Libav
adpcm.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001-2003 The ffmpeg Project
3  *
4  * first version by Francois Revol (revol@free.fr)
5  * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6  * by Mike Melanson (melanson@pcisys.net)
7  * CD-ROM XA ADPCM codec by BERO
8  * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9  * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10  * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11  * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12  * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13  * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14  * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15  *
16  * This file is part of Libav.
17  *
18  * Libav is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU Lesser General Public
20  * License as published by the Free Software Foundation; either
21  * version 2.1 of the License, or (at your option) any later version.
22  *
23  * Libav is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26  * Lesser General Public License for more details.
27  *
28  * You should have received a copy of the GNU Lesser General Public
29  * License along with Libav; if not, write to the Free Software
30  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31  */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "put_bits.h"
35 #include "bytestream.h"
36 #include "adpcm.h"
37 #include "adpcm_data.h"
38 #include "internal.h"
39 
60 /* These are for CD-ROM XA ADPCM */
61 static const int xa_adpcm_table[5][2] = {
62  { 0, 0 },
63  { 60, 0 },
64  { 115, -52 },
65  { 98, -55 },
66  { 122, -60 }
67 };
68 
69 static const int ea_adpcm_table[] = {
70  0, 240, 460, 392,
71  0, 0, -208, -220,
72  0, 1, 3, 4,
73  7, 8, 10, 11,
74  0, -1, -3, -4
75 };
76 
77 // padded to zero where table size is less then 16
78 static const int swf_index_tables[4][16] = {
79  /*2*/ { -1, 2 },
80  /*3*/ { -1, -1, 2, 4 },
81  /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
82  /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
83 };
84 
85 /* end of tables */
86 
87 typedef struct ADPCMDecodeContext {
91 
93 {
94  ADPCMDecodeContext *c = avctx->priv_data;
95  unsigned int min_channels = 1;
96  unsigned int max_channels = 2;
97 
98  switch(avctx->codec->id) {
100  min_channels = 2;
101  break;
106  max_channels = 6;
107  break;
108  }
109  if (avctx->channels < min_channels || avctx->channels > max_channels) {
110  av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
111  return AVERROR(EINVAL);
112  }
113 
114  switch(avctx->codec->id) {
116  c->status[0].step = c->status[1].step = 511;
117  break;
119  if (avctx->bits_per_coded_sample != 4) {
120  av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
121  return -1;
122  }
123  break;
125  if (avctx->extradata && avctx->extradata_size >= 8) {
126  c->status[0].predictor = AV_RL32(avctx->extradata);
127  c->status[1].predictor = AV_RL32(avctx->extradata + 4);
128  }
129  break;
131  if (avctx->extradata && avctx->extradata_size >= 2)
132  c->vqa_version = AV_RL16(avctx->extradata);
133  break;
134  default:
135  break;
136  }
137 
138  switch(avctx->codec->id) {
149  break;
151  avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
153  break;
154  default:
155  avctx->sample_fmt = AV_SAMPLE_FMT_S16;
156  }
157 
158  return 0;
159 }
160 
161 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
162 {
163  int step_index;
164  int predictor;
165  int sign, delta, diff, step;
166 
167  step = ff_adpcm_step_table[c->step_index];
168  step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
169  step_index = av_clip(step_index, 0, 88);
170 
171  sign = nibble & 8;
172  delta = nibble & 7;
173  /* perform direct multiplication instead of series of jumps proposed by
174  * the reference ADPCM implementation since modern CPUs can do the mults
175  * quickly enough */
176  diff = ((2 * delta + 1) * step) >> shift;
177  predictor = c->predictor;
178  if (sign) predictor -= diff;
179  else predictor += diff;
180 
181  c->predictor = av_clip_int16(predictor);
182  c->step_index = step_index;
183 
184  return (short)c->predictor;
185 }
186 
187 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
188 {
189  int step_index;
190  int predictor;
191  int diff, step;
192 
193  step = ff_adpcm_step_table[c->step_index];
194  step_index = c->step_index + ff_adpcm_index_table[nibble];
195  step_index = av_clip(step_index, 0, 88);
196 
197  diff = step >> 3;
198  if (nibble & 4) diff += step;
199  if (nibble & 2) diff += step >> 1;
200  if (nibble & 1) diff += step >> 2;
201 
202  if (nibble & 8)
203  predictor = c->predictor - diff;
204  else
205  predictor = c->predictor + diff;
206 
207  c->predictor = av_clip_int16(predictor);
208  c->step_index = step_index;
209 
210  return c->predictor;
211 }
212 
213 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
214 {
215  int predictor;
216 
217  predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
218  predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
219 
220  c->sample2 = c->sample1;
221  c->sample1 = av_clip_int16(predictor);
222  c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
223  if (c->idelta < 16) c->idelta = 16;
224 
225  return c->sample1;
226 }
227 
228 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
229 {
230  int sign, delta, diff;
231  int new_step;
232 
233  sign = nibble & 8;
234  delta = nibble & 7;
235  /* perform direct multiplication instead of series of jumps proposed by
236  * the reference ADPCM implementation since modern CPUs can do the mults
237  * quickly enough */
238  diff = ((2 * delta + 1) * c->step) >> 3;
239  /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
240  c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
241  c->predictor = av_clip_int16(c->predictor);
242  /* calculate new step and clamp it to range 511..32767 */
243  new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
244  c->step = av_clip(new_step, 511, 32767);
245 
246  return (short)c->predictor;
247 }
248 
249 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
250 {
251  int sign, delta, diff;
252 
253  sign = nibble & (1<<(size-1));
254  delta = nibble & ((1<<(size-1))-1);
255  diff = delta << (7 + c->step + shift);
256 
257  /* clamp result */
258  c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
259 
260  /* calculate new step */
261  if (delta >= (2*size - 3) && c->step < 3)
262  c->step++;
263  else if (delta == 0 && c->step > 0)
264  c->step--;
265 
266  return (short) c->predictor;
267 }
268 
269 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
270 {
271  if(!c->step) {
272  c->predictor = 0;
273  c->step = 127;
274  }
275 
276  c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
277  c->predictor = av_clip_int16(c->predictor);
278  c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
279  c->step = av_clip(c->step, 127, 24567);
280  return c->predictor;
281 }
282 
283 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
284  const uint8_t *in, ADPCMChannelStatus *left,
285  ADPCMChannelStatus *right, int channels, int sample_offset)
286 {
287  int i, j;
288  int shift,filter,f0,f1;
289  int s_1,s_2;
290  int d,s,t;
291 
292  out0 += sample_offset;
293  if (channels == 1)
294  out1 = out0 + 28;
295  else
296  out1 += sample_offset;
297 
298  for(i=0;i<4;i++) {
299  shift = 12 - (in[4+i*2] & 15);
300  filter = in[4+i*2] >> 4;
301  if (filter > 4) {
302  av_log(avctx, AV_LOG_ERROR,
303  "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
304  filter);
305  return AVERROR_INVALIDDATA;
306  }
307  f0 = xa_adpcm_table[filter][0];
308  f1 = xa_adpcm_table[filter][1];
309 
310  s_1 = left->sample1;
311  s_2 = left->sample2;
312 
313  for(j=0;j<28;j++) {
314  d = in[16+i+j*4];
315 
316  t = sign_extend(d, 4);
317  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
318  s_2 = s_1;
319  s_1 = av_clip_int16(s);
320  out0[j] = s_1;
321  }
322 
323  if (channels == 2) {
324  left->sample1 = s_1;
325  left->sample2 = s_2;
326  s_1 = right->sample1;
327  s_2 = right->sample2;
328  }
329 
330  shift = 12 - (in[5+i*2] & 15);
331  filter = in[5+i*2] >> 4;
332  if (filter > 4) {
333  av_log(avctx, AV_LOG_ERROR,
334  "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
335  filter);
336  return AVERROR_INVALIDDATA;
337  }
338  f0 = xa_adpcm_table[filter][0];
339  f1 = xa_adpcm_table[filter][1];
340 
341  for(j=0;j<28;j++) {
342  d = in[16+i+j*4];
343 
344  t = sign_extend(d >> 4, 4);
345  s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
346  s_2 = s_1;
347  s_1 = av_clip_int16(s);
348  out1[j] = s_1;
349  }
350 
351  if (channels == 2) {
352  right->sample1 = s_1;
353  right->sample2 = s_2;
354  } else {
355  left->sample1 = s_1;
356  left->sample2 = s_2;
357  }
358 
359  out0 += 28 * (3 - channels);
360  out1 += 28 * (3 - channels);
361  }
362 
363  return 0;
364 }
365 
366 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
367 {
368  ADPCMDecodeContext *c = avctx->priv_data;
369  GetBitContext gb;
370  const int *table;
371  int k0, signmask, nb_bits, count;
372  int size = buf_size*8;
373  int i;
374 
375  init_get_bits(&gb, buf, size);
376 
377  //read bits & initial values
378  nb_bits = get_bits(&gb, 2)+2;
379  table = swf_index_tables[nb_bits-2];
380  k0 = 1 << (nb_bits-2);
381  signmask = 1 << (nb_bits-1);
382 
383  while (get_bits_count(&gb) <= size - 22*avctx->channels) {
384  for (i = 0; i < avctx->channels; i++) {
385  *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
386  c->status[i].step_index = get_bits(&gb, 6);
387  }
388 
389  for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
390  int i;
391 
392  for (i = 0; i < avctx->channels; i++) {
393  // similar to IMA adpcm
394  int delta = get_bits(&gb, nb_bits);
396  long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
397  int k = k0;
398 
399  do {
400  if (delta & k)
401  vpdiff += step;
402  step >>= 1;
403  k >>= 1;
404  } while(k);
405  vpdiff += step;
406 
407  if (delta & signmask)
408  c->status[i].predictor -= vpdiff;
409  else
410  c->status[i].predictor += vpdiff;
411 
412  c->status[i].step_index += table[delta & (~signmask)];
413 
414  c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
415  c->status[i].predictor = av_clip_int16(c->status[i].predictor);
416 
417  *samples++ = c->status[i].predictor;
418  }
419  }
420  }
421 }
422 
433  int buf_size, int *coded_samples)
434 {
435  ADPCMDecodeContext *s = avctx->priv_data;
436  int nb_samples = 0;
437  int ch = avctx->channels;
438  int has_coded_samples = 0;
439  int header_size;
440 
441  *coded_samples = 0;
442 
443  switch (avctx->codec->id) {
444  /* constant, only check buf_size */
446  if (buf_size < 76 * ch)
447  return 0;
448  nb_samples = 128;
449  break;
451  if (buf_size < 34 * ch)
452  return 0;
453  nb_samples = 64;
454  break;
455  /* simple 4-bit adpcm */
461  nb_samples = buf_size * 2 / ch;
462  break;
463  }
464  if (nb_samples)
465  return nb_samples;
466 
467  /* simple 4-bit adpcm, with header */
468  header_size = 0;
469  switch (avctx->codec->id) {
471  case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
472  case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
473  case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
474  }
475  if (header_size > 0)
476  return (buf_size - header_size) * 2 / ch;
477 
478  /* more complex formats */
479  switch (avctx->codec->id) {
481  has_coded_samples = 1;
482  *coded_samples = bytestream2_get_le32(gb);
483  *coded_samples -= *coded_samples % 28;
484  nb_samples = (buf_size - 12) / 30 * 28;
485  break;
487  has_coded_samples = 1;
488  *coded_samples = bytestream2_get_le32(gb);
489  nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
490  break;
492  nb_samples = (buf_size - ch) / ch * 2;
493  break;
497  /* maximum number of samples */
498  /* has internal offsets and a per-frame switch to signal raw 16-bit */
499  has_coded_samples = 1;
500  switch (avctx->codec->id) {
502  header_size = 4 + 9 * ch;
503  *coded_samples = bytestream2_get_le32(gb);
504  break;
506  header_size = 4 + 5 * ch;
507  *coded_samples = bytestream2_get_le32(gb);
508  break;
510  header_size = 4 + 5 * ch;
511  *coded_samples = bytestream2_get_be32(gb);
512  break;
513  }
514  *coded_samples -= *coded_samples % 28;
515  nb_samples = (buf_size - header_size) * 2 / ch;
516  nb_samples -= nb_samples % 28;
517  break;
519  if (avctx->block_align > 0)
520  buf_size = FFMIN(buf_size, avctx->block_align);
521  nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
522  break;
524  if (avctx->block_align > 0)
525  buf_size = FFMIN(buf_size, avctx->block_align);
526  nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
527  break;
529  if (avctx->block_align > 0)
530  buf_size = FFMIN(buf_size, avctx->block_align);
531  nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
532  break;
534  if (avctx->block_align > 0)
535  buf_size = FFMIN(buf_size, avctx->block_align);
536  nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
537  break;
541  {
542  int samples_per_byte;
543  switch (avctx->codec->id) {
544  case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
545  case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
546  case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
547  }
548  if (!s->status[0].step_index) {
549  nb_samples++;
550  buf_size -= ch;
551  }
552  nb_samples += buf_size * samples_per_byte / ch;
553  break;
554  }
556  {
557  int buf_bits = buf_size * 8 - 2;
558  int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
559  int block_hdr_size = 22 * ch;
560  int block_size = block_hdr_size + nbits * ch * 4095;
561  int nblocks = buf_bits / block_size;
562  int bits_left = buf_bits - nblocks * block_size;
563  nb_samples = nblocks * 4096;
564  if (bits_left >= block_hdr_size)
565  nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
566  break;
567  }
569  has_coded_samples = 1;
570  bytestream2_skip(gb, 4); // channel size
571  *coded_samples = bytestream2_get_be32(gb);
572  *coded_samples -= *coded_samples % 14;
573  nb_samples = (buf_size - 80) / (8 * ch) * 14;
574  break;
576  nb_samples = (buf_size / 128) * 224 / ch;
577  break;
578  }
579 
580  /* validate coded sample count */
581  if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
582  return AVERROR_INVALIDDATA;
583 
584  return nb_samples;
585 }
586 
587 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
588  int *got_frame_ptr, AVPacket *avpkt)
589 {
590  AVFrame *frame = data;
591  const uint8_t *buf = avpkt->data;
592  int buf_size = avpkt->size;
593  ADPCMDecodeContext *c = avctx->priv_data;
594  ADPCMChannelStatus *cs;
595  int n, m, channel, i;
596  short *samples;
597  int16_t **samples_p;
598  int st; /* stereo */
599  int count1, count2;
600  int nb_samples, coded_samples, ret;
601  GetByteContext gb;
602 
603  bytestream2_init(&gb, buf, buf_size);
604  nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples);
605  if (nb_samples <= 0) {
606  av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
607  return AVERROR_INVALIDDATA;
608  }
609 
610  /* get output buffer */
611  frame->nb_samples = nb_samples;
612  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
613  av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
614  return ret;
615  }
616  samples = (short *)frame->data[0];
617  samples_p = (int16_t **)frame->extended_data;
618 
619  /* use coded_samples when applicable */
620  /* it is always <= nb_samples, so the output buffer will be large enough */
621  if (coded_samples) {
622  if (coded_samples != nb_samples)
623  av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
624  frame->nb_samples = nb_samples = coded_samples;
625  }
626 
627  st = avctx->channels == 2 ? 1 : 0;
628 
629  switch(avctx->codec->id) {
631  /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
632  Channel data is interleaved per-chunk. */
633  for (channel = 0; channel < avctx->channels; channel++) {
634  int predictor;
635  int step_index;
636  cs = &(c->status[channel]);
637  /* (pppppp) (piiiiiii) */
638 
639  /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
640  predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
641  step_index = predictor & 0x7F;
642  predictor &= ~0x7F;
643 
644  if (cs->step_index == step_index) {
645  int diff = predictor - cs->predictor;
646  if (diff < 0)
647  diff = - diff;
648  if (diff > 0x7f)
649  goto update;
650  } else {
651  update:
652  cs->step_index = step_index;
653  cs->predictor = predictor;
654  }
655 
656  if (cs->step_index > 88u){
657  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
658  channel, cs->step_index);
659  return AVERROR_INVALIDDATA;
660  }
661 
662  samples = samples_p[channel];
663 
664  for (m = 0; m < 64; m += 2) {
665  int byte = bytestream2_get_byteu(&gb);
666  samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
667  samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
668  }
669  }
670  break;
672  for(i=0; i<avctx->channels; i++){
673  cs = &(c->status[i]);
674  cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
675 
676  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
677  if (cs->step_index > 88u){
678  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
679  i, cs->step_index);
680  return AVERROR_INVALIDDATA;
681  }
682  }
683 
684  for (n = 0; n < (nb_samples - 1) / 8; n++) {
685  for (i = 0; i < avctx->channels; i++) {
686  cs = &c->status[i];
687  samples = &samples_p[i][1 + n * 8];
688  for (m = 0; m < 8; m += 2) {
689  int v = bytestream2_get_byteu(&gb);
690  samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
691  samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
692  }
693  }
694  }
695  break;
697  for (i = 0; i < avctx->channels; i++)
698  c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
699 
700  for (i = 0; i < avctx->channels; i++) {
701  c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
702  if (c->status[i].step_index > 88u) {
703  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
704  i, c->status[i].step_index);
