132 $ info, work, rwork )
141 INTEGER n, lda, ldaf, info
145 COMPLEX a( lda, * ), af( ldaf, * ), work( * ),
x( * )
153 REAL ainvnm, anorm, tmp
175 cabs1( zdum ) = abs(
REAL( ZDUM ) ) + abs( aimag( zdum ) )
182 upper =
lsame( uplo,
'U' )
183 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
185 ELSE IF ( n.LT.0 )
THEN
187 ELSE IF( lda.LT.max( 1, n ) )
THEN
189 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
193 CALL
xerbla(
'CLA_SYRCOND_X', -info )
197 IF (
lsame( uplo,
'U' ) ) up = .true.
206 tmp = tmp + cabs1( a(
j, i ) *
x(
j ) )
209 tmp = tmp + cabs1( a( i,
j ) *
x(
j ) )
212 anorm = max( anorm, tmp )
218 tmp = tmp + cabs1( a( i,
j ) *
x(
j ) )
221 tmp = tmp + cabs1( a(
j, i ) *
x(
j ) )
224 anorm = max( anorm, tmp )
233 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
243 CALL
clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
250 work( i ) = work( i ) * rwork( i )
254 CALL
csytrs(
'U', n, 1, af, ldaf, ipiv,
257 CALL
csytrs(
'L', n, 1, af, ldaf, ipiv,
264 work( i ) = work( i ) /
x( i )
271 work( i ) = work( i ) /
x( i )
275 CALL
csytrs(
'U', n, 1, af, ldaf, ipiv,
278 CALL
csytrs(
'L', n, 1, af, ldaf, ipiv,
285 work( i ) = work( i ) * rwork( i )
293 IF( ainvnm .NE. 0.0e+0 )
LOGICAL function lsame(CA, CB)
LSAME
subroutine xerbla(SRNAME, INFO)
XERBLA
REAL function cla_syrcond_x(UPLO, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
CLA_SYRCOND_X computes the infinity norm condition number of op(A)*diag(x) for symmetric indefinite m...
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
subroutine csytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...