( "fifth element of the list should be intvec" );
3357  break;
3359  WerrorS( "sixth element of the list should be intvec" );
3360  break;
3361 
3362  case semicListNNegative:
3363  WerrorS( "first element of the list should be positive" );
3364  break;
3366  WerrorS( "wrong number of numerators" );
3367  break;
3369  WerrorS( "wrong number of denominators" );
3370  break;
3372  WerrorS( "wrong number of multiplicities" );
3373  break;
3374 
3375  case semicListMuNegative:
3376  WerrorS( "the Milnor number should be positive" );
3377  break;
3378  case semicListPgNegative:
3379  WerrorS( "the geometrical genus should be nonnegative" );
3380  break;
3381  case semicListNumNegative:
3382  WerrorS( "all numerators should be positive" );
3383  break;
3384  case semicListDenNegative:
3385  WerrorS( "all denominators should be positive" );
3386  break;
3387  case semicListMulNegative:
3388  WerrorS( "all multiplicities should be positive" );
3389  break;
3390 
3391  case semicListNotSymmetric:
3392  WerrorS( "it is not symmetric" );
3393  break;
3395  WerrorS( "it is not monotonous" );
3396  break;
3397 
3398  case semicListMilnorWrong:
3399  WerrorS( "the Milnor number is wrong" );
3400  break;
3401  case semicListPGWrong:
3402  WerrorS( "the geometrical genus is wrong" );
3403  break;
3404 
3405  default:
3406  WerrorS( "unspecific error" );
3407  break;
3408  }
3409 }
3410 // ----------------------------------------------------------------------------
3411 // this is the main spectrum computation function
3412 // ----------------------------------------------------------------------------
3413 
3415 {
3425 };
3426 
3427 // from splist.cc
3428 // ----------------------------------------------------------------------------
3429 // Compute the spectrum of a spectrumPolyList
3430 // ----------------------------------------------------------------------------
3431 
3432 /* former spectrumPolyList::spectrum ( lists*, int) */
3434 {
3435  spectrumPolyNode **node = &speclist.root;
3437 
3438  poly f,tmp;
3439  int found,cmp;
3440 
3441  Rational smax( ( fast==0 ? 0 : rVar(currRing) ),
3442  ( fast==2 ? 2 : 1 ) );
3443 
3444  Rational weight_prev( 0,1 );
3445 
3446  int mu = 0; // the milnor number
3447  int pg = 0; // the geometrical genus
3448  int n = 0; // number of different spectral numbers
3449  int z = 0; // number of spectral number equal to smax
3450 
3451  while( (*node)!=(spectrumPolyNode*)NULL &&
3452  ( fast==0 || (*node)->weight<=smax ) )
3453  {
3454  // ---------------------------------------
3455  // determine the first normal form which
3456  // contains the monomial node->mon
3457  // ---------------------------------------
3458 
3459  found = FALSE;
3460  search = *node;
3461 
3462  while( search!=(spectrumPolyNode*)NULL && found==FALSE )
3463  {
3464  if( search->nf!=(poly)NULL )
3465  {
3466  f = search->nf;
3467 
3468  do
3469  {
3470  // --------------------------------
3471  // look for (*node)->mon in f
3472  // --------------------------------
3473 
3474  cmp = pCmp( (*node)->mon,f );
3475 
3476  if( cmp<0 )
3477  {
3478  f = pNext( f );
3479  }
3480  else if( cmp==0 )
3481  {
3482  // -----------------------------
3483  // we have found a normal form
3484  // -----------------------------
3485 
3486  found = TRUE;
3487 
3488  // normalize coefficient
3489 
3490  number inv = nInvers( pGetCoeff( f ) );
3491  pMult_nn( search->nf,inv );
3492  nDelete( &inv );
3493 
3494  // exchange normal forms
3495 
3496  tmp = (*node)->nf;
3497  (*node)->nf = search->nf;
3498  search->nf = tmp;
3499  }
3500  }
3501  while( cmp<0 && f!=(poly)NULL );
3502  }
3503  search = search->next;
3504  }
3505 
3506  if( found==FALSE )
3507  {
3508  // ------------------------------------------------
3509  // the weight of node->mon is a spectrum number
3510  // ------------------------------------------------
3511 
3512  mu++;
3513 
3514  if( (*node)->weight<=(Rational)1 ) pg++;
3515  if( (*node)->weight==smax ) z++;
3516  if( (*node)->weight>weight_prev ) n++;
3517 
3518  weight_prev = (*node)->weight;
3519  node = &((*node)->next);
3520  }
3521  else
3522  {
3523  // -----------------------------------------------
3524  // determine all other normal form which contain
3525  // the monomial node->mon
3526  // replace for node->mon its normal form
3527  // -----------------------------------------------
3528 
3529  while( search!=(spectrumPolyNode*)NULL )
3530  {
3531  if( search->nf!=(poly)NULL )
3532  {
3533  f = search->nf;
3534 
3535  do
3536  {
3537  // --------------------------------
3538  // look for (*node)->mon in f
3539  // --------------------------------
3540 
3541  cmp = pCmp( (*node)->mon,f );
3542 
3543  if( cmp<0 )
3544  {
3545  f = pNext( f );
3546  }
3547  else if( cmp==0 )
3548  {
3549  search->nf = pSub( search->nf,
3550  ppMult_nn( (*node)->nf,pGetCoeff( f ) ) );
3551  pNorm( search->nf );
3552  }
3553  }
3554  while( cmp<0 && f!=(poly)NULL );
3555  }
3556  search = search->next;
3557  }
3558  speclist.delete_node( node );
3559  }
3560 
3561  }
3562 
3563  // --------------------------------------------------------
3564  // fast computation exploits the symmetry of the spectrum
3565  // --------------------------------------------------------
3566 
3567  if( fast==2 )
3568  {
3569  mu = 2*mu - z;
3570  n = ( z > 0 ? 2*n - 1 : 2*n );
3571  }
3572 
3573  // --------------------------------------------------------
3574  // compute the spectrum numbers with their multiplicities
3575  // --------------------------------------------------------
3576 
3577  intvec *nom = new intvec( n );
3578  intvec *den = new intvec( n );
3579  intvec *mult = new intvec( n );
3580 
3581  int count = 0;
3582  int multiplicity = 1;
3583 
3584  for( search=speclist.root; search!=(spectrumPolyNode*)NULL &&
3585  ( fast==0 || search->weight<=smax );
3586  search=search->next )
3587  {
3588  if( search->next==(spectrumPolyNode*)NULL ||
3589  search->weight<search->next->weight )
3590  {
3591  (*nom) [count] = search->weight.get_num_si( );
3592  (*den) [count] = search->weight.get_den_si( );
3593  (*mult)[count] = multiplicity;
3594 
3595  multiplicity=1;
3596  count++;
3597  }
3598  else
3599  {
3600  multiplicity++;
3601  }
3602  }
3603 
3604  // --------------------------------------------------------
3605  // fast computation exploits the symmetry of the spectrum
3606  // --------------------------------------------------------
3607 
3608  if( fast==2 )
3609  {
3610  int n1,n2;
3611  for( n1=0, n2=n-1; n1<n2; n1++, n2-- )
3612  {
3613  (*nom) [n2] = rVar(currRing)*(*den)[n1]-(*nom)[n1];
3614  (*den) [n2] = (*den)[n1];
3615  (*mult)[n2] = (*mult)[n1];
3616  }
3617  }
3618 
3619  // -----------------------------------
3620  // test if the spectrum is symmetric
3621  // -----------------------------------
3622 
3623  if( fast==0 || fast==1 )
3624  {
3625  int symmetric=TRUE;
3626 
3627  for( int n1=0, n2=n-1 ; n1<n2 && symmetric==TRUE; n1++, n2-- )
3628  {
3629  if( (*mult)[n1]!=(*mult)[n2] ||
3630  (*den) [n1]!= (*den)[n2] ||
3631  (*nom)[n1]+(*nom)[n2]!=rVar(currRing)*(*den) [n1] )
3632  {
3633  symmetric = FALSE;
3634  }
3635  }
3636 
3637  if( symmetric==FALSE )
3638  {
3639  // ---------------------------------------------
3640  // the spectrum is not symmetric => degenerate
3641  // principal part
3642  // ---------------------------------------------
3643 
3644  *L = (lists)omAllocBin( slists_bin);
3645  (*L)->Init( 1 );
3646  (*L)->m[0].rtyp = INT_CMD; // milnor number
3647  (*L)->m[0].data = (void*)(long)mu;
3648 
3649  return spectrumDegenerate;
3650  }
3651  }
3652 
3653  *L = (lists)omAllocBin( slists_bin);
3654 
3655  (*L)->Init( 6 );
3656 
3657  (*L)->m[0].rtyp = INT_CMD; // milnor number
3658  (*L)->m[1].rtyp = INT_CMD; // geometrical genus
3659  (*L)->m[2].rtyp = INT_CMD; // number of spectrum values
3660  (*L)->m[3].rtyp = INTVEC_CMD; // nominators
3661  (*L)->m[4].rtyp = INTVEC_CMD; // denomiantors
3662  (*L)->m[5].rtyp = INTVEC_CMD; // multiplicities
3663 
3664  (*L)->m[0].data = (void*)(long)mu;
3665  (*L)->m[1].data = (void*)(long)pg;
3666  (*L)->m[2].data = (void*)(long)n;
3667  (*L)->m[3].data = (void*)nom;
3668  (*L)->m[4].data = (void*)den;
3669  (*L)->m[5].data = (void*)mult;
3670 
3671  return spectrumOK;
3672 }
3673 
3675 {
3676  int i;
3677 
3678  #ifdef SPECTRUM_DEBUG
3679  #ifdef SPECTRUM_PRINT
3680  #ifdef SPECTRUM_IOSTREAM
3681  cout << "spectrumCompute\n";
3682  if( fast==0 ) cout << " no optimization" << endl;
3683  if( fast==1 ) cout << " weight optimization" << endl;
3684  if( fast==2 ) cout << " symmetry optimization" << endl;
3685  #else
3686  fprintf( stdout,"spectrumCompute\n" );
3687  if( fast==0 ) fprintf( stdout," no optimization\n" );
3688  if( fast==1 ) fprintf( stdout," weight optimization\n" );
3689  if( fast==2 ) fprintf( stdout," symmetry optimization\n" );
3690  #endif
3691  #endif
3692  #endif
3693 
3694  // ----------------------
3695  // check if h is zero
3696  // ----------------------
3697 
3698  if( h==(poly)NULL )
3699  {
3700  return spectrumZero;
3701  }
3702 
3703  // ----------------------------------
3704  // check if h has a constant term
3705  // ----------------------------------
3706 
3707  if( hasConstTerm( h, currRing ) )
3708  {
3709  return spectrumBadPoly;
3710  }
3711 
3712  // --------------------------------
3713  // check if h has a linear term
3714  // --------------------------------
3715 
3716  if( hasLinearTerm( h, currRing ) )
3717  {
3718  *L = (lists)omAllocBin( slists_bin);
3719  (*L)->Init( 1 );
3720  (*L)->m[0].rtyp = INT_CMD; // milnor number
3721  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3722 
3723  return spectrumNoSingularity;
3724  }
3725 
3726  // ----------------------------------
3727  // compute the jacobi ideal of (h)
3728  // ----------------------------------
3729 
3730  ideal J = NULL;
3731  J = idInit( rVar(currRing),1 );
3732 
3733  #ifdef SPECTRUM_DEBUG
3734  #ifdef SPECTRUM_PRINT
3735  #ifdef SPECTRUM_IOSTREAM
3736  cout << "\n computing the Jacobi ideal...\n";
3737  #else
3738  fprintf( stdout,"\n computing the Jacobi ideal...\n" );
3739  #endif
3740  #endif
3741  #endif
3742 
3743  for( i=0; i<rVar(currRing); i++ )
3744  {
3745  J->m[i] = pDiff( h,i+1); //j );
3746 
3747  #ifdef SPECTRUM_DEBUG
3748  #ifdef SPECTRUM_PRINT
3749  #ifdef SPECTRUM_IOSTREAM
3750  cout << " ";
3751  #else
3752  fprintf( stdout," " );
3753  #endif
3754  pWrite( J->m[i] );
3755  #endif
3756  #endif
3757  }
3758 
3759  // --------------------------------------------
3760  // compute a standard basis stdJ of jac(h)
3761  // --------------------------------------------
3762 
3763  #ifdef SPECTRUM_DEBUG
3764  #ifdef SPECTRUM_PRINT
3765  #ifdef SPECTRUM_IOSTREAM
3766  cout << endl;
3767  cout << " computing a standard basis..." << endl;
3768  #else
3769  fprintf( stdout,"\n" );
3770  fprintf( stdout," computing a standard basis...\n" );
3771  #endif
3772  #endif
3773  #endif
3774 
3775  ideal stdJ = kStd(J,currRing->qideal,isNotHomog,NULL);
3776  idSkipZeroes( stdJ );
3777 
3778  #ifdef SPECTRUM_DEBUG
3779  #ifdef SPECTRUM_PRINT
3780  for( i=0; i<IDELEMS(stdJ); i++ )
3781  {
3782  #ifdef SPECTRUM_IOSTREAM
3783  cout << " ";
3784  #else
3785  fprintf( stdout," " );
3786  #endif
3787 
3788  pWrite( stdJ->m[i] );
3789  }
3790  #endif
3791  #endif
3792 
3793  idDelete( &J );
3794 
3795  // ------------------------------------------
3796  // check if the h has a singularity
3797  // ------------------------------------------
3798 
3799  if( hasOne( stdJ, currRing ) )
3800  {
3801  // -------------------------------
3802  // h is smooth in the origin
3803  // return only the Milnor number
3804  // -------------------------------
3805 
3806  *L = (lists)omAllocBin( slists_bin);
3807  (*L)->Init( 1 );
3808  (*L)->m[0].rtyp = INT_CMD; // milnor number
3809  /* (*L)->m[0].data = (void*)0;a -- done by Init */
3810 
3811  return spectrumNoSingularity;
3812  }
3813 
3814  // ------------------------------------------
3815  // check if the singularity h is isolated
3816  // ------------------------------------------
3817 
3818  for( i=rVar(currRing); i>0; i-- )
3819  {
3820  if( hasAxis( stdJ,i, currRing )==FALSE )
3821  {
3822  return spectrumNotIsolated;
3823  }
3824  }
3825 
3826  // ------------------------------------------
3827  // compute the highest corner hc of stdJ
3828  // ------------------------------------------
3829 
3830  #ifdef SPECTRUM_DEBUG
3831  #ifdef SPECTRUM_PRINT
3832  #ifdef SPECTRUM_IOSTREAM
3833  cout << "\n computing the highest corner...\n";
3834  #else
3835  fprintf( stdout,"\n computing the highest corner...\n" );
3836  #endif
3837  #endif
3838  #endif
3839 
3840  poly hc = (poly)NULL;
3841 
3842  scComputeHC( stdJ,currRing->qideal, 0,hc );
3843 
3844  if( hc!=(poly)NULL )
3845  {
3846  pGetCoeff(hc) = nInit(1);
3847 
3848  for( i=rVar(currRing); i>0; i-- )
3849  {
3850  if( pGetExp( hc,i )>0 ) pDecrExp( hc,i );
3851  }
3852  pSetm( hc );
3853  }
3854  else
3855  {
3856  return spectrumNoHC;
3857  }
3858 
3859  #ifdef SPECTRUM_DEBUG
3860  #ifdef SPECTRUM_PRINT
3861  #ifdef SPECTRUM_IOSTREAM
3862  cout << " ";
3863  #else
3864  fprintf( stdout," " );
3865  #endif
3866  pWrite( hc );
3867  #endif
3868  #endif
3869 
3870  // ----------------------------------------
3871  // compute the Newton polygon nph of h
3872  // ----------------------------------------
3873 
3874  #ifdef SPECTRUM_DEBUG
3875  #ifdef SPECTRUM_PRINT
3876  #ifdef SPECTRUM_IOSTREAM
3877  cout << "\n computing the newton polygon...\n";
3878  #else
3879  fprintf( stdout,"\n computing the newton polygon...\n" );
3880  #endif
3881  #endif
3882  #endif
3883 
3884  newtonPolygon nph( h, currRing );
3885 
3886  #ifdef SPECTRUM_DEBUG
3887  #ifdef SPECTRUM_PRINT
3888  cout << nph;
3889  #endif
3890  #endif
3891 
3892  // -----------------------------------------------
3893  // compute the weight corner wc of (stdj,nph)
3894  // -----------------------------------------------
3895 
3896  #ifdef SPECTRUM_DEBUG
3897  #ifdef SPECTRUM_PRINT
3898  #ifdef SPECTRUM_IOSTREAM
3899  cout << "\n computing the weight corner...\n";
3900  #else
3901  fprintf( stdout,"\n computing the weight corner...\n" );
3902  #endif
3903  #endif
3904  #endif
3905 
3906  poly wc = ( fast==0 ? pCopy( hc ) :
3907  ( fast==1 ? computeWC( nph,(Rational)rVar(currRing), currRing ) :
