LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
dtrsyl.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dtrsyl (TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC, SCALE, INFO)
 DTRSYL More...
 

Function/Subroutine Documentation

subroutine dtrsyl ( character  TRANA,
character  TRANB,
integer  ISGN,
integer  M,
integer  N,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( ldb, * )  B,
integer  LDB,
double precision, dimension( ldc, * )  C,
integer  LDC,
double precision  SCALE,
integer  INFO 
)

DTRSYL

Download DTRSYL + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DTRSYL solves the real Sylvester matrix equation:

    op(A)*X + X*op(B) = scale*C or
    op(A)*X - X*op(B) = scale*C,

 where op(A) = A or A**T, and  A and B are both upper quasi-
 triangular. A is M-by-M and B is N-by-N; the right hand side C and
 the solution X are M-by-N; and scale is an output scale factor, set
 <= 1 to avoid overflow in X.

 A and B must be in Schur canonical form (as returned by DHSEQR), that
 is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
 each 2-by-2 diagonal block has its diagonal elements equal and its
 off-diagonal elements of opposite sign.
Parameters
[in]TRANA
          TRANA is CHARACTER*1
          Specifies the option op(A):
          = 'N': op(A) = A    (No transpose)
          = 'T': op(A) = A**T (Transpose)
          = 'C': op(A) = A**H (Conjugate transpose = Transpose)
[in]TRANB
          TRANB is CHARACTER*1
          Specifies the option op(B):
          = 'N': op(B) = B    (No transpose)
          = 'T': op(B) = B**T (Transpose)
          = 'C': op(B) = B**H (Conjugate transpose = Transpose)
[in]ISGN
          ISGN is INTEGER
          Specifies the sign in the equation:
          = +1: solve op(A)*X + X*op(B) = scale*C
          = -1: solve op(A)*X - X*op(B) = scale*C
[in]M
          M is INTEGER
          The order of the matrix A, and the number of rows in the
          matrices X and C. M >= 0.
[in]N
          N is INTEGER
          The order of the matrix B, and the number of columns in the
          matrices X and C. N >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,M)
          The upper quasi-triangular matrix A, in Schur canonical form.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).
[in]B
          B is DOUBLE PRECISION array, dimension (LDB,N)
          The upper quasi-triangular matrix B, in Schur canonical form.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,N).
[in,out]C
          C is DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the M-by-N right hand side matrix C.
          On exit, C is overwritten by the solution matrix X.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M)
[out]SCALE
          SCALE is DOUBLE PRECISION
          The scale factor, scale, set <= 1 to avoid overflow in X.
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          = 1: A and B have common or very close eigenvalues; perturbed
               values were used to solve the equation (but the matrices
               A and B are unchanged).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 164 of file dtrsyl.f.

Here is the call graph for this function:

Here is the caller graph for this function: