Chapter 1: Overview Of The Chapters

Chapter 2: Introduction

2.1: What's new in the C++ Annotations

2.2: C++'s history

2.2.1: History of the C++ Annotations
2.2.2: Compiling a C program using a C++ compiler
2.2.3: Compiling a C++ program
2.2.3.1: C++ under MS-Windows
2.2.3.2: Compiling a C++ source text

2.3: C++: advantages and claims

2.4: What is Object-Oriented Programming?

2.5: Differences between C and C++

2.5.1: The function `main'
2.5.2: End-of-line comment
2.5.3: Strict type checking
2.5.4: Function Overloading
2.5.5: Default function arguments
2.5.6: NULL-pointers vs. 0-pointers and nullptr
2.5.7: The `void' parameter list
2.5.8: The `#define __cplusplus'
2.5.9: Using standard C functions
2.5.10: Header files for both C and C++
2.5.11: Defining local variables
2.5.12: The keyword `typedef'
2.5.13: Functions as part of a struct

Chapter 3: A First Impression Of C++

3.1: Extensions to C

3.1.1: Namespaces
3.1.2: The scope resolution operator ::
3.1.3: Using the keyword `const'
3.1.4: `cout', `cin', and `cerr'

3.2: Functions as part of structs

3.2.1: Data hiding: public, private and class
3.2.2: Structs in C vs. structs in C++

3.3: More extensions to C

3.3.1: References
3.3.2: Rvalue References
3.3.3: Strongly typed enumerations
3.3.4: Initializer lists
3.3.5: Type inference using `auto'
3.3.6: Defining types and 'using' declarations
3.3.7: Range-based for-loops
3.3.8: Raw String Literals

3.4: New language-defined data types

3.4.1: The data type `bool'
3.4.2: The data type `wchar_t'
3.4.3: Unicode encoding
3.4.4: The data type `long long int'
3.4.5: The data type `size_t'

3.5: A new syntax for casts

3.5.1: The `static_cast'-operator
3.5.2: The `const_cast'-operator
3.5.3: The `reinterpret_cast'-operator
3.5.4: The `dynamic_cast'-operator
3.5.5: Casting 'shared_ptr' objects

3.6: Keywords and reserved names in C++

Chapter 4: Name Spaces

4.1: Namespaces

4.1.1: Defining namespaces
4.1.1.1: Declaring entities in namespaces
4.1.1.2: A closed namespace
4.1.2: Referring to entities
4.1.2.1: The `using' directive
4.1.2.2: `Koenig lookup'
4.1.3: The standard namespace
4.1.4: Nesting namespaces and namespace aliasing
4.1.4.1: Defining entities outside of their namespaces

Chapter 5: The `string' Data Type

5.1: Operations on strings

5.2: A std::string reference

5.2.1: Initializers
5.2.2: Iterators
5.2.3: Operators
5.2.4: Member functions
5.2.5: Conversion functions

Chapter 6: The IO-stream Library

6.1: Special header files

6.2: The foundation: the class `ios_base'

6.3: Interfacing `streambuf' objects: the class `ios'

6.3.1: Condition states
6.3.2: Formatting output and input
6.3.2.1: Format modifying member functions
6.3.2.2: Formatting flags

6.4: Output

6.4.1: Basic output: the class `ostream'
6.4.1.1: Writing to `ostream' objects
6.4.1.2: `ostream' positioning
6.4.1.3: `ostream' flushing
6.4.2: Output to files: the class `ofstream'
6.4.2.1: Modes for opening stream objects
6.4.3: Output to memory: the class `ostringstream'

6.5: Input

6.5.1: Basic input: the class `istream'
6.5.1.1: Reading from `istream' objects
6.5.1.2: `istream' positioning
6.5.2: Input from files: the class `ifstream'
6.5.3: Input from memory: the class `istringstream'
6.5.4: Copying streams
6.5.5: Coupling streams

6.6: Advanced topics

6.6.1: Redirecting streams
6.6.2: Reading AND Writing streams

Chapter 7: Classes

7.1: The constructor

7.1.1: A first application
7.1.2: Constructors: with and without arguments
7.1.2.1: The order of construction

