LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
dlasv2.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dlasv2 (F, G, H, SSMIN, SSMAX, SNR, CSR, SNL, CSL)
 DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix. More...
 

Function/Subroutine Documentation

subroutine dlasv2 ( double precision  F,
double precision  G,
double precision  H,
double precision  SSMIN,
double precision  SSMAX,
double precision  SNR,
double precision  CSR,
double precision  SNL,
double precision  CSL 
)

DLASV2 computes the singular value decomposition of a 2-by-2 triangular matrix.

Download DLASV2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DLASV2 computes the singular value decomposition of a 2-by-2
 triangular matrix
    [  F   G  ]
    [  0   H  ].
 On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
 smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
 right singular vectors for abs(SSMAX), giving the decomposition

    [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ]
    [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ].
Parameters
[in]F
          F is DOUBLE PRECISION
          The (1,1) element of the 2-by-2 matrix.
[in]G
          G is DOUBLE PRECISION
          The (1,2) element of the 2-by-2 matrix.
[in]H
          H is DOUBLE PRECISION
          The (2,2) element of the 2-by-2 matrix.
[out]SSMIN
          SSMIN is DOUBLE PRECISION
          abs(SSMIN) is the smaller singular value.
[out]SSMAX
          SSMAX is DOUBLE PRECISION
          abs(SSMAX) is the larger singular value.
[out]SNL
          SNL is DOUBLE PRECISION
[out]CSL
          CSL is DOUBLE PRECISION
          The vector (CSL, SNL) is a unit left singular vector for the
          singular value abs(SSMAX).
[out]SNR
          SNR is DOUBLE PRECISION
[out]CSR
          CSR is DOUBLE PRECISION
          The vector (CSR, SNR) is a unit right singular vector for the
          singular value abs(SSMAX).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012
Further Details:
  Any input parameter may be aliased with any output parameter.

  Barring over/underflow and assuming a guard digit in subtraction, all
  output quantities are correct to within a few units in the last
  place (ulps).

  In IEEE arithmetic, the code works correctly if one matrix element is
  infinite.

  Overflow will not occur unless the largest singular value itself
  overflows or is within a few ulps of overflow. (On machines with
  partial overflow, like the Cray, overflow may occur if the largest
  singular value is within a factor of 2 of overflow.)

  Underflow is harmless if underflow is gradual. Otherwise, results
  may correspond to a matrix modified by perturbations of size near
  the underflow threshold.

Definition at line 139 of file dlasv2.f.

Here is the call graph for this function:

Here is the caller graph for this function: