cavs.c
Go to the documentation of this file.
1 /*
2  * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
3  * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "avcodec.h"
29 #include "get_bits.h"
30 #include "golomb.h"
31 #include "mathops.h"
32 #include "cavs.h"
33 #include "cavsdata.h"
34 
35 /*****************************************************************************
36  *
37  * in-loop deblocking filter
38  *
39  ****************************************************************************/
40 
41 static inline int get_bs(cavs_vector *mvP, cavs_vector *mvQ, int b) {
42  if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
43  return 2;
44  if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
45  return 1;
46  if(b){
47  mvP += MV_BWD_OFFS;
48  mvQ += MV_BWD_OFFS;
49  if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
50  return 1;
51  }else{
52  if(mvP->ref != mvQ->ref)
53  return 1;
54  }
55  return 0;
56 }
57 
58 #define SET_PARAMS \
59  alpha = alpha_tab[av_clip(qp_avg + h->alpha_offset,0,63)]; \
60  beta = beta_tab[av_clip(qp_avg + h->beta_offset, 0,63)]; \
61  tc = tc_tab[av_clip(qp_avg + h->alpha_offset,0,63)];
62 
75 void ff_cavs_filter(AVSContext *h, enum cavs_mb mb_type) {
76  uint8_t bs[8];
77  int qp_avg, alpha, beta, tc;
78  int i;
79 
80  /* save un-deblocked lines */
81  h->topleft_border_y = h->top_border_y[h->mbx*16+15];
82  h->topleft_border_u = h->top_border_u[h->mbx*10+8];
83  h->topleft_border_v = h->top_border_v[h->mbx*10+8];
84  memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
85  memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
86  memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
87  for(i=0;i<8;i++) {
88  h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+0)*h->l_stride);
89  h->left_border_y[i*2+2] = *(h->cy + 15 + (i*2+1)*h->l_stride);
90  h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
91  h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
92  }
93  if(!h->loop_filter_disable) {
94  /* determine bs */
95  if(mb_type == I_8X8)
96  memset(bs,2,8);
97  else{
98  memset(bs,0,8);
99  if(ff_cavs_partition_flags[mb_type] & SPLITV){
100  bs[2] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1], mb_type > P_8X8);
101  bs[3] = get_bs(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3], mb_type > P_8X8);
102  }
103  if(ff_cavs_partition_flags[mb_type] & SPLITH){
104  bs[6] = get_bs(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2], mb_type > P_8X8);
105  bs[7] = get_bs(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3], mb_type > P_8X8);
106  }
107  bs[0] = get_bs(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0], mb_type > P_8X8);
108  bs[1] = get_bs(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2], mb_type > P_8X8);
109  bs[4] = get_bs(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0], mb_type > P_8X8);
110  bs[5] = get_bs(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1], mb_type > P_8X8);
111  }
112  if(AV_RN64(bs)) {
113  if(h->flags & A_AVAIL) {
114  qp_avg = (h->qp + h->left_qp + 1) >> 1;
115  SET_PARAMS;
116  h->cdsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
117  h->cdsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
118  h->cdsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
119  }
120  qp_avg = h->qp;
121  SET_PARAMS;
122  h->cdsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
123  h->cdsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
124  bs[6],bs[7]);
125 
126  if(h->flags & B_AVAIL) {
127  qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
128  SET_PARAMS;
129  h->cdsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
130  h->cdsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
131  h->cdsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
132  }
133  }
134  }
135  h->left_qp = h->qp;
136  h->top_qp[h->mbx] = h->qp;
137 }
138 
139 #undef SET_PARAMS
140 
141 /*****************************************************************************
142  *
143  * spatial intra prediction
144  *
145  ****************************************************************************/
146 
148  uint8_t **left, int block) {
149  int i;
150 
151  switch(block) {
152  case 0:
153  *left = h->left_border_y;
154  h->left_border_y[0] = h->left_border_y[1];
155  memset(&h->left_border_y[17],h->left_border_y[16],9);
156  memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
157  top[17] = top[16];
158  top[0] = top[1];
159  if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
160  h->left_border_y[0] = top[0] = h->topleft_border_y;
161  break;
162  case 1:
163  *left = h->intern_border_y;
164  for(i=0;i<8;i++)
165  h->intern_border_y[i+1] = *(h->cy + 7 + i*h->l_stride);
166  memset(&h->intern_border_y[9],h->intern_border_y[8],9);
167  h->intern_border_y[0] = h->intern_border_y[1];
168  memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
169  if(h->flags & C_AVAIL)
170  memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
171  else
172  memset(&top[9],top[8],9);
173  top[17] = top[16];
174  top[0] = top[1];
175  if(h->flags & B_AVAIL)
176  h->intern_border_y[0] = top[0] = h->top_border_y[h->mbx*16+7];
177  break;
178  case 2:
179  *left = &h->left_border_y[8];
180  memcpy(&top[1],h->cy + 7*h->l_stride,16);
181  top[17] = top[16];
182  top[0] = top[1];
183  if(h->flags & A_AVAIL)
184  top[0] = h->left_border_y[8];
185  break;
186  case 3:
187  *left = &h->intern_border_y[8];
188  for(i=0;i<8;i++)
189  h->intern_border_y[i+9] = *(h->cy + 7 + (i+8)*h->l_stride);
190  memset(&h->intern_border_y[17],h->intern_border_y[16],9);
191  memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
192  memset(&top[9],top[8],9);
193  break;
194  }
195 }
196 
198  /* extend borders by one pixel */
199  h->left_border_u[9] = h->left_border_u[8];
200  h->left_border_v[9] = h->left_border_v[8];
201  h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
202  h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
203  if(h->mbx && h->mby) {
204  h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
205  h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
206  } else {
207  h->left_border_u[0] = h->left_border_u[1];
208  h->left_border_v[0] = h->left_border_v[1];
209  h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
210  h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
211  }
212 }
213 
214 static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
215  int y;
216  uint64_t a = AV_RN64(&top[1]);
217  for(y=0;y<8;y++) {
218  *((uint64_t *)(d+y*stride)) = a;
219  }
220 }
221 
222 static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
223  int y;
224  uint64_t a;
225  for(y=0;y<8;y++) {
226  a = left[y+1] * 0x0101010101010101ULL;
227  *((uint64_t *)(d+y*stride)) = a;
228  }
229 }
230 
231 static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
232  int y;
233  uint64_t a = 0x8080808080808080ULL;
234  for(y=0;y<8;y++)
235  *((uint64_t *)(d+y*stride)) = a;
236 }
237 
238 static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
239  int x,y,ia;
240  int ih = 0;
241  int iv = 0;
242  uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
243 
244  for(x=0; x<4; x++) {
245  ih += (x+1)*(top[5+x]-top[3-x]);
246  iv += (x+1)*(left[5+x]-left[3-x]);
247  }
248  ia = (top[8]+left[8])<<4;
249  ih = (17*ih+16)>>5;
250  iv = (17*iv+16)>>5;
251  for(y=0; y<8; y++)
252  for(x=0; x<8; x++)
253  d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
254 }
255 
256 #define LOWPASS(ARRAY,INDEX) \
257  (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
258 
259 static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
260  int x,y;
261  for(y=0; y<8; y++)
262  for(x=0; x<8; x++)
263  d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
264 }
265 
266 static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
267  int x,y;
268  for(y=0; y<8; y++)
269  for(x=0; x<8; x++)
270  d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
271 }
272 
273 static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
274  int x,y;
275  for(y=0; y<8; y++)
276  for(x=0; x<8; x++)
277  if(x==y)
278  d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
279  else if(x>y)
280  d[y*stride+x] = LOWPASS(top,x-y);
281  else
282  d[y*stride+x] = LOWPASS(left,y-x);
283 }
284 
285 static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
286  int x,y;
287  for(y=0; y<8; y++)
288  for(x=0; x<8; x++)
289  d[y*stride+x] = LOWPASS(left,y+1);
290 }
291 
292 static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
293  int x,y;
294  for(y=0; y<8; y++)
295  for(x=0; x<8; x++)
296  d[y*stride+x] = LOWPASS(top,x+1);
297 }
298 
299 #undef LOWPASS
300 
301 void ff_cavs_modify_mb_i(AVSContext *h, int *pred_mode_uv) {
302  /* save pred modes before they get modified */
303  h->pred_mode_Y[3] = h->pred_mode_Y[5];
304  h->pred_mode_Y[6] = h->pred_mode_Y[8];
305  h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
306  h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
307 
308  /* modify pred modes according to availability of neighbour samples */
309  if(!(h->flags & A_AVAIL)) {
312  modify_pred(ff_left_modifier_c, pred_mode_uv );
313  }
314  if(!(h->flags & B_AVAIL)) {
317  modify_pred(ff_top_modifier_c, pred_mode_uv );
318  }
319 }
320 
321 /*****************************************************************************
322  *
323  * motion compensation
324  *
325  ****************************************************************************/
326 
327 static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
328  int chroma_height,int delta,int list,uint8_t *dest_y,
329  uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
330  int src_y_offset,qpel_mc_func *qpix_op,
331  h264_chroma_mc_func chroma_op,cavs_vector *mv){
332  MpegEncContext * const s = &h->s;
333  const int mx= mv->x + src_x_offset*8;
334  const int my= mv->y + src_y_offset*8;
335  const int luma_xy= (mx&3) + ((my&3)<<2);
336  uint8_t * src_y = pic->f.data[0] + (mx >> 2) + (my >> 2) * h->l_stride;
337  uint8_t * src_cb = pic->f.data[1] + (mx >> 3) + (my >> 3) * h->c_stride;
338  uint8_t * src_cr = pic->f.data[2] + (mx >> 3) + (my >> 3) * h->c_stride;
339  int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
340  int extra_height= extra_width;
341  int emu=0;
342  const int full_mx= mx>>2;
343  const int full_my= my>>2;
344  const int pic_width = 16*h->mb_width;
345  const int pic_height = 16*h->mb_height;
346 
347  if(!pic->f.data[0])
348  return;
349  if(mx&7) extra_width -= 3;
350  if(my&7) extra_height -= 3;
351 
352  if( full_mx < 0-extra_width
353  || full_my < 0-extra_height
354  || full_mx + 16/*FIXME*/ > pic_width + extra_width
355  || full_my + 16/*FIXME*/ > pic_height + extra_height){
356  s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
357  16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
358  src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
359  emu=1;
360  }
361 
362  qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
363  if(!square){
364  qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
365  }
366 
367  if(emu){
368  s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
369  9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
370  src_cb= s->edge_emu_buffer;
371  }
372  chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
373 
374  if(emu){
375  s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
376  9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
377  src_cr= s->edge_emu_buffer;
378  }
379  chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
380 }
381 
382 static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
383  uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
384  int x_offset, int y_offset,qpel_mc_func *qpix_put,
385  h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
386  h264_chroma_mc_func chroma_avg, cavs_vector *mv){
387  qpel_mc_func *qpix_op= qpix_put;
388  h264_chroma_mc_func chroma_op= chroma_put;
389 
390  dest_y += 2*x_offset + 2*y_offset*h->l_stride;
391  dest_cb += x_offset + y_offset*h->c_stride;
392  dest_cr += x_offset + y_offset*h->c_stride;
393  x_offset += 8*h->mbx;
394  y_offset += 8*h->mby;
395 
396  if(mv->ref >= 0){
397  Picture *ref= &h->DPB[mv->ref];
398  mc_dir_part(h, ref, square, chroma_height, delta, 0,
399  dest_y, dest_cb, dest_cr, x_offset, y_offset,
400  qpix_op, chroma_op, mv);
401 
402  qpix_op= qpix_avg;
403  chroma_op= chroma_avg;
404  }
405 
406  if((mv+MV_BWD_OFFS)->ref >= 0){
407  Picture *ref= &h->DPB[0];
408  mc_dir_part(h, ref, square, chroma_height, delta, 1,
409  dest_y, dest_cb, dest_cr, x_offset, y_offset,
410  qpix_op, chroma_op, mv+MV_BWD_OFFS);
411  }
412 }
413 
414 void ff_cavs_inter(AVSContext *h, enum cavs_mb mb_type) {
415  if(ff_cavs_partition_flags[mb_type] == 0){ // 16x16
416  mc_part_std(h, 1, 8, 0, h->cy, h->cu, h->cv, 0, 0,
421  }else{
422  mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
427  mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
432  mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
437  mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
442  }
443 }
444 
445 /*****************************************************************************
446  *
447  * motion vector prediction
448  *
449  ****************************************************************************/
450 
451 static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, cavs_vector *src, int distp) {
452  int den = h->scale_den[src->ref];
453 
454  *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
455  *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
456 }
457 
458 static inline void mv_pred_median(AVSContext *h, cavs_vector *mvP,
459  cavs_vector *mvA, cavs_vector *mvB, cavs_vector *mvC) {
460  int ax, ay, bx, by, cx, cy;
461  int len_ab, len_bc, len_ca, len_mid;
462 
463  /* scale candidates according to their temporal span */
464  scale_mv(h, &ax, &ay, mvA, mvP->dist);
465  scale_mv(h, &bx, &by, mvB, mvP->dist);
466  scale_mv(h, &cx, &cy, mvC, mvP->dist);
467  /* find the geometrical median of the three candidates */
468  len_ab = abs(ax - bx) + abs(ay - by);
469  len_bc = abs(bx - cx) + abs(by - cy);
470  len_ca = abs(cx - ax) + abs(cy - ay);
471  len_mid = mid_pred(len_ab, len_bc, len_ca);
472  if(len_mid == len_ab) {
473  mvP->x = cx;
474  mvP->y = cy;
475  } else if(len_mid == len_bc) {
476  mvP->x = ax;
477  mvP->y = ay;
478  } else {
479  mvP->x = bx;
480  mvP->y = by;
481  }
482 }
483 
484 void ff_cavs_mv(AVSContext *h, enum cavs_mv_loc nP, enum cavs_mv_loc nC,
485  enum cavs_mv_pred mode, enum cavs_block size, int ref) {
486  cavs_vector *mvP = &h->mv[nP];
487  cavs_vector *mvA = &h->mv[nP-1];
488  cavs_vector *mvB = &h->mv[nP-4];
489  cavs_vector *mvC = &h->mv[nC];
490  const cavs_vector *mvP2 = NULL;
491 
492  mvP->ref = ref;
493  mvP->dist = h->dist[mvP->ref];
494  if(mvC->ref == NOT_AVAIL)
495  mvC = &h->mv[nP-5]; // set to top-left (mvD)
496  if((mode == MV_PRED_PSKIP) &&
497  ((mvA->ref == NOT_AVAIL) || (mvB->ref == NOT_AVAIL) ||
498  ((mvA->x | mvA->y | mvA->ref) == 0) ||
499  ((mvB->x | mvB->y | mvB->ref) == 0) )) {
500  mvP2 = &ff_cavs_un_mv;
501  /* if there is only one suitable candidate, take it */
502  } else if((mvA->ref >= 0) && (mvB->ref < 0) && (mvC->ref < 0)) {
503  mvP2= mvA;
504  } else if((mvA->ref < 0) && (mvB->ref >= 0) && (mvC->ref < 0)) {
505  mvP2= mvB;
506  } else if((mvA->ref < 0) && (mvB->ref < 0) && (mvC->ref >= 0)) {
507  mvP2= mvC;
508  } else if(mode == MV_PRED_LEFT && mvA->ref == ref){
509  mvP2= mvA;
510  } else if(mode == MV_PRED_TOP && mvB->ref == ref){
511  mvP2= mvB;
512  } else if(mode == MV_PRED_TOPRIGHT && mvC->ref == ref){
513  mvP2= mvC;
514  }
515  if(mvP2){
516  mvP->x = mvP2->x;
517  mvP->y = mvP2->y;
518  }else
519  mv_pred_median(h, mvP, mvA, mvB, mvC);
520 
521  if(mode < MV_PRED_PSKIP) {
522  mvP->x += get_se_golomb(&h->s.gb);
523  mvP->y += get_se_golomb(&h->s.gb);
524  }
525  set_mvs(mvP,size);
526 }
527 
528 /*****************************************************************************
529  *
530  * macroblock level
531  *
532  ****************************************************************************/
533 
538  int i;
539 
540  /* copy predictors from top line (MB B and C) into cache */
541  for(i=0;i<3;i++) {
542  h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
543  h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
544  }
545  h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
546  h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
547  /* clear top predictors if MB B is not available */
548  if(!(h->flags & B_AVAIL)) {
549  h->mv[MV_FWD_B2] = ff_cavs_un_mv;
550  h->mv[MV_FWD_B3] = ff_cavs_un_mv;
551  h->mv[MV_BWD_B2] = ff_cavs_un_mv;
552  h->mv[MV_BWD_B3] = ff_cavs_un_mv;
553  h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
554  h->flags &= ~(C_AVAIL|D_AVAIL);
555  } else if(h->mbx) {
556  h->flags |= D_AVAIL;
557  }
558  if(h->mbx == h->mb_width-1) //MB C not available
559  h->flags &= ~C_AVAIL;
560  /* clear top-right predictors if MB C is not available */
561  if(!(h->flags & C_AVAIL)) {
562  h->mv[MV_FWD_C2] = ff_cavs_un_mv;
563  h->mv[MV_BWD_C2] = ff_cavs_un_mv;
564  }
565  /* clear top-left predictors if MB D is not available */
566  if(!(h->flags & D_AVAIL)) {
567  h->mv[MV_FWD_D3] = ff_cavs_un_mv;
568  h->mv[MV_BWD_D3] = ff_cavs_un_mv;
569  }
570 }
571 
578  int i;
579 
580  h->flags |= A_AVAIL;
581  h->cy += 16;
582  h->cu += 8;
583  h->cv += 8;
584  /* copy mvs as predictors to the left */
585  for(i=0;i<=20;i+=4)
586  h->mv[i] = h->mv[i+2];
587  /* copy bottom mvs from cache to top line */
588  h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
589  h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
590  h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
591  h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
592  /* next MB address */
593  h->mbidx++;
594  h->mbx++;
595  if(h->mbx == h->mb_width) { //new mb line
596  h->flags = B_AVAIL|C_AVAIL;
597  /* clear left pred_modes */
598  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
599  /* clear left mv predictors */
600  for(i=0;i<=20;i+=4)
601  h->mv[i] = ff_cavs_un_mv;
602  h->mbx = 0;
603  h->mby++;
604  /* re-calculate sample pointers */
605  h->cy = h->picture.f.data[0] + h->mby * 16 * h->l_stride;
606  h->cu = h->picture.f.data[1] + h->mby * 8 * h->c_stride;
607  h->cv = h->picture.f.data[2] + h->mby * 8 * h->c_stride;
608  if(h->mby == h->mb_height) { //frame end
609  return 0;
610  }
611  }
612  return 1;
613 }
614 
615 /*****************************************************************************
616  *
617  * frame level
618  *
619  ****************************************************************************/
620 
622  int i;
623 
624  /* clear some predictors */
625  for(i=0;i<=20;i+=4)
626  h->mv[i] = ff_cavs_un_mv;
628  set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
630  set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
631  h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
632  h->cy = h->picture.f.data[0];
633  h->cu = h->picture.f.data[1];
634  h->cv = h->picture.f.data[2];
635  h->l_stride = h->picture.f.linesize[0];
636  h->c_stride = h->picture.f.linesize[1];
637  h->luma_scan[2] = 8*h->l_stride;
638  h->luma_scan[3] = 8*h->l_stride+8;
639  h->mbx = h->mby = h->mbidx = 0;
640  h->flags = 0;
641 }
642 
643 /*****************************************************************************
644  *
645  * headers and interface
646  *
647  ****************************************************************************/
648 
655  /* alloc top line of predictors */
656  h->top_qp = av_malloc( h->mb_width);
657  h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
658  h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(cavs_vector));
659  h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
660  h->top_border_y = av_malloc((h->mb_width+1)*16);
661  h->top_border_u = av_malloc( h->mb_width * 10);
662  h->top_border_v = av_malloc( h->mb_width * 10);
663 
664  /* alloc space for co-located MVs and types */
665  h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(cavs_vector));
667  h->block = av_mallocz(64*sizeof(DCTELEM));
668 }
669 
671  AVSContext *h = avctx->priv_data;
672  MpegEncContext * const s = &h->s;
673 
675  ff_cavsdsp_init(&h->cdsp, avctx);
676  s->avctx = avctx;
677 
678  avctx->pix_fmt= PIX_FMT_YUV420P;
679 
680  h->luma_scan[0] = 0;
681  h->luma_scan[1] = 8;
697  h->mv[ 7] = ff_cavs_un_mv;
698  h->mv[19] = ff_cavs_un_mv;
699  return 0;
700 }
701 
703  AVSContext *h = avctx->priv_data;
704 
705  av_free(h->top_qp);
706  av_free(h->top_mv[0]);
707  av_free(h->top_mv[1]);
708  av_free(h->top_pred_Y);
709  av_free(h->top_border_y);
710  av_free(h->top_border_u);
711  av_free(h->top_border_v);
712  av_free(h->col_mv);
714  av_free(h->block);
715  return 0;
716 }