LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Classes Files Functions Variables Typedefs Macros
dget22.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine dget22 (TRANSA, TRANSE, TRANSW, N, A, LDA, E, LDE, WR, WI, WORK, RESULT)
 DGET22 More...
 

Function/Subroutine Documentation

subroutine dget22 ( character  TRANSA,
character  TRANSE,
character  TRANSW,
integer  N,
double precision, dimension( lda, * )  A,
integer  LDA,
double precision, dimension( lde, * )  E,
integer  LDE,
double precision, dimension( * )  WR,
double precision, dimension( * )  WI,
double precision, dimension( * )  WORK,
double precision, dimension( 2 )  RESULT 
)

DGET22

Purpose:
 DGET22 does an eigenvector check.

 The basic test is:

    RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )

 using the 1-norm.  It also tests the normalization of E:

    RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
                 j

 where E(j) is the j-th eigenvector, and m-norm is the max-norm of a
 vector.  If an eigenvector is complex, as determined from WI(j)
 nonzero, then the max-norm of the vector ( er + i*ei ) is the maximum
 of
    |er(1)| + |ei(1)|, ... , |er(n)| + |ei(n)|

 W is a block diagonal matrix, with a 1 by 1 block for each real
 eigenvalue and a 2 by 2 block for each complex conjugate pair.
 If eigenvalues j and j+1 are a complex conjugate pair, so that
 WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the 2 by 2
 block corresponding to the pair will be:

    (  wr  wi  )
    ( -wi  wr  )

 Such a block multiplying an n by 2 matrix ( ur ui ) on the right
 will be the same as multiplying  ur + i*ui  by  wr + i*wi.

 To handle various schemes for storage of left eigenvectors, there are
 options to use A-transpose instead of A, E-transpose instead of E,
 and/or W-transpose instead of W.
Parameters
[in]TRANSA
          TRANSA is CHARACTER*1
          Specifies whether or not A is transposed.
          = 'N':  No transpose
          = 'T':  Transpose
          = 'C':  Conjugate transpose (= Transpose)
[in]TRANSE
          TRANSE is CHARACTER*1
          Specifies whether or not E is transposed.
          = 'N':  No transpose, eigenvectors are in columns of E
          = 'T':  Transpose, eigenvectors are in rows of E
          = 'C':  Conjugate transpose (= Transpose)
[in]TRANSW
          TRANSW is CHARACTER*1
          Specifies whether or not W is transposed.
          = 'N':  No transpose
          = 'T':  Transpose, use -WI(j) instead of WI(j)
          = 'C':  Conjugate transpose, use -WI(j) instead of WI(j)
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]A
          A is DOUBLE PRECISION array, dimension (LDA,N)
          The matrix whose eigenvectors are in E.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]E
          E is DOUBLE PRECISION array, dimension (LDE,N)
          The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors
          are stored in the columns of E, if TRANSE = 'T' or 'C', the
          eigenvectors are stored in the rows of E.
[in]LDE
          LDE is INTEGER
          The leading dimension of the array E.  LDE >= max(1,N).
[in]WR
          WR is DOUBLE PRECISION array, dimension (N)
[in]WI
          WI is DOUBLE PRECISION array, dimension (N)

          The real and imaginary parts of the eigenvalues of A.
          Purely real eigenvalues are indicated by WI(j) = 0.
          Complex conjugate pairs are indicated by WR(j)=WR(j+1) and
          WI(j) = - WI(j+1) non-zero; the real part is assumed to be
          stored in the j-th row/column and the imaginary part in
          the (j+1)-th row/column.
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (N*(N+1))
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          RESULT(1) = | A E  -  E W | / ( |A| |E| ulp )
          RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 167 of file dget22.f.

Here is the call graph for this function:

Here is the caller graph for this function: