{-# OPTIONS_GHC -w #-}
{-# OPTIONS -fglasgow-exts -cpp #-}
{-# LANGUAGE NoMonomorphismRestriction  #-}
{-# OPTIONS -fno-warn-incomplete-patterns -fno-warn-missing-signatures #-}

module Text.RegExp.Parser ( parse ) where

import Text.RegExp.Data
  ( eps, char, psym, anySym, alt, seq_, rep, rep1, opt, brep )

import Data.Char ( isSpace, toLower, isAlphaNum, isDigit )
import qualified Data.Array as Happy_Data_Array
import qualified GHC.Exts as Happy_GHC_Exts

-- parser produced by Happy Version 1.18.9

newtype HappyAbsSyn t4 = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: t4 -> (HappyAbsSyn t4)
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn t4) -> t4
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyInTok :: (Token) -> (HappyAbsSyn t4)
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn t4) -> (Token)
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x04\x00\x00\x00\xff\xff\x00\x00\x04\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x04\x00\x04\x00\x00\x00\x00\x00\x00\x00\x16\x00\x19\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x13\x00\x00\x00\x00\x00\x00\x00\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\xfe\xff\x00\x00\x00\x00\xfd\xff\xfe\xff\xf5\xff\xf4\xff\x00\x00\xfc\xff\xfe\xff\xfe\xff\xf8\xff\xf7\xff\xf6\xff\xfa\xff\xfb\xff\xf9\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\xff\xff\x01\x00\x07\x00\x08\x00\x09\x00\x05\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x0a\x00\x0b\x00\x02\x00\x03\x00\x04\x00\x00\x00\x06\x00\x07\x00\x08\x00\x09\x00\x02\x00\x03\x00\x04\x00\x02\x00\x03\x00\x07\x00\x08\x00\x09\x00\x07\x00\x08\x00\x09\x00\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x09\x00\x0a\x00\x0b\x00\x00\x00\x04\x00\x0c\x00\x0d\x00\x0e\x00\x05\x00\x0e\x00\xff\xff\x0f\x00\x07\x00\x06\x00\x07\x00\x09\x00\x0a\x00\x0b\x00\x02\x00\x11\x00\x0c\x00\x0d\x00\x0e\x00\x09\x00\x0a\x00\x0b\x00\x09\x00\x0a\x00\x0c\x00\x0d\x00\x0e\x00\x0c\x00\x0d\x00\x0e\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 11) [
	(1 , happyReduce_1),
	(2 , happyReduce_2),
	(3 , happyReduce_3),
	(4 , happyReduce_4),
	(5 , happyReduce_5),
	(6 , happyReduce_6),
	(7 , happyReduce_7),
	(8 , happyReduce_8),
	(9 , happyReduce_9),
	(10 , happyReduce_10),
	(11 , happyReduce_11)
	]

happy_n_terms = 13 :: Int
happy_n_nonterms = 1 :: Int

happyReduce_1 = happySpecReduce_0  0# happyReduction_1
happyReduction_1  =  happyIn4
		 (eps
	)

happyReduce_2 = happySpecReduce_1  0# happyReduction_2
happyReduction_2 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Sym happy_var_1) -> 
	happyIn4
		 (char happy_var_1
	)}

happyReduce_3 = happySpecReduce_2  0# happyReduction_3
happyReduction_3 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (rep happy_var_1
	)}

happyReduce_4 = happySpecReduce_3  0# happyReduction_4
happyReduction_4 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn4
		 (seq_ happy_var_1 happy_var_3
	)}}

happyReduce_5 = happySpecReduce_3  0# happyReduction_5
happyReduction_5 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	case happyOut4 happy_x_3 of { happy_var_3 -> 
	happyIn4
		 (alt happy_var_1 happy_var_3
	)}}

happyReduce_6 = happySpecReduce_3  0# happyReduction_6
happyReduction_6 happy_x_3
	happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_2 of { happy_var_2 -> 
	happyIn4
		 (happy_var_2
	)}

