127 SUBROUTINE zpot06( UPLO, N, NRHS, A, LDA, X, LDX, B, LDB,
137 INTEGER lda, ldb, ldx, n, nrhs
138 DOUBLE PRECISION resid
141 DOUBLE PRECISION rwork( * )
142 COMPLEX*16 a( lda, * ),
b( ldb, * ),
x( ldx, * )
148 DOUBLE PRECISION zero, one
149 parameter( zero = 0.0d+0, one = 1.0d+0 )
150 COMPLEX*16 cone, negcone
151 parameter( cone = ( 1.0d+0, 0.0d+0 ) )
152 parameter( negcone = ( -1.0d+0, 0.0d+0 ) )
156 DOUBLE PRECISION anorm, bnorm, eps, xnorm
169 INTRINSIC abs, dble, dimag, max
172 DOUBLE PRECISION cabs1
175 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
182 IF( n.LE.0 .OR. nrhs.EQ.0 )
THEN
190 anorm =
zlansy(
'I', uplo, n, a, lda, rwork )
191 IF( anorm.LE.zero )
THEN
199 CALL
zhemm(
'Left', uplo, n, nrhs, negcone, a, lda,
x,
200 $ ldx, cone,
b, ldb )
209 IF( xnorm.LE.zero )
THEN
212 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
LOGICAL function lsame(CA, CB)
LSAME
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real b(3) integer i
DOUBLE PRECISION function zlansy(NORM, UPLO, N, A, LDA, WORK)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
subroutine zhemm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZHEMM
DOUBLE PRECISION function dlamch(CMACH)
DLAMCH
INTEGER function izamax(N, ZX, INCX)
IZAMAX
subroutine zpot06(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT06