indeo3.c
Go to the documentation of this file.
1 /*
2  * Indeo Video v3 compatible decoder
3  * Copyright (c) 2009 - 2011 Maxim Poliakovski
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
32 #include "libavutil/imgutils.h"
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
35 #include "internal.h"
36 #include "dsputil.h"
37 #include "bytestream.h"
38 #include "get_bits.h"
39 
40 #include "indeo3data.h"
41 
42 /* RLE opcodes. */
43 enum {
44  RLE_ESC_F9 = 249,
45  RLE_ESC_FA = 250,
46  RLE_ESC_FB = 251,
47  RLE_ESC_FC = 252,
48  RLE_ESC_FD = 253,
49  RLE_ESC_FE = 254,
50  RLE_ESC_FF = 255
51 };
52 
53 
54 /* Some constants for parsing frame bitstream flags. */
55 #define BS_8BIT_PEL (1 << 1)
56 #define BS_KEYFRAME (1 << 2)
57 #define BS_MV_Y_HALF (1 << 4)
58 #define BS_MV_X_HALF (1 << 5)
59 #define BS_NONREF (1 << 8)
60 #define BS_BUFFER 9
61 
62 
63 typedef struct Plane {
64  uint8_t *buffers[2];
65  uint8_t *pixels[2];
66  uint32_t width;
67  uint32_t height;
68  uint32_t pitch;
69 } Plane;
70 
71 #define CELL_STACK_MAX 20
72 
73 typedef struct Cell {
74  int16_t xpos;
75  int16_t ypos;
76  int16_t width;
77  int16_t height;
78  uint8_t tree;
79  const int8_t *mv_ptr;
80 } Cell;
81 
82 typedef struct Indeo3DecodeContext {
86 
89  int skip_bits;
90  const uint8_t *next_cell_data;
91  const uint8_t *last_byte;
92  const int8_t *mc_vectors;
93  unsigned num_vectors;
94 
95  int16_t width, height;
96  uint32_t frame_num;
97  uint32_t data_size;
98  uint16_t frame_flags;
99  uint8_t cb_offset;
100  uint8_t buf_sel;
101  const uint8_t *y_data_ptr;
102  const uint8_t *v_data_ptr;
103  const uint8_t *u_data_ptr;
104  int32_t y_data_size;
105  int32_t v_data_size;
106  int32_t u_data_size;
107  const uint8_t *alt_quant;
110 
111 
112 static uint8_t requant_tab[8][128];
113 
114 /*
115  * Build the static requantization table.
116  * This table is used to remap pixel values according to a specific
117  * quant index and thus avoid overflows while adding deltas.
118  */
119 static av_cold void build_requant_tab(void)
120 {
121  static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
122  static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
123 
124  int i, j, step;
125 
126  for (i = 0; i < 8; i++) {
127  step = i + 2;
128  for (j = 0; j < 128; j++)
129  requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
130  }
131 
132  /* some last elements calculated above will have values >= 128 */
133  /* pixel values shall never exceed 127 so set them to non-overflowing values */
134  /* according with the quantization step of the respective section */
135  requant_tab[0][127] = 126;
136  requant_tab[1][119] = 118;
137  requant_tab[1][120] = 118;
138  requant_tab[2][126] = 124;
139  requant_tab[2][127] = 124;
140  requant_tab[6][124] = 120;
141  requant_tab[6][125] = 120;
142  requant_tab[6][126] = 120;
143  requant_tab[6][127] = 120;
144 
145  /* Patch for compatibility with the Intel's binary decoders */
146  requant_tab[1][7] = 10;
147  requant_tab[4][8] = 10;
148 }
149 
150 
152  AVCodecContext *avctx)
153 {
154  int p, luma_width, luma_height, chroma_width, chroma_height;
155  int luma_pitch, chroma_pitch, luma_size, chroma_size;
156 
157  luma_width = ctx->width;
158  luma_height = ctx->height;
159 
160  if (luma_width < 16 || luma_width > 640 ||
161  luma_height < 16 || luma_height > 480 ||
162  luma_width & 3 || luma_height & 3) {
163  av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
164  luma_width, luma_height);
165  return AVERROR_INVALIDDATA;
166  }
167 
168  chroma_width = FFALIGN(luma_width >> 2, 4);
169  chroma_height = FFALIGN(luma_height >> 2, 4);
170 
171  luma_pitch = FFALIGN(luma_width, 16);
172  chroma_pitch = FFALIGN(chroma_width, 16);
173 
174  /* Calculate size of the luminance plane. */
175  /* Add one line more for INTRA prediction. */
176  luma_size = luma_pitch * (luma_height + 1);
177 