705  return AVERROR_INVALIDDATA;
706  }
707  }
708 
709  for (i = 0; i < avctx->channels; i++) {
710  samples = (int16_t *)frame->data[i];
711  cs = &c->status[i];
712  for (n = nb_samples >> 1; n > 0; n--) {
713  int v = bytestream2_get_byteu(&gb);
714  *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
715  *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
716  }
717  }
718  break;
720  {
721  int block_predictor;
722 
723  block_predictor = bytestream2_get_byteu(&gb);
724  if (block_predictor > 6) {
725  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
726  block_predictor);
727  return AVERROR_INVALIDDATA;
728  }
729  c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
730  c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
731  if (st) {
732  block_predictor = bytestream2_get_byteu(&gb);
733  if (block_predictor > 6) {
734  av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
735  block_predictor);
736  return AVERROR_INVALIDDATA;
737  }
738  c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
739  c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
740  }
741  c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
742  if (st){
743  c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
744  }
745 
746  c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
747  if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
748  c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
749  if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
750 
751  *samples++ = c->status[0].sample2;
752  if (st) *samples++ = c->status[1].sample2;
753  *samples++ = c->status[0].sample1;
754  if (st) *samples++ = c->status[1].sample1;
755  for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
756  int byte = bytestream2_get_byteu(&gb);
757  *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
758  *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
759  }
760  break;
761  }
763  for (channel = 0; channel < avctx->channels; channel++) {
764  cs = &c->status[channel];
765  cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
766  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
767  if (cs->step_index > 88u){
768  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
769  channel, cs->step_index);
770  return AVERROR_INVALIDDATA;
771  }
772  }
773  for (n = (nb_samples >> (1 - st)) - 1; n > 0; n--) {
774  int v = bytestream2_get_byteu(&gb);
775  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
776  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
777  }
778  break;
780  {
781  int last_byte = 0;
782  int nibble;
783  int decode_top_nibble_next = 0;
784  int diff_channel;
785  const int16_t *samples_end = samples + avctx->channels * nb_samples;
786 
787  bytestream2_skipu(&gb, 10);
788  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
789  c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
790  c->status[0].step_index = bytestream2_get_byteu(&gb);
791  c->status[1].step_index = bytestream2_get_byteu(&gb);
792  if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
793  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
794  c->status[0].step_index, c->status[1].step_index);
795  return AVERROR_INVALIDDATA;
796  }
797  /* sign extend the predictors */
798  diff_channel = c->status[1].predictor;
799 
800  /* DK3 ADPCM support macro */
801 #define DK3_GET_NEXT_NIBBLE() \
802  if (decode_top_nibble_next) { \
803  nibble = last_byte >> 4; \
804  decode_top_nibble_next = 0; \
805  } else { \
806  last_byte = bytestream2_get_byteu(&gb); \
807  nibble = last_byte & 0x0F; \
808  decode_top_nibble_next = 1; \
809  }
810 
811  while (samples < samples_end) {
812 
813  /* for this algorithm, c->status[0] is the sum channel and
814  * c->status[1] is the diff channel */
815 
816  /* process the first predictor of the sum channel */
818  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
819 
820  /* process the diff channel predictor */
822  adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
823 
824  /* process the first pair of stereo PCM samples */
825  diff_channel = (diff_channel + c->status[1].predictor) / 2;
826  *samples++ = c->status[0].predictor + c->status[1].predictor;
827  *samples++ = c->status[0].predictor - c->status[1].predictor;
828 
829  /* process the second predictor of the sum channel */
831  adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
832 
833  /* process the second pair of stereo PCM samples */
834  diff_channel = (diff_channel + c->status[1].predictor) / 2;
835  *samples++ = c->status[0].predictor + c->status[1].predictor;
836  *samples++ = c->status[0].predictor - c->status[1].predictor;
837  }
838  break;
839  }
841  for (channel = 0; channel < avctx->channels; channel++) {
842  cs = &c->status[channel];
843  cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
844  cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
845  if (cs->step_index > 88u){
846  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
847  channel, cs->step_index);
848  return AVERROR_INVALIDDATA;
849  }
850  }
851 
852  for (n = nb_samples >> (1 - st); n > 0; n--) {
853  int v1, v2;
854  int v = bytestream2_get_byteu(&gb);
855  /* nibbles are swapped for mono */
856  if (st) {
857  v1 = v >> 4;
858  v2 = v & 0x0F;
859  } else {
860  v2 = v >> 4;
861  v1 = v & 0x0F;
862  }
863  *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
864  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
865  }
866  break;
868  while (bytestream2_get_bytes_left(&gb) > 0) {
869  int v = bytestream2_get_byteu(&gb);
870  *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
871  *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
872  }
873  break;
875  if (c->vqa_version == 3) {
876  for (channel = 0; channel < avctx->channels; channel++) {
877  int16_t *smp = samples_p[channel];
878 
879  for (n = nb_samples / 2; n > 0; n--) {
880  int v = bytestream2_get_byteu(&gb);
881  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
882  *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
883  }
884  }
885  } else {
886  for (n = nb_samples / 2; n > 0; n--) {
887  for (channel = 0; channel < avctx->channels; channel++) {
888  int v = bytestream2_get_byteu(&gb);
889  *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
890  samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
891  }
892  samples += avctx->channels;
893  }
894  }
895  bytestream2_seek(&gb, 0, SEEK_END);
896  break;
898  {
899  int16_t *out0 = samples_p[0];
900  int16_t *out1 = samples_p[1];
901  int samples_per_block = 28 * (3 - avctx->channels) * 4;
902  int sample_offset = 0;
903  while (bytestream2_get_bytes_left(&gb) >= 128) {
904  if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
905  &c->status[0], &c->status[1],
906  avctx->channels, sample_offset)) < 0)
907  return ret;
908  bytestream2_skipu(&gb, 128);
909  sample_offset += samples_per_block;
910  }
911  break;
912  }
914  for (i=0; i<=st; i++) {
915  c->status[i].step_index = bytestream2_get_le32u(&gb);
916  if (c->status[i].step_index > 88u) {
917  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
918  i, c->status[i].step_index);
919  return AVERROR_INVALIDDATA;
920  }
921  }
922  for (i=0; i<=st; i++)
923  c->status[i].predictor = bytestream2_get_le32u(&gb);
924 
925  for (n = nb_samples >> (1 - st); n > 0; n--) {
926  int byte = bytestream2_get_byteu(&gb);
927  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
928  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
929  }
930  break;
932  for (n = nb_samples >> (1 - st); n > 0; n--) {
933  int byte = bytestream2_get_byteu(&gb);
934  *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
935  *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
936  }
937  break;
939  {
940  int previous_left_sample, previous_right_sample;
941  int current_left_sample, current_right_sample;
942  int next_left_sample, next_right_sample;
943  int coeff1l, coeff2l, coeff1r, coeff2r;
944  int shift_left, shift_right;
945 
946  /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
947  each coding 28 stereo samples. */
948 
949  current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
950  previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
951  current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
952  previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
953 
954  for (count1 = 0; count1 < nb_samples / 28; count1++) {
955  int byte = bytestream2_get_byteu(&gb);
956  coeff1l = ea_adpcm_table[ byte >> 4 ];
957  coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
958  coeff1r = ea_adpcm_table[ byte & 0x0F];
959  coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
960 
961  byte = bytestream2_get_byteu(&gb);
962  shift_left = 20 - (byte >> 4);
963  shift_right = 20 - (byte & 0x0F);
964 
965  for (count2 = 0; count2 < 28; count2++) {
966  byte = bytestream2_get_byteu(&gb);
967  next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
968  next_right_sample = sign_extend(byte, 4) << shift_right;
969 
970  next_left_sample = (next_left_sample +
971  (current_left_sample * coeff1l) +
972  (previous_left_sample * coeff2l) + 0x80) >> 8;
973  next_right_sample = (next_right_sample +
974  (current_right_sample * coeff1r) +
975  (previous_right_sample * coeff2r) + 0x80) >> 8;
976 
977  previous_left_sample = current_left_sample;
978  current_left_sample = av_clip_int16(next_left_sample);
979  previous_right_sample = current_right_sample;
980  current_right_sample = av_clip_int16(next_right_sample);
981  *samples++ = current_left_sample;
982  *samples++ = current_right_sample;
983  }
984  }
985 
986  bytestream2_skip(&gb, 2); // Skip terminating 0x0000
987 
988  break;
989  }
991  {
992  int coeff[2][2], shift[2];
993 
994  for(channel = 0; channel < avctx->channels; channel++) {
995  int byte = bytestream2_get_byteu(&gb);
996  for (i=0; i<2; i++)
997  coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
998  shift[channel] = 20 - (byte & 0x0F);
999  }
1000  for (count1 = 0; count1 < nb_samples / 2; count1++) {
1001  int byte[2];
1002 
1003  byte[0] = bytestream2_get_byteu(&gb);
1004  if (st) byte[1] = bytestream2_get_byteu(&gb);
1005  for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1006  for(channel = 0; channel < avctx->channels; channel++) {
1007  int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1008  sample = (sample +
1009  c->status[channel].sample1 * coeff[channel][0] +
1010  c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1011  c->status[channel].sample2 = c->status[channel].sample1;
1012  c->status[channel].sample1 = av_clip_int16(sample);
1013  *samples++ = c->status[channel].sample1;
1014  }
1015  }
1016  }
1017  bytestream2_seek(&gb, 0, SEEK_END);
1018  break;
1019  }
1022  case AV_CODEC_ID_ADPCM_EA_R3: {
1023  /* channel numbering
1024  2chan: 0=fl, 1=fr
1025  4chan: 0=fl, 1=rl, 2=fr, 3=rr
1026  6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1027  const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1028  int previous_sample, current_sample, next_sample;
1029  int coeff1, coeff2;
1030  int shift;
1031  unsigned int channel;
1032  uint16_t *samplesC;
1033  int count = 0;
1034  int offsets[6];
1035 
1036  for (channel=0; channel<avctx->channels; channel++)
1037  offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1038  bytestream2_get_le32(&gb)) +
1039  (avctx->channels + 1) * 4;
1040 
1041  for (channel=0; channel<avctx->channels; channel++) {
1042  bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1043  samplesC = samples_p[channel];
1044 
1045  if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1046  current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1047  previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1048  } else {
1049  current_sample = c->status[channel].predictor;
1050  previous_sample = c->status[channel].prev_sample;
1051  }
1052 
1053  for (count1 = 0; count1 < nb_samples / 28; count1++) {
1054  int byte = bytestream2_get_byte(&gb);
1055  if (byte == 0xEE) { /* only seen in R2 and R3 */
1056  current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1057  previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1058 
1059  for (count2=0; count2<28; count2++)
1060  *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1061  } else {
1062  coeff1 = ea_adpcm_table[ byte >> 4 ];
1063  coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1064  shift = 20 - (byte & 0x0F);
1065 
1066  for (count2=0; count2<28; count2++) {
1067  if (count2 & 1)
1068  next_sample = sign_extend(byte, 4) << shift;
1069  else {
1070  byte = bytestream2_get_byte(&gb);
1071  next_sample = sign_extend(byte >> 4, 4) << shift;
1072  }
1073 
1074  next_sample += (current_sample * coeff1) +
1075  (previous_sample * coeff2);
1076  next_sample = av_clip_int16(next_sample >> 8);
1077 
1078  previous_sample = current_sample;
1079  current_sample = next_sample;
1080  *samplesC++ = current_sample;
1081  }
1082  }
1083  }
1084  if (!count) {
1085  count = count1;
1086  } else if (count != count1) {
1087  av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1088  count = FFMAX(count, count1);
1089  }
1090 
1091  if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1092  c->status[channel].predictor = current_sample;
1093  c->status[channel].prev_sample = previous_sample;
1094  }
1095  }
1096 
1097  frame->nb_samples = count * 28;
1098  bytestream2_seek(&gb, 0, SEEK_END);
1099  break;
1100  }
1102  for (channel=0; channel<avctx->channels; channel++) {
1103  int coeff[2][4], shift[4];
1104  int16_t *s = samples_p[channel];
1105  for (n = 0; n < 4; n++, s += 32) {
1106  int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1107  for (i=0; i<2; i++)
1108  coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1109  s[0] = val & ~0x0F;
1110 
1111  val = sign_extend(bytestream2_get_le16u(&gb), 16);
1112  shift[n] = 20 - (val & 0x0F);
1113  s[1] = val & ~0x0F;
1114  }
1115 
1116  for (m=2; m<32; m+=2) {
1117  s = &samples_p[channel][m];
1118  for (n = 0; n < 4; n++, s += 32) {
1119  int level, pred;
1120  int byte = bytestream2_get_byteu(&gb);
1121 
1122  level = sign_extend(byte >> 4, 4) << shift[n];
1123  pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1124  s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1125 
1126  level = sign_extend(byte, 4) << shift[n];
1127  pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1128  s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1129  }
1130  }
1131  }
1132  break;
1135  if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) {
1136  c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1137  c->status[0].step_index = bytestream2_get_le16u(&gb);
1138  bytestream2_skipu(&gb, 4);
1139  } else {
1140  c->status[0].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1141  c->status[0].step_index = bytestream2_get_byteu(&gb);
1142  bytestream2_skipu(&gb, 1);
1143  }
1144  if (c->status[0].step_index > 88u) {
1145  av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1146  c->status[0].step_index);
1147  return AVERROR_INVALIDDATA;
1148  }
1149 
1150  for (n = nb_samples >> (1 - st); n > 0; n--) {
1151  int hi, lo, v = bytestream2_get_byteu(&gb);
1152 
1153  if (avctx->codec->id == AV_CODEC_ID_ADPCM_IMA_AMV) {
1154  hi = v & 0x0F;
1155  lo = v >> 4;
1156  } else {
1157  lo = v & 0x0F;
1158  hi = v >> 4;
1159  }
1160 
1161  *samples++ = adpcm_ima_expand_nibble(&c->status[0], lo, 3);
1162  *samples++ = adpcm_ima_expand_nibble(&c->status[0], hi, 3);
1163  }
1164  break;
1165  case AV_CODEC_ID_ADPCM_CT:
1166  for (n = nb_samples >> (1 - st); n > 0; n--) {
1167  int v = bytestream2_get_byteu(&gb);
1168  *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1169  *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1170  }
1171  break;
1175  if (!c->status[0].step_index) {
1176  /* the first byte is a raw sample */
1177  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1178  if (st)
1179  *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1180  c->status[0].step_index = 1;
1181  nb_samples--;
1182  }
1183  if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1184  for (n = nb_samples >> (1 - st); n > 0; n--) {
1185  int byte = bytestream2_get_byteu(&gb);
1186  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1187  byte >> 4, 4, 0);
1188  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1189  byte & 0x0F, 4, 0);
1190  }
1191  } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1192  for (n = nb_samples / 3; n > 0; n--) {
1193  int byte = bytestream2_get_byteu(&gb);
1194  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1195  byte >> 5 , 3, 0);
1196  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1197  (byte >> 2) & 0x07, 3, 0);
1198  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1199  byte & 0x03, 2, 0);
1200  }
1201  } else {
1202  for (n = nb_samples >> (2 - st); n > 0; n--) {
1203  int byte = bytestream2_get_byteu(&gb);
1204  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1205  byte >> 6 , 2, 2);
1206  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1207  (byte >> 4) & 0x03, 2, 2);
1208  *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1209  (byte >> 2) & 0x03, 2, 2);
1210  *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1211  byte & 0x03, 2, 2);
1212  }
1213  }
1214  break;
1215  case AV_CODEC_ID_ADPCM_SWF:
1216  adpcm_swf_decode(avctx, buf, buf_size, samples);
1217  bytestream2_seek(&gb, 0, SEEK_END);
1218  break;
1220  for (n = nb_samples >> (1 - st); n > 0; n--) {
1221  int v = bytestream2_get_byteu(&gb);
1222  *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1223  *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1224  }
1225  break;
1226  case AV_CODEC_ID_ADPCM_THP:
1227  {
1228  int table[2][16];
1229  int prev[2][2];
1230  int ch;
1231 
1232  for (i = 0; i < 2; i++)
1233  for (n = 0; n < 16; n++)
1234  table[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1235 
1236  /* Initialize the previous sample. */
1237  for (i = 0; i < 2; i++)
1238  for (n = 0; n < 2; n++)
1239  prev[i][n] = sign_extend(bytestream2_get_be16u(&gb), 16);
1240 
1241  for (ch = 0; ch <= st; ch++) {
1242  samples = samples_p[ch];
1243 
1244  /* Read in every sample for this channel. */
1245  for (i = 0; i < nb_samples / 14; i++) {
1246  int byte = bytestream2_get_byteu(&gb);
1247  int index = (byte >> 4) & 7;
1248  unsigned int exp = byte & 0x0F;
1249  int factor1 = table[ch][index * 2];
1250  int factor2 = table[ch][index * 2 + 1];
1251 
1252  /* Decode 14 samples. */
1253  for (n = 0; n < 14; n++) {
1254  int32_t sampledat;
1255 
1256  if (n & 1) {
1257  sampledat = sign_extend(byte, 4);
1258  } else {
1259  byte = bytestream2_get_byteu(&gb);
1260  sampledat = sign_extend(byte >> 4, 4);
1261  }
1262 
1263  sampledat = ((prev[ch][0]*factor1
1264  + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
1265  *samples = av_clip_int16(sampledat);
1266  prev[ch][1] = prev[ch][0];
1267  prev[ch][0] = *samples++;
1268  }
1269  }
1270  }
1271  break;
1272  }
1273 
1274  default:
1275  return -1;
1276  }
1277 
1278  *got_frame_ptr = 1;
1279 
1280  return bytestream2_tell(&gb);
1281 }
1282 
1283 
1291 
1292 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1293 AVCodec ff_ ## name_ ## _decoder = { \
1294  .name = #name_, \
1295  .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1296  .type = AVMEDIA_TYPE_AUDIO, \
1297  .id = id_, \
1298  .priv_data_size = sizeof(ADPCMDecodeContext), \
1299  .init = adpcm_decode_init, \
1300  .decode = adpcm_decode_frame, \
1301  .capabilities = CODEC_CAP_DR1, \
1302  .sample_fmts = sample_fmts_, \
1303 }
1304 
1305 /* Note: Do not forget to add new entries to the Makefile as well. */
1306 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1307 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1308 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1309 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1310 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1311 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1312 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1313 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1314 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1315 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1316 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1317 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1318 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1319 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1320 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1321 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1322 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1323 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1324 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1325 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1326 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1327 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1328 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1329 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1330 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1331 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1332 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");
const struct AVCodec * codec
Definition: avcodec.h:1059
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:54
static short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
Definition: adpcm.c:249
int size
This structure describes decoded (raw) audio or video data.
Definition: frame.h:135
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:240
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:129
static short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
Definition: adpcm.c:228
int size
Definition: avcodec.h:974
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(constuint8_t *) pi-0x80)*(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(constint16_t *) pi >>8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t,*(constint16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(constint32_t *) pi >>24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t,*(constint32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(constfloat *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(constfloat *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(constfloat *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(constdouble *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(constdouble *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(constdouble *) pi *(1U<< 31))))#defineSET_CONV_FUNC_GROUP(ofmt, ifmt) staticvoidset_generic_function(AudioConvert *ac){}voidff_audio_convert_free(AudioConvert **ac){if(!*ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);}AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enumAVSampleFormatout_fmt, enumAVSampleFormatin_fmt, intchannels, intsample_rate, intapply_map){AudioConvert *ac;intin_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) returnNULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method!=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt)>2){ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc){av_free(ac);returnNULL;}returnac;}in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar){ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar?ac->channels:1;}elseif(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;elseac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);returnac;}intff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in){intuse_generic=1;intlen=in->nb_samples;intp;if(ac->dc){av_dlog(ac->avr,"%dsamples-audio_convert:%sto%s(dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));returnff_convert_dither(ac-> in
static av_always_inline void bytestream2_init(GetByteContext *g, const uint8_t *buf, int buf_size)
Definition: bytestream.h:130
#define AV_RL16
Definition: intreadwrite.h:42
static enum AVSampleFormat sample_fmts_s16[]
Definition: adpcm.c:1284
#define sample
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs...
Definition: avcodec.h:1828
static int get_sbits(GetBitContext *s, int n)
Definition: get_bits.h:226
const uint8_t ff_adpcm_AdaptCoeff1[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:61
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1799
uint8_t
#define av_cold
Definition: attributes.h:66
static av_cold int adpcm_decode_init(AVCodecContext *avctx)
Definition: adpcm.c:92
float delta
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
Definition: adpcm.c:366
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:1164
static const int xa_adpcm_table[5][2]
Definition: adpcm.c:61
ADPCM tables.
const char data[16]
Definition: mxf.c:70
uint8_t * data
Definition: avcodec.h:973
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:194
static av_always_inline void bytestream2_skipu(GetByteContext *g, unsigned int size)
Definition: bytestream.h:165
bitstream reader API header.
int bits_per_coded_sample
bits per sample/pixel from the demuxer (needed for huffyuv).
Definition: avcodec.h:2507
static void predictor(uint8_t *src, int size)
Definition: exr.c:151
enum AVCodecID id
Definition: avcodec.h:2810
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:123
ADPCM encoder/decoder common header.
static short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
Definition: adpcm.c:269
static const int ea_adpcm_table[]
Definition: adpcm.c:69
#define AVERROR(e)
Definition: error.h:43
static av_always_inline void bytestream2_skip(GetByteContext *g, unsigned int size)
Definition: bytestream.h:159
const int16_t ff_adpcm_step_table[89]
This is the step table.
Definition: adpcm_data.c:40
static int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
Definition: adpcm.c:187
static av_always_inline unsigned int bytestream2_get_bytes_left(GetByteContext *g)
Definition: bytestream.h:149
int16_t sample2
Definition: adpcm.h:42
void av_log(void *avcl, int level, const char *fmt,...)
Definition: log.c:169
#define FFMAX(a, b)
Definition: common.h:55
ADPCMChannelStatus status[6]
Definition: adpcm.c:88
static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
Definition: mpegaudioenc.c:307
const int8_t ff_adpcm_index_table[16]
Definition: adpcm_data.c:31
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1, const uint8_t *in, ADPCMChannelStatus *left, ADPCMChannelStatus *right, int channels, int sample_offset)
Definition: adpcm.c:283
#define FFMIN(a, b)
Definition: common.h:57
const int8_t ff_adpcm_AdaptCoeff2[]
Divided by 4 to fit in 8-bit integers.
Definition: adpcm_data.c:66
int vqa_version
VQA version.
Definition: adpcm.c:89
int16_t sample1
Definition: adpcm.h:41
int32_t
static enum AVSampleFormat sample_fmts_s16p[]
Definition: adpcm.c:1286
#define AV_RL32
Definition: intreadwrite.h:146
static short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
Definition: adpcm.c:161
static const float pred[4]
Definition: siprdata.h:259
static const int swf_index_tables[4][16]
Definition: adpcm.c:78
static av_always_inline int bytestream2_tell(GetByteContext *g)
Definition: bytestream.h:183
const int16_t ff_adpcm_AdaptationTable[]
Definition: adpcm_data.c:55
Libavcodec external API header.
AVSampleFormat
Audio Sample Formats.
Definition: samplefmt.h:61
AV_SAMPLE_FMT_NONE
Definition: avconv_filter.c:68
static short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
Definition: adpcm.c:213
main external API structure.
Definition: avcodec.h:1050
#define DK3_GET_NEXT_NIBBLE()
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: utils.c:612
int extradata_size
Definition: avcodec.h:1165
int index
Definition: gxfenc.c:72
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:375
static int step
Definition: avplay.c:247
static av_const int sign_extend(int val, unsigned bits)
Definition: mathops.h:127
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:141
uint8_t level
Definition: svq3.c:147
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb, int buf_size, int *coded_samples)
Get the number of samples that will be decoded from the packet.
Definition: adpcm.c:432
const int8_t ff_adpcm_yamaha_difflookup[]
Definition: adpcm_data.c:75
common internal api header.
const int16_t ff_adpcm_yamaha_indexscale[]
Definition: adpcm_data.c:70
static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: adpcm.c:587
signed 16 bits
Definition: samplefmt.h:64
void * priv_data
Definition: avcodec.h:1092
int channels
number of audio channels
Definition: avcodec.h:1792
static av_always_inline int bytestream2_seek(GetByteContext *g, int offset, int whence)
Definition: bytestream.h:203
static enum AVSampleFormat sample_fmts_both[]
Definition: adpcm.c:1288
int16_t step_index
Definition: adpcm.h:35
signed 16 bits, planar
Definition: samplefmt.h:70
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:169
This structure stores compressed data.
Definition: avcodec.h:950
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:179
for(j=16;j >0;--j)
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_)
Definition: adpcm.c:1292
bitstream writer API