happyReduce_7 = happySpecReduce_2  0# happyReduction_7
happyReduction_7 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (rep1 happy_var_1
	)}

happyReduce_8 = happySpecReduce_2  0# happyReduction_8
happyReduction_8 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	happyIn4
		 (opt happy_var_1
	)}

happyReduce_9 = happySpecReduce_2  0# happyReduction_9
happyReduction_9 happy_x_2
	happy_x_1
	 =  case happyOut4 happy_x_1 of { happy_var_1 -> 
	case happyOutTok happy_x_2 of { (Bnd happy_var_2) -> 
	happyIn4
		 (brep happy_var_2 happy_var_1
	)}}

happyReduce_10 = happySpecReduce_1  0# happyReduction_10
happyReduction_10 happy_x_1
	 =  case happyOutTok happy_x_1 of { (Cls happy_var_1) -> 
	happyIn4
		 (uncurry psym happy_var_1
	)}

happyReduce_11 = happySpecReduce_1  0# happyReduction_11
happyReduction_11 happy_x_1
	 =  happyIn4
		 (anySym
	)

happyNewToken action sts stk [] =
	happyDoAction 12# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
	let cont i = happyDoAction i tk action sts stk tks in
	case tk of {
	Sym happy_dollar_dollar -> cont 1#;
	Ast -> cont 2#;
	Seq -> cont 3#;
	Bar -> cont 4#;
	L -> cont 5#;
	R -> cont 6#;
	Pls -> cont 7#;
	Que -> cont 8#;
	Bnd happy_dollar_dollar -> cont 9#;
	Cls happy_dollar_dollar -> cont 10#;
	Dot -> cont 11#;
	_ -> happyError' (tk:tks)
	}

happyError_ 12# tk tks = happyError' tks
happyError_ _ tk tks = happyError' (tk:tks)

newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a

instance Monad HappyIdentity where
    return = HappyIdentity
    (HappyIdentity p) >>= q = q p

happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => [(Token)] -> HappyIdentity a
happyError' = HappyIdentity . parseError

parseTokens tks = happyRunIdentity happySomeParser where
  happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


parse = parseTokens . scan

data Token = Seq | Sym Char | Ast | Bar | L | R
           | Pls | Que | Bnd (Int,Int)
           | Cls (String,Char -> Bool) | Dot


token :: Char -> Token
token '*'  = Ast
token '|'  = Bar
token '('  = L
token ')'  = R
token '?'  = Que
token '+'  = Pls
token '.'  = Dot
token c    = Sym c

scan :: String -> [Token]
scan = insertSeqs . process

insertSeqs :: [Token] -> [Token]
insertSeqs []           = []
insertSeqs [t]          = [t]
insertSeqs (a:ts@(b:_))
  | lseq a && rseq b    = a : Seq : insertSeqs ts
  | otherwise           = a : insertSeqs ts

lseq :: Token -> Bool
lseq Bar = False
lseq L   = False
lseq _   = True

rseq :: Token -> Bool
rseq (Sym _) = True
rseq L       = True
rseq (Cls _) = True
rseq Dot     = True
rseq _       = False

process :: String -> [Token]
process []            = []

process ('\\':c:cs)   = Cls (['\\',c],symClassPred c) : process cs

process ('{':cs)      = case reads cs of
                          (n,'}':s1) : _ -> Bnd (n,n) : process s1
                          (n,',':s1) : _ ->
                              case reads s1 of
                                (m,'}':s2) : _ -> Bnd (n,m) : process s2
                                _              -> token '{' : process cs
                          _              -> token '{' : process cs

process ('[':'^':cs)  = Cls (('[':'^':s),not.p) : process xs
 where (s,p,xs) = processCls cs

process ('['    :cs)  = Cls ('[':s,p) : process xs
 where (s,p,xs) = processCls cs

process (c:cs)        = token c : process cs

processCls :: String -> (String, Char -> Bool, String)

processCls []           = parseError []

processCls (']':cs)     = ("]", const False, cs)

processCls ('\\':c:cs)
  | isSymClassChar c    = ('\\':c:s, \x -> symClassPred c x || p x, xs)
 where (s,p,xs) = processCls cs

processCls ('\\':c:cs)  = ('\\':c:s, \x -> x==c || p x, xs)
 where (s,p,xs) = processCls cs

processCls (c:'-':e:cs) | e /= ']'
                        = (c:'-':e:s, \d -> (c<=d && d<=e) || p d, xs)
 where (s,p,xs) = processCls cs

processCls (c:cs)       = (c:s, \b -> b==c || p b, xs)
 where (s,p,xs) = processCls cs

isSymClassChar :: Char -> Bool
isSymClassChar = (`elem`"wWdDsS")

symClassPred :: Char -> Char -> Bool
symClassPred 'w' = isWordChar
symClassPred 'd' = isDigit
symClassPred 's' = isSpace
symClassPred 'W' = not . isWordChar
symClassPred 'D' = not . isDigit
symClassPred 'S' = not . isSpace
symClassPred  c  = (c==)

isWordChar :: Char -> Bool
isWordChar c = c == '_' || isAlphaNum c

parseError :: [Token] -> a
parseError _ = error "cannot parse regular expression"
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 

{-# LINE 30 "templates/GenericTemplate.hs" #-}


data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList





{-# LINE 51 "templates/GenericTemplate.hs" #-}

{-# LINE 61 "templates/GenericTemplate.hs" #-}

{-# LINE 70 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
	happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
	(happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
	= {- nothing -}


	  case action of
		0#		  -> {- nothing -}
				     happyFail i tk st
		-1# 	  -> {- nothing -}
				     happyAccept i tk st
		n | (n Happy_GHC_Exts.<# (0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

				     (happyReduceArr Happy_Data_Array.! rule) i tk st
				     where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
		n		  -> {- nothing -}


				     happyShift new_state i tk st
				     where (new_state) = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where (off)    = indexShortOffAddr happyActOffsets st
         (off_i)  = (off Happy_GHC_Exts.+# i)
	 check  = if (off_i Happy_GHC_Exts.>=# (0# :: Happy_GHC_Exts.Int#))
			then (indexShortOffAddr happyCheck off_i Happy_GHC_Exts.==#  i)
			else False
         (action)
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st

{-# LINE 130 "templates/GenericTemplate.hs" #-}


indexShortOffAddr (HappyA# arr) off =
	Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#





data HappyAddr = HappyA# Happy_GHC_Exts.Addr#




-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 163 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
	 sts1@((HappyCons (st1@(action)) (_))) ->
        	let r = fn stk in  -- it doesn't hurt to always seq here...
       		happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
        happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
       where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
             drop_stk = happyDropStk k stk

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
       happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
       where (sts1@((HappyCons (st1@(action)) (_)))) = happyDrop k (HappyCons (st) (sts))
             drop_stk = happyDropStk k stk

             (off) = indexShortOffAddr happyGotoOffsets st1
             (off_i) = (off Happy_GHC_Exts.+# nt)
             (new_state) = indexShortOffAddr happyTable off_i




happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where (off) = indexShortOffAddr happyGotoOffsets st
         (off_i) = (off Happy_GHC_Exts.+# nt)
         (new_state) = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail 0# tk old_st _ stk@(x `HappyStk` _) =
     let (i) = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--	trace "failing" $ 
        happyError_ i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
						(saved_tok `HappyStk` _ `HappyStk` stk) =
--	trace ("discarding state, depth " ++ show (length stk))  $
	happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail  i tk (action) sts stk =
--      trace "entering error recovery" $
	happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--	happySeq = happyDoSeq
-- otherwise it emits
-- 	happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.