101 SUBROUTINE zgetrf ( M, N, A, LDA, IPIV, INFO)
109 INTEGER info, lda, m, n
113 COMPLEX*16 a( lda, * )
120 parameter( one = (1.0d+0, 0.0d+0) )
123 INTEGER i, iinfo,
j, jb, k, nb
142 ELSE IF( n.LT.0 )
THEN
144 ELSE IF( lda.LT.max( 1, m ) )
THEN
148 CALL
xerbla(
'ZGETRF', -info )
154 IF( m.EQ.0 .OR. n.EQ.0 )
159 nb =
ilaenv( 1,
'ZGETRF',
' ', m, n, -1, -1 )
160 IF( nb.LE.1 .OR. nb.GE.min( m, n ) )
THEN
164 CALL
zgetf2( m, n, a, lda, ipiv, info )
170 DO 20
j = 1, min( m, n ), nb
171 jb = min( min( m, n )-
j+1, nb )
176 DO 30 k = 1,
j-nb, nb
180 CALL
zlaswp( jb, a(1,
j), lda, k, k+nb-1, ipiv, 1 )
184 CALL
ztrsm(
'Left',
'Lower',
'No transpose',
'Unit',
185 $ nb, jb, one, a( k, k ), lda,
190 CALL
zgemm(
'No transpose',
'No transpose',
191 $ m-k-nb+1, jb, nb, -one,
192 $ a( k+nb, k ), lda, a( k,
j ), lda, one,
193 $ a( k+nb,
j ), lda )
199 CALL
zgetf2( m-
j+1, jb, a(
j,
j ), lda, ipiv(
j ), iinfo )
203 IF( info.EQ.0 .AND. iinfo.GT.0 )
204 $ info = iinfo +
j - 1
205 DO 10 i =
j, min( m,
j+jb-1 )
206 ipiv( i ) =
j - 1 + ipiv( i )
214 DO 40 k = 1, min( m, n ), nb
215 CALL
zlaswp( k-1, a( 1, 1 ), lda, k,
216 $ min(k+nb-1, min( m, n )), ipiv, 1 )
223 CALL
zlaswp( n-m, a(1, m+1), lda, 1, m, ipiv, 1 )
227 jb = min( m-k+1, nb )
229 CALL
ztrsm(
'Left',
'Lower',
'No transpose',
'Unit',
230 $ jb, n-m, one, a( k, k ), lda,
234 IF ( k+nb.LE.m )
THEN
235 CALL
zgemm(
'No transpose',
'No transpose',
236 $ m-k-nb+1, n-m, nb, -one,
237 $ a( k+nb, k ), lda, a( k, m+1 ), lda, one,
238 $ a( k+nb, m+1 ), lda )
subroutine ztrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
ZTRSM
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine zgetf2(M, N, A, LDA, IPIV, INFO)
ZGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row inter...
INTEGER function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
subroutine zlaswp(N, A, LDA, K1, K2, IPIV, INCX)
ZLASWP performs a series of row interchanges on a general rectangular matrix.
subroutine zgetrf(M, N, A, LDA, IPIV, INFO)
ZGETRF VARIANT: Crout Level 3 BLAS version of the algorithm.