module Text.RegExp.Parser ( parse ) where
import Text.RegExp.Data
( eps, char, psym, anySym, alt, seq_, rep, rep1, opt, brep )
import Data.Char ( isSpace, toLower, isAlphaNum, isDigit )
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts
newtype HappyAbsSyn t4 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
happyOut4 :: (HappyAbsSyn t4) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
happyInTok :: (Token) -> (HappyAbsSyn t4)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
happyOutTok :: (HappyAbsSyn t4) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x04\x00\x00\x00\xff\xff\x00\x00\x04\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x04\x00\x04\x00\x00\x00\x00\x00\x00\x00\x16\x00\x19\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x13\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyDefActions :: HappyAddr
happyDefActions = HappyA# "\xfe\xff\x00\x00\x00\x00\xfd\xff\xfe\xff\xf5\xff\xf4\xff\x00\x00\xfc\xff\xfe\xff\xfe\xff\xf8\xff\xf7\xff\xf6\xff\xfa\xff\xfb\xff\xf9\xff"#
happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\xff\xff\x01\x00\x07\x00\x08\x00\x09\x00\x05\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x0a\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x00\x00\x06\x00\x07\x00\x08\x00\x09\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x07\x00\x08\x00\x09\x00\x07\x00\x08\x00\x09\x00\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x09\x00\x0a\x00\x0b\x00\x00\x00\x04\x00\x0c\x00\x0d\x00\x0e\x00\x05\x00\x0e\x00\xff\xff\x0f\x00\x07\x00\x06\x00\x07\x00\x09\x00\x0a\x00\x0b\x00\x02\x00\x11\x00\x0c\x00\x0d\x00\x0e\x00\x09\x00\x0a\x00\x0b\x00\x09\x00\x0a\x00\x0c\x00\x0d\x00\x0e\x00\x0c\x00\x0d\x00\x0e\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr = Happy_Data_Array.array (1, 11) [
(1 , happyReduce_1),
(2 , happyReduce_2),
(3 , happyReduce_3),
(4 , happyReduce_4),
(5 , happyReduce_5),
(6 , happyReduce_6),
(7 , happyReduce_7),
(8 , happyReduce_8),
(9 , happyReduce_9),
(10 , happyReduce_10),
(11 , happyReduce_11)
]
happy_n_terms = 13 :: Int
happy_n_nonterms = 1 :: Int
happyReduce_1 = happySpecReduce_0 0# happyReduction_1
happyReduction_1 = happyIn4
(eps
)
happyReduce_2 = happySpecReduce_1 0# happyReduction_2
happyReduction_2 happy_x_1
= case happyOutTok happy_x_1 of { (Sym happy_var_1) ->
happyIn4
(char happy_var_1
)}
happyReduce_3 = happySpecReduce_2 0# happyReduction_3
happyReduction_3 happy_x_2
happy_x_1
= case happyOut4 happy_x_1 of { happy_var_1 ->
happyIn4
(rep happy_var_1
)}
happyReduce_4 = happySpecReduce_3 0# happyReduction_4
happyReduction_4 happy_x_3
happy_x_2
happy_x_1
= case happyOut4 happy_x_1 of { happy_var_1 ->
case happyOut4 happy_x_3 of { happy_var_3 ->
happyIn4
(seq_ happy_var_1 happy_var_3
)}}
happyReduce_5 = happySpecReduce_3 0# happyReduction_5
happyReduction_5 happy_x_3
happy_x_2
happy_x_1
= case happyOut4 happy_x_1 of { happy_var_1 ->
case happyOut4 happy_x_3 of { happy_var_3 ->
happyIn4
(alt happy_var_1 happy_var_3
)}}
happyReduce_6 = happySpecReduce_3 0# happyReduction_6
happyReduction_6 happy_x_3
happy_x_2
happy_x_1
= case happyOut4 happy_x_2 of { happy_var_2 ->
happyIn4
(happy_var_2
)}
happyReduce_7 = happySpecReduce_2 0# happyReduction_7
happyReduction_7 happy_x_2
happy_x_1
= case happyOut4 happy_x_1 of { happy_var_1 ->
happyIn4
(rep1 happy_var_1
)}
happyReduce_8 = happySpecReduce_2 0# happyReduction_8
happyReduction_8 happy_x_2
happy_x_1
= case happyOut4 happy_x_1 of { happy_var_1 ->
happyIn4
(opt happy_var_1
)}
happyReduce_9 = happySpecReduce_2 0# happyReduction_9
happyReduction_9 happy_x_2
happy_x_1
= case happyOut4 happy_x_1 of { happy_var_1 ->
case happyOutTok happy_x_2 of { (Bnd happy_var_2) ->
happyIn4
(brep happy_var_2 happy_var_1
)}}
happyReduce_10 = happySpecReduce_1 0# happyReduction_10
happyReduction_10 happy_x_1
= case happyOutTok happy_x_1 of { (Cls happy_var_1) ->
happyIn4
(uncurry psym happy_var_1
)}
happyReduce_11 = happySpecReduce_1 0# happyReduction_11
happyReduction_11 happy_x_1
= happyIn4
(anySym
)
happyNewToken action sts stk [] =
happyDoAction 12# notHappyAtAll action sts stk []
happyNewToken action sts stk (tk:tks) =
let cont i = happyDoAction i tk action sts stk tks in
case tk of {
Sym happy_dollar_dollar -> cont 1#;
Ast -> cont 2#;
Seq -> cont 3#;
Bar -> cont 4#;
L -> cont 5#;
R -> cont 6#;
Pls -> cont 7#;
Que -> cont 8#;
Bnd happy_dollar_dollar -> cont 9#;
Cls happy_dollar_dollar -> cont 10#;
Dot -> cont 11#;
_ -> happyError' (tk:tks)
}
happyError_ 12# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)
newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a
instance Monad HappyIdentity where
return = HappyIdentity
(HappyIdentity p) >>= q = q p
happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> HappyIdentity a
happyError' = HappyIdentity . parseError
parseTokens tks = happyRunIdentity happySomeParser where
happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))
happySeq = happyDontSeq
parse = parseTokens . scan
data Token = Seq | Sym Char | Ast | Bar | L | R
| Pls | Que | Bnd (Int,Int)
| Cls (String,Char -> Bool) | Dot
token :: Char -> Token
token '*' = Ast
token '|' = Bar
token '(' = L
token ')' = R
token '?' = Que
token '+' = Pls
token '.' = Dot
token c = Sym c
scan :: String -> [Token]
scan = insertSeqs . process
insertSeqs :: [Token] -> [Token]
insertSeqs [] = []
insertSeqs [t] = [t]
insertSeqs (a:ts@(b:_))
| lseq a && rseq b = a : Seq : insertSeqs ts
| otherwise = a : insertSeqs ts
lseq :: Token -> Bool
lseq Bar = False
lseq L = False
lseq _ = True
rseq :: Token -> Bool
rseq (Sym _) = True
rseq L = True
rseq (Cls _) = True
rseq Dot = True
rseq _ = False
process :: String -> [Token]
process [] = []
process ('\\':c:cs) = Cls (['\\',c],symClassPred c) : process cs
process ('{':cs) = case reads cs of
(n,'}':s1) : _ -> Bnd (n,n) : process s1
(n,',':s1) : _ ->
case reads s1 of
(m,'}':s2) : _ -> Bnd (n,m) : process s2
_ -> token '{' : process cs
_ -> token '{' : process cs
process ('[':'^':cs) = Cls (('[':'^':s),not.p) : process xs
where (s,p,xs) = processCls cs
process ('[' :cs) = Cls ('[':s,p) : process xs
where (s,p,xs) = processCls cs
process (c:cs) = token c : process cs
processCls :: String -> (String, Char -> Bool, String)
processCls [] = parseError []
processCls (']':cs) = ("]", const False, cs)
processCls ('\\':c:cs)
| isSymClassChar c = ('\\':c:s, \x -> symClassPred c x || p x, xs)
where (s,p,xs) = processCls cs
processCls ('\\':c:cs) = ('\\':c:s, \x -> x==c || p x, xs)
where (s,p,xs) = processCls cs
processCls (c:'-':e:cs) | e /= ']'
= (c:'-':e:s, \d -> (c<=d && d<=e) || p d, xs)
where (s,p,xs) = processCls cs
processCls (c:cs) = (c:s, \b -> b==c || p b, xs)
where (s,p,xs) = processCls cs
isSymClassChar :: Char -> Bool
isSymClassChar = (`elem`"wWdDsS")
symClassPred :: Char -> Char -> Bool
symClassPred 'w' = isWordChar
symClassPred 'd' = isDigit
symClassPred 's' = isSpace
symClassPred 'W' = not . isWordChar
symClassPred 'D' = not . isDigit
symClassPred 'S' = not . isSpace
symClassPred c = (c==)
isWordChar :: Char -> Bool
isWordChar c = c == '_' || isAlphaNum c
parseError :: [Token] -> a
parseError _ = error "cannot parse regular expression"
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail i tk st
1# ->
happyAccept i tk st
n | (n Happy_GHC_Exts.<# (0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where (new_state) = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where (off) = indexShortOffAddr happyActOffsets st
(off_i) = (off Happy_GHC_Exts.+# i)
check = if (off_i Happy_GHC_Exts.>=# (0# :: Happy_GHC_Exts.Int#))
then (indexShortOffAddr happyCheck off_i Happy_GHC_Exts.==# i)
else False
(action)
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
drop_stk = happyDropStk k stk
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
drop_stk = happyDropStk k stk
(off) = indexShortOffAddr happyGotoOffsets st1
(off_i) = (off Happy_GHC_Exts.+# nt)
(new_state) = indexShortOffAddr happyTable off_i
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where (off) = indexShortOffAddr happyGotoOffsets st
(off_i) = (off Happy_GHC_Exts.+# nt)
(new_state) = indexShortOffAddr happyTable off_i
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ i tk
happyFail i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b