107 SUBROUTINE zlarfg( N, ALPHA, X, INCX, TAU )
116 COMPLEX*16 alpha, tau
125 DOUBLE PRECISION one, zero
126 parameter( one = 1.0d+0, zero = 0.0d+0 )
130 DOUBLE PRECISION alphi, alphr, beta, rsafmn, safmin, xnorm
138 INTRINSIC abs, dble, dcmplx, dimag, sign
151 alphr = dble( alpha )
152 alphi = dimag( alpha )
154 IF( xnorm.EQ.zero .AND. alphi.EQ.zero )
THEN
163 beta = -sign(
dlapy3( alphr, alphi, xnorm ), alphr )
165 rsafmn = one / safmin
168 IF( abs( beta ).LT.safmin )
THEN
174 CALL
zdscal( n-1, rsafmn,
x, incx )
178 IF( abs( beta ).LT.safmin )
184 alpha = dcmplx( alphr, alphi )
185 beta = -sign(
dlapy3( alphr, alphi, xnorm ), alphr )
187 tau = dcmplx( ( beta-alphr ) / beta, -alphi / beta )
188 alpha =
zladiv( dcmplx( one ), alpha-beta )
189 CALL
zscal( n-1, alpha,
x, incx )
COMPLEX *16 function zladiv(X, Y)
ZLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
subroutine zdscal(N, DA, ZX, INCX)
ZDSCAL
DOUBLE PRECISION function dlapy3(X, Y, Z)
DLAPY3 returns sqrt(x2+y2+z2).
DOUBLE PRECISION function dznrm2(N, X, INCX)
DZNRM2
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
DOUBLE PRECISION function dlamch(CMACH)
DLAMCH
subroutine zlarfg(N, ALPHA, X, INCX, TAU)
ZLARFG generates an elementary reflector (Householder matrix).
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL