
Boost.Sort
Steven Ross
Copyright © 2014 Steven Ross

Distributed under the Boost Software License, Version 1.0.

Table of Contents
Overview .. 2

Introduction .. 2
Overloading .. 2
Performance .. 4
Tuning ... 8

Spreadsort ... 10
Header <boost/sort/spreadsort/spreadsort.hpp> .. 10
Spreadsort Examples ... 10
Integer Spreadsort .. 11

Integer Sort Examples ... 11
Rationale .. 12

Radix Sorting .. 12
Hybrid Radix ... 12
Why spreadsort? .. 12
Unstable Sorting .. 13
Unused X86 optimization .. 13
Lookup Table? ... 14

Definitions .. 15
Frequently asked Questions .. 16
Acknowledgements ... 17
Bibliography ... 18
History ... 19
Boost.Sort C++ Reference .. 20

Header <boost/sort/spreadsort/float_sort.hpp> ... 20
Header <boost/sort/spreadsort/integer_sort.hpp> .. 22
Header <boost/sort/spreadsort/spreadsort.hpp> .. 26
Header <boost/sort/spreadsort/string_sort.hpp> .. 28

Function Index ... 38
Index ... 39

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Introduction
The Boost.Sort library provides a generic implementation of high-speed sorting algorithms that outperform those in the
C++ standard in both average and worst case performance when there are over 1000 elements in the list to sort.

They fall back to STL std::sort on small data sets.

Warning

These algorithms all only work on random access iterators.

They are hybrids using both radix and comparison-based sorting, specialized to sorting common data types, such as integers,
floats, and strings.

These algorithms are encoded in a generic fashion and accept functors, enabling them to sort any object that can be
processed like these basic data types. In the case of string_sort, this includes anything with a defined strict-weak-
ordering that std::sort can sort, but writing efficient functors for some complex key types may not be worth the additional
effort relative to just using std::sort, depending on how important speed is to your application. Sample usages are available
in the example directory.

Unlike many radix-based algorithms, the underlying spreadsort algorithm is designed around worst-case performance.
It performs better on chunky data (where it is not widely distributed), so that on real data it can perform substantially
better than on random data. Conceptually, spreadsort can sort any data for which an absolute ordering can be determined,
and string_sort is sufficiently flexible that this should be possible.

Situations where spreadsort is fastest relative to std::sort:

1. Large number of elements to sort (N >= 10000).

2. Slow comparison function (such as floating-point numbers on x86 processors or strings).

3. Large data elements (such as key + data sorted on a key).

4. Completely sorted data when spreadsort has an optimization to quit early in this case.

Situations where spreadsort is slower than std::sort:

1. Data sorted in reverse order. Both std::sort and spreadsort are faster on reverse-ordered data than randomized data,
but std::sort speeds up more in this special case.

2. Very small amounts of data (< 1000 elements). For this reason there is a fallback in spreadsort to std::sort if the input
size is less than 1000, so performance is identical for small amounts of data in practice.

These functions are defined in namespace boost::sort::spreadsort.

Overloading

Tip

In the Boost.Sort C++ Reference section, click on the appropriate overload, for example
float_sort(RandomAccessIter, RandomAccessIter, Right_shift, Compare); to get full
details of that overload.

2

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/algorithm/sort/
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Spreadsort
http://en.wikipedia.org/wiki/Spreadsort
http://en.wikipedia.org/wiki/Spreadsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Spreadsort
http://en.wikipedia.org/wiki/Spreadsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Spreadsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Spreadsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Each of integer_sort, float_sort, and string_sort have 3 main versions: The base version, which takes a first
iterator and a last iterator, just like std::sort:

integer_sort(array.begin(), array.end());

The version with an overridden shift functor, providing flexibility in case the operator>> already does something
other than a bitshift. The rightshift functor takes two args, first the data type, and second a natural number of bits to shift
right.

For string_sort this variant is slightly different; it needs a bracket functor equivalent to operator[], taking a number
corresponding to the character offset, along with a second getlength functor to get the length of the string in characters.
In all cases, this operator must return an integer type that compares with the operator< to provide the intended order
(integers can be negated to reverse their order).

In other words:

rightshift(A, n) < rightshift(B, n) -> A < B

integer_sort(array.begin(), array.end(), rightshift());

See rightshiftsample.cpp for a worked example.

And a version with a comparison functor for maximum flexibility. This functor must provide the same sorting order as
the integers returned by the rightshift:

rightshift(A, n) < rightshift(B, n) -> compare(A, B)

integer_sort(array.begin(), array.end(), negrightshift(), std::greater<DATA_TYPE>());

Examples of functors are:

struct lessthan {
inline bool operator()(const DATA_TYPE &x, const DATA_TYPE &y) const {

return x.a < y.a;
}

};

struct bracket {
inline unsigned char operator()(const DATA_TYPE &x, size_t offset) const {

return x.a[offset];
}

};

struct getsize {
inline size_t operator()(const DATA_TYPE &x) const{ return x.a.size(); }

};

and this is used thus:

string_sort(array.begin(), array.end(), bracket(), getsize(), lessthan());

See stringfunctorsample.cpp for a worked example of a string with functor example.

3

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.cppreference.com/w/cpp/algorithm/sort
../../example/rightshiftsample.cpp
../../example/stringfunctorsample.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

TODO I find this above confusing (and may be confused - haven't stopped to think carefully) - I think you need links to
all the examples and use snippets here.

Performance
The spreadsort algorithm is a hybrid algorithm; when the number of elements being sorted is below a certain number,
comparison-based sorting is used. Above it, radix sorting is used. The radix-based algorithm will thus cut up the problem
into small pieces, and either completely sort the data based upon its radix if the data is clustered, or finish sorting the
cut-down pieces with comparison-based sorting.

The Spreadsort algorithm dynamically chooses either comparison-based or radix-based sorting when recursing, whichever
provides better worst-case performance. This way worst-case performance is guaranteed to be the better of (N⋅log2(N))
comparisons and (N⋅log2(K/S + S)) operations where

• N is the number of elements being sorted,

• K is the length in bits of the key, and

• S is a constant.

This results in substantially improved performance for large N; integer_sort tends to be 50% to 2X faster than
std::sort, while float_sort and _string_sort are roughly 2X faster than std::sort.

Performance graphs are provided for integer_sort, float_sort, and string_sort in their description.

Runtime Performance comparisons and graphs were made on a Core 2 Duo laptop running Windows Vista 64 with
MSVC 8.0, and an old G4 laptop running Mac OSX with gcc. Boost bjam/b2 was used to control compilation.

Direct performance comparisons on a newer x86 system running Ubuntu, with the fallback to std::sort at lower input
sizes disabled are below.

