mvpa2.mappers.zscore.ZScoreMapper

Inheritance diagram of ZScoreMapper

class mvpa2.mappers.zscore.ZScoreMapper(params=None, param_est=None, chunks_attr='chunks', dtype='float64', **kwargs)

Mapper to normalize features (Z-scoring).

Z-scoring can be done chunk-wise (with independent mean and standard deviation per chunk) or on the full data. It is possible to specify a sample attribute, unique value of which would then be used to determine the chunks.

By default, Z-scoring parameters (mean and standard deviation) are estimated from the data (either chunk-wise or globally). However, it is also possible to define fixed parameters (again a global setting or per-chunk definitions), or to select a specific subset of samples from which these parameters should be estimated.

If necessary, data is upcasted into a configurable datatype to prevent information loss.

Notes

It should be mentioned that the mapper can be used for forward-mapping of datasets without prior training (it will auto-train itself upon first use). It is, however, not possible to map plain data arrays without prior training. Also, for obvious reasons, it is also not possible to perform chunk-wise Z-scoring of plain data arrays.

Reverse-mapping is currently not implemented.

Available conditional attributes:

  • calling_time+: Time (in seconds) it took to call the node
  • raw_results: Computed results before invoking postproc. Stored only if postproc is not None.
  • training_time+: Time (in seconds) it took to train the learner

(Conditional attributes enabled by default suffixed with +)

Methods

forward(data) Map data from input to output space.
forward1(data) Wrapper method to map single samples.
generate(ds) Yield processing results.
get_postproc() Returns the post-processing node or None.
get_space() Query the processing space name of this node.
reset()
reverse(data) Reverse-map data from output back into input space.
reverse1(data) Wrapper method to map single samples.
set_postproc(node) Assigns a post-processing node
set_space(name) Set the processing space name of this node.
train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training
Parameters :

params : None or tuple(mean, std) or dict

Fixed Z-Scoring parameters (mean, standard deviation). If provided, no parameters are estimated from the data. It is possible to specify individual parameters for each chunk by passing a dictionary with the chunk ids as keys and the parameter tuples as values. If None, parameters will be estimated from the training data.

param_est : None or tuple(attrname, attrvalues)

Limits the choice of samples used for automatic parameter estimation to a specific subset identified by a set of a given sample attribute values. The tuple should have the name of that sample attribute as the first element, and a sequence of attribute values as the second element. If None, all samples will be used for parameter estimation.

chunks_attr : str or None

If provided, it specifies the name of a samples attribute in the training data, unique values of which will be used to identify chunks of samples, and to perform individual Z-scoring within them.

dtype : Numpy dtype, optional

Target dtype that is used for upcasting, in case integer data is to be Z-scored.

enable_ca : None or list of str

Names of the conditional attributes which should be enabled in addition to the default ones

disable_ca : None or list of str

Names of the conditional attributes which should be disabled

auto_train : bool

Flag whether the learner will automatically train itself on the input dataset when called untrained.

force_train : bool

Flag whether the learner will enforce training on the input dataset upon every call.

space: str, optional :

Name of the ‘processing space’. The actual meaning of this argument heavily depends on the sub-class implementation. In general, this is a trigger that tells the node to compute and store information about the input data that is “interesting” in the context of the corresponding processing in the output dataset.

postproc : Node instance, optional

Node to perform post-processing of results. This node is applied in __call__() to perform a final processing step on the to be result dataset. If None, nothing is done.

descr : str

Description of the instance

Methods

forward(data) Map data from input to output space.
forward1(data) Wrapper method to map single samples.
generate(ds) Yield processing results.
get_postproc() Returns the post-processing node or None.
get_space() Query the processing space name of this node.
reset()
reverse(data) Reverse-map data from output back into input space.
reverse1(data) Wrapper method to map single samples.
set_postproc(node) Assigns a post-processing node
set_space(name) Set the processing space name of this node.
train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training
chunks_attr
dtype
param_est
params

NeuroDebian

NITRC-listed