Table Of Contents

Previous topic

The uves_utl_ima_arith recipe

This Page

The uves_obs_redchain recipe

uves_obs_redchain

Synopsis

Runs the full UVES reduction chain

Description

This recipe does a complete science reduction. It runs all necessary calibration recipes depending on the availability of raw/processed calibration frames.

Input frames are all UVES raw and reference frames:

formatchecks, ARC_LAMP_FORM_xxxx, xxxx=BLUE or RED, order definition frames, ORDER_FLAT_xxx, biases, BIAS_xxx, darks, DARK_xxx, flats, FLAT_xxx, arc lamps, ARC_LAMP_xxx, standard stars, STANDARD_xxx a wavelength catalogue table,LINE_REFER_TABLE, and optionally a wavelength table of bright lines,LINE_INTMON_TABLE, used only for computing Quality Control parameters.

a reference standard star flux table, FLUX_STD_TABLE, a table describing the atmospheric extintion,EXTCOEFF_TABLE.

optionally, science frames, SCIENCE_xxx, or UVES_SCI_POINT_xxx, or UVES_SCI_EXTND_xxx, or UVES_SCI_SLICER_xxx.

For further details on the data reduction and the input frame types refer to the man page of the individual recipes.

Constructor

cpl.Recipe("uves_obs_redchain")

Create an object for the recipe uves_obs_redchain.

import cpl
uves_obs_redchain = cpl.Recipe("uves_obs_redchain")

Parameters

uves_obs_redchain.param.scired

Whether or not to do science reduction. If false, only master calibration frames are created. If false, either zero or all necessary calibration frames must be provided for each arm (bool; default: True) [default=True].

uves_obs_redchain.param.debug

Whether or not to save intermediate results to local directory (bool; default: False) [default=False].

uves_obs_redchain.param.plotter

Any plots produced by the recipe are redirected to the command specified by this parameter. The plotting command must contain the substring ‘gnuplot’ and must be able to parse gnuplot syntax on its standard input. Valid examples of such a command may include ‘gnuplot -persist’ and ‘cat > mygnuplot$$.gp’. A finer control of the plotting options can be obtained by writing an executable script, e.g. my_gnuplot.pl, that executes gnuplot after setting the desired gnuplot options (e.g. set terminal pslatex color). To turn off plotting, set this parameter to ‘no’ (str; default: ‘no’) [default=”no”].

uves_obs_redchain.param.process_chip

For RED arm data process the redl, redu, or both chip(s) (str; default: ‘both’) [default=”both”].

uves_obs_redchain.param.uves_cal_wavecal.nwindows

Number of extraction windows per trace. The windows will be aligned (i.e. no overlap and no spacing between adjacent windows). Unless an offset is specified, the middle window(s) is centered on the trace (long; default: 3) [default=3].

uves_obs_redchain.param.uves_cal_wavecal.length

Length (in pixels) of each extraction window. This parameter is also equal to the seperation of adjacent window centers, causing the extraction windows to always be aligned. The parameter is automatically adjusted according to the binning of the input raw frame. If negative, the extraction window length is determined automatically to cover the full slit (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_wavecal.offset

A global offset (in pixels) of all extraction windows (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_wavecal.range

Width (pix) of search window is 2*range + 1. This parameter is automatically adjusted according to binning. (long; default: 8) [default=8].

uves_obs_redchain.param.uves_cal_wavecal.minlines

Minimum number of lines to detect. If zero, the default value (1100 for BLUE/REDL chips; 1000 for REDU chip) is used. (long; default: 0) [default=0].

uves_obs_redchain.param.uves_cal_wavecal.maxlines

Maximum number of lines to detect. If zero, the default value (1600 for BLUE/REDL chip; 1400 for REDU chip) is used. (long; default: 0) [default=0].

uves_obs_redchain.param.uves_cal_wavecal.shiftmax

The maximum shift (pix) in either direction compared to guess solution. This parameter is automatically corrected for binning (float; default: 10.0) [default=10.0].

uves_obs_redchain.param.uves_cal_wavecal.shiftstep

The step size (pix) used when searching for the optimum shift. This parameter is automatically corrected for binning (float; default: 0.1) [default=0.1].

uves_obs_redchain.param.uves_cal_wavecal.shifttoler

Tolerance (pix) when matching shifted lines. This parameter is not adjusted according to binning (float; default: 0.05) [default=0.05].

uves_obs_redchain.param.uves_cal_wavecal.alpha

The parameter that controls the distance to the nearest neighbours (float; default: 0.1) [default=0.1].

uves_obs_redchain.param.uves_cal_wavecal.maxerror

This parameter controls the graceful exit of the identification loop. If the RMS of the global fit exceeds this value (pix) the iteration stops (float; default: 20.0) [default=20.0].

uves_obs_redchain.param.uves_cal_wavecal.degree

Degrees of the global 2d dispersion polynomial. If a negative number is specified, the polynomial degrees are automatically selected by starting from (1, 1) and inreasing the degrees as long as the RMS residual decreases significantly (long; default: 4) [default=4].

uves_obs_redchain.param.uves_cal_wavecal.tolerance

Tolerance of fit. If positive, the tolerance is in pixel units. If negative, abs(tolerance) is in wavelength units. Lines with residuals worse than the tolerance are excluded from the final fit. Unlike in previous versions, this parameter is not corrected for CCD binning. This rejection based on the absolute residual in pixel can be effectively disabled by setting the tolerance to a very large number (e.g. 9999). In that case outliers will be rejected using only kappa sigma clipping. (float; default: 0.6) [default=0.6].

uves_obs_redchain.param.uves_cal_wavecal.kappa

Lines with residuals more then kappa stdev are rejected from the final fit (float; default: 4.0) [default=4.0].

uves_obs_redchain.param.uves_cal_wavecal.rebin.wavestep

The bin size (in w.l.u.) in wavelength space. If negative, a step size of 2/3 * ( average pixel size ) is used. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_wavecal.rebin.scale

Whether or not to multiply by the factor dx/dlambda (pixels per wavelength) during the rebinning. This option is disabled as default in concordance with the method used in the MIDAS pipeline. This option should be set to true to convert the observed flux (in pixel-space) to a flux per wavelength (in wavelength-space). (bool; default: False) [default=False].

uves_obs_redchain.param.uves_cal_wavecal.extract.method

Extraction method. (2d/optimal not supported by uves_cal_wavecal, weighted supported only by uves_cal_wavecal, 2d not supported by uves_cal_response) (str; default: ‘average’) [default=”average”].

uves_obs_redchain.param.uves_cal_wavecal.extract.kappa

In optimal extraction mode, this is the threshold for bad (i.e. hot/cold) pixel rejection. If a pixel deviates more than kappa*sigma (where sigma is the uncertainty of the pixel flux) from the inferred spatial profile, its weight is set to zero. Range: [-1,100]. If this parameter is negative, no rejection is performed. (float; default: 10.0) [default=10.0].

uves_obs_redchain.param.uves_cal_wavecal.extract.chunk

In optimal extraction mode, the chunk size (in pixels) used for fitting the analytical profile (a fit of the analytical profile to single bins would suffer from low statistics). (long; default: 32) [default=32].

uves_obs_redchain.param.uves_cal_wavecal.extract.profile

In optimal extraction mode, the kind of profile to use. ‘gauss’ gives a Gaussian profile, ‘moffat’ gives a Moffat profile with beta=4 and a possible linear sky contribution. ‘virtual’ uses a virtual resampling algorithm (i.e. measures and uses the actual object profile). ‘constant’ assumes a constant spatial profile and allows optimal extraction of wavelength calibration frames. ‘auto’ will automatically select the best method based on the estimated S/N of the object. For low S/N, ‘moffat’ or ‘gauss’ are recommended (for robustness). For high S/N, ‘virtual’ is recommended (for accuracy). In the case of virtual resampling, a precise determination of the order positions is required; therefore the order-definition is repeated using the (assumed non-low S/N) science frame (str; default: ‘auto’) [default=”auto”].

uves_obs_redchain.param.uves_cal_wavecal.extract.skymethod

In optimal extraction mode, the sky subtraction method to use. ‘median’ estimates the sky as the median of pixels along the slit (ignoring pixels close to the object), whereas ‘optimal’ does a chi square minimization along the slit to obtain the best combined object and sky levels. The optimal method gives the most accurate sky determination but is also a bit slower than the median method (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_cal_wavecal.extract.oversample

The oversampling factor used for the virtual resampling algorithm. If negative, the value 5 is used for S/N <=200, and the value 10 is used if the estimated S/N is > 200 (long; default: -1) [default=-1].

uves_obs_redchain.param.uves_cal_wavecal.extract.best

(optimal extraction only) If false (fastest), the spectrum is extracted only once. If true (best), the spectrum is extracted twice, the second time using improved variance estimates based on the first iteration. Better variance estimates slightly improve the obtained signal to noise but at the cost of increased execution time (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_mflat.norm_method

Method used to build master frame (str; default: ‘explevel’) [default=”explevel”].

uves_obs_redchain.param.uves_cal_mflat.backsub.mmethod

Background measuring method. If equal to ‘median’ the background is sampled using the median of a subwindow. If ‘minimum’, the subwindow minimum value is used. If ‘no’, no background subtraction is done. (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_cal_mflat.backsub.npoints

This is the number of columns in interorder space used to sample the background. (long; default: 82) [default=82].

uves_obs_redchain.param.uves_cal_mflat.backsub.radiusy

The height (in pixels) of the background sampling window is (2*radiusy + 1). This parameter is not corrected for binning. (long; default: 2) [default=2].

uves_obs_redchain.param.uves_cal_mflat.backsub.sdegree

Degree of interpolating splines. Currently only degree = 1 is supported (long; default: 1) [default=1].

uves_obs_redchain.param.uves_cal_mflat.backsub.smoothx

If spline interpolation is used to measure the background, the x-radius of the post-smoothing window is (smoothx * image_width). Here, ‘image_width’ is the image width after binning. If negative, the default values are used: (25.0/4096) for blue flat-field frames, (50.0/4096) for red flat-field frames, (300.0/4096) for blue science frames and (300.0/4096) for red science frames. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_mflat.backsub.smoothy

If spline interpolation is used to measure the background, the y-radius of the post-smoothing window is (smoothy * image_height). Here, ‘image_height’ is the image height after binning. If negative, the default values are used: (100.0/2048) for blue flat-field frames, (300.0/2048) for red flat-field frames, (200.0/2048) for blue science frames and (500.0/2048) for red science frames. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_obs_scired.clean_traps

Clean detector traps. If TRUE detector traps are interpolated.The bad pixels are replaced by the average of thenearest good pixels in the same column, or simply marked as bad. The positions of bad pixels are hard-coded (as function of UVES chip). (bool; default: False) [default=False].

uves_obs_redchain.param.uves_obs_scired.reduce.slitlength

Extraction slit length (in pixels). If negative, the value inferred from the raw frame header is used (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_obs_scired.reduce.skysub

Do sky-subtraction (only applicable to linear and average extractions)? (bool; default: True) [default=True].

uves_obs_redchain.param.uves_obs_scired.reduce.objoffset

Offset (in pixels) of extraction slit with respect to center of order. This parameter applies to linear/average/optimal extraction. For linear/average extraction, if the related parameter objslit is negative, the offset is automatically determined by measuring the actual object position. (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_obs_scired.reduce.objslit

Object window size (in pixels). This must be less than the total slit length. If negative, the default value (half of full slit length) is used. The upper and lower sky windows are defined as the part of the full slit (if any) outside the object window. The center of the object window is determined by the offset parameter. This parameter does not apply to optimal extraction. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_obs_scired.reduce.tiltcorr

If enabled (recommended), the provided dispersion solutions obtained at different slit positions are interpolated linearly at the actually measured position of the object/sky. Line tilt correction is currently not supported for 2d extraction, in which case the dispersion solution obtained at the middle of the slit is always used. (bool; default: True) [default=True].

uves_obs_redchain.param.uves_obs_scired.reduce.ffmethod

Flat-fielding method. If set to ‘pixel’, flat-fielding is done in pixel-pixel space (before extraction); if set to ‘extract’, flat- fielding is performed in pixel-order space (i.e. after extraction). If set to ‘no’, no flat-field correction is done (str; default: ‘extract’) [default=”extract”].

uves_obs_redchain.param.uves_obs_scired.reduce.merge

Order merging method. If ‘optimal’, the flux in the overlapping region is set to the (optimally computed, using the uncertainties) average of single order spectra. If ‘sum’, the flux in the overlapping region is computed as the sum of the single order spectra. If ‘noappend’ the spectrum is simply rebinned but not merged.If flat-fielding is done, method ‘optimal’ is recommended, otherwise ‘sum’. (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_obs_scired.reduce.merge_delt1

Order merging left hand (short wavelength) cut. To reduce the amount of order overlapping regions we allow to cut short and long wavelength ranges. This may reduce the ripple possibly introduced by the order merging. Suggested values are: 10 (W<=390), 12 (390<W<=437, 520<W<=564), 14 (437<W<=520, 564<W) (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_obs_scired.reduce.merge_delt2

Order merging right hand (long wavelength) cut. To reduce the amount of order overlapping regions we allow to cut short and long wavelength ranges. This may reduce the ripple possibly introduced by the order merging. Suggested values is 4 (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.method

Extraction method. (2d/optimal not supported by uves_cal_wavecal, weighted supported only by uves_cal_wavecal, 2d not supported by uves_cal_response) (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.kappa

In optimal extraction mode, this is the threshold for bad (i.e. hot/cold) pixel rejection. If a pixel deviates more than kappa*sigma (where sigma is the uncertainty of the pixel flux) from the inferred spatial profile, its weight is set to zero. Range: [-1,100]. If this parameter is negative, no rejection is performed. (float; default: 10.0) [default=10.0].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.chunk

In optimal extraction mode, the chunk size (in pixels) used for fitting the analytical profile (a fit of the analytical profile to single bins would suffer from low statistics). (long; default: 32) [default=32].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.profile

In optimal extraction mode, the kind of profile to use. ‘gauss’ gives a Gaussian profile, ‘moffat’ gives a Moffat profile with beta=4 and a possible linear sky contribution. ‘virtual’ uses a virtual resampling algorithm (i.e. measures and uses the actual object profile). ‘constant’ assumes a constant spatial profile and allows optimal extraction of wavelength calibration frames. ‘auto’ will automatically select the best method based on the estimated S/N of the object. For low S/N, ‘moffat’ or ‘gauss’ are recommended (for robustness). For high S/N, ‘virtual’ is recommended (for accuracy). In the case of virtual resampling, a precise determination of the order positions is required; therefore the order-definition is repeated using the (assumed non-low S/N) science frame (str; default: ‘auto’) [default=”auto”].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.skymethod

In optimal extraction mode, the sky subtraction method to use. ‘median’ estimates the sky as the median of pixels along the slit (ignoring pixels close to the object), whereas ‘optimal’ does a chi square minimization along the slit to obtain the best combined object and sky levels. The optimal method gives the most accurate sky determination but is also a bit slower than the median method (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.oversample

The oversampling factor used for the virtual resampling algorithm. If negative, the value 5 is used for S/N <=200, and the value 10 is used if the estimated S/N is > 200 (long; default: -1) [default=-1].

uves_obs_redchain.param.uves_obs_scired.reduce.extract.best

(optimal extraction only) If false (fastest), the spectrum is extracted only once. If true (best), the spectrum is extracted twice, the second time using improved variance estimates based on the first iteration. Better variance estimates slightly improve the obtained signal to noise but at the cost of increased execution time (bool; default: True) [default=True].

uves_obs_redchain.param.uves_obs_scired.reduce.backsub.mmethod

Background measuring method. If equal to ‘median’ the background is sampled using the median of a subwindow. If ‘minimum’, the subwindow minimum value is used. If ‘no’, no background subtraction is done. (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_obs_scired.reduce.backsub.npoints

This is the number of columns in interorder space used to sample the background. (long; default: 82) [default=82].

uves_obs_redchain.param.uves_obs_scired.reduce.backsub.radiusy

The height (in pixels) of the background sampling window is (2*radiusy + 1). This parameter is not corrected for binning. (long; default: 2) [default=2].

uves_obs_redchain.param.uves_obs_scired.reduce.backsub.sdegree

Degree of interpolating splines. Currently only degree = 1 is supported (long; default: 1) [default=1].

uves_obs_redchain.param.uves_obs_scired.reduce.backsub.smoothx

If spline interpolation is used to measure the background, the x-radius of the post-smoothing window is (smoothx * image_width). Here, ‘image_width’ is the image width after binning. If negative, the default values are used: (25.0/4096) for blue flat-field frames, (50.0/4096) for red flat-field frames, (300.0/4096) for blue science frames and (300.0/4096) for red science frames. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_obs_scired.reduce.backsub.smoothy

If spline interpolation is used to measure the background, the y-radius of the post-smoothing window is (smoothy * image_height). Here, ‘image_height’ is the image height after binning. If negative, the default values are used: (100.0/2048) for blue flat-field frames, (300.0/2048) for red flat-field frames, (200.0/2048) for blue science frames and (500.0/2048) for red science frames. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_obs_scired.reduce.rebin.wavestep

The bin size (in w.l.u.) in wavelength space. If negative, a step size of 2/3 * ( average pixel size ) is used. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_obs_scired.reduce.rebin.scale

Whether or not to multiply by the factor dx/dlambda (pixels per wavelength) during the rebinning. This option is disabled as default in concordance with the method used in the MIDAS pipeline. This option should be set to true to convert the observed flux (in pixel-space) to a flux per wavelength (in wavelength-space). (bool; default: False) [default=False].

uves_obs_redchain.param.uves_cal_response.reduce.slitlength

Extraction slit length (in pixels). If negative, the value inferred from the raw frame header is used (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_response.reduce.skysub

Do sky-subtraction (only applicable to linear and average extractions)? (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_response.reduce.objoffset

Offset (in pixels) of extraction slit with respect to center of order. This parameter applies to linear/average/optimal extraction. For linear/average extraction, if the related parameter objslit is negative, the offset is automatically determined by measuring the actual object position. (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_response.reduce.objslit

Object window size (in pixels). This must be less than the total slit length. If negative, the default value (half of full slit length) is used. The upper and lower sky windows are defined as the part of the full slit (if any) outside the object window. The center of the object window is determined by the offset parameter. This parameter does not apply to optimal extraction. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_response.reduce.tiltcorr

If enabled (recommended), the provided dispersion solutions obtained at different slit positions are interpolated linearly at the actually measured position of the object/sky. Line tilt correction is currently not supported for 2d extraction, in which case the dispersion solution obtained at the middle of the slit is always used. (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_response.reduce.ffmethod

Flat-fielding method. If set to ‘pixel’, flat-fielding is done in pixel-pixel space (before extraction); if set to ‘extract’, flat- fielding is performed in pixel-order space (i.e. after extraction). If set to ‘no’, no flat-field correction is done (str; default: ‘extract’) [default=”extract”].

uves_obs_redchain.param.uves_cal_response.reduce.merge

Order merging method. If ‘optimal’, the flux in the overlapping region is set to the (optimally computed, using the uncertainties) average of single order spectra. If ‘sum’, the flux in the overlapping region is computed as the sum of the single order spectra. If ‘noappend’ the spectrum is simply rebinned but not merged.If flat-fielding is done, method ‘optimal’ is recommended, otherwise ‘sum’. (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_cal_response.reduce.merge_delt1

Order merging left hand (short wavelength) cut. To reduce the amount of order overlapping regions we allow to cut short and long wavelength ranges. This may reduce the ripple possibly introduced by the order merging. Suggested values are: 10 (W<=390), 12 (390<W<=437, 520<W<=564), 14 (437<W<=520, 564<W) (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_response.reduce.merge_delt2

Order merging right hand (long wavelength) cut. To reduce the amount of order overlapping regions we allow to cut short and long wavelength ranges. This may reduce the ripple possibly introduced by the order merging. Suggested values is 4 (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_response.reduce.rebin.wavestep

The bin size (in w.l.u.) in wavelength space. If negative, a step size of 2/3 * ( average pixel size ) is used. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_response.reduce.rebin.scale

Whether or not to multiply by the factor dx/dlambda (pixels per wavelength) during the rebinning. This option is disabled as default in concordance with the method used in the MIDAS pipeline. This option should be set to true to convert the observed flux (in pixel-space) to a flux per wavelength (in wavelength-space). (bool; default: False) [default=False].

uves_obs_redchain.param.uves_cal_response.reduce.extract.method

Extraction method. (2d/optimal not supported by uves_cal_wavecal, weighted supported only by uves_cal_wavecal, 2d not supported by uves_cal_response) (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_cal_response.reduce.extract.kappa

In optimal extraction mode, this is the threshold for bad (i.e. hot/cold) pixel rejection. If a pixel deviates more than kappa*sigma (where sigma is the uncertainty of the pixel flux) from the inferred spatial profile, its weight is set to zero. Range: [-1,100]. If this parameter is negative, no rejection is performed. (float; default: 10.0) [default=10.0].

uves_obs_redchain.param.uves_cal_response.reduce.extract.chunk

In optimal extraction mode, the chunk size (in pixels) used for fitting the analytical profile (a fit of the analytical profile to single bins would suffer from low statistics). (long; default: 32) [default=32].

uves_obs_redchain.param.uves_cal_response.reduce.extract.profile

In optimal extraction mode, the kind of profile to use. ‘gauss’ gives a Gaussian profile, ‘moffat’ gives a Moffat profile with beta=4 and a possible linear sky contribution. ‘virtual’ uses a virtual resampling algorithm (i.e. measures and uses the actual object profile). ‘constant’ assumes a constant spatial profile and allows optimal extraction of wavelength calibration frames. ‘auto’ will automatically select the best method based on the estimated S/N of the object. For low S/N, ‘moffat’ or ‘gauss’ are recommended (for robustness). For high S/N, ‘virtual’ is recommended (for accuracy). In the case of virtual resampling, a precise determination of the order positions is required; therefore the order-definition is repeated using the (assumed non-low S/N) science frame (str; default: ‘auto’) [default=”auto”].

uves_obs_redchain.param.uves_cal_response.reduce.extract.skymethod

In optimal extraction mode, the sky subtraction method to use. ‘median’ estimates the sky as the median of pixels along the slit (ignoring pixels close to the object), whereas ‘optimal’ does a chi square minimization along the slit to obtain the best combined object and sky levels. The optimal method gives the most accurate sky determination but is also a bit slower than the median method (str; default: ‘optimal’) [default=”optimal”].

uves_obs_redchain.param.uves_cal_response.reduce.extract.oversample

The oversampling factor used for the virtual resampling algorithm. If negative, the value 5 is used for S/N <=200, and the value 10 is used if the estimated S/N is > 200 (long; default: -1) [default=-1].

uves_obs_redchain.param.uves_cal_response.reduce.extract.best

(optimal extraction only) If false (fastest), the spectrum is extracted only once. If true (best), the spectrum is extracted twice, the second time using improved variance estimates based on the first iteration. Better variance estimates slightly improve the obtained signal to noise but at the cost of increased execution time (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_response.reduce.backsub.mmethod

Background measuring method. If equal to ‘median’ the background is sampled using the median of a subwindow. If ‘minimum’, the subwindow minimum value is used. If ‘no’, no background subtraction is done. (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_cal_response.reduce.backsub.npoints

This is the number of columns in interorder space used to sample the background. (long; default: 82) [default=82].

uves_obs_redchain.param.uves_cal_response.reduce.backsub.radiusy

The height (in pixels) of the background sampling window is (2*radiusy + 1). This parameter is not corrected for binning. (long; default: 2) [default=2].

uves_obs_redchain.param.uves_cal_response.reduce.backsub.sdegree

Degree of interpolating splines. Currently only degree = 1 is supported (long; default: 1) [default=1].

uves_obs_redchain.param.uves_cal_response.reduce.backsub.smoothx

If spline interpolation is used to measure the background, the x-radius of the post-smoothing window is (smoothx * image_width). Here, ‘image_width’ is the image width after binning. If negative, the default values are used: BACKSUB_FLAT_SMOOTHX_BLUE for blue flat-field frames, BACKSUB_FLAT_SMOOTHX_RED for red flat-field frames, BACKSUB_SCI_SMOOTHX_BLUE for blue science frames and BACKSUB_SCI_SMOOTHX_RED for red science frames. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_response.reduce.backsub.smoothy

If spline interpolation is used to measure the background, the y-radius of the post-smoothing window is (smoothy * image_height). Here, ‘image_height’ is the image height after binning. If negative, the default values are used: BACKSUB_FLAT_SMOOTHY_BLUE for blue flat- field frames, BACKSUB_FLAT_SMOOTHY_RED for red flat-field frames, BACKSUB_SCI_SMOOTHY_BLUE for blue science frames and BACKSUB_SCI_SMOOTHY_RED for red science frames. (float; default: -1.0) [default=-1.0].

uves_obs_redchain.param.uves_cal_response.efficiency.paccuracy

The pointing accuracy (in arcseconds) used to identify the observed star with a catalogue star. If the angular separation is less than this number, the identification is made. (float; default: 60.0) [default=60.0].

uves_obs_redchain.param.uves_cal_response.efficiency.reduce.ffmethod

Flat-fielding method. If set to ‘pixel’, flat-fielding is done in pixel-pixel space (before extraction); if set to ‘extract’, flat- fielding is performed in pixel-order space (i.e. after extraction). If set to ‘no’, no flat-field correction is done. <pixel | extract | no> (str; default: ‘no’) [default=”no”].

uves_obs_redchain.param.uves_cal_response.efficiency.reduce.merge

Order merging method. If ‘optimal’, the flux in the overlapping region is set to the (optimally computed, using the uncertainties) average of single order spectra. If ‘sum’, the flux in the overlapping region is computed as the sum of the single order spectra.If ‘noappend’ the spectrum is simply rebinned but not merged.If flat-fielding is done, method ‘optimal’ is recommended, otherwise ‘sum’. <optimal | sum | noappend> (str; default: ‘sum’) [default=”sum”].

uves_obs_redchain.param.uves_cal_response.efficiency.reduce.best

(optimal extraction only) If false (fastest), the spectrum is extracted only once. If true (best), the spectrum is extracted twice, the second time using improved variance estimates based on the first iteration. Better variance estimates slightly improve the obtained signal to noise but at the cost of increased execution time (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_response.efficiency.reduce.extract.method

Extraction method.<average | linear | weighted | optimal> (str; default: ‘linear’) [default=”linear”].

uves_obs_redchain.param.uves_cal_mbias.clean_traps

Clean detector traps. If TRUE detector traps are interpolated.The bad pixels are replaced by the average of nearest good pixels in the same column, or simply marked as bad. The positions of bad pixels are hard- coded (as function of UVES chip). (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_mbias.stack_method

Method used to build master frame (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_cal_mbias.klow

Kappa used to clip low level values, when method is set to ‘mean’ (float; default: 5.0) [default=5.0].

uves_obs_redchain.param.uves_cal_mbias.khigh

Kappa used to clip high level values, when method is set to ‘mean’ (float; default: 5.0) [default=5.0].

uves_obs_redchain.param.uves_cal_mbias.niter

Number of kappa sigma iterations, when method is set to ‘mean’ (long; default: 5) [default=5].

uves_obs_redchain.param.uves_cal_mdark.stack_method

Method used to build master frame (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_cal_mdark.klow

Kappa used to clip low level values, when method is set to ‘mean’ (float; default: 5.0) [default=5.0].

uves_obs_redchain.param.uves_cal_mdark.khigh

Kappa used to clip high level values, when method is set to ‘mean’ (float; default: 5.0) [default=5.0].

uves_obs_redchain.param.uves_cal_mdark.niter

Number of kappa sigma iterations, when method is set to ‘mean’ (long; default: 5) [default=5].

uves_obs_redchain.param.uves_cal_mdark.stack_method

Method used to build master frame (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_cal_mdark.klow

Kappa used to clip low level values, when method is set to ‘mean’ (float; default: 5.0) [default=5.0].

uves_obs_redchain.param.uves_cal_mdark.khigh

Kappa used to clip high level values, when method is set to ‘mean’ (float; default: 5.0) [default=5.0].

uves_obs_redchain.param.uves_cal_mdark.niter

Number of kappa sigma iterations, when method is set to ‘mean’ (long; default: 5) [default=5].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.num_x

Number of regions along the X axis (where mean/med/rms are computed). (long; default: 4) [default=4].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.num_y

Number of regions along the Y axis(where mean/med/rms are computed). (long; default: 4) [default=4].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.box_sx

Region X size [pix] (long; default: 100) [default=100].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.box_sy

Region Y size [pix] (long; default: 100) [default=100].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.border_x

X distance between the left hand side of the detector and the left hand side of the region [pix] (long; default: 100) [default=100].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.border_y

X distance between the left hand side of the detector and the left hand side of the region [pix] (long; default: 100) [default=100].

uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.when

When QC analysis is performed. 0: on each raw frame or 1: on the master frame (long; default: 0) [default=0].

uves_obs_redchain.param.uves_cal_orderpos.use_guess_tab

If a Guess order table is provided this parameter set how it is used:0: No usage, 1: use it to set lower/upper Y raws where order are searched 2: the order table try to fully match the guess (long; default: 1) [default=1].

uves_obs_redchain.param.uves_cal_orderpos.radx

Half X size of median filtering window (long; default: 2) [default=2].

uves_obs_redchain.param.uves_cal_orderpos.rady

Half Y size of median filtering window (long; default: 1) [default=1].

uves_obs_redchain.param.uves_cal_orderpos.mmethod

Background subtraction method. If equal to ‘median’ the background is sampled using the median of a sub-window. If ‘minimum’, the minimum sub-window value is used. If ‘no’, no background subtraction is done. (str; default: ‘median’) [default=”median”].

uves_obs_redchain.param.uves_cal_orderpos.backsubgrid

Number of grid points (in x- and y-direction) used to estimate the background (mode=poly). (long; default: 50) [default=50].

uves_obs_redchain.param.uves_cal_orderpos.backsubradiusy

The height (in pixels) of the background sampling window is (2*radiusy + 1). This parameter is not corrected for binning. (long; default: 2) [default=2].

uves_obs_redchain.param.uves_cal_orderpos.backsubkappa

The value of kappa in the one-sided kappa-sigma clipping used to estimate the background (mode=poly). (float; default: 4.0) [default=4.0].

uves_obs_redchain.param.uves_cal_orderpos.backsubdegx

Degree (in x) of polynomial used to estimate the background (mode=poly). (long; default: 2) [default=2].

uves_obs_redchain.param.uves_cal_orderpos.backsubdegy

Degree (in y) of polynomial used to estimate the background (mode=poly). (long; default: 2) [default=2].

uves_obs_redchain.param.uves_cal_orderpos.samplewidth

Separation of sample traces (used by Hough transform) in input image (long; default: 50) [default=50].

uves_obs_redchain.param.uves_cal_orderpos.minslope

Minimum possible line slope. This should be the ‘physical’ slope on the chip, i.e. not taking binning factors into account, which is handled by the recipe (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_orderpos.maxslope

Maximum possible line slope (float; default: 0.2) [default=0.2].

uves_obs_redchain.param.uves_cal_orderpos.sloperes

Resolution (width in pixels) of Hough space (long; default: 120) [default=120].

uves_obs_redchain.param.uves_cal_orderpos.pthres

In automatic mode, or if the number of orders to detect is read from a guess table, the detection of new lines stops when the intensity of a candidate line drops to less than ‘pthres’ times the intensity of the previous detection. (float; default: 0.2) [default=0.2].

uves_obs_redchain.param.uves_cal_orderpos.tracestep

The step size used when tracing the orders (long; default: 10) [default=10].

uves_obs_redchain.param.uves_cal_orderpos.minthresh

The minimum threshold value is (min + minthres*(max - min)). Here ‘min’ and ‘max’ are the lowest and highest pixel values in the central bin of the order (float; default: 0.2) [default=0.2].

uves_obs_redchain.param.uves_cal_orderpos.maxgap

If the order line drops below detection threshold, the order tracing algorithm will try to jump a gap of maximum size ‘maxgap’ multiplied by the image width (float; default: 0.2) [default=0.2].

uves_obs_redchain.param.uves_cal_orderpos.maxrms

When fitting the orders with straight lines, this is the maximum allowed RMS relative to the median RMS of all orders (float; default: 100.0) [default=100.0].

uves_obs_redchain.param.uves_cal_orderpos.defpol1

The degree of the bivarite fit (cross dispersion direction). If negative, the degree is optimized to give the best fit (long; default: -1) [default=-1].

uves_obs_redchain.param.uves_cal_orderpos.defpol2

The degree of the bivarite fit (order number). If negative, the degree is optimized to give the best fit (long; default: -1) [default=-1].

uves_obs_redchain.param.uves_cal_orderpos.kappa

Used for kappa-sigma clipping of the final polynomial fit. If negative, no clipping is done (float; default: 4.0) [default=4.0].

uves_obs_redchain.param.uves_cal_predict.mbox_x

Match box X size (long; default: 40) [default=40].

uves_obs_redchain.param.uves_cal_predict.mbox_y

Match box Y size (long; default: 40) [default=40].

uves_obs_redchain.param.uves_cal_predict.trans_x

Detector translation along X (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_predict.trans_y

Detector translation along Y (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_predict.ech_angle_off

Offset on echelle angle (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_predict.cd_angle_off

Offset on cross disperser angle (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_predict.ccd_rot_angle_off

Offset on CCD rotation angle (float; default: 0.0) [default=0.0].

uves_obs_redchain.param.uves_cal_predict.compute_regression_sw

Compute regression? (bool; default: True) [default=True].

uves_obs_redchain.param.uves_cal_predict.def_pol1

Polynomial X deg (long; default: 4) [default=4].

uves_obs_redchain.param.uves_cal_predict.def_pol2

Polynomial Y deg (long; default: 5) [default=5].

uves_obs_redchain.param.uves_cal_predict.kappa

Kappa value in kappa sigma clipping on RESIDUAL between YFIT and Y columns (float; default: 4.5) [default=4.5].

uves_obs_redchain.param.uves_cal_predict.tol

Tolerance in kappa sigma clipping on RESIDUAL between YFIT and Y columns (float; default: 2.0) [default=2.0].

The following code snippet shows the default settings for the available parameters.

import cpl
uves_obs_redchain = cpl.Recipe("uves_obs_redchain")

uves_obs_redchain.param.scired = True
uves_obs_redchain.param.debug = False
uves_obs_redchain.param.plotter = "no"
uves_obs_redchain.param.process_chip = "both"
uves_obs_redchain.param.uves_cal_wavecal.nwindows = 3
uves_obs_redchain.param.uves_cal_wavecal.length = -1.0
uves_obs_redchain.param.uves_cal_wavecal.offset = 0.0
uves_obs_redchain.param.uves_cal_wavecal.range = 8
uves_obs_redchain.param.uves_cal_wavecal.minlines = 0
uves_obs_redchain.param.uves_cal_wavecal.maxlines = 0
uves_obs_redchain.param.uves_cal_wavecal.shiftmax = 10.0
uves_obs_redchain.param.uves_cal_wavecal.shiftstep = 0.1
uves_obs_redchain.param.uves_cal_wavecal.shifttoler = 0.05
uves_obs_redchain.param.uves_cal_wavecal.alpha = 0.1
uves_obs_redchain.param.uves_cal_wavecal.maxerror = 20.0
uves_obs_redchain.param.uves_cal_wavecal.degree = 4
uves_obs_redchain.param.uves_cal_wavecal.tolerance = 0.6
uves_obs_redchain.param.uves_cal_wavecal.kappa = 4.0
uves_obs_redchain.param.uves_cal_wavecal.rebin.wavestep = -1.0
uves_obs_redchain.param.uves_cal_wavecal.rebin.scale = False
uves_obs_redchain.param.uves_cal_wavecal.extract.method = "average"
uves_obs_redchain.param.uves_cal_wavecal.extract.kappa = 10.0
uves_obs_redchain.param.uves_cal_wavecal.extract.chunk = 32
uves_obs_redchain.param.uves_cal_wavecal.extract.profile = "auto"
uves_obs_redchain.param.uves_cal_wavecal.extract.skymethod = "optimal"
uves_obs_redchain.param.uves_cal_wavecal.extract.oversample = -1
uves_obs_redchain.param.uves_cal_wavecal.extract.best = True
uves_obs_redchain.param.uves_cal_mflat.norm_method = "explevel"
uves_obs_redchain.param.uves_cal_mflat.backsub.mmethod = "median"
uves_obs_redchain.param.uves_cal_mflat.backsub.npoints = 82
uves_obs_redchain.param.uves_cal_mflat.backsub.radiusy = 2
uves_obs_redchain.param.uves_cal_mflat.backsub.sdegree = 1
uves_obs_redchain.param.uves_cal_mflat.backsub.smoothx = -1.0
uves_obs_redchain.param.uves_cal_mflat.backsub.smoothy = -1.0
uves_obs_redchain.param.uves_obs_scired.clean_traps = False
uves_obs_redchain.param.uves_obs_scired.reduce.slitlength = -1.0
uves_obs_redchain.param.uves_obs_scired.reduce.skysub = True
uves_obs_redchain.param.uves_obs_scired.reduce.objoffset = 0.0
uves_obs_redchain.param.uves_obs_scired.reduce.objslit = -1.0
uves_obs_redchain.param.uves_obs_scired.reduce.tiltcorr = True
uves_obs_redchain.param.uves_obs_scired.reduce.ffmethod = "extract"
uves_obs_redchain.param.uves_obs_scired.reduce.merge = "optimal"
uves_obs_redchain.param.uves_obs_scired.reduce.merge_delt1 = 0.0
uves_obs_redchain.param.uves_obs_scired.reduce.merge_delt2 = 0.0
uves_obs_redchain.param.uves_obs_scired.reduce.extract.method = "optimal"
uves_obs_redchain.param.uves_obs_scired.reduce.extract.kappa = 10.0
uves_obs_redchain.param.uves_obs_scired.reduce.extract.chunk = 32
uves_obs_redchain.param.uves_obs_scired.reduce.extract.profile = "auto"
uves_obs_redchain.param.uves_obs_scired.reduce.extract.skymethod = "optimal"
uves_obs_redchain.param.uves_obs_scired.reduce.extract.oversample = -1
uves_obs_redchain.param.uves_obs_scired.reduce.extract.best = True
uves_obs_redchain.param.uves_obs_scired.reduce.backsub.mmethod = "median"
uves_obs_redchain.param.uves_obs_scired.reduce.backsub.npoints = 82
uves_obs_redchain.param.uves_obs_scired.reduce.backsub.radiusy = 2
uves_obs_redchain.param.uves_obs_scired.reduce.backsub.sdegree = 1
uves_obs_redchain.param.uves_obs_scired.reduce.backsub.smoothx = -1.0
uves_obs_redchain.param.uves_obs_scired.reduce.backsub.smoothy = -1.0
uves_obs_redchain.param.uves_obs_scired.reduce.rebin.wavestep = -1.0
uves_obs_redchain.param.uves_obs_scired.reduce.rebin.scale = False
uves_obs_redchain.param.uves_cal_response.reduce.slitlength = -1.0
uves_obs_redchain.param.uves_cal_response.reduce.skysub = True
uves_obs_redchain.param.uves_cal_response.reduce.objoffset = 0.0
uves_obs_redchain.param.uves_cal_response.reduce.objslit = -1.0
uves_obs_redchain.param.uves_cal_response.reduce.tiltcorr = True
uves_obs_redchain.param.uves_cal_response.reduce.ffmethod = "extract"
uves_obs_redchain.param.uves_cal_response.reduce.merge = "optimal"
uves_obs_redchain.param.uves_cal_response.reduce.merge_delt1 = 0.0
uves_obs_redchain.param.uves_cal_response.reduce.merge_delt2 = 0.0
uves_obs_redchain.param.uves_cal_response.reduce.rebin.wavestep = -1.0
uves_obs_redchain.param.uves_cal_response.reduce.rebin.scale = False
uves_obs_redchain.param.uves_cal_response.reduce.extract.method = "optimal"
uves_obs_redchain.param.uves_cal_response.reduce.extract.kappa = 10.0
