Actual source code: bjacobi.c
2: /*
3: Defines a block Jacobi preconditioner.
4: */
5: #include <private/pcimpl.h> /*I "petscpc.h" I*/
6: #include <../src/ksp/pc/impls/bjacobi/bjacobi.h>
8: static PetscErrorCode PCSetUp_BJacobi_Singleblock(PC,Mat,Mat);
9: static PetscErrorCode PCSetUp_BJacobi_Multiblock(PC,Mat,Mat);
10: static PetscErrorCode PCSetUp_BJacobi_Multiproc(PC);
14: static PetscErrorCode PCSetUp_BJacobi(PC pc)
15: {
16: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
17: Mat mat = pc->mat,pmat = pc->pmat;
18: PetscErrorCode ierr,(*f)(Mat,Mat*);
19: PetscInt N,M,start,i,sum,end;
20: PetscInt bs,i_start=-1,i_end=-1;
21: PetscMPIInt rank,size;
22: const char *pprefix,*mprefix;
25: MPI_Comm_rank(((PetscObject)pc)->comm,&rank);
26: MPI_Comm_size(((PetscObject)pc)->comm,&size);
27: MatGetLocalSize(pc->pmat,&M,&N);
28: MatGetBlockSize(pc->pmat,&bs);
30: if (jac->n > 0 && jac->n < size){
31: PCSetUp_BJacobi_Multiproc(pc);
32: return(0);
33: }
35: /* --------------------------------------------------------------------------
36: Determines the number of blocks assigned to each processor
37: -----------------------------------------------------------------------------*/
39: /* local block count given */
40: if (jac->n_local > 0 && jac->n < 0) {
41: MPI_Allreduce(&jac->n_local,&jac->n,1,MPIU_INT,MPI_SUM,((PetscObject)pc)->comm);
42: if (jac->l_lens) { /* check that user set these correctly */
43: sum = 0;
44: for (i=0; i<jac->n_local; i++) {
45: if (jac->l_lens[i]/bs*bs !=jac->l_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat blocksize doesn't match block Jacobi layout");
46: sum += jac->l_lens[i];
47: }
48: if (sum != M) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Local lens set incorrectly");
49: } else {
50: PetscMalloc(jac->n_local*sizeof(PetscInt),&jac->l_lens);
51: for (i=0; i<jac->n_local; i++) {
52: jac->l_lens[i] = bs*((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i));
53: }
54: }
55: } else if (jac->n > 0 && jac->n_local < 0) { /* global block count given */
56: /* global blocks given: determine which ones are local */
57: if (jac->g_lens) {
58: /* check if the g_lens is has valid entries */
59: for (i=0; i<jac->n; i++) {
60: if (!jac->g_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Zero block not allowed");
61: if (jac->g_lens[i]/bs*bs != jac->g_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Mat blocksize doesn't match block Jacobi layout");
62: }
63: if (size == 1) {
64: jac->n_local = jac->n;
65: PetscMalloc(jac->n_local*sizeof(PetscInt),&jac->l_lens);
66: PetscMemcpy(jac->l_lens,jac->g_lens,jac->n_local*sizeof(PetscInt));
67: /* check that user set these correctly */
68: sum = 0;
69: for (i=0; i<jac->n_local; i++) sum += jac->l_lens[i];
70: if (sum != M) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Global lens set incorrectly");
71: } else {
72: MatGetOwnershipRange(pc->pmat,&start,&end);
73: /* loop over blocks determing first one owned by me */
74: sum = 0;
75: for (i=0; i<jac->n+1; i++) {
76: if (sum == start) { i_start = i; goto start_1;}
77: if (i < jac->n) sum += jac->g_lens[i];
78: }
79: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Block sizes used in PCBJacobiSetTotalBlocks()\nare not compatible with parallel matrix layout");
80: start_1:
81: for (i=i_start; i<jac->n+1; i++) {
82: if (sum == end) { i_end = i; goto end_1; }
83: if (i < jac->n) sum += jac->g_lens[i];
84: }
85: SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Block sizes used in PCBJacobiSetTotalBlocks()\nare not compatible with parallel matrix layout");
86: end_1:
87: jac->n_local = i_end - i_start;
88: PetscMalloc(jac->n_local*sizeof(PetscInt),&jac->l_lens);
89: PetscMemcpy(jac->l_lens,jac->g_lens+i_start,jac->n_local*sizeof(PetscInt));
90: }
91: } else { /* no global blocks given, determine then using default layout */
92: jac->n_local = jac->n/size + ((jac->n % size) > rank);
93: PetscMalloc(jac->n_local*sizeof(PetscInt),&jac->l_lens);
94: for (i=0; i<jac->n_local; i++) {
95: jac->l_lens[i] = ((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i))*bs;
96: if (!jac->l_lens[i]) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_SIZ,"Too many blocks given");
97: }
98: }
99: } else if (jac->n < 0 && jac->n_local < 0) { /* no blocks given */
100: jac->n = size;
101: jac->n_local = 1;
102: PetscMalloc(sizeof(PetscInt),&jac->l_lens);
103: jac->l_lens[0] = M;
104: } else { /* jac->n > 0 && jac->n_local > 0 */
105: if (!jac->l_lens) {
106: PetscMalloc(jac->n_local*sizeof(PetscInt),&jac->l_lens);
107: for (i=0; i<jac->n_local; i++) {
108: jac->l_lens[i] = bs*((M/bs)/jac->n_local + (((M/bs) % jac->n_local) > i));
109: }
110: }
111: }
112: if (jac->n_local < 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of blocks is less than number of processors");
114: /* -------------------------
115: Determines mat and pmat
116: ---------------------------*/
117: PetscObjectQueryFunction((PetscObject)pc->mat,"MatGetDiagonalBlock_C",(void (**)(void))&f);
118: if (!f && size == 1) {
119: mat = pc->mat;
120: pmat = pc->pmat;
121: } else {
122: if (jac->use_true_local) {
123: /* use block from true matrix, not preconditioner matrix for local MatMult() */
124: MatGetDiagonalBlock(pc->mat,&mat);
125: /* make submatrix have same prefix as entire matrix */
126: PetscObjectGetOptionsPrefix((PetscObject)pc->mat,&mprefix);
127: PetscObjectSetOptionsPrefix((PetscObject)mat,mprefix);
128: }
129: if (pc->pmat != pc->mat || !jac->use_true_local) {
130: MatGetDiagonalBlock(pc->pmat,&pmat);
131: /* make submatrix have same prefix as entire matrix */
132: PetscObjectGetOptionsPrefix((PetscObject)pc->pmat,&pprefix);
133: PetscObjectSetOptionsPrefix((PetscObject)pmat,pprefix);
134: } else {
135: pmat = mat;
136: }
137: }
139: /* ------
140: Setup code depends on the number of blocks
141: */
142: if (jac->n_local == 0) {
143: PCSetUp_BJacobi_Singleblock(pc,mat,pmat);
144: } else {
145: PCSetUp_BJacobi_Multiblock(pc,mat,pmat);
146: }
147: return(0);
148: }
150: /* Default destroy, if it has never been setup */
153: static PetscErrorCode PCDestroy_BJacobi(PC pc)
154: {
155: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
159: PetscFree(jac->g_lens);
160: PetscFree(jac->l_lens);
161: PetscFree(pc->data);
162: return(0);
163: }
168: static PetscErrorCode PCSetFromOptions_BJacobi(PC pc)
169: {
170: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
172: PetscInt blocks;
173: PetscBool flg;
176: PetscOptionsHead("Block Jacobi options");
177: PetscOptionsInt("-pc_bjacobi_blocks","Total number of blocks","PCBJacobiSetTotalBlocks",jac->n,&blocks,&flg);
178: if (flg) {
179: PCBJacobiSetTotalBlocks(pc,blocks,PETSC_NULL);
180: }
181: flg = PETSC_FALSE;
182: PetscOptionsBool("-pc_bjacobi_truelocal","Use the true matrix, not preconditioner matrix to define matrix vector product in sub-problems","PCBJacobiSetUseTrueLocal",flg,&flg,PETSC_NULL);
183: if (flg) {
184: PCBJacobiSetUseTrueLocal(pc);
185: }
186: PetscOptionsTail();
187: return(0);
188: }
192: static PetscErrorCode PCView_BJacobi(PC pc,PetscViewer viewer)
193: {
194: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
195: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
196: PetscErrorCode ierr;
197: PetscMPIInt rank;
198: PetscInt i;
199: PetscBool iascii,isstring;
200: PetscViewer sviewer;
203: PetscTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
204: PetscTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
205: if (iascii) {
206: if (jac->use_true_local) {
207: PetscViewerASCIIPrintf(viewer," block Jacobi: using true local matrix, number of blocks = %D\n",jac->n);
208: }
209: PetscViewerASCIIPrintf(viewer," block Jacobi: number of blocks = %D\n",jac->n);
210: MPI_Comm_rank(((PetscObject)pc)->comm,&rank);
211: if (jac->same_local_solves) {
212: PetscViewerASCIIPrintf(viewer," Local solve is same for all blocks, in the following KSP and PC objects:\n");
213: if (jac->ksp) {
214: PetscViewerGetSingleton(viewer,&sviewer);
215: if (!rank){
216: PetscViewerASCIIPushTab(viewer);
217: KSPView(jac->ksp[0],sviewer);
218: PetscViewerASCIIPopTab(viewer);
219: }
220: PetscViewerRestoreSingleton(viewer,&sviewer);
221: } else if (jac->psubcomm && !jac->psubcomm->color){
222: PetscViewerASCIIGetStdout(mpjac->psubcomm->comm,&sviewer);
223: PetscViewerASCIIPushTab(viewer);
224: KSPView(mpjac->ksp,sviewer);
225: PetscViewerASCIIPopTab(viewer);
226: }
227: } else {
228: PetscInt n_global;
229: MPI_Allreduce(&jac->n_local,&n_global,1,MPIU_INT,MPI_MAX,((PetscObject)pc)->comm);
230: PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
231: PetscViewerASCIIPrintf(viewer," Local solve info for each block is in the following KSP and PC objects:\n");
232: PetscViewerASCIISynchronizedPrintf(viewer,"[%d] number of local blocks = %D, first local block number = %D\n",
233: rank,jac->n_local,jac->first_local);
234: PetscViewerASCIIPushTab(viewer);
235: for (i=0; i<n_global; i++) {
236: PetscViewerGetSingleton(viewer,&sviewer);
237: if (i < jac->n_local) {
238: PetscViewerASCIISynchronizedPrintf(viewer,"[%d] local block number %D\n",rank,i);
239: KSPView(jac->ksp[i],sviewer);
240: PetscViewerASCIISynchronizedPrintf(viewer,"- - - - - - - - - - - - - - - - - -\n");
241: }
242: PetscViewerRestoreSingleton(viewer,&sviewer);
243: }
244: PetscViewerASCIIPopTab(viewer);
245: PetscViewerFlush(viewer);
246: PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
247: }
248: } else if (isstring) {
249: PetscViewerStringSPrintf(viewer," blks=%D",jac->n);
250: PetscViewerGetSingleton(viewer,&sviewer);
251: if (jac->ksp) {KSPView(jac->ksp[0],sviewer);}
252: PetscViewerRestoreSingleton(viewer,&sviewer);
253: } else {
254: SETERRQ1(((PetscObject)pc)->comm,PETSC_ERR_SUP,"Viewer type %s not supported for block Jacobi",((PetscObject)viewer)->type_name);
255: }
256: return(0);
257: }
259: /* -------------------------------------------------------------------------------------*/
264: PetscErrorCode PCBJacobiSetUseTrueLocal_BJacobi(PC pc)
265: {
266: PC_BJacobi *jac;
269: jac = (PC_BJacobi*)pc->data;
270: jac->use_true_local = PETSC_TRUE;
271: return(0);
272: }
278: PetscErrorCode PCBJacobiGetSubKSP_BJacobi(PC pc,PetscInt *n_local,PetscInt *first_local,KSP **ksp)
279: {
280: PC_BJacobi *jac = (PC_BJacobi*)pc->data;;
283: if (!pc->setupcalled) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_WRONGSTATE,"Must call KSPSetUp() or PCSetUp() first");
285: if (n_local) *n_local = jac->n_local;
286: if (first_local) *first_local = jac->first_local;
287: *ksp = jac->ksp;
288: jac->same_local_solves = PETSC_FALSE; /* Assume that local solves are now different;
289: not necessarily true though! This flag is
290: used only for PCView_BJacobi() */
291: return(0);
292: }
298: PetscErrorCode PCBJacobiSetTotalBlocks_BJacobi(PC pc,PetscInt blocks,PetscInt *lens)
299: {
300: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
305: if (pc->setupcalled > 0 && jac->n!=blocks) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ORDER,"Cannot alter number of blocks after PCSetUp()/KSPSetUp() has been called");
306: jac->n = blocks;
307: if (!lens) {
308: jac->g_lens = 0;
309: } else {
310: PetscMalloc(blocks*sizeof(PetscInt),&jac->g_lens);
311: PetscLogObjectMemory(pc,blocks*sizeof(PetscInt));
312: PetscMemcpy(jac->g_lens,lens,blocks*sizeof(PetscInt));
313: }
314: return(0);
315: }
321: PetscErrorCode PCBJacobiGetTotalBlocks_BJacobi(PC pc, PetscInt *blocks, const PetscInt *lens[])
322: {
323: PC_BJacobi *jac = (PC_BJacobi*) pc->data;
326: *blocks = jac->n;
327: if (lens) *lens = jac->g_lens;
328: return(0);
329: }
335: PetscErrorCode PCBJacobiSetLocalBlocks_BJacobi(PC pc,PetscInt blocks,const PetscInt lens[])
336: {
337: PC_BJacobi *jac;
341: jac = (PC_BJacobi*)pc->data;
343: jac->n_local = blocks;
344: if (!lens) {
345: jac->l_lens = 0;
346: } else {
347: PetscMalloc(blocks*sizeof(PetscInt),&jac->l_lens);
348: PetscLogObjectMemory(pc,blocks*sizeof(PetscInt));
349: PetscMemcpy(jac->l_lens,lens,blocks*sizeof(PetscInt));
350: }
351: return(0);
352: }
358: PetscErrorCode PCBJacobiGetLocalBlocks_BJacobi(PC pc, PetscInt *blocks, const PetscInt *lens[])
359: {
360: PC_BJacobi *jac = (PC_BJacobi*) pc->data;
363: *blocks = jac->n_local;
364: if (lens) *lens = jac->l_lens;
365: return(0);
366: }
369: /* -------------------------------------------------------------------------------------*/
373: /*@
374: PCBJacobiSetUseTrueLocal - Sets a flag to indicate that the block
375: problem is associated with the linear system matrix instead of the
376: default (where it is associated with the preconditioning matrix).
377: That is, if the local system is solved iteratively then it iterates
378: on the block from the matrix using the block from the preconditioner
379: as the preconditioner for the local block.
381: Logically Collective on PC
383: Input Parameters:
384: . pc - the preconditioner context
386: Options Database Key:
387: . -pc_bjacobi_truelocal - Activates PCBJacobiSetUseTrueLocal()
389: Notes:
390: For the common case in which the preconditioning and linear
391: system matrices are identical, this routine is unnecessary.
393: Level: intermediate
395: .keywords: block, Jacobi, set, true, local, flag
397: .seealso: PCSetOperators(), PCBJacobiSetLocalBlocks()
398: @*/
399: PetscErrorCode PCBJacobiSetUseTrueLocal(PC pc)
400: {
405: PetscTryMethod(pc,"PCBJacobiSetUseTrueLocal_C",(PC),(pc));
406: return(0);
407: }
411: /*@C
412: PCBJacobiGetSubKSP - Gets the local KSP contexts for all blocks on
413: this processor.
414:
415: Note Collective
417: Input Parameter:
418: . pc - the preconditioner context
420: Output Parameters:
421: + n_local - the number of blocks on this processor, or PETSC_NULL
422: . first_local - the global number of the first block on this processor, or PETSC_NULL
423: - ksp - the array of KSP contexts
425: Notes:
426: After PCBJacobiGetSubKSP() the array of KSP contexts is not to be freed.
427:
428: Currently for some matrix implementations only 1 block per processor
429: is supported.
430:
431: You must call KSPSetUp() or PCSetUp() before calling PCBJacobiGetSubKSP().
433: Level: advanced
435: .keywords: block, Jacobi, get, sub, KSP, context
437: .seealso: PCBJacobiGetSubKSP()
438: @*/
439: PetscErrorCode PCBJacobiGetSubKSP(PC pc,PetscInt *n_local,PetscInt *first_local,KSP *ksp[])
440: {
445: PetscUseMethod(pc,"PCBJacobiGetSubKSP_C",(PC,PetscInt *,PetscInt *,KSP **),(pc,n_local,first_local,ksp));
446: return(0);
447: }
451: /*@
452: PCBJacobiSetTotalBlocks - Sets the global number of blocks for the block
453: Jacobi preconditioner.
455: Collective on PC
457: Input Parameters:
458: + pc - the preconditioner context
459: . blocks - the number of blocks
460: - lens - [optional] integer array containing the size of each block
462: Options Database Key:
463: . -pc_bjacobi_blocks <blocks> - Sets the number of global blocks
465: Notes:
466: Currently only a limited number of blocking configurations are supported.
467: All processors sharing the PC must call this routine with the same data.
469: Level: intermediate
471: .keywords: set, number, Jacobi, global, total, blocks
473: .seealso: PCBJacobiSetUseTrueLocal(), PCBJacobiSetLocalBlocks()
474: @*/
475: PetscErrorCode PCBJacobiSetTotalBlocks(PC pc,PetscInt blocks,const PetscInt lens[])
476: {
481: if (blocks <= 0) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Must have positive blocks");
482: PetscTryMethod(pc,"PCBJacobiSetTotalBlocks_C",(PC,PetscInt,const PetscInt[]),(pc,blocks,lens));
483: return(0);
484: }
488: /*@C
489: PCBJacobiGetTotalBlocks - Gets the global number of blocks for the block
490: Jacobi preconditioner.
492: Not Collective
494: Input Parameter:
495: . pc - the preconditioner context
497: Output parameters:
498: + blocks - the number of blocks
499: - lens - integer array containing the size of each block
501: Level: intermediate
503: .keywords: get, number, Jacobi, global, total, blocks
505: .seealso: PCBJacobiSetUseTrueLocal(), PCBJacobiGetLocalBlocks()
506: @*/
507: PetscErrorCode PCBJacobiGetTotalBlocks(PC pc, PetscInt *blocks, const PetscInt *lens[])
508: {
514: PetscUseMethod(pc,"PCBJacobiGetTotalBlocks_C",(PC,PetscInt*, const PetscInt *[]),(pc,blocks,lens));
515: return(0);
516: }
517:
520: /*@
521: PCBJacobiSetLocalBlocks - Sets the local number of blocks for the block
522: Jacobi preconditioner.
524: Not Collective
526: Input Parameters:
527: + pc - the preconditioner context
528: . blocks - the number of blocks
529: - lens - [optional] integer array containing size of each block
531: Note:
532: Currently only a limited number of blocking configurations are supported.
534: Level: intermediate
536: .keywords: PC, set, number, Jacobi, local, blocks
538: .seealso: PCBJacobiSetUseTrueLocal(), PCBJacobiSetTotalBlocks()
539: @*/
540: PetscErrorCode PCBJacobiSetLocalBlocks(PC pc,PetscInt blocks,const PetscInt lens[])
541: {
546: if (blocks < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must have nonegative blocks");
547: PetscTryMethod(pc,"PCBJacobiSetLocalBlocks_C",(PC,PetscInt,const PetscInt []),(pc,blocks,lens));
548: return(0);
549: }
550:
553: /*@C
554: PCBJacobiGetLocalBlocks - Gets the local number of blocks for the block
555: Jacobi preconditioner.
557: Not Collective
559: Input Parameters:
560: + pc - the preconditioner context
561: . blocks - the number of blocks
562: - lens - [optional] integer array containing size of each block
564: Note:
565: Currently only a limited number of blocking configurations are supported.
567: Level: intermediate
569: .keywords: PC, get, number, Jacobi, local, blocks
571: .seealso: PCBJacobiSetUseTrueLocal(), PCBJacobiGetTotalBlocks()
572: @*/
573: PetscErrorCode PCBJacobiGetLocalBlocks(PC pc, PetscInt *blocks, const PetscInt *lens[])
574: {
580: PetscUseMethod(pc,"PCBJacobiGetLocalBlocks_C",(PC,PetscInt*, const PetscInt *[]),(pc,blocks,lens));
581: return(0);
582: }
584: /* -----------------------------------------------------------------------------------*/
586: /*MC
587: PCBJACOBI - Use block Jacobi preconditioning, each block is (approximately) solved with
588: its own KSP object.
590: Options Database Keys:
591: . -pc_bjacobi_truelocal - Activates PCBJacobiSetUseTrueLocal()
593: Notes: Each processor can have one or more blocks, but a block cannot be shared by more
594: than one processor. Defaults to one block per processor.
596: To set options on the solvers for each block append -sub_ to all the KSP, KSP, and PC
597: options database keys. For example, -sub_pc_type ilu -sub_pc_factor_levels 1 -sub_ksp_type preonly
598:
599: To set the options on the solvers separate for each block call PCBJacobiGetSubKSP()
600: and set the options directly on the resulting KSP object (you can access its PC
601: KSPGetPC())
603: Level: beginner
605: Concepts: block Jacobi
607: .seealso: PCCreate(), PCSetType(), PCType (for list of available types), PC,
608: PCASM, PCBJacobiSetUseTrueLocal(), PCBJacobiGetSubKSP(), PCBJacobiSetTotalBlocks(),
609: PCBJacobiSetLocalBlocks(), PCSetModifySubmatrices()
610: M*/
615: PetscErrorCode PCCreate_BJacobi(PC pc)
616: {
618: PetscMPIInt rank;
619: PC_BJacobi *jac;
622: PetscNewLog(pc,PC_BJacobi,&jac);
623: MPI_Comm_rank(((PetscObject)pc)->comm,&rank);
624: pc->ops->apply = 0;
625: pc->ops->applytranspose = 0;
626: pc->ops->setup = PCSetUp_BJacobi;
627: pc->ops->destroy = PCDestroy_BJacobi;
628: pc->ops->setfromoptions = PCSetFromOptions_BJacobi;
629: pc->ops->view = PCView_BJacobi;
630: pc->ops->applyrichardson = 0;
632: pc->data = (void*)jac;
633: jac->n = -1;
634: jac->n_local = -1;
635: jac->first_local = rank;
636: jac->ksp = 0;
637: jac->use_true_local = PETSC_FALSE;
638: jac->same_local_solves = PETSC_TRUE;
639: jac->g_lens = 0;
640: jac->l_lens = 0;
641: jac->psubcomm = 0;
643: PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCBJacobiSetUseTrueLocal_C",
644: "PCBJacobiSetUseTrueLocal_BJacobi",
645: PCBJacobiSetUseTrueLocal_BJacobi);
646: PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCBJacobiGetSubKSP_C","PCBJacobiGetSubKSP_BJacobi",
647: PCBJacobiGetSubKSP_BJacobi);
648: PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCBJacobiSetTotalBlocks_C","PCBJacobiSetTotalBlocks_BJacobi",
649: PCBJacobiSetTotalBlocks_BJacobi);
650: PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCBJacobiGetTotalBlocks_C","PCBJacobiGetTotalBlocks_BJacobi",
651: PCBJacobiGetTotalBlocks_BJacobi);
652: PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCBJacobiSetLocalBlocks_C","PCBJacobiSetLocalBlocks_BJacobi",
653: PCBJacobiSetLocalBlocks_BJacobi);
654: PetscObjectComposeFunctionDynamic((PetscObject)pc,"PCBJacobiGetLocalBlocks_C","PCBJacobiGetLocalBlocks_BJacobi",
655: PCBJacobiGetLocalBlocks_BJacobi);
657: return(0);
658: }
661: /* --------------------------------------------------------------------------------------------*/
662: /*
663: These are for a single block per processor; works for AIJ, BAIJ; Seq and MPI
664: */
667: PetscErrorCode PCReset_BJacobi_Singleblock(PC pc)
668: {
669: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
670: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
671: PetscErrorCode ierr;
674: KSPReset(jac->ksp[0]);
675: VecDestroy(&bjac->x);
676: VecDestroy(&bjac->y);
677: return(0);
678: }
682: PetscErrorCode PCDestroy_BJacobi_Singleblock(PC pc)
683: {
684: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
685: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
686: PetscErrorCode ierr;
689: PCReset_BJacobi_Singleblock(pc);
690: KSPDestroy(&jac->ksp[0]);
691: PetscFree(jac->ksp);
692: PetscFree(jac->l_lens);
693: PetscFree(jac->g_lens);
694: PetscFree(bjac);
695: PetscFree(pc->data);
696: return(0);
697: }
701: PetscErrorCode PCSetUpOnBlocks_BJacobi_Singleblock(PC pc)
702: {
704: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
707: KSPSetUp(jac->ksp[0]);
708: return(0);
709: }
713: PetscErrorCode PCApply_BJacobi_Singleblock(PC pc,Vec x,Vec y)
714: {
715: PetscErrorCode ierr;
716: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
717: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
718: PetscScalar *x_array,*y_array;
721: /*
722: The VecPlaceArray() is to avoid having to copy the
723: y vector into the bjac->x vector. The reason for
724: the bjac->x vector is that we need a sequential vector
725: for the sequential solve.
726: */
727: VecGetArray(x,&x_array);
728: VecGetArray(y,&y_array);
729: VecPlaceArray(bjac->x,x_array);
730: VecPlaceArray(bjac->y,y_array);
731: KSPSolve(jac->ksp[0],bjac->x,bjac->y);
732: VecResetArray(bjac->x);
733: VecResetArray(bjac->y);
734: VecRestoreArray(x,&x_array);
735: VecRestoreArray(y,&y_array);
736: return(0);
737: }
741: PetscErrorCode PCApplySymmetricLeft_BJacobi_Singleblock(PC pc,Vec x,Vec y)
742: {
743: PetscErrorCode ierr;
744: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
745: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
746: PetscScalar *x_array,*y_array;
747: PC subpc;
750: /*
751: The VecPlaceArray() is to avoid having to copy the
752: y vector into the bjac->x vector. The reason for
753: the bjac->x vector is that we need a sequential vector
754: for the sequential solve.
755: */
756: VecGetArray(x,&x_array);
757: VecGetArray(y,&y_array);
758: VecPlaceArray(bjac->x,x_array);
759: VecPlaceArray(bjac->y,y_array);
761: /* apply the symmetric left portion of the inner PC operator */
762: /* note this by-passes the inner KSP and its options completely */
764: KSPGetPC(jac->ksp[0],&subpc);
765: PCApplySymmetricLeft(subpc,bjac->x,bjac->y);
766: VecResetArray(bjac->x);
767: VecResetArray(bjac->y);
769: VecRestoreArray(x,&x_array);
770: VecRestoreArray(y,&y_array);
771: return(0);
772: }
776: PetscErrorCode PCApplySymmetricRight_BJacobi_Singleblock(PC pc,Vec x,Vec y)
777: {
778: PetscErrorCode ierr;
779: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
780: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
781: PetscScalar *x_array,*y_array;
782: PC subpc;
785: /*
786: The VecPlaceArray() is to avoid having to copy the
787: y vector into the bjac->x vector. The reason for
788: the bjac->x vector is that we need a sequential vector
789: for the sequential solve.
790: */
791: VecGetArray(x,&x_array);
792: VecGetArray(y,&y_array);
793: VecPlaceArray(bjac->x,x_array);
794: VecPlaceArray(bjac->y,y_array);
796: /* apply the symmetric right portion of the inner PC operator */
797: /* note this by-passes the inner KSP and its options completely */
799: KSPGetPC(jac->ksp[0],&subpc);
800: PCApplySymmetricRight(subpc,bjac->x,bjac->y);
802: VecRestoreArray(x,&x_array);
803: VecRestoreArray(y,&y_array);
804: return(0);
805: }
809: PetscErrorCode PCApplyTranspose_BJacobi_Singleblock(PC pc,Vec x,Vec y)
810: {
811: PetscErrorCode ierr;
812: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
813: PC_BJacobi_Singleblock *bjac = (PC_BJacobi_Singleblock*)jac->data;
814: PetscScalar *x_array,*y_array;
817: /*
818: The VecPlaceArray() is to avoid having to copy the
819: y vector into the bjac->x vector. The reason for
820: the bjac->x vector is that we need a sequential vector
821: for the sequential solve.
822: */
823: VecGetArray(x,&x_array);
824: VecGetArray(y,&y_array);
825: VecPlaceArray(bjac->x,x_array);
826: VecPlaceArray(bjac->y,y_array);
827: KSPSolveTranspose(jac->ksp[0],bjac->x,bjac->y);
828: VecResetArray(bjac->x);
829: VecResetArray(bjac->y);
830: VecRestoreArray(x,&x_array);
831: VecRestoreArray(y,&y_array);
832: return(0);
833: }
837: static PetscErrorCode PCSetUp_BJacobi_Singleblock(PC pc,Mat mat,Mat pmat)
838: {
839: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
840: PetscErrorCode ierr;
841: PetscInt m;
842: KSP ksp;
843: PC_BJacobi_Singleblock *bjac;
844: PetscBool wasSetup;
848: if (!pc->setupcalled) {
849: const char *prefix;
851: if (!jac->ksp) {
852: wasSetup = PETSC_FALSE;
853: KSPCreate(PETSC_COMM_SELF,&ksp);
854: PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
855: PetscLogObjectParent(pc,ksp);
856: KSPSetType(ksp,KSPPREONLY);
857: PCGetOptionsPrefix(pc,&prefix);
858: KSPSetOptionsPrefix(ksp,prefix);
859: KSPAppendOptionsPrefix(ksp,"sub_");
861: pc->ops->reset = PCReset_BJacobi_Singleblock;
862: pc->ops->destroy = PCDestroy_BJacobi_Singleblock;
863: pc->ops->apply = PCApply_BJacobi_Singleblock;
864: pc->ops->applysymmetricleft = PCApplySymmetricLeft_BJacobi_Singleblock;
865: pc->ops->applysymmetricright = PCApplySymmetricRight_BJacobi_Singleblock;
866: pc->ops->applytranspose = PCApplyTranspose_BJacobi_Singleblock;
867: pc->ops->setuponblocks = PCSetUpOnBlocks_BJacobi_Singleblock;
869: PetscMalloc(sizeof(KSP),&jac->ksp);
870: jac->ksp[0] = ksp;
872: PetscNewLog(pc,PC_BJacobi_Singleblock,&bjac);
873: jac->data = (void*)bjac;
874: } else {
875: ksp = jac->ksp[0];
876: bjac = (PC_BJacobi_Singleblock *)jac->data;
877: }
879: /*
880: The reason we need to generate these vectors is to serve
881: as the right-hand side and solution vector for the solve on the
882: block. We do not need to allocate space for the vectors since
883: that is provided via VecPlaceArray() just before the call to
884: KSPSolve() on the block.
885: */
886: MatGetSize(pmat,&m,&m);
887: VecCreateSeqWithArray(PETSC_COMM_SELF,m,PETSC_NULL,&bjac->x);
888: VecCreateSeqWithArray(PETSC_COMM_SELF,m,PETSC_NULL,&bjac->y);
889: PetscLogObjectParent(pc,bjac->x);
890: PetscLogObjectParent(pc,bjac->y);
891: } else {
892: wasSetup = PETSC_TRUE;
893: ksp = jac->ksp[0];
894: bjac = (PC_BJacobi_Singleblock *)jac->data;
895: }
896: if (jac->use_true_local) {
897: KSPSetOperators(ksp,mat,pmat,pc->flag);
898: } else {
899: KSPSetOperators(ksp,pmat,pmat,pc->flag);
900: }
901: if (!wasSetup && pc->setfromoptionscalled) {
902: KSPSetFromOptions(ksp);
903: }
904: return(0);
905: }
907: /* ---------------------------------------------------------------------------------------------*/
910: PetscErrorCode PCReset_BJacobi_Multiblock(PC pc)
911: {
912: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
913: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
914: PetscErrorCode ierr;
915: PetscInt i;
918: if (bjac && bjac->pmat) {
919: MatDestroyMatrices(jac->n_local,&bjac->pmat);
920: if (jac->use_true_local) {
921: MatDestroyMatrices(jac->n_local,&bjac->mat);
922: }
923: }
925: for (i=0; i<jac->n_local; i++) {
926: KSPReset(jac->ksp[i]);
927: if (bjac && bjac->x) {
928: VecDestroy(&bjac->x[i]);
929: VecDestroy(&bjac->y[i]);
930: ISDestroy(&bjac->is[i]);
931: }
932: }
933: PetscFree(jac->l_lens);
934: PetscFree(jac->g_lens);
935: return(0);
936: }
940: PetscErrorCode PCDestroy_BJacobi_Multiblock(PC pc)
941: {
942: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
943: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
944: PetscErrorCode ierr;
945: PetscInt i;
948: PCReset_BJacobi_Multiblock(pc);
949: if (bjac) {
950: PetscFree2(bjac->x,bjac->y);
951: PetscFree(bjac->starts);
952: PetscFree(bjac->is);
953: }
954: PetscFree(jac->data);
955: for (i=0; i<jac->n_local; i++) {
956: KSPDestroy(&jac->ksp[i]);
957: }
958: PetscFree(jac->ksp);
959: PetscFree(pc->data);
960: return(0);
961: }
965: PetscErrorCode PCSetUpOnBlocks_BJacobi_Multiblock(PC pc)
966: {
967: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
969: PetscInt i,n_local = jac->n_local;
972: for (i=0; i<n_local; i++) {
973: KSPSetUp(jac->ksp[i]);
974: }
975: return(0);
976: }
978: /*
979: Preconditioner for block Jacobi
980: */
983: PetscErrorCode PCApply_BJacobi_Multiblock(PC pc,Vec x,Vec y)
984: {
985: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
986: PetscErrorCode ierr;
987: PetscInt i,n_local = jac->n_local;
988: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
989: PetscScalar *xin,*yin;
992: VecGetArray(x,&xin);
993: VecGetArray(y,&yin);
994: for (i=0; i<n_local; i++) {
995: /*
996: To avoid copying the subvector from x into a workspace we instead
997: make the workspace vector array point to the subpart of the array of
998: the global vector.
999: */
1000: VecPlaceArray(bjac->x[i],xin+bjac->starts[i]);
1001: VecPlaceArray(bjac->y[i],yin+bjac->starts[i]);
1003: PetscLogEventBegin(PC_SetUpOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
1004: KSPSolve(jac->ksp[i],bjac->x[i],bjac->y[i]);
1005: PetscLogEventEnd(PC_SetUpOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
1007: VecResetArray(bjac->x[i]);
1008: VecResetArray(bjac->y[i]);
1009: }
1010: VecRestoreArray(x,&xin);
1011: VecRestoreArray(y,&yin);
1012: return(0);
1013: }
1015: /*
1016: Preconditioner for block Jacobi
1017: */
1020: PetscErrorCode PCApplyTranspose_BJacobi_Multiblock(PC pc,Vec x,Vec y)
1021: {
1022: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1023: PetscErrorCode ierr;
1024: PetscInt i,n_local = jac->n_local;
1025: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
1026: PetscScalar *xin,*yin;
1029: VecGetArray(x,&xin);
1030: VecGetArray(y,&yin);
1031: for (i=0; i<n_local; i++) {
1032: /*
1033: To avoid copying the subvector from x into a workspace we instead
1034: make the workspace vector array point to the subpart of the array of
1035: the global vector.
1036: */
1037: VecPlaceArray(bjac->x[i],xin+bjac->starts[i]);
1038: VecPlaceArray(bjac->y[i],yin+bjac->starts[i]);
1040: PetscLogEventBegin(PC_ApplyTransposeOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
1041: KSPSolveTranspose(jac->ksp[i],bjac->x[i],bjac->y[i]);
1042: PetscLogEventEnd(PC_ApplyTransposeOnBlocks,jac->ksp[i],bjac->x[i],bjac->y[i],0);
1044: VecResetArray(bjac->x[i]);
1045: VecResetArray(bjac->y[i]);
1046: }
1047: VecRestoreArray(x,&xin);
1048: VecRestoreArray(y,&yin);
1049: return(0);
1050: }
1054: static PetscErrorCode PCSetUp_BJacobi_Multiblock(PC pc,Mat mat,Mat pmat)
1055: {
1056: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1057: PetscErrorCode ierr;
1058: PetscInt m,n_local,N,M,start,i;
1059: const char *prefix,*pprefix,*mprefix;
1060: KSP ksp;
1061: Vec x,y;
1062: PC_BJacobi_Multiblock *bjac = (PC_BJacobi_Multiblock*)jac->data;
1063: PC subpc;
1064: IS is;
1065: MatReuse scall;
1068: MatGetLocalSize(pc->pmat,&M,&N);
1070: n_local = jac->n_local;
1072: if (jac->use_true_local) {
1073: PetscBool same;
1074: PetscTypeCompare((PetscObject)mat,((PetscObject)pmat)->type_name,&same);
1075: if (!same) SETERRQ(((PetscObject)pc)->comm,PETSC_ERR_ARG_INCOMP,"Matrices not of same type");
1076: }
1078: if (!pc->setupcalled) {
1079: scall = MAT_INITIAL_MATRIX;
1081: if (!jac->ksp) {
1082: pc->ops->reset = PCReset_BJacobi_Multiblock;
1083: pc->ops->destroy = PCDestroy_BJacobi_Multiblock;
1084: pc->ops->apply = PCApply_BJacobi_Multiblock;
1085: pc->ops->applytranspose= PCApplyTranspose_BJacobi_Multiblock;
1086: pc->ops->setuponblocks = PCSetUpOnBlocks_BJacobi_Multiblock;
1088: PetscNewLog(pc,PC_BJacobi_Multiblock,&bjac);
1089: PetscMalloc(n_local*sizeof(KSP),&jac->ksp);
1090: PetscLogObjectMemory(pc,sizeof(n_local*sizeof(KSP)));
1091: PetscMalloc2(n_local,Vec,&bjac->x,n_local,Vec,&bjac->y);
1092: PetscMalloc(n_local*sizeof(PetscScalar),&bjac->starts);
1093: PetscLogObjectMemory(pc,sizeof(n_local*sizeof(PetscScalar)));
1094:
1095: jac->data = (void*)bjac;
1096: PetscMalloc(n_local*sizeof(IS),&bjac->is);
1097: PetscLogObjectMemory(pc,sizeof(n_local*sizeof(IS)));
1099: for (i=0; i<n_local; i++) {
1100: KSPCreate(PETSC_COMM_SELF,&ksp);
1101: PetscObjectIncrementTabLevel((PetscObject)ksp,(PetscObject)pc,1);
1102: PetscLogObjectParent(pc,ksp);
1103: KSPSetType(ksp,KSPPREONLY);
1104: KSPGetPC(ksp,&subpc);
1105: PCGetOptionsPrefix(pc,&prefix);
1106: KSPSetOptionsPrefix(ksp,prefix);
1107: KSPAppendOptionsPrefix(ksp,"sub_");
1108: jac->ksp[i] = ksp;
1109: }
1110: } else {
1111: bjac = (PC_BJacobi_Multiblock*)jac->data;
1112: }
1114: start = 0;
1115: for (i=0; i<n_local; i++) {
1116: m = jac->l_lens[i];
1117: /*
1118: The reason we need to generate these vectors is to serve
1119: as the right-hand side and solution vector for the solve on the
1120: block. We do not need to allocate space for the vectors since
1121: that is provided via VecPlaceArray() just before the call to
1122: KSPSolve() on the block.
1124: */
1125: VecCreateSeq(PETSC_COMM_SELF,m,&x);
1126: VecCreateSeqWithArray(PETSC_COMM_SELF,m,PETSC_NULL,&y);
1127: PetscLogObjectParent(pc,x);
1128: PetscLogObjectParent(pc,y);
1129: bjac->x[i] = x;
1130: bjac->y[i] = y;
1131: bjac->starts[i] = start;
1133: ISCreateStride(PETSC_COMM_SELF,m,start,1,&is);
1134: bjac->is[i] = is;
1135: PetscLogObjectParent(pc,is);
1137: start += m;
1138: }
1139: } else {
1140: bjac = (PC_BJacobi_Multiblock*)jac->data;
1141: /*
1142: Destroy the blocks from the previous iteration
1143: */
1144: if (pc->flag == DIFFERENT_NONZERO_PATTERN) {
1145: MatDestroyMatrices(n_local,&bjac->pmat);
1146: if (jac->use_true_local) {
1147: MatDestroyMatrices(n_local,&bjac->mat);
1148: }
1149: scall = MAT_INITIAL_MATRIX;
1150: } else {
1151: scall = MAT_REUSE_MATRIX;
1152: }
1153: }
1155: MatGetSubMatrices(pmat,n_local,bjac->is,bjac->is,scall,&bjac->pmat);
1156: if (jac->use_true_local) {
1157: PetscObjectGetOptionsPrefix((PetscObject)mat,&mprefix);
1158: MatGetSubMatrices(mat,n_local,bjac->is,bjac->is,scall,&bjac->mat);
1159: }
1160: /* Return control to the user so that the submatrices can be modified (e.g., to apply
1161: different boundary conditions for the submatrices than for the global problem) */
1162: PCModifySubMatrices(pc,n_local,bjac->is,bjac->is,bjac->pmat,pc->modifysubmatricesP);
1164: PetscObjectGetOptionsPrefix((PetscObject)pmat,&pprefix);
1165: for (i=0; i<n_local; i++) {
1166: PetscLogObjectParent(pc,bjac->pmat[i]);
1167: PetscObjectSetOptionsPrefix((PetscObject)bjac->pmat[i],pprefix);
1168: if (jac->use_true_local) {
1169: PetscLogObjectParent(pc,bjac->mat[i]);
1170: PetscObjectSetOptionsPrefix((PetscObject)bjac->mat[i],mprefix);
1171: KSPSetOperators(jac->ksp[i],bjac->mat[i],bjac->pmat[i],pc->flag);
1172: } else {
1173: KSPSetOperators(jac->ksp[i],bjac->pmat[i],bjac->pmat[i],pc->flag);
1174: }
1175: if(pc->setfromoptionscalled){
1176: KSPSetFromOptions(jac->ksp[i]);
1177: }
1178: }
1179: return(0);
1180: }
1182: /* ---------------------------------------------------------------------------------------------*/
1183: /*
1184: These are for a single block with multiple processes;
1185: */
1188: static PetscErrorCode PCReset_BJacobi_Multiproc(PC pc)
1189: {
1190: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1191: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1192: PetscErrorCode ierr;
1195: VecDestroy(&mpjac->ysub);
1196: VecDestroy(&mpjac->xsub);
1197: MatDestroy(&mpjac->submats);
1198: if (mpjac->ksp){KSPReset(mpjac->ksp);}
1199: return(0);
1200: }
1204: static PetscErrorCode PCDestroy_BJacobi_Multiproc(PC pc)
1205: {
1206: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1207: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1208: PetscErrorCode ierr;
1211: PCReset_BJacobi_Multiproc(pc);
1212: KSPDestroy(&mpjac->ksp);
1213: PetscSubcommDestroy(&mpjac->psubcomm);
1215: PetscFree(mpjac);
1216: PetscFree(pc->data);
1217: return(0);
1218: }
1222: static PetscErrorCode PCApply_BJacobi_Multiproc(PC pc,Vec x,Vec y)
1223: {
1224: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1225: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1226: PetscErrorCode ierr;
1227: PetscScalar *xarray,*yarray;
1230: /* place x's and y's local arrays into xsub and ysub */
1231: VecGetArray(x,&xarray);
1232: VecGetArray(y,&yarray);
1233: VecPlaceArray(mpjac->xsub,xarray);
1234: VecPlaceArray(mpjac->ysub,yarray);
1236: /* apply preconditioner on each matrix block */
1237: KSPSolve(mpjac->ksp,mpjac->xsub,mpjac->ysub);
1239: VecResetArray(mpjac->xsub);
1240: VecResetArray(mpjac->ysub);
1241: VecRestoreArray(x,&xarray);
1242: VecRestoreArray(y,&yarray);
1243: return(0);
1244: }
1249: static PetscErrorCode PCSetUp_BJacobi_Multiproc(PC pc)
1250: {
1251: PC_BJacobi *jac = (PC_BJacobi*)pc->data;
1252: PC_BJacobi_Multiproc *mpjac = (PC_BJacobi_Multiproc*)jac->data;
1253: PetscErrorCode ierr;
1254: PetscInt m,n;
1255: MPI_Comm comm = ((PetscObject)pc)->comm,subcomm=0;
1256: const char *prefix;
1259: if (jac->n_local > 1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Only a single block in a subcommunicator is supported");
1260: jac->n_local = 1; /* currently only a single block is supported for a subcommunicator */
1261: if (!pc->setupcalled) {
1262: PetscNewLog(pc,PC_BJacobi_Multiproc,&mpjac);
1263: jac->data = (void*)mpjac;
1265: /* initialize datastructure mpjac */
1266: if (!jac->psubcomm) {
1267: /* Create default contiguous subcommunicatiors if user does not provide them */
1268: PetscSubcommCreate(comm,&jac->psubcomm);
1269: PetscSubcommSetNumber(jac->psubcomm,jac->n);
1270: PetscSubcommSetType(jac->psubcomm,PETSC_SUBCOMM_CONTIGUOUS);
1271: PetscLogObjectMemory(pc,sizeof(PetscSubcomm));
1272: }
1273: mpjac->psubcomm = jac->psubcomm;
1274: subcomm = mpjac->psubcomm->comm;
1276: /* Get matrix blocks of pmat */
1277: MatGetMultiProcBlock_MPIAIJ(pc->pmat,subcomm,&mpjac->submats);
1279: /* create a new PC that processors in each subcomm have copy of */
1280: KSPCreate(subcomm,&mpjac->ksp);
1281: PetscObjectIncrementTabLevel((PetscObject)mpjac->ksp,(PetscObject)pc,1);
1282: PetscLogObjectParent(pc,mpjac->ksp);
1283: KSPSetOperators(mpjac->ksp,mpjac->submats,mpjac->submats,pc->flag);
1284: KSPGetPC(mpjac->ksp,&mpjac->pc);
1286: PCGetOptionsPrefix(pc,&prefix);
1287: KSPSetOptionsPrefix(mpjac->ksp,prefix);
1288: KSPAppendOptionsPrefix(mpjac->ksp,"sub_");
1289: /*
1290: PetscMPIInt rank,subsize,subrank;
1291: MPI_Comm_rank(comm,&rank);
1292: MPI_Comm_size(subcomm,&subsize);
1293: MPI_Comm_rank(subcomm,&subrank);
1295: MatGetLocalSize(mpjac->submats,&m,PETSC_NULL);
1296: MatGetSize(mpjac->submats,&n,PETSC_NULL);
1297: PetscSynchronizedPrintf(comm,"[%d], sub-size %d,sub-rank %d\n",rank,subsize,subrank);
1298: PetscSynchronizedFlush(comm);
1299: */
1301: /* create dummy vectors xsub and ysub */
1302: MatGetLocalSize(mpjac->submats,&m,&n);
1303: VecCreateMPIWithArray(subcomm,n,PETSC_DECIDE,PETSC_NULL,&mpjac->xsub);
1304: VecCreateMPIWithArray(subcomm,m,PETSC_DECIDE,PETSC_NULL,&mpjac->ysub);
1305: PetscLogObjectParent(pc,mpjac->xsub);
1306: PetscLogObjectParent(pc,mpjac->ysub);
1308: pc->ops->reset = PCReset_BJacobi_Multiproc;
1309: pc->ops->destroy = PCDestroy_BJacobi_Multiproc;
1310: pc->ops->apply = PCApply_BJacobi_Multiproc;
1311: }
1313: if (pc->setupcalled && pc->flag == DIFFERENT_NONZERO_PATTERN) {
1314: /* destroy old matrix blocks, then get new matrix blocks */
1315: if (mpjac->submats) {
1316: MatDestroy(&mpjac->submats);
1317: subcomm = mpjac->psubcomm->comm;
1318: MatGetMultiProcBlock_MPIAIJ(pc->pmat,subcomm,&mpjac->submats);
1319: KSPSetOperators(mpjac->ksp,mpjac->submats,mpjac->submats,DIFFERENT_NONZERO_PATTERN);
1320: }
1321: }
1323: if (pc->setfromoptionscalled){
1324: KSPSetFromOptions(mpjac->ksp);
1325: }
1326: return(0);
1327: }