mvpa2.mappers.svd.ProjectionMapper

Inheritance diagram of ProjectionMapper

class mvpa2.mappers.svd.ProjectionMapper(demean=True, **kwargs)

Linear mapping between multidimensional spaces.

This class cannot be used directly. Sub-classes have to implement the _train() method, which has to compute the projection matrix _proj and optionally offset vectors _offset_in and _offset_out (if initialized with demean=True, which is default) given a dataset (see _train() docstring for more information).

Once the projection matrix is available, this class provides functionality to perform forward and backwards linear mapping of data, the latter by default using pseudo-inverse (but could be altered in subclasses, like hermitian (conjugate) transpose in case of SVD). Additionally, ProjectionMapper supports optional selection of arbitrary component (i.e. columns of the projection matrix) of the projection.

Forward and back-projection matrices (a.k.a. projection and reconstruction) are available via the proj and recon properties.

Notes

Available conditional attributes:

  • calling_time+: Time (in seconds) it took to call the node
  • raw_results: Computed results before invoking postproc. Stored only if postproc is not None.
  • training_time+: Time (in seconds) it took to train the learner

(Conditional attributes enabled by default suffixed with +)

Methods

forward(data) Map data from input to output space.
forward1(data) Wrapper method to map single samples.
generate(ds) Yield processing results.
get_postproc() Returns the post-processing node or None.
get_space() Query the processing space name of this node.
reset()
reverse(data) Reverse-map data from output back into input space.
reverse1(data) Wrapper method to map single samples.
set_postproc(node) Assigns a post-processing node
set_space(name) Set the processing space name of this node.
train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training

Initialize the ProjectionMapper

Parameters :

demean : bool

Either data should be demeaned while computing projections and applied back while doing reverse()

enable_ca : None or list of str

Names of the conditional attributes which should be enabled in addition to the default ones

disable_ca : None or list of str

Names of the conditional attributes which should be disabled

auto_train : bool

Flag whether the learner will automatically train itself on the input dataset when called untrained.

force_train : bool

Flag whether the learner will enforce training on the input dataset upon every call.

space: str, optional :

Name of the ‘processing space’. The actual meaning of this argument heavily depends on the sub-class implementation. In general, this is a trigger that tells the node to compute and store information about the input data that is “interesting” in the context of the corresponding processing in the output dataset.

postproc : Node instance, optional

Node to perform post-processing of results. This node is applied in __call__() to perform a final processing step on the to be result dataset. If None, nothing is done.

descr : str

Description of the instance

Methods

forward(data) Map data from input to output space.
forward1(data) Wrapper method to map single samples.
generate(ds) Yield processing results.
get_postproc() Returns the post-processing node or None.
get_space() Query the processing space name of this node.
reset()
reverse(data) Reverse-map data from output back into input space.
reverse1(data) Wrapper method to map single samples.
set_postproc(node) Assigns a post-processing node
set_space(name) Set the processing space name of this node.
train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training
proj

Projection matrix

recon

Backprojection matrix

NeuroDebian

NITRC-listed