acelp_vectors.c
Go to the documentation of this file.
1 /*
2  * adaptive and fixed codebook vector operations for ACELP-based codecs
3  *
4  * Copyright (c) 2008 Vladimir Voroshilov
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 #include "avcodec.h"
25 #include "acelp_vectors.h"
26 #include "celp_math.h"
27 
28 const uint8_t ff_fc_2pulses_9bits_track1[16] =
29 {
30  1, 3,
31  6, 8,
32  11, 13,
33  16, 18,
34  21, 23,
35  26, 28,
36  31, 33,
37  36, 38
38 };
40 {
41  1, 3,
42  8, 6,
43  18, 16,
44  11, 13,
45  38, 36,
46  31, 33,
47  21, 23,
48  28, 26,
49 };
50 
51 const uint8_t ff_fc_4pulses_8bits_tracks_13[16] =
52 {
53  0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
54 };
55 
56 const uint8_t ff_fc_4pulses_8bits_track_4[32] =
57 {
58  3, 4,
59  8, 9,
60  13, 14,
61  18, 19,
62  23, 24,
63  28, 29,
64  33, 34,
65  38, 39,
66  43, 44,
67  48, 49,
68  53, 54,
69  58, 59,
70  63, 64,
71  68, 69,
72  73, 74,
73  78, 79,
74 };
75 
76 const float ff_pow_0_7[10] = {
77  0.700000, 0.490000, 0.343000, 0.240100, 0.168070,
78  0.117649, 0.082354, 0.057648, 0.040354, 0.028248
79 };
80 
81 const float ff_pow_0_75[10] = {
82  0.750000, 0.562500, 0.421875, 0.316406, 0.237305,
83  0.177979, 0.133484, 0.100113, 0.075085, 0.056314
84 };
85 
86 const float ff_pow_0_55[10] = {
87  0.550000, 0.302500, 0.166375, 0.091506, 0.050328,
88  0.027681, 0.015224, 0.008373, 0.004605, 0.002533
89 };
90 
91 const float ff_b60_sinc[61] = {
92  0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 ,
93  0.0959167 , -0.0412598 , -0.134338 , -0.178986 , -0.178528 , -0.142609 ,
94 -0.0849304 , -0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 ,
95  0.0689392 , 0.0357056 , 0. , -0.0305481 , -0.0504150 , -0.0570068 ,
96 -0.0508423 , -0.0350037 , -0.0141602 , 0.00665283, 0.0230713 , 0.0323486 ,
97  0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, -0.00747681, -0.0156860 ,
98 -0.0193481 , -0.0183716 , -0.0137634 , -0.00704956, 0. , 0.00582886 ,
99  0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, -0.00109863 ,
100 -0.00366211, -0.00497437, -0.00503540, -0.00402832, -0.00241089, -0.000579834,
101  0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 ,
102  0.
103 };
104 
106  int16_t* fc_v,
107  const uint8_t *tab1,
108  const uint8_t *tab2,
109  int pulse_indexes,
110  int pulse_signs,
111  int pulse_count,
112  int bits)
113 {
114  int mask = (1 << bits) - 1;
115  int i;
116 
117  for(i=0; i<pulse_count; i++)
118  {
119  fc_v[i + tab1[pulse_indexes & mask]] +=
120  (pulse_signs & 1) ? 8191 : -8192; // +/-1 in (2.13)
121 
122  pulse_indexes >>= bits;
123  pulse_signs >>= 1;
124  }
125 
126  fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : -8192;
127 }
128 
129 void ff_decode_10_pulses_35bits(const int16_t *fixed_index,
130  AMRFixed *fixed_sparse,
131  const uint8_t *gray_decode,
132  int half_pulse_count, int bits)
133 {
134  int i;
135  int mask = (1 << bits) - 1;
136 
137  fixed_sparse->no_repeat_mask = 0;
138  fixed_sparse->n = 2 * half_pulse_count;
139  for (i = 0; i < half_pulse_count; i++) {
140  const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i;
141  const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i;
142  const float sign = (fixed_index[2*i+1] & (1 << bits)) ? -1.0 : 1.0;
143  fixed_sparse->x[2*i+1] = pos1;
144  fixed_sparse->x[2*i ] = pos2;
145  fixed_sparse->y[2*i+1] = sign;
146  fixed_sparse->y[2*i ] = pos2 < pos1 ? -sign : sign;
147  }
148 }
149 
151  int16_t* out,
152  const int16_t *in_a,
153  const int16_t *in_b,
154  int16_t weight_coeff_a,
155  int16_t weight_coeff_b,
156  int16_t rounder,
157  int shift,
158  int length)
159 {
160  int i;
161 
162  // Clipping required here; breaks OVERFLOW test.
163  for(i=0; i<length; i++)
164  out[i] = av_clip_int16((
165  in_a[i] * weight_coeff_a +
166  in_b[i] * weight_coeff_b +
167  rounder) >> shift);
168 }
169 
170 void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b,
171  float weight_coeff_a, float weight_coeff_b, int length)
172 {
173  int i;
174 
175  for(i=0; i<length; i++)
176  out[i] = weight_coeff_a * in_a[i]
177  + weight_coeff_b * in_b[i];
178 }
179 
180 void ff_adaptive_gain_control(float *out, const float *in, float speech_energ,
181  int size, float alpha, float *gain_mem)
182 {
183  int i;
184  float postfilter_energ = ff_dot_productf(in, in, size);
185  float gain_scale_factor = 1.0;
186  float mem = *gain_mem;
187 
188  if (postfilter_energ)
189  gain_scale_factor = sqrt(speech_energ / postfilter_energ);
190 
191  gain_scale_factor *= 1.0 - alpha;
192 
193  for (i = 0; i < size; i++) {
194  mem = alpha * mem + gain_scale_factor;
195  out[i] = in[i] * mem;
196  }
197 
198  *gain_mem = mem;
199 }
200 
201 void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in,
202  float sum_of_squares, const int n)
203 {
204  int i;
205  float scalefactor = ff_dot_productf(in, in, n);
206  if (scalefactor)
207  scalefactor = sqrt(sum_of_squares / scalefactor);
208  for (i = 0; i < n; i++)
209  out[i] = in[i] * scalefactor;
210 }
211 
212 void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size)
213 {
214  int i;
215 
216  for (i=0; i < in->n; i++) {
217  int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
218  float y = in->y[i] * scale;
219 
220  do {
221  out[x] += y;
222  y *= in->pitch_fac;
223  x += in->pitch_lag;
224  } while (x < size && repeats);
225  }
226 }
227 
228 void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size)
229 {
230  int i;
231 
232  for (i=0; i < in->n; i++) {
233  int x = in->x[i], repeats = !((in->no_repeat_mask >> i) & 1);
234 
235  do {
236  out[x] = 0.0;
237  x += in->pitch_lag;
238  } while (x < size && repeats);
239  }
240 }