proresdec.c
Go to the documentation of this file.
1 /*
2  * Apple ProRes compatible decoder
3  *
4  * Copyright (c) 2010-2011 Maxim Poliakovski
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32 
33 #include <stdint.h>
34 
35 #include "libavutil/intmath.h"
36 #include "avcodec.h"
37 #include "proresdsp.h"
38 #include "get_bits.h"
39 
40 typedef struct {
41  const uint8_t *index;
42  int slice_num;
43  int x_pos, y_pos;
45  DECLARE_ALIGNED(16, DCTELEM, blocks[8 * 4 * 64]);
47 
48 typedef struct {
53 
54  int frame_type;
55  int pic_format;
56  uint8_t qmat_luma[64];
57  uint8_t qmat_chroma[64];
60  DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled[64]);
61  DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled[64]);
64  int pic_num;
72  int num_x_mbs;
73  int num_y_mbs;
76 
77 
78 static const uint8_t progressive_scan[64] = {
79  0, 1, 8, 9, 2, 3, 10, 11,
80  16, 17, 24, 25, 18, 19, 26, 27,
81  4, 5, 12, 20, 13, 6, 7, 14,
82  21, 28, 29, 22, 15, 23, 30, 31,
83  32, 33, 40, 48, 41, 34, 35, 42,
84  49, 56, 57, 50, 43, 36, 37, 44,
85  51, 58, 59, 52, 45, 38, 39, 46,
86  53, 60, 61, 54, 47, 55, 62, 63
87 };
88 
89 static const uint8_t interlaced_scan[64] = {
90  0, 8, 1, 9, 16, 24, 17, 25,
91  2, 10, 3, 11, 18, 26, 19, 27,
92  32, 40, 33, 34, 41, 48, 56, 49,
93  42, 35, 43, 50, 57, 58, 51, 59,
94  4, 12, 5, 6, 13, 20, 28, 21,
95  14, 7, 15, 22, 29, 36, 44, 37,
96  30, 23, 31, 38, 45, 52, 60, 53,
97  46, 39, 47, 54, 61, 62, 55, 63
98 };
99 
100 
102 {
103  ProresContext *ctx = avctx->priv_data;
104 
105  ctx->total_slices = 0;
106  ctx->slice_data = NULL;
107 
109  ff_proresdsp_init(&ctx->dsp);
110 
111  avctx->coded_frame = &ctx->picture;
114  ctx->picture.key_frame = 1;
115 
116  ctx->scantable_type = -1; // set scantable type to uninitialized
117  memset(ctx->qmat_luma, 4, 64);
118  memset(ctx->qmat_chroma, 4, 64);
119  ctx->prev_slice_sf = 0;
120 
121  return 0;
122 }
123 
124 
125 static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
126  const int data_size, AVCodecContext *avctx)
127 {
128  int hdr_size, version, width, height, flags;
129  const uint8_t *ptr;
130 
131  hdr_size = AV_RB16(buf);
132  if (hdr_size > data_size) {
133  av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
134  return AVERROR_INVALIDDATA;
135  }
136 
137  version = AV_RB16(buf + 2);
138  if (version >= 2) {
139  av_log(avctx, AV_LOG_ERROR,
140  "unsupported header version: %d\n", version);
141  return AVERROR_INVALIDDATA;
142  }
143 
144  width = AV_RB16(buf + 8);
145  height = AV_RB16(buf + 10);
146  if (width != avctx->width || height != avctx->height) {
147  av_log(avctx, AV_LOG_ERROR,
148  "picture dimension changed: old: %d x %d, new: %d x %d\n",
149  avctx->width, avctx->height, width, height);
150  return AVERROR_INVALIDDATA;
151  }
152 
153  ctx->frame_type = (buf[12] >> 2) & 3;
154  if (ctx->frame_type > 2) {
155  av_log(avctx, AV_LOG_ERROR,
156  "unsupported frame type: %d\n", ctx->frame_type);
157  return AVERROR_INVALIDDATA;
158  }
159 
160  ctx->chroma_factor = (buf[12] >> 6) & 3;
161  ctx->mb_chroma_factor = ctx->chroma_factor + 2;
162  ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
163  switch (ctx->chroma_factor) {
164  case 2:
165  avctx->pix_fmt = PIX_FMT_YUV422P10;
166  break;
167  case 3:
168  avctx->pix_fmt = PIX_FMT_YUV444P10;
169  break;
170  default:
171  av_log(avctx, AV_LOG_ERROR,
172  "unsupported picture format: %d\n", ctx->pic_format);
173  return AVERROR_INVALIDDATA;
174  }
175 
176  if (ctx->scantable_type != ctx->frame_type) {
177  if (!ctx->frame_type)
180  else
183  ctx->scantable_type = ctx->frame_type;
184  }
185 
186  if (ctx->frame_type) { /* if interlaced */
187  ctx->picture.interlaced_frame = 1;
188  ctx->picture.top_field_first = ctx->frame_type & 1;
189  } else {
190  ctx->picture.interlaced_frame = 0;