178  /* Calculate size of a chrominance planes. */
179  /* Add one line more for INTRA prediction. */
180  chroma_size = chroma_pitch * (chroma_height + 1);
181 
182  /* allocate frame buffers */
183  for (p = 0; p < 3; p++) {
184  ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
185  ctx->planes[p].width = !p ? luma_width : chroma_width;
186  ctx->planes[p].height = !p ? luma_height : chroma_height;
187 
188  ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
189  ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
190 
191  /* fill the INTRA prediction lines with the middle pixel value = 64 */
192  memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
193  memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
194 
195  /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
196  ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
197  ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
198  memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
199  memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
200  }
201 
202  return 0;
203 }
204 
205 
207 {
208  int p;
209 
210  for (p = 0; p < 3; p++) {
211  av_freep(&ctx->planes[p].buffers[0]);
212  av_freep(&ctx->planes[p].buffers[1]);
213  ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
214  }
215 }
216 
217 
226 static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
227 {
228  int h, w, mv_x, mv_y, offset, offset_dst;
229  uint8_t *src, *dst;
230 
231  /* setup output and reference pointers */
232  offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
233  dst = plane->pixels[ctx->buf_sel] + offset_dst;
234  mv_y = cell->mv_ptr[0];
235  mv_x = cell->mv_ptr[1];
236 
237  /* -1 because there is an extra line on top for prediction */
238  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
239  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
240  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
241  av_log(ctx->avctx, AV_LOG_ERROR,
242  "Motion vectors point out of the frame.\n");
243  return AVERROR_INVALIDDATA;
244  }
245 
246  offset = offset_dst + mv_y * plane->pitch + mv_x;
247  src = plane->pixels[ctx->buf_sel ^ 1] + offset;
248 
249  h = cell->height << 2;
250 
251  for (w = cell->width; w > 0;) {
252  /* copy using 16xH blocks */
253  if (!((cell->xpos << 2) & 15) && w >= 4) {
254  for (; w >= 4; src += 16, dst += 16, w -= 4)
255  ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
256  }
257 
258  /* copy using 8xH blocks */
259  if (!((cell->xpos << 2) & 7) && w >= 2) {
260  ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
261  w -= 2;
262  src += 8;
263  dst += 8;
264  }
265 
266  if (w >= 1) {
267  copy_block4(dst, src, plane->pitch, plane->pitch, h);
268  w--;
269  src += 4;
270  dst += 4;
271  }
272  }
273 
274  return 0;
275 }
276 
277 
278 /* Average 4/8 pixels at once without rounding using SWAR */
279 #define AVG_32(dst, src, ref) \
280  AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
281 
282 #define AVG_64(dst, src, ref) \
283  AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
284 
285 
286 /*
287  * Replicate each even pixel as follows:
288  * ABCDEFGH -> AACCEEGG
289  */
290 static inline uint64_t replicate64(uint64_t a) {
291 #if HAVE_BIGENDIAN
292  a &= 0xFF00FF00FF00FF00ULL;
293  a |= a >> 8;
294 #else
295  a &= 0x00FF00FF00FF00FFULL;
296  a |= a << 8;
297 #endif
298  return a;
299 }
300 
301 static inline uint32_t replicate32(uint32_t a) {
302 #if HAVE_BIGENDIAN
303  a &= 0xFF00FF00UL;
304  a |= a >> 8;
305 #else
306  a &= 0x00FF00FFUL;
307  a |= a << 8;
308 #endif
309  return a;
310 }
311 
312 
313 /* Fill n lines with 64bit pixel value pix */
314 static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
315  int32_t row_offset)
316 {
317  for (; n > 0; dst += row_offset, n--)
318  AV_WN64A(dst, pix);
319 }
320 
321 
322 /* Error codes for cell decoding. */
323 enum {
330 };
331 
332 
333 #define BUFFER_PRECHECK \
334 if (*data_ptr >= last_ptr) \
335  return IV3_OUT_OF_DATA; \
336 
337 #define RLE_BLOCK_COPY \
338  if (cell->mv_ptr || !skip_flag) \
339  copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
340 
341 #define RLE_BLOCK_COPY_8 \
342  pix64 = AV_RN64A(ref);\
343  if (is_first_row) {/* special prediction case: top line of a cell */\
344  pix64 = replicate64(pix64);\
345  fill_64(dst + row_offset, pix64, 7, row_offset);\
346  AVG_64(dst, ref, dst + row_offset);\
347  } else \
348  fill_64(dst, pix64, 8, row_offset)
349 
350 #define RLE_LINES_COPY \
351  copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
352 
353 #define RLE_LINES_COPY_M10 \
354  pix64 = AV_RN64A(ref);\
355  if (is_top_of_cell) {\
356  pix64 = replicate64(pix64);\
357  fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
358  AVG_64(dst, ref, dst + row_offset);\
359  } else \
360  fill_64(dst, pix64, num_lines << 1, row_offset)
361 
362 #define APPLY_DELTA_4 \
363  AV_WN16A(dst + line_offset ,\
364  (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
365  AV_WN16A(dst + line_offset + 2,\
366  (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
367  if (mode >= 3) {\
368  if (is_top_of_cell && !cell->ypos) {\
369  AV_COPY32(dst, dst + row_offset);\
370  } else {\
371  AVG_32(dst, ref, dst + row_offset);\
372  }\
373  }
374 
375 #define APPLY_DELTA_8 \
376  /* apply two 32-bit VQ deltas to next even line */\
377  if (is_top_of_cell) { \
378  AV_WN32A(dst + row_offset , \
379  (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
380  AV_WN32A(dst + row_offset + 4, \
381  (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
382  } else { \
383  AV_WN32A(dst + row_offset , \
384  (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
385  AV_WN32A(dst + row_offset + 4, \
386  (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
387  } \
388  /* odd lines are not coded but rather interpolated/replicated */\
389  /* first line of the cell on the top of image? - replicate */\
390  /* otherwise - interpolate */\
391  if (is_top_of_cell && !cell->ypos) {\
392  AV_COPY64(dst, dst + row_offset);\
393  } else \
394  AVG_64(dst, ref, dst + row_offset);
395 
396 
397 #define APPLY_DELTA_1011_INTER \
398  if (mode == 10) { \
399  AV_WN32A(dst , \
400  (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
401  AV_WN32A(dst + 4 , \
402  (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
403  AV_WN32A(dst + row_offset , \
404  (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
405  AV_WN32A(dst + row_offset + 4, \
406  (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
407  } else { \
408  AV_WN16A(dst , \
409  (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
410  AV_WN16A(dst + 2 , \
411  (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
412  AV_WN16A(dst + row_offset , \
413  (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
414  AV_WN16A(dst + row_offset + 2, \
415  (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
416  }
417 
418 
419 static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
420  int pitch, int h_zoom, int v_zoom, int mode,
421  const vqEntry *delta[2], int swap_quads[2],
422  const uint8_t **data_ptr, const uint8_t *last_ptr)
423 {
424  int x, y, line, num_lines;
425  int rle_blocks = 0;
426  uint8_t code, *dst, *ref;
427  const vqEntry *delta_tab;
428  unsigned int dyad1, dyad2;
429  uint64_t pix64;
430  int skip_flag = 0, is_top_of_cell, is_first_row = 1;
431  int row_offset, blk_row_offset, line_offset;
432 
433  row_offset = pitch;
434  blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
435  line_offset = v_zoom ? row_offset : 0;
436 
437  if (cell->height & v_zoom || cell->width & h_zoom)
438  return IV3_BAD_DATA;
439 
440  for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
441  for (x = 0; x < cell->width; x += 1 + h_zoom) {
442  ref = ref_block;
443  dst = block;
444 
445  if (rle_blocks > 0) {
446  if (mode <= 4) {
448  } else if (mode == 10 && !cell->mv_ptr) {
450  }
451  rle_blocks--;
452  } else {
453  for (line = 0; line < 4;) {
454  num_lines = 1;
455  is_top_of_cell = is_first_row && !line;
456 
457  /* select primary VQ table for odd, secondary for even lines */
458  if (mode <= 4)
459  delta_tab = delta[line & 1];
460  else
461  delta_tab = delta[1];
463  code = bytestream_get_byte(data_ptr);
464  if (code < 248) {
465  if (code < delta_tab->num_dyads) {
467  dyad1 = bytestream_get_byte(data_ptr);
468  dyad2 = code;
469  if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
470  return IV3_BAD_DATA;
471  } else {
472  /* process QUADS */
473  code -= delta_tab->num_dyads;
474  dyad1 = code / delta_tab->quad_exp;
475  dyad2 = code % delta_tab->quad_exp;
476  if (swap_quads[line & 1])
477  FFSWAP(unsigned int, dyad1, dyad2);
478  }
479  if (mode <= 4) {
481  } else if (mode == 10 && !cell->mv_ptr) {
483  } else {
485  }
486  } else {
487  /* process RLE codes */
488  switch (code) {
489  case RLE_ESC_FC:
490  skip_flag = 0;
491  rle_blocks = 1;
492  code = 253;
493  /* FALLTHROUGH */
494  case RLE_ESC_FF:
495  case RLE_ESC_FE:
496  case RLE_ESC_FD:
497  num_lines = 257 - code - line;
498  if (num_lines <= 0)
499  return IV3_BAD_RLE;
500  if (mode <= 4) {
502  } else if (mode == 10 && !cell->mv_ptr) {
504  }
505  break;
506  case RLE_ESC_FB:
508  code = bytestream_get_byte(data_ptr);
509  rle_blocks = (code & 0x1F) - 1; /* set block counter */
510  if (code >= 64 || rle_blocks < 0)
511  return IV3_BAD_COUNTER;
512  skip_flag = code & 0x20;
513  num_lines = 4 - line; /* enforce next block processing */
514  if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
515  if (mode <= 4) {
517  } else if (mode == 10 && !cell->mv_ptr) {
519  }
520  }
521  break;
522  case RLE_ESC_F9:
523  skip_flag = 1;
524  rle_blocks = 1;
525  /* FALLTHROUGH */
526  case RLE_ESC_FA:
527  if (line)
528  return IV3_BAD_RLE;
529  num_lines = 4; /* enforce next block processing */
530  if (cell->mv_ptr) {
531  if (mode <= 4) {
533  } else if (mode == 10 && !cell->mv_ptr) {
535  }
536  }
537  break;
538  default:
539  return IV3_UNSUPPORTED;
540  }
541  }
542 
543  line += num_lines;
544  ref += row_offset * (num_lines << v_zoom);
545  dst += row_offset * (num_lines << v_zoom);
546  }
547  }
548 
549  /* move to next horizontal block */
550  block += 4 << h_zoom;
551  ref_block += 4 << h_zoom;
552  }
553 
554  /* move to next line of blocks */
555  ref_block += blk_row_offset;
556  block += blk_row_offset;
557  }
558  return IV3_NOERR;
559 }
560 
561 
576  Plane *plane, Cell *cell, const uint8_t *data_ptr,
577  const uint8_t *last_ptr)
578 {
579  int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
580  int zoom_fac;
581  int offset, error = 0, swap_quads[2];
582  uint8_t code, *block, *ref_block = 0;
583  const vqEntry *delta[2];
584  const uint8_t *data_start = data_ptr;
585 
586  /* get coding mode and VQ table index from the VQ descriptor byte */
587  code = *data_ptr++;
588  mode = code >> 4;
589  vq_index = code & 0xF;
590 
591  /* setup output and reference pointers */
592  offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
593  block = plane->pixels[ctx->buf_sel] + offset;
594  if (!cell->mv_ptr) {
595  /* use previous line as reference for INTRA cells */
596  ref_block = block - plane->pitch;
597  } else if (mode >= 10) {
598  /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
599  /* so we don't need to do data copying for each RLE code later */
600  int ret = copy_cell(ctx, plane, cell);
601  if (ret < 0)
602  return ret;
603  } else {
604  /* set the pointer to the reference pixels for modes 0-4 INTER */
605  mv_y = cell->mv_ptr[0];
606  mv_x = cell->mv_ptr[1];
607 
608  /* -1 because there is an extra line on top for prediction */
609  if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
610  ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
611  ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
612  av_log(ctx->avctx, AV_LOG_ERROR,
613  "Motion vectors point out of the frame.\n");
614  return AVERROR_INVALIDDATA;
615  }
616 
617  offset += mv_y * plane->pitch + mv_x;
618  ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
619  }
620 
621  /* select VQ tables as follows: */
622  /* modes 0 and 3 use only the primary table for all lines in a block */
623  /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
624  if (mode == 1 || mode == 4) {
625  code = ctx->alt_quant[vq_index];
626  prim_indx = (code >> 4) + ctx->cb_offset;
627  second_indx = (code & 0xF) + ctx->cb_offset;
628  } else {
629  vq_index += ctx->cb_offset;
630  prim_indx = second_indx = vq_index;
631  }
632 
633  if (prim_indx >= 24 || second_indx >= 24) {
634  av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
635  prim_indx, second_indx);
636  return AVERROR_INVALIDDATA;
637  }
638 
639  delta[0] = &vq_tab[second_indx];
640  delta[1] = &vq_tab[prim_indx];
641  swap_quads[0] = second_indx >= 16;
642  swap_quads[1] = prim_indx >= 16;
643 
644  /* requantize the prediction if VQ index of this cell differs from VQ index */
645  /* of the predicted cell in order to avoid overflows. */
646  if (vq_index >= 8 && ref_block) {
647  for (x = 0; x < cell->width << 2; x++)
648  ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
649  }
650 
651  error = IV3_NOERR;
652 
653  switch (mode) {
654  case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
655  case 1:
656  case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
657  case 4:
658  if (mode >= 3 && cell->mv_ptr) {
659  av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
660  return AVERROR_INVALIDDATA;
661  }
662 
663  zoom_fac = mode >= 3;
664  error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
665  mode, delta, swap_quads, &data_ptr, last_ptr);
666  break;
667  case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
668  case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
669  if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
670  error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
671  mode, delta, swap_quads, &data_ptr, last_ptr);
672  } else { /* mode 10 and 11 INTER processing */
673  if (mode == 11 && !cell->mv_ptr) {
674  av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
675  return AVERROR_INVALIDDATA;
676  }
677 
678  zoom_fac = mode == 10;
679  error = decode_cell_data(cell, block, ref_block, plane->pitch,
680  zoom_fac, 1, mode, delta, swap_quads,
681  &data_ptr, last_ptr);
682  }
683  break;
684  default:
685  av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
686  return AVERROR_INVALIDDATA;
687  }//switch mode
688 
689  switch (error) {
690  case IV3_BAD_RLE:
691  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
692  mode, data_ptr[-1]);
693  return AVERROR_INVALIDDATA;
694  case IV3_BAD_DATA:
695  av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
696  return AVERROR_INVALIDDATA;
697  case IV3_BAD_COUNTER:
698  av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
699  return AVERROR_INVALIDDATA;
700  case IV3_UNSUPPORTED:
701  av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
702  return AVERROR_INVALIDDATA;
703  case IV3_OUT_OF_DATA:
704  av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
705  return AVERROR_INVALIDDATA;
706  }
707 
708  return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
709 }
710 
711 
712 /* Binary tree codes. */
713 enum {
714  H_SPLIT = 0,
715  V_SPLIT = 1,
718 };
719 
720 
721 #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
722 
723 #define UPDATE_BITPOS(n) \
724  ctx->skip_bits += (n); \
725  ctx->need_resync = 1
726 
727 #define RESYNC_BITSTREAM \
728  if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
729  skip_bits_long(&ctx->gb, ctx->skip_bits); \
730  ctx->skip_bits = 0; \
731  ctx->need_resync = 0; \
732  }
733 
734 #define CHECK_CELL \
735  if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
736  curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
737  av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
738  curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
739  return AVERROR_INVALIDDATA; \
740  }
741 
742 
744  Plane *plane, int code, Cell *ref_cell,
745  const int depth, const int strip_width)
746 {
747  Cell curr_cell;
748  int bytes_used, ret;
749 
750  if (depth <= 0) {
751  av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
752  return AVERROR_INVALIDDATA; // unwind recursion
753  }
754 
755  curr_cell = *ref_cell; // clone parent cell
756  if (code == H_SPLIT) {
757  SPLIT_CELL(ref_cell->height, curr_cell.height);
758  ref_cell->ypos += curr_cell.height;
759  ref_cell->height -= curr_cell.height;
760  if (ref_cell->height <= 0 || curr_cell.height <= 0)
761  return AVERROR_INVALIDDATA;
762  } else if (code == V_SPLIT) {
763  if (curr_cell.width > strip_width) {
764  /* split strip */
765  curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
766  } else
767  SPLIT_CELL(ref_cell->width, curr_cell.width);
768  ref_cell->xpos += curr_cell.width;
769  ref_cell->width -= curr_cell.width;
770  if (ref_cell->width <= 0 || curr_cell.width <= 0)
771  return AVERROR_INVALIDDATA;
772  }
773 
774  while (1) { /* loop until return */
776  switch (code = get_bits(&ctx->gb, 2)) {
777  case H_SPLIT:
778  case V_SPLIT:
779  if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
780  return AVERROR_INVALIDDATA;
781  break;
782  case INTRA_NULL:
783  if (!curr_cell.tree) { /* MC tree INTRA code */
784  curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
785  curr_cell.tree = 1; /* enter the VQ tree */
786  } else { /* VQ tree NULL code */
788  code = get_bits(&ctx->gb, 2);
789  if (code >= 2) {
790  av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
791  return AVERROR_INVALIDDATA;
792  }
793  if (code == 1)
794  av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
795 
796  CHECK_CELL
797  if (!curr_cell.mv_ptr)
798  return AVERROR_INVALIDDATA;
799  ret = copy_cell(ctx, plane, &curr_cell);
800  return ret;
801  }
802  break;
803  case INTER_DATA:
804  if (!curr_cell.tree) { /* MC tree INTER code */
805  unsigned mv_idx;
806  /* get motion vector index and setup the pointer to the mv set */
807  if (!ctx->need_resync)
808  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
809  mv_idx = *(ctx->next_cell_data++) << 1;
810  if (mv_idx >= ctx->num_vectors) {
811  av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
812  return AVERROR_INVALIDDATA;
813  }
814  curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx];
815  curr_cell.tree = 1; /* enter the VQ tree */
816  UPDATE_BITPOS(8);
817  } else { /* VQ tree DATA code */
818  if (!ctx->need_resync)
819  ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
820 
821  CHECK_CELL
822  bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
823  ctx->next_cell_data, ctx->last_byte);
824  if (bytes_used < 0)
825  return AVERROR_INVALIDDATA;
826 
827  UPDATE_BITPOS(bytes_used << 3);
828  ctx->next_cell_data += bytes_used;
829  return 0;
830  }
831  break;
832  }
833  }//while
834 
835  return 0;
836 }
837 
838 
840  Plane *plane, const uint8_t *data, int32_t data_size,
841  int32_t strip_width)
842 {
843  Cell curr_cell;
844  unsigned num_vectors;
845 
846  /* each plane data starts with mc_vector_count field, */
847  /* an optional array of motion vectors followed by the vq data */
848  num_vectors = bytestream_get_le32(&data);
849  if (num_vectors > 256) {
850  av_log(ctx->avctx, AV_LOG_ERROR,
851  "Read invalid number of motion vectors %d\n", num_vectors);
852  return AVERROR_INVALIDDATA;
853  }
854  if (num_vectors * 2 >= data_size)
855  return AVERROR_INVALIDDATA;
856 
857  ctx->num_vectors = num_vectors;
858  ctx->mc_vectors = num_vectors ? data : 0;
859 
860  /* init the bitreader */
861  init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
862  ctx->skip_bits = 0;
863  ctx->need_resync = 0;
864 
865  ctx->last_byte = data + data_size - 1;
866 
867  /* initialize the 1st cell and set its dimensions to whole plane */
868  curr_cell.xpos = curr_cell.ypos = 0;
869  curr_cell.width = plane->width >> 2;
870  curr_cell.height = plane->height >> 2;
871  curr_cell.tree = 0; // we are in the MC tree now
872  curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
873 
874  return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
875 }
876 
877 
878 #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
879 
881  const uint8_t *buf, int buf_size)
882 {
883  GetByteContext gb;
884  const uint8_t *bs_hdr;
885  uint32_t frame_num, word2, check_sum, data_size;
886  uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
887  uint16_t height, width;
888  int i, j;
889 
890  bytestream2_init(&gb, buf, buf_size);
891 
892  /* parse and check the OS header */
893  frame_num = bytestream2_get_le32(&gb);
894  word2 = bytestream2_get_le32(&gb);
895  check_sum = bytestream2_get_le32(&gb);
896  data_size = bytestream2_get_le32(&gb);
897 
898  if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
899  av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
900  return AVERROR_INVALIDDATA;
901  }
902 
903  /* parse the bitstream header */
904  bs_hdr = gb.buffer;
905 
906  if (bytestream2_get_le16(&gb) != 32) {
907  av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
908  return AVERROR_INVALIDDATA;
909  }
910 
911  ctx->frame_num = frame_num;
912  ctx->frame_flags = bytestream2_get_le16(&gb);
913  ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
914  ctx->cb_offset = bytestream2_get_byte(&gb);
915 
916  if (ctx->data_size == 16)
917  return 4;
918  ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
919 
920  bytestream2_skip(&gb, 3); // skip reserved byte and checksum
921 
922  /* check frame dimensions */
923  height = bytestream2_get_le16(&gb);
924  width = bytestream2_get_le16(&gb);
925  if (av_image_check_size(width, height, 0, avctx))
926  return AVERROR_INVALIDDATA;
927 
928  if (width != ctx->width || height != ctx->height) {
929  int res;
930 
931  av_dlog(avctx, "Frame dimensions changed!\n");
932 
933  if (width < 16 || width > 640 ||
934  height < 16 || height > 480 ||
935  width & 3 || height & 3) {
936  av_log(avctx, AV_LOG_ERROR,
937  "Invalid picture dimensions: %d x %d!\n", width, height);
938  return AVERROR_INVALIDDATA;
939  }
940 
941  ctx->width = width;
942  ctx->height = height;
943 
944  free_frame_buffers(ctx);
945  if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
946  return res;
947  avcodec_set_dimensions(avctx, width, height);
948  }
949 
950  y_offset = bytestream2_get_le32(&gb);
951  v_offset = bytestream2_get_le32(&gb);
952  u_offset = bytestream2_get_le32(&gb);
953  bytestream2_skip(&gb, 4);
954 
955  /* unfortunately there is no common order of planes in the buffer */
956  /* so we use that sorting algo for determining planes data sizes */
957  starts[0] = y_offset;
958  starts[1] = v_offset;
959  starts[2] = u_offset;
960 
961  for (j = 0; j < 3; j++) {
962  ends[j] = ctx->data_size;
963  for (i = 2; i >= 0; i--)
964  if (starts[i] < ends[j] && starts[i] > starts[j])
965  ends[j] = starts[i];
966  }
967 
968  ctx->y_data_size = ends[0] - starts[0];
969  ctx->v_data_size = ends[1] - starts[1];
970  ctx->u_data_size = ends[2] - starts[2];
971  if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
972  FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
973  FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
974  av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
975  return AVERROR_INVALIDDATA;
976  }
977 
978  ctx->y_data_ptr = bs_hdr + y_offset;
979  ctx->v_data_ptr = bs_hdr + v_offset;
980  ctx->u_data_ptr = bs_hdr + u_offset;
981  ctx->alt_quant = gb.buffer;
982 
983  if (ctx->data_size == 16) {
984  av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
985  return 16;
986  }
987 
988  if (ctx->frame_flags & BS_8BIT_PEL) {
989  av_log_ask_for_sample(avctx, "8-bit pixel format\n");
990  return AVERROR_PATCHWELCOME;
991  }
992 
993  if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
994  av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
995  return AVERROR_PATCHWELCOME;
996  }
997 
998  return 0;
999 }
1000 
1001 
1011 static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
1012 {
1013  int x,y;
1014  const uint8_t *src = plane->pixels[buf_sel];
1015  uint32_t pitch = plane->pitch;
1016 
1017  for (y = 0; y < plane->height; y++) {
1018  /* convert four pixels at once using SWAR */
1019  for (x = 0; x < plane->width >> 2; x++) {
1020  AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1021  src += 4;
1022  dst += 4;
1023  }
1024 
1025  for (x <<= 2; x < plane->width; x++)
1026  *dst++ = *src++ << 1;
1027 
1028  src += pitch - plane->width;
1029  dst += dst_pitch - plane->width;
1030  }
1031 }
1032 
1033 
1035 {
1036  Indeo3DecodeContext *ctx = avctx->priv_data;
1037 
1038  ctx->avctx = avctx;
1039  ctx->width = avctx->width;
1040  ctx->height = avctx->height;
1041  avctx->pix_fmt = PIX_FMT_YUV410P;
1042 
1044 
1045  dsputil_init(&ctx->dsp, avctx);
1046 
1047  allocate_frame_buffers(ctx, avctx);
1048 
1049  return 0;
1050 }
1051 
1052 
1053 static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
1054  AVPacket *avpkt)
1055 {
1056  Indeo3DecodeContext *ctx = avctx->priv_data;
1057  const uint8_t *buf = avpkt->data;
1058  int buf_size = avpkt->size;
1059  int res;
1060 
1061  res = decode_frame_headers(ctx, avctx, buf, buf_size);
1062  if (res < 0)
1063  return res;
1064 
1065  /* skip sync(null) frames */
1066  if (res) {
1067  // we have processed 16 bytes but no data was decoded
1068  *data_size = 0;
1069  return buf_size;
1070  }
1071 
1072  /* skip droppable INTER frames if requested */
1073  if (ctx->frame_flags & BS_NONREF &&
1074  (avctx->skip_frame >= AVDISCARD_NONREF))
1075  return 0;
1076 
1077  /* skip INTER frames if requested */
1078  if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1079  return 0;
1080 
1081  /* use BS_BUFFER flag for buffer switching */
1082  ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1083 
1084  /* decode luma plane */
1085  if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1086  return res;
1087 
1088  /* decode chroma planes */
1089  if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1090  return res;
1091 
1092  if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1093  return res;
1094 
1095  if (ctx->frame.data[0])
1096  avctx->release_buffer(avctx, &ctx->frame);
1097 
1098  ctx->frame.reference = 0;
1099  if ((res = ff_get_buffer(avctx, &ctx->frame)) < 0) {
1100  av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
1101  return res;
1102  }
1103 
1104  output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
1105  output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
1106  output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
1107 
1108  *data_size = sizeof(AVFrame);
1109  *(AVFrame*)data = ctx->frame;
1110 
1111  return buf_size;
1112 }
1113 
1114 
1116 {
1117  Indeo3DecodeContext *ctx = avctx->priv_data;
1118 
1119  free_frame_buffers(avctx->priv_data);
1120 
1121  if (ctx->frame.data[0])
1122  avctx->release_buffer(avctx, &ctx->frame);
1123 
1124  return 0;
1125 }
1126 
1128  .name = "indeo3",
1129  .type = AVMEDIA_TYPE_VIDEO,
1130  .id = CODEC_ID_INDEO3,
1131  .priv_data_size = sizeof(Indeo3DecodeContext),
1132  .init = decode_init,
1133  .close = decode_close,
1134  .decode = decode_frame,
1135  .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1136 };