Libav
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
28 #include "libavutil/avassert.h"
29 #include "libavutil/imgutils.h"
30 #include "libavutil/timer.h"
31 #include "internal.h"
32 #include "cabac.h"
33 #include "cabac_functions.h"
34 #include "error_resilience.h"
35 #include "avcodec.h"
36 #include "h264.h"
37 #include "h264data.h"
38 #include "h264chroma.h"
39 #include "h264_mvpred.h"
40 #include "golomb.h"
41 #include "mathops.h"
42 #include "mpegutils.h"
43 #include "rectangle.h"
44 #include "thread.h"
45 
46 
47 static const uint8_t rem6[QP_MAX_NUM + 1] = {
48  0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
49  3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
50  0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
51 };
52 
53 static const uint8_t div6[QP_MAX_NUM + 1] = {
54  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
55  3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
56  7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
57 };
58 
59 static const uint8_t field_scan[16] = {
60  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
61  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
62  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
63  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
64 };
65 
66 static const uint8_t field_scan8x8[64] = {
67  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
68  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
69  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
70  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
71  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
72  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
73  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
74  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
75  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
76  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
77  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
78  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
79  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
80  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
81  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
82  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
83 };
84 
85 static const uint8_t field_scan8x8_cavlc[64] = {
86  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
87  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
88  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
89  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
90  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
91  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
92  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
93  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
94  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
95  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
96  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
97  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
98  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
99  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
100  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
101  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
102 };
103 
104 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
105 static const uint8_t zigzag_scan8x8_cavlc[64] = {
106  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
107  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
108  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
109  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
110  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
111  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
112  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
113  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
114  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
115  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
116  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
117  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
118  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
119  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
120  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
121  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
122 };
123 
124 static const uint8_t dequant4_coeff_init[6][3] = {
125  { 10, 13, 16 },
126  { 11, 14, 18 },
127  { 13, 16, 20 },
128  { 14, 18, 23 },
129  { 16, 20, 25 },
130  { 18, 23, 29 },
131 };
132 
133 static const uint8_t dequant8_coeff_init_scan[16] = {
134  0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1
135 };
136 
137 static const uint8_t dequant8_coeff_init[6][6] = {
138  { 20, 18, 32, 19, 25, 24 },
139  { 22, 19, 35, 21, 28, 26 },
140  { 26, 23, 42, 24, 33, 31 },
141  { 28, 25, 45, 26, 35, 33 },
142  { 32, 28, 51, 30, 40, 38 },
143  { 36, 32, 58, 34, 46, 43 },
144 };
145 
147 #if CONFIG_H264_DXVA2_HWACCEL
149 #endif
150 #if CONFIG_H264_VAAPI_HWACCEL
152 #endif
153 #if CONFIG_H264_VDA_HWACCEL
156 #endif
157 #if CONFIG_H264_VDPAU_HWACCEL
159 #endif
162 };
163 
165 #if CONFIG_H264_DXVA2_HWACCEL
167 #endif
168 #if CONFIG_H264_VAAPI_HWACCEL
170 #endif
171 #if CONFIG_H264_VDA_HWACCEL
174 #endif
175 #if CONFIG_H264_VDPAU_HWACCEL
177 #endif
180 };
181 
182 
183 static void release_unused_pictures(H264Context *h, int remove_current)
184 {
185  int i;
186 
187  /* release non reference frames */
188  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
189  if (h->DPB[i].f.buf[0] && !h->DPB[i].reference &&
190  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
191  ff_h264_unref_picture(h, &h->DPB[i]);
192  }
193  }
194 }
195 
196 static int alloc_scratch_buffers(H264Context *h, int linesize)
197 {
198  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
199 
200  if (h->bipred_scratchpad)
201  return 0;
202 
203  h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size);
204  // edge emu needs blocksize + filter length - 1
205  // (= 21x21 for h264)
206  h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21);
207 
208  if (!h->bipred_scratchpad || !h->edge_emu_buffer) {
211  return AVERROR(ENOMEM);
212  }
213 
214  return 0;
215 }
216 
218 {
219  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
220  const int mb_array_size = h->mb_stride * h->mb_height;
221  const int b4_stride = h->mb_width * 4 + 1;
222  const int b4_array_size = b4_stride * h->mb_height * 4;
223 
224  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
226  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
227  sizeof(uint32_t), av_buffer_allocz);
228  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
229  sizeof(int16_t), av_buffer_allocz);
230  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
231 
232  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
233  !h->ref_index_pool) {
238  return AVERROR(ENOMEM);
239  }
240 
241  return 0;
242 }
243 
245 {
246  int i, ret = 0;
247 
248  av_assert0(!pic->f.data[0]);
249 
250  pic->tf.f = &pic->f;
251  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
253  if (ret < 0)
254  goto fail;
255 
256  h->linesize = pic->f.linesize[0];
257  h->uvlinesize = pic->f.linesize[1];
258 
259  if (h->avctx->hwaccel) {
260  const AVHWAccel *hwaccel = h->avctx->hwaccel;
262  if (hwaccel->frame_priv_data_size) {
264  if (!pic->hwaccel_priv_buf)
265  return AVERROR(ENOMEM);
267  }
268  }
269 
270  if (!h->qscale_table_pool) {
271  ret = init_table_pools(h);
272  if (ret < 0)
273  goto fail;
274  }
275 
278  if (!pic->qscale_table_buf || !pic->mb_type_buf)
279  goto fail;
280 
281  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
282  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
283 
284  for (i = 0; i < 2; i++) {
287  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
288  goto fail;
289 
290  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
291  pic->ref_index[i] = pic->ref_index_buf[i]->data;
292  }
293 
294  return 0;
295 fail:
296  ff_h264_unref_picture(h, pic);
297  return (ret < 0) ? ret : AVERROR(ENOMEM);
298 }
299 
300 static inline int pic_is_unused(H264Context *h, H264Picture *pic)
301 {
302  if (!pic->f.buf[0])
303  return 1;
304  if (pic->needs_realloc && !(pic->reference & DELAYED_PIC_REF))
305  return 1;
306  return 0;
307 }
308 
310 {
311  int i;
312 
313  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
314  if (pic_is_unused(h, &h->DPB[i]))
315  break;
316  }
317  if (i == H264_MAX_PICTURE_COUNT)
318  return AVERROR_INVALIDDATA;
319 
320  if (h->DPB[i].needs_realloc) {
321  h->DPB[i].needs_realloc = 0;
322  ff_h264_unref_picture(h, &h->DPB[i]);
323  }
324 
325  return i;
326 }
327 
328 
330 {
331  int i, j, q, x;
332  const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
333 
334  for (i = 0; i < 6; i++) {
335  h->dequant8_coeff[i] = h->dequant8_buffer[i];
336  for (j = 0; j < i; j++)
337  if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
338  64 * sizeof(uint8_t))) {
339  h->dequant8_coeff[i] = h->dequant8_buffer[j];
340  break;
341  }
342  if (j < i)
343  continue;
344 
345  for (q = 0; q < max_qp + 1; q++) {
346  int shift = div6[q];
347  int idx = rem6[q];
348  for (x = 0; x < 64; x++)
349  h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
350  ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
351  h->pps.scaling_matrix8[i][x]) << shift;
352  }
353  }
354 }
355 
357 {
358  int i, j, q, x;
359  const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
360  for (i = 0; i < 6; i++) {
361  h->dequant4_coeff[i] = h->dequant4_buffer[i];
362  for (j = 0; j < i; j++)
363  if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
364  16 * sizeof(uint8_t))) {
365  h->dequant4_coeff[i] = h->dequant4_buffer[j];
366  break;
367  }
368  if (j < i)
369  continue;
370 
371  for (q = 0; q < max_qp + 1; q++) {
372  int shift = div6[q] + 2;
373  int idx = rem6[q];
374  for (x = 0; x < 16; x++)
375  h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
376  ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
377  h->pps.scaling_matrix4[i][x]) << shift;
378  }
379  }
380 }
381 
383 {
384  int i, x;
386  if (h->pps.transform_8x8_mode)
388  if (h->sps.transform_bypass) {
389  for (i = 0; i < 6; i++)
390  for (x = 0; x < 16; x++)
391  h->dequant4_coeff[i][0][x] = 1 << 6;
393  for (i = 0; i < 6; i++)
394  for (x = 0; x < 64; x++)
395  h->dequant8_coeff[i][0][x] = 1 << 6;
396  }
397 }
398 
402 static void clone_tables(H264Context *dst, H264Context *src, int i)
403 {
404  dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride;
405  dst->non_zero_count = src->non_zero_count;
406  dst->slice_table = src->slice_table;
407  dst->cbp_table = src->cbp_table;
408  dst->mb2b_xy = src->mb2b_xy;
409  dst->mb2br_xy = src->mb2br_xy;
411  dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride;
412  dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride;
413  dst->direct_table = src->direct_table;
414  dst->list_counts = src->list_counts;
415  dst->DPB = src->DPB;
416  dst->cur_pic_ptr = src->cur_pic_ptr;
417  dst->cur_pic = src->cur_pic;
418  dst->bipred_scratchpad = NULL;
419  dst->edge_emu_buffer = NULL;
421  src->sps.chroma_format_idc);
422 }
423 
424 #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
425 #undef REBASE_PICTURE
426 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
427  ((pic && pic >= old_ctx->DPB && \
428  pic < old_ctx->DPB + H264_MAX_PICTURE_COUNT) ? \
429  &new_ctx->DPB[pic - old_ctx->DPB] : NULL)
430 
431 static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
432  H264Context *new_base,
433  H264Context *old_base)
434 {
435  int i;
436 
437  for (i = 0; i < count; i++) {
438  assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
439  IN_RANGE(from[i], old_base->DPB,
440  sizeof(H264Picture) * H264_MAX_PICTURE_COUNT) ||
441  !from[i]));
442  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
443  }
444 }
445 
446 static int copy_parameter_set(void **to, void **from, int count, int size)
447 {
448  int i;
449 
450  for (i = 0; i < count; i++) {
451  if (to[i] && !from[i]) {
452  av_freep(&to[i]);
453  } else if (from[i] && !to[i]) {
454  to[i] = av_malloc(size);
455  if (!to[i])
456  return AVERROR(ENOMEM);
457  }
458 
459  if (from[i])
460  memcpy(to[i], from[i], size);
461  }
462 
463  return 0;
464 }
465 
466 #define copy_fields(to, from, start_field, end_field) \
467  memcpy(&to->start_field, &from->start_field, \
468  (char *)&to->end_field - (char *)&to->start_field)
469 
470 static int h264_slice_header_init(H264Context *h, int reinit);
471 
473  const AVCodecContext *src)
474 {
475  H264Context *h = dst->priv_data, *h1 = src->priv_data;
476  int inited = h->context_initialized, err = 0;
477  int context_reinitialized = 0;
478  int i, ret;
479 
480  if (dst == src || !h1->context_initialized)
481  return 0;
482 
483  if (inited &&
484  (h->width != h1->width ||
485  h->height != h1->height ||
486  h->mb_width != h1->mb_width ||
487  h->mb_height != h1->mb_height ||
488  h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
489  h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
490  h->sps.colorspace != h1->sps.colorspace)) {
491 
492  /* set bits_per_raw_sample to the previous value. the check for changed
493  * bit depth in h264_set_parameter_from_sps() uses it and sets it to
494  * the current value */
496 
498 
499  h->width = h1->width;
500  h->height = h1->height;
501  h->mb_height = h1->mb_height;
502  h->mb_width = h1->mb_width;
503  h->mb_num = h1->mb_num;
504  h->mb_stride = h1->mb_stride;
505  h->b_stride = h1->b_stride;
506 
507  if ((err = h264_slice_header_init(h, 1)) < 0) {
508  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
509  return err;
510  }
511  context_reinitialized = 1;
512 
513  /* update linesize on resize. The decoder doesn't
514  * necessarily call h264_frame_start in the new thread */
515  h->linesize = h1->linesize;
516  h->uvlinesize = h1->uvlinesize;
517 
518  /* copy block_offset since frame_start may not be called */
519  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
520  }
521 
522  if (!inited) {
523  for (i = 0; i < MAX_SPS_COUNT; i++)
524  av_freep(h->sps_buffers + i);
525 
526  for (i = 0; i < MAX_PPS_COUNT; i++)
527  av_freep(h->pps_buffers + i);
528 
529  memcpy(h, h1, sizeof(*h1));
530  memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
531  memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
532  memset(&h->er, 0, sizeof(h->er));
533  memset(&h->mb, 0, sizeof(h->mb));
534  memset(&h->mb_luma_dc, 0, sizeof(h->mb_luma_dc));
535  memset(&h->mb_padding, 0, sizeof(h->mb_padding));
536  h->context_initialized = 0;
537 
538  memset(&h->cur_pic, 0, sizeof(h->cur_pic));
539  av_frame_unref(&h->cur_pic.f);
540  h->cur_pic.tf.f = &h->cur_pic.f;
541 
542  h->avctx = dst;
543  h->DPB = NULL;
544  h->qscale_table_pool = NULL;
545  h->mb_type_pool = NULL;
546  h->ref_index_pool = NULL;
547  h->motion_val_pool = NULL;
548 
549  ret = ff_h264_alloc_tables(h);
550  if (ret < 0) {
551  av_log(dst, AV_LOG_ERROR, "Could not allocate memory\n");
552  return ret;
553  }
554  ret = ff_h264_context_init(h);
555  if (ret < 0) {
556  av_log(dst, AV_LOG_ERROR, "context_init() failed.\n");
557  return ret;
558  }
559 
560  for (i = 0; i < 2; i++) {
561  h->rbsp_buffer[i] = NULL;
562  h->rbsp_buffer_size[i] = 0;
563  }
564  h->bipred_scratchpad = NULL;
565  h->edge_emu_buffer = NULL;
566 
567  h->thread_context[0] = h;
568 
569  h->context_initialized = 1;
570  }
571 
572  h->avctx->coded_height = h1->avctx->coded_height;
573  h->avctx->coded_width = h1->avctx->coded_width;
574  h->avctx->width = h1->avctx->width;
575  h->avctx->height = h1->avctx->height;
576  h->coded_picture_number = h1->coded_picture_number;
577  h->first_field = h1->first_field;
578  h->picture_structure = h1->picture_structure;
579  h->qscale = h1->qscale;
580  h->droppable = h1->droppable;
581  h->low_delay = h1->low_delay;
582 
583  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
584  ff_h264_unref_picture(h, &h->DPB[i]);
585  if (h1->DPB[i].f.buf[0] &&
586  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
587  return ret;
588  }
589 
590  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
592  if (h1->cur_pic.f.buf[0]) {
593  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
594  if (ret < 0)
595  return ret;
596  }
597 
598  h->workaround_bugs = h1->workaround_bugs;
599  h->low_delay = h1->low_delay;
600  h->droppable = h1->droppable;
601 
602  /* frame_start may not be called for the next thread (if it's decoding
603  * a bottom field) so this has to be allocated here */
604  err = alloc_scratch_buffers(h, h1->linesize);
605  if (err < 0)
606  return err;
607 
608  // extradata/NAL handling
609  h->is_avc = h1->is_avc;
610 
611  // SPS/PPS
612  if ((ret = copy_parameter_set((void **)h->sps_buffers,
613  (void **)h1->sps_buffers,
614  MAX_SPS_COUNT, sizeof(SPS))) < 0)
615  return ret;
616  h->sps = h1->sps;
617  if ((ret = copy_parameter_set((void **)h->pps_buffers,
618  (void **)h1->pps_buffers,
619  MAX_PPS_COUNT, sizeof(PPS))) < 0)
620  return ret;
621  h->pps = h1->pps;
622 
623  // Dequantization matrices
624  // FIXME these are big - can they be only copied when PPS changes?
625  copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
626 
627  for (i = 0; i < 6; i++)
628  h->dequant4_coeff[i] = h->dequant4_buffer[0] +
629  (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
630 
631  for (i = 0; i < 6; i++)
632  h->dequant8_coeff[i] = h->dequant8_buffer[0] +
633  (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
634 
635  h->dequant_coeff_pps = h1->dequant_coeff_pps;
636 
637  // POC timing
638  copy_fields(h, h1, poc_lsb, redundant_pic_count);
639 
640  // reference lists
641  copy_fields(h, h1, short_ref, cabac_init_idc);
642 
643  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
644  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
645  copy_picture_range(h->delayed_pic, h1->delayed_pic,
646  MAX_DELAYED_PIC_COUNT + 2, h, h1);
647 
648  h->last_slice_type = h1->last_slice_type;
649 
650  if (context_reinitialized)
652 
653  if (!h->cur_pic_ptr)
654  return 0;
655 
656  if (!h->droppable) {
658  h->prev_poc_msb = h->poc_msb;
659  h->prev_poc_lsb = h->poc_lsb;
660  }
662  h->prev_frame_num = h->frame_num;
664 
665  h->recovery_frame = h1->recovery_frame;
666  h->frame_recovered = h1->frame_recovered;
667 
668  return err;
669 }
670 
672 {
673  H264Picture *pic;
674  int i, ret;
675  const int pixel_shift = h->pixel_shift;
676 
678  h->cur_pic_ptr = NULL;
679 
680  i = find_unused_picture(h);
681  if (i < 0) {
682  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
683  return i;
684  }
685  pic = &h->DPB[i];
686 
687  pic->reference = h->droppable ? 0 : h->picture_structure;
690  /*
691  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
692  * in later.
693  * See decode_nal_units().
694  */
695  pic->f.key_frame = 0;
696  pic->mmco_reset = 0;
697  pic->recovered = 0;
698 
699  if ((ret = alloc_picture(h, pic)) < 0)
700  return ret;
701 
702  h->cur_pic_ptr = pic;
704  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
705  return ret;
706 
708  ff_er_frame_start(&h->er);
709 
710  assert(h->linesize && h->uvlinesize);
711 
712  for (i = 0; i < 16; i++) {
713  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
714  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
715  }
716  for (i = 0; i < 16; i++) {
717  h->block_offset[16 + i] =
718  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
719  h->block_offset[48 + 16 + i] =
720  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
721  }
722 
723  /* can't be in alloc_tables because linesize isn't known there.
724  * FIXME: redo bipred weight to not require extra buffer? */
725  for (i = 0; i < h->slice_context_count; i++)
726  if (h->thread_context[i]) {
728  if (ret < 0)
729  return ret;
730  }
731 
732  /* Some macroblocks can be accessed before they're available in case
733  * of lost slices, MBAFF or threading. */
734  memset(h->slice_table, -1,
735  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
736 
737  /* We mark the current picture as non-reference after allocating it, so
738  * that if we break out due to an error it can be released automatically
739  * in the next ff_mpv_frame_start().
740  */
741  h->cur_pic_ptr->reference = 0;
742 
743  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
744 
745  h->next_output_pic = NULL;
746 
747  assert(h->cur_pic_ptr->long_ref == 0);
748 
749  return 0;
750 }
751 
753  uint8_t *src_cb, uint8_t *src_cr,
754  int linesize, int uvlinesize,
755  int simple)
756 {
757  uint8_t *top_border;
758  int top_idx = 1;
759  const int pixel_shift = h->pixel_shift;
760  int chroma444 = CHROMA444(h);
761  int chroma422 = CHROMA422(h);
762 
763  src_y -= linesize;
764  src_cb -= uvlinesize;
765  src_cr -= uvlinesize;
766 
767  if (!simple && FRAME_MBAFF(h)) {
768  if (h->mb_y & 1) {
769  if (!MB_MBAFF(h)) {
770  top_border = h->top_borders[0][h->mb_x];
771  AV_COPY128(top_border, src_y + 15 * linesize);
772  if (pixel_shift)
773  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
774  if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
775  if (chroma444) {
776  if (pixel_shift) {
777  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
778  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
779  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
780  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
781  } else {
782  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
783  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
784  }
785  } else if (chroma422) {
786  if (pixel_shift) {
787  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
788  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
789  } else {
790  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
791  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
792  }
793  } else {
794  if (pixel_shift) {
795  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
796  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
797  } else {
798  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
799  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
800  }
801  }
802  }
803  }
804  } else if (MB_MBAFF(h)) {
805  top_idx = 0;
806  } else
807  return;
808  }
809 
810  top_border = h->top_borders[top_idx][h->mb_x];
811  /* There are two lines saved, the line above the top macroblock
812  * of a pair, and the line above the bottom macroblock. */
813  AV_COPY128(top_border, src_y + 16 * linesize);
814  if (pixel_shift)
815  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
816 
817  if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
818  if (chroma444) {
819  if (pixel_shift) {
820  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
821  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
822  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
823  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
824  } else {
825  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
826  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
827  }
828  } else if (chroma422) {
829  if (pixel_shift) {
830  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
831  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
832  } else {
833  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
834  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
835  }
836  } else {
837  if (pixel_shift) {
838  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
839  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
840  } else {
841  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
842  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
843  }
844  }
845  }
846 }
847 
853 static void implicit_weight_table(H264Context *h, int field)
854 {
855  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
856 
857  for (i = 0; i < 2; i++) {
858  h->luma_weight_flag[i] = 0;
859  h->chroma_weight_flag[i] = 0;
860  }
861 
862  if (field < 0) {
863  if (h->picture_structure == PICT_FRAME) {
864  cur_poc = h->cur_pic_ptr->poc;
865  } else {
866  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
867  }
868  if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
869  h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) {
870  h->use_weight = 0;
871  h->use_weight_chroma = 0;
872  return;
873  }
874  ref_start = 0;
875  ref_count0 = h->ref_count[0];
876  ref_count1 = h->ref_count[1];
877  } else {
878  cur_poc = h->cur_pic_ptr->field_poc[field];
879  ref_start = 16;
880  ref_count0 = 16 + 2 * h->ref_count[0];
881  ref_count1 = 16 + 2 * h->ref_count[1];
882  }
883 
884  h->use_weight = 2;
885  h->use_weight_chroma = 2;
886  h->luma_log2_weight_denom = 5;
888 
889  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
890  int poc0 = h->ref_list[0][ref0].poc;
891  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
892  int w = 32;
893  if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
894  int poc1 = h->ref_list[1][ref1].poc;
895  int td = av_clip(poc1 - poc0, -128, 127);
896  if (td) {
897  int tb = av_clip(cur_poc - poc0, -128, 127);
898  int tx = (16384 + (FFABS(td) >> 1)) / td;
899  int dist_scale_factor = (tb * tx + 32) >> 8;
900  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
901  w = 64 - dist_scale_factor;
902  }
903  }
904  if (field < 0) {
905  h->implicit_weight[ref0][ref1][0] =
906  h->implicit_weight[ref0][ref1][1] = w;
907  } else {
908  h->implicit_weight[ref0][ref1][field] = w;
909  }
910  }
911  }
912 }
913 
918 {
919  int i;
920  for (i = 0; i < 16; i++) {
921 #define TRANSPOSE(x) (x >> 2) | ((x << 2) & 0xF)
922  h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]);
923  h->field_scan[i] = TRANSPOSE(field_scan[i]);
924 #undef TRANSPOSE
925  }
926  for (i = 0; i < 64; i++) {
927 #define TRANSPOSE(x) (x >> 3) | ((x & 7) << 3)
932 #undef TRANSPOSE
933  }
934  if (h->sps.transform_bypass) { // FIXME same ugly
941  } else {
942  h->zigzag_scan_q0 = h->zigzag_scan;
945  h->field_scan_q0 = h->field_scan;
948  }
949 }
950 
954 static int clone_slice(H264Context *dst, H264Context *src)
955 {
956  memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
957  dst->cur_pic_ptr = src->cur_pic_ptr;
958  dst->cur_pic = src->cur_pic;
959  dst->linesize = src->linesize;
960  dst->uvlinesize = src->uvlinesize;
961  dst->first_field = src->first_field;
962 
963  dst->prev_poc_msb = src->prev_poc_msb;
964  dst->prev_poc_lsb = src->prev_poc_lsb;
966  dst->prev_frame_num = src->prev_frame_num;
967  dst->short_ref_count = src->short_ref_count;
968 
969  memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
970  memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
971  memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
972 
973  memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
974  memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
975 
976  return 0;
977 }
978 
980 {
981  enum AVPixelFormat pix_fmts[2];
982  const enum AVPixelFormat *choices = pix_fmts;
983 
984  pix_fmts[1] = AV_PIX_FMT_NONE;
985 
986  switch (h->sps.bit_depth_luma) {
987  case 9:
988  if (CHROMA444(h)) {
989  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
990  pix_fmts[0] = AV_PIX_FMT_GBRP9;
991  } else
992  pix_fmts[0] = AV_PIX_FMT_YUV444P9;
993  } else if (CHROMA422(h))
994  pix_fmts[0] = AV_PIX_FMT_YUV422P9;
995  else
996  pix_fmts[0] = AV_PIX_FMT_YUV420P9;
997  break;
998  case 10:
999  if (CHROMA444(h)) {
1000  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
1001  pix_fmts[0] = AV_PIX_FMT_GBRP10;
1002  } else
1003  pix_fmts[0] = AV_PIX_FMT_YUV444P10;
1004  } else if (CHROMA422(h))
1005  pix_fmts[0] = AV_PIX_FMT_YUV422P10;
1006  else
1007  pix_fmts[0] = AV_PIX_FMT_YUV420P10;
1008  break;
1009  case 8:
1010  if (CHROMA444(h)) {
1011  if (h->avctx->colorspace == AVCOL_SPC_RGB)
1012  pix_fmts[0] = AV_PIX_FMT_GBRP;
1013  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
1014  pix_fmts[0] = AV_PIX_FMT_YUVJ444P;
1015  else
1016  pix_fmts[0] = AV_PIX_FMT_YUV444P;
1017  } else if (CHROMA422(h)) {
1018  if (h->avctx->color_range == AVCOL_RANGE_JPEG)
1019  pix_fmts[0] = AV_PIX_FMT_YUVJ422P;
1020  else
1021  pix_fmts[0] = AV_PIX_FMT_YUV422P;
1022  } else {
1023  if (h->avctx->codec->pix_fmts)
1024  choices = h->avctx->codec->pix_fmts;
1025  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
1027  else
1028  choices = h264_hwaccel_pixfmt_list_420;
1029  }
1030  break;
1031  default:
1033  "Unsupported bit depth %d\n", h->sps.bit_depth_luma);
1034  return AVERROR_INVALIDDATA;
1035  }
1036 
1037  return ff_get_format(h->avctx, choices);
1038 }
1039 
1040 /* export coded and cropped frame dimensions to AVCodecContext */
1042 {
1043  int width = h->width - (h->sps.crop_right + h->sps.crop_left);
1044  int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
1045 
1046  /* handle container cropping */
1047  if (!h->sps.crop &&
1048  FFALIGN(h->avctx->width, 16) == h->width &&
1049  FFALIGN(h->avctx->height, 16) == h->height) {
1050  width = h->avctx->width;
1051  height = h->avctx->height;
1052  }
1053 
1054  if (width <= 0 || height <= 0) {
1055  av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
1056  width, height);
1058  return AVERROR_INVALIDDATA;
1059 
1060  av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
1061  h->sps.crop_bottom =
1062  h->sps.crop_top =
1063  h->sps.crop_right =
1064  h->sps.crop_left =
1065  h->sps.crop = 0;
1066 
1067  width = h->width;
1068  height = h->height;
1069  }
1070 
1071  h->avctx->coded_width = h->width;
1072  h->avctx->coded_height = h->height;
1073  h->avctx->width = width;
1074  h->avctx->height = height;
1075 
1076  return 0;
1077 }
1078 
1079 static int h264_slice_header_init(H264Context *h, int reinit)
1080 {
1081  int nb_slices = (HAVE_THREADS &&
1083  h->avctx->thread_count : 1;
1084  int i, ret;
1085 
1086  ff_set_sar(h->avctx, h->sps.sar);
1088  &h->chroma_x_shift, &h->chroma_y_shift);
1089 
1090  if (h->sps.timing_info_present_flag) {
1091  int64_t den = h->sps.time_scale;
1092  if (h->x264_build < 44U)
1093  den *= 2;
1095  h->sps.num_units_in_tick, den, 1 << 30);
1096  }
1097 
1098  if (reinit)
1099  ff_h264_free_tables(h, 0);
1100  h->first_field = 0;
1101  h->prev_interlaced_frame = 1;
1102 
1103  init_scan_tables(h);
1104  ret = ff_h264_alloc_tables(h);
1105  if (ret < 0) {
1106  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
1107  return ret;
1108  }
1109 
1110  if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
1111  int max_slices;
1112  if (h->mb_height)
1113  max_slices = FFMIN(H264_MAX_THREADS, h->mb_height);
1114  else
1115  max_slices = H264_MAX_THREADS;
1116  av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d,"
1117  " reducing to %d\n", nb_slices, max_slices);
1118  nb_slices = max_slices;
1119  }
1120  h->slice_context_count = nb_slices;
1121 
1123  ret = ff_h264_context_init(h);
1124  if (ret < 0) {
1125  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1126  return ret;
1127  }
1128  } else {
1129  for (i = 1; i < h->slice_context_count; i++) {
1130  H264Context *c;
1131  c = h->thread_context[i] = av_mallocz(sizeof(H264Context));
1132  if (!c)
1133  return AVERROR(ENOMEM);
1134  c->avctx = h->avctx;
1135  c->mecc = h->mecc;
1136  c->vdsp = h->vdsp;
1137  c->h264dsp = h->h264dsp;
1138  c->h264qpel = h->h264qpel;
1139  c->h264chroma = h->h264chroma;
1140  c->sps = h->sps;
1141  c->pps = h->pps;
1142  c->pixel_shift = h->pixel_shift;
1143  c->width = h->width;
1144  c->height = h->height;
1145  c->linesize = h->linesize;
1146  c->uvlinesize = h->uvlinesize;
1149  c->qscale = h->qscale;
1150  c->droppable = h->droppable;
1152  c->low_delay = h->low_delay;
1153  c->mb_width = h->mb_width;
1154  c->mb_height = h->mb_height;
1155  c->mb_stride = h->mb_stride;
1156  c->mb_num = h->mb_num;
1157  c->flags = h->flags;
1159  c->pict_type = h->pict_type;
1160 
1161  init_scan_tables(c);
1162  clone_tables(c, h, i);
1163  c->context_initialized = 1;
1164  }
1165 
1166  for (i = 0; i < h->slice_context_count; i++)
1167  if ((ret = ff_h264_context_init(h->thread_context[i])) < 0) {
1168  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
1169  return ret;
1170  }
1171  }
1172 
1173  h->context_initialized = 1;
1174 
1175  return 0;
1176 }
1177 
1189 {
1190  unsigned int first_mb_in_slice;
1191  unsigned int pps_id;
1192  int ret;
1193  unsigned int slice_type, tmp, i, j;
1194  int default_ref_list_done = 0;
1195  int last_pic_structure, last_pic_droppable;
1196  int needs_reinit = 0;
1197  int field_pic_flag, bottom_field_flag;
1198 
1201 
1202  first_mb_in_slice = get_ue_golomb(&h->gb);
1203 
1204  if (first_mb_in_slice == 0) { // FIXME better field boundary detection
1205  if (h0->current_slice && h->cur_pic_ptr && FIELD_PICTURE(h)) {
1206  ff_h264_field_end(h, 1);
1207  }
1208 
1209  h0->current_slice = 0;
1210  if (!h0->first_field) {
1211  if (h->cur_pic_ptr && !h->droppable) {
1214  }
1215  h->cur_pic_ptr = NULL;
1216  }
1217  }
1218 
1219  slice_type = get_ue_golomb_31(&h->gb);
1220  if (slice_type > 9) {
1222  "slice type %d too large at %d %d\n",
1223  slice_type, h->mb_x, h->mb_y);
1224  return AVERROR_INVALIDDATA;
1225  }
1226  if (slice_type > 4) {
1227  slice_type -= 5;
1228  h->slice_type_fixed = 1;
1229  } else
1230  h->slice_type_fixed = 0;
1231 
1232  slice_type = golomb_to_pict_type[slice_type];
1233  if (slice_type == AV_PICTURE_TYPE_I ||
1234  (h0->current_slice != 0 && slice_type == h0->last_slice_type)) {
1235  default_ref_list_done = 1;
1236  }
1237  h->slice_type = slice_type;
1238  h->slice_type_nos = slice_type & 3;
1239 
1240  if (h->nal_unit_type == NAL_IDR_SLICE &&
1242  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1243  return AVERROR_INVALIDDATA;
1244  }
1245 
1246  // to make a few old functions happy, it's wrong though
1247  h->pict_type = h->slice_type;
1248 
1249  pps_id = get_ue_golomb(&h->gb);
1250  if (pps_id >= MAX_PPS_COUNT) {
1251  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
1252  return AVERROR_INVALIDDATA;
1253  }
1254  if (!h0->pps_buffers[pps_id]) {
1256  "non-existing PPS %u referenced\n",
1257  pps_id);
1258  return AVERROR_INVALIDDATA;
1259  }
1260  h->pps = *h0->pps_buffers[pps_id];
1261 
1262  if (!h0->sps_buffers[h->pps.sps_id]) {
1264  "non-existing SPS %u referenced\n",
1265  h->pps.sps_id);
1266  return AVERROR_INVALIDDATA;
1267  }
1268 
1269  if (h->pps.sps_id != h->sps.sps_id ||
1270  h0->sps_buffers[h->pps.sps_id]->new) {
1271  h0->sps_buffers[h->pps.sps_id]->new = 0;
1272 
1273  h->sps = *h0->sps_buffers[h->pps.sps_id];
1274 
1275  if (h->bit_depth_luma != h->sps.bit_depth_luma ||
1279  needs_reinit = 1;
1280  }
1281  if ((ret = ff_h264_set_parameter_from_sps(h)) < 0)
1282  return ret;
1283  }
1284 
1285  h->avctx->profile = ff_h264_get_profile(&h->sps);
1286  h->avctx->level = h->sps.level_idc;
1287  h->avctx->refs = h->sps.ref_frame_count;
1288 
1289  if (h->mb_width != h->sps.mb_width ||
1290  h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag))
1291  needs_reinit = 1;
1292 
1293  h->mb_width = h->sps.mb_width;
1294  h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
1295  h->mb_num = h->mb_width * h->mb_height;
1296  h->mb_stride = h->mb_width + 1;
1297 
1298  h->b_stride = h->mb_width * 4;
1299 
1300  h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
1301 
1302  h->width = 16 * h->mb_width;
1303  h->height = 16 * h->mb_height;
1304 
1305  ret = init_dimensions(h);
1306  if (ret < 0)
1307  return ret;
1308 
1311  : AVCOL_RANGE_MPEG;
1313  if (h->avctx->colorspace != h->sps.colorspace)
1314  needs_reinit = 1;
1316  h->avctx->color_trc = h->sps.color_trc;
1317  h->avctx->colorspace = h->sps.colorspace;
1318  }
1319  }
1320 
1321  if (h->context_initialized && needs_reinit) {
1322  h->context_initialized = 0;
1323  if (h != h0) {
1325  "changing width %d -> %d / height %d -> %d on "
1326  "slice %d\n",
1327  h->width, h->avctx->coded_width,
1328  h->height, h->avctx->coded_height,
1329  h0->current_slice + 1);
1330  return AVERROR_INVALIDDATA;
1331  }
1332 
1334 
1335  if ((ret = get_pixel_format(h)) < 0)
1336  return ret;
1337  h->avctx->pix_fmt = ret;
1338 
1339  av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
1340  "pix_fmt: %d\n", h->width, h->height, h->avctx->pix_fmt);
1341 
1342  if ((ret = h264_slice_header_init(h, 1)) < 0) {
1344  "h264_slice_header_init() failed\n");
1345  return ret;
1346  }
1347  }
1348  if (!h->context_initialized) {
1349  if (h != h0) {
1351  "Cannot (re-)initialize context during parallel decoding.\n");
1352  return AVERROR_PATCHWELCOME;
1353  }
1354 
1355  if ((ret = get_pixel_format(h)) < 0)
1356  return ret;
1357  h->avctx->pix_fmt = ret;
1358 
1359  if ((ret = h264_slice_header_init(h, 0)) < 0) {
1361  "h264_slice_header_init() failed\n");
1362  return ret;
1363  }
1364  }
1365 
1366  if (h == h0 && h->dequant_coeff_pps != pps_id) {
1367  h->dequant_coeff_pps = pps_id;
1369  }
1370 
1371  h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num);
1372 
1373  h->mb_mbaff = 0;
1374  h->mb_aff_frame = 0;
1375  last_pic_structure = h0->picture_structure;
1376  last_pic_droppable = h0->droppable;
1377  h->droppable = h->nal_ref_idc == 0;
1378  if (h->sps.frame_mbs_only_flag) {
1380  } else {
1381  field_pic_flag = get_bits1(&h->gb);
1382  if (field_pic_flag) {
1383  bottom_field_flag = get_bits1(&h->gb);
1384  h->picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1385  } else {
1387  h->mb_aff_frame = h->sps.mb_aff;
1388  }
1389  }
1391 
1392  if (h0->current_slice != 0) {
1393  if (last_pic_structure != h->picture_structure ||
1394  last_pic_droppable != h->droppable) {
1396  "Changing field mode (%d -> %d) between slices is not allowed\n",
1397  last_pic_structure, h->picture_structure);
1398  h->picture_structure = last_pic_structure;
1399  h->droppable = last_pic_droppable;
1400  return AVERROR_INVALIDDATA;
1401  } else if (!h0->cur_pic_ptr) {
1403  "unset cur_pic_ptr on slice %d\n",
1404  h0->current_slice + 1);
1405  return AVERROR_INVALIDDATA;
1406  }
1407  } else {
1408  /* Shorten frame num gaps so we don't have to allocate reference
1409  * frames just to throw them away */
1410  if (h->frame_num != h->prev_frame_num) {
1411  int unwrap_prev_frame_num = h->prev_frame_num;
1412  int max_frame_num = 1 << h->sps.log2_max_frame_num;
1413 
1414  if (unwrap_prev_frame_num > h->frame_num)
1415  unwrap_prev_frame_num -= max_frame_num;
1416 
1417  if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
1418  unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
1419  if (unwrap_prev_frame_num < 0)
1420  unwrap_prev_frame_num += max_frame_num;
1421 
1422  h->prev_frame_num = unwrap_prev_frame_num;
1423  }
1424  }
1425 
1426  /* See if we have a decoded first field looking for a pair...
1427  * Here, we're using that to see if we should mark previously
1428  * decode frames as "finished".
1429  * We have to do that before the "dummy" in-between frame allocation,
1430  * since that can modify s->current_picture_ptr. */
1431  if (h0->first_field) {
1432  assert(h0->cur_pic_ptr);
1433  assert(h0->cur_pic_ptr->f.buf[0]);
1434  assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
1435 
1436  /* figure out if we have a complementary field pair */
1437  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1438  /* Previous field is unmatched. Don't display it, but let it
1439  * remain for reference if marked as such. */
1440  if (!last_pic_droppable && last_pic_structure != PICT_FRAME) {
1441  ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
1442  last_pic_structure == PICT_TOP_FIELD);
1443  }
1444  } else {
1445  if (h0->cur_pic_ptr->frame_num != h->frame_num) {
1446  /* This and previous field were reference, but had
1447  * different frame_nums. Consider this field first in
1448  * pair. Throw away previous field except for reference
1449  * purposes. */
1450  if (!last_pic_droppable && last_pic_structure != PICT_FRAME) {
1451  ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
1452  last_pic_structure == PICT_TOP_FIELD);
1453  }
1454  } else {
1455  /* Second field in complementary pair */
1456  if (!((last_pic_structure == PICT_TOP_FIELD &&
1458  (last_pic_structure == PICT_BOTTOM_FIELD &&
1461  "Invalid field mode combination %d/%d\n",
1462  last_pic_structure, h->picture_structure);
1463  h->picture_structure = last_pic_structure;
1464  h->droppable = last_pic_droppable;
1465  return AVERROR_INVALIDDATA;
1466  } else if (last_pic_droppable != h->droppable) {
1468  "Found reference and non-reference fields in the same frame, which");
1469  h->picture_structure = last_pic_structure;
1470  h->droppable = last_pic_droppable;
1471  return AVERROR_PATCHWELCOME;
1472  }
1473  }
1474  }
1475  }
1476 
1477  while (h->frame_num != h->prev_frame_num &&
1478  h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
1479  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1480  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1481  h->frame_num, h->prev_frame_num);
1482  ret = h264_frame_start(h);
1483  if (ret < 0) {
1484  h0->first_field = 0;
1485  return ret;
1486  }
1487 
1488  h->prev_frame_num++;
1489  h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
1491  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1492  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1494  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1495  return ret;
1497  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1498  return ret;
1499  /* Error concealment: If a ref is missing, copy the previous ref
1500  * in its place.
1501  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1502  * many assumptions about there being no actual duplicates.
1503  * FIXME: This does not copy padding for out-of-frame motion
1504  * vectors. Given we are concealing a lost frame, this probably
1505  * is not noticeable by comparison, but it should be fixed. */
1506  if (h->short_ref_count) {
1507  if (prev) {
1508  av_image_copy(h->short_ref[0]->f.data,
1509  h->short_ref[0]->f.linesize,
1510  (const uint8_t **)prev->f.data,
1511  prev->f.linesize,
1512  h->avctx->pix_fmt,
1513  h->mb_width * 16,
1514  h->mb_height * 16);
1515  h->short_ref[0]->poc = prev->poc + 2;
1516  }
1517  h->short_ref[0]->frame_num = h->prev_frame_num;
1518  }
1519  }
1520 
1521  /* See if we have a decoded first field looking for a pair...
1522  * We're using that to see whether to continue decoding in that
1523  * frame, or to allocate a new one. */
1524  if (h0->first_field) {
1525  assert(h0->cur_pic_ptr);
1526  assert(h0->cur_pic_ptr->f.buf[0]);
1527  assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
1528 
1529  /* figure out if we have a complementary field pair */
1530  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1531  /* Previous field is unmatched. Don't display it, but let it
1532  * remain for reference if marked as such. */
1533  h0->cur_pic_ptr = NULL;
1534  h0->first_field = FIELD_PICTURE(h);
1535  } else {
1536  if (h0->cur_pic_ptr->frame_num != h->frame_num) {
1537  /* This and the previous field had different frame_nums.
1538  * Consider this field first in pair. Throw away previous
1539  * one except for reference purposes. */
1540  h0->first_field = 1;
1541  h0->cur_pic_ptr = NULL;
1542  } else {
1543  /* Second field in complementary pair */
1544  h0->first_field = 0;
1545  }
1546  }
1547  } else {
1548  /* Frame or first field in a potentially complementary pair */
1549  h0->first_field = FIELD_PICTURE(h);
1550  }
1551 
1552  if (!FIELD_PICTURE(h) || h0->first_field) {
1553  if (h264_frame_start(h) < 0) {
1554  h0->first_field = 0;
1555  return AVERROR_INVALIDDATA;
1556  }
1557  } else {
1559  }
1560  }
1561  if (h != h0 && (ret = clone_slice(h, h0)) < 0)
1562  return ret;
1563 
1564  h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
1565 
1566  assert(h->mb_num == h->mb_width * h->mb_height);
1567  if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1568  first_mb_in_slice >= h->mb_num) {
1569  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1570  return AVERROR_INVALIDDATA;
1571  }
1572  h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width;
1573  h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) <<
1576  h->resync_mb_y = h->mb_y = h->mb_y + 1;
1577  assert(h->mb_y < h->mb_height);
1578 
1579  if (h->picture_structure == PICT_FRAME) {
1580  h->curr_pic_num = h->frame_num;
1581  h->max_pic_num = 1 << h->sps.log2_max_frame_num;
1582  } else {
1583  h->curr_pic_num = 2 * h->frame_num + 1;
1584  h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
1585  }
1586 
1587  if (h->nal_unit_type == NAL_IDR_SLICE)
1588  get_ue_golomb(&h->gb); /* idr_pic_id */
1589 
1590  if (h->sps.poc_type == 0) {
1591  h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb);
1592 
1593  if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
1594  h->delta_poc_bottom = get_se_golomb(&h->gb);
1595  }
1596 
1597  if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
1598  h->delta_poc[0] = get_se_golomb(&h->gb);
1599 
1600  if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
1601  h->delta_poc[1] = get_se_golomb(&h->gb);
1602  }
1603 
1605 
1608 
1609  ret = ff_set_ref_count(h);
1610  if (ret < 0)
1611  return ret;
1612  else if (ret == 1)
1613  default_ref_list_done = 0;
1614 
1615  if (!default_ref_list_done)
1617 
1618  if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
1620  if (ret < 0) {
1621  h->ref_count[1] = h->ref_count[0] = 0;
1622  return ret;
1623  }
1624  }
1625 
1626  if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) ||
1627  (h->pps.weighted_bipred_idc == 1 &&
1630  else if (h->pps.weighted_bipred_idc == 2 &&
1632  implicit_weight_table(h, -1);
1633  } else {
1634  h->use_weight = 0;
1635  for (i = 0; i < 2; i++) {
1636  h->luma_weight_flag[i] = 0;
1637  h->chroma_weight_flag[i] = 0;
1638  }
1639  }
1640 
1641  // If frame-mt is enabled, only update mmco tables for the first slice
1642  // in a field. Subsequent slices can temporarily clobber h->mmco_index
1643  // or h->mmco, which will cause ref list mix-ups and decoding errors
1644  // further down the line. This may break decoding if the first slice is
1645  // corrupt, thus we only do this if frame-mt is enabled.
1646  if (h->nal_ref_idc) {
1647  ret = ff_h264_decode_ref_pic_marking(h0, &h->gb,
1649  h0->current_slice == 0);
1650  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1651  return AVERROR_INVALIDDATA;
1652  }
1653 
1654  if (FRAME_MBAFF(h)) {
1656 
1658  implicit_weight_table(h, 0);
1659  implicit_weight_table(h, 1);
1660  }
1661  }
1662 
1666 
1667  if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
1668  tmp = get_ue_golomb_31(&h->gb);
1669  if (tmp > 2) {
1670  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1671  return AVERROR_INVALIDDATA;
1672  }
1673  h->cabac_init_idc = tmp;
1674  }
1675 
1676  h->last_qscale_diff = 0;
1677  tmp = h->pps.init_qp + get_se_golomb(&h->gb);
1678  if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
1679  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1680  return AVERROR_INVALIDDATA;
1681  }
1682  h->qscale = tmp;
1683  h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
1684  h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
1685  // FIXME qscale / qp ... stuff
1686  if (h->slice_type == AV_PICTURE_TYPE_SP)
1687  get_bits1(&h->gb); /* sp_for_switch_flag */
1688  if (h->slice_type == AV_PICTURE_TYPE_SP ||
1690  get_se_golomb(&h->gb); /* slice_qs_delta */
1691 
1692  h->deblocking_filter = 1;
1693  h->slice_alpha_c0_offset = 0;
1694  h->slice_beta_offset = 0;
1696  tmp = get_ue_golomb_31(&h->gb);
1697  if (tmp > 2) {
1699  "deblocking_filter_idc %u out of range\n", tmp);
1700  return AVERROR_INVALIDDATA;
1701  }
1702  h->deblocking_filter = tmp;
1703  if (h->deblocking_filter < 2)
1704  h->deblocking_filter ^= 1; // 1<->0
1705 
1706  if (h->deblocking_filter) {
1707  h->slice_alpha_c0_offset = get_se_golomb(&h->gb) * 2;
1708  h->slice_beta_offset = get_se_golomb(&h->gb) * 2;
1709  if (h->slice_alpha_c0_offset > 12 ||
1710  h->slice_alpha_c0_offset < -12 ||
1711  h->slice_beta_offset > 12 ||
1712  h->slice_beta_offset < -12) {
1714  "deblocking filter parameters %d %d out of range\n",
1716  return AVERROR_INVALIDDATA;
1717  }
1718  }
1719  }
1720 
1721  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1727  h->nal_ref_idc == 0))
1728  h->deblocking_filter = 0;
1729 
1730  if (h->deblocking_filter == 1 && h0->max_contexts > 1) {
1731  if (h->avctx->flags2 & CODEC_FLAG2_FAST) {
1732  /* Cheat slightly for speed:
1733  * Do not bother to deblock across slices. */
1734  h->deblocking_filter = 2;
1735  } else {
1736  h0->max_contexts = 1;
1737  if (!h0->single_decode_warning) {
1738  av_log(h->avctx, AV_LOG_INFO,
1739  "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
1740  h0->single_decode_warning = 1;
1741  }
1742  if (h != h0) {
1744  "Deblocking switched inside frame.\n");
1745  return 1;
1746  }
1747  }
1748  }
1749  h->qp_thresh = 15 -
1751  FFMAX3(0,
1753  h->pps.chroma_qp_index_offset[1]) +
1754  6 * (h->sps.bit_depth_luma - 8);
1755 
1756  h0->last_slice_type = slice_type;
1757  h->slice_num = ++h0->current_slice;
1758  if (h->slice_num >= MAX_SLICES) {
1760  "Too many slices, increase MAX_SLICES and recompile\n");
1761  }
1762 
1763  for (j = 0; j < 2; j++) {
1764  int id_list[16];
1765  int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j];
1766  for (i = 0; i < 16; i++) {
1767  id_list[i] = 60;
1768  if (j < h->list_count && i < h->ref_count[j] &&
1769  h->ref_list[j][i].f.buf[0]) {
1770  int k;
1771  AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer;
1772  for (k = 0; k < h->short_ref_count; k++)
1773  if (h->short_ref[k]->f.buf[0]->buffer == buf) {
1774  id_list[i] = k;
1775  break;
1776  }
1777  for (k = 0; k < h->long_ref_count; k++)
1778  if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) {
1779  id_list[i] = h->short_ref_count + k;
1780  break;
1781  }
1782  }
1783  }
1784 
1785  ref2frm[0] =
1786  ref2frm[1] = -1;
1787  for (i = 0; i < 16; i++)
1788  ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].reference & 3);
1789  ref2frm[18 + 0] =
1790  ref2frm[18 + 1] = -1;
1791  for (i = 16; i < 48; i++)
1792  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
1793  (h->ref_list[j][i].reference & 3);
1794  }
1795 
1796  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
1798  "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
1799  h->slice_num,
1800  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
1801  first_mb_in_slice,
1803  h->slice_type_fixed ? " fix" : "",
1804  h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
1805  pps_id, h->frame_num,
1806  h->cur_pic_ptr->field_poc[0],
1807  h->cur_pic_ptr->field_poc[1],
1808  h->ref_count[0], h->ref_count[1],
1809  h->qscale,
1810  h->deblocking_filter,
1812  h->use_weight,
1813  h->use_weight == 1 && h->use_weight_chroma ? "c" : "",
1814  h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
1815  }
1816 
1817  return 0;
1818 }
1819 
1821 {
1822  switch (h->slice_type) {
1823  case AV_PICTURE_TYPE_P:
1824  return 0;
1825  case AV_PICTURE_TYPE_B:
1826  return 1;
1827  case AV_PICTURE_TYPE_I:
1828  return 2;
1829  case AV_PICTURE_TYPE_SP:
1830  return 3;
1831  case AV_PICTURE_TYPE_SI:
1832  return 4;
1833  default:
1834  return AVERROR_INVALIDDATA;
1835  }
1836 }
1837 
1839  int mb_type, int top_xy,
1840  int left_xy[LEFT_MBS],
1841  int top_type,
1842  int left_type[LEFT_MBS],
1843  int mb_xy, int list)
1844 {
1845  int b_stride = h->b_stride;
1846  int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
1847  int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
1848  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
1849  if (USES_LIST(top_type, list)) {
1850  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
1851  const int b8_xy = 4 * top_xy + 2;
1852  int (*ref2frm)[64] = h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2);
1853  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
1854  ref_cache[0 - 1 * 8] =
1855  ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]];
1856  ref_cache[2 - 1 * 8] =
1857  ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]];
1858  } else {
1859  AV_ZERO128(mv_dst - 1 * 8);
1860  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1861  }
1862 
1863  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
1864  if (USES_LIST(left_type[LTOP], list)) {
1865  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
1866  const int b8_xy = 4 * left_xy[LTOP] + 1;
1867  int (*ref2frm)[64] = h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2);
1868  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
1869  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
1870  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
1871  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
1872  ref_cache[-1 + 0] =
1873  ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
1874  ref_cache[-1 + 16] =
1875  ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
1876  } else {
1877  AV_ZERO32(mv_dst - 1 + 0);
1878  AV_ZERO32(mv_dst - 1 + 8);
1879  AV_ZERO32(mv_dst - 1 + 16);
1880  AV_ZERO32(mv_dst - 1 + 24);
1881  ref_cache[-1 + 0] =
1882  ref_cache[-1 + 8] =
1883  ref_cache[-1 + 16] =
1884  ref_cache[-1 + 24] = LIST_NOT_USED;
1885  }
1886  }
1887  }
1888 
1889  if (!USES_LIST(mb_type, list)) {
1890  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
1891  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1892  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1893  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1894  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
1895  return;
1896  }
1897 
1898  {
1899  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
1900  int (*ref2frm)[64] = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2);
1901  uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
1902  uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
1903  AV_WN32A(&ref_cache[0 * 8], ref01);
1904  AV_WN32A(&ref_cache[1 * 8], ref01);
1905  AV_WN32A(&ref_cache[2 * 8], ref23);
1906  AV_WN32A(&ref_cache[3 * 8], ref23);
1907  }
1908 
1909  {
1910  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride];
1911  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
1912  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
1913  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
1914  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
1915  }
1916 }
1917 
1922 static int fill_filter_caches(H264Context *h, int mb_type)
1923 {
1924  const int mb_xy = h->mb_xy;
1925  int top_xy, left_xy[LEFT_MBS];
1926  int top_type, left_type[LEFT_MBS];
1927  uint8_t *nnz;
1928  uint8_t *nnz_cache;
1929 
1930  top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
1931 
1932  /* Wow, what a mess, why didn't they simplify the interlacing & intra
1933  * stuff, I can't imagine that these complex rules are worth it. */
1934 
1935  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
1936  if (FRAME_MBAFF(h)) {
1937  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
1938  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
1939  if (h->mb_y & 1) {
1940  if (left_mb_field_flag != curr_mb_field_flag)
1941  left_xy[LTOP] -= h->mb_stride;
1942  } else {
1943  if (curr_mb_field_flag)
1944  top_xy += h->mb_stride &
1945  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
1946  if (left_mb_field_flag != curr_mb_field_flag)
1947  left_xy[LBOT] += h->mb_stride;
1948  }
1949  }
1950 
1951  h->top_mb_xy = top_xy;
1952  h->left_mb_xy[LTOP] = left_xy[LTOP];
1953  h->left_mb_xy[LBOT] = left_xy[LBOT];
1954  {
1955  /* For sufficiently low qp, filtering wouldn't do anything.
1956  * This is a conservative estimate: could also check beta_offset
1957  * and more accurate chroma_qp. */
1958  int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
1959  int qp = h->cur_pic.qscale_table[mb_xy];
1960  if (qp <= qp_thresh &&
1961  (left_xy[LTOP] < 0 ||
1962  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
1963  (top_xy < 0 ||
1964  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
1965  if (!FRAME_MBAFF(h))
1966  return 1;
1967  if ((left_xy[LTOP] < 0 ||
1968  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
1969  (top_xy < h->mb_stride ||
1970  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
1971  return 1;
1972  }
1973  }
1974 
1975  top_type = h->cur_pic.mb_type[top_xy];
1976  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
1977  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
1978  if (h->deblocking_filter == 2) {
1979  if (h->slice_table[top_xy] != h->slice_num)
1980  top_type = 0;
1981  if (h->slice_table[left_xy[LBOT]] != h->slice_num)
1982  left_type[LTOP] = left_type[LBOT] = 0;
1983  } else {
1984  if (h->slice_table[top_xy] == 0xFFFF)
1985  top_type = 0;
1986  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
1987  left_type[LTOP] = left_type[LBOT] = 0;
1988  }
1989  h->top_type = top_type;
1990  h->left_type[LTOP] = left_type[LTOP];
1991  h->left_type[LBOT] = left_type[LBOT];
1992 
1993  if (IS_INTRA(mb_type))
1994  return 0;
1995 
1996  fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
1997  top_type, left_type, mb_xy, 0);
1998  if (h->list_count == 2)
1999  fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
2000  top_type, left_type, mb_xy, 1);
2001 
2002  nnz = h->non_zero_count[mb_xy];
2003  nnz_cache = h->non_zero_count_cache;
2004  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2005  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2006  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2007  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2008  h->cbp = h->cbp_table[mb_xy];
2009 
2010  if (top_type) {
2011  nnz = h->non_zero_count[top_xy];
2012  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2013  }
2014 
2015  if (left_type[LTOP]) {
2016  nnz = h->non_zero_count[left_xy[LTOP]];
2017  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2018  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2019  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2020  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2021  }
2022 
2023  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2024  * from what the loop filter needs */
2025  if (!CABAC(h) && h->pps.transform_8x8_mode) {
2026  if (IS_8x8DCT(top_type)) {
2027  nnz_cache[4 + 8 * 0] =
2028  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2029  nnz_cache[6 + 8 * 0] =
2030  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2031  }
2032  if (IS_8x8DCT(left_type[LTOP])) {
2033  nnz_cache[3 + 8 * 1] =
2034  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2035  }
2036  if (IS_8x8DCT(left_type[LBOT])) {
2037  nnz_cache[3 + 8 * 3] =
2038  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2039  }
2040 
2041  if (IS_8x8DCT(mb_type)) {
2042  nnz_cache[scan8[0]] =
2043  nnz_cache[scan8[1]] =
2044  nnz_cache[scan8[2]] =
2045  nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12;
2046 
2047  nnz_cache[scan8[0 + 4]] =
2048  nnz_cache[scan8[1 + 4]] =
2049  nnz_cache[scan8[2 + 4]] =
2050  nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12;
2051 
2052  nnz_cache[scan8[0 + 8]] =
2053  nnz_cache[scan8[1 + 8]] =
2054  nnz_cache[scan8[2 + 8]] =
2055  nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12;
2056 
2057  nnz_cache[scan8[0 + 12]] =
2058  nnz_cache[scan8[1 + 12]] =
2059  nnz_cache[scan8[2 + 12]] =
2060  nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12;
2061  }
2062  }
2063 
2064  return 0;
2065 }
2066 
2067 static void loop_filter(H264Context *h, int start_x, int end_x)
2068 {
2069  uint8_t *dest_y, *dest_cb, *dest_cr;
2070  int linesize, uvlinesize, mb_x, mb_y;
2071  const int end_mb_y = h->mb_y + FRAME_MBAFF(h);
2072  const int old_slice_type = h->slice_type;
2073  const int pixel_shift = h->pixel_shift;
2074  const int block_h = 16 >> h->chroma_y_shift;
2075 
2076  if (h->deblocking_filter) {
2077  for (mb_x = start_x; mb_x < end_x; mb_x++)
2078  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2079  int mb_xy, mb_type;
2080  mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride;
2081  h->slice_num = h->slice_table[mb_xy];
2082  mb_type = h->cur_pic.mb_type[mb_xy];
2083  h->list_count = h->list_counts[mb_xy];
2084 
2085  if (FRAME_MBAFF(h))
2086  h->mb_mbaff =
2087  h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2088 
2089  h->mb_x = mb_x;
2090  h->mb_y = mb_y;
2091  dest_y = h->cur_pic.f.data[0] +
2092  ((mb_x << pixel_shift) + mb_y * h->linesize) * 16;
2093  dest_cb = h->cur_pic.f.data[1] +
2094  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2095  mb_y * h->uvlinesize * block_h;
2096  dest_cr = h->cur_pic.f.data[2] +
2097  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2098  mb_y * h->uvlinesize * block_h;
2099  // FIXME simplify above
2100 
2101  if (MB_FIELD(h)) {
2102  linesize = h->mb_linesize = h->linesize * 2;
2103  uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2;
2104  if (mb_y & 1) { // FIXME move out of this function?
2105  dest_y -= h->linesize * 15;
2106  dest_cb -= h->uvlinesize * (block_h - 1);
2107  dest_cr -= h->uvlinesize * (block_h - 1);
2108  }
2109  } else {
2110  linesize = h->mb_linesize = h->linesize;
2111  uvlinesize = h->mb_uvlinesize = h->uvlinesize;
2112  }
2113  backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
2114  uvlinesize, 0);
2115  if (fill_filter_caches(h, mb_type))
2116  continue;
2117  h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
2118  h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
2119 
2120  if (FRAME_MBAFF(h)) {
2121  ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2122  linesize, uvlinesize);
2123  } else {
2124  ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb,
2125  dest_cr, linesize, uvlinesize);
2126  }
2127  }
2128  }
2129  h->slice_type = old_slice_type;
2130  h->mb_x = end_x;
2131  h->mb_y = end_mb_y - FRAME_MBAFF(h);
2132  h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
2133  h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
2134 }
2135 
2137 {
2138  const int mb_xy = h->mb_x + h->mb_y * h->mb_stride;
2139  int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ?
2140  h->cur_pic.mb_type[mb_xy - 1] :
2141  (h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ?
2142  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2143  h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2144 }
2145 
2150 {
2151  int top = 16 * (h->mb_y >> FIELD_PICTURE(h));
2152  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2153  int height = 16 << FRAME_MBAFF(h);
2154  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2155 
2156  if (h->deblocking_filter) {
2157  if ((top + height) >= pic_height)
2158  height += deblock_border;
2159  top -= deblock_border;
2160  }
2161 
2162  if (top >= pic_height || (top + height) < 0)
2163  return;
2164 
2165  height = FFMIN(height, pic_height - top);
2166  if (top < 0) {
2167  height = top + height;
2168  top = 0;
2169  }
2170 
2171  ff_h264_draw_horiz_band(h, top, height);
2172 
2173  if (h->droppable)
2174  return;
2175 
2176  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2178 }
2179 
2180 static void er_add_slice(H264Context *h, int startx, int starty,
2181  int endx, int endy, int status)
2182 {
2183 #if CONFIG_ERROR_RESILIENCE
2184  ERContext *er = &h->er;
2185 
2186  er->ref_count = h->ref_count[0];
2187  ff_er_add_slice(er, startx, starty, endx, endy, status);
2188 #endif
2189 }
2190 
2191 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2192 {
2193  H264Context *h = *(void **)arg;
2194  int lf_x_start = h->mb_x;
2195 
2196  h->mb_skip_run = -1;
2197 
2199  avctx->codec_id != AV_CODEC_ID_H264 ||
2200  (CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY));
2201 
2202  if (h->pps.cabac) {
2203  /* realign */
2204  align_get_bits(&h->gb);
2205 
2206  /* init cabac */
2208  h->gb.buffer + get_bits_count(&h->gb) / 8,
2209  (get_bits_left(&h->gb) + 7) / 8);
2210 
2212 
2213  for (;;) {
2214  // START_TIMER
2215  int ret = ff_h264_decode_mb_cabac(h);
2216  int eos;
2217  // STOP_TIMER("decode_mb_cabac")
2218 
2219  if (ret >= 0)
2221 
2222  // FIXME optimal? or let mb_decode decode 16x32 ?
2223  if (ret >= 0 && FRAME_MBAFF(h)) {
2224  h->mb_y++;
2225 
2226  ret = ff_h264_decode_mb_cabac(h);
2227 
2228  if (ret >= 0)
2230  h->mb_y--;
2231  }
2232  eos = get_cabac_terminate(&h->cabac);
2233 
2234  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2235  h->cabac.bytestream > h->cabac.bytestream_end + 2) {
2236  er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
2237  h->mb_y, ER_MB_END);
2238  if (h->mb_x >= lf_x_start)
2239  loop_filter(h, lf_x_start, h->mb_x + 1);
2240  return 0;
2241  }
2242  if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
2244  "error while decoding MB %d %d, bytestream %td\n",
2245  h->mb_x, h->mb_y,
2247  er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
2248  h->mb_y, ER_MB_ERROR);
2249  return AVERROR_INVALIDDATA;
2250  }
2251 
2252  if (++h->mb_x >= h->mb_width) {
2253  loop_filter(h, lf_x_start, h->mb_x);
2254  h->mb_x = lf_x_start = 0;
2255  decode_finish_row(h);
2256  ++h->mb_y;
2257  if (FIELD_OR_MBAFF_PICTURE(h)) {
2258  ++h->mb_y;
2259  if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
2261  }
2262  }
2263 
2264  if (eos || h->mb_y >= h->mb_height) {
2265  tprintf(h->avctx, "slice end %d %d\n",
2266  get_bits_count(&h->gb), h->gb.size_in_bits);
2267  er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
2268  h->mb_y, ER_MB_END);
2269  if (h->mb_x > lf_x_start)
2270  loop_filter(h, lf_x_start, h->mb_x);
2271  return 0;
2272  }
2273  }
2274  } else {
2275  for (;;) {
2276  int ret = ff_h264_decode_mb_cavlc(h);
2277 
2278  if (ret >= 0)
2280 
2281  // FIXME optimal? or let mb_decode decode 16x32 ?
2282  if (ret >= 0 && FRAME_MBAFF(h)) {
2283  h->mb_y++;
2284  ret = ff_h264_decode_mb_cavlc(h);
2285 
2286  if (ret >= 0)
2288  h->mb_y--;
2289  }
2290 
2291  if (ret < 0) {
2293  "error while decoding MB %d %d\n", h->mb_x, h->mb_y);
2294  er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
2295  h->mb_y, ER_MB_ERROR);
2296  return ret;
2297  }
2298 
2299  if (++h->mb_x >= h->mb_width) {
2300  loop_filter(h, lf_x_start, h->mb_x);
2301  h->mb_x = lf_x_start = 0;
2302  decode_finish_row(h);
2303  ++h->mb_y;
2304  if (FIELD_OR_MBAFF_PICTURE(h)) {
2305  ++h->mb_y;
2306  if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
2308  }
2309  if (h->mb_y >= h->mb_height) {
2310  tprintf(h->avctx, "slice end %d %d\n",
2311  get_bits_count(&h->gb), h->gb.size_in_bits);
2312 
2313  if (get_bits_left(&h->gb) == 0) {
2315  h->mb_x - 1, h->mb_y, ER_MB_END);
2316 
2317  return 0;
2318  } else {
2320  h->mb_x - 1, h->mb_y, ER_MB_END);
2321 
2322  return AVERROR_INVALIDDATA;
2323  }
2324  }
2325  }
2326 
2327  if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) {
2328  tprintf(h->avctx, "slice end %d %d\n",
2329  get_bits_count(&h->gb), h->gb.size_in_bits);
2330 
2331  if (get_bits_left(&h->gb) == 0) {
2333  h->mb_x - 1, h->mb_y, ER_MB_END);
2334  if (h->mb_x > lf_x_start)
2335  loop_filter(h, lf_x_start, h->mb_x);
2336 
2337  return 0;
2338  } else {
2339  er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
2340  h->mb_y, ER_MB_ERROR);
2341 
2342  return AVERROR_INVALIDDATA;
2343  }
2344  }
2345  }
2346  }
2347 }
2348 
2355 int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
2356 {
2357  AVCodecContext *const avctx = h->avctx;
2358  H264Context *hx;
2359  int i;
2360 
2361  if (h->mb_y >= h->mb_height) {
2363  "Input contains more MB rows than the frame height.\n");
2364  return AVERROR_INVALIDDATA;
2365  }
2366 
2367  if (h->avctx->hwaccel)
2368  return 0;
2369  if (context_count == 1) {
2370  return decode_slice(avctx, &h);
2371  } else {
2372  for (i = 1; i < context_count; i++) {
2373  hx = h->thread_context[i];
2374  hx->er.error_count = 0;
2375  }
2376 
2377  avctx->execute(avctx, decode_slice, h->thread_context,
2378  NULL, context_count, sizeof(void *));
2379 
2380  /* pull back stuff from slices to master context */
2381  hx = h->thread_context[context_count - 1];
2382  h->mb_x = hx->mb_x;
2383  h->mb_y = hx->mb_y;
2384  h->droppable = hx->droppable;
2386  for (i = 1; i < context_count; i++)
2388  }
2389 
2390  return 0;
2391 }
int chroma_format_idc
Definition: h264.h:160
void ff_h264_direct_dist_scale_factor(H264Context *const h)
Definition: h264_direct.c:50
int video_signal_type_present_flag
Definition: h264.h:185
int last_slice_type
Definition: h264.h:613
int ff_h264_decode_mb_cabac(H264Context *h)
Decode a CABAC coded macroblock.
Definition: h264_cabac.c:1882
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:46
const struct AVCodec * codec
Definition: avcodec.h:1059
void * av_malloc(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:62
discard all frames except keyframes
Definition: avcodec.h:567
uint8_t * edge_emu_buffer
Definition: h264.h:700
void ff_h264_flush_change(H264Context *h)
Definition: h264.c:1055
static const uint8_t dequant8_coeff_init[6][6]
Definition: h264_slice.c:137
int workaround_bugs
Definition: h264.h:336
int long_ref
1->long term reference 0->short term reference
Definition: h264.h:289
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:54
int single_decode_warning
1 if the single thread fallback warning has already been displayed, 0 otherwise.
Definition: h264.h:609
void ff_h264_free_tables(H264Context *h, int free_rbsp)
Definition: h264.c:343
GetBitContext gb
Definition: h264.h:311
#define CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:664
int low_delay
Definition: h264.h:332
int mb_num
Definition: h264.h:504
int size
int mb_aff_frame
Definition: h264.h:416
int delta_poc[2]
Definition: h264.h:543
ptrdiff_t uvlinesize
Definition: h264.h:325
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:179
int last_qscale_diff
Definition: h264.h:477
#define CHROMA444(h)
Definition: h264.h:96
#define LEFT_MBS
Definition: h264.h:73
int coded_width
Bitstream width / height, may be different from width/height e.g.
Definition: avcodec.h:1234
int cbp
Definition: h264.h:472
#define H264_MAX_PICTURE_COUNT
Definition: h264.h:46
int first_field
Definition: h264.h:420
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:70
misc image utilities
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:240
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:129
#define ER_MB_END
AVFrame * f
Definition: thread.h:36
int weighted_bipred_idc
Definition: h264.h:227
int chroma_qp_index_offset[2]
Definition: h264.h:230
const uint8_t * bytestream_end
Definition: cabac.h:48
int left_type[LEFT_MBS]
Definition: h264.h:353
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:393
static const uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264_slice.c:105
H264ChromaContext h264chroma
Definition: h264.h:308
uint16_t * cbp_table
Definition: h264.h:471
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264.h:691
MMCO mmco[MAX_MMCO_COUNT]
memory management control operations buffer.
Definition: h264.h:575
#define MAX_PPS_COUNT
Definition: h264.h:50
void h264_init_dequant_tables(H264Context *h)
Definition: h264_slice.c:382
Sequence parameter set.
Definition: h264.h:156
enum AVColorRange color_range
MPEG vs JPEG YUV range.
Definition: avcodec.h:1766
static void implicit_weight_table(H264Context *h, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:853
int mb_y
Definition: h264.h:498
int coded_picture_number
Definition: h264.h:331
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:163
static void decode_finish_row(H264Context *h)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2149
int num
numerator
Definition: rational.h:44
AVBufferRef * mb_type_buf
Definition: h264.h:273
H264Picture * DPB
Definition: h264.h:314
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:251
AVBufferPool * mb_type_pool
Definition: h264.h:704
int outputed_poc
Definition: h264.h:569
int chroma_x_shift
Definition: h264.h:326
HW decoding through VA API, Picture.data[3] contains a vaapi_render_state struct which contains the b...
Definition: pixfmt.h:127
qpel_mc_func(* qpel_put)[16]
Definition: h264.h:709
static void clone_tables(H264Context *dst, H264Context *src, int i)
Mimic alloc_tables(), but for every context thread.
Definition: h264_slice.c:402
const uint8_t * buffer
Definition: get_bits.h:54
Picture parameter set.
Definition: h264.h:219
int16_t(*[2] motion_val)[2]
Definition: h264.h:271
int flags
Definition: h264.h:335
const uint8_t * field_scan8x8_q0
Definition: h264.h:493
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:1254
int frame_mbs_only_flag
Definition: h264.h:173
int mb_height
Definition: h264.h:502
H264Picture * delayed_pic[MAX_DELAYED_PIC_COUNT+2]
Definition: h264.h:566
int is_avc
Used to parse AVC variant of h264.
Definition: h264.h:525
int mmco_index
Definition: h264.h:576
AVBufferPool * ref_index_pool
Definition: h264.h:706
static const uint8_t dequant4_coeff_init[6][3]
Definition: h264_slice.c:124
uint8_t zigzag_scan8x8_cavlc[64]
Definition: h264.h:485
int ff_h264_get_profile(SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264.c:1193
uint32_t dequant8_buffer[6][QP_MAX_NUM+1][64]
Definition: h264.h:405
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264.h:378
H264Context.
Definition: h264.h:303
discard all
Definition: avcodec.h:568
int prev_poc_msb
poc_msb of the last reference pic for POC type 0
Definition: h264.h:545
int bits_per_raw_sample
Bits per sample/pixel of internal libavcodec pixel/sample format.
Definition: avcodec.h:2514
uint32_t num_units_in_tick
Definition: h264.h:192
struct AVFrame f
Definition: h264.h:264
H264Picture * long_ref[32]
Definition: h264.h:565
int profile
profile
Definition: avcodec.h:2622
int picture_structure
Definition: h264.h:419
#define AV_WN32A(p, v)
Definition: intreadwrite.h:458
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264.h:412
#define AV_COPY32(d, s)
Definition: intreadwrite.h:506
static av_always_inline uint32_t pack16to32(int a, int b)
Definition: h264.h:884
static const uint8_t zigzag_scan[16]
Definition: h264data.h:54
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:424
int mb_skip_run
Definition: h264.h:501
void ff_h264_init_cabac_states(H264Context *h)
Definition: h264_cabac.c:1263
#define FFALIGN(x, a)
Definition: common.h:62
static const uint8_t field_scan8x8_cavlc[64]
Definition: h264_slice.c:85
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:426
AVRational time_base
This is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented...
Definition: avcodec.h:1175
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
Definition: mem.c:198
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:472
Switching Intra.
Definition: avutil.h:257
uint8_t * chroma_pred_mode_table
Definition: h264.h:476
int ff_h264_decode_ref_pic_list_reordering(H264Context *h)
Definition: h264_refs.c:215
static const uint8_t golomb_to_pict_type[5]
Definition: h264data.h:37
struct AVHWAccel * hwaccel
Hardware accelerator in use.
Definition: avcodec.h:2432
unsigned int crop_top
frame_cropping_rect_top_offset
Definition: h264.h:181
#define USES_LIST(a, list)
Definition: mpegutils.h:95
int resync_mb_y
Definition: h264.h:500
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define IS_8x8DCT(a)
Definition: h264.h:103
uint8_t scaling_matrix4[6][16]
Definition: h264.h:235
static int fill_filter_caches(H264Context *h, int mb_type)
Definition: h264_slice.c:1922
const uint8_t * bytestream
Definition: cabac.h:47
int ref2frm[MAX_SLICES][2][64]
reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 ...
Definition: h264.h:451
int deblocking_filter_parameters_present
deblocking_filter_parameters_present_flag
Definition: h264.h:231
void void avpriv_request_sample(void *avc, const char *msg,...) av_printf_format(2
Log a generic warning message about a missing feature.
static int copy_parameter_set(void **to, void **from, int count, int size)
Definition: h264_slice.c:446
uint32_t(*[6] dequant4_coeff)[16]
Definition: h264.h:406
static enum AVPixelFormat h264_hwaccel_pixfmt_list_jpeg_420[]
Definition: h264_slice.c:164
uint8_t
int prev_frame_num_offset
for POC type 2
Definition: h264.h:548
int use_weight
Definition: h264.h:425
int full_range
Definition: h264.h:186
unsigned int crop_left
frame_cropping_rect_left_offset
Definition: h264.h:179
int data_partitioning
Definition: h264.h:330
int field_picture
whether or not picture was encoded in separate fields
Definition: h264.h:293
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:2363
static void init_dequant4_coeff_table(H264Context *h)
Definition: h264_slice.c:356
enum AVColorPrimaries color_primaries
Definition: h264.h:188
int poc
frame POC
Definition: h264.h:283
Multithreading support functions.
#define ER_MB_ERROR
int cabac
entropy_coding_mode_flag
Definition: h264.h:221
int mb_xy
Definition: h264.h:505
static const uint8_t dequant8_coeff_init_scan[16]
Definition: h264_slice.c:133
static void init_dequant8_coeff_table(H264Context *h)
Definition: h264_slice.c:329
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264.h:445
unsigned int crop_right
frame_cropping_rect_right_offset
Definition: h264.h:180
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:250
void ff_h264_fill_mbaff_ref_list(H264Context *h)
Definition: h264_refs.c:340
int frame_recovered
Initial frame has been completely recovered.
Definition: h264.h:689
int height
Definition: h264.h:324
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:34
int mb_x
Definition: h264.h:498
int transform_bypass
qpprime_y_zero_transform_bypass_flag
Definition: h264.h:161
H264Picture default_ref_list[2][32]
base reference list for all slices of a coded picture
Definition: h264.h:563
static void predict_field_decoding_flag(H264Context *h)
Definition: h264_slice.c:2136
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:194
int left_mb_xy[LEFT_MBS]
Definition: h264.h:348
int top_mb_xy
Definition: h264.h:346
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:43
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV422P and setting color_...
Definition: pixfmt.h:78
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:145
qpel_mc_func(* qpel_avg)[16]
Definition: h264.h:710
int redundant_pic_cnt_present
redundant_pic_cnt_present_flag
Definition: h264.h:233
int chroma_y_shift
Definition: h264.h:326
#define MAX_DELAYED_PIC_COUNT
Definition: h264.h:54
AVBufferRef * qscale_table_buf
Definition: h264.h:267
static av_always_inline void fill_filter_caches_inter(H264Context *h, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:1838
high precision timer, useful to profile code
int recovered
picture at IDR or recovery point + recovery count
Definition: h264.h:297
#define AV_COPY64(d, s)
Definition: intreadwrite.h:510
int luma_log2_weight_denom
Definition: h264.h:427
qpel_mc_func avg_h264_qpel_pixels_tab[4][16]
Definition: h264qpel.h:29
int width
Definition: h264.h:324
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:671
const uint8_t * zigzag_scan8x8_cavlc_q0
Definition: h264.h:491
H.264 / AVC / MPEG4 part10 codec.
static int clone_slice(H264Context *dst, H264Context *src)
Replicate H264 "master" context to thread contexts.
Definition: h264_slice.c:954
int frame_num
Definition: h264.h:544
static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:752
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:555
int mb_aff
mb_adaptive_frame_field_flag
Definition: h264.h:174
enum AVColorTransferCharacteristic color_trc
Definition: h264.h:189
H264PredContext hpc
Definition: h264.h:360
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
int16_t mb_luma_dc[3][16 *2]
Definition: h264.h:461
static int get_ue_golomb(GetBitContext *gb)
read unsigned exp golomb code.
Definition: golomb.h:53
const uint8_t * zigzag_scan_q0
Definition: h264.h:489
int ff_h264_get_slice_type(const H264Context *h)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:1820
int poc_type
pic_order_cnt_type
Definition: h264.h:163
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
int context_initialized
Definition: h264.h:334
int nal_unit_type
Definition: h264.h:518
int use_weight_chroma
Definition: h264.h:426
discard all bidirectional frames
Definition: avcodec.h:566
#define AVERROR(e)
Definition: error.h:43
void ff_h264_direct_ref_list_init(H264Context *const h)
Definition: h264_direct.c:107
static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
Get the chroma qp.
Definition: h264.h:905
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264.h:277
#define MB_FIELD(h)
Definition: h264.h:70
int active_thread_type
Which multithreading methods are in use by the codec.
Definition: avcodec.h:2559
int mb_field_decoding_flag
Definition: h264.h:417
int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc)
Definition: h264.c:1108
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:144
PPS pps
current pps
Definition: h264.h:402
static int init_dimensions(H264Context *h)
Definition: h264_slice.c:1041
uint8_t(*[2] mvd_table)[2]
Definition: h264.h:478
int prev_interlaced_frame
Complement sei_pic_struct SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced...
Definition: h264.h:627
int direct_spatial_mv_pred
Definition: h264.h:434
ThreadFrame tf
Definition: h264.h:265
simple assert() macros that are a bit more flexible than ISO C assert().
int weighted_pred
weighted_pred_flag
Definition: h264.h:226
#define PICT_TOP_FIELD
Definition: mpegutils.h:33
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
H264QpelContext h264qpel
Definition: h264.h:309
ERContext er
Definition: h264.h:312
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:245
#define CABAC(h)
Definition: h264.h:92
int ff_h264_decode_mb_cavlc(H264Context *h)
Decode a macroblock.
Definition: h264_cavlc.c:692
HW acceleration through VDA, data[3] contains a CVPixelBufferRef.
Definition: pixfmt.h:204
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264.h:284
static const uint8_t field_scan8x8[64]
Definition: h264_slice.c:66
uint8_t * list_counts
Array of list_count per MB specifying the slice type.
Definition: h264.h:447
qpel_mc_func put_h264_qpel_pixels_tab[4][16]
Definition: h264qpel.h:28
int delta_pic_order_always_zero_flag
Definition: h264.h:165
void av_image_copy(uint8_t *dst_data[4], int dst_linesizes[4], const uint8_t *src_data[4], const int src_linesizes[4], enum AVPixelFormat pix_fmt, int width, int height)
Copy image in src_data to dst_data.
Definition: imgutils.c:267
int new
flag to keep track if the decoder context needs re-init due to changed SPS
Definition: h264.h:213
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264.h:89
uint8_t zigzag_scan8x8[64]
Definition: h264.h:484
AVBufferRef * hwaccel_priv_buf
Definition: h264.h:276
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:69
static const uint8_t scan8[16 *3+3]
Definition: h264.h:868
int crop
frame_cropping_flag
Definition: h264.h:176
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
uint8_t * direct_table
Definition: h264.h:480
int ff_pred_weight_table(H264Context *h)
Definition: h264.c:980
uint8_t scaling_matrix8[6][64]
Definition: h264.h:236
useful rectangle filling function
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:241
int refs
number of reference frames
Definition: avcodec.h:1707
static const uint8_t field_scan[16]
Definition: h264_slice.c:59
CABACContext cabac
Cabac.
Definition: h264.h:467
AVBufferRef * motion_val_buf[2]
Definition: h264.h:270
int ref_frame_count
num_ref_frames
Definition: h264.h:169
enum AVPixelFormat * pix_fmts
array of supported pixel formats, or NULL if unknown, array is terminated by -1
Definition: avcodec.h:2817
void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
int frame_num_offset
for POC type 2
Definition: h264.h:547
int err_recognition
Error recognition; may misdetect some more or less valid parts as errors.
Definition: avcodec.h:2406
int x264_build
Definition: h264.h:496
#define FF_THREAD_FRAME
Decode more than one frame at once.
Definition: avcodec.h:2551
uint32_t * mb2br_xy
Definition: h264.h:395
int needs_realloc
picture needs to be reallocated (eg due to a frame size change)
Definition: h264.h:295
ptrdiff_t linesize
Definition: h264.h:325
#define FFMIN(a, b)
Definition: common.h:57
uint16_t * slice_table
slice_table_base + 2*mb_stride + 1
Definition: h264.h:410
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:431
uint8_t field_scan8x8_cavlc[64]
Definition: h264.h:488
#define H264_MAX_THREADS
Definition: h264.h:47
#define IS_DIRECT(a)
Definition: mpegutils.h:80
int colour_description_present_flag
Definition: h264.h:187
int reference
Definition: h264.h:296
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV420P and setting color_...
Definition: pixfmt.h:77
AVRational sar
Definition: h264.h:184
int redundant_pic_count
Definition: h264.h:561
#define FIELD_PICTURE(h)
Definition: h264.h:72
int width
picture width / height.
Definition: avcodec.h:1224
int long_ref_count
number of actual long term references
Definition: h264.h:579
#define CONFIG_GRAY
Definition: config.h:341
static enum AVPixelFormat h264_hwaccel_pixfmt_list_420[]
Definition: h264_slice.c:146
int cabac_init_idc
Definition: h264.h:582
uint32_t * mb_type
Definition: h264.h:274
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:67
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
int size_in_bits
Definition: get_bits.h:56
SPS sps
current sps
Definition: h264.h:401
PPS * pps_buffers[MAX_PPS_COUNT]
Definition: h264.h:533
enum AVColorPrimaries color_primaries
Chromaticity coordinates of the source primaries.
Definition: avcodec.h:1745
static void fill_rectangle(SDL_Surface *screen, int x, int y, int w, int h, int color)
Definition: avplay.c:396
#define MAX_SPS_COUNT
Definition: h264.h:49
#define FFABS(a)
Definition: common.h:52
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:2552
Context Adaptive Binary Arithmetic Coder inline functions.
int level
level
Definition: avcodec.h:2705
H264Picture ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264.h:448
int init_qp
pic_init_qp_minus26 + 26
Definition: h264.h:228
uint8_t * bipred_scratchpad
Definition: h264.h:699
#define AV_EF_EXPLODE
Definition: avcodec.h:2417
int poc_lsb
Definition: h264.h:540
int max_pic_num
max_frame_num or 2 * max_frame_num for field pics.
Definition: h264.h:559
int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice)
Definition: h264_refs.c:538
static int pic_is_unused(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:300
static void loop_filter(H264Context *h, int start_x, int end_x)
Definition: h264_slice.c:2067
int ff_set_ref_count(H264Context *h)
Definition: h264.c:1253
const uint8_t * zigzag_scan8x8_q0
Definition: h264.h:490
int curr_pic_num
frame_num for frames or 2 * frame_num + 1 for field pics.
Definition: h264.h:554
int slice_type
Definition: h264.h:411
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:917
static int av_unused get_cabac_terminate(CABACContext *c)
int top_type
Definition: h264.h:351
#define MB_MBAFF(h)
Definition: h264.h:69
#define HAVE_THREADS
Definition: config.h:284
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:242
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output...
Definition: mpegutils.h:41
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, const int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:402
uint32_t dequant4_buffer[6][QP_MAX_NUM+1][16]
Definition: h264.h:404
#define CONFIG_ERROR_RESILIENCE
Definition: config.h:369
ptrdiff_t mb_uvlinesize
Definition: h264.h:399
unsigned int list_count
Definition: h264.h:446
unsigned int sps_id
Definition: h264.h:157
int thread_count
thread count is used to decide how many independent tasks should be passed to execute() ...
Definition: avcodec.h:2540
the normal 2^n-1 "JPEG" YUV ranges
Definition: pixfmt.h:365
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:217
if(ac->has_optimized_func)
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Select the (possibly hardware accelerated) pixel format.
Definition: utils.c:902
int dequant_coeff_pps
reinit tables when pps changes
Definition: h264.h:535
#define AVERROR_PATCHWELCOME
Not yet implemented in Libav, patches welcome.
Definition: error.h:57
int pic_order_present
pic_order_present_flag
Definition: h264.h:222
struct H264Context * thread_context[H264_MAX_THREADS]
Definition: h264.h:588
SPS * sps_buffers[MAX_SPS_COUNT]
Definition: h264.h:532
int chroma_log2_weight_denom
Definition: h264.h:428
int bit_depth_luma
luma bit depth from sps to detect changes
Definition: h264.h:529
int chroma_format_idc
chroma format from sps to detect changes
Definition: h264.h:530
VideoDSPContext vdsp
Definition: h264.h:306
int timing_info_present_flag
Definition: h264.h:191
NULL
Definition: eval.c:55
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:572
static int width
Definition: utils.c:156
int coded_picture_number
picture number in bitstream order
Definition: frame.h:226
int mb_stride
Definition: h264.h:503
#define AV_LOG_INFO
Standard information.
Definition: log.h:134
#define IS_INTERLACED(a)
Definition: mpegutils.h:79
AVCodecContext * avctx
Definition: h264.h:304
Libavcodec external API header.
H264 / AVC / MPEG4 part10 codec data table
int slice_alpha_c0_offset
Definition: h264.h:511
enum AVCodecID codec_id
Definition: avcodec.h:1067
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:96
AVHWAccel.
Definition: avcodec.h:2893
int prev_frame_num
frame_num of the last pic for POC type 1/2
Definition: h264.h:549
int ff_h264_set_parameter_from_sps(H264Context *h)
Definition: h264.c:1213
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:153
H264Picture * short_ref[32]
Definition: h264.h:564
int next_outputed_poc
Definition: h264.h:570
#define LTOP
Definition: h264.h:74
int poc_msb
Definition: h264.h:541
int field_poc[2]
top/bottom POC
Definition: h264.h:282
int debug
debug
Definition: avcodec.h:2362
int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
int implicit_weight[48][48][2]
Definition: h264.h:432
int max_contexts
Max number of threads / contexts.
Definition: h264.h:601
int recovery_frame
recovery_frame is the frame_num at which the next frame should be fully constructed.
Definition: h264.h:676
main external API structure.
Definition: avcodec.h:1050
uint8_t * data
The data buffer.
Definition: buffer.h:89
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264.c:404
#define QP_MAX_NUM
Definition: h264.h:105
int resync_mb_x
Definition: h264.h:499
int16_t mb[16 *48 *2]
as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
Definition: h264.h:460
int8_t * qscale_table
Definition: h264.h:268
AVBufferRef * av_buffer_allocz(int size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:82
AVBuffer * buffer
Definition: buffer.h:82
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:271
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:243
int coded_height
Definition: avcodec.h:1234
Switching Predicted.
Definition: avutil.h:258
int slice_beta_offset
Definition: h264.h:512
const uint8_t * field_scan8x8_cavlc_q0
Definition: h264.h:494
#define CHROMA422(h)
Definition: h264.h:95
uint32_t(*[6] dequant8_coeff)[64]
Definition: h264.h:407
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:230
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264.h:321
enum AVColorSpace colorspace
YUV colorspace type.
Definition: avcodec.h:1759
enum AVColorTransferCharacteristic color_trc
Color Transfer Characteristic.
Definition: avcodec.h:1752
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:190
int8_t * ref_index[2]
Definition: h264.h:280
A reference counted buffer type.
int pixel_shift
0 for 8-bit H264, 1 for high-bit-depth H264
Definition: h264.h:318
int mmco_reset
MMCO_RESET set this 1.
Definition: h264.h:285
static const uint8_t rem6[QP_MAX_NUM+1]
Definition: h264_slice.c:47
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb, int first_slice)
Definition: h264_refs.c:736
H264Picture * cur_pic_ptr
Definition: h264.h:315
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:115
int16_t mb_padding[256 *2]
as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too lar...
Definition: h264.h:462
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:240
#define IS_INTER(a)
Definition: mpegutils.h:75
unsigned int sps_id
Definition: h264.h:220
#define TRANSPOSE(x)
int log2_max_poc_lsb
log2_max_pic_order_cnt_lsb_minus4
Definition: h264.h:164
int ff_h264_decode_slice_header(H264Context *h, H264Context *h0)
Decode a slice header.
Definition: h264_slice.c:1188
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer. ...
Definition: pixfmt.h:138
void ff_h264_draw_horiz_band(H264Context *h, int y, int height)
Definition: h264.c:80
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:244
int block_offset[2 *(16 *3)]
block_offset[ 0..23] for frame macroblocks block_offset[24..47] for field macroblocks ...
Definition: h264.h:392
uint32_t time_scale
Definition: h264.h:193
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:283
int transform_8x8_mode
transform_8x8_mode_flag
Definition: h264.h:234
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:244
uint8_t zigzag_scan[16]
Definition: h264.h:483
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:183
void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
#define LBOT
Definition: h264.h:75
#define AV_ZERO128(d)
Definition: intreadwrite.h:542
the normal 219*2^(n-8) "MPEG" YUV ranges
Definition: pixfmt.h:364
int height
Definition: gxfenc.c:72
#define copy_fields(to, from, start_field, end_field)
Definition: h264_slice.c:466
hardware decoding through VDA
Definition: pixfmt.h:162
discard all non reference
Definition: avcodec.h:565
int is_complex
Definition: h264.h:507
AVBufferPool * qscale_table_pool
Definition: h264.h:703
H264Picture * next_output_pic
Definition: h264.h:568
int slice_context_count
Definition: h264.h:603
int mb_height
pic_height_in_map_units_minus1 + 1
Definition: h264.h:172
AVBufferPool * motion_val_pool
Definition: h264.h:705
uint8_t * rbsp_buffer[2]
Definition: h264.h:519
int qscale
Definition: h264.h:328
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:65
#define tprintf(p,...)
Definition: get_bits.h:626
MECmpContext mecc
Definition: h264.h:305
common internal api header.
AVBufferPool * av_buffer_pool_init(int size, AVBufferRef *(*alloc)(int size))
Allocate and initialize a buffer pool.
Definition: buffer.c:197
#define AV_COPY128(d, s)
Definition: intreadwrite.h:514
#define CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:637
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264.h:398
#define MAX_SLICES
Definition: dxva2_mpeg2.c:27
int ff_h264_field_end(H264Context *h, int in_setup)
Definition: h264_picture.c:147
int log2_max_frame_num
log2_max_frame_num_minus4 + 4
Definition: h264.h:162
H.264 / AVC / MPEG4 part10 motion vector predicion.
Bi-dir predicted.
Definition: avutil.h:255
FF_ENABLE_DEPRECATION_WARNINGS int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:1625
int ff_h264_context_init(H264Context *h)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264.c:469
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV444P and setting color_...
Definition: pixfmt.h:79
enum AVDiscard skip_loop_filter
Definition: avcodec.h:2713
static int h264_slice_header_init(H264Context *h, int reinit)
Definition: h264_slice.c:1079
int den
denominator
Definition: rational.h:45
int chroma_qp[2]
Definition: h264.h:319
int bit_depth_luma
bit_depth_luma_minus8 + 8
Definition: h264.h:209
static const uint8_t div6[QP_MAX_NUM+1]
Definition: h264_slice.c:53
#define IS_INTRA(x, y)
void * priv_data
Definition: avcodec.h:1092
#define PICT_FRAME
Definition: mpegutils.h:35
int prev_poc_lsb
poc_lsb of the last reference pic for POC type 0
Definition: h264.h:546
int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
Call decode_slice() for each context.
Definition: h264_slice.c:2355
void ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:109
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:2580
#define FRAME_MBAFF(h)
Definition: h264.h:71
static void er_add_slice(H264Context *h, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2180
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264.h:371
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:2989
uint8_t(*[2] top_borders)[(16 *3)*2]
Definition: h264.h:365
#define FF_BUG_TRUNCATED
Definition: avcodec.h:2327
H264Picture cur_pic
Definition: h264.h:316
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:191
#define AV_ZERO32(d)
Definition: intreadwrite.h:534
int mb_width
Definition: h264.h:502
enum AVPictureType pict_type
Definition: h264.h:611
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:309
int current_slice
current slice number, used to initalize slice_num of each thread/context
Definition: h264.h:593
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:416
int mb_width
pic_width_in_mbs_minus1 + 1
Definition: h264.h:171
int flags2
CODEC_FLAG2_*.
Definition: avcodec.h:1151
uint32_t * mb2b_xy
Definition: h264.h:394
int slice_type_fixed
Definition: h264.h:413
AVBufferRef * ref_index_buf[2]
Definition: h264.h:279
int delta_poc_bottom
Definition: h264.h:542
const uint8_t * field_scan_q0
Definition: h264.h:492
static int alloc_scratch_buffers(H264Context *h, int linesize)
Definition: h264_slice.c:196
int ff_h264_fill_default_ref_list(H264Context *h)
Fill the default_ref_list.
Definition: h264_refs.c:119
H264DSPContext h264dsp
Definition: h264.h:307
void ff_er_frame_start(ERContext *s)
uint8_t field_scan8x8[64]
Definition: h264.h:487
#define av_always_inline
Definition: attributes.h:40
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264.h:692
int8_t * intra4x4_pred_mode
Definition: h264.h:359
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:285
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2191
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264.h:510
#define LIST_NOT_USED
Definition: h264.h:380
static enum AVPixelFormat get_pixel_format(H264Context *h)
Definition: h264_slice.c:979
uint8_t(* non_zero_count)[48]
Definition: h264.h:373
unsigned int crop_bottom
frame_cropping_rect_bottom_offset
Definition: h264.h:182
exp golomb vlc stuff
int slice_num
Definition: h264.h:409
AVPixelFormat
Pixel format.
Definition: pixfmt.h:63
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:850
int droppable
Definition: h264.h:329
int level_idc
Definition: h264.h:159
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
Definition: mem.c:205
int nal_ref_idc
Definition: h264.h:517
uint8_t field_scan[16]
Definition: h264.h:486
for(j=16;j >0;--j)
void ff_h264_hl_decode_mb(H264Context *h)
Definition: h264_mb.c:804
#define FFMAX3(a, b, c)
Definition: common.h:56
int b_stride
Definition: h264.h:396
Predicted.
Definition: avutil.h:254
unsigned int rbsp_buffer_size[2]
Definition: h264.h:520
Context Adaptive Binary Arithmetic Coder.
int8_t ref_cache[2][5 *8]
Definition: h264.h:379
Definition: vf_drawbox.c:37
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264.h:418
int short_ref_count
number of actual short term references
Definition: h264.h:580
enum AVColorSpace colorspace
Definition: h264.h:190