aacps.c
Go to the documentation of this file.
1 /*
2  * MPEG-4 Parametric Stereo decoding functions
3  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 #include <stdint.h>
23 #include "libavutil/common.h"
24 #include "libavutil/mathematics.h"
25 #include "avcodec.h"
26 #include "get_bits.h"
27 #include "aacps.h"
28 #include "aacps_tablegen.h"
29 #include "aacpsdata.c"
30 
31 #define PS_BASELINE 0
32 
33 
34 
35 #define numQMFSlots 32 //numTimeSlots * RATE
36 
37 static const int8_t num_env_tab[2][4] = {
38  { 0, 1, 2, 4, },
39  { 1, 2, 3, 4, },
40 };
41 
42 static const int8_t nr_iidicc_par_tab[] = {
43  10, 20, 34, 10, 20, 34,
44 };
45 
46 static const int8_t nr_iidopd_par_tab[] = {
47  5, 11, 17, 5, 11, 17,
48 };
49 
50 enum {
61 };
62 
63 static const int huff_iid[] = {
68 };
69 
70 static VLC vlc_ps[10];
71 
72 #define READ_PAR_DATA(PAR, OFFSET, MASK, ERR_CONDITION) \
73  \
85 static int read_ ## PAR ## _data(AVCodecContext *avctx, GetBitContext *gb, PSContext *ps, \
86  int8_t (*PAR)[PS_MAX_NR_IIDICC], int table_idx, int e, int dt) \
87 { \
88  int b, num = ps->nr_ ## PAR ## _par; \
89  VLC_TYPE (*vlc_table)[2] = vlc_ps[table_idx].table; \
90  if (dt) { \
91  int e_prev = e ? e - 1 : ps->num_env_old - 1; \
92  e_prev = FFMAX(e_prev, 0); \
93  for (b = 0; b < num; b++) { \
94  int val = PAR[e_prev][b] + get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
95  if (MASK) val &= MASK; \
96  PAR[e][b] = val; \
97  if (ERR_CONDITION) \
98  goto err; \
99  } \
100  } else { \
101  int val = 0; \
102  for (b = 0; b < num; b++) { \
103  val += get_vlc2(gb, vlc_table, 9, 3) - OFFSET; \
104  if (MASK) val &= MASK; \
105  PAR[e][b] = val; \
106  if (ERR_CONDITION) \
107  goto err; \
108  } \
109  } \
110  return 0; \
111 err: \
112  av_log(avctx, AV_LOG_ERROR, "illegal "#PAR"\n"); \
113  return -1; \
114 }
115 
116 READ_PAR_DATA(iid, huff_offset[table_idx], 0, FFABS(ps->iid_par[e][b]) > 7 + 8 * ps->iid_quant)
117 READ_PAR_DATA(icc, huff_offset[table_idx], 0, ps->icc_par[e][b] > 7U)
118 READ_PAR_DATA(ipdopd, 0, 0x07, 0)
119 
120 static int ps_read_extension_data(GetBitContext *gb, PSContext *ps, int ps_extension_id)
121 {
122  int e;
123  int count = get_bits_count(gb);
124 
125  if (ps_extension_id)
126  return 0;
127 
128  ps->enable_ipdopd = get_bits1(gb);
129  if (ps->enable_ipdopd) {
130  for (e = 0; e < ps->num_env; e++) {
131  int dt = get_bits1(gb);
132  read_ipdopd_data(NULL, gb, ps, ps->ipd_par, dt ? huff_ipd_dt : huff_ipd_df, e, dt);
133  dt = get_bits1(gb);
134  read_ipdopd_data(NULL, gb, ps, ps->opd_par, dt ? huff_opd_dt : huff_opd_df, e, dt);
135  }
136  }
137  skip_bits1(gb); //reserved_ps
138  return get_bits_count(gb) - count;
139 }
140 
141 static void ipdopd_reset(int8_t *opd_hist, int8_t *ipd_hist)
142 {
143  int i;
144  for (i = 0; i < PS_MAX_NR_IPDOPD; i++) {
145  opd_hist[i] = 0;
146  ipd_hist[i] = 0;
147  }
148 }
149 
150 int ff_ps_read_data(AVCodecContext *avctx, GetBitContext *gb_host, PSContext *ps, int bits_left)
151 {
152  int e;
153  int bit_count_start = get_bits_count(gb_host);
154  int header;
155  int bits_consumed;
156  GetBitContext gbc = *gb_host, *gb = &gbc;
157 
158  header = get_bits1(gb);
159  if (header) { //enable_ps_header
160  ps->enable_iid = get_bits1(gb);
161  if (ps->enable_iid) {
162  int iid_mode = get_bits(gb, 3);
163  if (iid_mode > 5) {
164  av_log(avctx, AV_LOG_ERROR, "iid_mode %d is reserved.\n",
165  iid_mode);
166  goto err;
167  }
168  ps->nr_iid_par = nr_iidicc_par_tab[iid_mode];
169  ps->iid_quant = iid_mode > 2;
170  ps->nr_ipdopd_par = nr_iidopd_par_tab[iid_mode];
171  }
172  ps->enable_icc = get_bits1(gb);
173  if (ps->enable_icc) {
174  ps->icc_mode = get_bits(gb, 3);
175  if (ps->icc_mode > 5) {
176  av_log(avctx, AV_LOG_ERROR, "icc_mode %d is reserved.\n",
177  ps->icc_mode);
178  goto err;
179  }
181  }
182  ps->enable_ext = get_bits1(gb);
183  }
184 
185  ps->frame_class = get_bits1(gb);
186  ps->num_env_old = ps->num_env;
187  ps->num_env = num_env_tab[ps->frame_class][get_bits(gb, 2)];
188 
189  ps->border_position[0] = -1;
190  if (ps->frame_class) {
191  for (e = 1; e <= ps->num_env; e++)
192  ps->border_position[e] = get_bits(gb, 5);
193  } else
194  for (e = 1; e <= ps->num_env; e++)
195  ps->border_position[e] = (e * numQMFSlots >> ff_log2_tab[ps->num_env]) - 1;
196 
197  if (ps->enable_iid) {
198  for (e = 0; e < ps->num_env; e++) {
199  int dt = get_bits1(gb);
200  if (read_iid_data(avctx, gb, ps, ps->iid_par, huff_iid[2*dt+ps->iid_quant], e, dt))
201  goto err;
202  }
203  } else
204  memset(ps->iid_par, 0, sizeof(ps->iid_par));
205 
206  if (ps->enable_icc)
207  for (e = 0; e < ps->num_env; e++) {
208  int dt = get_bits1(gb);
209  if (read_icc_data(avctx, gb, ps, ps->icc_par, dt ? huff_icc_dt : huff_icc_df, e, dt))
210  goto err;
211  }
212  else
213  memset(ps->icc_par, 0, sizeof(ps->icc_par));
214 
215  if (ps->enable_ext) {
216  int cnt = get_bits(gb, 4);
217  if (cnt == 15) {
218  cnt += get_bits(gb, 8);
219  }
220  cnt *= 8;
221  while (cnt > 7) {
222  int ps_extension_id = get_bits(gb, 2);
223  cnt -= 2 + ps_read_extension_data(gb, ps, ps_extension_id);
224  }
225  if (cnt < 0) {
226  av_log(avctx, AV_LOG_ERROR, "ps extension overflow %d\n", cnt);
227  goto err;
228  }
229  skip_bits(gb, cnt);
230  }
231 
232  ps->enable_ipdopd &= !PS_BASELINE;
233 
234  //Fix up envelopes
235  if (!ps->num_env || ps->border_position[ps->num_env] < numQMFSlots - 1) {
236  //Create a fake envelope
237  int source = ps->num_env ? ps->num_env - 1 : ps->num_env_old - 1;
238  if (source >= 0 && source != ps->num_env) {
239  if (ps->enable_iid) {
240  memcpy(ps->iid_par+ps->num_env, ps->iid_par+source, sizeof(ps->iid_par[0]));
241  }
242  if (ps->enable_icc) {
243  memcpy(ps->icc_par+ps->num_env, ps->icc_par+source, sizeof(ps->icc_par[0]));
244  }
245  if (ps->enable_ipdopd) {
246  memcpy(ps->ipd_par+ps->num_env, ps->ipd_par+source, sizeof(ps->ipd_par[0]));
247  memcpy(ps->opd_par+ps->num_env, ps->opd_par+source, sizeof(ps->opd_par[0]));
248  }
249  }
250  ps->num_env++;
251  ps->border_position[ps->num_env] = numQMFSlots - 1;
252  }
253 
254 
255  ps->is34bands_old = ps->is34bands;
256  if (!PS_BASELINE && (ps->enable_iid || ps->enable_icc))
257  ps->is34bands = (ps->enable_iid && ps->nr_iid_par == 34) ||
258  (ps->enable_icc && ps->nr_icc_par == 34);
259 
260  //Baseline
261  if (!ps->enable_ipdopd) {
262  memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
263  memset(ps->opd_par, 0, sizeof(ps->opd_par));
264  }
265 
266  if (header)
267  ps->start = 1;
268 
269  bits_consumed = get_bits_count(gb) - bit_count_start;
270  if (bits_consumed <= bits_left) {
271  skip_bits_long(gb_host, bits_consumed);
272  return bits_consumed;
273  }
274  av_log(avctx, AV_LOG_ERROR, "Expected to read %d PS bits actually read %d.\n", bits_left, bits_consumed);
275 err:
276  ps->start = 0;
277  skip_bits_long(gb_host, bits_left);
278  memset(ps->iid_par, 0, sizeof(ps->iid_par));
279  memset(ps->icc_par, 0, sizeof(ps->icc_par));
280  memset(ps->ipd_par, 0, sizeof(ps->ipd_par));
281  memset(ps->opd_par, 0, sizeof(ps->opd_par));
282  return bits_left;
283 }
284 
287 static void hybrid2_re(float (*in)[2], float (*out)[32][2], const float filter[7], int len, int reverse)
288 {
289  int i, j;
290  for (i = 0; i < len; i++, in++) {
291  float re_in = filter[6] * in[6][0]; //real inphase
292  float re_op = 0.0f; //real out of phase
293  float im_in = filter[6] * in[6][1]; //imag inphase
294  float im_op = 0.0f; //imag out of phase
295  for (j = 0; j < 6; j += 2) {
296  re_op += filter[j+1] * (in[j+1][0] + in[12-j-1][0]);
297  im_op += filter[j+1] * (in[j+1][1] + in[12-j-1][1]);
298  }
299  out[ reverse][i][0] = re_in + re_op;
300  out[ reverse][i][1] = im_in + im_op;
301  out[!reverse][i][0] = re_in - re_op;
302  out[!reverse][i][1] = im_in - im_op;
303  }
304 }
305 
307 static void hybrid6_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int len)
308 {
309  int i, j, ssb;
310  int N = 8;
311  float temp[8][2];
312 
313  for (i = 0; i < len; i++, in++) {
314  for (ssb = 0; ssb < N; ssb++) {
315  float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
316  for (j = 0; j < 6; j++) {
317  float in0_re = in[j][0];
318  float in0_im = in[j][1];
319  float in1_re = in[12-j][0];
320  float in1_im = in[12-j][1];
321  sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
322  sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
323  }
324  temp[ssb][0] = sum_re;
325  temp[ssb][1] = sum_im;
326  }
327  out[0][i][0] = temp[6][0];
328  out[0][i][1] = temp[6][1];
329  out[1][i][0] = temp[7][0];
330  out[1][i][1] = temp[7][1];
331  out[2][i][0] = temp[0][0];
332  out[2][i][1] = temp[0][1];
333  out[3][i][0] = temp[1][0];
334  out[3][i][1] = temp[1][1];
335  out[4][i][0] = temp[2][0] + temp[5][0];
336  out[4][i][1] = temp[2][1] + temp[5][1];
337  out[5][i][0] = temp[3][0] + temp[4][0];
338  out[5][i][1] = temp[3][1] + temp[4][1];
339  }
340 }
341 
342 static void hybrid4_8_12_cx(float (*in)[2], float (*out)[32][2], const float (*filter)[7][2], int N, int len)
343 {
344  int i, j, ssb;
345 
346  for (i = 0; i < len; i++, in++) {
347  for (ssb = 0; ssb < N; ssb++) {
348  float sum_re = filter[ssb][6][0] * in[6][0], sum_im = filter[ssb][6][0] * in[6][1];
349  for (j = 0; j < 6; j++) {
350  float in0_re = in[j][0];
351  float in0_im = in[j][1];
352  float in1_re = in[12-j][0];
353  float in1_im = in[12-j][1];
354  sum_re += filter[ssb][j][0] * (in0_re + in1_re) - filter[ssb][j][1] * (in0_im - in1_im);
355  sum_im += filter[ssb][j][0] * (in0_im + in1_im) + filter[ssb][j][1] * (in0_re - in1_re);
356  }
357  out[ssb][i][0] = sum_re;
358  out[ssb][i][1] = sum_im;
359  }
360  }
361 }
362 
363 static void hybrid_analysis(float out[91][32][2], float in[5][44][2], float L[2][38][64], int is34, int len)
364 {
365  int i, j;
366  for (i = 0; i < 5; i++) {
367  for (j = 0; j < 38; j++) {
368  in[i][j+6][0] = L[0][j][i];
369  in[i][j+6][1] = L[1][j][i];
370  }
371  }
372  if (is34) {
373  hybrid4_8_12_cx(in[0], out, f34_0_12, 12, len);
374  hybrid4_8_12_cx(in[1], out+12, f34_1_8, 8, len);
375  hybrid4_8_12_cx(in[2], out+20, f34_2_4, 4, len);
376  hybrid4_8_12_cx(in[3], out+24, f34_2_4, 4, len);
377  hybrid4_8_12_cx(in[4], out+28, f34_2_4, 4, len);
378  for (i = 0; i < 59; i++) {
379  for (j = 0; j < len; j++) {
380  out[i+32][j][0] = L[0][j][i+5];
381  out[i+32][j][1] = L[1][j][i+5];
382  }
383  }
384  } else {
385  hybrid6_cx(in[0], out, f20_0_8, len);
386  hybrid2_re(in[1], out+6, g1_Q2, len, 1);
387  hybrid2_re(in[2], out+8, g1_Q2, len, 0);
388  for (i = 0; i < 61; i++) {
389  for (j = 0; j < len; j++) {
390  out[i+10][j][0] = L[0][j][i+3];
391  out[i+10][j][1] = L[1][j][i+3];
392  }
393  }
394  }
395  //update in_buf
396  for (i = 0; i < 5; i++) {
397  memcpy(in[i], in[i]+32, 6 * sizeof(in[i][0]));
398  }
399 }
400 
401 static void hybrid_synthesis(float out[2][38][64], float in[91][32][2], int is34, int len)
402 {
403  int i, n;
404  if (is34) {
405  for (n = 0; n < len; n++) {
406  memset(out[0][n], 0, 5*sizeof(out[0][n][0]));
407  memset(out[1][n], 0, 5*sizeof(out[1][n][0]));
408  for (i = 0; i < 12; i++) {
409  out[0][n][0] += in[ i][n][0];
410  out[1][n][0] += in[ i][n][1];
411  }
412  for (i = 0; i < 8; i++) {
413  out[0][n][1] += in[12+i][n][0];
414  out[1][n][1] += in[12+i][n][1];
415  }
416  for (i = 0; i < 4; i++) {
417  out[0][n][2] += in[20+i][n][0];
418  out[1][n][2] += in[20+i][n][1];
419  out[0][n][3] += in[24+i][n][0];
420  out[1][n][3] += in[24+i][n][1];
421  out[0][n][4] += in[28+i][n][0];
422  out[1][n][4] += in[28+i][n][1];
423  }
424  }
425  for (i = 0; i < 59; i++) {
426  for (n = 0; n < len; n++) {
427  out[0][n][i+5] = in[i+32][n][0];
428  out[1][n][i+5] = in[i+32][n][1];
429  }
430  }
431  } else {
432  for (n = 0; n < len; n++) {
433  out[0][n][0] = in[0][n][0] + in[1][n][0] + in[2][n][0] +
434  in[3][n][0] + in[4][n][0] + in[5][n][0];
435  out[1][n][0] = in[0][n][1] + in[1][n][1] + in[2][n][1] +
436  in[3][n][1] + in[4][n][1] + in[5][n][1];
437  out[0][n][1] = in[6][n][0] + in[7][n][0];
438  out[1][n][1] = in[6][n][1] + in[7][n][1];