Note

The fallback to std::sort for smaller input sizes prevents the worse performance seen on the left sides
of the first two graphs.

integer_sort starts to become faster than std::sort at about 1000 integers (4000 bytes), and string_sort becomes
faster than std::sort at slightly fewer bytes (as few as 30 strings).

Note

The 4-threaded graph has 4 threads doing separate sorts simultaneously (not splitting up a single sort)
as a test for thread cache collision and other multi-threaded performance issues.

float_sort times are very similar to integer_sort times.

4

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Spreadsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://www.boost.org/build/doc/html/
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

5

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Histogramming with a fixed maximum number of splits is used because it reduces the number of cache misses, thus
improving performance relative to the approach described in detail in the original SpreadSort publication.

The importance of cache-friendly histogramming is described in Arne Maus, Adaptive Left Reflex, though without the
worst-case handling described below.

The time taken per radix iteration is:

 (N) iterations over the data

 (N) integer-type comparisons (even for _float_sort and string_sort)

 (N) swaps

 (2S) bin operations.

To obtain (N) worst-case performance per iteration, the restriction S <= log2(N) is applied, and (2S) becomes (N).
For each such iteration, the number of unsorted bits log2(range) (referred to as K) per element is reduced by S. As S de-
creases depending upon the amount of elements being sorted, it can drop from a maximum of Smax to the minimum of
Smin.

6

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Spreadsort
http://www.nik.no/2002/Maus.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Assumption: std::sort is assumed to be (N*log2(N)), as introsort exists and is commonly used. (If you have a quibble
with this please take it up with the implementor of your std::sort; you're welcome to replace the recursive calls to std::sort
to calls to introsort if your std::sort library call is poorly implemented).

Introsort is not included with this algorithm for simplicity and because the implementor of the std::sort call is assumed
to know what they're doing.

To maintain a minimum value for S (Smin), comparison-based sorting has to be used to sort when n <= log2(meanbinsize),
where log2(meanbinsize) (lbs) is a small constant, usually between 0 and 4, used to minimize bin overhead per element.
There is a small corner-case where if K < Smin and n >= 2^K, then the data can be sorted in a single radix-based iteration
with an S = K (this bucketsorting special case is by default only applied to float_sort). So for the final recursion,
worst-case performance is:

1 radix-based iteration if K <= Smin,

or Smin + lbs comparison-based iterations if K > Smin but n <= 2(Smin + lbs).

So for the final iteration, worst-case runtime is (N*(Smin + lbs)) but if K > Smin and N > 2(Smin + lbs) then more than 1
radix recursion will be required.

For the second to last iteration, K <= Smin * 2 + 1 can be handled, (if the data is divided into 2(Smin + 1) pieces) or if N <
2(Smin + lbs + 1), then it is faster to fallback to std::sort.

In the case of a radix-based sort plus recursion, it will take (N*(Smin + lbs)) + (N) = (N*(Smin + lbs + 1)) worst-case
time, as K_remaining = K_start - (Smin + 1), and K_start <= Smin * 2 + 1.

Alternatively, comparison-based sorting is used if N < 2(Smin + lbs + 1), which will take (N*(Smin + lbs + 1)) time.

So either way (N*(Smin + lbs + 1)) is the worst-case time for the second to last iteration, which occurs if K <= Smin *
2 + 1 or N < 2(Smin + lbs + 1).

This continues as long as Smin <= S <= Smax, so that for K_m <= K_(m-1) + Smin + m where m is the maximum number
of iterations after this one has finished, or where N < 2(Smin + lbs + m), then the worst-case runtime is (N*(Smin + lbs +
m)).

K_m at m <= (Smax - Smin) works out to:

K_1 <= (Smin) + Smin + 1 <= 2Smin + 1

K_2 <= (2Smin + 1) + Smin + 2

as the sum from 0 to m is m(m + 1)/2

K_m <= (m + 1)Smin + m(m + 1)/2 <= (Smin + m/2)(m + 1)

substituting in Smax - Smin for m

K_(Smax - Smin) <= (Smin + (Smax - Smin)/2)*(Smax - Smin + 1)

K_(Smax - Smin) <= (Smin + Smax) * (Smax - Smin + 1)/2

Since this involves Smax - Smin + 1 iterations, this works out to dividing K into an average (Smin + Smax)/2 pieces per iter-
ation.

To finish the problem from this point takes (N * (Smax - Smin)) for m iterations, plus the worst-case of (N*(Smin + lbs))
for the last iteration, for a total of (N *(Smax + lbs)) time.

When m > Smax - Smin, the problem is divided into Smax pieces per iteration, or std::sort is called if N < 2^(m + Smin +
lbs). For this range:

K_m <= K_(m - 1) + Smax, providing runtime of

7

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Introsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Introsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/Introsort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

 (N *((K - K_(Smax - Smin))/Smax + Smax + lbs)) if recursive,

or (N * log(2^(m + Smin + lbs))) if comparison-based,

which simplifies to (N * (m + Smin + lbs)), which substitutes to (N * ((m - (Smax - Smin)) + Smax + lbs)), which given
that m - (Smax - Smin) <= (K - K_(Smax - Smin))/Smax (otherwise a lesser number of radix-based iterations would be used)

also comes out to (N *((K - K_(Smax - Smin))/Smax + Smax + lbs)).

Asymptotically, for large N and large K, this simplifies to:

 (N * (K/Smax + Smax + lbs)),

simplifying out the constants related to the Smax - Smin range, providing an additional (N * (Smax + lbs)) runtime on top
of the (N * (K/S)) performance of LSD radix sort, but without the (N) memory overhead. For simplicity, because lbs
is a small constant (0 can be used, and performs reasonably), it is ignored when summarizing the performance in further
discussions. By checking whether comparison-based sorting is better, Spreadsort is also (N*log(N)), whichever is better,
and unlike LSD radix sort, can perform much better than the worst-case if the data is either evenly distributed or highly
clustered.

This analysis was for integer_sort and float_sort. string_sort differs in that Smin = Smax = sizeof(Char_type)
* 8, lbs is 0, and that std::sort's comparison is not a constant-time operation, so strictly speaking string_sort runtime
is

 (N * (K/Smax + (Smax comparisons))).

Worst-case, this ends up being (N * K) (where K is the mean string length in bytes), as described for American flag
sort, which is better than the

 (N * K * log(N))

worst-case for comparison-based sorting.

Tuning
integer_sort and float_sort have tuning constants that control how the radix-sorting portion of those algorithms
work. The ideal constant values for integer_sort and float_sort vary depending on the platform, compiler, and
data being sorted. By far the most important constant is max_splits, which defines how many pieces the radix-sorting
portion splits the data into per iteration.

The ideal value of max_splits depends upon the size of the L1 processor cache, and is between 10 and 13 on many systems.
A default value of 11 is used. For mostly-sorted data, a much larger value is better, as swaps (and thus cache misses) are
rare, but this hurts runtime severely for unsorted data, so is not recommended.

On some x86 systems, when the total number of elements being sorted is small (less than 1 million or so), the ideal
max_splits can be substantially larger, such as 17. This is suspected to be because all the data fits into the L2 cache, and
misses from L1 cache to L2 cache do not impact performance as severely as misses to main memory. Modifying tuning
constants other than max_splits is not recommended, as the performance improvement for changing other constants is
usually minor.

If you can afford to let it run for a day, and have at least 1GB of free memory, the perl command: ./tune.pl -large

-tune (UNIX) or perl tune.pl -large -tune -windows (Windows) can be used to automatically tune these
constants. This should be run from the libs/sort/sort directory inside the boost home directory. This will work
to identify the ideal constants.hpp settings for your system, testing on various distributions in a 20 million element
(80MB) file, and additionally verifies that all sorting routines sort correctly across various data distributions. Alternatively,
you can test with the file size you're most concerned with ./tune.pl number -tune (UNIX) or perl tune.pl

number -tune -windows (Windows). Substitute the number of elements you want to test with for number. Otherwise,
just use the options it comes with, they're decent. With default settings ./tune.pl -tune (UNIX) perl tune.pl

-tune -windows (Windows), the script will take hours to run (less than a day), but may not pick the correct max_splits
if it is over 10. Alternatively, you can add the -small option to make it take just a few minutes, tuning for smaller vector

8

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Radix_sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/American_flag_sort
http://en.wikipedia.org/wiki/American_flag_sort
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

sizes (one hundred thousand elements), but the resulting constants may not be good for large files (see above note about
max_splits on Windows).

The tuning script can also be used just to verify that sorting works correctly on your system, and see how much of a
speedup it gets, by omiting the "-tune" option. This runs at the end of tuning runs. Default args will take about an hour
to run and give accurate results on decent-sized test vectors. ./tune.pl -small (UNIX) perl tune.pl -small

-windows (Windows) is a faster option, that tests on smaller vectors and isn't as accurate.

If any differences are encountered during tuning, please call tune.pl with -debug > log_file_name. If the resulting
log file contains compilation or permissions issues, it is likely an issue with your setup. If some other type of error is
encountered (or result differences), please send them to the library author at spreadsort@gmail.com. Including the zipped
input.txt that was being used is also helpful.

9

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Spreadsort

Header <boost/sort/spreadsort/spreadsort.hpp>

spreadsort checks whether the data-type provided is an integer, castable float, string, or wstring.

• If data-type is an integer, integer_sort is used.

• If data-type is a float, float_sort is used.

• If data-type is a string or wstring, string_sort is used.

• Sorting other data-types requires picking between integer_sort, float_sort and string_sort directly, as
spreadsort won't accept types that don't have the appropriate type traits.

Overloading variants are provided that permit use of user-defined right-shift functors and comparison functors.

Each function is optimized for its set of arguments; default functors are not provided to avoid the risk of any reduction
of performance.

See overloading section.

Rationale:

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data-type, enabling faster
generic programming.

Spreadsort Examples
See example folder for all examples.

See sample.cpp for a simple worked example.

For an example of 64-bit integer sorting, see int64.cpp.

This example sets the element type of a vector to 64-bit integer

#define DATA_TYPE boost::int64_t

and calls the sort

boost::sort::spreadsort(array.begin(), array.end());

See rightshiftsample.cpp for a worked example of using rightshift, using a user-defined functor:

struct rightshift {
inline int operator()(DATA_TYPE x, unsigned offset) { return x >> offset; }

};

For a simple example sorting floats,

10

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Spreadsort
../../example/
../../example/sample.cpp
../../example/int64.cpp
../../example/rightshiftsample.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

vector<float> vec;
vec.push_back(1.0);
vec.push_back(2.3);
vec.push_back(1.3);
...
spreadsort(vec.begin(), vec.end());
//The sorted vector contains "1.0 1.3 2.3 ..."

See also floatsample.cpp which checks for abnormal values.

While floatfunctorsample.cpp shows use of sorting float-point types with functors.

#define CAST_TYPE int
#define KEY_TYPE float

struct DATA_TYPE {
KEY_TYPE key;
std::string data;

};

Right-shift functor:

// Casting to an integer before bitshifting
struct rightshift {

int operator()(const DATA_TYPE &x, const unsigned offset) const {
return float_mem_cast<KEY_TYPE, CAST_TYPE>(x.key) >> offset;

}
};

Comparison lessthan operator< functor:

struct lessthan {
bool operator()(const DATA_TYPE &x, const DATA_TYPE &y) const {

return x.key < y.key;
}

};

Integer Spreadsort
integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB). Worst-case performance is (N * (log2(range)/s + s)), so in-
teger_sort is asymptotically faster than pure comparison-based algorithms. s is max_splits, which defaults to 11, so
its worst-case with default settings for 32-bit integers is (N * ((32/11) slow radix-based iterations + 11 fast comparison-
based iterations).

Some performance plots of runtime vs. n and log2(range) are provided below:

Windows Integer Sort

OSX integer Sort

Integer Sort Examples

Key plus data sample. ... TODO

11

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../example/floatsample.cpp
../../example/floatfunctorsample.cpp
http://en.cppreference.com/w/cpp/algorithm/sort
../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
../../example/keyplusdatasample.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Rationale

Radix Sorting

Radix-based sorting allows the data to be divided up into more than 2 pieces per iteration, and for cache-friendly versions,
it normally cuts the data up into around a thousand pieces per iteration. This allows many fewer iterations to be used to
complete sorting the data, enabling performance superior to the (N*log(N)) comparison-based sorting limit.

Hybrid Radix

There a two primary types of radix-based sorting:

Most-significant-digit Radix sorting (MSD) divides the data recursively based upon the top-most unsorted bits. This
approach is efficient for even distributions that divide nicely, and can be done in-place (limited additional memory used).
There is substantial constant overhead for each iteration to deal with the splitting structure. The algorithms provided
here use MSD Radix Sort for their radix-sorting portion. The main disadvantage of MSD Radix sorting is that when the
data is cut up into small pieces, the overhead for additional recursive calls starts to dominate runtime, and this makes
worst-case behavior substantially worse than (N*log(N)).

By contrast, integer_sort, float_sort, and string_sort all check to see whether Radix-based or Comparison-
based sorting have better worst-case runtime, and make the appropriate recursive call. Because Comparison-based sorting
algorithms are efficient on small pieces, the tendency of MSD radix sort to cut the problem up small is turned into an
advantage by these hybrid sorts. It is hard to conceive of a common usage case where pure MSD radix sort would have
any significant advantage over hybrid algorithms.

Least-significant-digit radix sort (LSD) sorts based upon the least-significant bits first. This requires a complete copy
of the data being sorted, using substantial additional memory. The main advantage of LSD Radix Sort is that aside from
some constant overhead and the memory allocation, it uses a fixed amount of time per element to sort, regardless of
distribution or size of the list. This amount of time is proportional to the length of the radix. The other advantage of LSD
Radix Sort is that it is a stable sorting algorithm, so elements with the same key will retain their original order.

One disadvantage is that LSD Radix Sort uses the same amount of time to sort "easy" sorting problems as "hard" sorting
problems, and this time spent may end up being greater than an efficient (N*log(N)) algorithm such as introsort spends
sorting "hard" problems on large data sets, depending on the length of the datatype, and relative speed of comparisons,
memory allocation, and random accesses.

The other main disadvantage of LSD Radix Sort is its memory overhead. It's only faster for large data sets, but large
data sets use significant memory, which LSD Radix Sort needs to duplicate. LSD Radix Sort doesn't make sense for
items of variable length, such as strings; it could be implemented by starting at the end of the longest element, but would
be extremely inefficient.

All that said, there are places where LSD Radix Sort is the appropriate and fastest solution, so it would be appropriate
to create a templated LSD Radix Sort similar to integer_sort and float_sort. This would be most appropriate in
cases where comparisons are extremely slow.

Why spreadsort?

The spreadsort algorithm used in this library is designed to provide best possible worst-case performance, while still
being cache-friendly. It provides the better of (N*log(K/S + S)) and (N*log(N)) worst-case time, where K is the log
of the range. The log of the range is normally the length in bits of the data type; 32 for a 32-bit integer.

flash_sort (another hybrid algorithm), by comparison is (N) for evenly distributed lists. The problem is, flash_sort
is merely an MSD radix sort combined with (N*N) insertion sort to deal with small subsets where the MSD Radix Sort
is inefficient, so it is inefficient with chunks of data around the size at which it switches to insertion_sort, and ends
up operating as an enhanced MSD Radix Sort. For uneven distributions this makes it especially inefficient.

integer_sort and float_sort use introsort instead, which provides (N*log(N)) performance for these medium-
sized pieces. Also, flash_sort's (N) performance for even distributions comes at the cost of cache misses, which on

12

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Introsort
http://en.wikipedia.org/wiki/Spreadsort
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Introsort
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

modern architectures are extremely expensive, and in testing on modern systems ends up being slower than cutting up
the data in multiple, cache-friendly steps. Also worth noting is that on most modern computers, log(available
RAM)/log2(L1 cache size) is around 3, where a cache miss takes more than 3 times as long as an in-cache random-
access, and the size of max_splits is tuned to the size of the cache. On a computer where cache misses aren't this expensive,
max_splits could be increased to a large value, or eliminated entirely, and integer_sort/float_sort would have
the same (N) performance on even distributions.

Adaptive Left Radix (ALR) is similar to flash_sort, but more cache-friendly. It still uses insertion_sort. Because
ALR uses (N*N) insertion_sort, it isn't efficient to use the comparison-based fallback sort on large lists, and if the
data is clustered in small chunks just over the fallback size with a few outliers, radix-based sorting iterates many times
doing little sorting with high overhead. Asymptotically, ALR is still (N*log(K/S + S)), but with a very small S (about
2 in the worst case), which compares unfavorably with the 11 default value of max_splits for Spreadsort.

ALR also does not have the (N*log(N)) fallback, so for small lists that are not evenly distributed it is extremely inefficient.
See the alrbreaker and binaryalrbreaker testcases for examples; either replace the call to sort with a call to ALR
and update the ALR_THRESHOLD at the top, or as a quick comparison make get_max_count return

ALR_THRESHOLD (20 by default based upon the paper). These small tests take 4-10 times as long with ALR as std::sort
in the author's testing, depending on the test system, because they are trying to sort a highly uneven distribution. Normal
Spreadsort does much better with them, because get_max_count is designed around minimizing worst-case runtime.

burst_sort is an efficient hybrid algorithm for strings that uses substantial additional memory.

string_sort uses minimal additional memory by comparison. Speed comparisons between the two haven't been made,
but the better memory efficiency makes string_sort more general.

postal_sort and string_sort are similar. A direct performance comparison would be welcome, but an efficient
version of postal_sort was not found in a search for source.

string_sort is most similar to the American flag sort algorithm. The main difference is that it doesn't bother trying
to optimize how empty buckets/piles are handled, instead just checking to see if all characters at the current index are
equal. Other differences are using std::sort as the fallback algorithm, and a larger fallback size (256 vs. 16), which makes
empty pile handling less important.

Another difference is not applying the stack-size restriction. Because of the equality check in string_sort, it would
take m*m memory worth of strings to force string_sort to create a stack of depth m. This problem isn't a realistic
one on modern systems with multi-megabyte stacksize limits, where main memory would be exhausted holding the long
strings necessary to exceed the stacksize limit. string_sort can be thought of as modernizing American flag sort to
take advantage of introsort as a fallback algorithm. In the author's testing, American flag sort (on std::strings) had
comparable runtime to introsort, but making a hybrid of the two allows reduced overhead and substantially superior
performance.

Unstable Sorting

Making a radix sort stable requires the usage of an external copy of the data. A stable hybrid algorithm also requires a
stable comparison-based algorithm, and these are generally slow. LSD radix sort uses an external copy of the data, and
provides stability, along with likely being faster (than a stable hybrid sort), so that's probably a better way to go for integer
and floating-point types. It might make sense to make a stable version of string_sort using external memory, but for
simplicity this has been left out for now.

Unused X86 optimization

Though the ideal max_splits for n < 1 million (or so) on x86 seems to be substantially larger, enabling a roughly
15% speedup for such tests, this optimization isn't general, and doesn't apply for n > 1 million. A too large max_splits
can cause sort to take more than twice as long, so it should be set on the low end of the reasonable range, where it is
right now.

13

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/American_flag_sort
http://en.cppreference.com/w/cpp/algorithm/sort
http://en.wikipedia.org/wiki/American_flag_sort
http://en.wikipedia.org/wiki/Introsort
http://en.wikipedia.org/wiki/American_flag_sort
http://en.wikipedia.org/wiki/Introsort
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Radix_sort
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Lookup Table?

The ideal way to optimize the constants would be to have a carefully-tuned lookup-table instead of the get_max_count
function, but 4 tuning variables is simpler, get_max_count enforces worst-case performance minimization rules, and
such a lookup table would be difficult to optimize for cross-platform performance.

Alternatively, get_max_count could be used to generate a static lookup table. This hasn't been done due to concerns
about cross-platform compatibility and flexibility.

14

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Definitions
stable sort

A sorting approach that preserves pre-existing order. If there are two elements with identical keys in a list that is later
stably sorted, whichever came first in the initial list will come first in a stably sorted list. The algorithms provided here
provide no such guarantee; items with identical keys will have arbitrary resulting order relative to each other.

15

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Frequently asked Questions
There are no FAQs yet.

16

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Acknowledgements
• The author would like to thank his wife Mary for her patience and support during the long process of converting this

from a piece of C code to a template library.

• The author would also like to thank Phil Endecott and Frank Gennari for the improvements they've suggested and for
testing. Without them this would have taken longer to develop or performed worse.

• float_mem_cast was fixed to be safe and fast thanks to Scott McMurray. That fix was critical for a high-performance
cross-platform float_sort.

• Thanks also for multiple helpful suggestions provided by Steven Watanabe, Edouard Alligand, and others.

• Initial documentation was refactored to use Quickbook by Paul A. Bristow.

17

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Bibliography
Standard Template Library Sort Algorithms

C++ STL sort algorithms.

Radix Sort

A type of algorithm that sorts based upon distribution instead of by comparison. Wikipedia has an article about Radix
Sorting. A more detailed description of various Radix Sorting algorithms is provided here:

Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition. Addison-Wesley,
1998. ISBN 0-201-89685-0. Section 5.2.5: Sorting by Distribution, pp.168-179.

Introsort

A high-speed comparison-based sorting algorithm that takes (N * log(N)) time. See introsort and Musser, David R.
(1997). "Introspective Sorting and Selection Algorithms", Software: Practice and Experience (Wiley) 27 (8), pp 983-
993, available at Musser Introsoft.

America Flag Sort

A high-speed hybrid string sorting algorithm that string_sort is partially based upon. See American flag sort and
Peter M. McIlroy, Keith Bostic, M. Douglas McIlroy. Engineering Radix Sort, Computing Systems 1993 at Engineering
Radix sort, Peter M McIlroy and Keith Bostic.

Adaptive Left Radix (ARL)

ARL (Adaptive Left Radix) is a hybrid cache-friendly integer sorting algorithm with comparable speed on random data
to integer_sort, but does not have the optimizations for worst-case performance, causing it to perform poorly on
certain types of unevenly distributed data.

Arne Maus, ARL, a faster in-place, cache friendly sorting algorithm, presented at NIK2002, Norwegian Informatics
Conference, Kongsberg, 2002. Tapir, ISBN 82-91116-45-8.

Original Spreadsort

The algorithm that integer_sort was originally based on. integer_sort uses a smaller number of key bits at a time
for better cache efficiency than the method described in the paper. The importance of cache efficiency grew as CPU
clock speeds increased while main memory latency stagnated. See Steven J. Ross, The Spreadsort High-performance
General-case Sorting Algorithm, Parallel and Distributed Processing Techniques and Applications, Volume 3, pp.1100-
1106. Las Vegas Nevada. 2002. See Steven Ross spreadsort_2002.

18

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/algorithm/sort/
http://en.wikipedia.org/wiki/Introsort
http://www.cs.rpi.edu/~musser/gp/introsort.ps
http://en.wikipedia.org/wiki/American_flag_sort
../../doc/mcilroy.ps
../../doc/mcilroy.ps
http://www.nik.no/2002/Maus.pdf
../../doc/papers/original_spreadsort06_2002.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

History
• First release following review in Boost 1.58.

• Review of Boost.Sort/Spreadsort library

19

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://permalink.gmane.org/gmane.comp.lib.boost.devel/255194
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Boost.Sort C++ Reference

Header <boost/sort/spreadsort/float_sort.hpp>

namespace boost {
namespace sort {

template<typename Data_type, typename Cast_type>
Cast_type float_mem_cast(const Data_type &);

template<typename RandomAccessIter>
void float_sort(RandomAccessIter, RandomAccessIter);

template<typename RandomAccessIter, typename Right_shift>
void float_sort(RandomAccessIter, RandomAccessIter, Right_shift);

template<typename RandomAccessIter, typename Right_shift,
typename Compare>

void float_sort(RandomAccessIter, RandomAccessIter, Right_shift,
Compare);

}
}

Function template float_mem_cast

boost::sort::float_mem_cast — Casts a float to the specified integer type.

Synopsis

// In header: <boost/sort/spreadsort/float_sort.hpp>

template<typename Data_type, typename Cast_type>
Cast_type float_mem_cast(const Data_type & data);

Description

Example:

struct rightshift {
int operator()(const DATA_TYPE &x, const unsigned offset) const {

return float_mem_cast<KEY_TYPE, CAST_TYPE>(x.key) >> offset;
}

};

Template Parameters: Integer type (same size) to which to cast.Cast_type

Data_type Floating-point IEEE 754/IEC559 type.

Function template float_sort

boost::sort::float_sort — float_sort with casting to the appropriate size.

20

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../../../boost/sort/spreadsort/float_sort.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/sort/spreadsort/float_sort.hpp>

template<typename RandomAccessIter>
void float_sort(RandomAccessIter first, RandomAccessIter last);

Description

Some performance plots of runtime vs. n and log(range) are provided:
windows_float_sort
osx_float_sort

A simple example of sorting some floating-point is:

vector<float> vec;
vec.push_back(1.0);
vec.push_back(2.3);
vec.push_back(1.3);
spreadsort(vec.begin(), vec.end());

The sorted vector contains ascending values "1.0 1.3 2.3".

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
Template Parameters: Random access iteratorRandomAccessIter

Function template float_sort

boost::sort::float_sort — Floating-point sort algorithm using random access iterators with just right-shift functor.

Synopsis

// In header: <boost/sort/spreadsort/float_sort.hpp>

template<typename RandomAccessIter, typename Right_shift>
void float_sort(RandomAccessIter first, RandomAccessIter last,

Right_shift rshift);

Description

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
rshift Number of bits to right-shift (using functor).

Template Parameters: Random access iteratorRandomAccessIter

Right_shift Functor for right-shift by parameter shift bits.

Function template float_sort

boost::sort::float_sort — Float sort algorithm using random access iterators with both right-shift and user-defined com-
parison operator.

21

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_float_sort.htm
../../doc/graph/osx_float_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/sort/spreadsort/float_sort.hpp>

template<typename RandomAccessIter, typename Right_shift, typename Compare>
void float_sort(RandomAccessIter first, RandomAccessIter last,

Right_shift rshift, Compare comp);

Description

Parameters: comparison functor.comp

first Iterator pointer to first element.
last Iterator pointing to one beyond the end of data.
rshift Number of bits to right-shift (using functor).

Template Parameters: Random access iteratorRandomAccessIter

Right_shift functor for right-shift by parameter shift bits.

Header <boost/sort/spreadsort/integer_sort.hpp>

namespace boost {
namespace sort {

template<typename RandomAccessIter>
void integer_sort(RandomAccessIter, RandomAccessIter);

template<typename RandomAccessIter, typename Right_shift,
typename Compare>

void integer_sort(RandomAccessIter, RandomAccessIter, Right_shift,
Compare);

template<typename RandomAccessIter, typename Right_shift>
void integer_sort(RandomAccessIter, RandomAccessIter, Right_shift);

}
}

Function template integer_sort

boost::sort::integer_sort — Integer sort algorithm using random access iterators. (All variants fall back to std::sort
if the data size is too small, < detail::min_sort_size).

Synopsis

// In header: <boost/sort/spreadsort/integer_sort.hpp>

template<typename RandomAccessIter>
void integer_sort(RandomAccessIter first, RandomAccessIter last);

Description

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort

22

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
../../../../boost/sort/spreadsort/integer_sort.hpp
../../doc/graph/windows_integer_sort.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
Template Parameters: Random access iteratorRandomAccessIter

Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template integer_sort

boost::sort::integer_sort — Integer sort algorithm using random access iterators with both right-shift and user-defined
comparison operator. (All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

Synopsis

// In header: <boost/sort/spreadsort/integer_sort.hpp>

template<typename RandomAccessIter, typename Right_shift, typename Compare>
void integer_sort(RandomAccessIter first, RandomAccessIter last,

Right_shift shift, Compare comp);

23

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/osx_integer_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: comparison functor.comp

first Iterator pointer to first element.
last Iterator pointing to one beyond the end of data.
shift Number of bits to right-shift (using functor).

Template Parameters: Random access iteratorRandomAccessIter

Right_shift functor for right-shift by parameter shift bits.
Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Returns: void.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template integer_sort

boost::sort::integer_sort — Integer sort algorithm using random access iterators with just right-shift functor. (All variants
fall back to std::sort if the data size is too small, < detail::min_sort_size).

24

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/sort/spreadsort/integer_sort.hpp>

template<typename RandomAccessIter, typename Right_shift>
void integer_sort(RandomAccessIter first, RandomAccessIter last,

Right_shift shift);

Description

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).

Performance: Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than
pure comparison-based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for
32-bit integers is O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
shift Number of bits to right-shift (using functor).

Template Parameters: Random access iteratorRandomAccessIter

Right_shift functor for right-shift by parameter shift bits.
Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.

25

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: std::exception Propagates exceptions if any of the element comparisons, the element
swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Header <boost/sort/spreadsort/spreadsort.hpp>

namespace boost {
namespace sort {

template<typename RandomAccessIter>
boost::enable_if_c< std::numeric_limits< typename std::iterator_traits< RandomAc↵

cessIter >::value_type >::is_integer, void >::type
spreadsort(RandomAccessIter, RandomAccessIter);

template<typename RandomAccessIter>
boost::enable_if_c< !std::numeric_limits< typename std::iterator_traits< RandomAc↵

cessIter >::value_type >::is_integer &&std::numeric_limits< typename std::iterat↵
or_traits< RandomAccessIter >::value_type >::is_iec559, void >::type

spreadsort(RandomAccessIter, RandomAccessIter);
template<typename RandomAccessIter>
boost::enable_if_c< is_same< typename std::iterator_traits< RandomAcces↵

sIter >::value_type, typename std::string >::value||is_same< typename std::iterat↵
or_traits< RandomAccessIter >::value_type, typename std::wstring >::value, void >::type

spreadsort(RandomAccessIter, RandomAccessIter);
}

}

Function template spreadsort

boost::sort::spreadsort — Generic spreadsort variant detecting integer-type elements so call to integer_sort.

Synopsis

// In header: <boost/sort/spreadsort/spreadsort.hpp>

template<typename RandomAccessIter>
boost::enable_if_c< std::numeric_limits< typename std::iterator_traits< RandomAcces↵

sIter >::value_type >::is_integer, void >::type
spreadsort(RandomAccessIter first, RandomAccessIter last);

Description

If the data type provided is an integer, integer_sort is used.

Note

Sorting other data types requires picking between integer_sort, float_sort and string_sort
directly, as spreadsort won't accept types that don't have the appropriate type_traits.

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
Template Parameters: Random access iteratorRandomAccessIter

Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.

26

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../../../boost/sort/spreadsort/spreadsort.hpp
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Postconditions: The elements in the range [first, last) are sorted in ascending order.

Function template spreadsort

boost::sort::spreadsort — Generic spreadsort variant detecting float element type so call to float_sort.

Synopsis

// In header: <boost/sort/spreadsort/spreadsort.hpp>

template<typename RandomAccessIter>
boost::enable_if_c< !std::numeric_limits< typename std::iterator_traits< RandomAcces↵

sIter >::value_type >::is_integer &&std::numeric_limits< typename std::iterat↵
or_traits< RandomAccessIter >::value_type >::is_iec559, void >::type

spreadsort(RandomAccessIter first, RandomAccessIter last);

Description

If the data type provided is a float or castable-float, float_sort is used.

Note

Sorting other data types requires picking between integer_sort, float_sort and string_sort
directly, as spreadsort won't accept types that don't have the appropriate type_traits.

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
Template Parameters: Random access iteratorRandomAccessIter

Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.

Function template spreadsort

boost::sort::spreadsort — Generic spreadsort variant detecting string element type so call to string_sort for
std::strings and std::wstrings.

Synopsis

// In header: <boost/sort/spreadsort/spreadsort.hpp>

template<typename RandomAccessIter>
boost::enable_if_c< is_same< typename std::iterator_traits< RandomAcces↵

sIter >::value_type, typename std::string >::value||is_same< typename std::iterat↵
or_traits< RandomAccessIter >::value_type, typename std::wstring >::value, void >::type

spreadsort(RandomAccessIter first, RandomAccessIter last);

27

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Description

If the data type provided is a string or wstring, string_sort is used.

Note

Sorting other data types requires picking between integer_sort, float_sort and string_sort
directly, as spreadsort won't accept types that don't have the appropriate type_traits.

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
Template Parameters: Random access iteratorRandomAccessIter

Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.

Header <boost/sort/spreadsort/string_sort.hpp>

namespace boost {
namespace sort {

template<typename RandomAccessIter, typename Unsigned_char_type>
void string_sort(RandomAccessIter, RandomAccessIter, Unsigned_char_type);

template<typename RandomAccessIter>
void string_sort(RandomAccessIter, RandomAccessIter);

template<typename RandomAccessIter, typename Compare,
typename Unsigned_char_type>

void reverse_string_sort(RandomAccessIter, RandomAccessIter, Compare,
Unsigned_char_type);

template<typename RandomAccessIter, typename Compare>
void reverse_string_sort(RandomAccessIter, RandomAccessIter, Compare);

template<typename RandomAccessIter, typename Get_char,
typename Get_length>

void string_sort(RandomAccessIter, RandomAccessIter, Get_char,
Get_length);

template<typename RandomAccessIter, typename Get_char,
typename Get_length, typename Compare>

void string_sort(RandomAccessIter, RandomAccessIter, Get_char,
Get_length, Compare);

template<typename RandomAccessIter, typename Get_char,
typename Get_length, typename Compare>

void reverse_string_sort(RandomAccessIter, RandomAccessIter, Get_char,
Get_length, Compare);

}
}

Function template string_sort

boost::sort::string_sort — String sort algorithm using random access iterators, allowing character-type overloads.
(All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

28

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
../../../../boost/sort/spreadsort/string_sort.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter, typename Unsigned_char_type>
void string_sort(RandomAccessIter first, RandomAccessIter last,

Unsigned_char_type unused);

Description

string_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly 50%
to 2X faster than std::sort for large tests (>=100kB).

Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure compar-
ison-based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers
is O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_string_sort
osx_string_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
unused Unused ???

Template Parameters: Random access iteratorRandomAccessIter

Unsigned_char_type Unsigned character type used for string.
Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.

29

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_string_sort.htm
../../doc/graph/osx_string_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Throws: std::exception Propagates exceptions if any of the element comparisons, the element
swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template string_sort

boost::sort::string_sort — String sort algorithm using random access iterators, wraps using default of unsigned char. (All
variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter>
void string_sort(RandomAccessIter first, RandomAccessIter last);

Description

string_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly 50%
to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_string_sort
osx_string_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: Iterator pointer to first element.first

last Iterator pointing to one beyond the end of data.
Template Parameters: Random access iteratorRandomAccessIter

Requires: [first, last) is a valid range.

30

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_string_sort.htm
../../doc/graph/osx_string_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template reverse_string_sort

boost::sort::reverse_string_sort — String sort algorithm using random access iterators, allowing character-type overloads.

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter, typename Compare,
typename Unsigned_char_type>

void reverse_string_sort(RandomAccessIter first, RandomAccessIter last,
Compare comp, Unsigned_char_type unused);

Description

(All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

31

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.cppreference.com/w/cpp/concept/LessThanComparable
../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: comparison functor.comp

first Iterator pointer to first element.
last Iterator pointing to one beyond the end of data.
unused Unused ???

Template Parameters: Random access iteratorRandomAccessIter

Unsigned_char_type Unsigned character type used for string.
Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Returns: void.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template reverse_string_sort

boost::sort::reverse_string_sort — String sort algorithm using random access iterators, wraps using default of unsigned
char.

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter, typename Compare>
void reverse_string_sort(RandomAccessIter first, RandomAccessIter last,

Compare comp);

Description

(All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

32

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: Comparison functor.comp

first Iterator pointer to first element.
last Iterator pointing to one beyond the end of data.

Template Parameters: Random access iteratorRandomAccessIter

Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Returns: void.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template string_sort

boost::sort::string_sort — String sort algorithm using random access iterators, wraps using default of unsigned char.

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter, typename Get_char, typename Get_length>
void string_sort(RandomAccessIter first, RandomAccessIter last,

Get_char getchar, Get_length length);

Description

(All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:

33

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: Iterator pointer to first element.first

getchar Number corresponding to the character offset from bracket functor equival-
ent to operator[].

last Iterator pointing to one beyond the end of data.
length Functor to get the length of the string in characters.

Template Parameters: Bracket functor equivalent to operator[], taking a number
corresponding to the character offset..

Get_char

Get_length Functor to get the length of the string in characters. TODO
Check this and below and other places!!!

RandomAccessIter Random access iterator
Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Requires: RandomAccessIter value_type supports the operator>>, which returns an integer-

type right-shifted a specified number of bits.
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Returns: void.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template string_sort

boost::sort::string_sort — String sort algorithm using random access iterators, wraps using default of unsigned char.

34

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter, typename Get_char, typename Get_length,
typename Compare>

void string_sort(RandomAccessIter first, RandomAccessIter last,
Get_char getchar, Get_length length, Compare comp);

Description

(All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: comparison functor.comp

first Iterator pointer to first element.
getchar ???
last Iterator pointing to one beyond the end of data.
length ???

Template Parameters: ???.Get_char

Get_length ??? TODO
RandomAccessIter Random access iterator

Requires: [first, last) is a valid range.

35

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Returns: void.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

Function template reverse_string_sort

boost::sort::reverse_string_sort — Reverse String sort algorithm using random access iterators.

Synopsis

// In header: <boost/sort/spreadsort/string_sort.hpp>

template<typename RandomAccessIter, typename Get_char, typename Get_length,
typename Compare>

void reverse_string_sort(RandomAccessIter first, RandomAccessIter last,
Get_char getchar, Get_length length, Compare comp);

Description

(All variants fall back to std::sort if the data size is too small, < detail::min_sort_size).

integer_sort is a fast templated in-place hybrid radix/comparison algorithm, which in testing tends to be roughly
50% to 2X faster than std::sort for large tests (>=100kB).
Worst-case performance is O(N * (lg(range)/s + s)) , so integer_sort is asymptotically faster than pure comparison-
based algorithms. s is max_splits, which defaults to 11, so its worst-case with default settings for 32-bit integers is
O(N * ((32/11) slow radix-based iterations fast comparison-based iterations).
Some performance plots of runtime vs. n and log(range) are provided:
windows_integer_sort
osx_integer_sort

Warning

Throwing an exception may cause data loss. This will also throw if a small vector resize throws, in
which case there will be no data loss.

Warning

Invalid arguments cause undefined behaviour.

Note

spreadsort function provides a wrapper that calls the fastest sorting algorithm available for a data
type, enabling faster generic-programming.

The lesser of O(N*log(N)) comparisons and O(N*log(K/S + S)) operations worst-case, where:

* N is last - first,

* K is the log of the range in bits (32 for 32-bit integers using their full range),

36

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://en.cppreference.com/w/cpp/concept/LessThanComparable
../../doc/graph/windows_integer_sort.htm
../../doc/graph/osx_integer_sort.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

* S is a constant called max_splits, defaulting to 11 (except for strings where it is the log of the character size).

Parameters: comparison functor.comp

first Iterator pointer to first element.
getchar ???
last Iterator pointing to one beyond the end of data.
length ???

Template Parameters: ???.Get_char

Get_length ??? TODO
RandomAccessIter Random access iterator

Requires: [first, last) is a valid range.
Requires: RandomAccessIter value_type is mutable.
Requires: RandomAccessIter value_type is LessThanComparable
Postconditions: The elements in the range [first, last) are sorted in ascending order.
Returns: void.
Throws: std::exception Propagates exceptions if any of the element comparisons, the element

swaps (or moves), the right shift, subtraction of right-shifted elements, functors, or any
operations on iterators throw.

37

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.cplusplus.com/reference/iterator/RandomAccessIterator/
http://en.cppreference.com/w/cpp/concept/LessThanComparable
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Function Index
F I R S

F float_mem_cast
Function template float_mem_cast
Header < boost/sort/spreadsort/float_sort.hpp >

float_sort
Function template float_sort
Header < boost/sort/spreadsort/float_sort.hpp >
Overloading

I integer_sort
Function template integer_sort
Header < boost/sort/spreadsort/integer_sort.hpp >

R reverse_string_sort
Function template reverse_string_sort
Header < boost/sort/spreadsort/string_sort.hpp >

S spreadsort
Function template spreadsort
Header < boost/sort/spreadsort/spreadsort.hpp >

string_sort
Function template string_sort
Header < boost/sort/spreadsort/string_sort.hpp >

38

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Index
A B C D E F G H I K L M O P R S T U W

A ALR_THRESHOLD
Why spreadsort?

B Bibliography
data

bracket
Overloading

C CAST_TYPE
Function template float_mem_cast
Spreadsort Examples

container
Function template float_sort
Spreadsort Examples
Tuning

D data
Bibliography
Function template float_mem_cast
Function template float_sort
Function template integer_sort
Function template reverse_string_sort
Function template spreadsort
Function template string_sort
Header < boost / sort / spreadsort / spreadsort . hpp >
Hybrid Radix
Integer Sort Examples
Introduction
Overloading
Performance
Radix Sorting
Spreadsort Examples
Tuning
Unstable Sorting
Why spreadsort?

DATA_TYPE
Function template float_mem_cast
Overloading
Spreadsort Examples

E example
Function template float_mem_cast
Function template float_sort
Integer Sort Examples
Introduction
Overloading
Spreadsort Examples
Why spreadsort?

F float_mem_cast
Function template float_mem_cast
Header < boost/sort/spreadsort/float_sort.hpp >

float_sort
Function template float_sort

39

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header < boost/sort/spreadsort/float_sort.hpp >
Overloading

Function template float_mem_cast
CAST_TYPE
data
DATA_TYPE
example
float_mem_cast
KEY_TYPE
rightshift

Function template float_sort
container
data
example
float_sort

Function template integer_sort
data
integer_sort
maximum
minimum
scaling

Function template reverse_string_sort
data
maximum
minimum
reverse_string_sort
scaling

Function template spreadsort
data
scaling
spreadsort

Function template string_sort
data
maximum
minimum
scaling
string_sort

G getsize
Overloading

H Header < boost / sort / spreadsort / spreadsort . hpp >
data
scaling

Header < boost/sort/spreadsort/float_sort.hpp >
float_mem_cast
float_sort

Header < boost/sort/spreadsort/integer_sort.hpp >
integer_sort

Header < boost/sort/spreadsort/spreadsort.hpp >
spreadsort

Header < boost/sort/spreadsort/string_sort.hpp >
reverse_string_sort
string_sort

Hybrid Radix
data
scaling

40

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

I Integer Sort Examples
data
example

Integer Spreadsort
maximum

integer_sort
Function template integer_sort
Header < boost/sort/spreadsort/integer_sort.hpp >

Introduction
data
example

K KEY_TYPE
Function template float_mem_cast
Spreadsort Examples

L lessthan
Overloading
Spreadsort Examples

Lookup Table?
minimum

M maximum
Function template integer_sort
Function template reverse_string_sort
Function template string_sort
Integer Spreadsort
Overloading
Performance
Tuning
Unused X86 optimization
Why spreadsort?

minimum
Function template integer_sort
Function template reverse_string_sort
Function template string_sort
Lookup Table?
Performance
Tuning
Why spreadsort?

O Overloading
bracket
data
DATA_TYPE
example
float_sort
getsize
lessthan
maximum

P Performance
data
maximum
minimum
scaling

R Radix Sorting
data

41

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

reverse_string_sort
Function template reverse_string_sort
Header < boost/sort/spreadsort/string_sort.hpp >

rightshift
Function template float_mem_cast
Spreadsort Examples

S scaling
Function template integer_sort
Function template reverse_string_sort
Function template spreadsort
Function template string_sort
Header < boost / sort / spreadsort / spreadsort . hpp >
Hybrid Radix
Performance
Spreadsort Examples
Tuning
Why spreadsort?

spreadsort
Function template spreadsort
Header < boost/sort/spreadsort/spreadsort.hpp >

Spreadsort Examples
CAST_TYPE
container
data
DATA_TYPE
example
KEY_TYPE
lessthan
rightshift
scaling

string_sort
Function template string_sort
Header < boost/sort/spreadsort/string_sort.hpp >

T Tuning
container
data
maximum
minimum
scaling

U Unstable Sorting
data

Unused X86 optimization
maximum

W Why spreadsort?
ALR_THRESHOLD
data
example
maximum
minimum
scaling

42

Boost.Sort

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Sort
	Table of Contents
	Overview
	Introduction
	Overloading
	Performance
	Tuning

	Spreadsort
	Header <boost/sort/spreadsort/spreadsort.hpp>
	Spreadsort Examples
	Integer Spreadsort
	Integer Sort Examples

	Rationale
	Radix Sorting
	Hybrid Radix
	Why spreadsort?
	Unstable Sorting
	Unused X86 optimization
	Lookup Table?

	Definitions
	Frequently asked Questions
	Acknowledgements
	Bibliography
	History
	Boost.Sort C++ Reference
	Header <boost/sort/spreadsort/float_sort.hpp>
	Function template float_mem_cast
	Synopsis
	Description

	Function template float_sort
	Synopsis
	Description

	Function template float_sort
	Synopsis
	Description

	Function template float_sort
	Synopsis
	Description

	Header <boost/sort/spreadsort/integer_sort.hpp>
	Function template integer_sort
	Synopsis
	Description

	Function template integer_sort
	Synopsis
	Description

	Function template integer_sort
	Synopsis
	Description

	Header <boost/sort/spreadsort/spreadsort.hpp>
	Function template spreadsort
	Synopsis
	Description

	Function template spreadsort
	Synopsis
	Description

	Function template spreadsort
	Synopsis
	Description

	Header <boost/sort/spreadsort/string_sort.hpp>
	Function template string_sort
	Synopsis
	Description

	Function template string_sort
	Synopsis
	Description

	Function template reverse_string_sort
	Synopsis
	Description

	Function template reverse_string_sort
	Synopsis
	Description

	Function template string_sort
	Synopsis
	Description

	Function template string_sort
	Synopsis
	Description

	Function template reverse_string_sort
	Synopsis
	Description

	Function Index
	Index

