131 $ info, work, rwork )
141 INTEGER n, lda, ldaf, info
144 COMPLEX a( lda, * ), af( ldaf, * ), work( * )
145 REAL c( * ), rwork( * )
152 REAL ainvnm, anorm, tmp
168 INTRINSIC abs, max,
REAL, aimag
174 cabs1( zdum ) = abs(
REAL( ZDUM ) ) + abs( aimag( zdum ) )
181 upper =
lsame( uplo,
'U' )
182 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
184 ELSE IF( n.LT.0 )
THEN
186 ELSE IF( lda.LT.max( 1, n ) )
THEN
188 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
192 CALL
xerbla(
'CLA_PORCOND_C', -info )
196 IF (
lsame( uplo,
'U' ) ) up = .true.
206 tmp = tmp + cabs1( a(
j, i ) ) / c(
j )
209 tmp = tmp + cabs1( a( i,
j ) ) / c(
j )
213 tmp = tmp + cabs1( a(
j, i ) )
216 tmp = tmp + cabs1( a( i,
j ) )
220 anorm = max( anorm, tmp )
227 tmp = tmp + cabs1( a( i,
j ) ) / c(
j )
230 tmp = tmp + cabs1( a(
j, i ) ) / c(
j )
234 tmp = tmp + cabs1( a( i,
j ) )
237 tmp = tmp + cabs1( a(
j, i ) )
241 anorm = max( anorm, tmp )
250 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
260 CALL
clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
267 work( i ) = work( i ) * rwork( i )
271 CALL
cpotrs(
'U', n, 1, af, ldaf,
274 CALL
cpotrs(
'L', n, 1, af, ldaf,
282 work( i ) = work( i ) * c( i )
291 work( i ) = work( i ) * c( i )
296 CALL
cpotrs(
'U', n, 1, af, ldaf,
299 CALL
cpotrs(
'L', n, 1, af, ldaf,
306 work( i ) = work( i ) * rwork( i )
314 IF( ainvnm .NE. 0.0e+0 )
subroutine xerbla(SRNAME, INFO)
XERBLA
logical function lsame(CA, CB)
LSAME
real function cla_porcond_c(UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK, RWORK)
CLA_PORCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian positiv...
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
subroutine cpotrs(UPLO, N, NRHS, A, LDA, B, LDB, INFO)
CPOTRS
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...