7.2: Ambiguity resolution

7.2.1: Types `Data' vs. `Data()'
7.2.2: Superfluous parentheses
7.2.3: Existing types

7.3: Objects inside objects: composition

7.3.1: Composition and const objects: const member initializers
7.3.2: Composition and reference objects: reference member initializers

7.4: Data member initializers

7.4.1: Delegating constructors

7.5: Uniform initialization

7.6: Defaulted and deleted class members

7.7: Const member functions and const objects

7.7.1: Anonymous objects
7.7.1.1: Subtleties with anonymous objects

7.8: The keyword `inline'

7.8.1: Defining members inline
7.8.2: When to use inline functions
7.8.2.1: A prelude: when NOT to use inline functions

7.9: Local classes: classes inside functions

7.10: The keyword `mutable'

7.11: Header file organization

7.11.1: Using namespaces in header files

7.12: Sizeof applied to class data members

Chapter 8: Static Data And Functions

8.1: Static data

8.1.1: Private static data
8.1.2: Public static data
8.1.3: Initializing static const data
8.1.4: Generalized constant expressions (constexpr)
8.1.4.1: Constant expression data

8.2: Static member functions

8.2.1: Calling conventions

Chapter 9: Classes And Memory Allocation

9.1: Operators `new' and `delete'

9.1.1: Allocating arrays
9.1.2: Deleting arrays
9.1.3: Enlarging arrays
9.1.4: Managing `raw' memory
9.1.5: The `placement new' operator

9.2: The destructor

9.2.1: Object pointers revisited
9.2.2: The function set_new_handler()

9.3: The assignment operator

9.3.1: Overloading the assignment operator
9.3.1.1: The member 'operator=()'

9.4: The `this' pointer

9.4.1: Sequential assignments and this

9.5: The copy constructor: initialization vs. assignment

9.6: Revising the assignment operator

9.6.1: Swapping
9.6.1.1: Fast swapping

9.7: Moving data

9.7.1: The move constructor (dynamic data)
9.7.2: The move constructor (composition)
9.7.3: Move-assignment
9.7.4: Revising the assignment operator (part II)
9.7.5: Moving and the destructor
9.7.6: Move-only classes
9.7.7: Default move constructors and assignment operators
9.7.8: Moving: implications for class design

9.8: Copy Elision and Return Value Optimization

9.9: Plain Old Data

9.10: Conclusion

Chapter 10: Exceptions

10.1: Exception syntax

10.2: An example using exceptions

10.2.1: Anachronisms: `setjmp' and `longjmp'
10.2.2: Exceptions: the preferred alternative

10.3: Throwing exceptions

10.3.1: The empty `throw' statement

10.4: The try block

10.5: Catching exceptions

10.5.1: The default catcher

10.6: Declaring exception throwers (deprecated)

10.7: Iostreams and exceptions

10.8: Standard Exceptions

10.9: System error, error code and error category

10.9.1: The class `error_code'
10.9.2: The class `error_category'

10.10: Exception guarantees

10.10.1: The basic guarantee
10.10.2: The strong guarantee
10.10.3: The nothrow guarantee

10.11: Function try blocks

10.12: Exceptions in constructors and destructors

Chapter 11: More Operator Overloading

11.1: Overloading `operator[]()'

11.2: Overloading the insertion and extraction operators

11.3: Conversion operators

11.4: The keyword `explicit'

11.4.1: Explicit conversion operators

11.5: Overloading the increment and decrement operators

11.6: Overloading binary operators

11.7: Overloading `operator new(size_t)'

11.8: Overloading `operator delete(void *)'

11.9: Operators `new[]' and `delete[]'

11.9.1: Overloading `new[]'
11.9.2: Overloading `delete[]'
11.9.3: `new[]', `delete[]' and exceptions

11.10: Function Objects

11.10.1: Constructing manipulators
11.10.1.1: Manipulators requiring arguments

11.11: The case of [io]fstream::open()

11.12: User-defined literals

11.13: Overloadable operators

Chapter 12: Abstract Containers

12.1: Notations used in this chapter

12.2: The `pair' container

12.3: Allocators

12.4: Sequential Containers

12.4.1: ARRAY
12.4.2: The `vector' container
12.4.3: The `list' container
12.4.4: The `queue' container
12.4.5: The `priority_queue' container
12.4.6: The `deque' container
12.4.7: The `map' container
12.4.7.1: The `map' constructors
12.4.7.2: The `map' operators
12.4.7.3: The `map' public members
12.4.7.4: The `map': a simple example
12.4.8: The `multimap' container
12.4.9: The `set' container
12.4.10: The `multiset' container
12.4.11: The `stack' container
12.4.12: The `unordered_map' container (`hash table')
12.4.12.1: The `unordered_map' constructors
12.4.12.2: The `unordered_map' public members
12.4.12.3: The `unordered_multimap' container
12.4.13: The `unordered_set' container
12.4.13.1: The `unordered_multiset' container
12.4.14: Regular Expressions

12.5: The `complex' container

12.6: Unrestricted Unions

12.6.1: Implementing the destructor
12.6.2: Embedding an unrestricted union in a surrounding class
12.6.3: Destroying an embedded unrestricted union
12.6.4: Copy and move constructors
12.6.5: Assignment

Chapter 13: Inheritance

13.1: Related types

13.1.1: Inheritance depth: desirable?

13.2: Access rights: public, private, protected

13.2.1: Public, protected and private derivation
13.2.2: Promoting access rights

13.3: The constructor of a derived class

13.3.1: Move construction
13.3.2: Move assignment
13.3.3: Inheriting constructors

13.4: The destructor of a derived class

13.5: Redefining member functions

13.6: i/ostream::init

13.7: Multiple inheritance

13.8: Conversions between base classes and derived classes

13.8.1: Conversions with object assignments
13.8.2: Conversions with pointer assignments

13.9: Using non-default constructors with new[]

Chapter 14: Polymorphism

14.1: Virtual functions

14.2: Virtual destructors

14.3: Pure virtual functions

14.3.1: Implementing pure virtual functions

14.4: Explicit virtual overrides

14.5: Virtual functions and multiple inheritance

14.5.1: Ambiguity in multiple inheritance
14.5.2: Virtual base classes
14.5.3: When virtual derivation is not appropriate

14.6: Run-time type identification

14.6.1: The dynamic_cast operator
14.6.2: The `typeid' operator

14.7: Inheritance: when to use to achieve what?

14.8: The `streambuf' class

14.8.1: Protected `streambuf' members
14.8.1.1: Protected members for input operations
14.8.1.2: Protected members for output operations
14.8.1.3: Protected members for buffer manipulation
14.8.1.4: Deriving classes from `streambuf'
14.8.2: The class `filebuf'

14.9: A polymorphic exception class

14.10: How polymorphism is implemented

14.11: Undefined reference to vtable ...

14.12: Virtual constructors

Chapter 15: Friends

15.1: Friend functions

15.2: Extended friend declarations

Chapter 16: Classes Having Pointers To Members

16.1: Pointers to members: an example

16.2: Defining pointers to members

16.3: Using pointers to members

16.4: Pointers to static members

16.5: Pointer sizes

Chapter 17: Nested Classes

17.1: Defining nested class members

17.2: Declaring nested classes

17.3: Accessing private members in nested classes

17.4: Nesting enumerations

17.4.1: Empty enumerations

17.5: Revisiting virtual constructors

Chapter 18: The Standard Template Library

18.1: Predefined function objects

18.1.1: Arithmetic function objects
18.1.2: Relational function objects
18.1.3: Logical function objects
18.1.4: Function adaptors
18.1.4.1: Binders
18.1.4.2: Negators

18.2: Iterators

18.2.1: Insert iterators
18.2.2: Iterators for `istream' objects
18.2.2.1: Iterators for `istreambuf' objects
18.2.3: Iterators for `ostream' objects
18.2.3.1: Iterators for `ostreambuf' objects

18.3: The class 'unique_ptr'

