105 SUBROUTINE spot01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
114 INTEGER lda, ldafac, n
118 REAL a( lda, * ), afac( ldafac, * ), rwork( * )
125 parameter( zero = 0.0e+0, one = 1.0e+0 )
154 anorm =
slansy(
'1', uplo, n, a, lda, rwork )
155 IF( anorm.LE.zero )
THEN
162 IF(
lsame( uplo,
'U' ) )
THEN
167 t =
sdot( k, afac( 1, k ), 1, afac( 1, k ), 1 )
172 CALL
strmv(
'Upper',
'Transpose',
'Non-unit', k-1, afac,
173 $ ldafac, afac( 1, k ), 1 )
186 $ CALL
ssyr(
'Lower', n-k, one, afac( k+1, k ), 1,
187 $ afac( k+1, k+1 ), ldafac )
192 CALL
sscal( n-k+1, t, afac( k, k ), 1 )
199 IF(
lsame( uplo,
'U' ) )
THEN
202 afac( i,
j ) = afac( i,
j ) - a( i,
j )
208 afac( i,
j ) = afac( i,
j ) - a( i,
j )
215 resid =
slansy(
'1', uplo, n, afac, ldafac, rwork )
217 resid = ( ( resid /
REAL( N ) ) / anorm ) / eps
real function sdot(N, SX, INCX, SY, INCY)
SDOT
subroutine strmv(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
STRMV
logical function lsame(CA, CB)
LSAME
subroutine spot01(UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID)
SPOT01
real function slamch(CMACH)
SLAMCH
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
real function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
subroutine ssyr(UPLO, N, ALPHA, X, INCX, A, LDA)
SSYR
subroutine sscal(N, SA, SX, INCX)
SSCAL