The implementation of a generic searchlight measure.
The idea for a searchlight algorithm stems from a paper by Kriegeskorte et al. (2006). As a result it produces a map of measures given a datameasure instance of interest, which is ran at each spatial location.
Notes
Available conditional attributes:
(Conditional attributes enabled by default suffixed with +)
Methods
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |
Parameters : | datameasure : callable
add_center_fa : bool or str
results_backend : (‘native’, ‘hdf5’), optional
results_fx : callable, optional
tmp_prefix : str, optional
nblocks : None or int
enable_ca : None or list of str
disable_ca : None or list of str
queryengine : QueryEngine
roi_ids : None or list(int) or str
nproc : None or int
null_dist : instance of distribution estimator
auto_train : bool
force_train : bool
space: str, optional :
postproc : Node instance, optional
descr : str
|
---|
Methods
generate(ds) | Yield processing results. |
get_postproc() | Returns the post-processing node or None. |
get_space() | Query the processing space name of this node. |
reset() | |
set_postproc(node) | Assigns a post-processing node |
set_space(name) | Set the processing space name of this node. |
train(ds) | The default implementation calls _pretrain(), _train(), and finally _posttrain(). |
untrain() | Reverts changes in the state of this node caused by previous training |