42 #define MUL16(a,b) ((a) * (b))
44 #define CMAC(pre, pim, are, aim, bre, bim) \
46 pre += (MUL16(are, bre) - MUL16(aim, bim));\
47 pim += (MUL16(are, bim) + MUL16(bre, aim));\
52 # define REF_SCALE(x, bits) (x)
56 # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
72 for (i = 0; i < (n/2); i++) {
73 alpha = 2 *
M_PI * (float)i / (
float)n;
86 double tmp_re, tmp_im, s, c;
91 for (i = 0; i < n; i++) {
95 for (j = 0; j < n; j++) {
96 k = (i * j) & (n - 1);
104 CMAC(tmp_re, tmp_im, c, s, q->
re, q->
im);
118 for (i = 0; i < n; i++) {
120 for (k = 0; k < n/2; k++) {
121 a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
122 f = cos(
M_PI * a / (
double)(2 * n));
137 for (k = 0; k < n/2; k++) {
139 for (i = 0; i < n; i++) {
140 a = (2*
M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
141 s += input[i] * cos(a);
148 static void idct_ref(
float *output,
float *input,
int nbits)
155 for (i = 0; i < n; i++) {
157 for (k = 1; k < n; k++) {
158 a =
M_PI*k*(i+0.5) / n;
159 s += input[k] * cos(a);
161 output[i] = 2 * s / n;
164 static void dct_ref(
float *output,
float *input,
int nbits)
171 for (k = 0; k < n; k++) {
173 for (i = 0; i < n; i++) {
174 a =
M_PI*k*(i+0.5) / n;
175 s += input[i] * cos(a);
191 gettimeofday(&tv,
NULL);
192 return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
202 for (i = 0; i < n; i++) {
203 double e = fabsf(tab1[i] - (tab2[i] / scale)) /
RANGE;
206 i, tab1[i], tab2[i]);
220 "-h print this help\n"
225 "-i inverse transform test\n"
226 "-n b set the transform size to 2^b\n"
227 "-f x set scale factor for output data of (I)MDCT to x\n"
238 int main(
int argc,
char **argv)
254 int fft_nbits, fft_size;
261 c = getopt(argc, argv,
"hsimrdn:f:");
284 fft_nbits = atoi(optarg);
287 scale = atof(optarg);
292 fft_size = 1 << fft_nbits;
340 for (i = 0; i < fft_size; i++) {
363 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
367 fft_ref(tab_ref, tab1, fft_nbits);
372 fft_size_2 = fft_size >> 1;
375 tab1[fft_size_2].
im = 0;
376 for (i = 1; i < fft_size_2; i++) {
377 tab1[fft_size_2+i].
re = tab1[fft_size_2-i].
re;
378 tab1[fft_size_2+i].
im = -tab1[fft_size_2-i].
im;
381 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
382 tab2[1] = tab1[fft_size_2].
re;
385 fft_ref(tab_ref, tab1, fft_nbits);
386 for (i = 0; i < fft_size; i++) {
390 err =
check_diff((
float *)tab_ref, (
float *)tab, fft_size * 2, 0.5);
392 for (i = 0; i < fft_size; i++) {
393 tab2[i] = tab1[i].
re;
397 fft_ref(tab_ref, tab1, fft_nbits);
398 tab_ref[0].
im = tab_ref[fft_size_2].
re;
399 err =
check_diff((
float *)tab_ref, (
float *)tab2, fft_size, 1.0);
403 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
408 dct_ref(tab_ref, tab1, fft_nbits);
410 err =
check_diff((
float *)tab_ref, (
float *)tab, fft_size, 1.0);
426 for (it = 0; it < nb_its; it++) {
436 memcpy(tab, tab1, fft_size *
sizeof(
FFTComplex));
441 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
445 memcpy(tab2, tab1, fft_size *
sizeof(
FFTSample));
451 duration =
gettime() - time_start;
452 if (duration >= 1000000)
457 (
double)duration / nb_its,
458 (
double)duration / 1000000.0,