sig
val mk_mset : Term.constr -> (Term.constr * int) list -> Term.constr
module Sigma :
sig
val add :
Term.constr ->
Term.constr -> Term.constr -> Term.constr -> Term.constr
val empty : Term.constr -> Term.constr
val of_list :
Term.constr -> Term.constr -> (int * Term.constr) list -> Term.constr
val to_fun : Term.constr -> Term.constr -> Term.constr -> Term.constr
end
module Sym :
sig
type pack = {
ar : Term.constr;
value : Term.constr;
morph : Term.constr;
}
val typ : Term.constr lazy_t
val mk_pack : Coq.Relation.t -> Theory.Sym.pack -> Term.constr
val null : Coq.Relation.t -> Term.constr
end
module Stubs :
sig
val lift : Term.constr Lazy.t
val lift_proj_equivalence : Term.constr Lazy.t
val lift_transitivity_left : Term.constr Lazy.t
val lift_transitivity_right : Term.constr Lazy.t
val lift_reflexivity : Term.constr Lazy.t
val eval : Term.constr lazy_t
val decide_thm : Term.constr lazy_t
val lift_normalise_thm : Term.constr lazy_t
end
module Trans :
sig
type envs
val empty_envs : unit -> Theory.Trans.envs
val t_of_constr :
Coq.goal_sigma ->
Coq.Relation.t ->
Theory.Trans.envs ->
Term.constr * Term.constr ->
Matcher.Terms.t * Matcher.Terms.t * Coq.goal_sigma
val add_symbol :
Coq.goal_sigma ->
Coq.Relation.t -> Theory.Trans.envs -> Term.constr -> Coq.goal_sigma
type ir
val ir_of_envs :
Coq.goal_sigma ->
Coq.Relation.t ->
Theory.Trans.envs -> Coq.goal_sigma * Theory.Trans.ir
val ir_to_units : Theory.Trans.ir -> Matcher.ext_units
val raw_constr_of_t :
Theory.Trans.ir ->
Coq.Relation.t -> Term.rel_context -> Matcher.Terms.t -> Term.constr
type sigmas = {
env_sym : Term.constr;
env_bin : Term.constr;
env_units : Term.constr;
}
type reifier
val mk_reifier :
Coq.Relation.t ->
Term.constr ->
Theory.Trans.ir ->
(Theory.Trans.sigmas * Theory.Trans.reifier -> Proof_type.tactic) ->
Proof_type.tactic
val reif_constr_of_t :
Theory.Trans.reifier -> Matcher.Terms.t -> Term.constr
end
end