cook.c
Go to the documentation of this file.
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
45 #include "libavutil/lfg.h"
46 #include "avcodec.h"
47 #include "internal.h"
48 #include "get_bits.h"
49 #include "dsputil.h"
50 #include "bytestream.h"
51 #include "fft.h"
52 #include "libavutil/audioconvert.h"
53 #include "sinewin.h"
54 
55 #include "cookdata.h"
56 
57 /* the different Cook versions */
58 #define MONO 0x1000001
59 #define STEREO 0x1000002
60 #define JOINT_STEREO 0x1000003
61 #define MC_COOK 0x2000000 // multichannel Cook, not supported
62 
63 #define SUBBAND_SIZE 20
64 #define MAX_SUBPACKETS 5
65 
66 typedef struct {
67  int *now;
68  int *previous;
69 } cook_gains;
70 
71 typedef struct {
72  int ch_idx;
73  int size;
77  int subbands;
82  unsigned int channel_mask;
89 
90  float mono_previous_buffer1[1024];
91  float mono_previous_buffer2[1024];
95  int gain_1[9];
96  int gain_2[9];
97  int gain_3[9];
98  int gain_4[9];
100 
101 typedef struct cook {
102  /*
103  * The following 5 functions provide the lowlevel arithmetic on
104  * the internal audio buffers.
105  */
106  void (*scalar_dequant)(struct cook *q, int index, int quant_index,
107  int *subband_coef_index, int *subband_coef_sign,
108  float *mlt_p);
109 
110  void (*decouple)(struct cook *q,
111  COOKSubpacket *p,
112  int subband,
113  float f1, float f2,
114  float *decode_buffer,
115  float *mlt_buffer1, float *mlt_buffer2);
116 
117  void (*imlt_window)(struct cook *q, float *buffer1,
118  cook_gains *gains_ptr, float *previous_buffer);
119 
120  void (*interpolate)(struct cook *q, float *buffer,
121  int gain_index, int gain_index_next);
122 
123  void (*saturate_output)(struct cook *q, int chan, float *out);
124 
128  /* stream data */
130  int bit_rate;
134  /* states */
137 
138  /* transform data */
140  float* mlt_window;
141 
142  /* VLC data */
144  VLC sqvh[7]; // scalar quantization
145 
146  /* generatable tables and related variables */
148  float gain_table[23];
149 
150  /* data buffers */
151 
154  float decode_buffer_1[1024];
155  float decode_buffer_2[1024];
156  float decode_buffer_0[1060]; /* static allocation for joint decode */
157 
158  const float *cplscales[5];
161 } COOKContext;
162 
163 static float pow2tab[127];
164 static float rootpow2tab[127];
165 
166 /*************** init functions ***************/
167 
168 /* table generator */
169 static av_cold void init_pow2table(void)
170 {
171  int i;
172  for (i = -63; i < 64; i++) {
173  pow2tab[63 + i] = pow(2, i);
174  rootpow2tab[63 + i] = sqrt(pow(2, i));
175  }
176 }
177 
178 /* table generator */
180 {
181  int i;
183  for (i = 0; i < 23; i++)
184  q->gain_table[i] = pow(pow2tab[i + 52],
185  (1.0 / (double) q->gain_size_factor));
186 }
187 
188 
190 {
191  int i, result;
192 
193  result = 0;
194  for (i = 0; i < 13; i++) {
195  result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
197  envelope_quant_index_huffcodes[i], 2, 2, 0);
198  }
199  av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
200  for (i = 0; i < 7; i++) {
201  result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
202  cvh_huffbits[i], 1, 1,
203  cvh_huffcodes[i], 2, 2, 0);
204  }
205 
206  for (i = 0; i < q->num_subpackets; i++) {
207  if (q->subpacket[i].joint_stereo == 1) {
208  result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
209  ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
210  ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
211  av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
212  }
213  }
214 
215  av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
216  return result;
217 }
218 
220 {
221  int j, ret;
222  int mlt_size = q->samples_per_channel;
223 
224  if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
225  return AVERROR(ENOMEM);
226 
227  /* Initialize the MLT window: simple sine window. */
228  ff_sine_window_init(q->mlt_window, mlt_size);
229  for (j = 0; j < mlt_size; j++)
230  q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
231 
232  /* Initialize the MDCT. */
233  if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
