LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
shst01.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine shst01 (N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK, LWORK, RESULT)
 SHST01 More...
 

Function/Subroutine Documentation

subroutine shst01 ( integer  N,
integer  ILO,
integer  IHI,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( ldh, * )  H,
integer  LDH,
real, dimension( ldq, * )  Q,
integer  LDQ,
real, dimension( lwork )  WORK,
integer  LWORK,
real, dimension( 2 )  RESULT 
)

SHST01

Purpose:
 SHST01 tests the reduction of a general matrix A to upper Hessenberg
 form:  A = Q*H*Q'.  Two test ratios are computed;

 RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )

 The matrix Q is assumed to be given explicitly as it would be
 following SGEHRD + SORGHR.

 In this version, ILO and IHI are not used and are assumed to be 1 and
 N, respectively.
Parameters
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]ILO
          ILO is INTEGER
[in]IHI
          IHI is INTEGER

          A is assumed to be upper triangular in rows and columns
          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
          rows and columns ILO+1:IHI.
[in]A
          A is REAL array, dimension (LDA,N)
          The original n by n matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]H
          H is REAL array, dimension (LDH,N)
          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
          as computed by SGEHRD.  H is assumed to be zero below the
          first subdiagonal.
[in]LDH
          LDH is INTEGER
          The leading dimension of the array H.  LDH >= max(1,N).
[in]Q
          Q is REAL array, dimension (LDQ,N)
          The orthogonal matrix Q from the reduction A = Q*H*Q' as
          computed by SGEHRD + SORGHR.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= max(1,N).
[out]WORK
          WORK is REAL array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= 2*N*N.
[out]RESULT
          RESULT is REAL array, dimension (2)
          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 134 of file shst01.f.

Here is the call graph for this function:

Here is the caller graph for this function: