132 $ info, work, rwork )
141 INTEGER n, lda, ldaf, info
145 COMPLEX a( lda, * ), af( ldaf, * ), work( * ),
x( * )
153 REAL ainvnm, anorm, tmp
174 cabs1( zdum ) = abs(
REAL( ZDUM ) ) + abs( aimag( zdum ) )
181 upper =
lsame( uplo,
'U' )
182 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
184 ELSE IF ( n.LT.0 )
THEN
186 ELSE IF( lda.LT.max( 1, n ) )
THEN
188 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
192 CALL
xerbla(
'CLA_HERCOND_X', -info )
196 IF (
lsame( uplo,
'U' ) ) up = .true.
205 tmp = tmp + cabs1( a(
j, i ) *
x(
j ) )
208 tmp = tmp + cabs1( a( i,
j ) *
x(
j ) )
211 anorm = max( anorm, tmp )
217 tmp = tmp + cabs1( a( i,
j ) *
x(
j ) )
220 tmp = tmp + cabs1( a(
j, i ) *
x(
j ) )
223 anorm = max( anorm, tmp )
232 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
242 CALL
clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
249 work( i ) = work( i ) * rwork( i )
253 CALL
chetrs(
'U', n, 1, af, ldaf, ipiv,
256 CALL
chetrs(
'L', n, 1, af, ldaf, ipiv,
263 work( i ) = work( i ) /
x( i )
270 work( i ) = work( i ) /
x( i )
274 CALL
chetrs(
'U', n, 1, af, ldaf, ipiv,
277 CALL
chetrs(
'L', n, 1, af, ldaf, ipiv,
284 work( i ) = work( i ) * rwork( i )
292 IF( ainvnm .NE. 0.0e+0 )
LOGICAL function lsame(CA, CB)
LSAME
REAL function cla_hercond_x(UPLO, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
subroutine chetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS
subroutine xerbla(SRNAME, INFO)
XERBLA
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...