C-SVM classifier using a radial basis function kernel
See documentation of AttributesCollector for more information
Methods
clone() | Create full copy of the classifier. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_sensitivity_analyzer(**kwargs) | Returns an appropriate SensitivityAnalyzer. |
get_space() | Query the processing space name of this node. |
is_trained([dataset]) | Either classifier was already trained. |
predict(obj, data, *args, **kwargs) | |
repredict(obj, data, *args, **kwargs) | |
reset() | |
retrain(dataset, **kwargs) | Helper to avoid check if data was changed actually changed |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
summary() | Provide quick summary over the SVM classifier |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Initialize instance of RbfCSVMC
Parameters: | kernel :
enable_ca : None or list of str
disable_ca : None or list of str
tube_epsilon :
C :
weight :
probability :
epsilon :
weight_label :
shrinking :
nu :
auto_train : bool
force_train : bool
space : str, optional
pass_attr : str, list of str|tuple, optional
postproc : Node instance, optional
descr : str
|
---|
Methods
clone() | Create full copy of the classifier. |
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_sensitivity_analyzer(**kwargs) | Returns an appropriate SensitivityAnalyzer. |
get_space() | Query the processing space name of this node. |
is_trained([dataset]) | Either classifier was already trained. |
predict(obj, data, *args, **kwargs) | |
repredict(obj, data, *args, **kwargs) | |
reset() | |
retrain(dataset, **kwargs) | Helper to avoid check if data was changed actually changed |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
summary() | Provide quick summary over the SVM classifier |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |