![]() ![]() | [marker1] |
![]() ![]() ![]() | |
![]() ![]() ![]() ![]() | Brief description |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | Brief description of the class Example |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | |
![]() ![]() ![]() | Solves the stokes equations |
![]() ![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | |
![]() ![]() | Defines the edp to be solved in the stationnary case : \( - nu*\Delta u = f \) |
![]() ![]() | |
![]() ![]() | Defines the edp to be solved in the instationnary case : \( dfrac{\partial u}{\partial t} - nu*\Delta u = f \) |