23 #ifndef AACPS_TABLEGEN_H
24 #define AACPS_TABLEGEN_H
28 #if CONFIG_HARDCODED_TABLES
29 #define ps_tableinit()
30 #include "libavcodec/aacps_tables.h"
34 #define NR_ALLPASS_BANDS20 30
35 #define NR_ALLPASS_BANDS34 50
39 static float HA[46][8][4];
40 static float HB[46][8][4];
49 0.00746082949812f, 0.02270420949825f, 0.04546865930473f, 0.07266113929591f,
50 0.09885108575264f, 0.11793710567217f, 0.125f
54 0.04081179924692f, 0.03812810994926f, 0.05144908135699f, 0.06399831151592f,
55 0.07428313801106f, 0.08100347892914f, 0.08333333333333f
59 0.01565675600122f, 0.03752716391991f, 0.05417891378782f, 0.08417044116767f,
60 0.10307344158036f, 0.12222452249753f, 0.125f
64 -0.05908211155639f, -0.04871498374946f, 0.0f, 0.07778723915851f,
65 0.16486303567403f, 0.23279856662996f, 0.25f
71 for (q = 0; q < bands; q++) {
72 for (n = 0; n < 7; n++) {
73 double theta = 2 *
M_PI * (q + 0.5) * (n - 6) / bands;
74 filter[q][n][0] = proto[n] * cos(theta);
75 filter[q][n][1] = proto[n] * -sin(theta);
86 static const float iid_par_dequant[] = {
88 0.05623413251903, 0.12589254117942, 0.19952623149689, 0.31622776601684,
89 0.44668359215096, 0.63095734448019, 0.79432823472428, 1,
90 1.25892541179417, 1.58489319246111, 2.23872113856834, 3.16227766016838,
91 5.01187233627272, 7.94328234724282, 17.7827941003892,
93 0.00316227766017, 0.00562341325190, 0.01, 0.01778279410039,
94 0.03162277660168, 0.05623413251903, 0.07943282347243, 0.11220184543020,
95 0.15848931924611, 0.22387211385683, 0.31622776601684, 0.39810717055350,
96 0.50118723362727, 0.63095734448019, 0.79432823472428, 1,
97 1.25892541179417, 1.58489319246111, 1.99526231496888, 2.51188643150958,
98 3.16227766016838, 4.46683592150963, 6.30957344480193, 8.91250938133745,
99 12.5892541179417, 17.7827941003892, 31.6227766016838, 56.2341325190349,
100 100, 177.827941003892, 316.227766016837,
102 static const float icc_invq[] = {
103 1, 0.937, 0.84118, 0.60092, 0.36764, 0, -0.589, -1
105 static const float acos_icc_invq[] = {
106 0, 0.35685527, 0.57133466, 0.92614472, 1.1943263,
M_PI/2, 2.2006171,
M_PI
111 static const int8_t f_center_20[] = {
112 -3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
114 static const int8_t f_center_34[] = {
115 2, 6, 10, 14, 18, 22, 26, 30,
116 34,-10, -6, -2, 51, 57, 15, 21,
117 27, 33, 39, 45, 54, 66, 78, 42,
118 102, 66, 78, 90,102,114,126, 90,
120 static const float fractional_delay_links[] = { 0.43f, 0.75f, 0.347f };
121 const float fractional_delay_gain = 0.39f;
123 for (pd0 = 0; pd0 < 8; pd0++) {
124 float pd0_re = ipdopd_cos[pd0];
125 float pd0_im = ipdopd_sin[pd0];
126 for (pd1 = 0; pd1 < 8; pd1++) {
127 float pd1_re = ipdopd_cos[pd1];
128 float pd1_im = ipdopd_sin[pd1];
129 for (pd2 = 0; pd2 < 8; pd2++) {
130 float pd2_re = ipdopd_cos[pd2];
131 float pd2_im = ipdopd_sin[pd2];
132 float re_smooth = 0.25f * pd0_re + 0.5f * pd1_re + pd2_re;
133 float im_smooth = 0.25f * pd0_im + 0.5f * pd1_im + pd2_im;
134 float pd_mag = 1 / sqrt(im_smooth * im_smooth + re_smooth * re_smooth);
141 for (iid = 0; iid < 46; iid++) {
142 float c = iid_par_dequant[iid];
143 float c1 = (float)
M_SQRT2 / sqrtf(1.0
f + c*c);
145 for (icc = 0; icc < 8; icc++) {
147 float alpha = 0.5f * acos_icc_invq[icc];
149 HA[iid][icc][0] = c2 * cosf(beta + alpha);
150 HA[iid][icc][1] = c1 * cosf(beta - alpha);
151 HA[iid][icc][2] = c2 * sinf(beta + alpha);
152 HA[iid][icc][3] = c1 * sinf(beta - alpha);
154 float alpha, gamma, mu, rho;
155 float alpha_c, alpha_s, gamma_c, gamma_s;
156 rho =
FFMAX(icc_invq[icc], 0.05
f);
157 alpha = 0.5f * atan2f(2.0
f * c * rho, c*c - 1.0
f);
159 mu = sqrtf(1 + (4 * rho * rho - 4)/(mu * mu));
160 gamma = atanf(sqrtf((1.0
f - mu)/(1.0
f + mu)));
161 if (alpha < 0) alpha +=
M_PI/2;
162 alpha_c = cosf(alpha);
163 alpha_s = sinf(alpha);
164 gamma_c = cosf(gamma);
165 gamma_s = sinf(gamma);
166 HB[iid][icc][0] =
M_SQRT2 * alpha_c * gamma_c;
167 HB[iid][icc][1] =
M_SQRT2 * alpha_s * gamma_c;
168 HB[iid][icc][2] = -
M_SQRT2 * alpha_s * gamma_s;
169 HB[iid][icc][3] =
M_SQRT2 * alpha_c * gamma_s;
175 double f_center, theta;
177 f_center = f_center_20[k] * 0.125;
181 theta = -
M_PI * fractional_delay_links[m] * f_center;
185 theta = -
M_PI*fractional_delay_gain*f_center;
190 double f_center, theta;
192 f_center = f_center_34[k] / 24.;
194 f_center = k - 26.5f;
196 theta = -
M_PI * fractional_delay_links[m] * f_center;
200 theta = -
M_PI*fractional_delay_gain*f_center;