Actual source code: da3.c
2: /*
3: Code for manipulating distributed regular 3d arrays in parallel.
4: File created by Peter Mell 7/14/95
5: */
7: #include <private/daimpl.h> /*I "petscdmda.h" I*/
11: PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
12: {
14: PetscMPIInt rank;
15: PetscBool iascii,isdraw,isbinary;
16: DM_DA *dd = (DM_DA*)da->data;
17: #if defined(PETSC_HAVE_MATLAB_ENGINE)
18: PetscBool ismatlab;
19: #endif
22: MPI_Comm_rank(((PetscObject)da)->comm,&rank);
24: PetscTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
25: PetscTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
26: PetscTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
28: PetscTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
29: #endif
30: if (iascii) {
31: PetscViewerFormat format;
33: PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
34: PetscViewerGetFormat(viewer, &format);
35: if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL) {
36: DMDALocalInfo info;
37: DMDAGetLocalInfo(da,&info);
38: PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
39: PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
40: info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
41: #if !defined(PETSC_USE_COMPLEX)
42: if (dd->coordinates) {
43: PetscInt last;
44: const PetscReal *coors;
45: VecGetArrayRead(dd->coordinates,&coors);
46: VecGetLocalSize(dd->coordinates,&last);
47: last = last - 3;
48: PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %G %G %G : Upper right %G %G %G\n",coors[0],coors[1],coors[2],coors[last],coors[last+1],coors[last+2]);
49: VecRestoreArrayRead(dd->coordinates,&coors);
50: }
51: #endif
52: PetscViewerFlush(viewer);
53: PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
54: } else {
55: DMView_DA_VTK(da,viewer);
56: }
57: } else if (isdraw) {
58: PetscDraw draw;
59: PetscReal ymin = -1.0,ymax = (PetscReal)dd->N;
60: PetscReal xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
61: PetscInt k,plane,base,*idx;
62: char node[10];
63: PetscBool isnull;
65: PetscViewerDrawGetDraw(viewer,0,&draw);
66: PetscDrawIsNull(draw,&isnull); if (isnull) return(0);
67: PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
68: PetscDrawSynchronizedClear(draw);
70: /* first processor draw all node lines */
71: if (!rank) {
72: for (k=0; k<dd->P; k++) {
73: ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
74: for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
75: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
76: }
77:
78: xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
79: for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
80: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
81: }
82: }
83: }
84: PetscDrawSynchronizedFlush(draw);
85: PetscDrawPause(draw);
87: for (k=0; k<dd->P; k++) { /*Go through and draw for each plane*/
88: if ((k >= dd->zs) && (k < dd->ze)) {
89: /* draw my box */
90: ymin = dd->ys;
91: ymax = dd->ye - 1;
92: xmin = dd->xs/dd->w + (dd->M+1)*k;
93: xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;
95: PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
96: PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
97: PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
98: PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);
100: xmin = dd->xs/dd->w;
101: xmax =(dd->xe-1)/dd->w;
103: /* put in numbers*/
104: base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
106: /* Identify which processor owns the box */
107: sprintf(node,"%d",rank);
108: PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
110: for (y=ymin; y<=ymax; y++) {
111: for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
112: sprintf(node,"%d",(int)base++);
113: PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
114: }
115: }
116:
117: }
118: }
119: PetscDrawSynchronizedFlush(draw);
120: PetscDrawPause(draw);
122: for (k=0-dd->s; k<dd->P+dd->s; k++) {
123: /* Go through and draw for each plane */
124: if ((k >= dd->Zs) && (k < dd->Ze)) {
125:
126: /* overlay ghost numbers, useful for error checking */
127: base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs); idx = dd->idx;
128: plane=k;
129: /* Keep z wrap around points on the dradrawg */
130: if (k<0) { plane=dd->P+k; }
131: if (k>=dd->P) { plane=k-dd->P; }
132: ymin = dd->Ys; ymax = dd->Ye;
133: xmin = (dd->M+1)*plane*dd->w;
134: xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
135: for (y=ymin; y<ymax; y++) {
136: for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
137: sprintf(node,"%d",(int)(idx[base]/dd->w));
138: ycoord = y;
139: /*Keep y wrap around points on drawing */
140: if (y<0) { ycoord = dd->N+y; }
142: if (y>=dd->N) { ycoord = y-dd->N; }
143: xcoord = x; /* Keep x wrap points on drawing */
145: if (x<xmin) { xcoord = xmax - (xmin-x); }
146: if (x>=xmax) { xcoord = xmin + (x-xmax); }
147: PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
148: base+=dd->w;
149: }
150: }
151: }
152: }
153: PetscDrawSynchronizedFlush(draw);
154: PetscDrawPause(draw);
155: } else if (isbinary){
156: DMView_DA_Binary(da,viewer);
157: #if defined(PETSC_HAVE_MATLAB_ENGINE)
158: } else if (ismatlab) {
159: DMView_DA_Matlab(da,viewer);
160: #endif
161: } else SETERRQ1(((PetscObject)da)->comm,PETSC_ERR_SUP,"Viewer type %s not supported for DMDA 1d",((PetscObject)viewer)->type_name);
162: return(0);
163: }
167: PetscErrorCode DMSetUp_DA_3D(DM da)
168: {
169: DM_DA *dd = (DM_DA*)da->data;
170: const PetscInt M = dd->M;
171: const PetscInt N = dd->N;
172: const PetscInt P = dd->P;
173: PetscInt m = dd->m;
174: PetscInt n = dd->n;
175: PetscInt p = dd->p;
176: const PetscInt dof = dd->w;
177: const PetscInt s = dd->s;
178: const DMDABoundaryType bx = dd->bx;
179: const DMDABoundaryType by = dd->by;
180: const DMDABoundaryType bz = dd->bz;
181: const DMDAStencilType stencil_type = dd->stencil_type;
182: PetscInt *lx = dd->lx;
183: PetscInt *ly = dd->ly;
184: PetscInt *lz = dd->lz;
185: MPI_Comm comm;
186: PetscMPIInt rank,size;
187: PetscInt xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
188: PetscInt Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,start,end,pm;
189: PetscInt left,right,up,down,bottom,top,i,j,k,*idx,*idx_cpy,nn;
190: const PetscInt *idx_full;
191: PetscInt n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
192: PetscInt n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
193: PetscInt *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
194: PetscInt sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
195: PetscInt sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
196: PetscInt sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
197: Vec local,global;
198: VecScatter ltog,gtol;
199: IS to,from,ltogis;
200: PetscBool twod;
201: PetscErrorCode ierr;
205: if (dof < 1) SETERRQ1(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Must have 1 or more degrees of freedom per node: %D",dof);
206: if (s < 0) SETERRQ1(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Stencil width cannot be negative: %D",s);
208: PetscObjectGetComm((PetscObject) da, &comm);
209: MPI_Comm_size(comm,&size);
210: MPI_Comm_rank(comm,&rank);
212: dd->dim = 3;
213: PetscMalloc(dof*sizeof(char*),&dd->fieldname);
214: PetscMemzero(dd->fieldname,dof*sizeof(char*));
216: if (m != PETSC_DECIDE) {
217: if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
218: else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
219: }
220: if (n != PETSC_DECIDE) {
221: if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
222: else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
223: }
224: if (p != PETSC_DECIDE) {
225: if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
226: else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
227: }
228: if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);
230: /* Partition the array among the processors */
231: if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
232: m = size/(n*p);
233: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
234: n = size/(m*p);
235: } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
236: p = size/(m*n);
237: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
238: /* try for squarish distribution */
239: m = (int)(0.5 + sqrt(((double)M)*((double)size)/((double)N*p)));
240: if (!m) m = 1;
241: while (m > 0) {
242: n = size/(m*p);
243: if (m*n*p == size) break;
244: m--;
245: }
246: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
247: if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
248: } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
249: /* try for squarish distribution */
250: m = (int)(0.5 + sqrt(((double)M)*((double)size)/((double)P*n)));
251: if (!m) m = 1;
252: while (m > 0) {
253: p = size/(m*n);
254: if (m*n*p == size) break;
255: m--;
256: }
257: if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
258: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
259: } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
260: /* try for squarish distribution */
261: n = (int)(0.5 + sqrt(((double)N)*((double)size)/((double)P*m)));
262: if (!n) n = 1;
263: while (n > 0) {
264: p = size/(m*n);
265: if (m*n*p == size) break;
266: n--;
267: }
268: if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
269: if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
270: } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
271: /* try for squarish distribution */
272: n = (PetscInt)(0.5 + pow(((double)N*N)*((double)size)/((double)P*M),(double)(1./3.)));
273: if (!n) n = 1;
274: while (n > 0) {
275: pm = size/n;
276: if (n*pm == size) break;
277: n--;
278: }
279: if (!n) n = 1;
280: m = (PetscInt)(0.5 + sqrt(((double)M)*((double)size)/((double)P*n)));
281: if (!m) m = 1;
282: while (m > 0) {
283: p = size/(m*n);
284: if (m*n*p == size) break;
285: m--;
286: }
287: if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
288: } else if (m*n*p != size) SETERRQ(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");
290: if (m*n*p != size) SETERRQ(((PetscObject)da)->comm,PETSC_ERR_PLIB,"Could not find good partition");
291: if (M < m) SETERRQ2(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
292: if (N < n) SETERRQ2(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
293: if (P < p) SETERRQ2(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);
295: /*
296: Determine locally owned region
297: [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
298: */
300: if (!lx) {
301: PetscMalloc(m*sizeof(PetscInt), &dd->lx);
302: lx = dd->lx;
303: for (i=0; i<m; i++) {
304: lx[i] = M/m + ((M % m) > (i % m));
305: }
306: }
307: x = lx[rank % m];
308: xs = 0;
309: for (i=0; i<(rank%m); i++) { xs += lx[i];}
310: if ((x < s) && ((m > 1) || (bx == DMDA_BOUNDARY_PERIODIC))) {
311: SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
312: }
314: if (!ly) {
315: PetscMalloc(n*sizeof(PetscInt), &dd->ly);
316: ly = dd->ly;
317: for (i=0; i<n; i++) {
318: ly[i] = N/n + ((N % n) > (i % n));
319: }
320: }
321: y = ly[(rank % (m*n))/m];
322: if ((y < s) && ((n > 1) || (by == DMDA_BOUNDARY_PERIODIC))) {
323: SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);
324: }
325: ys = 0;
326: for (i=0; i<(rank % (m*n))/m; i++) { ys += ly[i];}
328: if (!lz) {
329: PetscMalloc(p*sizeof(PetscInt), &dd->lz);
330: lz = dd->lz;
331: for (i=0; i<p; i++) {
332: lz[i] = P/p + ((P % p) > (i % p));
333: }
334: }
335: z = lz[rank/(m*n)];
337: /* note this is different than x- and y-, as we will handle as an important special
338: case when p=P=1 and DMDA_BOUNDARY_PERIODIC and s > z. This is to deal with 2D problems
339: in a 3D code. Additional code for this case is noted with "2d case" comments */
340: twod = PETSC_FALSE;
341: if (P == 1) {
342: twod = PETSC_TRUE;
343: } else if ((z < s) && ((p > 1) || (bz == DMDA_BOUNDARY_PERIODIC))) {
344: SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
345: }
346: zs = 0;
347: for (i=0; i<(rank/(m*n)); i++) { zs += lz[i];}
348: ye = ys + y;
349: xe = xs + x;
350: ze = zs + z;
352: /* determine ghost region */
353: /* Assume No Periodicity */
354: if (xs-s > 0) { Xs = xs - s; IXs = xs - s; } else { Xs = 0; IXs = 0; }
355: if (xe+s <= M) { Xe = xe + s; IXe = xe + s; } else { Xe = M; IXe = M; }
356: if (ys-s > 0) { Ys = ys - s; IYs = ys - s; } else { Ys = 0; IYs = 0; }
357: if (ye+s <= N) { Ye = ye + s; IYe = ye + s; } else { Ye = N; IYe = N; }
358: if (zs-s > 0) { Zs = zs - s; IZs = zs - s; } else { Zs = 0; IZs = 0; }
359: if (ze+s <= P) { Ze = ze + s; IZe = ze + s; } else { Ze = P; IZe = P; }
361: /* fix for periodicity/ghosted */
362: if (bx) { Xs = xs - s; Xe = xe + s; }
363: if (bx == DMDA_BOUNDARY_PERIODIC) { IXs = xs - s; IXe = xe + s; }
364: if (by) { Ys = ys - s; Ye = ye + s; }
365: if (by == DMDA_BOUNDARY_PERIODIC) { IYs = ys - s; IYe = ye + s; }
366: if (bz) { Zs = zs - s; Ze = ze + s; }
367: if (bz == DMDA_BOUNDARY_PERIODIC) { IZs = zs - s; IZe = ze + s; }
369: /* Resize all X parameters to reflect w */
370: s_x = s;
371: s_y = s;
372: s_z = s;
374: /* determine starting point of each processor */
375: nn = x*y*z;
376: PetscMalloc2(size+1,PetscInt,&bases,size,PetscInt,&ldims);
377: MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
378: bases[0] = 0;
379: for (i=1; i<=size; i++) {
380: bases[i] = ldims[i-1];
381: }
382: for (i=1; i<=size; i++) {
383: bases[i] += bases[i-1];
384: }
385: base = bases[rank]*dof;
387: /* allocate the base parallel and sequential vectors */
388: dd->Nlocal = x*y*z*dof;
389: VecCreateMPIWithArray(comm,dd->Nlocal,PETSC_DECIDE,0,&global);
390: VecSetBlockSize(global,dof);
391: dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
392: VecCreateSeqWithArray(PETSC_COMM_SELF,dd->nlocal,0,&local);
393: VecSetBlockSize(local,dof);
395: /* generate appropriate vector scatters */
396: /* local to global inserts non-ghost point region into global */
397: VecGetOwnershipRange(global,&start,&end);
398: ISCreateStride(comm,x*y*z*dof,start,1,&to);
400: count = x*y*z;
401: PetscMalloc(x*y*z*sizeof(PetscInt),&idx);
402: left = xs - Xs; right = left + x;
403: bottom = ys - Ys; top = bottom + y;
404: down = zs - Zs; up = down + z;
405: count = 0;
406: for (i=down; i<up; i++) {
407: for (j=bottom; j<top; j++) {
408: for (k=left; k<right; k++) {
409: idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
410: }
411: }
412: }
414: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&from);
415: VecScatterCreate(local,from,global,to,<og);
416: PetscLogObjectParent(da,ltog);
417: ISDestroy(&from);
418: ISDestroy(&to);
420: /* global to local must include ghost points within the domain,
421: but not ghost points outside the domain that aren't periodic */
422: if (stencil_type == DMDA_STENCIL_BOX) {
423: count = (IXe-IXs)*(IYe-IYs)*(IZe-IZs);
424: PetscMalloc(count*sizeof(PetscInt),&idx);
426: left = IXs - Xs; right = left + (IXe-IXs);
427: bottom = IYs - Ys; top = bottom + (IYe-IYs);
428: down = IZs - Zs; up = down + (IZe-IZs);
429: count = 0;
430: for (i=down; i<up; i++) {
431: for (j=bottom; j<top; j++) {
432: for (k=left; k<right; k++) {
433: idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
434: }
435: }
436: }
437: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
439: } else {
440: /* This is way ugly! We need to list the funny cross type region */
441: count = ((ys-IYs) + (IYe-ye))*x*z + ((xs-IXs) + (IXe-xe))*y*z + ((zs-IZs) + (IZe-ze))*x*y + x*y*z;
442: PetscMalloc(count*sizeof(PetscInt),&idx);
444: left = xs - Xs; right = left + x;
445: bottom = ys - Ys; top = bottom + y;
446: down = zs - Zs; up = down + z;
447: count = 0;
448: /* the bottom chunck */
449: for (i=(IZs-Zs); i<down; i++) {
450: for (j=bottom; j<top; j++) {
451: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
452: }
453: }
454: /* the middle piece */
455: for (i=down; i<up; i++) {
456: /* front */
457: for (j=(IYs-Ys); j<bottom; j++) {
458: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
459: }
460: /* middle */
461: for (j=bottom; j<top; j++) {
462: for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
463: }
464: /* back */
465: for (j=top; j<top+IYe-ye; j++) {
466: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
467: }
468: }
469: /* the top piece */
470: for (i=up; i<up+IZe-ze; i++) {
471: for (j=bottom; j<top; j++) {
472: for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
473: }
474: }
475: ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
476: }
478: /* determine who lies on each side of use stored in n24 n25 n26
479: n21 n22 n23
480: n18 n19 n20
482: n15 n16 n17
483: n12 n14
484: n9 n10 n11
486: n6 n7 n8
487: n3 n4 n5
488: n0 n1 n2
489: */
491: /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
492: /* Assume Nodes are Internal to the Cube */
493: n0 = rank - m*n - m - 1;
494: n1 = rank - m*n - m;
495: n2 = rank - m*n - m + 1;
496: n3 = rank - m*n -1;
497: n4 = rank - m*n;
498: n5 = rank - m*n + 1;
499: n6 = rank - m*n + m - 1;
500: n7 = rank - m*n + m;
501: n8 = rank - m*n + m + 1;
503: n9 = rank - m - 1;
504: n10 = rank - m;
505: n11 = rank - m + 1;
506: n12 = rank - 1;
507: n14 = rank + 1;
508: n15 = rank + m - 1;
509: n16 = rank + m;
510: n17 = rank + m + 1;
512: n18 = rank + m*n - m - 1;
513: n19 = rank + m*n - m;
514: n20 = rank + m*n - m + 1;
515: n21 = rank + m*n - 1;
516: n22 = rank + m*n;
517: n23 = rank + m*n + 1;
518: n24 = rank + m*n + m - 1;
519: n25 = rank + m*n + m;
520: n26 = rank + m*n + m + 1;
522: /* Assume Pieces are on Faces of Cube */
524: if (xs == 0) { /* First assume not corner or edge */
525: n0 = rank -1 - (m*n);
526: n3 = rank + m -1 - (m*n);
527: n6 = rank + 2*m -1 - (m*n);
528: n9 = rank -1;
529: n12 = rank + m -1;
530: n15 = rank + 2*m -1;
531: n18 = rank -1 + (m*n);
532: n21 = rank + m -1 + (m*n);
533: n24 = rank + 2*m -1 + (m*n);
534: }
536: if (xe == M) { /* First assume not corner or edge */
537: n2 = rank -2*m +1 - (m*n);
538: n5 = rank - m +1 - (m*n);
539: n8 = rank +1 - (m*n);
540: n11 = rank -2*m +1;
541: n14 = rank - m +1;
542: n17 = rank +1;
543: n20 = rank -2*m +1 + (m*n);
544: n23 = rank - m +1 + (m*n);
545: n26 = rank +1 + (m*n);
546: }
548: if (ys==0) { /* First assume not corner or edge */
549: n0 = rank + m * (n-1) -1 - (m*n);
550: n1 = rank + m * (n-1) - (m*n);
551: n2 = rank + m * (n-1) +1 - (m*n);
552: n9 = rank + m * (n-1) -1;
553: n10 = rank + m * (n-1);
554: n11 = rank + m * (n-1) +1;
555: n18 = rank + m * (n-1) -1 + (m*n);
556: n19 = rank + m * (n-1) + (m*n);
557: n20 = rank + m * (n-1) +1 + (m*n);
558: }
560: if (ye == N) { /* First assume not corner or edge */
561: n6 = rank - m * (n-1) -1 - (m*n);
562: n7 = rank - m * (n-1) - (m*n);
563: n8 = rank - m * (n-1) +1 - (m*n);
564: n15 = rank - m * (n-1) -1;
565: n16 = rank - m * (n-1);
566: n17 = rank - m * (n-1) +1;
567: n24 = rank - m * (n-1) -1 + (m*n);
568: n25 = rank - m * (n-1) + (m*n);
569: n26 = rank - m * (n-1) +1 + (m*n);
570: }
571:
572: if (zs == 0) { /* First assume not corner or edge */
573: n0 = size - (m*n) + rank - m - 1;
574: n1 = size - (m*n) + rank - m;
575: n2 = size - (m*n) + rank - m + 1;
576: n3 = size - (m*n) + rank - 1;
577: n4 = size - (m*n) + rank;
578: n5 = size - (m*n) + rank + 1;
579: n6 = size - (m*n) + rank + m - 1;
580: n7 = size - (m*n) + rank + m ;
581: n8 = size - (m*n) + rank + m + 1;
582: }
584: if (ze == P) { /* First assume not corner or edge */
585: n18 = (m*n) - (size-rank) - m - 1;
586: n19 = (m*n) - (size-rank) - m;
587: n20 = (m*n) - (size-rank) - m + 1;
588: n21 = (m*n) - (size-rank) - 1;
589: n22 = (m*n) - (size-rank);
590: n23 = (m*n) - (size-rank) + 1;
591: n24 = (m*n) - (size-rank) + m - 1;
592: n25 = (m*n) - (size-rank) + m;
593: n26 = (m*n) - (size-rank) + m + 1;
594: }
596: if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
597: n0 = size - m*n + rank + m-1 - m;
598: n3 = size - m*n + rank + m-1;
599: n6 = size - m*n + rank + m-1 + m;
600: }
601:
602: if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
603: n18 = m*n - (size - rank) + m-1 - m;
604: n21 = m*n - (size - rank) + m-1;
605: n24 = m*n - (size - rank) + m-1 + m;
606: }
608: if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
609: n0 = rank + m*n -1 - m*n;
610: n9 = rank + m*n -1;
611: n18 = rank + m*n -1 + m*n;
612: }
614: if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
615: n6 = rank - m*(n-1) + m-1 - m*n;
616: n15 = rank - m*(n-1) + m-1;
617: n24 = rank - m*(n-1) + m-1 + m*n;
618: }
620: if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
621: n2 = size - (m*n-rank) - (m-1) - m;
622: n5 = size - (m*n-rank) - (m-1);
623: n8 = size - (m*n-rank) - (m-1) + m;
624: }
626: if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
627: n20 = m*n - (size - rank) - (m-1) - m;
628: n23 = m*n - (size - rank) - (m-1);
629: n26 = m*n - (size - rank) - (m-1) + m;
630: }
632: if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
633: n2 = rank + m*(n-1) - (m-1) - m*n;
634: n11 = rank + m*(n-1) - (m-1);
635: n20 = rank + m*(n-1) - (m-1) + m*n;
636: }
638: if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
639: n8 = rank - m*n +1 - m*n;
640: n17 = rank - m*n +1;
641: n26 = rank - m*n +1 + m*n;
642: }
644: if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
645: n0 = size - m + rank -1;
646: n1 = size - m + rank;
647: n2 = size - m + rank +1;
648: }
650: if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
651: n18 = m*n - (size - rank) + m*(n-1) -1;
652: n19 = m*n - (size - rank) + m*(n-1);
653: n20 = m*n - (size - rank) + m*(n-1) +1;
654: }
656: if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
657: n6 = size - (m*n-rank) - m * (n-1) -1;
658: n7 = size - (m*n-rank) - m * (n-1);
659: n8 = size - (m*n-rank) - m * (n-1) +1;
660: }
662: if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
663: n24 = rank - (size-m) -1;
664: n25 = rank - (size-m);
665: n26 = rank - (size-m) +1;
666: }
668: /* Check for Corners */
669: if ((xs==0) && (ys==0) && (zs==0)) { n0 = size -1;}
670: if ((xs==0) && (ys==0) && (ze==P)) { n18 = m*n-1;}
671: if ((xs==0) && (ye==N) && (zs==0)) { n6 = (size-1)-m*(n-1);}
672: if ((xs==0) && (ye==N) && (ze==P)) { n24 = m-1;}
673: if ((xe==M) && (ys==0) && (zs==0)) { n2 = size-m;}
674: if ((xe==M) && (ys==0) && (ze==P)) { n20 = m*n-m;}
675: if ((xe==M) && (ye==N) && (zs==0)) { n8 = size-m*n;}
676: if ((xe==M) && (ye==N) && (ze==P)) { n26 = 0;}
678: /* Check for when not X,Y, and Z Periodic */
680: /* If not X periodic */
681: if (bx != DMDA_BOUNDARY_PERIODIC) {
682: if (xs==0) {n0 = n3 = n6 = n9 = n12 = n15 = n18 = n21 = n24 = -2;}
683: if (xe==M) {n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
684: }
686: /* If not Y periodic */
687: if (by != DMDA_BOUNDARY_PERIODIC) {
688: if (ys==0) {n0 = n1 = n2 = n9 = n10 = n11 = n18 = n19 = n20 = -2;}
689: if (ye==N) {n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
690: }
692: /* If not Z periodic */
693: if (bz != DMDA_BOUNDARY_PERIODIC) {
694: if (zs==0) {n0 = n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8 = -2;}
695: if (ze==P) {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
696: }
698: PetscMalloc(27*sizeof(PetscInt),&dd->neighbors);
699: dd->neighbors[0] = n0;
700: dd->neighbors[1] = n1;
701: dd->neighbors[2] = n2;
702: dd->neighbors[3] = n3;
703: dd->neighbors[4] = n4;
704: dd->neighbors[5] = n5;
705: dd->neighbors[6] = n6;
706: dd->neighbors[7] = n7;
707: dd->neighbors[8] = n8;
708: dd->neighbors[9] = n9;
709: dd->neighbors[10] = n10;
710: dd->neighbors[11] = n11;
711: dd->neighbors[12] = n12;
712: dd->neighbors[13] = rank;
713: dd->neighbors[14] = n14;
714: dd->neighbors[15] = n15;
715: dd->neighbors[16] = n16;
716: dd->neighbors[17] = n17;
717: dd->neighbors[18] = n18;
718: dd->neighbors[19] = n19;
719: dd->neighbors[20] = n20;
720: dd->neighbors[21] = n21;
721: dd->neighbors[22] = n22;
722: dd->neighbors[23] = n23;
723: dd->neighbors[24] = n24;
724: dd->neighbors[25] = n25;
725: dd->neighbors[26] = n26;
727: /* If star stencil then delete the corner neighbors */
728: if (stencil_type == DMDA_STENCIL_STAR) {
729: /* save information about corner neighbors */
730: sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
731: sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
732: sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
733: sn26 = n26;
734: n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 =
735: n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
736: }
739: PetscMalloc((Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt),&idx);
740: PetscLogObjectMemory(da,(Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt));
742: nn = 0;
743: /* Bottom Level */
744: for (k=0; k<s_z; k++) {
745: for (i=1; i<=s_y; i++) {
746: if (n0 >= 0) { /* left below */
747: x_t = lx[n0 % m];
748: y_t = ly[(n0 % (m*n))/m];
749: z_t = lz[n0 / (m*n)];
750: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
751: if (twod && (s_t < 0)) {s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x;} /* 2D case */
752: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
753: }
754: if (n1 >= 0) { /* directly below */
755: x_t = x;
756: y_t = ly[(n1 % (m*n))/m];
757: z_t = lz[n1 / (m*n)];
758: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
759: if (twod && (s_t < 0)) {s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t;} /* 2D case */
760: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
761: }
762: if (n2 >= 0) { /* right below */
763: x_t = lx[n2 % m];
764: y_t = ly[(n2 % (m*n))/m];
765: z_t = lz[n2 / (m*n)];
766: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
767: if (twod && (s_t < 0)) {s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t;} /* 2D case */
768: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
769: }
770: }
772: for (i=0; i<y; i++) {
773: if (n3 >= 0) { /* directly left */
774: x_t = lx[n3 % m];
775: y_t = y;
776: z_t = lz[n3 / (m*n)];
777: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
778: if (twod && (s_t < 0)) {s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
779: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
780: }
782: if (n4 >= 0) { /* middle */
783: x_t = x;
784: y_t = y;
785: z_t = lz[n4 / (m*n)];
786: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
787: if (twod && (s_t < 0)) {s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
788: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
789: }
791: if (n5 >= 0) { /* directly right */
792: x_t = lx[n5 % m];
793: y_t = y;
794: z_t = lz[n5 / (m*n)];
795: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
796: if (twod && (s_t < 0)) {s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
797: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
798: }
799: }
801: for (i=1; i<=s_y; i++) {
802: if (n6 >= 0) { /* left above */
803: x_t = lx[n6 % m];
804: y_t = ly[(n6 % (m*n))/m];
805: z_t = lz[n6 / (m*n)];
806: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
807: if (twod && (s_t < 0)) {s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
808: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
809: }
810: if (n7 >= 0) { /* directly above */
811: x_t = x;
812: y_t = ly[(n7 % (m*n))/m];
813: z_t = lz[n7 / (m*n)];
814: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
815: if (twod && (s_t < 0)) {s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
816: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
817: }
818: if (n8 >= 0) { /* right above */
819: x_t = lx[n8 % m];
820: y_t = ly[(n8 % (m*n))/m];
821: z_t = lz[n8 / (m*n)];
822: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
823: if (twod && (s_t < 0)) {s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
824: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
825: }
826: }
827: }
829: /* Middle Level */
830: for (k=0; k<z; k++) {
831: for (i=1; i<=s_y; i++) {
832: if (n9 >= 0) { /* left below */
833: x_t = lx[n9 % m];
834: y_t = ly[(n9 % (m*n))/m];
835: /* z_t = z; */
836: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
837: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
838: }
839: if (n10 >= 0) { /* directly below */
840: x_t = x;
841: y_t = ly[(n10 % (m*n))/m];
842: /* z_t = z; */
843: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
844: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
845: }
846: if (n11 >= 0) { /* right below */
847: x_t = lx[n11 % m];
848: y_t = ly[(n11 % (m*n))/m];
849: /* z_t = z; */
850: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
851: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
852: }
853: }
855: for (i=0; i<y; i++) {
856: if (n12 >= 0) { /* directly left */
857: x_t = lx[n12 % m];
858: y_t = y;
859: /* z_t = z; */
860: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
861: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
862: }
864: /* Interior */
865: s_t = bases[rank] + i*x + k*x*y;
866: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
868: if (n14 >= 0) { /* directly right */
869: x_t = lx[n14 % m];
870: y_t = y;
871: /* z_t = z; */
872: s_t = bases[n14] + i*x_t + k*x_t*y_t;
873: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
874: }
875: }
877: for (i=1; i<=s_y; i++) {
878: if (n15 >= 0) { /* left above */
879: x_t = lx[n15 % m];
880: y_t = ly[(n15 % (m*n))/m];
881: /* z_t = z; */
882: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
883: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
884: }
885: if (n16 >= 0) { /* directly above */
886: x_t = x;
887: y_t = ly[(n16 % (m*n))/m];
888: /* z_t = z; */
889: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
890: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
891: }
892: if (n17 >= 0) { /* right above */
893: x_t = lx[n17 % m];
894: y_t = ly[(n17 % (m*n))/m];
895: /* z_t = z; */
896: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
897: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
898: }
899: }
900: }
901:
902: /* Upper Level */
903: for (k=0; k<s_z; k++) {
904: for (i=1; i<=s_y; i++) {
905: if (n18 >= 0) { /* left below */
906: x_t = lx[n18 % m];
907: y_t = ly[(n18 % (m*n))/m];
908: /* z_t = lz[n18 / (m*n)]; */
909: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
910: if (twod && (s_t >= M*N*P)) {s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t;} /* 2d case */
911: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
912: }
913: if (n19 >= 0) { /* directly below */
914: x_t = x;
915: y_t = ly[(n19 % (m*n))/m];
916: /* z_t = lz[n19 / (m*n)]; */
917: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
918: if (twod && (s_t >= M*N*P)) {s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t;} /* 2d case */
919: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
920: }
921: if (n20 >= 0) { /* right below */
922: x_t = lx[n20 % m];
923: y_t = ly[(n20 % (m*n))/m];
924: /* z_t = lz[n20 / (m*n)]; */
925: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
926: if (twod && (s_t >= M*N*P)) {s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t;} /* 2d case */
927: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
928: }
929: }
931: for (i=0; i<y; i++) {
932: if (n21 >= 0) { /* directly left */
933: x_t = lx[n21 % m];
934: y_t = y;
935: /* z_t = lz[n21 / (m*n)]; */
936: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
937: if (twod && (s_t >= M*N*P)) {s_t = bases[n21] + (i+1)*x_t - s_x;} /* 2d case */
938: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
939: }
941: if (n22 >= 0) { /* middle */
942: x_t = x;
943: y_t = y;
944: /* z_t = lz[n22 / (m*n)]; */
945: s_t = bases[n22] + i*x_t + k*x_t*y_t;
946: if (twod && (s_t >= M*N*P)) {s_t = bases[n22] + i*x_t;} /* 2d case */
947: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
948: }
950: if (n23 >= 0) { /* directly right */
951: x_t = lx[n23 % m];
952: y_t = y;
953: /* z_t = lz[n23 / (m*n)]; */
954: s_t = bases[n23] + i*x_t + k*x_t*y_t;
955: if (twod && (s_t >= M*N*P)) {s_t = bases[n23] + i*x_t;} /* 2d case */
956: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
957: }
958: }
960: for (i=1; i<=s_y; i++) {
961: if (n24 >= 0) { /* left above */
962: x_t = lx[n24 % m];
963: y_t = ly[(n24 % (m*n))/m];
964: /* z_t = lz[n24 / (m*n)]; */
965: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
966: if (twod && (s_t >= M*N*P)) {s_t = bases[n24] + i*x_t - s_x;} /* 2d case */
967: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
968: }
969: if (n25 >= 0) { /* directly above */
970: x_t = x;
971: y_t = ly[(n25 % (m*n))/m];
972: /* z_t = lz[n25 / (m*n)]; */
973: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
974: if (twod && (s_t >= M*N*P)) {s_t = bases[n25] + (i-1)*x_t;} /* 2d case */
975: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
976: }
977: if (n26 >= 0) { /* right above */
978: x_t = lx[n26 % m];
979: y_t = ly[(n26 % (m*n))/m];
980: /* z_t = lz[n26 / (m*n)]; */
981: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
982: if (twod && (s_t >= M*N*P)) {s_t = bases[n26] + (i-1)*x_t;} /* 2d case */
983: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
984: }
985: }
986: }
988: ISCreateBlock(comm,dof,nn,idx,PETSC_COPY_VALUES,&from);
989: VecScatterCreate(global,from,local,to,>ol);
990: PetscLogObjectParent(da,gtol);
991: ISDestroy(&to);
992: ISDestroy(&from);
994: if (stencil_type == DMDA_STENCIL_STAR) {
995: n0 = sn0; n1 = sn1; n2 = sn2; n3 = sn3; n5 = sn5; n6 = sn6; n7 = sn7;
996: n8 = sn8; n9 = sn9; n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
997: n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
998: n26 = sn26;
999: }
1001: if ((stencil_type == DMDA_STENCIL_STAR) ||
1002: (bx != DMDA_BOUNDARY_PERIODIC && bx) ||
1003: (by != DMDA_BOUNDARY_PERIODIC && by) ||
1004: (bz != DMDA_BOUNDARY_PERIODIC && bz)) {
1005: /*
1006: Recompute the local to global mappings, this time keeping the
1007: information about the cross corner processor numbers.
1008: */
1009: nn = 0;
1010: /* Bottom Level */
1011: for (k=0; k<s_z; k++) {
1012: for (i=1; i<=s_y; i++) {
1013: if (n0 >= 0) { /* left below */
1014: x_t = lx[n0 % m];
1015: y_t = ly[(n0 % (m*n))/m];
1016: z_t = lz[n0 / (m*n)];
1017: s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1018: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1019: } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1020: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1021: }
1022: if (n1 >= 0) { /* directly below */
1023: x_t = x;
1024: y_t = ly[(n1 % (m*n))/m];
1025: z_t = lz[n1 / (m*n)];
1026: s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1027: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1028: } else if (Ys-ys < 0 && Zs-zs < 0) {
1029: for (j=0; j<x; j++) { idx[nn++] = -1;}
1030: }
1031: if (n2 >= 0) { /* right below */
1032: x_t = lx[n2 % m];
1033: y_t = ly[(n2 % (m*n))/m];
1034: z_t = lz[n2 / (m*n)];
1035: s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1036: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1037: } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1038: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1039: }
1040: }
1042: for (i=0; i<y; i++) {
1043: if (n3 >= 0) { /* directly left */
1044: x_t = lx[n3 % m];
1045: y_t = y;
1046: z_t = lz[n3 / (m*n)];
1047: s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1048: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1049: } else if (Xs-xs < 0 && Zs-zs < 0) {
1050: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1051: }
1053: if (n4 >= 0) { /* middle */
1054: x_t = x;
1055: y_t = y;
1056: z_t = lz[n4 / (m*n)];
1057: s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1058: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1059: } else if (Zs-zs < 0) {
1060: for (j=0; j<x; j++) { idx[nn++] = -1;}
1061: }
1063: if (n5 >= 0) { /* directly right */
1064: x_t = lx[n5 % m];
1065: y_t = y;
1066: z_t = lz[n5 / (m*n)];
1067: s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1068: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1069: } else if (xe-Xe < 0 && Zs-zs < 0) {
1070: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1071: }
1072: }
1074: for (i=1; i<=s_y; i++) {
1075: if (n6 >= 0) { /* left above */
1076: x_t = lx[n6 % m];
1077: y_t = ly[(n6 % (m*n))/m];
1078: z_t = lz[n6 / (m*n)];
1079: s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1080: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1081: } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1082: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1083: }
1084: if (n7 >= 0) { /* directly above */
1085: x_t = x;
1086: y_t = ly[(n7 % (m*n))/m];
1087: z_t = lz[n7 / (m*n)];
1088: s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1089: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1090: } else if (ye-Ye < 0 && Zs-zs < 0) {
1091: for (j=0; j<x; j++) { idx[nn++] = -1;}
1092: }
1093: if (n8 >= 0) { /* right above */
1094: x_t = lx[n8 % m];
1095: y_t = ly[(n8 % (m*n))/m];
1096: z_t = lz[n8 / (m*n)];
1097: s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1098: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1099: } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1100: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1101: }
1102: }
1103: }
1105: /* Middle Level */
1106: for (k=0; k<z; k++) {
1107: for (i=1; i<=s_y; i++) {
1108: if (n9 >= 0) { /* left below */
1109: x_t = lx[n9 % m];
1110: y_t = ly[(n9 % (m*n))/m];
1111: /* z_t = z; */
1112: s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1113: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1114: } else if (Xs-xs < 0 && Ys-ys < 0) {
1115: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1116: }
1117: if (n10 >= 0) { /* directly below */
1118: x_t = x;
1119: y_t = ly[(n10 % (m*n))/m];
1120: /* z_t = z; */
1121: s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1122: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1123: } else if (Ys-ys < 0) {
1124: for (j=0; j<x; j++) { idx[nn++] = -1;}
1125: }
1126: if (n11 >= 0) { /* right below */
1127: x_t = lx[n11 % m];
1128: y_t = ly[(n11 % (m*n))/m];
1129: /* z_t = z; */
1130: s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1131: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1132: } else if (xe-Xe < 0 && Ys-ys < 0) {
1133: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1134: }
1135: }
1137: for (i=0; i<y; i++) {
1138: if (n12 >= 0) { /* directly left */
1139: x_t = lx[n12 % m];
1140: y_t = y;
1141: /* z_t = z; */
1142: s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1143: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1144: } else if (Xs-xs < 0) {
1145: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1146: }
1148: /* Interior */
1149: s_t = bases[rank] + i*x + k*x*y;
1150: for (j=0; j<x; j++) { idx[nn++] = s_t++;}
1152: if (n14 >= 0) { /* directly right */
1153: x_t = lx[n14 % m];
1154: y_t = y;
1155: /* z_t = z; */
1156: s_t = bases[n14] + i*x_t + k*x_t*y_t;
1157: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1158: } else if (xe-Xe < 0) {
1159: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1160: }
1161: }
1163: for (i=1; i<=s_y; i++) {
1164: if (n15 >= 0) { /* left above */
1165: x_t = lx[n15 % m];
1166: y_t = ly[(n15 % (m*n))/m];
1167: /* z_t = z; */
1168: s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1169: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1170: } else if (Xs-xs < 0 && ye-Ye < 0) {
1171: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1172: }
1173: if (n16 >= 0) { /* directly above */
1174: x_t = x;
1175: y_t = ly[(n16 % (m*n))/m];
1176: /* z_t = z; */
1177: s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1178: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1179: } else if (ye-Ye < 0) {
1180: for (j=0; j<x; j++) { idx[nn++] = -1;}
1181: }
1182: if (n17 >= 0) { /* right above */
1183: x_t = lx[n17 % m];
1184: y_t = ly[(n17 % (m*n))/m];
1185: /* z_t = z; */
1186: s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1187: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1188: } else if (xe-Xe < 0 && ye-Ye < 0) {
1189: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1190: }
1191: }
1192: }
1193:
1194: /* Upper Level */
1195: for (k=0; k<s_z; k++) {
1196: for (i=1; i<=s_y; i++) {
1197: if (n18 >= 0) { /* left below */
1198: x_t = lx[n18 % m];
1199: y_t = ly[(n18 % (m*n))/m];
1200: /* z_t = lz[n18 / (m*n)]; */
1201: s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1202: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1203: } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1204: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1205: }
1206: if (n19 >= 0) { /* directly below */
1207: x_t = x;
1208: y_t = ly[(n19 % (m*n))/m];
1209: /* z_t = lz[n19 / (m*n)]; */
1210: s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1211: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1212: } else if (Ys-ys < 0 && ze-Ze < 0) {
1213: for (j=0; j<x; j++) { idx[nn++] = -1;}
1214: }
1215: if (n20 >= 0) { /* right below */
1216: x_t = lx[n20 % m];
1217: y_t = ly[(n20 % (m*n))/m];
1218: /* z_t = lz[n20 / (m*n)]; */
1219: s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1220: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1221: } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1222: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1223: }
1224: }
1226: for (i=0; i<y; i++) {
1227: if (n21 >= 0) { /* directly left */
1228: x_t = lx[n21 % m];
1229: y_t = y;
1230: /* z_t = lz[n21 / (m*n)]; */
1231: s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1232: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1233: } else if (Xs-xs < 0 && ze-Ze < 0) {
1234: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1235: }
1237: if (n22 >= 0) { /* middle */
1238: x_t = x;
1239: y_t = y;
1240: /* z_t = lz[n22 / (m*n)]; */
1241: s_t = bases[n22] + i*x_t + k*x_t*y_t;
1242: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1243: } else if (ze-Ze < 0) {
1244: for (j=0; j<x; j++) { idx[nn++] = -1;}
1245: }
1247: if (n23 >= 0) { /* directly right */
1248: x_t = lx[n23 % m];
1249: y_t = y;
1250: /* z_t = lz[n23 / (m*n)]; */
1251: s_t = bases[n23] + i*x_t + k*x_t*y_t;
1252: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1253: } else if (xe-Xe < 0 && ze-Ze < 0) {
1254: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1255: }
1256: }
1258: for (i=1; i<=s_y; i++) {
1259: if (n24 >= 0) { /* left above */
1260: x_t = lx[n24 % m];
1261: y_t = ly[(n24 % (m*n))/m];
1262: /* z_t = lz[n24 / (m*n)]; */
1263: s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1264: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1265: } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1266: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1267: }
1268: if (n25 >= 0) { /* directly above */
1269: x_t = x;
1270: y_t = ly[(n25 % (m*n))/m];
1271: /* z_t = lz[n25 / (m*n)]; */
1272: s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1273: for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1274: } else if (ye-Ye < 0 && ze-Ze < 0) {
1275: for (j=0; j<x; j++) { idx[nn++] = -1;}
1276: }
1277: if (n26 >= 0) { /* right above */
1278: x_t = lx[n26 % m];
1279: y_t = ly[(n26 % (m*n))/m];
1280: /* z_t = lz[n26 / (m*n)]; */
1281: s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1282: for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1283: } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1284: for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1285: }
1286: }
1287: }
1288: }
1289: /*
1290: Set the local to global ordering in the global vector, this allows use
1291: of VecSetValuesLocal().
1292: */
1293: ISCreateBlock(comm,dof,nn,idx,PETSC_OWN_POINTER,<ogis);
1294: PetscMalloc(nn*dof*sizeof(PetscInt),&idx_cpy);
1295: PetscLogObjectMemory(da,nn*dof*sizeof(PetscInt));
1296: ISGetIndices(ltogis, &idx_full);
1297: PetscMemcpy(idx_cpy,idx_full,nn*dof*sizeof(PetscInt));
1298: ISRestoreIndices(ltogis, &idx_full);
1299: ISLocalToGlobalMappingCreateIS(ltogis,&da->ltogmap);
1300: PetscLogObjectParent(da,da->ltogmap);
1301: ISDestroy(<ogis);
1302: ISLocalToGlobalMappingBlock(da->ltogmap,dd->w,&da->ltogmapb);
1303: PetscLogObjectParent(da,da->ltogmap);
1305: PetscFree2(bases,ldims);
1306: dd->m = m; dd->n = n; dd->p = p;
1307: /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1308: dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1309: dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;
1311: VecDestroy(&local);
1312: VecDestroy(&global);
1314: dd->gtol = gtol;
1315: dd->ltog = ltog;
1316: dd->idx = idx_cpy;
1317: dd->Nl = nn*dof;
1318: dd->base = base;
1319: da->ops->view = DMView_DA_3d;
1320: dd->ltol = PETSC_NULL;
1321: dd->ao = PETSC_NULL;
1323: return(0);
1324: }
1329: /*@C
1330: DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1331: regular array data that is distributed across some processors.
1333: Collective on MPI_Comm
1335: Input Parameters:
1336: + comm - MPI communicator
1337: . bx,by,bz - type of ghost nodes the array have.
1338: Use one of DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED, DMDA_BOUNDARY_PERIODIC.
1339: . stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1340: . M,N,P - global dimension in each direction of the array (use -M, -N, and or -P to indicate that it may be set to a different value
1341: from the command line with -da_grid_x <M> -da_grid_y <N> -da_grid_z <P>)
1342: . m,n,p - corresponding number of processors in each dimension
1343: (or PETSC_DECIDE to have calculated)
1344: . dof - number of degrees of freedom per node
1345: . lx, ly, lz - arrays containing the number of nodes in each cell along
1346: the x, y, and z coordinates, or PETSC_NULL. If non-null, these
1347: must be of length as m,n,p and the corresponding
1348: m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1349: the ly[] must N, sum of the lz[] must be P
1350: - s - stencil width
1352: Output Parameter:
1353: . da - the resulting distributed array object
1355: Options Database Key:
1356: + -da_view - Calls DMView() at the conclusion of DMDACreate3d()
1357: . -da_grid_x <nx> - number of grid points in x direction, if M < 0
1358: . -da_grid_y <ny> - number of grid points in y direction, if N < 0
1359: . -da_grid_z <nz> - number of grid points in z direction, if P < 0
1360: . -da_processors_x <MX> - number of processors in x direction
1361: . -da_processors_y <MY> - number of processors in y direction
1362: . -da_processors_z <MZ> - number of processors in z direction
1363: . -da_refine_x <rx> - refinement ratio in x direction
1364: . -da_refine_y <ry> - refinement ratio in y direction
1365: . -da_refine_z <rz>- refinement ratio in z directio
1366: - -da_refine <n> - refine the DMDA n times before creating it, , if M, N, or P < 0
1368: Level: beginner
1370: Notes:
1371: The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1372: standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1373: the standard 27-pt stencil.
1375: The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1376: The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1377: and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.
1379: .keywords: distributed array, create, three-dimensional
1381: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1382: DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMDALocalToLocalBegin(), DMDALocalToLocalEnd(), DMDASetRefinementFactor(),
1383: DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()
1385: @*/
1386: PetscErrorCode DMDACreate3d(MPI_Comm comm,DMDABoundaryType bx,DMDABoundaryType by,DMDABoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1387: PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1388: {
1392: DMDACreate(comm, da);
1393: DMDASetDim(*da, 3);
1394: DMDASetSizes(*da, M, N, P);
1395: DMDASetNumProcs(*da, m, n, p);
1396: DMDASetBoundaryType(*da, bx, by, bz);
1397: DMDASetDof(*da, dof);
1398: DMDASetStencilType(*da, stencil_type);
1399: DMDASetStencilWidth(*da, s);
1400: DMDASetOwnershipRanges(*da, lx, ly, lz);
1401: /* This violates the behavior for other classes, but right now users expect negative dimensions to be handled this way */
1402: DMSetFromOptions(*da);
1403: DMSetUp(*da);
1404: DMView_DA_Private(*da);
1405: return(0);
1406: }