mvpa2.measures.anova.CompoundOneWayAnova

Inheritance diagram of CompoundOneWayAnova

class mvpa2.measures.anova.CompoundOneWayAnova(space='targets', **kwargs)

Compound comparisons via univariate ANOVA.

This measure compute an ANOVA F-score per each feature, for each one-vs-rest comparision for all unique labels in a dataset. Each F-score vector for each comparision is included in the return datasets as a separate samples. Corresponding p-values are avialable in feature attributes named ‘fprob_X’, where X is the name of the actual comparision label. Note that p-values are only available, if SciPy is installed. The comparison labels for each F-vectore are also stored as ‘targets’ sample attribute in the returned dataset.

Notes

Available conditional attributes:

  • calling_time+: Time (in seconds) it took to call the node
  • null_prob+: None
  • null_t: None
  • raw_results: Computed results before invoking postproc. Stored only if postproc is not None.
  • training_time+: Time (in seconds) it took to train the learner

(Conditional attributes enabled by default suffixed with +)

Methods

generate(ds) Yield processing results.
get_postproc() Returns the post-processing node or None.
get_space() Query the processing space name of this node.
reset()
set_postproc(node) Assigns a post-processing node
set_space(name) Set the processing space name of this node.
train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training
Parameters :

space : str

What samples attribute to use as targets (labels).

enable_ca : None or list of str

Names of the conditional attributes which should be enabled in addition to the default ones

disable_ca : None or list of str

Names of the conditional attributes which should be disabled

null_dist : instance of distribution estimator

The estimated distribution is used to assign a probability for a certain value of the computed measure.

auto_train : bool

Flag whether the learner will automatically train itself on the input dataset when called untrained.

force_train : bool

Flag whether the learner will enforce training on the input dataset upon every call.

postproc : Node instance, optional

Node to perform post-processing of results. This node is applied in __call__() to perform a final processing step on the to be result dataset. If None, nothing is done.

descr : str

Description of the instance

Methods

generate(ds) Yield processing results.
get_postproc() Returns the post-processing node or None.
get_space() Query the processing space name of this node.
reset()
set_postproc(node) Assigns a post-processing node
set_space(name) Set the processing space name of this node.
train(ds) The default implementation calls _pretrain(), _train(), and finally _posttrain().
untrain() Reverts changes in the state of this node caused by previous training

NeuroDebian

NITRC-listed