124 DOUBLE PRECISION FUNCTION zlansy( NORM, UPLO, N, A, LDA, WORK )
136 DOUBLE PRECISION work( * )
137 COMPLEX*16 a( lda, * )
143 DOUBLE PRECISION one, zero
144 parameter( one = 1.0d+0, zero = 0.0d+0 )
148 DOUBLE PRECISION absa, scale, sum,
value
164 ELSE IF(
lsame( norm,
'M' ) )
THEN
169 IF(
lsame( uplo,
'U' ) )
THEN
172 sum = abs( a( i,
j ) )
179 sum = abs( a( i,
j ) )
184 ELSE IF( (
lsame( norm,
'I' ) ) .OR. (
lsame( norm,
'O' ) ) .OR.
185 $ ( norm.EQ.
'1' ) )
THEN
190 IF(
lsame( uplo,
'U' ) )
THEN
194 absa = abs( a( i,
j ) )
196 work( i ) = work( i ) + absa
198 work(
j ) = sum + abs( a(
j,
j ) )
209 sum = work(
j ) + abs( a(
j,
j ) )
211 absa = abs( a( i,
j ) )
213 work( i ) = work( i ) + absa
218 ELSE IF( (
lsame( norm,
'F' ) ) .OR. (
lsame( norm,
'E' ) ) )
THEN
224 IF(
lsame( uplo,
'U' ) )
THEN
226 CALL
zlassq(
j-1, a( 1,
j ), 1, scale, sum )
230 CALL
zlassq( n-
j, a(
j+1,
j ), 1, scale, sum )
234 CALL
zlassq( n, a, lda+1, scale, sum )
235 value = scale*sqrt( sum )
LOGICAL function lsame(CA, CB)
LSAME
subroutine zlassq(N, X, INCX, SCALE, SUMSQ)
ZLASSQ updates a sum of squares represented in scaled form.
input scalars passed by value
DOUBLE PRECISION function zlansy(NORM, UPLO, N, A, LDA, WORK)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex symmetric matrix.
LOGICAL function disnan(DIN)
DISNAN tests input for NaN.
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real j