136 $ ldaf, ipiv,
x, info,
146 INTEGER n, lda, ldaf, info
150 COMPLEX*16 a( lda, * ), af( ldaf, * ), work( * ),
x( * )
151 DOUBLE PRECISION rwork( * )
159 DOUBLE PRECISION ainvnm, anorm, tmp
174 INTRINSIC abs, max,
REAL, dimag
177 DOUBLE PRECISION cabs1
180 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
187 notrans =
lsame( trans,
'N' )
188 IF ( .NOT. notrans .AND. .NOT.
lsame( trans,
'T' ) .AND. .NOT.
189 $
lsame( trans,
'C' ) )
THEN
191 ELSE IF( n.LT.0 )
THEN
193 ELSE IF( lda.LT.max( 1, n ) )
THEN
195 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
199 CALL
xerbla(
'ZLA_GERCOND_X', -info )
210 tmp = tmp + cabs1( a( i,
j ) *
x(
j ) )
213 anorm = max( anorm, tmp )
219 tmp = tmp + cabs1( a(
j, i ) *
x(
j ) )
222 anorm = max( anorm, tmp )
231 ELSE IF( anorm .EQ. 0.0d+0 )
THEN
241 CALL
zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
246 work( i ) = work( i ) * rwork( i )
250 CALL
zgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
253 CALL
zgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
260 work( i ) = work( i ) /
x( i )
267 work( i ) = work( i ) /
x( i )
271 CALL
zgetrs(
'Conjugate transpose', n, 1, af, ldaf, ipiv,
274 CALL
zgetrs(
'No transpose', n, 1, af, ldaf, ipiv,
281 work( i ) = work( i ) * rwork( i )
289 IF( ainvnm .NE. 0.0d+0 )
LOGICAL function lsame(CA, CB)
LSAME
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine zlacn2(N, V, X, EST, KASE, ISAVE)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
subroutine zgetrs(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZGETRS
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
DOUBLE PRECISION function zla_gercond_x(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
ZLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices...