163 SUBROUTINE zdrvge( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
164 $ a, afac, asav,
b, bsav, x, xact, s, work,
165 $ rwork, iwork, nout )
174 INTEGER nmax, nn, nout, nrhs
175 DOUBLE PRECISION thresh
179 INTEGER iwork( * ), nval( * )
180 DOUBLE PRECISION rwork( * ), s( * )
181 COMPLEX*16 a( * ), afac( * ), asav( * ),
b( * ),
182 $ bsav( * ), work( * ), x( * ), xact( * )
188 DOUBLE PRECISION one, zero
189 parameter( one = 1.0d+0, zero = 0.0d+0 )
191 parameter( ntypes = 11 )
193 parameter( ntests = 7 )
195 parameter( ntran = 3 )
198 LOGICAL equil, nofact, prefac, trfcon, zerot
199 CHARACTER dist, equed, fact, trans, type, xtype
201 INTEGER i, iequed, ifact, imat, in, info, ioff, itran,
202 $ izero, k, k1, kl, ku, lda, lwork, mode, n, nb,
203 $ nbmin, nerrs, nfact, nfail, nimat, nrun, nt
204 DOUBLE PRECISION ainvnm, amax, anorm, anormi, anormo, cndnum,
205 $ colcnd, rcond, rcondc, rcondi, rcondo, roldc,
206 $ roldi, roldo, rowcnd, rpvgrw
209 CHARACTER equeds( 4 ), facts( 3 ), transs( ntran )
210 INTEGER iseed( 4 ), iseedy( 4 )
211 DOUBLE PRECISION rdum( 1 ), result( ntests )
225 INTRINSIC abs, dcmplx, max
233 COMMON / infoc / infot, nunit, ok, lerr
234 COMMON / srnamc / srnamt
237 DATA iseedy / 1988, 1989, 1990, 1991 /
238 DATA transs /
'N',
'T',
'C' /
239 DATA facts /
'F',
'N',
'E' /
240 DATA equeds /
'N',
'R',
'C',
'B' /
246 path( 1: 1 ) =
'Zomplex precision'
252 iseed( i ) = iseedy( i )
258 $ CALL
zerrvx( path, nout )
278 DO 80 imat = 1, nimat
282 IF( .NOT.dotype( imat ) )
287 zerot = imat.GE.5 .AND. imat.LE.7
288 IF( zerot .AND. n.LT.imat-4 )
294 CALL
zlatb4( path, imat, n, n, type, kl, ku, anorm, mode,
296 rcondc = one / cndnum
299 CALL
zlatms( n, n, dist, iseed, type, rwork, mode, cndnum,
300 $ anorm, kl, ku,
'No packing', a, lda, work,
306 CALL
alaerh( path,
'ZLATMS', info, 0,
' ', n, n, -1, -1,
307 $ -1, imat, nfail, nerrs, nout )
317 ELSE IF( imat.EQ.6 )
THEN
322 ioff = ( izero-1 )*lda
328 CALL
zlaset(
'Full', n, n-izero+1, dcmplx( zero ),
329 $ dcmplx( zero ), a( ioff+1 ), lda )
337 CALL
zlacpy(
'Full', n, n, a, lda, asav, lda )
340 equed = equeds( iequed )
341 IF( iequed.EQ.1 )
THEN
347 DO 60 ifact = 1, nfact
348 fact = facts( ifact )
349 prefac =
lsame( fact,
'F' )
350 nofact =
lsame( fact,
'N' )
351 equil =
lsame( fact,
'E' )
359 ELSE IF( .NOT.nofact )
THEN
366 CALL
zlacpy(
'Full', n, n, asav, lda, afac, lda )
367 IF( equil .OR. iequed.GT.1 )
THEN
372 CALL
zgeequ( n, n, afac, lda, s, s( n+1 ),
373 $ rowcnd, colcnd, amax, info )
374 IF( info.EQ.0 .AND. n.GT.0 )
THEN
375 IF(
lsame( equed,
'R' ) )
THEN
378 ELSE IF(
lsame( equed,
'C' ) )
THEN
381 ELSE IF(
lsame( equed,
'B' ) )
THEN
388 CALL
zlaqge( n, n, afac, lda, s, s( n+1 ),
389 $ rowcnd, colcnd, amax, equed )
403 anormo =
zlange(
'1', n, n, afac, lda, rwork )
404 anormi =
zlange(
'I', n, n, afac, lda, rwork )
409 CALL
zgetrf( n, n, afac, lda, iwork, info )
413 CALL
zlacpy(
'Full', n, n, afac, lda, a, lda )
414 lwork = nmax*max( 3, nrhs )
416 CALL
zgetri( n, a, lda, iwork, work, lwork, info )
420 ainvnm =
zlange(
'1', n, n, a, lda, rwork )
421 IF( anormo.LE.zero .OR. ainvnm.LE.zero )
THEN
424 rcondo = ( one / anormo ) / ainvnm
429 ainvnm =
zlange(
'I', n, n, a, lda, rwork )
430 IF( anormi.LE.zero .OR. ainvnm.LE.zero )
THEN
433 rcondi = ( one / anormi ) / ainvnm
437 DO 50 itran = 1, ntran
441 trans = transs( itran )
442 IF( itran.EQ.1 )
THEN
450 CALL
zlacpy(
'Full', n, n, asav, lda, a, lda )
455 CALL
zlarhs( path, xtype,
'Full', trans, n, n, kl,
456 $ ku, nrhs, a, lda, xact, lda,
b, lda,
459 CALL
zlacpy(
'Full', n, nrhs,
b, lda, bsav, lda )
461 IF( nofact .AND. itran.EQ.1 )
THEN
468 CALL
zlacpy(
'Full', n, n, a, lda, afac, lda )
469 CALL
zlacpy(
'Full', n, nrhs,
b, lda, x, lda )
472 CALL
zgesv( n, nrhs, afac, lda, iwork, x, lda,
478 $ CALL
alaerh( path,
'ZGESV ', info, izero,
479 $
' ', n, n, -1, -1, nrhs, imat,
480 $ nfail, nerrs, nout )
485 CALL
zget01( n, n, a, lda, afac, lda, iwork,
486 $ rwork, result( 1 ) )
488 IF( izero.EQ.0 )
THEN
492 CALL
zlacpy(
'Full', n, nrhs,
b, lda, work,
494 CALL
zget02(
'No transpose', n, n, nrhs, a,
495 $ lda, x, lda, work, lda, rwork,
500 CALL
zget04( n, nrhs, x, lda, xact, lda,
501 $ rcondc, result( 3 ) )
509 IF( result( k ).GE.thresh )
THEN
510 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
511 $ CALL
aladhd( nout, path )
512 WRITE( nout, fmt = 9999 )
'ZGESV ', n,
513 $ imat, k, result( k )
523 $ CALL
zlaset(
'Full', n, n, dcmplx( zero ),
524 $ dcmplx( zero ), afac, lda )
525 CALL
zlaset(
'Full', n, nrhs, dcmplx( zero ),
526 $ dcmplx( zero ), x, lda )
527 IF( iequed.GT.1 .AND. n.GT.0 )
THEN
532 CALL
zlaqge( n, n, a, lda, s, s( n+1 ), rowcnd,
533 $ colcnd, amax, equed )
540 CALL
zgesvx( fact, trans, n, nrhs, a, lda, afac,
541 $ lda, iwork, equed, s, s( n+1 ),
b,
542 $ lda, x, lda, rcond, rwork,
543 $ rwork( nrhs+1 ), work,
544 $ rwork( 2*nrhs+1 ), info )
549 $ CALL
alaerh( path,
'ZGESVX', info, izero,
550 $ fact // trans, n, n, -1, -1, nrhs,
551 $ imat, nfail, nerrs, nout )
556 IF( info.NE.0 .AND. info.LE.n)
THEN
557 rpvgrw =
zlantr(
'M',
'U',
'N', info, info,
559 IF( rpvgrw.EQ.zero )
THEN
562 rpvgrw =
zlange(
'M', n, info, a, lda,
566 rpvgrw =
zlantr(
'M',
'U',
'N', n, n, afac, lda,
568 IF( rpvgrw.EQ.zero )
THEN
571 rpvgrw =
zlange(
'M', n, n, a, lda, rdum ) /
575 result( 7 ) = abs( rpvgrw-rwork( 2*nrhs+1 ) ) /
576 $ max( rwork( 2*nrhs+1 ), rpvgrw ) /
579 IF( .NOT.prefac )
THEN
584 CALL
zget01( n, n, a, lda, afac, lda, iwork,
585 $ rwork( 2*nrhs+1 ), result( 1 ) )
596 CALL
zlacpy(
'Full', n, nrhs, bsav, lda, work,
598 CALL
zget02( trans, n, n, nrhs, asav, lda, x,
599 $ lda, work, lda, rwork( 2*nrhs+1 ),
604 IF( nofact .OR. ( prefac .AND.
lsame( equed,
606 CALL
zget04( n, nrhs, x, lda, xact, lda,
607 $ rcondc, result( 3 ) )
609 IF( itran.EQ.1 )
THEN
614 CALL
zget04( n, nrhs, x, lda, xact, lda,
615 $ roldc, result( 3 ) )
621 CALL
zget07( trans, n, nrhs, asav, lda,
b, lda,
622 $ x, lda, xact, lda, rwork, .true.,
623 $ rwork( nrhs+1 ), result( 4 ) )
631 result( 6 ) =
dget06( rcond, rcondc )
636 IF( .NOT.trfcon )
THEN
638 IF( result( k ).GE.thresh )
THEN
639 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
640 $ CALL
aladhd( nout, path )
642 WRITE( nout, fmt = 9997 )
'ZGESVX',
643 $ fact, trans, n, equed, imat, k,
646 WRITE( nout, fmt = 9998 )
'ZGESVX',
647 $ fact, trans, n, imat, k, result( k )
654 IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
656 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
657 $ CALL
aladhd( nout, path )
659 WRITE( nout, fmt = 9997 )
'ZGESVX', fact,
660 $ trans, n, equed, imat, 1, result( 1 )
662 WRITE( nout, fmt = 9998 )
'ZGESVX', fact,
663 $ trans, n, imat, 1, result( 1 )
668 IF( result( 6 ).GE.thresh )
THEN
669 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
670 $ CALL
aladhd( nout, path )
672 WRITE( nout, fmt = 9997 )
'ZGESVX', fact,
673 $ trans, n, equed, imat, 6, result( 6 )
675 WRITE( nout, fmt = 9998 )
'ZGESVX', fact,
676 $ trans, n, imat, 6, result( 6 )
681 IF( result( 7 ).GE.thresh )
THEN
682 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
683 $ CALL
aladhd( nout, path )
685 WRITE( nout, fmt = 9997 )
'ZGESVX', fact,
686 $ trans, n, equed, imat, 7, result( 7 )
688 WRITE( nout, fmt = 9998 )
'ZGESVX', fact,
689 $ trans, n, imat, 7, result( 7 )
705 CALL
alasvm( path, nout, nfail, nrun, nerrs )
707 9999
FORMAT( 1x, a,
', N =', i5,
', type ', i2,
', test(', i2,
') =',
709 9998
FORMAT( 1x, a,
', FACT=''', a1,
''', TRANS=''', a1,
''', N=', i5,
710 $
', type ', i2,
', test(', i1,
')=', g12.5 )
711 9997
FORMAT( 1x, a,
', FACT=''', a1,
''', TRANS=''', a1,
''', N=', i5,
712 $
', EQUED=''', a1,
''', type ', i2,
', test(', i1,
')=',
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
subroutine zget01(M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK, RESID)
ZGET01
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
subroutine zgesvx(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
ZGESVX computes the solution to system of linear equations A * X = B for GE matrices ...
subroutine zget07(TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, CHKFERR, BERR, RESLTS)
ZGET07
double precision function zlantr(NORM, UPLO, DIAG, M, N, A, LDA, WORK)
ZLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a trapezoidal or triangular matrix.
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
subroutine zgeequ(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)
ZGEEQU
subroutine zgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZGESV computes the solution to system of linear equations A * X = B for GE matrices (simple driver) ...
subroutine zlaqge(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, EQUED)
ZLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ...
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real b(3) integer i
logical function lsame(CA, CB)
LSAME
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
subroutine zgetri(N, A, LDA, IPIV, WORK, LWORK, INFO)
ZGETRI
double precision function dget06(RCOND, RCONDC)
DGET06
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
subroutine aladhd(IOUNIT, PATH)
ALADHD
double precision function dlamch(CMACH)
DLAMCH
subroutine zerrvx(PATH, NUNIT)
ZERRVX
subroutine zgetrf(M, N, A, LDA, IPIV, INFO)
ZGETRF VARIANT: Crout Level 3 BLAS version of the algorithm.
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
subroutine zget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZGET02
subroutine zdrvge(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
ZDRVGE
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4