LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
dstt22.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dstt22 (N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK, LDWORK, RESULT)
 DSTT22 More...
 

Function/Subroutine Documentation

subroutine dstt22 ( integer  N,
integer  M,
integer  KBAND,
double precision, dimension( * )  AD,
double precision, dimension( * )  AE,
double precision, dimension( * )  SD,
double precision, dimension( * )  SE,
double precision, dimension( ldu, * )  U,
integer  LDU,
double precision, dimension( ldwork, * )  WORK,
integer  LDWORK,
double precision, dimension( 2 )  RESULT 
)

DSTT22

Purpose:
 DSTT22  checks a set of M eigenvalues and eigenvectors,

     A U = U S

 where A is symmetric tridiagonal, the columns of U are orthogonal,
 and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
 Two tests are performed:

    RESULT(1) = | U' A U - S | / ( |A| m ulp )

    RESULT(2) = | I - U'U | / ( m ulp )
Parameters
[in]N
          N is INTEGER
          The size of the matrix.  If it is zero, DSTT22 does nothing.
          It must be at least zero.
[in]M
          M is INTEGER
          The number of eigenpairs to check.  If it is zero, DSTT22
          does nothing.  It must be at least zero.
[in]KBAND
          KBAND is INTEGER
          The bandwidth of the matrix S.  It may only be zero or one.
          If zero, then S is diagonal, and SE is not referenced.  If
          one, then S is symmetric tri-diagonal.
[in]AD
          AD is DOUBLE PRECISION array, dimension (N)
          The diagonal of the original (unfactored) matrix A.  A is
          assumed to be symmetric tridiagonal.
[in]AE
          AE is DOUBLE PRECISION array, dimension (N)
          The off-diagonal of the original (unfactored) matrix A.  A
          is assumed to be symmetric tridiagonal.  AE(1) is ignored,
          AE(2) is the (1,2) and (2,1) element, etc.
[in]SD
          SD is DOUBLE PRECISION array, dimension (N)
          The diagonal of the (symmetric tri-) diagonal matrix S.
[in]SE
          SE is DOUBLE PRECISION array, dimension (N)
          The off-diagonal of the (symmetric tri-) diagonal matrix S.
          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is
          ignored, SE(2) is the (1,2) and (2,1) element, etc.
[in]U
          U is DOUBLE PRECISION array, dimension (LDU, N)
          The orthogonal matrix in the decomposition.
[in]LDU
          LDU is INTEGER
          The leading dimension of U.  LDU must be at least N.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (LDWORK, M+1)
[in]LDWORK
          LDWORK is INTEGER
          The leading dimension of WORK.  LDWORK must be at least
          max(1,M).
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The values computed by the two tests described above.  The
          values are currently limited to 1/ulp, to avoid overflow.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 139 of file dstt22.f.

Here is the call graph for this function:

Here is the caller graph for this function: