81 REAL rw( nmax ), s( nmax )
82 COMPLEX a( nmax, nmax ),
b( nmax, nmax ), w( nmax )
98 COMMON / infoc / infot, nout, ok, lerr
99 COMMON / srnamc / srnamt
105 a( 1, 1 ) = ( 1.0e+0, 0.0e+0 )
106 a( 1, 2 ) = ( 2.0e+0, 0.0e+0 )
107 a( 2, 2 ) = ( 3.0e+0, 0.0e+0 )
108 a( 2, 1 ) = ( 4.0e+0, 0.0e+0 )
110 WRITE( nout, fmt = * )
114 IF(
lsamen( 2, c2,
'LS' ) )
THEN
120 CALL
cgels(
'/', 0, 0, 0, a, 1,
b, 1, w, 1, info )
121 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
123 CALL
cgels(
'N', -1, 0, 0, a, 1,
b, 1, w, 1, info )
124 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
126 CALL
cgels(
'N', 0, -1, 0, a, 1,
b, 1, w, 1, info )
127 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
129 CALL
cgels(
'N', 0, 0, -1, a, 1,
b, 1, w, 1, info )
130 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
132 CALL
cgels(
'N', 2, 0, 0, a, 1,
b, 2, w, 2, info )
133 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
135 CALL
cgels(
'N', 2, 0, 0, a, 2,
b, 1, w, 2, info )
136 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
138 CALL
cgels(
'N', 1, 1, 0, a, 1,
b, 1, w, 1, info )
139 CALL
chkxer(
'CGELS ', infot, nout, lerr, ok )
145 CALL
cgelss( -1, 0, 0, a, 1,
b, 1, s, rcond, irnk, w, 1, rw,
147 CALL
chkxer(
'CGELSS', infot, nout, lerr, ok )
149 CALL
cgelss( 0, -1, 0, a, 1,
b, 1, s, rcond, irnk, w, 1, rw,
151 CALL
chkxer(
'CGELSS', infot, nout, lerr, ok )
153 CALL
cgelss( 0, 0, -1, a, 1,
b, 1, s, rcond, irnk, w, 1, rw,
155 CALL
chkxer(
'CGELSS', infot, nout, lerr, ok )
157 CALL
cgelss( 2, 0, 0, a, 1,
b, 2, s, rcond, irnk, w, 2, rw,
159 CALL
chkxer(
'CGELSS', infot, nout, lerr, ok )
161 CALL
cgelss( 2, 0, 0, a, 2,
b, 1, s, rcond, irnk, w, 2, rw,
163 CALL
chkxer(
'CGELSS', infot, nout, lerr, ok )
169 CALL
cgelsx( -1, 0, 0, a, 1,
b, 1, ip, rcond, irnk, w, rw,
171 CALL
chkxer(
'CGELSX', infot, nout, lerr, ok )
173 CALL
cgelsx( 0, -1, 0, a, 1,
b, 1, ip, rcond, irnk, w, rw,
175 CALL
chkxer(
'CGELSX', infot, nout, lerr, ok )
177 CALL
cgelsx( 0, 0, -1, a, 1,
b, 1, ip, rcond, irnk, w, rw,
179 CALL
chkxer(
'CGELSX', infot, nout, lerr, ok )
181 CALL
cgelsx( 2, 0, 0, a, 1,
b, 2, ip, rcond, irnk, w, rw,
183 CALL
chkxer(
'CGELSX', infot, nout, lerr, ok )
185 CALL
cgelsx( 2, 0, 0, a, 2,
b, 1, ip, rcond, irnk, w, rw,
187 CALL
chkxer(
'CGELSX', infot, nout, lerr, ok )
193 CALL
cgelsy( -1, 0, 0, a, 1,
b, 1, ip, rcond, irnk, w, 10, rw,
195 CALL
chkxer(
'CGELSY', infot, nout, lerr, ok )
197 CALL
cgelsy( 0, -1, 0, a, 1,
b, 1, ip, rcond, irnk, w, 10, rw,
199 CALL
chkxer(
'CGELSY', infot, nout, lerr, ok )
201 CALL
cgelsy( 0, 0, -1, a, 1,
b, 1, ip, rcond, irnk, w, 10, rw,
203 CALL
chkxer(
'CGELSY', infot, nout, lerr, ok )
205 CALL
cgelsy( 2, 0, 0, a, 1,
b, 2, ip, rcond, irnk, w, 10, rw,
207 CALL
chkxer(
'CGELSY', infot, nout, lerr, ok )
209 CALL
cgelsy( 2, 0, 0, a, 2,
b, 1, ip, rcond, irnk, w, 10, rw,
211 CALL
chkxer(
'CGELSY', infot, nout, lerr, ok )
213 CALL
cgelsy( 0, 3, 0, a, 1,
b, 3, ip, rcond, irnk, w, 1, rw,
215 CALL
chkxer(
'CGELSY', infot, nout, lerr, ok )
221 CALL
cgelsd( -1, 0, 0, a, 1,
b, 1, s, rcond, irnk, w, 10,
223 CALL
chkxer(
'CGELSD', infot, nout, lerr, ok )
225 CALL
cgelsd( 0, -1, 0, a, 1,
b, 1, s, rcond, irnk, w, 10,
227 CALL
chkxer(
'CGELSD', infot, nout, lerr, ok )
229 CALL
cgelsd( 0, 0, -1, a, 1,
b, 1, s, rcond, irnk, w, 10,
231 CALL
chkxer(
'CGELSD', infot, nout, lerr, ok )
233 CALL
cgelsd( 2, 0, 0, a, 1,
b, 2, s, rcond, irnk, w, 10,
235 CALL
chkxer(
'CGELSD', infot, nout, lerr, ok )
237 CALL
cgelsd( 2, 0, 0, a, 2,
b, 1, s, rcond, irnk, w, 10,
239 CALL
chkxer(
'CGELSD', infot, nout, lerr, ok )
241 CALL
cgelsd( 2, 2, 1, a, 2,
b, 2, s, rcond, irnk, w, 1,
243 CALL
chkxer(
'CGELSD', infot, nout, lerr, ok )
248 CALL
alaesm( path, ok, nout )
subroutine cgelsy(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, LWORK, RWORK, INFO)
CGELSY solves overdetermined or underdetermined systems for GE matrices
subroutine cerrls(PATH, NUNIT)
CERRLS
subroutine chkxer(SRNAMT, INFOT, NOUT, LERR, OK)
set ue cd $ADTTMP cat<< EOF > tmp f Program LinearEquations Implicit none Real b(3) integer i
subroutine cgelsd(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, IWORK, INFO)
CGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices ...
subroutine cgelss(M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, INFO)
CGELSS solves overdetermined or underdetermined systems for GE matrices
LOGICAL function lsamen(N, CA, CB)
LSAMEN
subroutine alaesm(PATH, OK, NOUT)
ALAESM
subroutine cgelsx(M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, WORK, RWORK, INFO)
CGELSX solves overdetermined or underdetermined systems for GE matrices
subroutine cgels(TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK, INFO)
CGELS solves overdetermined or underdetermined systems for GE matrices