126 $ ldc, rwork, resid )
135 INTEGER lda, ldafac, ldc, n
141 COMPLEX a( lda, * ), afac( ldafac, * ), c( ldc, * )
148 parameter( zero = 0.0e+0, one = 1.0e+0 )
150 parameter( czero = ( 0.0e+0, 0.0e+0 ),
151 $ cone = ( 1.0e+0, 0.0e+0 ) )
166 INTRINSIC aimag, real
180 anorm =
clanhe(
'1', uplo, n, a, lda, rwork )
186 IF( aimag( afac(
j,
j ) ).NE.zero )
THEN
194 CALL
claset(
'Full', n, n, czero, cone, c, ldc )
198 CALL
clavhe_rook( uplo,
'Conjugate',
'Non-unit', n, n, afac,
199 $ ldafac, ipiv, c, ldc, info )
203 CALL
clavhe_rook( uplo,
'No transpose',
'Unit', n, n, afac,
204 $ ldafac, ipiv, c, ldc, info )
208 IF(
lsame( uplo,
'U' ) )
THEN
211 c( i,
j ) = c( i,
j ) - a( i,
j )
213 c(
j,
j ) = c(
j,
j ) -
REAL( A( J, J ) )
217 c(
j,
j ) = c(
j,
j ) -
REAL( A( J, J ) )
219 c( i,
j ) = c( i,
j ) - a( i,
j )
226 resid =
clanhe(
'1', uplo, n, c, ldc, rwork )
228 IF( anorm.LE.zero )
THEN
232 resid = ( ( resid/
REAL( N ) )/anorm ) / eps
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
subroutine chet01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CHET01_ROOK
logical function lsame(CA, CB)
LSAME
subroutine clavhe_rook(UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CLAVHE_ROOK
real function slamch(CMACH)
SLAMCH
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j