191  }
192 
193  ctx->alpha_info = buf[17] & 0xf;
194  if (ctx->alpha_info)
195  av_log_missing_feature(avctx, "alpha channel", 0);
196 
197  ctx->qmat_changed = 0;
198  ptr = buf + 20;
199  flags = buf[19];
200  if (flags & 2) {
201  if (ptr - buf > hdr_size - 64) {
202  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
203  return AVERROR_INVALIDDATA;
204  }
205  if (memcmp(ctx->qmat_luma, ptr, 64)) {
206  memcpy(ctx->qmat_luma, ptr, 64);
207  ctx->qmat_changed = 1;
208  }
209  ptr += 64;
210  } else {
211  memset(ctx->qmat_luma, 4, 64);
212  ctx->qmat_changed = 1;
213  }
214 
215  if (flags & 1) {
216  if (ptr - buf > hdr_size - 64) {
217  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
218  return -1;
219  }
220  if (memcmp(ctx->qmat_chroma, ptr, 64)) {
221  memcpy(ctx->qmat_chroma, ptr, 64);
222  ctx->qmat_changed = 1;
223  }
224  } else {
225  memset(ctx->qmat_chroma, 4, 64);
226  ctx->qmat_changed = 1;
227  }
228 
229  return hdr_size;
230 }
231 
232 
233 static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
234  const int data_size, AVCodecContext *avctx)
235 {
236  int i, hdr_size, pic_data_size, num_slices;
237  int slice_width_factor, slice_height_factor;
238  int remainder, num_x_slices;
239  const uint8_t *data_ptr, *index_ptr;
240 
241  hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
242  if (hdr_size < 8 || hdr_size > data_size) {
243  av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
244  return AVERROR_INVALIDDATA;
245  }
246 
247  pic_data_size = AV_RB32(buf + 1);
248  if (pic_data_size > data_size) {
249  av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
250  return AVERROR_INVALIDDATA;
251  }
252 
253  slice_width_factor = buf[7] >> 4;
254  slice_height_factor = buf[7] & 0xF;
255  if (slice_width_factor > 3 || slice_height_factor) {
256  av_log(avctx, AV_LOG_ERROR,
257  "unsupported slice dimension: %d x %d\n",
258  1 << slice_width_factor, 1 << slice_height_factor);
259  return AVERROR_INVALIDDATA;
260  }
261 
262  ctx->slice_width_factor = slice_width_factor;
263  ctx->slice_height_factor = slice_height_factor;
264 
265  ctx->num_x_mbs = (avctx->width + 15) >> 4;
266  ctx->num_y_mbs = (avctx->height +
267  (1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
268  (4 + ctx->picture.interlaced_frame);
269 
270  remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
271  num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
272  ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
273 
274  num_slices = num_x_slices * ctx->num_y_mbs;
275  if (num_slices != AV_RB16(buf + 5)) {
276  av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
277  return AVERROR_INVALIDDATA;
278  }
279 
280  if (ctx->total_slices != num_slices) {
281  av_freep(&ctx->slice_data);
282  ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
283  if (!ctx->slice_data)
284  return AVERROR(ENOMEM);
285  ctx->total_slices = num_slices;
286  }
287 
288  if (hdr_size + num_slices * 2 > data_size) {
289  av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
290  return AVERROR_INVALIDDATA;
291  }
292 
293  /* parse slice table allowing quick access to the slice data */
294  index_ptr = buf + hdr_size;
295  data_ptr = index_ptr + num_slices * 2;
296 
297  for (i = 0; i < num_slices; i++) {
298  ctx->slice_data[i].index = data_ptr;
299  data_ptr += AV_RB16(index_ptr + i * 2);
300  }
301  ctx->slice_data[i].index = data_ptr;
302 
303  if (data_ptr > buf + data_size) {
304  av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
305  return -1;
306  }
307 
308  return pic_data_size;
309 }
310 
311 
315 static inline int decode_vlc_codeword(GetBitContext *gb, uint8_t codebook)
316 {
317  unsigned int rice_order, exp_order, switch_bits;
318  unsigned int buf, code;
319  int log, prefix_len, len;
320 
321  OPEN_READER(re, gb);
322  UPDATE_CACHE(re, gb);
323  buf = GET_CACHE(re, gb);
324 
325  /* number of prefix bits to switch between Rice and expGolomb */
326  switch_bits = (codebook & 3) + 1;
327  rice_order = codebook >> 5; /* rice code order */
328  exp_order = (codebook >> 2) & 7; /* exp golomb code order */
329 
330  log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
331 
332  if (log < switch_bits) { /* ok, we got a rice code */
333  if (!rice_order) {
334  /* shortcut for faster decoding of rice codes without remainder */
335  code = log;
336  LAST_SKIP_BITS(re, gb, log + 1);
337  } else {
338  prefix_len = log + 1;
339  code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
340  LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
341  }
342  } else { /* otherwise we got a exp golomb code */
343  len = (log << 1) - switch_bits + exp_order + 1;
344  code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
345  LAST_SKIP_BITS(re, gb, len);
346  }
347 
348  CLOSE_READER(re, gb);
349 
350  return code;
351 }
352 
353 #define LSB2SIGN(x) (-((x) & 1))
354 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
355 
356 #define FIRST_DC_CB 0xB8 // rice_order = 5, exp_golomb_order = 6, switch_bits = 0
357 
358 static uint8_t dc_codebook[4] = {
359  0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
360  0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
361  0x4D, // rice_order = 2, exp_golomb_order = 3, switch_bits = 1
362  0x70 // rice_order = 3, exp_golomb_order = 4, switch_bits = 0
363 };
364 
365 
369 static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
370  int nblocks)
371 {
372  DCTELEM prev_dc;
373  int i, sign;
374  int16_t delta;
375  unsigned int code;
376 
377  code = decode_vlc_codeword(gb, FIRST_DC_CB);
378  out[0] = prev_dc = TOSIGNED(code);
379 
380  out += 64; /* move to the DC coeff of the next block */
381  delta = 3;
382 
383  for (i = 1; i < nblocks; i++, out += 64) {
384  code = decode_vlc_codeword(gb, dc_codebook[FFMIN(FFABS(delta), 3)]);
385 
386  sign = -(((delta >> 15) & 1) ^ (code & 1));
387  delta = (((code + 1) >> 1) ^ sign) - sign;
388  prev_dc += delta;
389  out[0] = prev_dc;
390  }
391 }
392 
393 
394 static uint8_t ac_codebook[7] = {
395  0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
396  0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
397  0x4C, // rice_order = 2, exp_golomb_order = 3, switch_bits = 0
398  0x05, // rice_order = 0, exp_golomb_order = 1, switch_bits = 1
399  0x29, // rice_order = 1, exp_golomb_order = 2, switch_bits = 1
400  0x06, // rice_order = 0, exp_golomb_order = 1, switch_bits = 2
401  0x0A, // rice_order = 0, exp_golomb_order = 2, switch_bits = 2
402 };
403 
408 static uint8_t run_to_cb_index[16] =
409  { 5, 5, 3, 3, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2 };
410 
411 static uint8_t lev_to_cb_index[10] = { 0, 6, 3, 5, 0, 1, 1, 1, 1, 2 };
412 
413 
417 static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
418  int blocks_per_slice,
419  int plane_size_factor,
420  const uint8_t *scan)
421 {
422  int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
423  int max_coeffs, bits_left;
424 
425  /* set initial prediction values */
426  run = 4;
427  level = 2;
428 
429  max_coeffs = blocks_per_slice << 6;
430  block_mask = blocks_per_slice - 1;
431 
432  for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
433  run_cb_index = run_to_cb_index[FFMIN(run, 15)];
434  lev_cb_index = lev_to_cb_index[FFMIN(level, 9)];
435 
436  bits_left = get_bits_left(gb);
437  if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
438  return;
439 
440  run = decode_vlc_codeword(gb, ac_codebook[run_cb_index]);
441 
442  bits_left = get_bits_left(gb);
443  if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
444  return;
445 
446  level = decode_vlc_codeword(gb, ac_codebook[lev_cb_index]) + 1;
447 
448  pos += run + 1;
449  if (pos >= max_coeffs)
450  break;
451 
452  sign = get_sbits(gb, 1);
453  out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
454  (level ^ sign) - sign;
455  }
456 }
457 
458 
463  const uint8_t *buf,
464  int data_size, uint16_t *out_ptr,
465  int linesize, int mbs_per_slice,
466  int blocks_per_mb, int plane_size_factor,
467  const int16_t *qmat)
468 {
469  GetBitContext gb;
470  DCTELEM *block_ptr;
471  int mb_num, blocks_per_slice;
472 
473  blocks_per_slice = mbs_per_slice * blocks_per_mb;
474 
475  memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
476 
477  init_get_bits(&gb, buf, data_size << 3);
478 
479  decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
480 
481  decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
482  plane_size_factor, ctx->scantable.permutated);
483 
484  /* inverse quantization, inverse transform and output */
485  block_ptr = td->blocks;
486 
487  for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
488  ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
489  block_ptr += 64;
490  if (blocks_per_mb > 2) {
491  ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
492  block_ptr += 64;
493  }
494  ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
495  block_ptr += 64;
496  if (blocks_per_mb > 2) {
497  ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
498  block_ptr += 64;
499  }
500  }
501 }
502 
503 
504 static int decode_slice(AVCodecContext *avctx, void *tdata)
505 {
506  ProresThreadData *td = tdata;
507  ProresContext *ctx = avctx->priv_data;
508  int mb_x_pos = td->x_pos;
509  int mb_y_pos = td->y_pos;
510  int pic_num = ctx->pic_num;
511  int slice_num = td->slice_num;
512  int mbs_per_slice = td->slice_width;
513  const uint8_t *buf;
514  uint8_t *y_data, *u_data, *v_data;
515  AVFrame *pic = avctx->coded_frame;
516  int i, sf, slice_width_factor;
517  int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
518  int y_linesize, u_linesize, v_linesize;
519 
520  buf = ctx->slice_data[slice_num].index;
521  slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
522 
523  slice_width_factor = av_log2(mbs_per_slice);
524 
525  y_data = pic->data[0];
526  u_data = pic->data[1];
527  v_data = pic->data[2];
528  y_linesize = pic->linesize[0];
529  u_linesize = pic->linesize[1];
530  v_linesize = pic->linesize[2];
531 
532  if (pic->interlaced_frame) {
533  if (!(pic_num ^ pic->top_field_first)) {
534  y_data += y_linesize;
535  u_data += u_linesize;
536  v_data += v_linesize;
537  }
538  y_linesize <<= 1;
539  u_linesize <<= 1;
540  v_linesize <<= 1;
541  }
542 
543  if (slice_data_size < 6) {
544  av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
545  return AVERROR_INVALIDDATA;
546  }
547 
548  /* parse slice header */
549  hdr_size = buf[0] >> 3;
550  y_data_size = AV_RB16(buf + 2);
551  u_data_size = AV_RB16(buf + 4);
552  v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) :
553  slice_data_size - y_data_size - u_data_size - hdr_size;
554 
555  if (hdr_size + y_data_size + u_data_size + v_data_size > slice_data_size ||
556  v_data_size < 0 || hdr_size < 6) {
557  av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
558  return AVERROR_INVALIDDATA;
559  }
560 
561  sf = av_clip(buf[1], 1, 224);
562  sf = sf > 128 ? (sf - 96) << 2 : sf;
563 
564  /* scale quantization matrixes according with slice's scale factor */
565  /* TODO: this can be SIMD-optimized a lot */
566  if (ctx->qmat_changed || sf != ctx->prev_slice_sf) {
567  ctx->prev_slice_sf = sf;
568  for (i = 0; i < 64; i++) {
569  ctx->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
570  ctx->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
571  }
572  }
573 
574  /* decode luma plane */
575  decode_slice_plane(ctx, td, buf + hdr_size, y_data_size,
576  (uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
577  (mb_x_pos << 5)), y_linesize,
578  mbs_per_slice, 4, slice_width_factor + 2,
579  ctx->qmat_luma_scaled);
580 
581  /* decode U chroma plane */
582  decode_slice_plane(ctx, td, buf + hdr_size + y_data_size, u_data_size,
583  (uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
584  (mb_x_pos << ctx->mb_chroma_factor)),
585  u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
586  slice_width_factor + ctx->chroma_factor - 1,
587  ctx->qmat_chroma_scaled);
588 
589  /* decode V chroma plane */
590  decode_slice_plane(ctx, td, buf + hdr_size + y_data_size + u_data_size,
591  v_data_size,
592  (uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
593  (mb_x_pos << ctx->mb_chroma_factor)),
594  v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
595  slice_width_factor + ctx->chroma_factor - 1,
596  ctx->qmat_chroma_scaled);
597 
598  return 0;
599 }
600 
601 
602 static int decode_picture(ProresContext *ctx, int pic_num,
603  AVCodecContext *avctx)
604 {
605  int slice_num, slice_width, x_pos, y_pos;
606 
607  slice_num = 0;
608 
609  ctx->pic_num = pic_num;
610  for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
611  slice_width = 1 << ctx->slice_width_factor;
612 
613  for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
614  x_pos += slice_width) {
615  while (ctx->num_x_mbs - x_pos < slice_width)
616  slice_width >>= 1;
617 
618  ctx->slice_data[slice_num].slice_num = slice_num;
619  ctx->slice_data[slice_num].x_pos = x_pos;
620  ctx->slice_data[slice_num].y_pos = y_pos;
621  ctx->slice_data[slice_num].slice_width = slice_width;
622 
623  slice_num++;
624  }
625  }
626 
627  return avctx->execute(avctx, decode_slice,
628  ctx->slice_data, NULL, slice_num,
629  sizeof(ctx->slice_data[0]));
630 }
631 
632 
633 #define FRAME_ID MKBETAG('i', 'c', 'p', 'f')
634 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
635 
636 static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
637  AVPacket *avpkt)
638 {
639  ProresContext *ctx = avctx->priv_data;
640  AVFrame *picture = avctx->coded_frame;
641  const uint8_t *buf = avpkt->data;
642  int buf_size = avpkt->size;
643  int frame_hdr_size, pic_num, pic_data_size;
644 
645  /* check frame atom container */
646  if (buf_size < 28 || buf_size < AV_RB32(buf) ||
647  AV_RB32(buf + 4) != FRAME_ID) {
648  av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
649  return AVERROR_INVALIDDATA;
650  }
651 
652  MOVE_DATA_PTR(8);
653 
654  frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
655  if (frame_hdr_size < 0)
656  return AVERROR_INVALIDDATA;
657 
658  MOVE_DATA_PTR(frame_hdr_size);
659 
660  if (picture->data[0])
661  avctx->release_buffer(avctx, picture);
662 
663  picture->reference = 0;
664  if (avctx->get_buffer(avctx, picture) < 0)
665  return -1;
666 
667  for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
668  pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
669  if (pic_data_size < 0)
670  return AVERROR_INVALIDDATA;
671 
672  if (decode_picture(ctx, pic_num, avctx))
673  return -1;
674 
675  MOVE_DATA_PTR(pic_data_size);
676  }
677 
678  *data_size = sizeof(AVPicture);
679  *(AVFrame*) data = *avctx->coded_frame;
680 
681  return avpkt->size;
682 }
683 
684 
686 {
687  ProresContext *ctx = avctx->priv_data;
688 
689  if (ctx->picture.data[0])
690  avctx->release_buffer(avctx, &ctx->picture);
691 
692  av_freep(&ctx->slice_data);
693 
694  return 0;
695 }
696 
697 
699  .name = "prores",
700  .type = AVMEDIA_TYPE_VIDEO,
701  .id = CODEC_ID_PRORES,
702  .priv_data_size = sizeof(ProresContext),
703  .init = decode_init,
704  .close = decode_close,
705  .decode = decode_frame,
706  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
707  .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")
708 };