125 $ ldc, rwork, resid )
134 INTEGER lda, ldafac, ldc, n
139 REAL a( lda, * ), afac( ldafac, * ), c( ldc, * ),
147 parameter( zero = 0.0e+0, one = 1.0e+0 )
176 anorm =
slansy(
'1', uplo, n, a, lda, rwork )
180 CALL
slaset(
'Full', n, n, zero, one, c, ldc )
184 CALL
slavsy_rook( uplo,
'Transpose',
'Non-unit', n, n, afac,
185 $ ldafac, ipiv, c, ldc, info )
189 CALL
slavsy_rook( uplo,
'No transpose',
'Unit', n, n, afac,
190 $ ldafac, ipiv, c, ldc, info )
194 IF(
lsame( uplo,
'U' ) )
THEN
197 c( i,
j ) = c( i,
j ) - a( i,
j )
203 c( i,
j ) = c( i,
j ) - a( i,
j )
210 resid =
slansy(
'1', uplo, n, c, ldc, rwork )
212 IF( anorm.LE.zero )
THEN
216 resid = ( ( resid /
REAL( N ) ) / anorm ) / eps
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
REAL function slansy(NORM, UPLO, N, A, LDA, WORK)
SLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real symmetric matrix.
LOGICAL function lsame(CA, CB)
LSAME
REAL function slamch(CMACH)
SLAMCH
subroutine slavsy_rook(UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
SLAVSY_ROOK
subroutine ssyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
SSYT01_ROOK
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j