439  out[0][n][2] = in[8][n][0] + in[9][n][0];
440  out[1][n][2] = in[8][n][1] + in[9][n][1];
441  }
442  for (i = 0; i < 61; i++) {
443  for (n = 0; n < len; n++) {
444  out[0][n][i+3] = in[i+10][n][0];
445  out[1][n][i+3] = in[i+10][n][1];
446  }
447  }
448  }
449 }
450 
452 #define DECAY_SLOPE 0.05f
453 
454 static const int NR_PAR_BANDS[] = { 20, 34 };
456 static const int NR_BANDS[] = { 71, 91 };
458 static const int DECAY_CUTOFF[] = { 10, 32 };
460 static const int NR_ALLPASS_BANDS[] = { 30, 50 };
462 static const int SHORT_DELAY_BAND[] = { 42, 62 };
463 
465 static void map_idx_10_to_20(int8_t *par_mapped, const int8_t *par, int full)
466 {
467  int b;
468  if (full)
469  b = 9;
470  else {
471  b = 4;
472  par_mapped[10] = 0;
473  }
474  for (; b >= 0; b--) {
475  par_mapped[2*b+1] = par_mapped[2*b] = par[b];
476  }
477 }
478 
479 static void map_idx_34_to_20(int8_t *par_mapped, const int8_t *par, int full)
480 {
481  par_mapped[ 0] = (2*par[ 0] + par[ 1]) / 3;
482  par_mapped[ 1] = ( par[ 1] + 2*par[ 2]) / 3;
483  par_mapped[ 2] = (2*par[ 3] + par[ 4]) / 3;
484  par_mapped[ 3] = ( par[ 4] + 2*par[ 5]) / 3;
485  par_mapped[ 4] = ( par[ 6] + par[ 7]) / 2;
486  par_mapped[ 5] = ( par[ 8] + par[ 9]) / 2;
487  par_mapped[ 6] = par[10];
488  par_mapped[ 7] = par[11];
489  par_mapped[ 8] = ( par[12] + par[13]) / 2;
490  par_mapped[ 9] = ( par[14] + par[15]) / 2;
491  par_mapped[10] = par[16];
492  if (full) {
493  par_mapped[11] = par[17];
494  par_mapped[12] = par[18];
495  par_mapped[13] = par[19];
496  par_mapped[14] = ( par[20] + par[21]) / 2;
497  par_mapped[15] = ( par[22] + par[23]) / 2;
498  par_mapped[16] = ( par[24] + par[25]) / 2;
499  par_mapped[17] = ( par[26] + par[27]) / 2;
500  par_mapped[18] = ( par[28] + par[29] + par[30] + par[31]) / 4;
501  par_mapped[19] = ( par[32] + par[33]) / 2;
502  }
503 }
504 
505 static void map_val_34_to_20(float par[PS_MAX_NR_IIDICC])
506 {
507  par[ 0] = (2*par[ 0] + par[ 1]) * 0.33333333f;
508  par[ 1] = ( par[ 1] + 2*par[ 2]) * 0.33333333f;
509  par[ 2] = (2*par[ 3] + par[ 4]) * 0.33333333f;
510  par[ 3] = ( par[ 4] + 2*par[ 5]) * 0.33333333f;
511  par[ 4] = ( par[ 6] + par[ 7]) * 0.5f;
512  par[ 5] = ( par[ 8] + par[ 9]) * 0.5f;
513  par[ 6] = par[10];
514  par[ 7] = par[11];
515  par[ 8] = ( par[12] + par[13]) * 0.5f;
516  par[ 9] = ( par[14] + par[15]) * 0.5f;
517  par[10] = par[16];
518  par[11] = par[17];
519  par[12] = par[18];
520  par[13] = par[19];
521  par[14] = ( par[20] + par[21]) * 0.5f;
522  par[15] = ( par[22] + par[23]) * 0.5f;
523  par[16] = ( par[24] + par[25]) * 0.5f;
524  par[17] = ( par[26] + par[27]) * 0.5f;
525  par[18] = ( par[28] + par[29] + par[30] + par[31]) * 0.25f;
526  par[19] = ( par[32] + par[33]) * 0.5f;
527 }
528 
529 static void map_idx_10_to_34(int8_t *par_mapped, const int8_t *par, int full)
530 {
531  if (full) {
532  par_mapped[33] = par[9];
533  par_mapped[32] = par[9];
534  par_mapped[31] = par[9];
535  par_mapped[30] = par[9];
536  par_mapped[29] = par[9];
537  par_mapped[28] = par[9];
538  par_mapped[27] = par[8];
539  par_mapped[26] = par[8];
540  par_mapped[25] = par[8];
541  par_mapped[24] = par[8];
542  par_mapped[23] = par[7];
543  par_mapped[22] = par[7];
544  par_mapped[21] = par[7];
545  par_mapped[20] = par[7];
546  par_mapped[19] = par[6];
547  par_mapped[18] = par[6];
548  par_mapped[17] = par[5];
549  par_mapped[16] = par[5];
550  } else {
551  par_mapped[16] = 0;
552  }
553  par_mapped[15] = par[4];
554  par_mapped[14] = par[4];
555  par_mapped[13] = par[4];
556  par_mapped[12] = par[4];
557  par_mapped[11] = par[3];
558  par_mapped[10] = par[3];
559  par_mapped[ 9] = par[2];
560  par_mapped[ 8] = par[2];
561  par_mapped[ 7] = par[2];
562  par_mapped[ 6] = par[2];
563  par_mapped[ 5] = par[1];
564  par_mapped[ 4] = par[1];
565  par_mapped[ 3] = par[1];
566  par_mapped[ 2] = par[0];
567  par_mapped[ 1] = par[0];
568  par_mapped[ 0] = par[0];
569 }
570 
571 static void map_idx_20_to_34(int8_t *par_mapped, const int8_t *par, int full)
572 {
573  if (full) {
574  par_mapped[33] = par[19];
575  par_mapped[32] = par[19];
576  par_mapped[31] = par[18];
577  par_mapped[30] = par[18];
578  par_mapped[29] = par[18];
579  par_mapped[28] = par[18];
580  par_mapped[27] = par[17];
581  par_mapped[26] = par[17];
582  par_mapped[25] = par[16];
583  par_mapped[24] = par[16];
584  par_mapped[23] = par[15];
585  par_mapped[22] = par[15];
586  par_mapped[21] = par[14];
587  par_mapped[20] = par[14];
588  par_mapped[19] = par[13];
589  par_mapped[18] = par[12];
590  par_mapped[17] = par[11];
591  }
592  par_mapped[16] = par[10];
593  par_mapped[15] = par[ 9];
594  par_mapped[14] = par[ 9];
595  par_mapped[13] = par[ 8];
596  par_mapped[12] = par[ 8];
597  par_mapped[11] = par[ 7];
598  par_mapped[10] = par[ 6];
599  par_mapped[ 9] = par[ 5];
600  par_mapped[ 8] = par[ 5];
601  par_mapped[ 7] = par[ 4];
602  par_mapped[ 6] = par[ 4];
603  par_mapped[ 5] = par[ 3];
604  par_mapped[ 4] = (par[ 2] + par[ 3]) / 2;
605  par_mapped[ 3] = par[ 2];
606  par_mapped[ 2] = par[ 1];
607  par_mapped[ 1] = (par[ 0] + par[ 1]) / 2;
608  par_mapped[ 0] = par[ 0];
609 }
610 
611 static void map_val_20_to_34(float par[PS_MAX_NR_IIDICC])
612 {
613  par[33] = par[19];
614  par[32] = par[19];
615  par[31] = par[18];
616  par[30] = par[18];
617  par[29] = par[18];
618  par[28] = par[18];
619  par[27] = par[17];
620  par[26] = par[17];
621  par[25] = par[16];
622  par[24] = par[16];
623  par[23] = par[15];
624  par[22] = par[15];
625  par[21] = par[14];
626  par[20] = par[14];
627  par[19] = par[13];
628  par[18] = par[12];
629  par[17] = par[11];
630  par[16] = par[10];
631  par[15] = par[ 9];
632  par[14] = par[ 9];
633  par[13] = par[ 8];
634  par[12] = par[ 8];
635  par[11] = par[ 7];
636  par[10] = par[ 6];
637  par[ 9] = par[ 5];
638  par[ 8] = par[ 5];
639  par[ 7] = par[ 4];
640  par[ 6] = par[ 4];
641  par[ 5] = par[ 3];
642  par[ 4] = (par[ 2] + par[ 3]) * 0.5f;
643  par[ 3] = par[ 2];
644  par[ 2] = par[ 1];
645  par[ 1] = (par[ 0] + par[ 1]) * 0.5f;
646  par[ 0] = par[ 0];
647 }
648 
649 static void decorrelation(PSContext *ps, float (*out)[32][2], const float (*s)[32][2], int is34)
650 {
651  float power[34][PS_QMF_TIME_SLOTS] = {{0}};
652  float transient_gain[34][PS_QMF_TIME_SLOTS];
653  float *peak_decay_nrg = ps->peak_decay_nrg;
654  float *power_smooth = ps->power_smooth;
655  float *peak_decay_diff_smooth = ps->peak_decay_diff_smooth;
656  float (*delay)[PS_QMF_TIME_SLOTS + PS_MAX_DELAY][2] = ps->delay;
657  float (*ap_delay)[PS_AP_LINKS][PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2] = ps->ap_delay;
658  const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
659  const float peak_decay_factor = 0.76592833836465f;
660  const float transient_impact = 1.5f;
661  const float a_smooth = 0.25f;
662  int i, k, m, n;
663  int n0 = 0, nL = 32;
664  static const int link_delay[] = { 3, 4, 5 };
665  static const float a[] = { 0.65143905753106f,
666  0.56471812200776f,
667  0.48954165955695f };
668 
669  if (is34 != ps->is34bands_old) {
670  memset(ps->peak_decay_nrg, 0, sizeof(ps->peak_decay_nrg));
671  memset(ps->power_smooth, 0, sizeof(ps->power_smooth));
672  memset(ps->peak_decay_diff_smooth, 0, sizeof(ps->peak_decay_diff_smooth));
673  memset(ps->delay, 0, sizeof(ps->delay));
674  memset(ps->ap_delay, 0, sizeof(ps->ap_delay));
675  }
676 
677  for (n = n0; n < nL; n++) {
678  for (k = 0; k < NR_BANDS[is34]; k++) {
679  int i = k_to_i[k];
680  power[i][n] += s[k][n][0] * s[k][n][0] + s[k][n][1] * s[k][n][1];
681  }
682  }
683 
684  //Transient detection
685  for (i = 0; i < NR_PAR_BANDS[is34]; i++) {
686  for (n = n0; n < nL; n++) {
687  float decayed_peak = peak_decay_factor * peak_decay_nrg[i];
688  float denom;
689  peak_decay_nrg[i] = FFMAX(decayed_peak, power[i][n]);
690  power_smooth[i] += a_smooth * (power[i][n] - power_smooth[i]);
691  peak_decay_diff_smooth[i] += a_smooth * (peak_decay_nrg[i] - power[i][n] - peak_decay_diff_smooth[i]);
692  denom = transient_impact * peak_decay_diff_smooth[i];
693  transient_gain[i][n] = (denom > power_smooth[i]) ?
694  power_smooth[i] / denom : 1.0f;
695  }
696  }
697 
698  //Decorrelation and transient reduction
699  // PS_AP_LINKS - 1
700  // -----
701  // | | Q_fract_allpass[k][m]*z^-link_delay[m] - a[m]*g_decay_slope[k]
702  //H[k][z] = z^-2 * phi_fract[k] * | | ----------------------------------------------------------------
703  // | | 1 - a[m]*g_decay_slope[k]*Q_fract_allpass[k][m]*z^-link_delay[m]
704  // m = 0
705  //d[k][z] (out) = transient_gain_mapped[k][z] * H[k][z] * s[k][z]
706  for (k = 0; k < NR_ALLPASS_BANDS[is34]; k++) {
707  int b = k_to_i[k];
708  float g_decay_slope = 1.f - DECAY_SLOPE * (k - DECAY_CUTOFF[is34]);
709  float ag[PS_AP_LINKS];
710  g_decay_slope = av_clipf(g_decay_slope, 0.f, 1.f);
711  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
712  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
713  for (m = 0; m < PS_AP_LINKS; m++) {
714  memcpy(ap_delay[k][m], ap_delay[k][m]+numQMFSlots, 5*sizeof(ap_delay[k][m][0]));
715  ag[m] = a[m] * g_decay_slope;
716  }
717  for (n = n0; n < nL; n++) {
718  float in_re = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][0] -
719  delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][1];
720  float in_im = delay[k][n+PS_MAX_DELAY-2][0] * phi_fract[is34][k][1] +
721  delay[k][n+PS_MAX_DELAY-2][1] * phi_fract[is34][k][0];
722  for (m = 0; m < PS_AP_LINKS; m++) {
723  float a_re = ag[m] * in_re;
724  float a_im = ag[m] * in_im;
725  float link_delay_re = ap_delay[k][m][n+5-link_delay[m]][0];
726  float link_delay_im = ap_delay[k][m][n+5-link_delay[m]][1];
727  float fractional_delay_re = Q_fract_allpass[is34][k][m][0];
728  float fractional_delay_im = Q_fract_allpass[is34][k][m][1];
729  ap_delay[k][m][n+5][0] = in_re;
730  ap_delay[k][m][n+5][1] = in_im;
731  in_re = link_delay_re * fractional_delay_re - link_delay_im * fractional_delay_im - a_re;
732  in_im = link_delay_re * fractional_delay_im + link_delay_im * fractional_delay_re - a_im;
733  ap_delay[k][m][n+5][0] += ag[m] * in_re;
734  ap_delay[k][m][n+5][1] += ag[m] * in_im;
735  }
736  out[k][n][0] = transient_gain[b][n] * in_re;
737  out[k][n][1] = transient_gain[b][n] * in_im;
738  }
739  }
740  for (; k < SHORT_DELAY_BAND[is34]; k++) {
741  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
742  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
743  for (n = n0; n < nL; n++) {
744  //H = delay 14
745  out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][0];
746  out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-14][1];
747  }
748  }
749  for (; k < NR_BANDS[is34]; k++) {
750  memcpy(delay[k], delay[k]+nL, PS_MAX_DELAY*sizeof(delay[k][0]));
751  memcpy(delay[k]+PS_MAX_DELAY, s[k], numQMFSlots*sizeof(delay[k][0]));
752  for (n = n0; n < nL; n++) {
753  //H = delay 1
754  out[k][n][0] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][0];
755  out[k][n][1] = transient_gain[k_to_i[k]][n] * delay[k][n+PS_MAX_DELAY-1][1];
756  }
757  }
758 }
759 
760 static void remap34(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
761  int8_t (*par)[PS_MAX_NR_IIDICC],
762  int num_par, int num_env, int full)
763 {
764  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
765  int e;
766  if (num_par == 20 || num_par == 11) {
767  for (e = 0; e < num_env; e++) {
768  map_idx_20_to_34(par_mapped[e], par[e], full);
769  }
770  } else if (num_par == 10 || num_par == 5) {
771  for (e = 0; e < num_env; e++) {
772  map_idx_10_to_34(par_mapped[e], par[e], full);
773  }
774  } else {
775  *p_par_mapped = par;
776  }
777 }
778 
779 static void remap20(int8_t (**p_par_mapped)[PS_MAX_NR_IIDICC],
780  int8_t (*par)[PS_MAX_NR_IIDICC],
781  int num_par, int num_env, int full)
782 {
783  int8_t (*par_mapped)[PS_MAX_NR_IIDICC] = *p_par_mapped;
784  int e;
785  if (num_par == 34 || num_par == 17) {
786  for (e = 0; e < num_env; e++) {
787  map_idx_34_to_20(par_mapped[e], par[e], full);
788  }
789  } else if (num_par == 10 || num_par == 5) {
790  for (e = 0; e < num_env; e++) {
791  map_idx_10_to_20(par_mapped[e], par[e], full);
792  }
793  } else {
794  *p_par_mapped = par;
795  }
796 }
797 
798 static void stereo_processing(PSContext *ps, float (*l)[32][2], float (*r)[32][2], int is34)
799 {
800  int e, b, k, n;
801 
802  float (*H11)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H11;
803  float (*H12)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H12;
804  float (*H21)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H21;
805  float (*H22)[PS_MAX_NUM_ENV+1][PS_MAX_NR_IIDICC] = ps->H22;
806  int8_t *opd_hist = ps->opd_hist;
807  int8_t *ipd_hist = ps->ipd_hist;
808  int8_t iid_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
809  int8_t icc_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
810  int8_t ipd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
811  int8_t opd_mapped_buf[PS_MAX_NUM_ENV][PS_MAX_NR_IIDICC];
812  int8_t (*iid_mapped)[PS_MAX_NR_IIDICC] = iid_mapped_buf;
813  int8_t (*icc_mapped)[PS_MAX_NR_IIDICC] = icc_mapped_buf;
814  int8_t (*ipd_mapped)[PS_MAX_NR_IIDICC] = ipd_mapped_buf;
815  int8_t (*opd_mapped)[PS_MAX_NR_IIDICC] = opd_mapped_buf;
816  const int8_t *k_to_i = is34 ? k_to_i_34 : k_to_i_20;
817  const float (*H_LUT)[8][4] = (PS_BASELINE || ps->icc_mode < 3) ? HA : HB;
818 
819  //Remapping
820  if (ps->num_env_old) {
821  memcpy(H11[0][0], H11[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[0][0][0]));
822  memcpy(H11[1][0], H11[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H11[1][0][0]));
823  memcpy(H12[0][0], H12[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[0][0][0]));
824  memcpy(H12[1][0], H12[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H12[1][0][0]));
825  memcpy(H21[0][0], H21[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[0][0][0]));
826  memcpy(H21[1][0], H21[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H21[1][0][0]));
827  memcpy(H22[0][0], H22[0][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[0][0][0]));
828  memcpy(H22[1][0], H22[1][ps->num_env_old], PS_MAX_NR_IIDICC*sizeof(H22[1][0][0]));
829  }
830 
831  if (is34) {
832  remap34(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
833  remap34(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
834  if (ps->enable_ipdopd) {
835  remap34(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
836  remap34(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
837  }
838  if (!ps->is34bands_old) {
839  map_val_20_to_34(H11[0][0]);
840  map_val_20_to_34(H11[1][0]);
841  map_val_20_to_34(H12[0][0]);
842  map_val_20_to_34(H12[1][0]);
843  map_val_20_to_34(H21[0][0]);
844  map_val_20_to_34(H21[1][0]);
845  map_val_20_to_34(H22[0][0]);
846  map_val_20_to_34(H22[1][0]);
847  ipdopd_reset(ipd_hist, opd_hist);
848  }
849  } else {
850  remap20(&iid_mapped, ps->iid_par, ps->nr_iid_par, ps->num_env, 1);
851  remap20(&icc_mapped, ps->icc_par, ps->nr_icc_par, ps->num_env, 1);
852  if (ps->enable_ipdopd) {
853  remap20(&ipd_mapped, ps->ipd_par, ps->nr_ipdopd_par, ps->num_env, 0);
854  remap20(&opd_mapped, ps->opd_par, ps->nr_ipdopd_par, ps->num_env, 0);
855  }
856  if (ps->is34bands_old) {
857  map_val_34_to_20(H11[0][0]);
858  map_val_34_to_20(H11[1][0]);
859  map_val_34_to_20(H12[0][0]);
860  map_val_34_to_20(H12[1][0]);
861  map_val_34_to_20(H21[0][0]);
862  map_val_34_to_20(H21[1][0]);
863  map_val_34_to_20(H22[0][0]);
864  map_val_34_to_20(H22[1][0]);
865  ipdopd_reset(ipd_hist, opd_hist);
866  }
867  }
868 
869  //Mixing
870  for (e = 0; e < ps->num_env; e++) {
871  for (b = 0; b < NR_PAR_BANDS[is34]; b++) {
872  float h11, h12, h21, h22;
873  h11 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][0];
874  h12 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][1];
875  h21 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][2];
876  h22 = H_LUT[iid_mapped[e][b] + 7 + 23 * ps->iid_quant][icc_mapped[e][b]][3];
877  if (!PS_BASELINE && ps->enable_ipdopd && b < ps->nr_ipdopd_par) {
878  //The spec say says to only run this smoother when enable_ipdopd
879  //is set but the reference decoder appears to run it constantly
880  float h11i, h12i, h21i, h22i;
881  float ipd_adj_re, ipd_adj_im;
882  int opd_idx = opd_hist[b] * 8 + opd_mapped[e][b];
883  int ipd_idx = ipd_hist[b] * 8 + ipd_mapped[e][b];
884  float opd_re = pd_re_smooth[opd_idx];
885  float opd_im = pd_im_smooth[opd_idx];
886  float ipd_re = pd_re_smooth[ipd_idx];
887  float ipd_im = pd_im_smooth[ipd_idx];
888  opd_hist[b] = opd_idx & 0x3F;
889  ipd_hist[b] = ipd_idx & 0x3F;
890 
891  ipd_adj_re = opd_re*ipd_re + opd_im*ipd_im;
892  ipd_adj_im = opd_im*ipd_re - opd_re*ipd_im;
893  h11i = h11 * opd_im;
894  h11 = h11 * opd_re;
895  h12i = h12 * ipd_adj_im;
896  h12 = h12 * ipd_adj_re;
897  h21i = h21 * opd_im;
898  h21 = h21 * opd_re;
899  h22i = h22 * ipd_adj_im;
900  h22 = h22 * ipd_adj_re;
901  H11[1][e+1][b] = h11i;
902  H12[1][e+1][b] = h12i;
903  H21[1][e+1][b] = h21i;
904  H22[1][e+1][b] = h22i;
905  }
906  H11[0][e+1][b] = h11;
907  H12[0][e+1][b] = h12;
908  H21[0][e+1][b] = h21;
909  H22[0][e+1][b] = h22;
910  }
911  for (k = 0; k < NR_BANDS[is34]; k++) {
912  float h11r, h12r, h21r, h22r;
913  float h11i, h12i, h21i, h22i;
914  float h11r_step, h12r_step, h21r_step, h22r_step;
915  float h11i_step, h12i_step, h21i_step, h22i_step;
916  int start = ps->border_position[e];
917  int stop = ps->border_position[e+1];
918  float width = 1.f / (stop - start);
919  b = k_to_i[k];
920  h11r = H11[0][e][b];
921  h12r = H12[0][e][b];
922  h21r = H21[0][e][b];
923  h22r = H22[0][e][b];
924  if (!PS_BASELINE && ps->enable_ipdopd) {
925  //Is this necessary? ps_04_new seems unchanged
926  if ((is34 && k <= 13 && k >= 9) || (!is34 && k <= 1)) {
927  h11i = -H11[1][e][b];
928  h12i = -H12[1][e][b];
929  h21i = -H21[1][e][b];
930  h22i = -H22[1][e][b];
931  } else {
932  h11i = H11[1][e][b];
933  h12i = H12[1][e][b];
934  h21i = H21[1][e][b];
935  h22i = H22[1][e][b];
936  }
937  }
938  //Interpolation
939  h11r_step = (H11[0][e+1][b] - h11r) * width;
940  h12r_step = (H12[0][e+1][b] - h12r) * width;
941  h21r_step = (H21[0][e+1][b] - h21r) * width;
942  h22r_step = (H22[0][e+1][b] - h22r) * width;
943  if (!PS_BASELINE && ps->enable_ipdopd) {
944  h11i_step = (H11[1][e+1][b] - h11i) * width;
945  h12i_step = (H12[1][e+1][b] - h12i) * width;
946  h21i_step = (H21[1][e+1][b] - h21i) * width;
947  h22i_step = (H22[1][e+1][b] - h22i) * width;
948  }
949  for (n = start + 1; n <= stop; n++) {
950  //l is s, r is d
951  float l_re = l[k][n][0];
952  float l_im = l[k][n][1];
953  float r_re = r[k][n][0];
954  float r_im = r[k][n][1];
955  h11r += h11r_step;
956  h12r += h12r_step;
957  h21r += h21r_step;
958  h22r += h22r_step;
959  if (!PS_BASELINE && ps->enable_ipdopd) {
960  h11i += h11i_step;
961  h12i += h12i_step;
962  h21i += h21i_step;
963  h22i += h22i_step;
964 
965  l[k][n][0] = h11r*l_re + h21r*r_re - h11i*l_im - h21i*r_im;
966  l[k][n][1] = h11r*l_im + h21r*r_im + h11i*l_re + h21i*r_re;
967  r[k][n][0] = h12r*l_re + h22r*r_re - h12i*l_im - h22i*r_im;
968  r[k][n][1] = h12r*l_im + h22r*r_im + h12i*l_re + h22i*r_re;
969  } else {
970  l[k][n][0] = h11r*l_re + h21r*r_re;
971  l[k][n][1] = h11r*l_im + h21r*r_im;
972  r[k][n][0] = h12r*l_re + h22r*r_re;
973  r[k][n][1] = h12r*l_im + h22r*r_im;
974  }
975  }
976  }
977  }
978 }
979 
980 int ff_ps_apply(AVCodecContext *avctx, PSContext *ps, float L[2][38][64], float R[2][38][64], int top)
981 {
982  float Lbuf[91][32][2];
983  float Rbuf[91][32][2];
984  const int len = 32;
985  int is34 = ps->is34bands;
986 
987  top += NR_BANDS[is34] - 64;
988  memset(ps->delay+top, 0, (NR_BANDS[is34] - top)*sizeof(ps->delay[0]));
989  if (top < NR_ALLPASS_BANDS[is34])
990  memset(ps->ap_delay + top, 0, (NR_ALLPASS_BANDS[is34] - top)*sizeof(ps->ap_delay[0]));
991 
992  hybrid_analysis(Lbuf, ps->in_buf, L, is34, len);
993  decorrelation(ps, Rbuf, Lbuf, is34);
994  stereo_processing(ps, Lbuf, Rbuf, is34);
995  hybrid_synthesis(L, Lbuf, is34, len);
996  hybrid_synthesis(R, Rbuf, is34, len);
997 
998  return 0;
999 }
1000 
1001 #define PS_INIT_VLC_STATIC(num, size) \
1002  INIT_VLC_STATIC(&vlc_ps[num], 9, ps_tmp[num].table_size / ps_tmp[num].elem_size, \
1003  ps_tmp[num].ps_bits, 1, 1, \
1004  ps_tmp[num].ps_codes, ps_tmp[num].elem_size, ps_tmp[num].elem_size, \
1005  size);
1006 
1007 #define PS_VLC_ROW(name) \
1008  { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
1009 
1010 av_cold void ff_ps_init(void) {
1011  // Syntax initialization
1012  static const struct {
1013  const void *ps_codes, *ps_bits;
1014  const unsigned int table_size, elem_size;
1015  } ps_tmp[] = {
1026  };
1027 
1028  PS_INIT_VLC_STATIC(0, 1544);
1029  PS_INIT_VLC_STATIC(1, 832);
1030  PS_INIT_VLC_STATIC(2, 1024);
1032  PS_INIT_VLC_STATIC(4, 544);
1033  PS_INIT_VLC_STATIC(5, 544);
1034  PS_INIT_VLC_STATIC(6, 512);
1035  PS_INIT_VLC_STATIC(7, 512);
1036  PS_INIT_VLC_STATIC(8, 512);
1037  PS_INIT_VLC_STATIC(9, 512);
1038 
1039  ps_tableinit();
1040 }
1041 
1043 {
1044 }