18.3.1: Defining `unique_ptr' objects
18.3.2: Creating a plain `unique_ptr'
18.3.3: Moving another `unique_ptr'
18.3.4: Pointing to a newly allocated object
18.3.5: Operators and members
18.3.6: Using `unique_ptr' objects for arrays
18.3.7: The legacy class 'auto_ptr' (deprecated)

18.4: The class 'shared_ptr'

18.4.1: Defining `shared_ptr' objects
18.4.2: Creating a plain `shared_ptr'
18.4.3: Pointing to a newly allocated object
18.4.4: Operators and members
18.4.5: Casting shared pointers
18.4.6: Using `shared_ptr' objects for arrays

18.5: Using `make_shared' to combine `shared_ptr' and `new'

18.6: Classes having pointer data members

18.7: Multi Threading

18.7.1: Specifying absolute and relative time
18.7.1.1: Defining a unit: the class 'ratio'
18.7.1.2: Defining an amount of time: the class 'duration'
18.7.1.3: Clocks measuring time
18.7.1.4: Defining a point in time: the class 'time_point'
18.7.2: The namespace `std::this_thread'
18.7.3: The class `std::thread'
18.7.4: Synchronization (mutexes)
18.7.5: Locks and lock handling
18.7.5.1: Deadlocks
18.7.6: Event handling (condition variables)
18.7.6.1: The class 'condition_variable'
18.7.6.2: The class 'condition_variable_any'
18.7.6.3: An example using condition variables

18.8: Lambda expressions

18.9: Randomization and Statistical Distributions

18.9.1: Random Number Generators
18.9.2: Statistical distributions
18.9.2.1: Bernoulli distribution
18.9.2.2: Binomial distribution
18.9.2.3: Cauchy distribution
18.9.2.4: Chi-squared distribution
18.9.2.5: Extreme value distribution
18.9.2.6: Exponential distribution
18.9.2.7: Fisher F distribution
18.9.2.8: Gamma distribution
18.9.2.9: Geometric distribution
18.9.2.10: Log-normal distribution
18.9.2.11: Normal distribution
18.9.2.12: Negative binomial distribution
18.9.2.13: Poisson distribution
18.9.2.14: Student t distribution
18.9.2.15: Uniform int distribution
18.9.2.16: Uniform real distribution
18.9.2.17: Weibull distribution

Chapter 19: The STL Generic Algorithms

19.1: The Generic Algorithms

19.1.1: accumulate
19.1.2: adjacent_difference
19.1.3: adjacent_find
19.1.4: binary_search
19.1.5: copy
19.1.6: copy_backward
19.1.7: count
19.1.8: count_if
19.1.9: equal
19.1.10: equal_range
19.1.11: fill
19.1.12: fill_n
19.1.13: find
19.1.14: find_end
19.1.15: find_first_of
19.1.16: find_if
19.1.17: for_each
19.1.18: generate
19.1.19: generate_n
19.1.20: includes
19.1.21: inner_product
19.1.22: inplace_merge
19.1.23: iter_swap
19.1.24: lexicographical_compare
19.1.25: lower_bound
19.1.26: max
19.1.27: max_element
19.1.28: merge
19.1.29: min
19.1.30: min_element
19.1.31: mismatch
19.1.32: next_permutation
19.1.33: nth_element
19.1.34: partial_sort
19.1.35: partial_sort_copy
19.1.36: partial_sum
19.1.37: partition
19.1.38: prev_permutation
19.1.39: random_shuffle
19.1.40: remove
19.1.41: remove_copy
19.1.42: remove_copy_if
19.1.43: remove_if
19.1.44: replace
19.1.45: replace_copy
19.1.46: replace_copy_if
19.1.47: replace_if
19.1.48: reverse
19.1.49: reverse_copy
19.1.50: rotate
19.1.51: rotate_copy
19.1.52: search
19.1.53: search_n
19.1.54: set_difference
19.1.55: set_intersection
19.1.56: set_symmetric_difference
19.1.57: set_union
19.1.58: sort
19.1.59: stable_partition
19.1.60: stable_sort
19.1.61: swap
19.1.62: swap_ranges
19.1.63: transform
19.1.64: unique
19.1.65: unique_copy
19.1.66: upper_bound
19.1.67: Heap algorithms
19.1.67.1: The `make_heap' function
19.1.67.2: The `pop_heap' function
19.1.67.3: The `push_heap' function
19.1.67.4: The `sort_heap' function
19.1.67.5: An example using the heap functions

19.2: STL: More function adaptors

19.2.1: Member function adaptors
19.2.2: Adaptable functions

Chapter 20: Function Templates

20.1: Defining function templates

20.1.1: Considerations regarding template parameters
20.1.2: Late-specified return type

20.2: Passing arguments by reference (reference wrappers)

20.3: Using Local and unnamed types as template arguments

20.4: Template parameter deduction

20.4.1: Lvalue transformations
20.4.2: Qualification transformations
20.4.3: Transformation to a base class
20.4.4: The template parameter deduction algorithm
20.4.5: Template type contractions

20.5: Declaring function templates

20.5.1: Instantiation declarations

20.6: Instantiating function templates

20.6.1: Instantiations: no `code bloat'

20.7: Using explicit template types

20.8: Overloading function templates

20.8.1: An example using overloaded function templates
20.8.2: Ambiguities when overloading function templates
20.8.3: Declaring overloaded function templates

20.9: Specializing templates for deviating types

20.9.1: Avoiding too many specializations
20.9.2: Declaring specializations
20.9.3: Complications when using the insertion operator

20.10: Static assertions

20.11: Numeric limits

20.12: Polymorphous wrappers for function objects

20.13: Compiling template definitions and instantiations

20.14: The function selection mechanism

20.15: Determining the template type parameters

20.16: SFINAE: Substitution Failure Is Not An Error

20.17: Summary of the template declaration syntax

Chapter 21: Class Templates

21.1: Defining class templates

21.1.1: Constructing the circular queue: CirQue
21.1.2: Non-type parameters
21.1.3: Member templates
21.1.4: CirQue's constructors and member functions
21.1.5: Using CirQue objects
21.1.6: Default class template parameters
21.1.7: Declaring class templates
21.1.8: Preventing template instantiations

21.2: Static data members

21.2.1: Extended use of the keyword `typename'

21.3: Specializing class templates for deviating types

21.3.1: Example of a class specialization

21.4: Partial specializations

21.4.1: Intermezzo: some simple matrix algebraic concepts
21.4.2: The Matrix class template
21.4.3: The MatrixRow partial specialization
21.4.4: The MatrixColumn partial specialization
21.4.5: The 1x1 matrix: avoid ambiguity

21.5: Variadic templates

21.5.1: Defining and using variadic templates
21.5.2: Perfect forwarding
21.5.2.1: References to references
21.5.3: The unpack operator
21.5.4: Non-type variadic templates

21.6: Tuples

21.7: Computing the return type of function objects

21.8: Instantiating class templates

21.9: Processing class templates and instantiations

21.10: Declaring friends

21.10.1: Non-templates used as friends in templates
21.10.2: Templates instantiated for specific types as friends
21.10.3: Unbound templates as friends
21.10.4: Extended friend declarations

21.11: Class template derivation

21.11.1: Deriving ordinary classes from class templates
21.11.2: Deriving class templates from class templates
21.11.3: Deriving class templates from ordinary classes

21.12: Static Polymorphism

21.12.1: An example of static polymorphism
21.12.2: Converting dynamic polymorphic classes to static polymorphic classes
21.12.3: Using static polymorphism to avoid reimplementations

21.13: Class templates and nesting

21.14: Constructing iterators

21.14.1: Implementing a `RandomAccessIterator'
21.14.2: Implementing a `reverse_iterator'

Chapter 22: Advanced Template Use

22.1: Subtleties

22.1.1: Returning types nested under class templates
22.1.2: Type resolution for base class members
22.1.3: ::template, .template and ->template

22.2: Template Meta Programming

22.2.1: Values according to templates
22.2.1.1: Converting integral types to types
22.2.2: Selecting alternatives using templates
22.2.2.1: Defining overloading members
22.2.2.2: Class structure as a function of template parameters
22.2.2.3: An illustrative example
22.2.3: Templates: Iterations by Recursion

22.3: User-defined literals

22.4: Template template parameters

22.4.1: Policy classes - I
22.4.2: Policy classes - II: template template parameters
22.4.2.1: The destructor of Policy classes
22.4.3: Structure by Policy

22.5: Template aliases

22.6: Trait classes

22.6.1: Distinguishing class from non-class types
22.6.2: Available type traits

22.7: Using `noexcept' when offering the `strong guarantee'

22.8: More conversions to class types

22.8.1: Types to types
22.8.2: An empty type
22.8.3: Type convertibility
22.8.3.1: Determining inheritance

22.9: Template TypeList processing

22.9.1: The length of a TypeList
22.9.2: Searching a TypeList
22.9.3: Selecting from a TypeList
22.9.4: Prefixing/Appending to a TypeList
22.9.5: Erasing from a TypeList
22.9.5.1: Erasing the first occurrence
22.9.5.2: Erasing a type by its index
22.9.5.3: Erasing all occurrences of a type
22.9.5.4: Erasing duplicates

22.10: Using a TypeList

22.10.1: The Wrap and Multi class templates
22.10.2: The MultiBase class template
22.10.3: Support templates
22.10.4: Using Multi

Chapter 23: Concrete Examples

23.1: Using file descriptors with `streambuf' classes

23.1.1: Classes for output operations
23.1.2: Classes for input operations
23.1.2.1: Using a one-character buffer
23.1.2.2: Using an n-character buffer
23.1.2.3: Seeking positions in `streambuf' objects
23.1.2.4: Multiple `unget' calls in `streambuf' objects
23.1.3: Fixed-sized field extraction from istream objects
23.1.3.1: Member functions and example

23.2: The `fork' system call

23.2.1: A basic Fork class
23.2.2: Parents and Children
23.2.3: Redirection revisited
23.2.4: The `Daemon' program
23.2.5: The class `Pipe'
23.2.6: The class `ParentSlurp'
23.2.7: Communicating with multiple children
23.2.7.1: The class `Selector': interface
23.2.7.2: The class `Selector': implementation
23.2.7.3: The class `Monitor': interface
23.2.7.4: The class `Monitor': s_handler
23.2.7.5: The class `Monitor': the member `run'
23.2.7.6: The class `Monitor': example
23.2.7.7: The class `Child'

23.3: Function objects performing bitwise operations

23.4: Adding binary operators to classes

23.4.1: Binary operators allowing promotions

23.5: Range-based for-loops and pointer-ranges

23.6: Distinguishing lvalues from rvalues with operator[]()

23.7: Implementing a `reverse_iterator'

23.8: Using `bisonc++' and `flexc++'

23.8.1: Using `flexc++' to create a scanner
23.8.1.1: The derived class `Scanner'
23.8.1.2: The lexical scanner specification file
23.8.1.3: Implementing `Scanner'
23.8.1.4: Using a `Scanner' object
23.8.1.5: Building the program
23.8.2: Using `bisonc++' and `flexc++'
23.8.2.1: The `bisonc++' specification file
23.8.2.2: The `flexc++' specification file
23.8.2.3: Building the program
23.8.3: Bisonc++: using polymorphic semantic values
23.8.3.1: The parser using a polymorphic semantic value type
23.8.3.2: Tagging the actual semantic type: the `enum class Tag'
23.8.3.3: (Im)mutable semantic data: two base-structs
23.8.3.4: Traits of semantic type tags: the `TagTrait' trait class
23.8.3.5: Accessing data from derived classes
23.8.3.6: The polymorphic base class `SemBase'
23.8.3.7: The class template `Semantic', derived from `SemBase'
23.8.3.8: Adding new semantic data types
23.8.3.9: The parser's semantic value: `spSemBase'
23.8.3.10: The parser specification file
23.8.3.11: The scanner using a polymorphic semantic value type