LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
slqt01.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine slqt01 (M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
 SLQT01 More...
 

Function/Subroutine Documentation

subroutine slqt01 ( integer  M,
integer  N,
real, dimension( lda, * )  A,
real, dimension( lda, * )  AF,
real, dimension( lda, * )  Q,
real, dimension( lda, * )  L,
integer  LDA,
real, dimension( * )  TAU,
real, dimension( lwork )  WORK,
integer  LWORK,
real, dimension( * )  RWORK,
real, dimension( * )  RESULT 
)

SLQT01

Purpose:
 SLQT01 tests SGELQF, which computes the LQ factorization of an m-by-n
 matrix A, and partially tests SORGLQ which forms the n-by-n
 orthogonal matrix Q.

 SLQT01 compares L with A*Q', and checks that Q is orthogonal.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]A
          A is REAL array, dimension (LDA,N)
          The m-by-n matrix A.
[out]AF
          AF is REAL array, dimension (LDA,N)
          Details of the LQ factorization of A, as returned by SGELQF.
          See SGELQF for further details.
[out]Q
          Q is REAL array, dimension (LDA,N)
          The n-by-n orthogonal matrix Q.
[out]L
          L is REAL array, dimension (LDA,max(M,N))
[in]LDA
          LDA is INTEGER
          The leading dimension of the arrays A, AF, Q and L.
          LDA >= max(M,N).
[out]TAU
          TAU is REAL array, dimension (min(M,N))
          The scalar factors of the elementary reflectors, as returned
          by SGELQF.
[out]WORK
          WORK is REAL array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
[out]RWORK
          RWORK is REAL array, dimension (max(M,N))
[out]RESULT
          RESULT is REAL array, dimension (2)
          The test ratios:
          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 126 of file slqt01.f.

Here is the call graph for this function:

Here is the caller graph for this function: