ViSP  3.0.0
homographyHLM2DObject.cpp
1 /****************************************************************************
2  *
3  * This file is part of the ViSP software.
4  * Copyright (C) 2005 - 2015 by Inria. All rights reserved.
5  *
6  * This software is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * ("GPL") version 2 as published by the Free Software Foundation.
9  * See the file LICENSE.txt at the root directory of this source
10  * distribution for additional information about the GNU GPL.
11  *
12  * For using ViSP with software that can not be combined with the GNU
13  * GPL, please contact Inria about acquiring a ViSP Professional
14  * Edition License.
15  *
16  * See http://visp.inria.fr for more information.
17  *
18  * This software was developed at:
19  * Inria Rennes - Bretagne Atlantique
20  * Campus Universitaire de Beaulieu
21  * 35042 Rennes Cedex
22  * France
23  *
24  * If you have questions regarding the use of this file, please contact
25  * Inria at visp@inria.fr
26  *
27  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
28  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29  *
30  * Description:
31  * Example of the HLM (Malis) homography estimation algorithm.
32  *
33  * Authors:
34  * Eric Marchand
35  *
36  *****************************************************************************/
37 
55 #include <visp3/core/vpMath.h>
56 #include <visp3/core/vpRotationMatrix.h>
57 #include <visp3/vision/vpHomography.h>
58 #include <visp3/core/vpDebug.h>
59 #include <visp3/core/vpThetaUVector.h>
60 
61 #include <visp3/core/vpPoint.h>
62 #include <visp3/core/vpMath.h>
63 #include <visp3/core/vpHomogeneousMatrix.h>
64 #include <visp3/core/vpDebug.h>
65 #include <visp3/io/vpParseArgv.h>
66 #include <stdlib.h>
67 // List of allowed command line options
68 #define GETOPTARGS "h"
69 #define L 0.1
70 #define nbpt 5
71 
72 void usage(const char *name, const char *badparam);
73 bool getOptions(int argc, const char **argv);
74 
84 void usage(const char *name, const char *badparam)
85 {
86  fprintf(stdout, "\n\
87 Test the HLM (Malis) homography estimation algorithm with a planar object.\n\
88 \n\
89 SYNOPSIS\n\
90  %s [-h]\n", name);
91 
92  fprintf(stdout, "\n\
93 OPTIONS: Default\n\
94  -h\n\
95  Print the help.\n");
96 
97  if (badparam) {
98  fprintf(stderr, "ERROR: \n" );
99  fprintf(stderr, "\nBad parameter [%s]\n", badparam);
100  }
101 }
112 bool getOptions(int argc, const char **argv)
113 {
114  const char *optarg_;
115  int c;
116  while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
117 
118  switch (c) {
119  case 'h': usage(argv[0], NULL); return false; break;
120 
121  default:
122  usage(argv[0], optarg_);
123  return false; break;
124  }
125  }
126 
127  if ((c == 1) || (c == -1)) {
128  // standalone param or error
129  usage(argv[0], NULL);
130  std::cerr << "ERROR: " << std::endl;
131  std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
132  return false;
133  }
134 
135  return true;
136 }
137 
138 
139 int
140 main(int argc, const char ** argv)
141 {
142  try {
143  // Read the command line options
144  if (getOptions(argc, argv) == false) {
145  exit (-1);
146  }
147 
148  vpPoint P[nbpt] ; // Point to be tracked
149  std::vector<double> xa(nbpt), ya(nbpt) ;
150  std::vector<double> xb(nbpt), yb(nbpt) ;
151 
152  vpPoint aP[nbpt] ; // Point to be tracked
153  vpPoint bP[nbpt] ; // Point to be tracked
154 
155  P[0].setWorldCoordinates(-L,-L, 0 ) ;
156  P[1].setWorldCoordinates(2*L,-L, 0 ) ;
157  P[2].setWorldCoordinates(L,L, 0 ) ;
158  P[3].setWorldCoordinates(-L,3*L, 0 ) ;
159  P[4].setWorldCoordinates(0,0, 0 ) ;
160  /*
161  P[5].setWorldCoordinates(10,20, 0 ) ;
162  P[6].setWorldCoordinates(-10,12, 0 ) ;
163  */
164  vpHomogeneousMatrix bMo(0,0,1, 0,0,0) ;
165  vpHomogeneousMatrix aMb(1,0,0.0,vpMath::rad(10),0,vpMath::rad(40)) ;
166  vpHomogeneousMatrix aMo =aMb*bMo ;
167  for(unsigned int i=0 ; i < nbpt ; i++)
168  {
169  P[i].project(aMo) ;
170  aP[i] = P[i] ;
171  xa[i] = P[i].get_x() ;
172  ya[i] = P[i].get_y() ;
173  }
174 
175  for(unsigned int i=0 ; i < nbpt ; i++)
176  {
177  P[i].project(bMo) ;
178  bP[i] = P[i] ;
179  xb[i] = P[i].get_x() ;
180  yb[i] = P[i].get_y() ;
181  }
182  std::cout << "-------------------------------" <<std::endl ;
183  std::cout << "aMb "<<std::endl <<aMb << std::endl ;
184  std::cout << "-------------------------------" <<std::endl ;
185  vpHomography aHb ;
186 
187  vpHomography::HLM(xb, yb, xa, ya, true, aHb) ;
188 
189  aHb /= aHb[2][2] ;
190  std::cout << "aHb computed using the Malis paralax algorithm: \n" << aHb<< std::endl ;
191 
192  vpRotationMatrix aRb ;
193  vpTranslationVector aTb ;
194  vpColVector n ;
195 
196  std::cout << "-------------------------------" <<std::endl ;
197  std::cout << "extract R, T and n " << std::endl;
198  aHb.computeDisplacement(aRb, aTb, n) ;
199  std::cout << "Rotation: aRb" <<std::endl ;
200  std::cout << aRb << std::endl ;
201  std::cout << "Translation: aTb" <<std::endl;
202  std::cout << (aTb).t() <<std::endl ;
203  std::cout << "Normal to the plane: n" <<std::endl;
204  std::cout << (n).t() <<std::endl ;
205 
206 
207  std::cout << "-------------------------------" <<std::endl ;
208  std::cout << "Compare with built homography H = R + t/d " << std::endl ;
209  vpPlane bp(0,0,1,1) ;
210  vpHomography aHb_built(aMb,bp) ;
211  std::cout << "aHb built from the displacement " << std::endl ;
212  std::cout << std::endl <<aHb_built/aHb_built[2][2] << std::endl ;
213 
214  aHb_built.computeDisplacement(aRb, aTb, n) ;
215  std::cout << "Rotation: aRb" <<std::endl ;
216  std::cout << aRb << std::endl ;
217  std::cout << "Translation: aTb" <<std::endl;
218  std::cout << (aTb).t() <<std::endl ;
219  std::cout << "Normal to the plane: n" <<std::endl;
220  std::cout << (n).t() <<std::endl ;
221 
222  std::cout << "-------------------------------" << std::endl ;
223  std::cout << "test if ap = aHb bp" << std::endl ;
224 
225  for(unsigned int i=0 ; i < nbpt ; i++)
226  {
227  std::cout << "Point "<< i<< std::endl ;
228  vpPoint p ;
229  std::cout << "(" ;
230  std::cout << aP[i].get_x()/aP[i].get_w()<<", "<< aP[i].get_y()/aP[i].get_w() ;
231  std::cout <<") = (" ;
232  p = aHb*bP[i] ;
233  std::cout << p.get_x() /p.get_w()<<", "<< p.get_y()/ p.get_w() <<")"<<std::endl ;
234  }
235 
236  std::cout << "-------------------------------" <<std::endl ;
237  std::cout << "test displacement" << std::endl ;
238 
239  std::list<vpRotationMatrix> laRb ;
240  std::list<vpTranslationVector> laTb ;
241  std::list<vpColVector> lnb ;
242 
243  vpHomography::computeDisplacement(aHb,bP[0].get_x(),bP[0].get_y(),
244  laRb, laTb, lnb) ;
245 
246  std::list<vpRotationMatrix>::const_iterator it_laRb = laRb.begin();
247  std::list<vpTranslationVector>::const_iterator it_laTb = laTb.begin();
248  std::list<vpColVector>::const_iterator it_lnb = lnb.begin();
249 
250  int k =1 ;
251  while (it_lnb != lnb.end())
252  {
253  std::cout << "Solution " << k++ << std::endl ;
254 
255  aRb = *it_laRb;
256  aTb = *it_laTb;
257  n = *it_lnb;
258  std::cout << "Rotation: aRb" <<std::endl ;
259  std::cout << aRb << std::endl ;
260  std::cout << "Translation: aTb" <<std::endl;
261  std::cout << (aTb).t() <<std::endl ;
262  std::cout << "Normal to the plane: n" <<std::endl;
263  std::cout << (n).t() <<std::endl ;
264 
265  ++ it_laRb;
266  ++ it_laTb;
267  ++ it_lnb;
268  }
269  return 0;
270  }
271  catch(vpException e) {
272  std::cout << "Catch an exception: " << e << std::endl;
273  return 1;
274  }
275 }
Implementation of an homogeneous matrix and operations on such kind of matrices.
error that can be emited by ViSP classes.
Definition: vpException.h:73
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:458
double get_w() const
Get the point w coordinate in the image plane.
Definition: vpPoint.cpp:460
void computeDisplacement(vpRotationMatrix &aRb, vpTranslationVector &atb, vpColVector &n)
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:76
Class that defines what is a point.
Definition: vpPoint.h:59
static void HLM(const std::vector< double > &xb, const std::vector< double > &yb, const std::vector< double > &xa, const std::vector< double > &ya, bool isplanar, vpHomography &aHb)
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of an homography and operations on homographies.
Definition: vpHomography.h:179
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:456
static double rad(double deg)
Definition: vpMath.h:104
void setWorldCoordinates(const double oX, const double oY, const double oZ)
Definition: vpPoint.cpp:111
Implementation of column vector and the associated operations.
Definition: vpColVector.h:72
This class defines the container for a plane geometrical structure.
Definition: vpPlane.h:58
Class that consider the case of a translation vector.