3908  /* fast==2 */computeWC( nph,
3909  ((Rational)rVar(currRing))/(Rational)2, currRing ) ) );
3910 
3911  #ifdef SPECTRUM_DEBUG
3912  #ifdef SPECTRUM_PRINT
3913  #ifdef SPECTRUM_IOSTREAM
3914  cout << " ";
3915  #else
3916  fprintf( stdout," " );
3917  #endif
3918  pWrite( wc );
3919  #endif
3920  #endif
3921 
3922  // -------------
3923  // compute NF
3924  // -------------
3925 
3926  #ifdef SPECTRUM_DEBUG
3927  #ifdef SPECTRUM_PRINT
3928  #ifdef SPECTRUM_IOSTREAM
3929  cout << "\n computing NF...\n" << endl;
3930  #else
3931  fprintf( stdout,"\n computing NF...\n" );
3932  #endif
3933  #endif
3934  #endif
3935 
3936  spectrumPolyList NF( &nph );
3937 
3938  computeNF( stdJ,hc,wc,&NF, currRing );
3939 
3940  #ifdef SPECTRUM_DEBUG
3941  #ifdef SPECTRUM_PRINT
3942  cout << NF;
3943  #ifdef SPECTRUM_IOSTREAM
3944  cout << endl;
3945  #else
3946  fprintf( stdout,"\n" );
3947  #endif
3948  #endif
3949  #endif
3950 
3951  // ----------------------------
3952  // compute the spectrum of h
3953  // ----------------------------
3954 // spectrumState spectrumStateFromList( spectrumPolyList& speclist, lists *L, int fast );
3955 
3956  return spectrumStateFromList(NF, L, fast );
3957 }
3958 
3959 // ----------------------------------------------------------------------------
3960 // this procedure is called from the interpreter
3961 // ----------------------------------------------------------------------------
3962 // first = polynomial
3963 // result = list of spectrum numbers
3964 // ----------------------------------------------------------------------------
3965 
3967 {
3968  switch( state )
3969  {
3970  case spectrumZero:
3971  WerrorS( "polynomial is zero" );
3972  break;
3973  case spectrumBadPoly:
3974  WerrorS( "polynomial has constant term" );
3975  break;
3976  case spectrumNoSingularity:
3977  WerrorS( "not a singularity" );
3978  break;
3979  case spectrumNotIsolated:
3980  WerrorS( "the singularity is not isolated" );
3981  break;
3982  case spectrumNoHC:
3983  WerrorS( "highest corner cannot be computed" );
3984  break;
3985  case spectrumDegenerate:
3986  WerrorS( "principal part is degenerate" );
3987  break;
3988  case spectrumOK:
3989  break;
3990 
3991  default:
3992  WerrorS( "unknown error occurred" );
3993  break;
3994  }
3995 }
3996 
3998 {
3999  spectrumState state = spectrumOK;
4000 
4001  // -------------------
4002  // check consistency
4003  // -------------------
4004 
4005  // check for a local ring
4006 
4007  if( !ringIsLocal(currRing ) )
4008  {
4009  WerrorS( "only works for local orderings" );
4010  state = spectrumWrongRing;
4011  }
4012 
4013  // no quotient rings are allowed
4014 
4015  else if( currRing->qideal != NULL )
4016  {
4017  WerrorS( "does not work in quotient rings" );
4018  state = spectrumWrongRing;
4019  }
4020  else
4021  {
4022  lists L = (lists)NULL;
4023  int flag = 1; // weight corner optimization is safe
4024 
4025  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4026 
4027  if( state==spectrumOK )
4028  {
4029  result->rtyp = LIST_CMD;
4030  result->data = (char*)L;
4031  }
4032  else
4033  {
4034  spectrumPrintError(state);
4035  }
4036  }
4037 
4038  return (state!=spectrumOK);
4039 }
4040 
4041 // ----------------------------------------------------------------------------
4042 // this procedure is called from the interpreter
4043 // ----------------------------------------------------------------------------
4044 // first = polynomial
4045 // result = list of spectrum numbers
4046 // ----------------------------------------------------------------------------
4047 
4049 {
4050  spectrumState state = spectrumOK;
4051 
4052  // -------------------
4053  // check consistency
4054  // -------------------
4055 
4056  // check for a local polynomial ring
4057 
4058  if( currRing->OrdSgn != -1 )
4059  // ?? HS: the test above is also true for k[x][[y]], k[[x]][y]
4060  // or should we use:
4061  //if( !ringIsLocal( ) )
4062  {
4063  WerrorS( "only works for local orderings" );
4064  state = spectrumWrongRing;
4065  }
4066  else if( currRing->qideal != NULL )
4067  {
4068  WerrorS( "does not work in quotient rings" );
4069  state = spectrumWrongRing;
4070  }
4071  else
4072  {
4073  lists L = (lists)NULL;
4074  int flag = 2; // symmetric optimization
4075 
4076  state = spectrumCompute( (poly)first->Data( ),&L,flag );
4077 
4078  if( state==spectrumOK )
4079  {
4080  result->rtyp = LIST_CMD;
4081  result->data = (char*)L;
4082  }
4083  else
4084  {
4085  spectrumPrintError(state);
4086  }
4087  }
4088 
4089  return (state!=spectrumOK);
4090 }
4091 
4092 // ----------------------------------------------------------------------------
4093 // check if a list is a spectrum
4094 // check for:
4095 // list has 6 elements
4096 // 1st element is int (mu=Milnor number)
4097 // 2nd element is int (pg=geometrical genus)
4098 // 3rd element is int (n =number of different spectrum numbers)
4099 // 4th element is intvec (num=numerators)
4100 // 5th element is intvec (den=denomiantors)
4101 // 6th element is intvec (mul=multiplicities)
4102 // exactly n numerators
4103 // exactly n denominators
4104 // exactly n multiplicities
4105 // mu>0
4106 // pg>=0
4107 // n>0
4108 // num>0
4109 // den>0
4110 // mul>0
4111 // symmetriy with respect to numberofvariables/2
4112 // monotony
4113 // mu = sum of all multiplicities
4114 // pg = sum of all multiplicities where num/den<=1
4115 // ----------------------------------------------------------------------------
4116 
4117 semicState list_is_spectrum( lists l )
4118 {
4119  // -------------------
4120  // check list length
4121  // -------------------
4122 
4123  if( l->nr < 5 )
4124  {
4125  return semicListTooShort;
4126  }
4127  else if( l->nr > 5 )
4128  {
4129  return semicListTooLong;
4130  }
4131 
4132  // -------------
4133  // check types
4134  // -------------
4135 
4136  if( l->m[0].rtyp != INT_CMD )
4137  {
4139  }
4140  else if( l->m[1].rtyp != INT_CMD )
4141  {
4143  }
4144  else if( l->m[2].rtyp != INT_CMD )
4145  {
4147  }
4148  else if( l->m[3].rtyp != INTVEC_CMD )
4149  {
4151  }
4152  else if( l->m[4].rtyp != INTVEC_CMD )
4153  {
4155  }
4156  else if( l->m[5].rtyp != INTVEC_CMD )
4157  {
4159  }
4160 
4161  // -------------------------
4162  // check number of entries
4163  // -------------------------
4164 
4165  int mu = (int)(long)(l->m[0].Data( ));
4166  int pg = (int)(long)(l->m[1].Data( ));
4167  int n = (int)(long)(l->m[2].Data( ));
4168 
4169  if( n <= 0 )
4170  {
4171  return semicListNNegative;
4172  }
4173 
4174  intvec *num = (intvec*)l->m[3].Data( );
4175  intvec *den = (intvec*)l->m[4].Data( );
4176  intvec *mul = (intvec*)l->m[5].Data( );
4177 
4178  if( n != num->length( ) )
4179  {
4181  }
4182  else if( n != den->length( ) )
4183  {
4185  }
4186  else if( n != mul->length( ) )
4187  {
4189  }
4190 
4191  // --------
4192  // values
4193  // --------
4194 
4195  if( mu <= 0 )
4196  {
4197  return semicListMuNegative;
4198  }
4199  if( pg < 0 )
4200  {
4201  return semicListPgNegative;
4202  }
4203 
4204  int i;
4205 
4206  for( i=0; i<n; i++ )
4207  {
4208  if( (*num)[i] <= 0 )
4209  {
4210  return semicListNumNegative;
4211  }
4212  if( (*den)[i] <= 0 )
4213  {
4214  return semicListDenNegative;
4215  }
4216  if( (*mul)[i] <= 0 )
4217  {
4218  return semicListMulNegative;
4219  }
4220  }
4221 
4222  // ----------------
4223  // check symmetry
4224  // ----------------
4225 
4226  int j;
4227 
4228  for( i=0, j=n-1; i<=j; i++,j-- )
4229  {
4230  if( (*num)[i] != rVar(currRing)*((*den)[i]) - (*num)[j] ||
4231  (*den)[i] != (*den)[j] ||
4232  (*mul)[i] != (*mul)[j] )
4233  {
4234  return semicListNotSymmetric;
4235  }
4236  }
4237 
4238  // ----------------
4239  // check monotony
4240  // ----------------
4241 
4242  for( i=0, j=1; i<n/2; i++,j++ )
4243  {
4244  if( (*num)[i]*(*den)[j] >= (*num)[j]*(*den)[i] )
4245  {
4246  return semicListNotMonotonous;
4247  }
4248  }
4249 
4250  // ---------------------
4251  // check Milnor number
4252  // ---------------------
4253 
4254  for( mu=0, i=0; i<n; i++ )
4255  {
4256  mu += (*mul)[i];
4257  }
4258 
4259  if( mu != (int)(long)(l->m[0].Data( )) )
4260  {
4261  return semicListMilnorWrong;
4262  }
4263 
4264  // -------------------------
4265  // check geometrical genus
4266  // -------------------------
4267 
4268  for( pg=0, i=0; i<n; i++ )
4269  {
4270  if( (*num)[i]<=(*den)[i] )
4271  {
4272  pg += (*mul)[i];
4273  }
4274  }
4275 
4276  if( pg != (int)(long)(l->m[1].Data( )) )
4277  {
4278  return semicListPGWrong;
4279  }
4280 
4281  return semicOK;
4282 }
4283 
4284 // ----------------------------------------------------------------------------
4285 // this procedure is called from the interpreter
4286 // ----------------------------------------------------------------------------
4287 // first = list of spectrum numbers
4288 // second = list of spectrum numbers
4289 // result = sum of the two lists
4290 // ----------------------------------------------------------------------------
4291 
4293 {
4294  semicState state;
4295 
4296  // -----------------
4297  // check arguments
4298  // -----------------
4299 
4300  lists l1 = (lists)first->Data( );
4301  lists l2 = (lists)second->Data( );
4302 
4303  if( (state=list_is_spectrum( l1 )) != semicOK )
4304  {
4305  WerrorS( "first argument is not a spectrum:" );
4306  list_error( state );
4307  }
4308  else if( (state=list_is_spectrum( l2 )) != semicOK )
4309  {
4310  WerrorS( "second argument is not a spectrum:" );
4311  list_error( state );
4312  }
4313  else
4314  {
4315  spectrum s1= spectrumFromList ( l1 );
4316  spectrum s2= spectrumFromList ( l2 );
4317  spectrum sum( s1+s2 );
4318 
4319  result->rtyp = LIST_CMD;
4320  result->data = (char*)(getList(sum));
4321  }
4322 
4323  return (state!=semicOK);
4324 }
4325 
4326 // ----------------------------------------------------------------------------
4327 // this procedure is called from the interpreter
4328 // ----------------------------------------------------------------------------
4329 // first = list of spectrum numbers
4330 // second = integer
4331 // result = the multiple of the first list by the second factor
4332 // ----------------------------------------------------------------------------
4333 
4335 {
4336  semicState state;
4337 
4338  // -----------------
4339  // check arguments
4340  // -----------------
4341 
4342  lists l = (lists)first->Data( );
4343  int k = (int)(long)second->Data( );
4344 
4345  if( (state=list_is_spectrum( l ))!=semicOK )
4346  {
4347  WerrorS( "first argument is not a spectrum" );
4348  list_error( state );
4349  }
4350  else if( k < 0 )
4351  {
4352  WerrorS( "second argument should be positive" );
4353  state = semicMulNegative;
4354  }
4355  else
4356  {
4357  spectrum s= spectrumFromList( l );
4358  spectrum product( k*s );
4359 
4360  result->rtyp = LIST_CMD;
4361  result->data = (char*)getList(product);
4362  }
4363 
4364  return (state!=semicOK);
4365 }
4366 
4367 // ----------------------------------------------------------------------------
4368 // this procedure is called from the interpreter
4369 // ----------------------------------------------------------------------------
4370 // first = list of spectrum numbers
4371 // second = list of spectrum numbers
4372 // result = semicontinuity index
4373 // ----------------------------------------------------------------------------
4374 
4376 {
4377  semicState state;
4378  BOOLEAN qh=(((int)(long)w->Data())==1);
4379 
4380  // -----------------
4381  // check arguments
4382  // -----------------
4383 
4384  lists l1 = (lists)u->Data( );
4385  lists l2 = (lists)v->Data( );
4386 
4387  if( (state=list_is_spectrum( l1 ))!=semicOK )
4388  {
4389  WerrorS( "first argument is not a spectrum" );
4390  list_error( state );
4391  }
4392  else if( (state=list_is_spectrum( l2 ))!=semicOK )
4393  {
4394  WerrorS( "second argument is not a spectrum" );
4395  list_error( state );
4396  }
4397  else
4398  {
4399  spectrum s1= spectrumFromList( l1 );
4400  spectrum s2= spectrumFromList( l2 );
4401 
4402  res->rtyp = INT_CMD;
4403  if (qh)
4404  res->data = (void*)(long)(s1.mult_spectrumh( s2 ));
4405  else
4406  res->data = (void*)(long)(s1.mult_spectrum( s2 ));
4407  }
4408 
4409  // -----------------
4410  // check status
4411  // -----------------
4412 
4413  return (state!=semicOK);
4414 }
4416 {
4417  sleftv tmp;
4418  memset(&tmp,0,sizeof(tmp));
4419  tmp.rtyp=INT_CMD;
4420  /* tmp.data = (void *)0; -- done by memset */
4421 
4422  return semicProc3(res,u,v,&tmp);
4423 }
4424 
4425 #endif
4426 
4428 {
4429  res->data= (void*)loNewtonPolytope( (ideal)arg1->Data() );
4430  return FALSE;
4431 }
4432 
4434 {
4435  if ( !(rField_is_long_R(currRing)) )
4436  {
4437  WerrorS("Ground field not implemented!");
4438  return TRUE;
4439  }
4440 
4441  simplex * LP;
4442  matrix m;
4443 
4444  leftv v= args;
4445  if ( v->Typ() != MATRIX_CMD ) // 1: matrix
4446  return TRUE;
4447  else
4448  m= (matrix)(v->CopyD());
4449 
4450  LP = new simplex(MATROWS(m),MATCOLS(m));
4451  LP->mapFromMatrix(m);
4452 
4453  v= v->next;
4454  if ( v->Typ() != INT_CMD ) // 2: m = number of constraints
4455  return TRUE;
4456  else
4457  LP->m= (int)(long)(v->Data());
4458 
4459  v= v->next;
4460  if ( v->Typ() != INT_CMD ) // 3: n = number of variables
4461  return TRUE;
4462  else
4463  LP->n= (int)(long)(v->Data());
4464 
4465  v= v->next;
4466  if ( v->Typ() != INT_CMD ) // 4: m1 = number of <= constraints
4467  return TRUE;
4468  else
4469  LP->m1= (int)(long)(v->Data());
4470 
4471  v= v->next;
4472  if ( v->Typ() != INT_CMD ) // 5: m2 = number of >= constraints
4473  return TRUE;
4474  else
4475  LP->m2= (int)(long)(v->Data());
4476 
4477  v= v->next;
4478  if ( v->Typ() != INT_CMD ) // 6: m3 = number of == constraints
4479  return TRUE;
4480  else
4481  LP->m3= (int)(long)(v->Data());
4482 
4483 #ifdef mprDEBUG_PROT
4484  Print("m (constraints) %d\n",LP->m);
4485  Print("n (columns) %d\n",LP->n);
4486  Print("m1 (<=) %d\n",LP->m1);
4487  Print("m2 (>=) %d\n",LP->m2);
4488  Print("m3 (==) %d\n",LP->m3);
4489 #endif
4490 
4491  LP->compute();
4492 
4493  lists lres= (lists)omAlloc( sizeof(slists) );
4494  lres->Init( 6 );
4495 
4496  lres->m[0].rtyp= MATRIX_CMD; // output matrix
4497  lres->m[0].data=(void*)LP->mapToMatrix(m);
4498 
4499  lres->m[1].rtyp= INT_CMD; // found a solution?
4500  lres->m[1].data=(void*)(long)LP->icase;
4501 
4502  lres->m[2].rtyp= INTVEC_CMD;
4503  lres->m[2].data=(void*)LP->posvToIV();
4504 
4505  lres->m[3].rtyp= INTVEC_CMD;
4506  lres->m[3].data=(void*)LP->zrovToIV();
4507 
4508  lres->m[4].rtyp= INT_CMD;
4509  lres->m[4].data=(void*)(long)LP->m;
4510 
4511  lres->m[5].rtyp= INT_CMD;
4512  lres->m[5].data=(void*)(long)LP->n;
4513 
4514  res->data= (void*)lres;
4515 
4516  return FALSE;
4517 }
4518 
4519 BOOLEAN nuMPResMat( leftv res, leftv arg1, leftv arg2 )
4520 {
4521  ideal gls = (ideal)(arg1->Data());
4522  int imtype= (int)(long)arg2->Data();
4523 
4524  uResultant::resMatType mtype= determineMType( imtype );
4525 
4526  // check input ideal ( = polynomial system )
4527  if ( mprIdealCheck( gls, arg1->Name(), mtype, true ) != mprOk )
4528  {
4529  return TRUE;
4530  }
4531 
4532  uResultant *resMat= new uResultant( gls, mtype, false );
4533  if (resMat!=NULL)
4534  {
4535  res->rtyp = MODUL_CMD;
4536  res->data= (void*)resMat->accessResMat()->getMatrix();
4537  if (!errorreported) delete resMat;
4538  }
4539  return errorreported;
4540 }
4541 
4542 BOOLEAN nuLagSolve( leftv res, leftv arg1, leftv arg2, leftv arg3 )
4543 {
4544 
4545  poly gls;
4546  gls= (poly)(arg1->Data());
4547  int howclean= (int)(long)arg3->Data();
4548 
4549  if ( !(rField_is_R(currRing) ||
4550  rField_is_Q(currRing) ||
4553  {
4554  WerrorS("Ground field not implemented!");
4555  return TRUE;
4556  }
4557 
4560  {
4561  unsigned long int ii = (unsigned long int)arg2->Data();
4562  setGMPFloatDigits( ii, ii );
4563  }
4564 
4565  if ( gls == NULL || pIsConstant( gls ) )
4566  {
4567  WerrorS("Input polynomial is constant!");
4568  return TRUE;
4569  }
4570 
4571  int ldummy;
4572  int deg= currRing->pLDeg( gls, &ldummy, currRing );
4573  // int deg= pDeg( gls );
4574  // int len= pLength( gls );
4575  int i,vpos=0;
4576  poly piter;
4577  lists elist;
4578  lists rlist;
4579 
4580  elist= (lists)omAlloc( sizeof(slists) );
4581  elist->Init( 0 );
4582 
4583  if ( rVar(currRing) > 1 )
4584  {
4585  piter= gls;
4586  for ( i= 1; i <= rVar(currRing); i++ )
4587  if ( pGetExp( piter, i ) )
4588  {
4589  vpos= i;
4590  break;
4591  }
4592  while ( piter )
4593  {
4594  for ( i= 1; i <= rVar(currRing); i++ )
4595  if ( (vpos != i) && (pGetExp( piter, i ) != 0) )
4596  {
4597  WerrorS("The input polynomial must be univariate!");
4598  return TRUE;
4599  }
4600  pIter( piter );
4601  }
4602  }
4603 
4604  rootContainer * roots= new rootContainer();
4605  number * pcoeffs= (number *)omAlloc( (deg+1) * sizeof( number ) );
4606  piter= gls;
4607  for ( i= deg; i >= 0; i-- )
4608  {
4609  //if ( piter ) Print("deg %d, pDeg(piter) %d\n",i,pTotaldegree(piter));
4610  if ( piter && pTotaldegree(piter) == i )
4611  {
4612  pcoeffs[i]= nCopy( pGetCoeff( piter ) );
4613  //nPrint( pcoeffs[i] );PrintS(" ");
4614  pIter( piter );
4615  }
4616  else
4617  {
4618  pcoeffs[i]= nInit(0);
4619  }
4620  }
4621 
4622 #ifdef mprDEBUG_PROT
4623  for (i=deg; i >= 0; i--)
4624  {
4625  nPrint( pcoeffs[i] );PrintS(" ");
4626  }
4627  PrintLn();
4628 #endif
4629 
4630  roots->fillContainer( pcoeffs, NULL, 1, deg, rootContainer::onepoly, 1 );
4631  roots->solver( howclean );
4632 
4633  int elem= roots->getAnzRoots();
4634  char *dummy;
4635  int j;
4636 
4637  rlist= (lists)omAlloc( sizeof(slists) );
4638  rlist->Init( elem );
4639 
4641  {
4642  for ( j= 0; j < elem; j++ )
4643  {
4644  rlist->m[j].rtyp=NUMBER_CMD;
4645  rlist->m[j].data=(void *)nCopy((number)(roots->getRoot(j)));
4646  //rlist->m[j].data=(void *)(number)(roots->getRoot(j));
4647  }
4648  }
4649  else
4650  {
4651  for ( j= 0; j < elem; j++ )
4652  {
4653  dummy = complexToStr( (*roots)[j], gmp_output_digits, currRing->cf );
4654  rlist->m[j].rtyp=STRING_CMD;
4655  rlist->m[j].data=(void *)dummy;
4656  }
4657  }
4658 
4659  elist->Clean();
4660  //omFreeSize( (ADDRESS) elist, sizeof(slists) );
4661 
4662  // this is (via fillContainer) the same data as in root
4663  //for ( i= deg; i >= 0; i-- ) nDelete( &pcoeffs[i] );
4664  //omFreeSize( (ADDRESS) pcoeffs, (deg+1) * sizeof( number ) );
4665 
4666  delete roots;
4667 
4668  res->rtyp= LIST_CMD;
4669  res->data= (void*)rlist;
4670 
4671  return FALSE;
4672 }
4673 
4674 BOOLEAN nuVanderSys( leftv res, leftv arg1, leftv arg2, leftv arg3)
4675 {
4676  int i;
4677  ideal p,w;
4678  p= (ideal)arg1->Data();
4679  w= (ideal)arg2->Data();
4680 
4681  // w[0] = f(p^0)
4682  // w[1] = f(p^1)
4683  // ...
4684  // p can be a vector of numbers (multivariate polynom)
4685  // or one number (univariate polynom)
4686  // tdg = deg(f)
4687 
4688  int n= IDELEMS( p );
4689  int m= IDELEMS( w );
4690  int tdg= (int)(long)arg3->Data();
4691 
4692  res->data= (void*)NULL;
4693 
4694  // check the input
4695  if ( tdg < 1 )
4696  {
4697  WerrorS("Last input parameter must be > 0!");
4698  return TRUE;
4699  }
4700  if ( n != rVar(currRing) )
4701  {
4702  Werror("Size of first input ideal must be equal to %d!",rVar(currRing));
4703  return TRUE;
4704  }
4705  if ( m != (int)pow((double)tdg+1,(double)n) )
4706  {
4707  Werror("Size of second input ideal must be equal to %d!",
4708  (int)pow((double)tdg+1,(double)n));
4709  return TRUE;
4710  }
4711  if ( !(rField_is_Q(currRing) /* ||
4712  rField_is_R() || rField_is_long_R() ||
4713  rField_is_long_C()*/ ) )
4714  {
4715  WerrorS("Ground field not implemented!");
4716  return TRUE;
4717  }
4718 
4719  number tmp;
4720  number *pevpoint= (number *)omAlloc( n * sizeof( number ) );
4721  for ( i= 0; i < n; i++ )
4722  {
4723  pevpoint[i]=nInit(0);
4724  if ( (p->m)[i] )
4725  {
4726  tmp = pGetCoeff( (p->m)[i] );
4727  if ( nIsZero(tmp) || nIsOne(tmp) || nIsMOne(tmp) )
4728  {
4729  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4730  WerrorS("Elements of first input ideal must not be equal to -1, 0, 1!");
4731  return TRUE;
4732  }
4733  } else tmp= NULL;
4734  if ( !nIsZero(tmp) )
4735  {
4736  if ( !pIsConstant((p->m)[i]))
4737  {
4738  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4739  WerrorS("Elements of first input ideal must be numbers!");
4740  return TRUE;
4741  }
4742  pevpoint[i]= nCopy( tmp );
4743  }
4744  }
4745 
4746  number *wresults= (number *)omAlloc( m * sizeof( number ) );
4747  for ( i= 0; i < m; i++ )
4748  {
4749  wresults[i]= nInit(0);
4750  if ( (w->m)[i] && !nIsZero(pGetCoeff((w->m)[i])) )
4751  {
4752  if ( !pIsConstant((w->m)[i]))
4753  {
4754  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4755  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4756  WerrorS("Elements of second input ideal must be numbers!");
4757  return TRUE;
4758  }
4759  wresults[i]= nCopy(pGetCoeff((w->m)[i]));
4760  }
4761  }
4762 
4763  vandermonde vm( m, n, tdg, pevpoint, FALSE );
4764  number *ncpoly= vm.interpolateDense( wresults );
4765  // do not free ncpoly[]!!
4766  poly rpoly= vm.numvec2poly( ncpoly );
4767 
4768  omFreeSize( (ADDRESS)pevpoint, n * sizeof( number ) );
4769  omFreeSize( (ADDRESS)wresults, m * sizeof( number ) );
4770 
4771  res->data= (void*)rpoly;
4772  return FALSE;
4773 }
4774 
4776 {
4777  leftv v= args;
4778 
4779  ideal gls;
4780  int imtype;
4781  int howclean;
4782 
4783  // get ideal
4784  if ( v->Typ() != IDEAL_CMD )
4785  return TRUE;
4786  else gls= (ideal)(v->Data());
4787  v= v->next;
4788 
4789  // get resultant matrix type to use (0,1)
4790  if ( v->Typ() != INT_CMD )
4791  return TRUE;
4792  else imtype= (int)(long)v->Data();
4793  v= v->next;
4794 
4795  if (imtype==0)
4796  {
4797  ideal test_id=idInit(1,1);
4798  int j;
4799  for(j=IDELEMS(gls)-1;j>=0;j--)
4800  {
4801  if (gls->m[j]!=NULL)
4802  {
4803  test_id->m[0]=gls->m[j];
4804  intvec *dummy_w=id_QHomWeight(test_id, currRing);
4805  if (dummy_w!=NULL)
4806  {
4807  WerrorS("Newton polytope not of expected dimension");
4808  delete dummy_w;
4809  return TRUE;
4810  }
4811  }
4812  }
4813  }
4814 
4815  // get and set precision in digits ( > 0 )
4816  if ( v->Typ() != INT_CMD )
4817  return TRUE;
4818  else if ( !(rField_is_R(currRing) || rField_is_long_R(currRing) || \
4820  {
4821  unsigned long int ii=(unsigned long int)v->Data();
4822  setGMPFloatDigits( ii, ii );
4823  }
4824  v= v->next;
4825 
4826  // get interpolation steps (0,1,2)
4827  if ( v->Typ() != INT_CMD )
4828  return TRUE;
4829  else howclean= (int)(long)v->Data();
4830 
4831  uResultant::resMatType mtype= determineMType( imtype );
4832  int i,count;
4833  lists listofroots= NULL;
4834  number smv= NULL;
4835  BOOLEAN interpolate_det= (mtype==uResultant::denseResMat)?TRUE:FALSE;
4836 
4837  //emptylist= (lists)omAlloc( sizeof(slists) );
4838  //emptylist->Init( 0 );
4839 
4840  //res->rtyp = LIST_CMD;
4841  //res->data= (void *)emptylist;
4842 
4843  // check input ideal ( = polynomial system )
4844  if ( mprIdealCheck( gls, args->Name(), mtype ) != mprOk )
4845  {
4846  return TRUE;
4847  }
4848 
4849  uResultant * ures;
4850  rootContainer ** iproots;
4851  rootContainer ** muiproots;
4852  rootArranger * arranger;
4853 
4854  // main task 1: setup of resultant matrix
4855  ures= new uResultant( gls, mtype );
4856  if ( ures->accessResMat()->initState() != resMatrixBase::ready )
4857  {
4858  WerrorS("Error occurred during matrix setup!");
4859  return TRUE;
4860  }
4861 
4862  // if dense resultant, check if minor nonsingular
4863  if ( mtype == uResultant::denseResMat )
4864  {
4865  smv= ures->accessResMat()->getSubDet();
4866 #ifdef mprDEBUG_PROT
4867  PrintS("// Determinant of submatrix: ");nPrint(smv);PrintLn();
4868 #endif
4869  if ( nIsZero(smv) )
4870  {
4871  WerrorS("Unsuitable input ideal: Minor of resultant matrix is singular!");
4872  return TRUE;
4873  }
4874  }
4875 
4876  // main task 2: Interpolate specialized resultant polynomials
4877  if ( interpolate_det )
4878  iproots= ures->interpolateDenseSP( false, smv );
4879  else
4880  iproots= ures->specializeInU( false, smv );
4881 
4882  // main task 3: Interpolate specialized resultant polynomials
4883  if ( interpolate_det )
4884  muiproots= ures->interpolateDenseSP( true, smv );
4885  else
4886  muiproots= ures->specializeInU( true, smv );
4887 
4888 #ifdef mprDEBUG_PROT
4889  int c= iproots[0]->getAnzElems();
4890  for (i=0; i < c; i++) pWrite(iproots[i]->getPoly());
4891  c= muiproots[0]->getAnzElems();
4892  for (i=0; i < c; i++) pWrite(muiproots[i]->getPoly());
4893 #endif
4894 
4895  // main task 4: Compute roots of specialized polys and match them up
4896  arranger= new rootArranger( iproots, muiproots, howclean );
4897  arranger->solve_all();
4898 
4899  // get list of roots
4900  if ( arranger->success() )
4901  {
4902  arranger->arrange();
4903  listofroots= listOfRoots(arranger, gmp_output_digits );
4904  }
4905  else
4906  {
4907  WerrorS("Solver was unable to find any roots!");
4908  return TRUE;
4909  }
4910 
4911  // free everything
4912  count= iproots[0]->getAnzElems();
4913  for (i=0; i < count; i++) delete iproots[i];
4914  omFreeSize( (ADDRESS) iproots, count * sizeof(rootContainer*) );
4915  count= muiproots[0]->getAnzElems();
4916  for (i=0; i < count; i++) delete muiproots[i];
4917  omFreeSize( (ADDRESS) muiproots, count * sizeof(rootContainer*) );
4918 
4919  delete ures;
4920  delete arranger;
4921  nDelete( &smv );
4922 
4923  res->data= (void *)listofroots;
4924 
4925  //emptylist->Clean();
4926  // omFreeSize( (ADDRESS) emptylist, sizeof(slists) );
4927 
4928  return FALSE;
4929 }
4930 
4931 // from mpr_numeric.cc
4932 lists listOfRoots( rootArranger* self, const unsigned int oprec )
4933 {
4934  int i,j;
4935  int count= self->roots[0]->getAnzRoots(); // number of roots
4936  int elem= self->roots[0]->getAnzElems(); // number of koordinates per root
4937 
4938  lists listofroots= (lists)omAlloc( sizeof(slists) ); // must be done this way!
4939 
4940  if ( self->found_roots )
4941  {
4942  listofroots->Init( count );
4943 
4944  for (i=0; i < count; i++)
4945  {
4946  lists onepoint= (lists)omAlloc(sizeof(slists)); // must be done this way!
4947  onepoint->Init(elem);
4948  for ( j= 0; j < elem; j++ )
4949  {
4950  if ( !rField_is_long_C(currRing) )
4951  {
4952  onepoint->m[j].rtyp=STRING_CMD;
4953  onepoint->m[j].data=(void *)complexToStr((*self->roots[j])[i],oprec, currRing->cf);
4954  }
4955  else
4956  {
4957  onepoint->m[j].rtyp=NUMBER_CMD;
4958  onepoint->m[j].data=(void *)n_Copy((number)(self->roots[j]->getRoot(i)), currRing->cf);
4959  }
4960  onepoint->m[j].next= NULL;
4961  onepoint->m[j].name= NULL;
4962  }
4963  listofroots->m[i].rtyp=LIST_CMD;
4964  listofroots->m[i].data=(void *)onepoint;
4965  listofroots->m[j].next= NULL;
4966  listofroots->m[j].name= NULL;
4967  }
4968 
4969  }
4970  else
4971  {
4972  listofroots->Init( 0 );
4973  }
4974 
4975  return listofroots;
4976 }
4977 
4978 // from ring.cc
4980 {
4981  ring rg = NULL;
4982  if (h!=NULL)
4983  {
4984 // Print(" new ring:%s (l:%d)\n",IDID(h),IDLEV(h));
4985  rg = IDRING(h);
4986  if (rg==NULL) return; //id <>NULL, ring==NULL
4987  omCheckAddrSize((ADDRESS)h,sizeof(idrec));
4988  if (IDID(h)) // OB: ????
4989  omCheckAddr((ADDRESS)IDID(h));
4990  rTest(rg);
4991  }
4992 
4993  // clean up history
4995  {
4997  memset(&sLastPrinted,0,sizeof(sleftv));
4998  }
4999 
5000  if ((rg!=currRing)&&(currRing!=NULL))
5001  {
5003  if (DENOMINATOR_LIST!=NULL)
5004  {
5005  if (TEST_V_ALLWARN)
5006  Warn("deleting denom_list for ring change to %s",IDID(h));
5007  do
5008  {
5009  n_Delete(&(dd->n),currRing->cf);
5010  dd=dd->next;
5012  DENOMINATOR_LIST=dd;
5013  } while(DENOMINATOR_LIST!=NULL);
5014  }
5015  }
5016 
5017  // test for valid "currRing":
5018  if ((rg!=NULL) && (rg->idroot==NULL))
5019  {
5020  ring old=rg;
5021  rg=rAssure_HasComp(rg);
5022  if (old!=rg)
5023  {
5024  rKill(old);
5025  IDRING(h)=rg;
5026  }
5027  }
5028  /*------------ change the global ring -----------------------*/
5029  rChangeCurrRing(rg);
5030  currRingHdl = h;
5031 }
5032 
5034 {
5035  // change some bad orderings/combination into better ones
5036  leftv h=ord;
5037  while(h!=NULL)
5038  {
5039  BOOLEAN change=FALSE;
5040  intvec *iv = (intvec *)(h->data);
5041  // ws(-i) -> wp(i)
5042  if ((*iv)[1]==ringorder_ws)
5043  {
5044  BOOLEAN neg=TRUE;
5045  for(int i=2;i<iv->length();i++)
5046  if((*iv)[i]>=0) { neg=FALSE; break; }
5047  if (neg)
5048  {
5049  (*iv)[1]=ringorder_wp;
5050  for(int i=2;i<iv->length();i++)
5051  (*iv)[i]= - (*iv)[i];
5052  change=TRUE;
5053  }
5054  }
5055  // Ws(-i) -> Wp(i)
5056  if ((*iv)[1]==ringorder_Ws)
5057  {
5058  BOOLEAN neg=TRUE;
5059  for(int i=2;i<iv->length();i++)
5060  if((*iv)[i]>=0) { neg=FALSE; break; }
5061  if (neg)
5062  {
5063  (*iv)[1]=ringorder_Wp;
5064  for(int i=2;i<iv->length();i++)
5065  (*iv)[i]= -(*iv)[i];
5066  change=TRUE;
5067  }
5068  }
5069  // wp(1) -> dp
5070  if ((*iv)[1]==ringorder_wp)
5071  {
5072  BOOLEAN all_one=TRUE;
5073  for(int i=2;i<iv->length();i++)
5074  if((*iv)[i]!=1) { all_one=FALSE; break; }
5075  if (all_one)
5076  {
5077  intvec *iv2=new intvec(3);
5078  (*iv2)[0]=1;
5079  (*iv2)[1]=ringorder_dp;
5080  (*iv2)[2]=iv->length()-2;
5081  delete iv;
5082  iv=iv2;
5083  h->data=iv2;
5084  change=TRUE;
5085  }
5086  }
5087  // Wp(1) -> Dp
5088  if ((*iv)[1]==ringorder_Wp)
5089  {
5090  BOOLEAN all_one=TRUE;
5091  for(int i=2;i<iv->length();i++)
5092  if((*iv)[i]!=1) { all_one=FALSE; break; }
5093  if (all_one)
5094  {
5095  intvec *iv2=new intvec(3);
5096  (*iv2)[0]=1;
5097  (*iv2)[1]=ringorder_Dp;
5098  (*iv2)[2]=iv->length()-2;
5099  delete iv;
5100  iv=iv2;
5101  h->data=iv2;
5102  change=TRUE;
5103  }
5104  }
5105  // dp(1)/Dp(1)/rp(1) -> lp(1)
5106  if (((*iv)[1]==ringorder_dp)
5107  || ((*iv)[1]==ringorder_Dp)
5108  || ((*iv)[1]==ringorder_rp))
5109  {
5110  if (iv->length()==3)
5111  {
5112  if ((*iv)[2]==1)
5113  {
5114  (*iv)[1]=ringorder_lp;
5115  change=TRUE;
5116  }
5117  }
5118  }
5119  // lp(i),lp(j) -> lp(i+j)
5120  if(((*iv)[1]==ringorder_lp)
5121  && (h->next!=NULL))
5122  {
5123  intvec *iv2 = (intvec *)(h->next->data);
5124  if ((*iv2)[1]==ringorder_lp)
5125  {
5126  leftv hh=h->next;
5127  h->next=hh->next;
5128  hh->next=NULL;
5129  if ((*iv2)[0]==1)
5130  (*iv)[2] += 1; // last block unspecified, at least 1
5131  else
5132  (*iv)[2] += (*iv2)[2];
5133  hh->CleanUp();
5134  omFree(hh);
5135  change=TRUE;
5136  }
5137  }
5138  // -------------------
5139  if (!change) h=h->next;
5140  }
5141  return ord;
5142 }
5143 
5144 
5146 {
5147  int last = 0, o=0, n = 1, i=0, typ = 1, j;
5148  ord=rOptimizeOrdAsSleftv(ord);
5149  sleftv *sl = ord;
5150 
5151  // determine nBlocks
5152  while (sl!=NULL)
5153  {
5154  intvec *iv = (intvec *)(sl->data);
5155  if (((*iv)[1]==ringorder_c)||((*iv)[1]==ringorder_C))
5156  i++;
5157  else if ((*iv)[1]==ringorder_L)
5158  {
5159  R->bitmask=(*iv)[2];
5160  n--;
5161  }
5162  else if (((*iv)[1]!=ringorder_a)
5163  && ((*iv)[1]!=ringorder_a64)
5164  && ((*iv)[1]!=ringorder_am))
5165  o++;
5166  n++;
5167  sl=sl->next;
5168  }
5169  // check whether at least one real ordering
5170  if (o==0)
5171  {
5172  WerrorS("invalid combination of orderings");
5173  return TRUE;
5174  }
5175  // if no c/C ordering is given, increment n
5176  if (i==0) n++;
5177  else if (i != 1)
5178  {
5179  // throw error if more than one is given
5180  WerrorS("more than one ordering c/C specified");
5181  return TRUE;
5182  }
5183 
5184  // initialize fields of R
5185  R->order=(int *)omAlloc0(n*sizeof(int));
5186  R->block0=(int *)omAlloc0(n*sizeof(int));
5187  R->block1=(int *)omAlloc0(n*sizeof(int));
5188  R->wvhdl=(int**)omAlloc0(n*sizeof(int_ptr));
5189 
5190  int *weights=(int*)omAlloc0((R->N+1)*sizeof(int));
5191 
5192  // init order, so that rBlocks works correctly
5193  for (j=0; j < n-1; j++)
5194  R->order[j] = (int) ringorder_unspec;
5195  // set last _C order, if no c/C order was given
5196  if (i == 0) R->order[n-2] = ringorder_C;
5197 
5198  /* init orders */
5199  sl=ord;
5200  n=-1;
5201  while (sl!=NULL)
5202  {
5203  intvec *iv;
5204  iv = (intvec *)(sl->data);
5205  if ((*iv)[1]!=ringorder_L)
5206  {
5207  n++;
5208 
5209  /* the format of an ordering:
5210  * iv[0]: factor
5211  * iv[1]: ordering
5212  * iv[2..end]: weights
5213  */
5214  R->order[n] = (*iv)[1];
5215  typ=1;
5216  switch ((*iv)[1])
5217  {
5218  case ringorder_ws:
5219  case ringorder_Ws:
5220  typ=-1;
5221  case ringorder_wp:
5222  case ringorder_Wp:
5223  R->wvhdl[n]=(int*)omAlloc((iv->length()-1)*sizeof(int));
5224  R->block0[n] = last+1;
5225  for (i=2; i<iv->length(); i++)
5226  {
5227  R->wvhdl[n][i-2] = (*iv)[i];
5228  last++;
5229  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5230  }
5231  R->block1[n] = si_min(last,R->N);
5232  break;
5233  case ringorder_ls:
5234  case ringorder_ds:
5235  case ringorder_Ds:
5236  case ringorder_rs:
5237  typ=-1;
5238  case ringorder_lp:
5239  case ringorder_dp:
5240  case ringorder_Dp:
5241  case ringorder_rp:
5242  R->block0[n] = last+1;
5243  if (iv->length() == 3) last+=(*iv)[2];
5244  else last += (*iv)[0];
5245  R->block1[n] = si_min(last,R->N);
5246  if (rCheckIV(iv)) return TRUE;
5247  for(i=si_min(rVar(R),R->block1[n]);i>=R->block0[n];i--)
5248  {
5249  if (weights[i]==0) weights[i]=typ;
5250  }
5251  break;
5252 
5253  case ringorder_s: // no 'rank' params!
5254  {
5255 
5256  if(iv->length() > 3)
5257  return TRUE;
5258 
5259  if(iv->length() == 3)
5260  {
5261  const int s = (*iv)[2];
5262  R->block0[n] = s;
5263  R->block1[n] = s;
5264  }
5265  break;
5266  }
5267  case ringorder_IS:
5268  {
5269  if(iv->length() != 3) return TRUE;
5270 
5271  const int s = (*iv)[2];
5272 
5273  if( 1 < s || s < -1 ) return TRUE;
5274 
5275  R->block0[n] = s;
5276  R->block1[n] = s;
5277  break;
5278  }
5279  case ringorder_S:
5280  case ringorder_c:
5281  case ringorder_C:
5282  {
5283  if (rCheckIV(iv)) return TRUE;
5284  break;
5285  }
5286  case ringorder_aa:
5287  case ringorder_a:
5288  {
5289  R->block0[n] = last+1;
5290  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5291  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int));
5292  for (i=2; i<iv->length(); i++)
5293  {
5294  R->wvhdl[n][i-2]=(*iv)[i];
5295  last++;
5296  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5297  }
5298  last=R->block0[n]-1;
5299  break;
5300  }
5301  case ringorder_am:
5302  {
5303  R->block0[n] = last+1;
5304  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5305  R->wvhdl[n] = (int*)omAlloc(iv->length()*sizeof(int));
5306  if (R->block1[n]- R->block0[n]+2>=iv->length())
5307  WarnS("missing module weights");
5308  for (i=2; i<=(R->block1[n]-R->block0[n]+2); i++)
5309  {
5310  R->wvhdl[n][i-2]=(*iv)[i];
5311  last++;
5312  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5313  }
5314  R->wvhdl[n][i-2]=iv->length() -3 -(R->block1[n]- R->block0[n]);
5315  for (; i<iv->length(); i++)
5316  {
5317  R->wvhdl[n][i-1]=(*iv)[i];
5318  }
5319  last=R->block0[n]-1;
5320  break;
5321  }
5322  case ringorder_a64:
5323  {
5324  R->block0[n] = last+1;
5325  R->block1[n] = si_min(last+iv->length()-2 , R->N);
5326  R->wvhdl[n] = (int*)omAlloc((iv->length()-1)*sizeof(int64));
5327  int64 *w=(int64 *)R->wvhdl[n];
5328  for (i=2; i<iv->length(); i++)
5329  {
5330  w[i-2]=(*iv)[i];
5331  last++;
5332  if (weights[last]==0) weights[last]=(*iv)[i]*typ;
5333  }
5334  last=R->block0[n]-1;
5335  break;
5336  }
5337  case ringorder_M:
5338  {
5339  int Mtyp=rTypeOfMatrixOrder(iv);
5340  if (Mtyp==0) return TRUE;
5341  if (Mtyp==-1) typ = -1;
5342 
5343  R->wvhdl[n] =( int *)omAlloc((iv->length()-1)*sizeof(int));
5344  for (i=2; i<iv->length();i++)
5345  R->wvhdl[n][i-2]=(*iv)[i];
5346 
5347  R->block0[n] = last+1;
5348  last += (int)sqrt((double)(iv->length()-2));
5349  R->block1[n] = si_min(last,R->N);
5350  for(i=R->block1[n];i>=R->block0[n];i--)
5351  {
5352  if (weights[i]==0) weights[i]=typ;
5353  }
5354  break;
5355  }
5356 
5357  case ringorder_no:
5358  R->order[n] = ringorder_unspec;
5359  return TRUE;
5360 
5361  default:
5362  Werror("Internal Error: Unknown ordering %d", (*iv)[1]);
5363  R->order[n] = ringorder_unspec;
5364  return TRUE;
5365  }
5366  }
5367  if (last>R->N)
5368  {
5369  Werror("mismatch of number of vars (%d) and ordering (>=%d vars)",
5370  R->N,last);
5371  return TRUE;
5372  }
5373  sl=sl->next;
5374  }
5375 
5376  // check for complete coverage
5377  while ( n >= 0 && (
5378  (R->order[n]==ringorder_c)
5379  || (R->order[n]==ringorder_C)
5380  || (R->order[n]==ringorder_s)
5381  || (R->order[n]==ringorder_S)
5382  || (R->order[n]==ringorder_IS)
5383  )) n--;
5384 
5385  assume( n >= 0 );
5386 
5387  if (R->block1[n] != R->N)
5388  {
5389  if (((R->order[n]==ringorder_dp) ||
5390  (R->order[n]==ringorder_ds) ||
5391  (R->order[n]==ringorder_Dp) ||
5392  (R->order[n]==ringorder_Ds) ||
5393  (R->order[n]==ringorder_rp) ||
5394  (R->order[n]==ringorder_rs) ||
5395  (R->order[n]==ringorder_lp) ||
5396  (R->order[n]==ringorder_ls))
5397  &&
5398  R->block0[n] <= R->N)
5399  {
5400  R->block1[n] = R->N;
5401  }
5402  else
5403  {
5404  Werror("mismatch of number of vars (%d) and ordering (%d vars)",
5405  R->N,R->block1[n]);
5406  return TRUE;
5407  }
5408  }
5409  // find OrdSgn:
5410  R->OrdSgn = 1;
5411  for(i=1;i<=R->N;i++)
5412  { if (weights[i]<0) { R->OrdSgn=-1;break; }}
5413  omFree(weights);
5414  return FALSE;
5415 }
5416 
5418 {
5419 
5420  while(sl!=NULL)
5421  {
5422  if (sl->Name() == sNoName)
5423  {
5424  if (sl->Typ()==POLY_CMD)
5425  {
5426  sleftv s_sl;
5427  iiConvert(POLY_CMD,ANY_TYPE,-1,sl,&s_sl);
5428  if (s_sl.Name() != sNoName)
5429  *p = omStrDup(s_sl.Name());
5430  else
5431  *p = NULL;
5432  sl->next = s_sl.next;
5433  s_sl.next = NULL;
5434  s_sl.CleanUp();
5435  if (*p == NULL) return TRUE;
5436  }
5437  else
5438  return TRUE;
5439  }
5440  else
5441  *p = omStrDup(sl->Name());
5442  p++;
5443  sl=sl->next;
5444  }
5445  return FALSE;
5446 }
5447 
5448 const short MAX_SHORT = 32767; // (1 << (sizeof(short)*8)) - 1;
5449 
5450 ////////////////////
5451 //
5452 // rInit itself:
5453 //
5454 // INPUT: s: name, pn: ch & parameter (names), rv: variable (names)
5455 // ord: ordering
5456 // RETURN: currRingHdl on success
5457 // NULL on error
5458 // NOTE: * makes new ring to current ring, on success
5459 // * considers input sleftv's as read-only
5460 //idhdl rInit(char *s, sleftv* pn, sleftv* rv, sleftv* ord)
5461 ring rInit(sleftv* pn, sleftv* rv, sleftv* ord)
5462 {
5463 #ifdef HAVE_RINGS
5464  //unsigned int ringtype = 0;
5465  mpz_ptr modBase = NULL;
5466  unsigned int modExponent = 1;
5467 #endif
5468  int float_len=0;
5469  int float_len2=0;
5470  ring R = NULL;
5471  //BOOLEAN ffChar=FALSE;
5472 
5473  /* ch -------------------------------------------------------*/
5474  // get ch of ground field
5475 
5476  // allocated ring
5477  R = (ring) omAlloc0Bin(sip_sring_bin);
5478 
5479  coeffs cf = NULL;
5480 
5481  assume( pn != NULL );
5482  const int P = pn->listLength();
5483 
5484  #ifdef SINGULAR_4_1
5485  if (pn->Typ()==CRING_CMD)
5486  {
5487  cf=(coeffs)pn->CopyD();
5488  if(P>1) /*parameter*/
5489  {
5490  pn = pn->next;
5491  const int pars = pn->listLength();
5492  assume( pars > 0 );
5493  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5494 
5495  if (rSleftvList2StringArray(pn, names))
5496  {
5497  WerrorS("parameter expected");
5498  goto rInitError;
5499  }
5500 
5501  TransExtInfo extParam;
5502 
5503  extParam.r = rDefault( cf, pars, names); // Q/Zp [ p_1, ... p_pars ]
5504  for(int i=pars-1; i>=0;i--)
5505  {
5506  omFree(names[i]);
5507  }
5508  omFree(names);
5509 
5510  cf = nInitChar(n_transExt, &extParam);
5511  }
5512  assume( cf != NULL );
5513  }
5514  else
5515  #endif
5516  if (pn->Typ()==INT_CMD)
5517  {
5518  int ch = (int)(long)pn->Data();
5519 
5520  /* parameter? -------------------------------------------------------*/
5521  pn = pn->next;
5522 
5523  if (pn == NULL) // no params!?
5524  {
5525  if (ch!=0)
5526  {
5527  int ch2=IsPrime(ch);
5528  if ((ch<2)||(ch!=ch2))
5529  {
5530  Warn("%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5531  ch=32003;
5532  }
5533  cf = nInitChar(n_Zp, (void*)(long)ch);
5534  }
5535  else
5536  cf = nInitChar(n_Q, (void*)(long)ch);
5537  }
5538  else
5539  {
5540  const int pars = pn->listLength();
5541 
5542  assume( pars > 0 );
5543 
5544  // predefined finite field: (p^k, a)
5545  if ((ch!=0) && (ch!=IsPrime(ch)) && (pars == 1))
5546  {
5547  GFInfo param;
5548 
5549  param.GFChar = ch;
5550  param.GFDegree = 1;
5551  param.GFPar_name = pn->name;
5552 
5553  cf = nInitChar(n_GF, &param);
5554  }
5555  else // (0/p, a, b, ..., z)
5556  {
5557  if ((ch!=0) && (ch!=IsPrime(ch)))
5558  {
5559  WerrorS("too many parameters");
5560  goto rInitError;
5561  }
5562 
5563  char ** names = (char**)omAlloc0(pars * sizeof(char_ptr));
5564 
5565  if (rSleftvList2StringArray(pn, names))
5566  {
5567  WerrorS("parameter expected");
5568  goto rInitError;
5569  }
5570 
5571  TransExtInfo extParam;
5572 
5573  extParam.r = rDefault( ch, pars, names); // Q/Zp [ p_1, ... p_pars ]
5574  for(int i=pars-1; i>=0;i--)
5575  {
5576  omFree(names[i]);
5577  }
5578  omFree(names);
5579 
5580  cf = nInitChar(n_transExt, &extParam);
5581  }
5582  }
5583 
5584 // if (cf==NULL) goto rInitError;
5585  assume( cf != NULL );
5586  }
5587  else if ((pn->name != NULL)
5588  && ((strcmp(pn->name,"real")==0) || (strcmp(pn->name,"complex")==0)))
5589  {
5590  BOOLEAN complex_flag=(strcmp(pn->name,"complex")==0);
5591  if ((pn->next!=NULL) && (pn->next->Typ()==INT_CMD))
5592  {
5593  float_len=(int)(long)pn->next->Data();
5594  float_len2=float_len;
5595  pn=pn->next;
5596  if ((pn->next!=NULL) && (pn->next->Typ()==INT_CMD))
5597  {
5598  float_len2=(int)(long)pn->next->Data();
5599  pn=pn->next;
5600  }
5601  }
5602 
5603  if (!complex_flag)
5604  complex_flag= pn->next != NULL;
5605  if( !complex_flag && (float_len2 <= (short)SHORT_REAL_LENGTH))
5606  cf=nInitChar(n_R, NULL);
5607  else // longR or longC?
5608  {
5609  LongComplexInfo param;
5610 
5611  param.float_len = si_min (float_len, 32767);
5612  param.float_len2 = si_min (float_len2, 32767);
5613 
5614  // set the parameter name
5615  if (complex_flag)
5616  {
5617  if (param.float_len < SHORT_REAL_LENGTH)
5618  {
5621  }
5622  if (pn->next == NULL)
5623  param.par_name=(const char*)"i"; //default to i
5624  else
5625  param.par_name = (const char*)pn->next->name;
5626  }
5627 
5628  cf = nInitChar(complex_flag ? n_long_C: n_long_R, (void*)&param);
5629  }
5630  assume( cf != NULL );
5631  }
5632 #ifdef HAVE_RINGS
5633  else if ((pn->name != NULL) && (strcmp(pn->name, "integer") == 0))
5634  {
5635  // TODO: change to use coeffs_BIGINT!?
5636  modBase = (mpz_ptr) omAlloc(sizeof(mpz_t));
5637  mpz_init_set_si(modBase, 0);
5638  if (pn->next!=NULL)
5639  {
5640  if (pn->next->Typ()==INT_CMD)
5641  {
5642  mpz_set_ui(modBase, (int)(long) pn->next->Data());
5643  pn=pn->next;
5644  if ((pn->next!=NULL) && (pn->next->Typ()==INT_CMD))
5645  {
5646  modExponent = (long) pn->next->Data();
5647  pn=pn->next;
5648  }
5649  while ((pn->next!=NULL) && (pn->next->Typ()==INT_CMD))
5650  {
5651  mpz_mul_ui(modBase, modBase, (int)(long) pn->next->Data());
5652  pn=pn->next;
5653  }
5654  }
5655  else if (pn->next->Typ()==BIGINT_CMD)
5656  {
5657  number p=(number)pn->next->CopyD(); // FIXME: why CopyD() here if nlGMP should not overtake p!?
5658  nlGMP(p,(number)modBase,coeffs_BIGINT); // TODO? // extern void nlGMP(number &i, number n, const coeffs r); // FIXME: n_MPZ( modBase, p, coeffs_BIGINT); ?
5659  n_Delete(&p,coeffs_BIGINT);
5660  }
5661  }
5662  else
5663  cf=nInitChar(n_Z,NULL);
5664 
5665  if ((mpz_cmp_ui(modBase, 1) == 0) && (mpz_cmp_ui(modBase, 0) < 0))
5666  {
5667  Werror("Wrong ground ring specification (module is 1)");
5668  goto rInitError;
5669  }
5670  if (modExponent < 1)
5671  {
5672  Werror("Wrong ground ring specification (exponent smaller than 1");
5673  goto rInitError;
5674  }
5675  // module is 0 ---> integers ringtype = 4;
5676  // we have an exponent
5677  if (modExponent > 1 && cf == NULL)
5678  {
5679  if ((mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*sizeof(unsigned long)))
5680  {
5681  /* this branch should be active for modExponent = 2..32 resp. 2..64,
5682  depending on the size of a long on the respective platform */
5683  //ringtype = 1; // Use Z/2^ch
5684  cf=nInitChar(n_Z2m,(void*)(long)modExponent);
5685  mpz_clear(modBase);
5686  omFreeSize (modBase, sizeof (mpz_t));
5687  }
5688  else
5689  {
5690  if (mpz_cmp_ui(modBase,0)==0)
5691  {
5692  WerrorS("modulus must not be 0 or parameter not allowed");
5693  goto rInitError;
5694  }
5695  //ringtype = 3;
5696  ZnmInfo info;
5697  info.base= modBase;
5698  info.exp= modExponent;
5699  cf=nInitChar(n_Znm,(void*) &info); //exponent is missing
5700  }
5701  }
5702  // just a module m > 1
5703  else if (cf == NULL)
5704  {
5705  if (mpz_cmp_ui(modBase,0)==0)
5706  {
5707  WerrorS("modulus must not be 0 or parameter not allowed");
5708  goto rInitError;
5709  }
5710  //ringtype = 2;
5711  ZnmInfo info;
5712  info.base= modBase;
5713  info.exp= modExponent;
5714  cf=nInitChar(n_Zn,(void*) &info);
5715  }
5716  assume( cf != NULL );
5717  }
5718 #endif
5719  // ring NEW = OLD, (), (); where OLD is a polynomial ring...
5720  else if ((pn->Typ()==RING_CMD) && (P == 1))
5721  {
5722  TransExtInfo extParam;
5723  extParam.r = (ring)pn->Data();
5724  cf = nInitChar(n_transExt, &extParam);
5725  }
5726  else if ((pn->Typ()==QRING_CMD) && (P == 1)) // same for qrings - which should be fields!?
5727  {
5728  AlgExtInfo extParam;
5729  extParam.r = (ring)pn->Data();
5730 
5731  cf = nInitChar(n_algExt, &extParam); // Q[a]/<minideal>
5732  }
5733  else
5734  {
5735  Werror("Wrong or unknown ground field specification");
5736 #ifndef SING_NDEBUG
5737  sleftv* p = pn;
5738  while (p != NULL)
5739  {
5740  Print( "pn[%p]: type: %d [%s]: %p, name: %s", (void*)p, p->Typ(), Tok2Cmdname(p->Typ()), p->Data(), (p->name == NULL? "NULL" : p->name) );
5741  PrintLn();
5742  p = p->next;
5743  }
5744 #endif
5745  goto rInitError;
5746  }
5747 // pn=pn->next;
5748 
5749  /*every entry in the new ring is initialized to 0*/
5750 
5751  /* characteristic -----------------------------------------------*/
5752  /* input: 0 ch=0 : Q parameter=NULL ffChar=FALSE float_len
5753  * 0 1 : Q(a,...) *names FALSE
5754  * 0 -1 : R NULL FALSE 0
5755  * 0 -1 : R NULL FALSE prec. >6
5756  * 0 -1 : C *names FALSE prec. 0..?
5757  * p p : Fp NULL FALSE
5758  * p -p : Fp(a) *names FALSE
5759  * q q : GF(q=p^n) *names TRUE
5760  */
5761  if (cf==NULL)
5762  {
5763  Werror("Invalid ground field specification");
5764  goto rInitError;
5765 // const int ch=32003;
5766 // cf=nInitChar(n_Zp, (void*)(long)ch);
5767  }
5768 
5769  assume( R != NULL );
5770 
5771  R->cf = cf;
5772 
5773  /* names and number of variables-------------------------------------*/
5774  {
5775  int l=rv->listLength();
5776 
5777  if (l>MAX_SHORT)
5778  {
5779  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5780  goto rInitError;
5781  }
5782  R->N = l; /*rv->listLength();*/
5783  }
5784  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5785  if (rSleftvList2StringArray(rv, R->names))
5786  {
5787  WerrorS("name of ring variable expected");
5788  goto rInitError;
5789  }
5790 
5791  /* check names and parameters for conflicts ------------------------- */
5792  rRenameVars(R); // conflicting variables will be renamed
5793  /* ordering -------------------------------------------------------------*/
5794  if (rSleftvOrdering2Ordering(ord, R))
5795  goto rInitError;
5796 
5797  // Complete the initialization
5798  if (rComplete(R,1))
5799  goto rInitError;
5800 
5801 /*#ifdef HAVE_RINGS
5802 // currently, coefficients which are ring elements require a global ordering:
5803  if (rField_is_Ring(R) && (R->OrdSgn==-1))
5804  {
5805  WerrorS("global ordering required for these coefficients");
5806  goto rInitError;
5807  }
5808 #endif*/
5809 
5810  rTest(R);
5811 
5812  // try to enter the ring into the name list
5813  // need to clean up sleftv here, before this ring can be set to
5814  // new currRing or currRing can be killed beacuse new ring has
5815  // same name
5816  if (pn != NULL) pn->CleanUp();
5817  if (rv != NULL) rv->CleanUp();
5818  if (ord != NULL) ord->CleanUp();
5819  //if ((tmp = enterid(s, myynest, RING_CMD, &IDROOT))==NULL)
5820  // goto rInitError;
5821 
5822  //memcpy(IDRING(tmp),R,sizeof(*R));
5823  // set current ring
5824  //omFreeBin(R, ip_sring_bin);
5825  //return tmp;
5826  return R;
5827 
5828  // error case:
5829  rInitError:
5830  if ((R != NULL)&&(R->cf!=NULL)) rDelete(R);
5831  if (pn != NULL) pn->CleanUp();
5832  if (rv != NULL) rv->CleanUp();
5833  if (ord != NULL) ord->CleanUp();
5834  return NULL;
5835 }
5836 
5837 ring rSubring(ring org_ring, sleftv* rv)
5838 {
5839  ring R = rCopy0(org_ring);
5840  int *perm=(int *)omAlloc0((org_ring->N+1)*sizeof(int));
5841  int n = rBlocks(org_ring), i=0, j;
5842 
5843  /* names and number of variables-------------------------------------*/
5844  {
5845  int l=rv->listLength();
5846  if (l>MAX_SHORT)
5847  {
5848  Werror("too many ring variables(%d), max is %d",l,MAX_SHORT);
5849  goto rInitError;
5850  }
5851  R->N = l; /*rv->listLength();*/
5852  }
5853  omFree(R->names);
5854  R->names = (char **)omAlloc0(R->N * sizeof(char_ptr));
5855  if (rSleftvList2StringArray(rv, R->names))
5856  {
5857  WerrorS("name of ring variable expected");
5858  goto rInitError;
5859  }
5860 
5861  /* check names for subring in org_ring ------------------------- */
5862  {
5863  i=0;
5864 
5865  for(j=0;j<R->N;j++)
5866  {
5867  for(;i<org_ring->N;i++)
5868  {
5869  if (strcmp(org_ring->names[i],R->names[j])==0)
5870  {
5871  perm[i+1]=j+1;
5872  break;
5873  }
5874  }
5875  if (i>org_ring->N)
5876  {
5877  Werror("variable %d (%s) not in basering",j+1,R->names[j]);
5878  break;
5879  }
5880  }
5881  }
5882  //Print("perm=");
5883  //for(i=1;i<org_ring->N;i++) Print("v%d -> v%d\n",i,perm[i]);
5884  /* ordering -------------------------------------------------------------*/
5885 
5886  for(i=0;i<n;i++)
5887  {
5888  int min_var=-1;
5889  int max_var=-1;
5890  for(j=R->block0[i];j<=R->block1[i];j++)
5891  {
5892  if (perm[j]>0)
5893  {
5894  if (min_var==-1) min_var=perm[j];
5895  max_var=perm[j];
5896  }
5897  }
5898  if (min_var!=-1)
5899  {
5900  //Print("block %d: old %d..%d, now:%d..%d\n",
5901  // i,R->block0[i],R->block1[i],min_var,max_var);
5902  R->block0[i]=min_var;
5903  R->block1[i]=max_var;
5904  if (R->wvhdl[i]!=NULL)
5905  {
5906  omFree(R->wvhdl[i]);
5907  R->wvhdl[i]=(int*)omAlloc0((max_var-min_var+1)*sizeof(int));
5908  for(j=org_ring->block0[i];j<=org_ring->block1[i];j++)
5909  {
5910  if (perm[j]>0)
5911  {
5912  R->wvhdl[i][perm[j]-R->block0[i]]=
5913  org_ring->wvhdl[i][j-org_ring->block0[i]];
5914  //Print("w%d=%d (orig_w%d)\n",perm[j],R->wvhdl[i][perm[j]-R->block0[i]],j);
5915  }
5916  }
5917  }
5918  }
5919  else
5920  {
5921  if(R->block0[i]>0)
5922  {
5923  //Print("skip block %d\n",i);
5924  R->order[i]=ringorder_unspec;
5925  if (R->wvhdl[i] !=NULL) omFree(R->wvhdl[i]);
5926  R->wvhdl[i]=NULL;
5927  }
5928  //else Print("keep block %d\n",i);
5929  }
5930  }
5931  i=n-1;
5932  while(i>0)
5933  {
5934  // removed unneded blocks
5935  if(R->order[i-1]==ringorder_unspec)
5936  {
5937  for(j=i;j<=n;j++)
5938  {
5939  R->order[j-1]=R->order[j];
5940  R->block0[j-1]=R->block0[j];
5941  R->block1[j-1]=R->block1[j];
5942  if (R->wvhdl[j-1] !=NULL) omFree(R->wvhdl[j-1]);
5943  R->wvhdl[j-1]=R->wvhdl[j];
5944  }
5945  R->order[n]=ringorder_unspec;
5946  n--;
5947  }
5948  i--;
5949  }
5950  n=rBlocks(org_ring)-1;
5951  while (R->order[n]==0) n--;
5952  while (R->order[n]==ringorder_unspec) n--;
5953  if ((R->order[n]==ringorder_c) || (R->order[n]==ringorder_C)) n--;
5954  if (R->block1[n] != R->N)
5955  {
5956  if (((R->order[n]==ringorder_dp) ||
5957  (R->order[n]==ringorder_ds) ||
5958  (R->order[n]==ringorder_Dp) ||
5959  (R->order[n]==ringorder_Ds) ||
5960  (R->order[n]==ringorder_rp) ||
5961  (R->order[n]==ringorder_rs) ||
5962  (R->order[n]==ringorder_lp) ||
5963  (R->order[n]==ringorder_ls))
5964  &&
5965  R->block0[n] <= R->N)
5966  {
5967  R->block1[n] = R->N;
5968  }
5969  else
5970  {
5971  Werror("mismatch of number of vars (%d) and ordering (%d vars) in block %d",
5972  R->N,R->block1[n],n);
5973  return NULL;
5974  }
5975  }
5976  omFree(perm);
5977  // find OrdSgn:
5978  R->OrdSgn = org_ring->OrdSgn; // IMPROVE!
5979  //for(i=1;i<=R->N;i++)
5980  //{ if (weights[i]<0) { R->OrdSgn=-1;break; }}
5981  //omFree(weights);
5982  // Complete the initialization
5983  if (rComplete(R,1))
5984  goto rInitError;
5985 
5986  rTest(R);
5987 
5988  if (rv != NULL) rv->CleanUp();
5989 
5990  return R;
5991 
5992  // error case:
5993  rInitError:
5994  if (R != NULL) rDelete(R);
5995  if (rv != NULL) rv->CleanUp();
5996  return NULL;
5997 }
5998 
5999 void rKill(ring r)
6000 {
6001  if ((r->ref<=0)&&(r->order!=NULL))
6002  {
6003 #ifdef RDEBUG
6004  if (traceit &TRACE_SHOW_RINGS) Print("kill ring %lx\n",(long)r);
6005 #endif
6006  if (r->qideal!=NULL)
6007  {
6008  id_Delete(&r->qideal, r);
6009  r->qideal = NULL;
6010  }
6011  int j;
6012 #ifdef USE_IILOCALRING
6013  for (j=0;j<myynest;j++)
6014  {
6015  if (iiLocalRing[j]==r)
6016  {
6017  if (j+1==myynest) Warn("killing the basering for level %d",j);
6018  iiLocalRing[j]=NULL;
6019  }
6020  }
6021 #else /* USE_IILOCALRING */
6022 //#endif /* USE_IILOCALRING */
6023  {
6024  proclevel * nshdl = procstack;
6025  int lev=myynest-1;
6026 
6027  for(; nshdl != NULL; nshdl = nshdl->next)
6028  {
6029  if (nshdl->cRing==r)
6030  {
6031  Warn("killing the basering for level %d",lev);
6032  nshdl->cRing=NULL;
6033  nshdl->cRingHdl=NULL;
6034  }
6035  }
6036  }
6037 #endif /* USE_IILOCALRING */
6038 // any variables depending on r ?
6039  while (r->idroot!=NULL)
6040  {
6041  r->idroot->lev=myynest; // avoid warning about kill global objects
6042  killhdl2(r->idroot,&(r->idroot),r);
6043  }
6044  if (r==currRing)
6045  {
6046  // all dependend stuff is done, clean global vars:
6047  if ((currRing->ppNoether)!=NULL) pDelete(&(currRing->ppNoether));
6049  {
6051  }
6052  //if ((myynest>0) && (iiRETURNEXPR.RingDependend()))
6053  //{
6054  // WerrorS("return value depends on local ring variable (export missing ?)");
6055  // iiRETURNEXPR.CleanUp();
6056  //}
6057  currRing=NULL;
6058  currRingHdl=NULL;
6059  }
6060 
6061  /* nKillChar(r); will be called from inside of rDelete */
6062  rDelete(r);
6063  return;
6064  }
6065  r->ref--;
6066 }
6067 
6068 void rKill(idhdl h)
6069 {
6070  ring r = IDRING(h);
6071  int ref=0;
6072  if (r!=NULL)
6073  {
6074  ref=r->ref;
6075  rKill(r);
6076  }
6077  if (h==currRingHdl)
6078  {
6079  if (ref<=0) { currRing=NULL; currRingHdl=NULL;}
6080  else
6081  {
6083  }
6084  }
6085 }
6086 
6088 {
6089  //idhdl next_best=NULL;
6090  idhdl h=root;
6091  while (h!=NULL)
6092  {
6093  if (((IDTYP(h)==RING_CMD)||(IDTYP(h)==QRING_CMD))
6094  && (h!=n)
6095  && (IDRING(h)==r)
6096  )
6097  {
6098  // if (IDLEV(h)==myynest)
6099  // return h;
6100  // if ((IDLEV(h)==0) || (next_best==NULL))
6101  // next_best=h;
6102  // else if (IDLEV(next_best)<IDLEV(h))
6103  // next_best=h;
6104  return h;
6105  }
6106  h=IDNEXT(h);
6107  }
6108  //return next_best;
6109  return NULL;
6110 }
6111 
6112 extern BOOLEAN jjPROC(leftv res, leftv u, leftv v);
6113 ideal kGroebner(ideal F, ideal Q)
6114 {
6115  //test|=Sy_bit(OPT_PROT);
6116  idhdl save_ringhdl=currRingHdl;
6117  ideal resid;
6118  idhdl new_ring=NULL;
6119  if ((currRingHdl==NULL) || (IDRING(currRingHdl)!=currRing))
6120  {
6121  currRingHdl=enterid(omStrDup(" GROEBNERring"),0,RING_CMD,&IDROOT,FALSE);
6122  new_ring=currRingHdl;
6124  }
6125  sleftv v; memset(&v,0,sizeof(v)); v.rtyp=IDEAL_CMD; v.data=(char *) F;
6126  idhdl h=ggetid("groebner");
6127  sleftv u; memset(&u,0,sizeof(u)); u.rtyp=IDHDL; u.data=(char *) h;
6128  u.name=IDID(h);
6129 
6130  sleftv res; memset(&res,0,sizeof(res));
6131  if(jjPROC(&res,&u,&v))
6132  {
6133  resid=kStd(F,Q,testHomog,NULL);
6134  }
6135  else
6136  {
6137  //printf("typ:%d\n",res.rtyp);
6138  resid=(ideal)(res.data);
6139  }
6140  // cleanup GROEBNERring, save_ringhdl, u,v,(res )
6141  if (new_ring!=NULL)
6142  {
6143  idhdl h=IDROOT;
6144  if (h==new_ring) IDROOT=h->next;
6145  else
6146  {
6147  while ((h!=NULL) &&(h->next!=new_ring)) h=h->next;
6148  if (h!=NULL) h->next=h->next->next;
6149  }
6150  if (h!=NULL) omFreeSize(h,sizeof(*h));
6151  }
6152  currRingHdl=save_ringhdl;
6153  u.CleanUp();
6154  v.CleanUp();
6155  return resid;
6156 }
6157 
6158 static void jjINT_S_TO_ID(int n,int *e, leftv res)
6159 {
6160  if (n==0) n=1;
6161  ideal l=idInit(n,1);
6162  int i;
6163  poly p;
6164  for(i=rVar(currRing);i>0;i--)
6165  {
6166  if (e[i]>0)
6167  {
6168  n--;
6169  p=pOne();
6170  pSetExp(p,i,1);
6171  pSetm(p);
6172  l->m[n]=p;
6173  if (n==0) break;
6174  }
6175  }
6176  res->data=(char*)l;
6177  setFlag(res,FLAG_STD);
6178  omFreeSize((ADDRESS)e,(rVar(currRing)+1)*sizeof(int));
6179 }
6181 {
6182  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6183  int n=pGetVariables((poly)u->Data(),e);
6184  jjINT_S_TO_ID(n,e,res);
6185  return FALSE;
6186 }
6187 
6189 {
6190  int *e=(int *)omAlloc0((rVar(currRing)+1)*sizeof(int));
6191  ideal I=(ideal)u->Data();
6192  int i;
6193  int n=0;
6194  for(i=I->nrows*I->ncols-1;i>=0;i--)
6195  {
6196  int n0=pGetVariables(I->m[i],e);
6197  if (n0>n) n=n0;
6198  }
6199  jjINT_S_TO_ID(n,e,res);
6200  return FALSE;
6201 }
6202 
6203 void paPrint(const char *n,package p)
6204 {
6205  Print(" %s (",n);
6206  switch (p->language)
6207  {
6208  case LANG_SINGULAR: PrintS("S"); break;
6209  case LANG_C: PrintS("C"); break;
6210  case LANG_TOP: PrintS("T"); break;
6211  case LANG_NONE: PrintS("N"); break;
6212  default: PrintS("U");
6213  }
6214  if(p->libname!=NULL)
6215  Print(",%s", p->libname);
6216  PrintS(")");
6217 }
6218 
6220 {
6221  intvec *aa=(intvec*)a->Data();
6222  sleftv tmp_out;
6223  sleftv tmp_in;
6224  leftv curr=res;
6225  BOOLEAN bo=FALSE;
6226  for(int i=0;i<aa->length(); i++)
6227  {
6228  memset(&tmp_in,0,sizeof(tmp_in));
6229  tmp_in.rtyp=INT_CMD;
6230  tmp_in.data=(void*)(long)(*aa)[i];
6231  if (proc==NULL)
6232  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6233  else
6234  bo=jjPROC(&tmp_out,proc,&tmp_in);
6235  if (bo)
6236  {
6237  res->CleanUp(currRing);
6238  Werror("apply fails at index %d",i+1);
6239  return TRUE;
6240  }
6241  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6242  else
6243  {
6244  curr->next=(leftv)omAllocBin(sleftv_bin);
6245  curr=curr->next;
6246  memcpy(curr,&tmp_out,sizeof(tmp_out));
6247  }
6248  }
6249  return FALSE;
6250 }
6252 {
6253  WerrorS("not implemented");
6254  return TRUE;
6255 }
6256 BOOLEAN iiApplyIDEAL(leftv res, leftv a, int op, leftv proc)
6257 {
6258  WerrorS("not implemented");
6259  return TRUE;
6260 }
6261 BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
6262 {
6263  lists aa=(lists)a->Data();
6264  sleftv tmp_out;
6265  sleftv tmp_in;
6266  leftv curr=res;
6267  BOOLEAN bo=FALSE;
6268  for(int i=0;i<=aa->nr; i++)
6269  {
6270  memset(&tmp_in,0,sizeof(tmp_in));
6271  tmp_in.Copy(&(aa->m[i]));
6272  if (proc==NULL)
6273  bo=iiExprArith1(&tmp_out,&tmp_in,op);
6274  else
6275  bo=jjPROC(&tmp_out,proc,&tmp_in);
6276  tmp_in.CleanUp();
6277  if (bo)
6278  {
6279  res->CleanUp(currRing);
6280  Werror("apply fails at index %d",i+1);
6281  return TRUE;
6282  }
6283  if (i==0) { memcpy(res,&tmp_out,sizeof(tmp_out)); }
6284  else
6285  {
6286  curr->next=(leftv)omAllocBin(sleftv_bin);
6287  curr=curr->next;
6288  memcpy(curr,&tmp_out,sizeof(tmp_out));
6289  }
6290  }
6291  return FALSE;
6292 }
6293 BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
6294 {
6295  memset(res,0,sizeof(sleftv));
6296  res->rtyp=a->Typ();
6297  switch (res->rtyp /*a->Typ()*/)
6298  {
6299  case INTVEC_CMD:
6300  case INTMAT_CMD:
6301  return iiApplyINTVEC(res,a,op,proc);
6302  case BIGINTMAT_CMD:
6303  return iiApplyBIGINTMAT(res,a,op,proc);
6304  case IDEAL_CMD:
6305  case MODUL_CMD:
6306  case MATRIX_CMD:
6307  return iiApplyIDEAL(res,a,op,proc);
6308  case LIST_CMD:
6309  return iiApplyLIST(res,a,op,proc);
6310  }
6311  WerrorS("first argument to `apply` must allow an index");
6312  return TRUE;
6313 }
6314 
6316 {
6317  // assume a: level
6318  if ((a->Typ()==INT_CMD)&&((long)a->Data()>=0))
6319  {
6320  if ((TEST_V_ALLWARN) && (myynest==0)) WarnS("ASSUME at top level is of no use: see documentation");
6321  char assume_yylinebuf[80];
6322  strncpy(assume_yylinebuf,my_yylinebuf,79);
6323  int lev=(long)a->Data();
6324  int startlev=0;
6325  idhdl h=ggetid("assumeLevel");
6326  if ((h!=NULL)&&(IDTYP(h)==INT_CMD)) startlev=(long)IDINT(h);
6327  if(lev <=startlev)
6328  {
6329  BOOLEAN bo=b->Eval();
6330  if (bo) { WerrorS("syntax error in ASSUME");return TRUE;}
6331  if (b->Typ()!=INT_CMD) { WerrorS("ASUMME(<level>,<int expr>)");return TRUE; }
6332  if (b->Data()==NULL) { Werror("ASSUME failed:%s",assume_yylinebuf);return TRUE;}
6333  }
6334  }
6335  b->CleanUp();
6336  a->CleanUp();
6337  return FALSE;
6338 }
6339 
6340 #include "libparse.h"
6341 
6342 BOOLEAN iiARROW(leftv r, char* a, char *s)
6343 {
6344  char *ss=(char*)omAlloc(strlen(a)+strlen(s)+30); /* max. 27 currently */
6345  // find end of s:
6346  int end_s=strlen(s);
6347  while ((end_s>0) && ((s[end_s]<=' ')||(s[end_s]==';'))) end_s--;
6348  s[end_s+1]='\0';
6349  char *name=(char *)omAlloc(strlen(a)+strlen(s)+30);
6350  sprintf(name,"%s->%s",a,s);
6351  // find start of last expression
6352  int start_s=end_s-1;
6353  while ((start_s>=0) && (s[start_s]!=';')) start_s--;
6354  if (start_s<0) // ';' not found
6355  {
6356  sprintf(ss,"parameter def %s;return(%s);\n",a,s);
6357  }
6358  else // s[start_s] is ';'
6359  {
6360  s[start_s]='\0';
6361  sprintf(ss,"parameter def %s;%s;return(%s);\n",a,s,s+start_s+1);
6362  }
6363  memset(r,0,sizeof(*r));
6364  // now produce procinfo for PROC_CMD:
6365  r->data = (void *)omAlloc0Bin(procinfo_bin);
6366  ((procinfo *)(r->data))->language=LANG_NONE;
6367  iiInitSingularProcinfo((procinfo *)r->data,"",name,0,0);
6368  ((procinfo *)r->data)->data.s.body=ss;
6369  omFree(name);
6370  r->rtyp=PROC_CMD;
6371  //r->rtyp=STRING_CMD;
6372  //r->data=ss;
6373  return FALSE;
6374 }
6375 
6377 {
6378  int t=arg->Typ();
6379  char* ring_name=omStrDup((char*)r->Name());
6380  if ((t==RING_CMD) ||(t==QRING_CMD))
6381  {
6382  sleftv tmp;
6383  memset(&tmp,0,sizeof(tmp));
6384  tmp.rtyp=IDHDL;
6385  tmp.data=(char*)rDefault(ring_name);
6386  if (tmp.data!=NULL)
6387  {
6388  BOOLEAN b=iiAssign(&tmp,arg);
6389  if (b) return TRUE;
6390  rSetHdl(ggetid(ring_name));
6391  omFree(ring_name);
6392  return FALSE;
6393  }
6394  else
6395  return TRUE;
6396  }
6397  #ifdef SINGULAR_4_1
6398  else if (t==CRING_CMD)
6399  {
6400  sleftv tmp;
6401  sleftv n;
6402  memset(&n,0,sizeof(n));
6403  n.name=ring_name;
6404  if (iiDeclCommand(&tmp,&n,myynest,CRING_CMD,&IDROOT)) return TRUE;
6405  if (iiAssign(&tmp,arg)) return TRUE;
6406  //Print("create %s\n",r->Name());
6407  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6408  return FALSE;
6409  }
6410  #endif
6411  //Print("create %s\n",r->Name());
6412  //Print("from %s(%d)\n",Tok2Cmdname(arg->Typ()),arg->Typ());
6413  return TRUE;// not handled -> error for now
6414 }
6415 
6416 static void iiReportTypes(int nr,int t,const short *T)
6417 {
6418  char *buf=(char*)omAlloc(250);
6419  buf[0]='\0';
6420  if (nr==0)
6421  sprintf(buf,"wrong length of parameters(%d), expected ",t);
6422  else
6423  sprintf(buf,"par. %d is of type `%s`, expected ",nr,Tok2Cmdname(t));
6424  for(int i=1;i<=T[0];i++)
6425  {
6426  strcat(buf,"`");
6427  strcat(buf,Tok2Cmdname(T[i]));
6428  strcat(buf,"`");
6429  if (i<T[0]) strcat(buf,",");
6430  }
6431  WerrorS(buf);
6432 }
6433 
6434 BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
6435 {
6436  if (args==NULL)
6437  {
6438  if (type_list[0]==0) return TRUE;
6439  else
6440  {
6441  if (report) WerrorS("no arguments expected");
6442  return FALSE;
6443  }
6444  }
6445  int l=args->listLength();
6446  if (l!=(int)type_list[0])
6447  {
6448  if (report) iiReportTypes(0,l,type_list);
6449  return FALSE;
6450  }
6451  for(int i=1;i<=l;i++,args=args->next)
6452  {
6453  short t=type_list[i];
6454  if (t!=ANY_TYPE)
6455  {
6456  if (((t==IDHDL)&&(args->rtyp!=IDHDL))
6457  || (t!=args->Typ()))
6458  {
6459  if (report) iiReportTypes(i,args->Typ(),type_list);
6460  return FALSE;
6461  }
6462  }
6463  }
6464  return TRUE;
6465 }
mpz_ptr base
Definition: rmodulon.h:18
int status int void size_t count
Definition: si_signals.h:59
int & rows()
Definition: matpol.h:24
int length
Definition: syz.h:60
BOOLEAN jjCHARSERIES(leftv res, leftv u)
Definition: ipshell.cc:3211
intvec ** weights
Definition: syz.h:45
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:693
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:400
int iiRETURNEXPR_len
Definition: iplib.cc:528
int hMu2
Definition: hdegree.cc:22
complex root finder for univariate polynomials based on laguers algorithm
Definition: mpr_numeric.h:65
#define IDLIST(a)
Definition: ipid.h:136
void VoiceBackTrack()
Definition: fevoices.cc:77
ip_package * package
Definition: structs.h:46
#define omRealloc0Size(addr, o_size, size)
Definition: omAllocDecl.h:221
#define pIsPurePower(p)
Definition: polys.h:219
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
Definition: coeffs.h:796
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
Definition: ideals.h:35
const CanonicalForm int s
Definition: facAbsFact.cc:55
unsigned si_opt_1
Definition: options.c:5
int iiTestConvert(int inputType, int outputType)
Definition: gentable.cc:292
sleftv * m
Definition: lists.h:45
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
Definition: feread.cc:33
#define omCheckAddrSize(addr, size)
Definition: omAllocDecl.h:327
for int64 weights
Definition: ring.h:673
void atSet(idhdl root, const char *name, void *data, int typ)
Definition: attrib.cc:156
Class used for (list of) interpreter objects.
Definition: subexpr.h:83
#define TRACE_SHOW_RINGS
Definition: reporter.h:33
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:29
int Eval()
Definition: subexpr.cc:1735
spectrumPolyNode * next
Definition: splist.h:39
#define pSetm(p)
Definition: polys.h:241
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
Definition: coeffs.h:830
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
Definition: syz1.cc:1653
number * interpolateDense(const number *q)
Solves the Vandermode linear system {i=1}^{n} x_i^k-1 w_i = q_k, k=1,..,n.
Definition: mpr_numeric.cc:160
matrix mapToMatrix(matrix m)
ring rSubring(ring org_ring, sleftv *rv)
Definition: ipshell.cc:5837
spectrumState
Definition: ipshell.cc:3414
int yylineno
Definition: febase.cc:45
const poly a
Definition: syzextra.cc:212
int sdb_flags
Definition: sdb.cc:32
void PrintLn()
Definition: reporter.cc:327
void compute()
#define ANY_TYPE
Definition: tok.h:34
#define Print
Definition: emacs.cc:83
Base class for solving 0-dim poly systems using u-resultant.
Definition: mpr_base.h:62
only used if HAVE_RINGS is defined: ?
Definition: coeffs.h:43
scfmon hwork
Definition: hutil.cc:19
void mu(int **points, int sizePoints)
Definition: tok.h:85
ring r
Definition: algext.h:40
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:496
#define SHORT_REAL_LENGTH
Definition: numbers.h:54
int hNexist
Definition: hutil.cc:22
int * varset
Definition: hutil.h:23
idhdl currPackHdl
Definition: ipid.cc:61
vandermonde system solver for interpolating polynomials from their values
Definition: mpr_numeric.h:28
const short MAX_SHORT
Definition: ipshell.cc:5448
int hCo
Definition: hdegree.cc:22
Definition: attrib.h:15
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
Definition: lists.cc:313
Subexpr e
Definition: subexpr.h:106
#define idDelete(H)
delete an ideal
Definition: ideals.h:31
Rational weight
Definition: splist.h:41
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:478
Definition: lists.h:22
CanonicalForm num(const CanonicalForm &f)
virtual IStateType initState() const
Definition: mpr_base.h:41
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int line, long pos, BOOLEAN pstatic)
Definition: iplib.cc:978
#define IDINTVEC(a)
Definition: ipid.h:127
ring rCompose(const lists L, const BOOLEAN check_comp)
Definition: ipshell.cc:2409
only used if HAVE_RINGS is defined: ?
Definition: coeffs.h:45
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
Definition: ipshell.cc:2956
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
loop
Definition: myNF.cc:98
if(0 > strat->sl)
Definition: myNF.cc:73
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
Definition: iparith.cc:8330
#define IDID(a)
Definition: ipid.h:121
#define pSetExp(p, i, v)
Definition: polys.h:42
static int si_min(const int a, const int b)
Definition: auxiliary.h:167
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
Definition: ipshell.cc:6180
idhdl rSimpleFindHdl(ring r, idhdl root, idhdl n)
Definition: ipshell.cc:6087
#define FALSE
Definition: auxiliary.h:140
Linear Programming / Linear Optimization using Simplex - Algorithm.
Definition: mpr_numeric.h:194
Compatiblity layer for legacy polynomial operations (over currRing)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
Definition: ipshell.cc:5145
BOOLEAN iiApplyBIGINTMAT(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6251
attr * Attribute()
Definition: subexpr.cc:1366
Definition: tok.h:42
return P p
Definition: myNF.cc:203
opposite of ls
Definition: ring.h:694
int exprlist_length(leftv v)
Definition: ipshell.cc:559
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:4375
void syMinimizeResolvente(resolvente res, int length, int first)
Definition: syz.cc:360
Matrices of numbers.
Definition: bigintmat.h:51
BOOLEAN iiApplyIDEAL(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6256
f
Definition: cfModGcd.cc:4022
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:547
Rational * s
Definition: semic.h:70
unsigned short fftable[]
Definition: ffields.cc:61
number ndCopyMap(number a, const coeffs aRing, const coeffs r)
Definition: numbers.cc:239
spectrum spectrumFromList(lists l)
Definition: ipshell.cc:3248
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
Definition: iparith.cc:1607
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
Definition: ipshell.cc:3046
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
Definition: ipshell.cc:3204
static BOOLEAN rField_is_R(const ring r)
Definition: ring.h:467
scmon * scfmon
Definition: hutil.h:22
#define pTest(p)
Definition: polys.h:387
char * filename
Definition: fevoices.h:62
void list_error(semicState state)
Definition: ipshell.cc:3332
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
Definition: coeffs.h:437
static poly last
Definition: hdegree.cc:1075
#define pDecrExp(p, i)
Definition: polys.h:44
sleftv iiRETURNEXPR
Definition: iplib.cc:527
rational (GMP) numbers
Definition: coeffs.h:31
#define V_DEF_RES
Definition: options.h:48
resMatrixBase * accessResMat()
Definition: mpr_base.h:78
const char * GFPar_name
Definition: coeffs.h:95
static FORCE_INLINE BOOLEAN nCoeff_is_Ring_Z(const coeffs r)
Definition: coeffs.h:750
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define IDNEXT(a)
Definition: ipid.h:117
int pg
Definition: semic.h:68
scfmon hexist
Definition: hutil.cc:19
Definition: grammar.cc:271
{p < 2^31}
Definition: coeffs.h:30
proclevel * procstack
Definition: ipid.cc:58
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
Definition: ipshell.cc:926
#define IDROOT
Definition: ipid.h:20
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:540
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
#define pNeg(p)
Definition: polys.h:169
intvec * ivCopy(const intvec *o)
Definition: intvec.h:141
BOOLEAN siq
Definition: subexpr.cc:58
static int * multiplicity
poly singclap_resultant(poly f, poly g, poly x, const ring r)
Definition: clapsing.cc:317
const char sNoName[]
Definition: subexpr.cc:56
int listLength()
Definition: subexpr.cc:61
monf hCreate(int Nvar)
Definition: hutil.cc:1002
long int64
Definition: auxiliary.h:112
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge, ring tailRing)
Definition: hdegree.cc:1005
int hNvar
Definition: hutil.cc:22
intvec * id_QHomWeight(ideal id, const ring r)
int get_den_si()
Definition: GMPrat.cc:159
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
Definition: ipshell.cc:4674
resolvente res
Definition: syz.h:47
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2))) ...
Definition: polys.h:115
BOOLEAN spectrumProc(leftv result, leftv first)
Definition: ipshell.cc:3997
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:488
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
Definition: ipshell.cc:6188
#define TRUE
Definition: auxiliary.h:144
#define nIsOne(n)
Definition: numbers.h:25
denominator_list DENOMINATOR_LIST
Definition: kutil.cc:81
uResultant::resMatType determineMType(int imtype)
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition: kstd1.cc:2221
int length() const
Definition: intvec.h:86
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:54
void type_cmd(leftv v)
Definition: ipshell.cc:251
BOOLEAN iiAssignCR(leftv r, leftv arg)
Definition: ipshell.cc:6376
#define IDIDEAL(a)
Definition: ipid.h:132
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1435
poly iiHighCorner(ideal I, int ak)
Definition: ipshell.cc:1488
void * ADDRESS
Definition: auxiliary.h:161
int hNrad
Definition: hutil.cc:22
intvec * zrovToIV()
int hNpure
Definition: hutil.cc:22
sleftv * leftv
Definition: structs.h:60
bool solver(const int polishmode=PM_NONE)
Definition: mpr_numeric.cc:450
void pWrite(poly p)
Definition: polys.h:279
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4334
BOOLEAN hasConstTerm(poly h, const ring r)
Definition: spectrum.h:28
scmon hpure
Definition: hutil.cc:20
void WerrorS(const char *s)
Definition: feFopen.cc:24
int k
Definition: cfEzgcd.cc:93
#define nIsMOne(n)
Definition: numbers.h:26
int min_in()
Definition: intvec.h:114
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:470
static char const ** rParameter(const ring r)
(r->cf->parameter)
Definition: ring.h:573
void nlGMP(number &i, number n, const coeffs r)
Definition: longrat.cc:1410
#define Q
Definition: sirandom.c:25
int getAnzElems()
Definition: mpr_numeric.h:95
ring rAssure_HasComp(const ring r)
Definition: ring.cc:4559
ideal loNewtonPolytope(const ideal id)
Definition: mpr_base.cc:3192
void killlocals_rec(idhdl *root, int v, ring r)
Definition: ipshell.cc:328
int get_num_si()
Definition: GMPrat.cc:145
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
void hRadical(scfmon rad, int *Nrad, int Nvar)
Definition: hutil.cc:417
int traceit
Definition: febase.cc:47
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
Definition: coeffs.h:895
#define WarnS
Definition: emacs.cc:81
rootContainer ** specializeInU(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:3060
CanonicalForm Lc(const CanonicalForm &f)
coeffs coeffs_BIGINT
Definition: ipid.cc:54
int hasOne(ideal J, const ring r)
Definition: spectrum.cc:96
int Typ()
Definition: subexpr.cc:969
#define omAlloc(size)
Definition: omAllocDecl.h:210
idhdl cRingHdl
Definition: ipid.h:60
BOOLEAN exitBuffer(feBufferTypes typ)
Definition: fevoices.cc:241
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
Definition: ipshell.cc:153
static bool rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:361
poly numvec2poly(const number *q)
Definition: mpr_numeric.cc:107
void rComposeC(lists L, ring R)
Definition: ipshell.cc:2216
#define Sy_bit(x)
Definition: options.h:30
static void jjINT_S_TO_ID(int n, int *e, leftv res)
Definition: ipshell.cc:6158
const char * Name()
Definition: subexpr.h:121
scfmon hrad
Definition: hutil.cc:19
void Print(leftv store=NULL, int spaces=0)
Called by type_cmd (e.g. "r;") or as default in jPRINT.
Definition: subexpr.cc:73
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:753
static int pLength(poly a)
Definition: p_polys.h:189
Creation data needed for finite fields.
Definition: coeffs.h:91
BOOLEAN iiExport(leftv v, int toLev)
Definition: ipshell.cc:1388
Definition: idrec.h:34
Definition: semic.h:63
#define IDHDL
Definition: tok.h:35
Definition: mpr_base.h:98
idhdl iiCurrProc
Definition: ipshell.cc:85
idhdl rDefault(const char *s)
Definition: ipshell.cc:1528
static BOOLEAN idIsZeroDim(ideal i)
Definition: ideals.h:173
idhdl get(const char *s, int lev)
Definition: ipid.cc:91
real floating point (GMP) numbers
Definition: coeffs.h:34
BITSET validOpts
Definition: kstd1.cc:70
BOOLEAN iiParameter(leftv p)
Definition: ipshell.cc:1244
short float_len2
additional char-flags, rInit
Definition: coeffs.h:101
#define pGetVariables(p, e)
Definition: polys.h:222
bool found
Definition: facFactorize.cc:56
const char * currid
Definition: grammar.cc:172
intvec ** hilb_coeffs
Definition: syz.h:46
omBin procinfo_bin
Definition: subexpr.cc:51
#define nPrint(a)
only for debug, over any initalized currRing
Definition: numbers.h:46
lists getList(spectrum &spec)
Definition: ipshell.cc:3260
void ipListFlag(idhdl h)
Definition: ipid.cc:519
int iiRegularity(lists L)
Definition: ipshell.cc:953
void * data
Definition: subexpr.h:89
void rDecomposeCF(leftv h, const ring r, const ring R)
Definition: ipshell.cc:1599
void hDelete(scfmon ev, int ev_length)
Definition: hutil.cc:146
#define pIter(p)
Definition: monomials.h:44
poly res
Definition: myNF.cc:322
BOOLEAN iiTestAssume(leftv a, leftv b)
Definition: ipshell.cc:6315
semicState list_is_spectrum(lists l)
Definition: ipshell.cc:4117
Definition: subexpr.h:20
BOOLEAN kWeight(leftv res, leftv id)
Definition: ipshell.cc:3165
int rTypeOfMatrixOrder(intvec *order)
Definition: ring.cc:195
#define IDPACKAGE(a)
Definition: ipid.h:138
int myynest
Definition: febase.cc:46
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:12
char * char_ptr
Definition: structs.h:56
#define pGetExp(p, i)
Exponent.
Definition: polys.h:41
#define IDTYP(a)
Definition: ipid.h:118
indset ISet
Definition: hdegree.cc:279
single prescision (6,6) real numbers
Definition: coeffs.h:32
void * CopyA()
Definition: subexpr.cc:1932
void killhdl2(idhdl h, idhdl *ih, ring r)
Definition: ipid.cc:403
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
Definition: ipid.cc:259
spectrumPolyNode * root
Definition: splist.h:60
BOOLEAN hasLinearTerm(poly h, const ring r)
Definition: spectrum.h:30
static int rBlocks(ring r)
Definition: ring.h:516
BOOLEAN syBetti1(leftv res, leftv u)
Definition: ipshell.cc:3034
Definition: tok.h:56
int RingDependend(int t)
Definition: gentable.cc:23
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
Definition: ipshell.cc:3433
char my_yylinebuf[80]
Definition: febase.cc:48
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
Definition: ipshell.cc:4542
short float_len
additional char-flags, rInit
Definition: coeffs.h:100
const ring r
Definition: syzextra.cc:208
Coefficient rings, fields and other domains suitable for Singular polynomials.
resolvente orderedRes
Definition: syz.h:48
BOOLEAN killlocals_list(int v, lists L)
Definition: ipshell.cc:365
BOOLEAN RingDependend()
Definition: subexpr.cc:389
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:911
intvec * posvToIV()
Definition: intvec.h:16
#define pSub(a, b)
Definition: polys.h:258
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void hKill(monf xmem, int Nvar)
Definition: hutil.cc:1016
void rKill(ring r)
Definition: ipshell.cc:5999
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition: ring.cc:3436
for(int i=0;i< R->ExpL_Size;i++) Print("%09lx "
Definition: cfEzgcd.cc:66
varset hvar
Definition: hutil.cc:21
BOOLEAN mapFromMatrix(matrix m)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
Definition: ipshell.cc:425
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
Definition: spectrum.cc:309
int j
Definition: myNF.cc:70
only used if HAVE_RINGS is defined: ?
Definition: coeffs.h:44
Definition: tok.h:58
Definition: ipid.h:56
void rDecomposeRing(leftv h, const coeffs C)
Definition: ipshell.cc:1761
const char * name
Definition: subexpr.h:88
#define omFree(addr)
Definition: omAllocDecl.h:261
static long pTotaldegree(poly p)
Definition: polys.h:253
static leftv rOptimizeOrdAsSleftv(leftv ord)
Definition: ipshell.cc:5033
BOOLEAN rCheckIV(intvec *iv)
Definition: ring.cc:185
#define assume(x)
Definition: mod2.h:405
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
The main handler for Singular numbers which are suitable for Singular polynomials.
static BOOLEAN iiNoKeepRing
Definition: ipshell.cc:88
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
Definition: hdegree.cc:313
double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight.cc:28
int status int void * buf
Definition: si_signals.h:59
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition: ring.cc:1318
indlist * indset
Definition: hutil.h:35
int GFDegree
Definition: coeffs.h:94
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
Definition: hutil.cc:627
const ExtensionInfo & info
< [in] sqrfree poly
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:72
BOOLEAN hasAxis(ideal J, int k, const ring r)
Definition: spectrum.cc:81
const ring R
Definition: DebugPrint.cc:36
void killlocals(int v)
Definition: ipshell.cc:385
complex floating point (GMP) numbers
Definition: coeffs.h:41
static FORCE_INLINE char * nCoeffName(const coeffs cf)
Definition: coeffs.h:967
Definition: grammar.cc:270
const char * rSimpleOrdStr(int ord)
Definition: ring.cc:88
ip_smatrix * matrix
int mult_spectrumh(spectrum &)
Definition: semic.cc:425
gmp_float sqrt(const gmp_float &a)
Definition: mpr_complex.cc:329
bool success()
Definition: mpr_numeric.h:162
#define IDSTRING(a)
Definition: ipid.h:135
#define rTest(r)
Definition: ring.h:781
idhdl currRingHdl
Definition: ipid.cc:65
static resolvente iiCopyRes(resolvente r, int l)
Definition: ipshell.cc:861
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
Definition: ipshell.cc:4775
omBin indlist_bin
Definition: hdegree.cc:23
void Copy(leftv e)
Definition: subexpr.cc:657
static void iiReportTypes(int nr, int t, const short *T)
Definition: ipshell.cc:6416
#define setFlag(A, F)
Definition: ipid.h:112
indset JSet
Definition: hdegree.cc:279
All the auxiliary stuff.
#define pSetComp(p, v)
Definition: polys.h:38
void arrange()
Definition: mpr_numeric.cc:896
int rOrderName(char *ordername)
Definition: ring.cc:508
omBin sip_sring_bin
Definition: ring.cc:54
int m
Definition: cfEzgcd.cc:119
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
#define pIsConstant(p)
like above, except that Comp might be != 0
Definition: polys.h:209
proclevel * next
Definition: ipid.h:59
#define pMult_nn(p, n)
Definition: polys.h:171
int * scmon
Definition: hutil.h:21
struct for passing initialization parameters to naInitChar
Definition: transext.h:92
only used if HAVE_RINGS is defined: ?
Definition: coeffs.h:42
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6261
void spectrumPrintError(spectrumState state)
Definition: ipshell.cc:3966
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
Definition: mpr_numeric.cc:313
const char * iiTwoOps(int t)
Definition: ipshell.cc:92
static int si_max(const int a, const int b)
Definition: auxiliary.h:166
unsigned long exp
Definition: rmodulon.h:18
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:919
idrec * idhdl
Definition: ring.h:18
virtual ideal getMatrix()
Definition: mpr_base.h:31
omBin sleftv_bin
Definition: subexpr.cc:50
int i
Definition: cfEzgcd.cc:123
Induced (Schreyer) ordering.
Definition: ring.h:695
void PrintS(const char *s)
Definition: reporter.cc:294
BOOLEAN iiDebugMarker
Definition: ipshell.cc:979
matrix singclap_irrCharSeries(ideal I, const ring r)
Definition: clapsing.cc:1398
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:461
lists rDecompose(const ring r)
Definition: ipshell.cc:1894
idhdl next
Definition: idrec.h:38
BOOLEAN spectrumfProc(leftv result, leftv first)
Definition: ipshell.cc:4048
int IsPrime(int p)
Definition: prime.cc:61
S?
Definition: ring.h:677
#define pOne()
Definition: polys.h:286
gmp_complex * getRoot(const int i)
Definition: mpr_numeric.h:88
idhdl rFindHdl(ring r, idhdl n)
Definition: ipshell.cc:1573
void iiDebug()
Definition: ipshell.cc:981
Definition: tok.h:88
void solve_all()
Definition: mpr_numeric.cc:871
#define IDELEMS(i)
Definition: simpleideals.h:24
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
Definition: ipshell.cc:4433
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:837
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise, if qr == 1, then qrideal equality is tested, as well
Definition: ring.cc:1633
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:720
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
Definition: ipshell.cc:1019
spectrumState spectrumCompute(poly h, lists *L, int fast)
Definition: ipshell.cc:3674
CFList tmp2
Definition: facFqBivar.cc:70
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
Definition: ipshell.cc:772
rootContainer ** interpolateDenseSP(BOOLEAN matchUp=false, const number subDetVal=NULL)
Definition: mpr_base.cc:2922
#define IDLEV(a)
Definition: ipid.h:120
resolvente fullres
Definition: syz.h:57
static void rRenameVars(ring R)
Definition: ipshell.cc:2368
const char * VoiceName()
Definition: fevoices.cc:66
#define nDelete(n)
Definition: numbers.h:16
semicState
Definition: ipshell.cc:3298
#define IDMAP(a)
Definition: ipid.h:134
int cols() const
Definition: bigintmat.h:147
#define FLAG_STD
Definition: ipid.h:108
ideal idCopy(ideal A)
Definition: ideals.h:73
short errorreported
Definition: feFopen.cc:23
int n
Definition: semic.h:69
leftv next
Definition: subexpr.h:87
static BOOLEAN rField_is_long_C(const ring r)
Definition: ring.h:494
#define rHasLocalOrMixedOrdering_currRing()
Definition: ring.h:760
void test_cmd(int i)
Definition: ipshell.cc:521
void rChangeCurrRing(ring r)
Definition: polys.cc:14
resolvente minres
Definition: syz.h:58
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:455
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
Definition: hutil.cc:571
#define BVERBOSE(a)
Definition: options.h:33
INLINE_THIS void Init(int l=0)
Definition: lists.h:66
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:48
CanonicalForm buf2
Definition: facFqBivar.cc:71
#define nInvers(a)
Definition: numbers.h:33
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
Definition: ipshell.cc:3011
Definition: tok.h:38
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
Definition: ipshell.cc:1119
#define omAlloc0Bin(bin)
Definition: omAllocDecl.h:206
BOOLEAN iiAllStart(procinfov pi, char *p, feBufferTypes t, int l)
Definition: iplib.cc:322
int GFChar
Definition: coeffs.h:93
#define IDPROC(a)
Definition: ipid.h:139
void paPrint(const char *n, package p)
Definition: ipshell.cc:6203
BOOLEAN iiCheckRing(int i)
Definition: ipshell.cc:1468
#define pi
Definition: libparse.cc:1143
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:38
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar)
Definition: p_polys.cc:3926
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type...
Definition: old.gring.cc:2747
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
BOOLEAN kQHWeight(leftv res, leftv v)
Definition: ipshell.cc:3187
static BOOLEAN iiInternalExport(leftv v, int toLev)
Definition: ipshell.cc:1280
ring * iiLocalRing
Definition: iplib.cc:525
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
Definition: attrib.cc:135
int nr
Definition: lists.h:43
int rows() const
Definition: bigintmat.h:148
int & cols()
Definition: matpol.h:25
char name(const Variable &v)
Definition: variable.h:95
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
Definition: maps.cc:169
#define ppMult_nn(p, n)
Definition: polys.h:170
void rComposeRing(lists L, ring R)
Definition: ipshell.cc:2275
int mu
Definition: semic.h:67
CanonicalForm cf
Definition: cfModGcd.cc:4024
#define MATCOLS(i)
Definition: matpol.h:28
Definition: tok.h:95
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition: minpoly.cc:649
#define BREAK_LINE_LENGTH
Definition: ipshell.cc:980
#define nIsZero(n)
Definition: numbers.h:19
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:437
#define NULL
Definition: omList.c:10
attr attribute
Definition: idrec.h:41
poly * polyset
Definition: hutil.h:17
slists * lists
Definition: mpr_numeric.h:146
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
Definition: syz1.cc:1767
int getAnzRoots()
Definition: mpr_numeric.h:97
package req_packhdl
Definition: subexpr.h:107
BOOLEAN iiDefaultParameter(leftv p)
Definition: ipshell.cc:1161
{p^n < 2^16}
Definition: coeffs.h:33
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:452
CanonicalForm den(const CanonicalForm &f)
struct for passing initialization parameters to naInitChar
Definition: algext.h:40
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
Definition: weight.cc:116
BOOLEAN semicProc(leftv res, leftv u, leftv v)
Definition: ipshell.cc:4415
void rDelete(ring r)
unconditionally deletes fields in r
Definition: ring.cc:448
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i...
Definition: ipshell.cc:4519
#define IDINT(a)
Definition: ipid.h:124
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:128
#define IDPOLY(a)
Definition: ipid.h:129
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic ...
Definition: coeffs.h:35
Voice * currentVoice
Definition: fevoices.cc:57
BOOLEAN iiWRITE(leftv, leftv v)
Definition: ipshell.cc:595
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
Definition: ipshell.cc:6434
BOOLEAN jjBETTI(leftv res, leftv u)
Definition: ipshell.cc:892
package basePack
Definition: ipid.cc:64
coeffs basecoeffs() const
Definition: bigintmat.h:149
void copy_new(int)
Definition: semic.cc:54
static BOOLEAN rField_is_Ring_Z(const ring r)
Definition: ring.h:434
void pNorm(poly p, const ring R=currRing)
Definition: polys.h:334
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, struct sConvertTypes *dConvertTypes)
Definition: ipconv.cc:358
static BOOLEAN rField_is_long_R(const ring r)
Definition: ring.h:491
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
Definition: lists.cc:216
denominator_list next
Definition: kutil.h:67
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
monf radmem
Definition: hutil.cc:24
#define IDRING(a)
Definition: ipid.h:126
const CanonicalForm & w
Definition: facAbsFact.cc:55
strat ak
Definition: myNF.cc:321
#define pDelete(p_ptr)
Definition: polys.h:157
package currPack
Definition: ipid.cc:63
ring cRing
Definition: ipid.h:61
int iiOpsTwoChar(const char *s)
Definition: ipshell.cc:125
leftv iiCurrArgs
Definition: ipshell.cc:84
Variable x
Definition: cfModGcd.cc:4023
int rtyp
Definition: subexpr.h:92
ideal fast_map(ideal map_id, ring map_r, ideal image_id, ring image_r)
Definition: fast_maps.cc:354
BOOLEAN jjMINRES(leftv res, leftv v)
Definition: ipshell.cc:871
#define nCopy(n)
Definition: numbers.h:15
sleftv sLastPrinted
Definition: subexpr.cc:55
void CleanUp(ring r=currRing)
Definition: subexpr.cc:321
void Clean(ring r=currRing)
Definition: lists.h:25
#define pNext(p)
Definition: monomials.h:43
void * Data()
Definition: subexpr.cc:1111
int * w
Definition: semic.h:71
#define nSetMap(R)
Definition: numbers.h:43
const char * par_name
parameter name
Definition: coeffs.h:102
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
Definition: prCopy.cc:193
int typ
Definition: idrec.h:43
short list_length
Definition: syz.h:62
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static int rInternalChar(const ring r)
Definition: ring.h:637
Definition: tok.h:96
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
Definition: matpol.cc:75
ideal * resolvente
Definition: ideals.h:20
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
Definition: fevoices.cc:171
syStrategy syConvList(lists li, BOOLEAN toDel)
Definition: ipshell.cc:3119
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6219
number nlMapGMP(number from, const coeffs src, const coeffs dst)
Definition: longrat.cc:210
attr attribute
Definition: subexpr.h:90
omBin slists_bin
Definition: lists.cc:23
BOOLEAN iiARROW(leftv r, char *a, char *s)
Definition: ipshell.cc:6342
BOOLEAN ringIsLocal(const ring r)
Definition: spectrum.cc:461
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
Definition: ipshell.cc:4292
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
attr get(const char *s)
Definition: attrib.cc:96
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
Definition: mpr_complex.cc:717
Definition: tok.h:126
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
Definition: syz.cc:793
int hisModule
Definition: hutil.cc:23
leftv iiMap(map theMap, const char *what)
Definition: ipshell.cc:622
size_t gmp_output_digits
Definition: mpr_complex.cc:44
ring rInit(sleftv *pn, sleftv *rv, sleftv *ord)
Definition: ipshell.cc:5461
#define pDiff(a, b)
Definition: polys.h:267
idhdl packFindHdl(package r)
Definition: ipid.cc:732
#define omCheckAddr(addr)
Definition: omAllocDecl.h:328
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:456
void iiCheckPack(package &p)
Definition: ipshell.cc:1512
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
Definition: clapsing.cc:784
#define MATROWS(i)
Definition: matpol.h:27
void wrp(poly p)
Definition: polys.h:281
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
Definition: mpr_complex.cc:62
int icase
Definition: mpr_numeric.h:201
kBucketDestroy & P
Definition: myNF.cc:191
static jList * T
Definition: janet.cc:37
polyrec * poly
Definition: hilb.h:10
#define IDDATA(a)
Definition: ipid.h:125
void rSetHdl(idhdl h)
Definition: ipshell.cc:4979
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
BITSET kOptions
Definition: kstd1.cc:55
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
Definition: ipshell.cc:1821
BOOLEAN iiBranchTo(leftv r, leftv args)
Definition: ipshell.cc:1174
#define nInit(i)
Definition: numbers.h:24
Rational pow(const Rational &a, int e)
Definition: GMPrat.cc:418
unsigned si_opt_2
Definition: options.c:6
char * iiGetLibProcBuffer(procinfo *pi, int part)
Definition: iplib.cc:210
BOOLEAN rSleftvList2StringArray(sleftv *sl, char **p)
Definition: ipshell.cc:5417
int * int_ptr
Definition: structs.h:57
static Poly * h
Definition: janet.cc:978
s?
Definition: ring.h:678
int BOOLEAN
Definition: auxiliary.h:131
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1248
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
const poly b
Definition: syzextra.cc:213
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
Definition: ipshell.cc:905
void syKillEmptyEntres(resolvente res, int length)
Definition: syz1.cc:2209
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
Definition: ipshell.cc:6293
int mult_spectrum(spectrum &)
Definition: semic.cc:396
package cPack
Definition: ipid.h:63
lists listOfRoots(rootArranger *self, const unsigned int oprec)
Definition: ipshell.cc:4932
static BOOLEAN rField_is_numeric(const ring r)
Definition: ring.h:464
BOOLEAN lRingDependend(lists L)
Definition: lists.cc:199
scfmon hInit(ideal S, ideal Q, int *Nexist, ring tailRing)
Definition: hutil.cc:34
#define V_REDEFINE
Definition: options.h:43
void copy_deep(spectrum &spec, lists l)
Definition: ipshell.cc:3224
void delete_node(spectrumPolyNode **)
Definition: splist.cc:256
int binom(int n, int r)
void Werror(const char *fmt,...)
Definition: reporter.cc:199
virtual number getSubDet()
Definition: mpr_base.h:37
ideal kGroebner(ideal F, ideal Q)
Definition: ipshell.cc:6113
#define TEST_V_ALLWARN
Definition: options.h:135
void syKillComputation(syStrategy syzstr, ring r=currRing)
Definition: syz1.cc:1497
void * CopyD(int t)
Definition: subexpr.cc:676
const char * lastreserved
Definition: ipshell.cc:86
int hMu
Definition: hdegree.cc:22
idhdl ggetid(const char *n, BOOLEAN, idhdl *packhdl)
Definition: ipid.cc:490
int atyp
Definition: attrib.h:22
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
Definition: coeffs.h:552
#define omAlloc0(size)
Definition: omAllocDecl.h:211
static void killlocals0(int v, idhdl *localhdl, const ring r)
Definition: ipshell.cc:293
return result
Definition: facAbsBiFact.cc:76
int l
Definition: cfEzgcd.cc:94
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
Definition: weight0.c:82
int sign(const CanonicalForm &a)
static void rDecomposeC(leftv h, const coeffs C)
Definition: ipshell.cc:1688
#define IDMATRIX(a)
Definition: ipid.h:133
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
Definition: ipshell.cc:4427
#define pCopy(p)
return a copy of the poly
Definition: polys.h:156
#define MATELEM(mat, i, j)
Definition: matpol.h:29
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
Definition: spectrum.cc:142
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition: numbers.cc:327
syStrategy syForceMin(lists li)
Definition: ipshell.cc:3149
ssyStrategy * syStrategy
Definition: syz.h:35
utypes data
Definition: idrec.h:40
int IsCmd(const char *n, int &tok)
Definition: iparith.cc:8739
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
Definition: hutil.cc:180
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
Definition: ipassign.cc:1782
BOOLEAN mpJacobi(leftv res, leftv a)
Definition: ipshell.cc:2934
#define Warn
Definition: emacs.cc:80
#define omStrDup(s)
Definition: omAllocDecl.h:263