234  av_free(q->mlt_window);
235  return ret;
236  }
237  av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
238  av_log2(mlt_size) + 1);
239 
240  return 0;
241 }
242 
243 static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
244 {
245  if (1)
246  return ptr;
247 }
248 
250 {
251  int i;
252  for (i = 0; i < 5; i++)
253  q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
254 }
255 
256 /*************** init functions end ***********/
257 
258 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
259 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
260 
281 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
282 {
283  static const uint32_t tab[4] = {
284  AV_BE2NE32C(0x37c511f2), AV_BE2NE32C(0xf237c511),
285  AV_BE2NE32C(0x11f237c5), AV_BE2NE32C(0xc511f237),
286  };
287  int i, off;
288  uint32_t c;
289  const uint32_t *buf;
290  uint32_t *obuf = (uint32_t *) out;
291  /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
292  * I'm too lazy though, should be something like
293  * for (i = 0; i < bitamount / 64; i++)
294  * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
295  * Buffer alignment needs to be checked. */
296 
297  off = (intptr_t) inbuffer & 3;
298  buf = (const uint32_t *) (inbuffer - off);
299  c = tab[off];
300  bytes += 3 + off;
301  for (i = 0; i < bytes / 4; i++)
302  obuf[i] = c ^ buf[i];
303 
304  return off;
305 }
306 
311 {
312  int i;
313  COOKContext *q = avctx->priv_data;
314  av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
315 
316  /* Free allocated memory buffers. */
317  av_free(q->mlt_window);
319 
320  /* Free the transform. */
321  ff_mdct_end(&q->mdct_ctx);
322 
323  /* Free the VLC tables. */
324  for (i = 0; i < 13; i++)
326  for (i = 0; i < 7; i++)
327  ff_free_vlc(&q->sqvh[i]);
328  for (i = 0; i < q->num_subpackets; i++)
329  ff_free_vlc(&q->subpacket[i].ccpl);
330 
331  av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
332 
333  return 0;
334 }
335 
342 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
343 {
344  int i, n;
345 
346  while (get_bits1(gb)) {
347  /* NOTHING */
348  }
349 
350  n = get_bits_count(gb) - 1; // amount of elements*2 to update
351 
352  i = 0;
353  while (n--) {
354  int index = get_bits(gb, 3);
355  int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
356 
357  while (i <= index)
358  gaininfo[i++] = gain;
359  }
360  while (i <= 8)
361  gaininfo[i++] = 0;
362 }
363 
371  int *quant_index_table)
372 {
373  int i, j, vlc_index;
374 
375  quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
376 
377  for (i = 1; i < p->total_subbands; i++) {
378  vlc_index = i;
379  if (i >= p->js_subband_start * 2) {
380  vlc_index -= p->js_subband_start;
381  } else {
382  vlc_index /= 2;
383  if (vlc_index < 1)
384  vlc_index = 1;
385  }
386  if (vlc_index > 13)
387  vlc_index = 13; // the VLC tables >13 are identical to No. 13
388 
389  j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
390  q->envelope_quant_index[vlc_index - 1].bits, 2);
391  quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
392  if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
394  "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
395  quant_index_table[i], i);
396  return AVERROR_INVALIDDATA;
397  }
398  }
399 
400  return 0;
401 }
402 
411 static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
412  int *category, int *category_index)
413 {
414  int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
415  int exp_index2[102];
416  int exp_index1[102];
417 
418  int tmp_categorize_array[128 * 2];
419  int tmp_categorize_array1_idx = p->numvector_size;
420  int tmp_categorize_array2_idx = p->numvector_size;
421 
422  bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
423 
424  if (bits_left > q->samples_per_channel) {
425  bits_left = q->samples_per_channel +
426  ((bits_left - q->samples_per_channel) * 5) / 8;
427  //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
428  }
429 
430  memset(&exp_index1, 0, sizeof(exp_index1));
431  memset(&exp_index2, 0, sizeof(exp_index2));
432  memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
433 
434  bias = -32;
435 
436  /* Estimate bias. */
437  for (i = 32; i > 0; i = i / 2) {
438  num_bits = 0;
439  index = 0;
440  for (j = p->total_subbands; j > 0; j--) {
441  exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
442  index++;
443  num_bits += expbits_tab[exp_idx];
444  }
445  if (num_bits >= bits_left - 32)
446  bias += i;
447  }
448 
449  /* Calculate total number of bits. */
450  num_bits = 0;
451  for (i = 0; i < p->total_subbands; i++) {
452  exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
453  num_bits += expbits_tab[exp_idx];
454  exp_index1[i] = exp_idx;
455  exp_index2[i] = exp_idx;
456  }
457  tmpbias1 = tmpbias2 = num_bits;
458 
459  for (j = 1; j < p->numvector_size; j++) {
460  if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
461  int max = -999999;
462  index = -1;
463  for (i = 0; i < p->total_subbands; i++) {
464  if (exp_index1[i] < 7) {
465  v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
466  if (v >= max) {
467  max = v;
468  index = i;
469  }
470  }
471  }
472  if (index == -1)
473  break;
474  tmp_categorize_array[tmp_categorize_array1_idx++] = index;
475  tmpbias1 -= expbits_tab[exp_index1[index]] -
476  expbits_tab[exp_index1[index] + 1];
477  ++exp_index1[index];
478  } else { /* <--- */
479  int min = 999999;
480  index = -1;
481  for (i = 0; i < p->total_subbands; i++) {
482  if (exp_index2[i] > 0) {
483  v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
484  if (v < min) {
485  min = v;
486  index = i;
487  }
488  }
489  }
490  if (index == -1)
491  break;
492  tmp_categorize_array[--tmp_categorize_array2_idx] = index;
493  tmpbias2 -= expbits_tab[exp_index2[index]] -
494  expbits_tab[exp_index2[index] - 1];
495  --exp_index2[index];
496  }
497  }
498 
499  for (i = 0; i < p->total_subbands; i++)
500  category[i] = exp_index2[i];
501 
502  for (i = 0; i < p->numvector_size - 1; i++)
503  category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
504 }
505 
506 
514 static inline void expand_category(COOKContext *q, int *category,
515  int *category_index)
516 {
517  int i;
518  for (i = 0; i < q->num_vectors; i++)
519  {
520  int idx = category_index[i];
521  if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
522  --category[idx];
523  }
524 }
525 
536 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
537  int *subband_coef_index, int *subband_coef_sign,
538  float *mlt_p)
539 {
540  int i;
541  float f1;
542 
543  for (i = 0; i < SUBBAND_SIZE; i++) {
544  if (subband_coef_index[i]) {
545  f1 = quant_centroid_tab[index][subband_coef_index[i]];
546  if (subband_coef_sign[i])
547  f1 = -f1;
548  } else {
549  /* noise coding if subband_coef_index[i] == 0 */
550  f1 = dither_tab[index];
551  if (av_lfg_get(&q->random_state) < 0x80000000)
552  f1 = -f1;
553  }
554  mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
555  }
556 }
565 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
566  int *subband_coef_index, int *subband_coef_sign)
567 {
568  int i, j;
569  int vlc, vd, tmp, result;
570 
571  vd = vd_tab[category];
572  result = 0;
573  for (i = 0; i < vpr_tab[category]; i++) {
574  vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
575  if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
576  vlc = 0;
577  result = 1;
578  }
579  for (j = vd - 1; j >= 0; j--) {
580  tmp = (vlc * invradix_tab[category]) / 0x100000;
581  subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
582  vlc = tmp;
583  }
584  for (j = 0; j < vd; j++) {
585  if (subband_coef_index[i * vd + j]) {
586  if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
587  subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
588  } else {
589  result = 1;
590  subband_coef_sign[i * vd + j] = 0;
591  }
592  } else {
593  subband_coef_sign[i * vd + j] = 0;
594  }
595  }
596  }
597  return result;
598 }
599 
600 
609 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
610  int *quant_index_table, float *mlt_buffer)
611 {
612  /* A zero in this table means that the subband coefficient is
613  random noise coded. */
614  int subband_coef_index[SUBBAND_SIZE];
615  /* A zero in this table means that the subband coefficient is a
616  positive multiplicator. */
617  int subband_coef_sign[SUBBAND_SIZE];
618  int band, j;
619  int index = 0;
620 
621  for (band = 0; band < p->total_subbands; band++) {
622  index = category[band];
623  if (category[band] < 7) {
624  if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
625  index = 7;
626  for (j = 0; j < p->total_subbands; j++)
627  category[band + j] = 7;
628  }
629  }
630  if (index >= 7) {
631  memset(subband_coef_index, 0, sizeof(subband_coef_index));
632  memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
633  }
634  q->scalar_dequant(q, index, quant_index_table[band],
635  subband_coef_index, subband_coef_sign,
636  &mlt_buffer[band * SUBBAND_SIZE]);
637  }
638 
639  /* FIXME: should this be removed, or moved into loop above? */
641  return;
642 }
643 
644 
651 static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
652 {
653  int category_index[128];
654  int quant_index_table[102];
655  int category[128];
656  int res;
657 
658  memset(&category, 0, sizeof(category));
659  memset(&category_index, 0, sizeof(category_index));
660 
661  if ((res = decode_envelope(q, p, quant_index_table)) < 0)
662  return res;
664  categorize(q, p, quant_index_table, category, category_index);
665  expand_category(q, category, category_index);
666  decode_vectors(q, p, category, quant_index_table, mlt_buffer);
667 
668  return 0;
669 }
670 
671 
680 static void interpolate_float(COOKContext *q, float *buffer,
681  int gain_index, int gain_index_next)
682 {
683  int i;
684  float fc1, fc2;
685  fc1 = pow2tab[gain_index + 63];
686 
687  if (gain_index == gain_index_next) { // static gain
688  for (i = 0; i < q->gain_size_factor; i++)
689  buffer[i] *= fc1;
690  } else { // smooth gain
691  fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
692  for (i = 0; i < q->gain_size_factor; i++) {
693  buffer[i] *= fc1;
694  fc1 *= fc2;
695  }
696  }
697 }
698 
707 static void imlt_window_float(COOKContext *q, float *inbuffer,
708  cook_gains *gains_ptr, float *previous_buffer)
709 {
710  const float fc = pow2tab[gains_ptr->previous[0] + 63];
711  int i;
712  /* The weird thing here, is that the two halves of the time domain
713  * buffer are swapped. Also, the newest data, that we save away for
714  * next frame, has the wrong sign. Hence the subtraction below.
715  * Almost sounds like a complex conjugate/reverse data/FFT effect.
716  */
717 
718  /* Apply window and overlap */
719  for (i = 0; i < q->samples_per_channel; i++)
720  inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
721  previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
722 }
723 
735 static void imlt_gain(COOKContext *q, float *inbuffer,
736  cook_gains *gains_ptr, float *previous_buffer)
737 {
738  float *buffer0 = q->mono_mdct_output;
739  float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
740  int i;
741 
742  /* Inverse modified discrete cosine transform */
743  q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
744 
745  q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
746 
747  /* Apply gain profile */
748  for (i = 0; i < 8; i++)
749  if (gains_ptr->now[i] || gains_ptr->now[i + 1])
750  q->interpolate(q, &buffer1[q->gain_size_factor * i],
751  gains_ptr->now[i], gains_ptr->now[i + 1]);
752 
753  /* Save away the current to be previous block. */
754  memcpy(previous_buffer, buffer0,
755  q->samples_per_channel * sizeof(*previous_buffer));
756 }
757 
758 
766 static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
767 {
768  int i;
769  int vlc = get_bits1(&q->gb);
770  int start = cplband[p->js_subband_start];
771  int end = cplband[p->subbands - 1];
772  int length = end - start + 1;
773 
774  if (start > end)
775  return;
776 
777  if (vlc)
778  for (i = 0; i < length; i++)
779  decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
780  else
781  for (i = 0; i < length; i++)
782  decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
783 }
784 
785 /*
786  * function decouples a pair of signals from a single signal via multiplication.
787  *
788  * @param q pointer to the COOKContext
789  * @param subband index of the current subband
790  * @param f1 multiplier for channel 1 extraction
791  * @param f2 multiplier for channel 2 extraction
792  * @param decode_buffer input buffer
793  * @param mlt_buffer1 pointer to left channel mlt coefficients
794  * @param mlt_buffer2 pointer to right channel mlt coefficients
795  */
797  COOKSubpacket *p,
798  int subband,
799  float f1, float f2,
800  float *decode_buffer,
801  float *mlt_buffer1, float *mlt_buffer2)
802 {
803  int j, tmp_idx;
804  for (j = 0; j < SUBBAND_SIZE; j++) {
805  tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
806  mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
807  mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
808  }
809 }
810 
818 static int joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
819  float *mlt_buffer2)
820 {
821  int i, j, res;
822  int decouple_tab[SUBBAND_SIZE];
823  float *decode_buffer = q->decode_buffer_0;
824  int idx, cpl_tmp;
825  float f1, f2;
826  const float *cplscale;
827 
828  memset(decouple_tab, 0, sizeof(decouple_tab));
829  memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
830 
831  /* Make sure the buffers are zeroed out. */
832  memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
833  memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
834  decouple_info(q, p, decouple_tab);
835  if ((res = mono_decode(q, p, decode_buffer)) < 0)
836  return res;
837 
838  /* The two channels are stored interleaved in decode_buffer. */
839  for (i = 0; i < p->js_subband_start; i++) {
840  for (j = 0; j < SUBBAND_SIZE; j++) {
841  mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
842  mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
843  }
844  }
845 
846  /* When we reach js_subband_start (the higher frequencies)
847  the coefficients are stored in a coupling scheme. */
848  idx = (1 << p->js_vlc_bits) - 1;
849  for (i = p->js_subband_start; i < p->subbands; i++) {
850  cpl_tmp = cplband[i];
851  idx -= decouple_tab[cpl_tmp];
852  cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
853  f1 = cplscale[decouple_tab[cpl_tmp] + 1];
854  f2 = cplscale[idx];
855  q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
856  idx = (1 << p->js_vlc_bits) - 1;
857  }
858 
859  return 0;
860 }
861 
871  const uint8_t *inbuffer,
872  cook_gains *gains_ptr)
873 {
874  int offset;
875 
876  offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
877  p->bits_per_subpacket / 8);
878  init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
879  p->bits_per_subpacket);
880  decode_gain_info(&q->gb, gains_ptr->now);
881 
882  /* Swap current and previous gains */
883  FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
884 }
885 
893 static void saturate_output_float(COOKContext *q, int chan, float *out)
894 {
895  int j;
896  float *output = q->mono_mdct_output + q->samples_per_channel;
897  for (j = 0; j < q->samples_per_channel; j++) {
898  out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
899  }
900 }
901 
914 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
915  cook_gains *gains_ptr, float *previous_buffer,
916  float *out, int chan)
917 {
918  imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
919  if (out)
920  q->saturate_output(q, chan, out);
921 }
922 
923 
933  const uint8_t *inbuffer, float *outbuffer)
934 {
935  int sub_packet_size = p->size;
936  int res;
937  /* packet dump */
938  // for (i = 0; i < sub_packet_size ; i++)
939  // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
940  // av_log(q->avctx, AV_LOG_ERROR, "\n");
941  memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
942  decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
943 
944  if (p->joint_stereo) {
945  if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
946  return res;
947  } else {
948  if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
949  return res;
950 
951  if (p->num_channels == 2) {
952  decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
953  if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
954  return res;
955  }
956  }
957 
959  p->mono_previous_buffer1, outbuffer, p->ch_idx);
960 
961  if (p->num_channels == 2)
962  if (p->joint_stereo)
964  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
965  else
967  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
968 
969  return 0;
970 }
971 
972 
979  int *got_frame_ptr, AVPacket *avpkt)
980 {
981  const uint8_t *buf = avpkt->data;
982  int buf_size = avpkt->size;
983  COOKContext *q = avctx->priv_data;
984  float *samples = NULL;
985  int i, ret;
986  int offset = 0;
987  int chidx = 0;
988 
989  if (buf_size < avctx->block_align)
990  return buf_size;
991 
992  /* get output buffer */
993  if (q->discarded_packets >= 2) {
995  if ((ret = ff_get_buffer(avctx, &q->frame)) < 0) {
996  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
997  return ret;
998  }
999  samples = (float *) q->frame.data[0];
1000  }
1001 
1002  /* estimate subpacket sizes */
1003  q->subpacket[0].size = avctx->block_align;
1004 
1005  for (i = 1; i < q->num_subpackets; i++) {
1006  q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1007  q->subpacket[0].size -= q->subpacket[i].size + 1;
1008  if (q->subpacket[0].size < 0) {
1009  av_log(avctx, AV_LOG_DEBUG,
1010  "frame subpacket size total > avctx->block_align!\n");
1011  return AVERROR_INVALIDDATA;
1012  }
1013  }
1014 
1015  /* decode supbackets */
1016  for (i = 0; i < q->num_subpackets; i++) {
1017  q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
1019  q->subpacket[i].ch_idx = chidx;
1020  av_log(avctx, AV_LOG_DEBUG,
1021  "subpacket[%i] size %i js %i %i block_align %i\n",
1022  i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1023  avctx->block_align);
1024 
1025  if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1026  return ret;
1027  offset += q->subpacket[i].size;
1028  chidx += q->subpacket[i].num_channels;
1029  av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1030  i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1031  }
1032 
1033  /* Discard the first two frames: no valid audio. */
1034  if (q->discarded_packets < 2) {
1035  q->discarded_packets++;
1036  *got_frame_ptr = 0;
1037  return avctx->block_align;
1038  }
1039 
1040  *got_frame_ptr = 1;
1041  *(AVFrame *) data = q->frame;
1042 
1043  return avctx->block_align;
1044 }
1045 
1046 #ifdef DEBUG
1047 static void dump_cook_context(COOKContext *q)
1048 {
1049  //int i=0;
1050 #define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
1051  av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
1052  av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
1053  if (q->subpacket[0].cookversion > STEREO) {
1054  PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1055  PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1056  }
1057  av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
1058  PRINT("nb_channels", q->nb_channels);
1059  PRINT("bit_rate", q->bit_rate);
1060  PRINT("sample_rate", q->sample_rate);
1061  PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1062  PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
1063  PRINT("subbands", q->subpacket[0].subbands);
1064  PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1065  PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1066  PRINT("numvector_size", q->subpacket[0].numvector_size);
1067  PRINT("total_subbands", q->subpacket[0].total_subbands);
1068 }
1069 #endif
1070 
1071 static av_cold int cook_count_channels(unsigned int mask)
1072 {
1073  int i;
1074  int channels = 0;
1075  for (i = 0; i < 32; i++)
1076  if (mask & (1 << i))
1077  ++channels;
1078  return channels;
1079 }
1080 
1087 {
1088  COOKContext *q = avctx->priv_data;
1089  const uint8_t *edata_ptr = avctx->extradata;
1090  const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1091  int extradata_size = avctx->extradata_size;
1092  int s = 0;
1093  unsigned int channel_mask = 0;
1094  int ret;
1095  q->avctx = avctx;
1096 
1097  /* Take care of the codec specific extradata. */
1098  if (extradata_size <= 0) {
1099  av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1100  return AVERROR_INVALIDDATA;
1101  }
1102  av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1103 
1104  /* Take data from the AVCodecContext (RM container). */
1105  q->sample_rate = avctx->sample_rate;
1106  q->nb_channels = avctx->channels;
1107  q->bit_rate = avctx->bit_rate;
1108  if (!q->nb_channels) {
1109  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1110  return AVERROR_INVALIDDATA;
1111  }
1112 
1113  /* Initialize RNG. */
1114  av_lfg_init(&q->random_state, 0);
1115 
1116  while (edata_ptr < edata_ptr_end) {
1117  /* 8 for mono, 16 for stereo, ? for multichannel
1118  Swap to right endianness so we don't need to care later on. */
1119  if (extradata_size >= 8) {
1120  q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1121  q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1122  q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1123  extradata_size -= 8;
1124  }
1125  if (extradata_size >= 8) {
1126  bytestream_get_be32(&edata_ptr); // Unknown unused
1127  q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1128  q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1129  extradata_size -= 8;
1130  }
1131 
1132  /* Initialize extradata related variables. */
1134  q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1135 
1136  /* Initialize default data states. */
1137  q->subpacket[s].log2_numvector_size = 5;
1139  q->subpacket[s].num_channels = 1;
1140 
1141  /* Initialize version-dependent variables */
1142 
1143  av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1144  q->subpacket[s].cookversion);
1145  q->subpacket[s].joint_stereo = 0;
1146  switch (q->subpacket[s].cookversion) {
1147  case MONO:
1148  if (q->nb_channels != 1) {
1149  av_log_ask_for_sample(avctx, "Container channels != 1.\n");
1150  return AVERROR_PATCHWELCOME;
1151  }
1152  av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1153  break;
1154  case STEREO:
1155  if (q->nb_channels != 1) {
1156  q->subpacket[s].bits_per_subpdiv = 1;
1157  q->subpacket[s].num_channels = 2;
1158  }
1159  av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1160  break;
1161  case JOINT_STEREO:
1162  if (q->nb_channels != 2) {
1163  av_log_ask_for_sample(avctx, "Container channels != 2.\n");
1164  return AVERROR_PATCHWELCOME;
1165  }
1166  av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1167  if (avctx->extradata_size >= 16) {
1168  q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1170  q->subpacket[s].joint_stereo = 1;
1171  q->subpacket[s].num_channels = 2;
1172  }
1173  if (q->subpacket[s].samples_per_channel > 256) {
1174  q->subpacket[s].log2_numvector_size = 6;
1175  }
1176  if (q->subpacket[s].samples_per_channel > 512) {
1177  q->subpacket[s].log2_numvector_size = 7;
1178  }
1179  break;
1180  case MC_COOK:
1181  av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1182  if (extradata_size >= 4)
1183  channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1184 
1185  if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
1186  q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1188  q->subpacket[s].joint_stereo = 1;
1189  q->subpacket[s].num_channels = 2;
1191 
1192  if (q->subpacket[s].samples_per_channel > 256) {
1193  q->subpacket[s].log2_numvector_size = 6;
1194  }
1195  if (q->subpacket[s].samples_per_channel > 512) {
1196  q->subpacket[s].log2_numvector_size = 7;
1197  }
1198  } else
1200 
1201  break;
1202  default:
1203  av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
1204  return AVERROR_PATCHWELCOME;
1205  }
1206 
1207  if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1208  av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1209  return AVERROR_INVALIDDATA;
1210  } else
1212 
1213 
1214  /* Initialize variable relations */
1216 
1217  /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1218  if (q->subpacket[s].total_subbands > 53) {
1219  av_log_ask_for_sample(avctx, "total_subbands > 53\n");
1220  return AVERROR_PATCHWELCOME;
1221  }
1222 
1223  if ((q->subpacket[s].js_vlc_bits > 6) ||
1224  (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1225  av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1226  q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1227  return AVERROR_INVALIDDATA;
1228  }
1229 
1230  if (q->subpacket[s].subbands > 50) {
1231  av_log_ask_for_sample(avctx, "subbands > 50\n");
1232  return AVERROR_PATCHWELCOME;
1233  }
1234  q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1235  q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1236  q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1237  q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1238 
1239  q->num_subpackets++;
1240  s++;
1241  if (s > MAX_SUBPACKETS) {
1242  av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
1243  return AVERROR_PATCHWELCOME;
1244  }
1245  }
1246  /* Generate tables */
1247  init_pow2table();
1248  init_gain_table(q);
1250 
1251  if ((ret = init_cook_vlc_tables(q)))
1252  return ret;
1253 
1254 
1255  if (avctx->block_align >= UINT_MAX / 2)
1256  return AVERROR(EINVAL);
1257 
1258  /* Pad the databuffer with:
1259  DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1260  FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1262  av_mallocz(avctx->block_align
1263  + DECODE_BYTES_PAD1(avctx->block_align)
1265  if (q->decoded_bytes_buffer == NULL)
1266  return AVERROR(ENOMEM);
1267 
1268  /* Initialize transform. */
1269  if ((ret = init_cook_mlt(q)))
1270  return ret;
1271 
1272  /* Initialize COOK signal arithmetic handling */
1273  if (1) {
1275  q->decouple = decouple_float;
1279  }
1280 
1281  /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1282  if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
1283  || (q->samples_per_channel == 1024)) {
1284  } else {
1285  av_log_ask_for_sample(avctx,
1286  "unknown amount of samples_per_channel = %d\n",
1287  q->samples_per_channel);
1288  return AVERROR_PATCHWELCOME;
1289  }
1290 
1291  avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1292  if (channel_mask)
1293  avctx->channel_layout = channel_mask;
1294  else
1295  avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1296 
1298  avctx->coded_frame = &q->frame;
1299 
1300 #ifdef DEBUG
1301  dump_cook_context(q);
1302 #endif
1303  return 0;
1304 }
1305 
1307  .name = "cook",
1308  .type = AVMEDIA_TYPE_AUDIO,
1309  .id = CODEC_ID_COOK,
1310  .priv_data_size = sizeof(COOKContext),
1314  .capabilities = CODEC_CAP_DR1,
1315  .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1316 };