uves_obs_redchain.param.uves_cal_response.reduce.extract.chunk = 32
uves_obs_redchain.param.uves_cal_response.reduce.extract.profile = "auto"
uves_obs_redchain.param.uves_cal_response.reduce.extract.skymethod = "optimal"
uves_obs_redchain.param.uves_cal_response.reduce.extract.oversample = -1
uves_obs_redchain.param.uves_cal_response.reduce.extract.best = True
uves_obs_redchain.param.uves_cal_response.reduce.backsub.mmethod = "median"
uves_obs_redchain.param.uves_cal_response.reduce.backsub.npoints = 82
uves_obs_redchain.param.uves_cal_response.reduce.backsub.radiusy = 2
uves_obs_redchain.param.uves_cal_response.reduce.backsub.sdegree = 1
uves_obs_redchain.param.uves_cal_response.reduce.backsub.smoothx = -1.0
uves_obs_redchain.param.uves_cal_response.reduce.backsub.smoothy = -1.0
uves_obs_redchain.param.uves_cal_response.efficiency.paccuracy = 60.0
uves_obs_redchain.param.uves_cal_response.efficiency.reduce.ffmethod = "no"
uves_obs_redchain.param.uves_cal_response.efficiency.reduce.merge = "sum"
uves_obs_redchain.param.uves_cal_response.efficiency.reduce.best = True
uves_obs_redchain.param.uves_cal_response.efficiency.reduce.extract.method = "linear"
uves_obs_redchain.param.uves_cal_mbias.clean_traps = True
uves_obs_redchain.param.uves_cal_mbias.stack_method = "median"
uves_obs_redchain.param.uves_cal_mbias.klow = 5.0
uves_obs_redchain.param.uves_cal_mbias.khigh = 5.0
uves_obs_redchain.param.uves_cal_mbias.niter = 5
uves_obs_redchain.param.uves_cal_mdark.stack_method = "median"
uves_obs_redchain.param.uves_cal_mdark.klow = 5.0
uves_obs_redchain.param.uves_cal_mdark.khigh = 5.0
uves_obs_redchain.param.uves_cal_mdark.niter = 5
uves_obs_redchain.param.uves_cal_mdark.stack_method = "median"
uves_obs_redchain.param.uves_cal_mdark.klow = 5.0
uves_obs_redchain.param.uves_cal_mdark.khigh = 5.0
uves_obs_redchain.param.uves_cal_mdark.niter = 5
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.num_x = 4
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.num_y = 4
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.box_sx = 100
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.box_sy = 100
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.border_x = 100
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.border_y = 100
uves_obs_redchain.param.uves_cal_mdark.qc_dark.reg.when = 0
uves_obs_redchain.param.uves_cal_orderpos.use_guess_tab = 1
uves_obs_redchain.param.uves_cal_orderpos.radx = 2
uves_obs_redchain.param.uves_cal_orderpos.rady = 1
uves_obs_redchain.param.uves_cal_orderpos.mmethod = "median"
uves_obs_redchain.param.uves_cal_orderpos.backsubgrid = 50
uves_obs_redchain.param.uves_cal_orderpos.backsubradiusy = 2
uves_obs_redchain.param.uves_cal_orderpos.backsubkappa = 4.0
uves_obs_redchain.param.uves_cal_orderpos.backsubdegx = 2
uves_obs_redchain.param.uves_cal_orderpos.backsubdegy = 2
uves_obs_redchain.param.uves_cal_orderpos.samplewidth = 50
uves_obs_redchain.param.uves_cal_orderpos.minslope = 0.0
uves_obs_redchain.param.uves_cal_orderpos.maxslope = 0.2
uves_obs_redchain.param.uves_cal_orderpos.sloperes = 120
uves_obs_redchain.param.uves_cal_orderpos.pthres = 0.2
uves_obs_redchain.param.uves_cal_orderpos.tracestep = 10
uves_obs_redchain.param.uves_cal_orderpos.minthresh = 0.2
uves_obs_redchain.param.uves_cal_orderpos.maxgap = 0.2
uves_obs_redchain.param.uves_cal_orderpos.maxrms = 100.0
uves_obs_redchain.param.uves_cal_orderpos.defpol1 = -1
uves_obs_redchain.param.uves_cal_orderpos.defpol2 = -1
uves_obs_redchain.param.uves_cal_orderpos.kappa = 4.0
uves_obs_redchain.param.uves_cal_predict.mbox_x = 40
uves_obs_redchain.param.uves_cal_predict.mbox_y = 40
uves_obs_redchain.param.uves_cal_predict.trans_x = 0.0
uves_obs_redchain.param.uves_cal_predict.trans_y = 0.0
uves_obs_redchain.param.uves_cal_predict.ech_angle_off = 0.0
uves_obs_redchain.param.uves_cal_predict.cd_angle_off = 0.0
uves_obs_redchain.param.uves_cal_predict.ccd_rot_angle_off = 0.0
uves_obs_redchain.param.uves_cal_predict.compute_regression_sw = True
uves_obs_redchain.param.uves_cal_predict.def_pol1 = 4
uves_obs_redchain.param.uves_cal_predict.def_pol2 = 5
uves_obs_redchain.param.uves_cal_predict.kappa = 4.5
uves_obs_redchain.param.uves_cal_predict.tol = 2.0

You may also set or overwrite some or all parameters by the recipe parameter param, as shown in the following example:

import cpl
uves_obs_redchain = cpl.Recipe("uves_obs_redchain")
[...]
res = uves_obs_redchain( ..., param = {"scired":True, "debug":False})

See also

cpl.Recipe for more information about the recipe object.

Bug reports

Please report any problems to Jonas M. Larsen. Alternatively, you may send a report to the ESO User Support Department.