
C++ Annotations Version 9.7.3

Frank B. Brokken
Center of Information Technology,

University of Groningen
Nettelbosje 1,

P.O. Box 11044,
9700 CA Groningen

The Netherlands
Published at the University of Groningen

ISBN 90 367 0470 7

1994 - 2013

Abstract

This document is intended for knowledgeable users of C (or any other language using a C-like gram-

mar, like Perl or Java) who would like to know more about, or make the transition to, C++. This

document is the main textbook for Frank’s C++ programming courses, which are yearly organized

at the University of Groningen. The C++ Annotations do not cover all aspects of C++, though. In

particular, C++’s basic grammar is not covered when equal to C’s grammar. Any basic book on C

may be consulted to refresh that part of C++’s grammar.

If you want a hard-copy version of the C++ Annotations: printable versions are available in

postscript, pdf and other formats in

http://sourceforge.net/projects/cppannotations/,

in files having names starting with cplusplus (A4 paper size). Files having names starting with

‘cplusplusus’ are intended for the US legal paper size. The C++ Annotations are also available as a

Kindle book.

The latest version of the C++ Annotations in html-format can be browsed at:

http://cppannotations.sourceforge.net/

and/or at

http://www.icce.rug.nl/documents/

Contents

1 Overview Of The Chapters 1

2 Introduction 3

2.1 What’s new in the C++ Annotations . 4

2.2 C++’s history . 6

2.2.1 History of the C++ Annotations . 7

2.2.2 Compiling a C program using a C++ compiler 7

2.2.3 Compiling a C++ program . 8

2.3 C++: advantages and claims . 9

2.4 What is Object-Oriented Programming? . 11

2.5 Differences between C and C++ . 12

2.5.1 The function ‘main’ . 12

2.5.2 End-of-line comment . 13

2.5.3 Strict type checking . 13

2.5.4 Function Overloading . 14

2.5.5 Default function arguments . 15

2.5.6 NULL-pointers vs. 0-pointers and nullptr (C++11) 16

2.5.7 The ‘void’ parameter list . 17

2.5.8 The ‘#define __cplusplus’ . 17

2.5.9 Using standard C functions . 17

2.5.10 Header files for both C and C++ . 18

2.5.11 Defining local variables . 19

2.5.12 The keyword ‘typedef ’ . 21

2.5.13 Functions as part of a struct . 22

ii

3 A First Impression Of C++ 23

3.1 Extensions to C . 23

3.1.1 Namespaces . 23

3.1.2 The scope resolution operator :: . 23

3.1.3 Using the keyword ‘const’ . 24

3.1.4 ‘cout’, ‘cin’, and ‘cerr’ . 27

3.2 Functions as part of structs . 29

3.2.1 Data hiding: public, private and class . 30

3.2.2 Structs in C vs. structs in C++ . 32

3.3 More extensions to C . 33

3.3.1 References . 33

3.3.2 Rvalue References (C++11) . 37

3.3.3 Strongly typed enumerations (C++11) . 40

3.3.4 Initializer lists (C++11) . 40

3.3.5 Type inference using ‘auto’ (C++11) . 41

3.3.6 Defining types and ’using’ declarations (C++11) 43

3.3.7 Range-based for-loops (C++11) . 44

3.3.8 Raw String Literals (C++11) . 45

3.4 New language-defined data types . 46

3.4.1 The data type ‘bool’ . 47

3.4.2 The data type ‘wchar_t’ . 48

3.4.3 Unicode encoding (C++11) . 48

3.4.4 The data type ‘long long int’ (C++11) . 48

3.4.5 The data type ‘size_t’ . 49

3.5 A new syntax for casts . 49

3.5.1 The ‘static_cast’-operator . 49

3.5.2 The ‘const_cast’-operator . 51

3.5.3 The ‘reinterpret_cast’-operator . 51

3.5.4 The ‘dynamic_cast’-operator . 52

3.5.5 Casting ’shared_ptr’ objects . 52

3.6 Keywords and reserved names in C++ . 53

iii

4 Name Spaces 55

4.1 Namespaces . 55

4.1.1 Defining namespaces . 55

4.1.2 Referring to entities . 57

4.1.3 The standard namespace . 61

4.1.4 Nesting namespaces and namespace aliasing 62

5 The ‘string’ Data Type 67

5.1 Operations on strings . 68

5.2 A std::string reference . 69

5.2.1 Initializers . 70

5.2.2 Iterators . 71

5.2.3 Operators . 71

5.2.4 Member functions . 72

5.2.5 Conversion functions . 79

6 The IO-stream Library 83

6.1 Special header files . 86

6.2 The foundation: the class ‘ios_base’ . 87

6.3 Interfacing ‘streambuf’ objects: the class ‘ios’ . 87

6.3.1 Condition states . 88

6.3.2 Formatting output and input . 91

6.4 Output . 98

6.4.1 Basic output: the class ‘ostream’ . 98

6.4.2 Output to files: the class ‘ofstream’ . 101

6.4.3 Output to memory: the class ‘ostringstream’ . 103

6.5 Input . 104

6.5.1 Basic input: the class ‘istream’ . 105

6.5.2 Input from files: the class ‘ifstream’ . 108

6.5.3 Input from memory: the class ‘istringstream’ 109

6.5.4 Copying streams . 110

6.5.5 Coupling streams . 111

6.6 Advanced topics . 112

iv

6.6.1 Redirecting streams . 112

6.6.2 Reading AND Writing streams . 114

7 Classes 121

7.1 The constructor . 123

7.1.1 A first application . 124

7.1.2 Constructors: with and without arguments . 127

7.2 Ambiguity resolution . 130

7.2.1 Types ‘Data’ vs. ‘Data()’ . 131

7.2.2 Superfluous parentheses . 132

7.2.3 Existing types . 133

7.3 Objects inside objects: composition . 134

7.3.1 Composition and const objects: const member initializers 134

7.3.2 Composition and reference objects: reference member initializers 135

7.4 Data member initializers (C++11) . 137

7.4.1 Delegating constructors (C++11) . 138

7.5 Uniform initialization (C++11) . 139

7.6 Defaulted and deleted class members (C++11) . 141

7.7 Const member functions and const objects . 142

7.7.1 Anonymous objects . 144

7.8 The keyword ‘inline’ . 147

7.8.1 Defining members inline . 148

7.8.2 When to use inline functions . 149

7.9 Local classes: classes inside functions . 150

7.10 The keyword ‘mutable’ . 152

7.11 Header file organization . 152

7.11.1 Using namespaces in header files . 157

7.12 Sizeof applied to class data members (C++11) . 158

8 Static Data And Functions 159

8.1 Static data . 159

8.1.1 Private static data . 160

8.1.2 Public static data . 162

v

8.1.3 Initializing static const data . 162

8.1.4 Generalized constant expressions (constexpr, C++11) 162

8.2 Static member functions . 166

8.2.1 Calling conventions . 168

9 Classes And Memory Allocation 171

9.1 Operators ‘new’ and ‘delete’ . 172

9.1.1 Allocating arrays . 173

9.1.2 Deleting arrays . 174

9.1.3 Enlarging arrays . 175

9.1.4 Managing ‘raw’ memory . 176

9.1.5 The ‘placement new’ operator . 176

9.2 The destructor . 179

9.2.1 Object pointers revisited . 181

9.2.2 The function set_new_handler() . 184

9.3 The assignment operator . 185

9.3.1 Overloading the assignment operator . 186

9.4 The ‘this’ pointer . 190

9.4.1 Sequential assignments and this . 190

9.5 The copy constructor: initialization vs. assignment . 191

9.6 Revising the assignment operator . 193

9.6.1 Swapping . 194

9.7 Moving data (C++11) . 198

9.7.1 The move constructor (dynamic data) (C++11) 200

9.7.2 The move constructor (composition) (C++11) . 202

9.7.3 Move-assignment (C++11) . 203

9.7.4 Revising the assignment operator (part II) . 204

9.7.5 Moving and the destructor (C++11) . 205

9.7.6 Move-only classes (C++11) . 205

9.7.7 Default move constructors and assignment operators (C++11) 206

9.7.8 Moving: implications for class design (C++11) 208

9.8 Copy Elision and Return Value Optimization . 208

vi

9.9 Plain Old Data (C++11) . 210

9.10 Conclusion . 211

10 Exceptions 213

10.1 Exception syntax . 214

10.2 An example using exceptions . 214

10.2.1 Anachronisms: ‘setjmp’ and ‘longjmp’ . 216

10.2.2 Exceptions: the preferred alternative . 218

10.3 Throwing exceptions . 219

10.3.1 The empty ‘throw’ statement . 222

10.4 The try block . 224

10.5 Catching exceptions . 225

10.5.1 The default catcher . 227

10.6 Declaring exception throwers (deprecated) . 228

10.7 Iostreams and exceptions . 231

10.8 Standard Exceptions . 232

10.9 System error, error code and error category (C++11) . 233

10.9.1 The class ‘error_code’ (C++11) . 234

10.9.2 The class ‘error_category’ (C++11) . 235

10.10Exception guarantees . 237

10.10.1 The basic guarantee . 238

10.10.2 The strong guarantee . 239

10.10.3 The nothrow guarantee . 241

10.11Function try blocks . 242

10.12Exceptions in constructors and destructors . 245

11 More Operator Overloading 253

11.1 Overloading ‘operator[]()’ . 253

11.2 Overloading the insertion and extraction operators . 256

11.3 Conversion operators . 258

11.4 The keyword ‘explicit’ . 261

11.4.1 Explicit conversion operators (C++11) . 263

11.5 Overloading the increment and decrement operators 263

vii

11.6 Overloading binary operators . 265

11.7 Overloading ‘operator new(size_t)’ . 270

11.8 Overloading ‘operator delete(void *)’ . 272

11.9 Operators ‘new[]’ and ‘delete[]’ . 273

11.9.1 Overloading ‘new[]’ . 273

11.9.2 Overloading ‘delete[]’ . 274

11.9.3 ‘new[]’, ‘delete[]’ and exceptions . 276

11.10Function Objects . 278

11.10.1 Constructing manipulators . 280

11.11The case of [io]fstream::open() . 283

11.12User-defined literals (C++11) . 285

11.13Overloadable operators . 286

12 Abstract Containers 289

12.1 Notations used in this chapter . 291

12.2 The ‘pair’ container . 292

12.3 Allocators . 293

12.4 Sequential Containers . 294

12.4.1 ARRAY . 294

12.4.2 The ‘vector’ container . 296

12.4.3 The ‘list’ container . 299

12.4.4 The ‘queue’ container . 307

12.4.5 The ‘priority_queue’ container . 308

12.4.6 The ‘deque’ container . 311

12.4.7 The ‘map’ container . 313

12.4.8 The ‘multimap’ container . 322

12.4.9 The ‘set’ container . 324

12.4.10 The ‘multiset’ container . 327

12.4.11 The ‘stack’ container . 329

12.4.12 The ‘unordered_map’ container (‘hash table’) (C++11) 331

12.4.13 The ‘unordered_set’ container (C++11) . 339

12.4.14 Regular Expressions (C++11, ?) . 341

viii

12.5 The ‘complex’ container . 342

12.6 Unrestricted Unions (C++11) . 344

12.6.1 Implementing the destructor . 345

12.6.2 Embedding an unrestricted union in a surrounding class 345

12.6.3 Destroying an embedded unrestricted union . 346

12.6.4 Copy and move constructors . 346

12.6.5 Assignment . 347

13 Inheritance 351

13.1 Related types . 352

13.1.1 Inheritance depth: desirable? . 355

13.2 Access rights: public, private, protected . 355

13.2.1 Public, protected and private derivation . 357

13.2.2 Promoting access rights . 358

13.3 The constructor of a derived class . 359

13.3.1 Move construction (C++11) . 360

13.3.2 Move assignment (C++11) . 361

13.3.3 Inheriting constructors (C++11, ?) . 361

13.4 The destructor of a derived class . 362

13.5 Redefining member functions . 363

13.6 i/ostream::init . 366

13.7 Multiple inheritance . 366

13.8 Conversions between base classes and derived classes 369

13.8.1 Conversions with object assignments . 369

13.8.2 Conversions with pointer assignments . 370

13.9 Using non-default constructors with new[] . 371

14 Polymorphism 377

14.1 Virtual functions . 379

14.2 Virtual destructors . 381

14.3 Pure virtual functions . 381

14.3.1 Implementing pure virtual functions . 383

14.4 Explicit virtual overrides (C++11) . 384

ix

14.5 Virtual functions and multiple inheritance . 385

14.5.1 Ambiguity in multiple inheritance . 386

14.5.2 Virtual base classes . 387

14.5.3 When virtual derivation is not appropriate . 391

14.6 Run-time type identification . 393

14.6.1 The dynamic_cast operator . 393

14.6.2 The ‘typeid’ operator . 396

14.7 Inheritance: when to use to achieve what? . 398

14.8 The ‘streambuf’ class . 401

14.8.1 Protected ‘streambuf’ members . 403

14.8.2 The class ‘filebuf ’ . 408

14.9 A polymorphic exception class . 409

14.10How polymorphism is implemented . 411

14.11Undefined reference to vtable ... 415

14.12Virtual constructors . 416

15 Friends 421

15.1 Friend functions . 422

15.2 Extended friend declarations (C++11) . 423

16 Classes Having Pointers To Members 425

16.1 Pointers to members: an example . 425

16.2 Defining pointers to members . 426

16.3 Using pointers to members . 428

16.4 Pointers to static members . 431

16.5 Pointer sizes . 432

17 Nested Classes 435

17.1 Defining nested class members . 437

17.2 Declaring nested classes . 438

17.3 Accessing private members in nested classes . 438

17.4 Nesting enumerations . 442

17.4.1 Empty enumerations . 444

x

17.5 Revisiting virtual constructors . 444

18 The Standard Template Library 447

18.1 Predefined function objects . 447

18.1.1 Arithmetic function objects . 449

18.1.2 Relational function objects . 452

18.1.3 Logical function objects . 453

18.1.4 Function adaptors . 454

18.2 Iterators . 457

18.2.1 Insert iterators . 460

18.2.2 Iterators for ‘istream’ objects . 462

18.2.3 Iterators for ‘ostream’ objects . 463

18.3 The class ’unique_ptr’ (C++11) . 464

18.3.1 Defining ‘unique_ptr’ objects (C++11) . 465

18.3.2 Creating a plain ‘unique_ptr’ (C++11) . 466

18.3.3 Moving another ‘unique_ptr’ (C++11) . 466

18.3.4 Pointing to a newly allocated object (C++11) . 467

18.3.5 Operators and members (C++11) . 469

18.3.6 Using ‘unique_ptr’ objects for arrays (C++11) 470

18.3.7 The legacy class ’auto_ptr’ (deprecated) . 470

18.4 The class ’shared_ptr’ (C++11) . 471

18.4.1 Defining ‘shared_ptr’ objects (C++11) . 471

18.4.2 Creating a plain ‘shared_ptr’ (C++11) . 472

18.4.3 Pointing to a newly allocated object (C++11) . 472

18.4.4 Operators and members (C++11) . 473

18.4.5 Casting shared pointers (C++11) . 474

18.4.6 Using ‘shared_ptr’ objects for arrays (C++11) 475

18.5 Using ‘make_shared’ to combine ‘shared_ptr’ and ‘new’ (C++11) 476

18.6 Classes having pointer data members (C++11) . 477

18.7 Multi Threading (C++11) . 479

18.7.1 Specifying absolute and relative time (C++11) 480

18.7.2 The namespace ‘std::this_thread’ (C++11) . 484

xi

18.7.3 The class ‘std::thread’ (C++11) . 484

18.7.4 Synchronization (mutexes) (C++11) . 488

18.7.5 Locks and lock handling (C++11) . 490

18.7.6 Event handling (condition variables) (C++11) 496

18.8 Lambda expressions (C++11) . 502

18.9 Randomization and Statistical Distributions (C++11) 506

18.9.1 Random Number Generators (C++11) . 507

18.9.2 Statistical distributions (C++11) . 508

19 The STL Generic Algorithms 523

19.1 The Generic Algorithms . 523

19.1.1 accumulate . 525

19.1.2 adjacent_difference . 525

19.1.3 adjacent_find . 526

19.1.4 binary_search . 528

19.1.5 copy . 529

19.1.6 copy_backward . 530

19.1.7 count . 530

19.1.8 count_if . 531

19.1.9 equal . 532

19.1.10 equal_range . 533

19.1.11 fill . 535

19.1.12 fill_n . 535

19.1.13 find . 536

19.1.14 find_end . 537

19.1.15 find_first_of . 538

19.1.16 find_if . 540

19.1.17 for_each . 541

19.1.18 generate . 543

19.1.19 generate_n . 544

19.1.20 includes . 545

19.1.21 inner_product . 546

xii

19.1.22 inplace_merge . 548

19.1.23 iter_swap . 549

19.1.24 lexicographical_compare . 550

19.1.25 lower_bound . 552

19.1.26 max . 553

19.1.27 max_element . 554

19.1.28 merge . 555

19.1.29 min . 557

19.1.30 min_element . 558

19.1.31 mismatch . 558

19.1.32 next_permutation . 560

19.1.33 nth_element . 561

19.1.34 partial_sort . 562

19.1.35 partial_sort_copy . 563

19.1.36 partial_sum . 565

19.1.37 partition . 565

19.1.38 prev_permutation . 566

19.1.39 random_shuffle . 568

19.1.40 remove . 570

19.1.41 remove_copy . 570

19.1.42 remove_copy_if . 571

19.1.43 remove_if . 572

19.1.44 replace . 573

19.1.45 replace_copy . 574

19.1.46 replace_copy_if . 575

19.1.47 replace_if . 576

19.1.48 reverse . 577

19.1.49 reverse_copy . 577

19.1.50 rotate . 578

19.1.51 rotate_copy . 579

19.1.52 search . 579

19.1.53 search_n . 581

xiii

19.1.54 set_difference . 582

19.1.55 set_intersection . 583

19.1.56 set_symmetric_difference . 584

19.1.57 set_union . 585

19.1.58 sort . 586

19.1.59 stable_partition . 587

19.1.60 stable_sort . 588

19.1.61 swap . 591

19.1.62 swap_ranges . 592

19.1.63 transform . 593

19.1.64 unique . 594

19.1.65 unique_copy . 595

19.1.66 upper_bound . 596

19.1.67 Heap algorithms . 598

19.2 STL: More function adaptors . 601

19.2.1 Member function adaptors . 602

19.2.2 Adaptable functions . 603

20 Function Templates 607

20.1 Defining function templates . 607

20.1.1 Considerations regarding template parameters 610

20.1.2 Late-specified return type (C++11) . 612

20.2 Passing arguments by reference (reference wrappers) (C++11) 614

20.3 Using Local and unnamed types as template arguments (C++11) 616

20.4 Template parameter deduction . 617

20.4.1 Lvalue transformations . 618

20.4.2 Qualification transformations . 619

20.4.3 Transformation to a base class . 620

20.4.4 The template parameter deduction algorithm 621

20.4.5 Template type contractions . 621

20.5 Declaring function templates . 622

20.5.1 Instantiation declarations . 624

xiv

20.6 Instantiating function templates . 624

20.6.1 Instantiations: no ‘code bloat’ . 626

20.7 Using explicit template types . 627

20.8 Overloading function templates . 628

20.8.1 An example using overloaded function templates 630

20.8.2 Ambiguities when overloading function templates 630

20.8.3 Declaring overloaded function templates . 632

20.9 Specializing templates for deviating types . 632

20.9.1 Avoiding too many specializations . 634

20.9.2 Declaring specializations . 635

20.9.3 Complications when using the insertion operator 635

20.10Static assertions (C++11) . 636

20.11Numeric limits . 637

20.12Polymorphous wrappers for function objects (C++11) 640

20.13Compiling template definitions and instantiations . 641

20.14The function selection mechanism . 642

20.15Determining the template type parameters . 643

20.16SFINAE: Substitution Failure Is Not An Error . 646

20.17Summary of the template declaration syntax . 647

21 Class Templates 649

21.1 Defining class templates . 650

21.1.1 Constructing the circular queue: CirQue . 650

21.1.2 Non-type parameters . 652

21.1.3 Member templates . 654

21.1.4 CirQue’s constructors and member functions 656

21.1.5 Using CirQue objects . 661

21.1.6 Default class template parameters . 662

21.1.7 Declaring class templates . 663

21.1.8 Preventing template instantiations (C++11) . 663

21.2 Static data members . 665

21.2.1 Extended use of the keyword ‘typename’ . 666

xv

21.3 Specializing class templates for deviating types . 669

21.3.1 Example of a class specialization . 670

21.4 Partial specializations . 673

21.4.1 Intermezzo: some simple matrix algebraic concepts 674

21.4.2 The Matrix class template . 675

21.4.3 The MatrixRow partial specialization . 676

21.4.4 The MatrixColumn partial specialization . 678

21.4.5 The 1x1 matrix: avoid ambiguity . 678

21.5 Variadic templates (C++11) . 680

21.5.1 Defining and using variadic templates (C++11) 681

21.5.2 Perfect forwarding (C++11) . 683

21.5.3 The unpack operator (C++11) . 689

21.5.4 Non-type variadic templates (C++11) . 690

21.6 Tuples (C++11) . 691

21.7 Computing the return type of function objects (C++11) 692

21.8 Instantiating class templates . 695

21.9 Processing class templates and instantiations . 696

21.10Declaring friends . 697

21.10.1 Non-templates used as friends in templates . 698

21.10.2 Templates instantiated for specific types as friends 700

21.10.3 Unbound templates as friends . 703

21.10.4 Extended friend declarations (C++11) . 706

21.11Class template derivation . 707

21.11.1 Deriving ordinary classes from class templates 708

21.11.2 Deriving class templates from class templates 709

21.11.3 Deriving class templates from ordinary classes 712

21.12Class templates and nesting . 717

21.13Constructing iterators . 720

21.13.1 Implementing a ‘RandomAccessIterator’ . 722

21.13.2 Implementing a ‘reverse_iterator’ . 727

22 Advanced Template Use 729

xvi

22.1 Subtleties . 730

22.1.1 Returning types nested under class templates 730

22.1.2 Type resolution for base class members . 731

22.1.3 ::template, .template and ->template . 734

22.2 Template Meta Programming . 736

22.2.1 Values according to templates . 736

22.2.2 Selecting alternatives using templates . 738

22.2.3 Templates: Iterations by Recursion . 742

22.3 User-defined literals (C++11) . 744

22.4 Template template parameters . 747

22.4.1 Policy classes - I . 747

22.4.2 Policy classes - II: template template parameters 750

22.4.3 Structure by Policy . 753

22.5 Template aliases (C++11) . 754

22.6 Trait classes . 755

22.6.1 Distinguishing class from non-class types . 758

22.6.2 Available type traits (C++11) . 761

22.7 Using ‘noexcept’ when offering the ‘strong guarantee’ (C++11) 762

22.8 More conversions to class types . 764

22.8.1 Types to types . 764

22.8.2 An empty type . 766

22.8.3 Type convertibility . 766

22.9 Template TypeList processing . 770

22.9.1 The length of a TypeList . 770

22.9.2 Searching a TypeList . 771

22.9.3 Selecting from a TypeList . 772

22.9.4 Prefixing/Appending to a TypeList . 774

22.9.5 Erasing from a TypeList . 774

22.10Using a TypeList . 779

22.10.1 The Wrap and Multi class templates . 779

22.10.2 The MultiBase class template . 781

22.10.3 Support templates . 783

xvii

22.10.4 Using Multi . 785

23 Concrete Examples 787

23.1 Using file descriptors with ‘streambuf’ classes . 787

23.1.1 Classes for output operations . 787

23.1.2 Classes for input operations . 791

23.1.3 Fixed-sized field extraction from istream objects 801

23.2 The ‘fork’ system call . 805

23.2.1 A basic Fork class . 806

23.2.2 Parents and Children . 808

23.2.3 Redirection revisited . 809

23.2.4 The ‘Daemon’ program . 810

23.2.5 The class ‘Pipe’ . 811

23.2.6 The class ‘ParentSlurp’ . 813

23.2.7 Communicating with multiple children . 815

23.3 Function objects performing bitwise operations . 829

23.4 A text to anything converter . 830

23.5 Adding binary operators to classes . 833

23.5.1 Binary operators allowing promotions . 835

23.6 Range-based for-loops and pointer-ranges (C++11) . 837

23.7 Distinguishing lvalues from rvalues with operator[]() 839

23.8 Implementing a ‘reverse_iterator’ . 842

23.9 Using ‘bisonc++’ and ‘flexc++’ . 845

23.9.1 Using ‘flexc++’ to create a scanner . 846

23.9.2 Using ‘bisonc++’ and ‘flexc++’ . 850

23.9.3 Bisonc++: using polymorphic semantic values 859

xviii

Chapter 1

Overview Of The Chapters

The chapters of the C++ Annotations cover the following topics:

• Chapter 1: This overview of the chapters.

• Chapter 2: A general introduction to C++.

• Chapter 3: A first impression: differences between C and C++.

• Chapter 4: Name Spaces: how to avoid name collisions.

• Chapter 5: The ‘string’ data type.

• Chapter 6: The C++ I/O library.

• Chapter 7: The ‘class’ concept: structs having functions. The ‘object’ concept: variables of a

class.

• Chapter 8: Static data and functions: members of a class not bound to objects.

• Chapter 9: Allocation and returning unused memory: new, delete, and the function

set_new_handler().

• Chapter 10: Exceptions: handle errors where appropriate, rather than where they occur.

• Chapter 11: Give your own meaning to operators.

• Chapter 12: Abstract Containers to put stuff into.

• Chapter 13: Building classes upon classes: setting up class hierarcies.

• Chapter 14: Changing the behavior of member functions accessed through base class pointers.

• Chapter 15: Gaining access to private parts: friend functions and classes.

• Chapter 16: Classes having pointers to members: pointing to locations inside objects.

• Chapter 17: Constructing classes and enums within classes.

• Chapter 18: The Standard Template Library.

• Chapter 19: The STL generic algorithms.

• Chapter 20: Function templates: using molds for type independent functions.

1

2 CHAPTER 1. OVERVIEW OF THE CHAPTERS

• Chapter 21: Class templates: using molds for type independent classes.

• Chapter 22: Advanced Template Use: programming the compiler.

• Chapter 23: Several examples of programs written in C++.

Chapter 2

Introduction

This document offers an introduction to the C++ programming language. It is a guide for C/C++

programming courses, yearly presented by Frank at the University of Groningen. This document

is not a complete C/C++ handbook, as much of the C-background of C++ is not covered. Other

sources should be referred to for that (e.g., the Dutch book De programmeertaal C, Brokken and

Kubat, University of Groningen, 1996) or the on-line book1 suggested to me by George Danchev

(danchev at spnet dot net).

The reader should be forwarned that extensive knowledge of the C programming language is ac-

tually assumed. The C++ Annotations continue where topics of the C programming language end,

such as pointers, basic flow control and the construction of functions.

Some elements of the language, like specific lexical tokens (such as trigraphs (such as ??< for {,

and using ??> for })), and bigraphs (such as <: for [, and >: for]) are not covered by the C++

Annotations, as these tokens occur extremely seldom in C++ source code. The reader is referred to

the document covering the C++11 standard for an overview.

The version number of the C++ Annotations (currently 9.7.3) is updated when the contents of the

document change. The first number is the major number, and is probably not going to change for

some time: it indicates a major rewriting. The middle number is increased when new information

is added to the document. The last number only indicates small changes; it is increased when, e.g.,

series of typos are corrected.

This document is published by the Center of Information Technology, University of Groningen, the

Netherlands under the GNU General Public License2.

The C++ Annotations were typeset using the yodl3 formatting system.

All correspondence concerning suggestions, additions, improvements or changes

to this document should be directed to the author:

Frank B. Brokken

Center of Information Technology,

University of Groningen

Nettelbosje 1,

1http://publications.gbdirect.co.uk/c_book/
2http://www.gnu.org/licenses/
3http://yodl.sourceforge.net

3

4 CHAPTER 2. INTRODUCTION

P.O. Box 11044,

9700 CA Groningen

The Netherlands

(email: f.b.brokken@rug.nl)

In this chapter an overview of C++’s defining features is presented. A few extensions to C are

reviewed and the concepts of object based and object oriented programming (OOP) are briefly intro-

duced.

2.1 What’s new in the C++ Annotations

This section is modified when the first or second part of the version number changes (and sometimes

for the third part as well).

• Version 9.7.0/9.7.1 adds several new sections (about time specifications, system_error, error_category,

error_code, this_thread, locks) and other sections received a major overhaul (multi-threading,

lambda expressions, the main function).

• Version 9.6.0 adds a section about noexcept, deprecating throw lists. Also the string chapter

was updated.

• Version 9.5.0 adapts the abstract containers to C++11, and adds a new section (Allocators)

just before introducing the sequential containers. make_shared, combining shared_ptr and

(new).

• Version 9.4.0 adds a new section to chapter 18 about make_shared, combining shared_ptr

and (new).

• Version 9.3.0 refines the coverage of the static_cast and reinterpret_cast, following a

suggestion provided by Gido Schoenmacker.

• There are two major differences between versions 9.2.0 and 9.1.0. First, unrestricted unions

are covered in more detail (cf. section 12.6). Second, by now flexc++4 has been released, and

the sections previously using flex (cf. section 23.9) are now using flexc++.

• Version 9.1.0 adds several new sections describing elements of the language that by now have

been implemented in Gnu’s g++ compiler version 4.7. In the Annotations’s contents these

sections are clearly marked as C++11, 4.7. For section marked by merely C++11 it is assumed

that at least Gnu’s compiler version 4.6 is available. Sections marked as C++, ? refer to

elements in the C++11 (C++11) standard that haven’t been implemented yet in Gnu’s g++

compiler. Since C++11 is now the ‘official’ name of the new standard, references to C++0x have

been replaced by C++11.

Installation limits of various integral types are frequently obtained using #defines set in the

<climits> header file. However, the numeric_limits template offers a (preferred) alter-

native, as numeric_limits can also be used when defining templates. See chapter 20 for

details.

To the distribution’s ./contributions directory I added Jurjen Bokma’s (jurjen dot bokma at rug

dot nl) ’makebook’ recipe for creating a neatly bound C++ Annotations book. The result is

fabulous! Thanks, Jurjen!

From now on, this ‘what’s new’ overview of changes to the Annotations is restricted to the

current and previous major release. Previous modifications can be found in the distribution’s

whatsnew.yo.old file.

4http://flexcpp.org/

2.1. WHAT’S NEW IN THE C++ ANNOTATIONS 5

Finally, typos were repaired.

• Version 9.0.0 was released following an extensive discussion with several members of the C++

standards committee about the form of move special members (move constructors, move as-

signment operators, other functions defining rvalue type parameters). This discussion, in par-

ticular the discussions I had with Dave Abrahams, Jonathan Wakely and Herb Sutter resulted,

eventually, in the C++ Annotations relaxing the principle of const-correctness, and in modify-

ing the declarations and implementations of move special members in this release. This shift

in position (adopted by the C++ Annotations since its very early releases) profoundly affects

much of the C++ Annotations’s contents, and warrants an upgrade to the next major release.

The principle of const-correctness has always been visible in the C++ Annotations, defining

return values of arithmetic binary operators like operator+ as const return values. Here

the C++ Annotations also applied another principle: ‘do as the ints do’. When (e.g.,) adding

two int-values the result is customarily considered immutable. I.e., (a + 5) += 4 makes no

sense, with the compiler refusing to compile the statement. But is a + 5 a constant? There is

no simple answer to that question. Before the advent of C++11 I thought the answer was ‘yes’,

but strangely enough, the answer was not always ‘yes’. If the above a is of type std::string

then (a + "b") += "c" suddenly is accepted by the compiler. The C++ Annotations never

adopted this scheme, but stuck to the rule ‘do as the ints do’ by defining the return types of

functions returning values as const values.

C++11 added rvalue references to the language, and then I eventually was convinced that

defining const return values should in general be avoided. As C++11 allows temporaries to be

associated with rvalue references, a completely new situation is created. Suddenly intermedi-

ate int values can be modified, as illustrated by the following snippet of code:

void fun(int &&tmp)

{

tmp += 4; // compiles OK

}

int main()

{

int a = 8;

fun(a + 5);

}

The snippet of code also shows the standard definition of an rvalue reference as an entity of

type ‘Type &&’. This definition of rvalue reference parameters is now used all over the C++

Annotations, together with using non-const return types of functions returning values.

Many readers have submitted suggestions for improvements since version 8.3.1 was released.

A big ‘thank you’ to all of you, but in particular to Francesco Poli who continued to send in

suggestions for improvements for a period of almost two years. His suggestions were an invalu-

able source of improvement for almost every single section of the C++ Annotations. Thanks,

Francesco, for all the effort you’ve put in improving this document!

Finally, in version 9.0.0 sections were added and sometimes moved. The section about unre-

stricted unions was completed and moved to the ‘Containers’ chapter, and a new section about

adding binary operators to classes using function templates was added to the C++ Annotations’

final chapter (concrete examples).

• Version 8.3.1: usually a subminor version isn’t explicitly mentioned in this section, but in

this case the changes from 8.3.0 to 8.3.1 were the result of many, many small and not so

small corrections submitted by Francesco Poli who did a very thorough close reading job on the

Annotations. Thanks again, Francesco, for all your contributions!

• Version 8.3.0 adds sections about various (member) function adaptors and adds/rephrases sev-

eral sections about statistical distribution functions (chapter 18). When covering elements

6 CHAPTER 2. INTRODUCTION

from the C++-0x standard it is assumed that the Gnu g++ compiler version 4.4 is available.

With elements of the C++-0x standard requiring versions beyond 4.4 the required versions are

explicitly mentioned, if already known. All suggestions sent in by various readers have also

been processed, their help to improve the quality of the C++ Annotations is greatly appreci-

ated: thanks!

• Version 8.2.0 adds a section about casting shared_ptrs (section 18.4.5) and about sharing

arrays of objects (18.4.6).

• Version 8.1.0 was released following a complete overhaul of the C++ Annotations, with two

pre-leases in between. Many inconsistencies that had crept into the text and examples were

removed, streamlining the text and synchronizing examples with the text. All of the code

examples have received a work-over, replacing endl by ’\n’, making virtual functions private,

etc., etc. The sections labeled C++11 were improved and sections showing C++11 now also

mention the g++ version in which the new feature will be made available, using ? if this is as

yet unknown. No version is shown if the feature is already available in g++ 4.3 (or in one of its

subreleases, like 4.3.3). I received a host of suggestions from Francesco Poli (thanks, Francesco

(and several others), for all the effort you’ve put into sending me those corrections).

• Version 8.0.0 was released as a result of the upcoming new C++ standard5 becoming (partially)

available in the Gnu g++ compiler6. Not all new elements of the new standard (informally

called the C++0x standard) are available right now, and new subreleases of the C++ Annota-

tions will appear once more elements become implemented in the g++ compiler. In section 2.2.3

the way to activate the new standard is shown, and new sections covering elements of the new

standard show C++11 in their section-titles.

Furthermore, two new chapters were added: the STL chapter is now split in two. The STL

chapter now covers the STL except for the Generic Algorithms which are now discussed in a

separate chapter. Name spaces, originally covered by the introductory chapter are now also

covered in a separate chapter.

2.2 C++’s history

The first implementation of C++ was developed in the 1980s at the AT&T Bell Labs, where the Unix

operating system was created.

C++ was originally a ‘pre-compiler’, similar to the preprocessor of C, converting special constructions

in its source code to plain C. Back then this code was compiled by a standard C compiler. The ‘pre-

code’, which was read by the C++ pre-compiler, was usually located in a file with the extension .cc,

.C or .cpp. This file would then be converted to a C source file with the extension .c, which was

thereupon compiled and linked.

The nomenclature of C++ source files remains: the extensions .cc and .cpp are still used. How-

ever, the preliminary work of a C++ pre-compiler is nowadays usually performed during the actual

compilation process. Often compilers determine the language used in a source file from its exten-

sion. This holds true for Borland’s and Microsoft’s C++ compilers, which assume a C++ source for

an extension .cpp. The Gnu compiler g++, which is available on many Unix platforms, assumes for

C++ the extension .cc.

The fact that C++ used to be compiled into C code is also visible from the fact that C++ is a superset

of C: C++ offers the full C grammar and supports all C-library functions, and adds to this features

of its own. This makes the transition from C to C++ quite easy. Programmers familiar with C may

start ‘programming in C++’ by using source files having extensions .cc or .cpp instead of .c, and

5http://en.wikipedia.org/wiki/C++11
6http://gcc.gnu.org/projects/cxx0x.html

2.2. C++’S HISTORY 7

may then comfortably slip into all the possibilities offered by C++. No abrupt change of habits is

required.

2.2.1 History of the C++ Annotations

The original version of the C++ Annotations was written by Frank Brokken and Karel Kubat in

Dutch using LaTeX. After some time, Karel rewrote the text and converted the guide to a more

suitable format and (of course) to English in september 1994.

The first version of the guide appeared on the net in october 1994. By then it was converted to SGML.

Gradually new chapters were added, and the contents were modified and further improved (thanks

to countless readers who sent us their comment).

In major version four Frank added new chapters and converted the document from SGML to yodl7.

The C++ Annotations are freely distributable. Be sure to read the legal notes8.

Reading the annotations beyond this point implies that you are aware of these

notes and that you agree with them.

If you like this document, tell your friends about it. Even better, let us know by sending email to

Frank9.

In the Internet, many useful hyperlinks exist to C++. Without even suggesting completeness (and

without being checked regularly for existence: they might have died by the time you read this), the

following might be worthwhile visiting:

• http://www.cplusplus.com/ref/: a reference site for C++.

• http://www.csci.csusb.edu/dick/c++std/cd2/index.html: offers a version of the 1996

working paper of the C++ ANSI/ISO standard.

2.2.2 Compiling a C program using a C++ compiler

Prospective C++ programmers should realize that C++ is not a perfect superset of C. There are some

differences you might encounter when you simply rename a file to a file having the extension .cc

and run it through a C++ compiler:

• In C, sizeof(’c’) equals sizeof(int), ’c’ being any ASCII character. The underlying

philosophy is probably that chars, when passed as arguments to functions, are passed as

integers anyway. Furthermore, the C compiler handles a character constant like ’c’ as an

integer constant. Hence, in C, the function calls

putchar(10);

and

putchar(’\n’);

7http://yodl.sourceforge.net
8legal.shtml
9mailto:f.b.brokken@rug.nl

8 CHAPTER 2. INTRODUCTION

are synonymous.

By contrast, in C++, sizeof(’c’) is always 1 (but see also section 3.4.2). An int is still an

int, though. As we shall see later (section 2.5.4), the two function calls

somefunc(10);

and

somefunc(’\n’);

may be handled by different functions: C++ distinguishes functions not only by their names,

but also by their argument types, which are different in these two calls. The former using an

int argument, the latter a char.

• C++ requires very strict prototyping of external functions. E.g., in C a prototype like

void func();

means that a function func() exists, returning no value. The declaration doesn’t specify which

arguments (if any) are accepted by the function.

However, in C++ the above declaration means that the function func() does not accept any

arguments at all. Any arguments passed to it result in a compile-time error.

Note that the keyword extern is not required when declaring functions. A function definition

becomes a function declaration simply by replacing a function’s body by a semicolon. The

keyword extern is required, though, when declaring variables.

2.2.3 Compiling a C++ program

To compile a C++ program, a C++ compiler is required. Considering the free nature of this document,

it won’t come as a surprise that a free compiler is suggested here. The Free Software Foundation

(FSF) provides at http://www.gnu.org a free C++ compiler which is, among other places, also

part of the Debian (http://www.debian.org) distribution of Linux (http://www.linux.org).

C++’s C++11 standard (also known as the C++0x standard) has not yet fully been implemented in

the g++ compiler. Unless indicated otherwise, all features of the C++11 standard covered by the

C++ Annotations are available in g++ 4.6, unless indicated otherwise.

To use these features the compiler flag -std=c++0x must currently be provided. It is assumed that

this flag is used when compiling the examples given by the Annotations. The features of the C++11

standard may or may not be available in g++ versions before 4.6.

In addition to the -std=c++0x compiler flag, g++ 4.7 and beyond also offers the -std=c++11 flag.

2.2.3.1 C++ under MS-Windows

For MS-Windows Cygnus (http://sources.redhat.com/cygwin) provides the foundation for in-

stalling the Windows port of the Gnu g++ compiler.

When visiting the above URL to obtain a free g++ compiler, click on install now. This will down-

load the file setup.exe, which can be run to install cygwin. The software to be installed can be

downloaded by setup.exe from the internet. There are alternatives (e.g., using a CD-ROM), which

are described on the Cygwin page. Installation proceeds interactively. The offered defaults are

sensible and should be accepted unless you have reasons to divert.

2.3. C++: ADVANTAGES AND CLAIMS 9

The most recent Gnu g++ compiler can be obtained from http://gcc.gnu.org. If the compiler that

is made available in the Cygnus distribution lags behind the latest version, the sources of the latest

version can be downloaded after which the compiler can be built using an already available compiler.

The compiler’s webpage (mentioned above) contains detailed instructions on how to proceed. In our

experience building a new compiler within the Cygnus environment works flawlessly.

2.2.3.2 Compiling a C++ source text

Generally the following command can be used to compile a C++ source file ‘source.cc’:

g++ source.cc

This produces a binary program (a.out or a.exe). If the default name is inappropriate, the name

of the executable can be specified using the -o flag (here producing the program source):

g++ -o source source.cc

If a mere compilation is required, the compiled module can be produced using the -c flag:

g++ -c source.cc

This generates the file source.o, which can later on be linked to other modules. As pointed out,

provide the compiler option –std=c++0x (note: two dashes). to activate the features of the C++11

standard.

C++ programs quickly become too complex to maintain ‘by hand’. With all serious programming

projects program maintenance tools are used. Usually the standard make program is used to main-

tain C++ programs, but good alternatives exist, like the icmake10 or ccbuild11 program mainte-

nance utilities.

It is strongly advised to start using maintenance utilities early in the study of C++.

2.3 C++: advantages and claims

Often it is said that programming in C++ leads to ‘better’ programs. Some of the claimed advantages

of C++ are:

• New programs would be developed in less time because old code can be reused.

• Creating and using new data types would be easier than in C.

• The memory management under C++ would be easier and more transparent.

• Programs would be less bug-prone, as C++ uses a stricter syntax and type checking.

• ‘Data hiding’, the usage of data by one program part while other program parts cannot access

the data, would be easier to implement with C++.

10http://icmake.sourceforge.net/
11http://ccbuild.sourceforge.net/

10 CHAPTER 2. INTRODUCTION

Which of these allegations are true? Originally, our impression was that the C++ language was

somewhat overrated; the same holding true for the entire object-oriented programming (OOP) ap-

proach. The enthusiasm for the C++ language resembles the once uttered allegations about Artificial-

Intelligence (AI) languages like Lisp and Prolog: these languages were supposed to solve the most

difficult AI-problems ‘almost without effort’. New languages are often oversold: in the end, each

problem can be coded in any programming language (say BASIC or assembly language). The advan-

tages and disadvantages of a given programming language aren’t in ‘what you can do with them’,

but rather in ‘which tools the language offers to implement an efficient and understandable solu-

tion to a programming problem’. Often these tools take the form of syntactic restrictions, enforcing

or promoting certain constructions or which simply suggest intentions by applying or ‘embracing’

such syntactic forms. Rather than a long list of plain assembly instructions we now use flow control

statements, functions, objects or even (with C++) so-called templates to structure and organize code

and to express oneself ‘eloquently’ in the language of one’s choice.

Concerning the above allegations of C++, we support the following, however.

• The development of new programs while existing code is reused can also be implemented in

C by, e.g., using function libraries. Functions can be collected in a library and need not be

re-invented with each new program. C++, however, offers specific syntax possibilities for code

reuse, apart from function libraries (see chapters 13 and 20).

• Creating and using new data types is certainly possible in C; e.g., by using structs, typedefs

etc.. From these types other types can be derived, thus leading to structs containing structs

and so on. In C++ these facilities are augmented by defining data types which are completely

‘self supporting’, taking care of, e.g., their memory management automatically (without having

to resort to an independently operating memory management system as used in, e.g., Java).

• In C++ memory management can in principle be either as easy or as difficult as it is in C.

Especially when dedicated C functions such as xmalloc and xrealloc are used (allocating

the memory or aborting the program when the memory pool is exhausted). However, with

functions like malloc it is easy to err. Frequently errors in C programs can be traced back

to miscalculations when using malloc. Instead, C++ offers facilities to allocate memory in a

somewhat safer way, using its operator new.

• Concerning ‘bug proneness’ we can say that C++ indeed uses stricter type checking than C.

However, most modern C compilers implement ‘warning levels’; it is then the programmer’s

choice to disregard or get rid of the warnings. In C++ many of such warnings become fatal

errors (the compilation stops).

• As far as ‘data hiding’ is concerned, C does offer some tools. E.g., where possible, local or

static variables can be used and special data types such as structs can be manipulated by

dedicated functions. Using such techniques, data hiding can be implemented even in C; though

it must be admitted that C++ offers special syntactic constructions, making it far easier to

implement ‘data hiding’ (and more in general: ‘encapsulation’) in C++ than in C.

C++ in particular (and OOP in general) is of course not the solution to all programming problems.

However, the language does offer various new and elegant facilities which are worth investigating.

At the downside, the level of grammatical complexity of C++ has increased significantly as compared

to C. This may be considered a serious drawback of the language. Although we got used to this

increased level of complexity over time, the transition was neither fast nor painless.

With the C++ Annotations we hope to help the reader when transiting from C to C++ by focusing on

the additions of C++ as compared to C and by leaving out plain C. It is our hope that you like this

document and may benefit from it.

Enjoy and good luck on your journey into C++!

2.4. WHAT IS OBJECT-ORIENTED PROGRAMMING? 11

2.4 What is Object-Oriented Programming?

Object-oriented (and object-based) programming propagates a slightly different approach to pro-

gramming problems than the strategy usually used in C programs. In C programming problems are

usually solved using a ‘procedural approach’: a problem is decomposed into subproblems and this

process is repeated until the subtasks can be coded. Thus a conglomerate of functions is created,

communicating through arguments and variables, global or local (or static).

In contrast (or maybe better: in addition) to this, an object-based approach identifies the keywords

used in a problem statement. These keywords are then depicted in a diagram where arrows are

drawn between those keywords to depict an internal hierarchy. The keywords become the objects

in the implementation and the hierarchy defines the relationship between these objects. The term

object is used here to describe a limited, well-defined structure, containing all information about

an entity: data types and functions to manipulate the data. As an example of an object oriented

approach, an illustration follows:

The employees and owner of a car dealer and auto garage company are paid as follows.

First, mechanics who work in the garage are paid a certain sum each month. Second, the

owner of the company receives a fixed amount each month. Third, there are car salesmen

who work in the showroom and receive their salary each month plus a bonus per sold

car. Finally, the company employs second-hand car purchasers who travel around; these

employees receive their monthly salary, a bonus per bought car, and a restitution of their

travel expenses.

When representing the above salary administration, the keywords could be mechanics, owner, sales-

men and purchasers. The properties of such units are: a monthly salary, sometimes a bonus per

purchase or sale, and sometimes restitution of travel expenses. When analyzing the problem in this

manner we arrive at the following representation:

• The owner and the mechanics can be represented by identical types, receiving a given salary

per month. The relevant information for such a type would be the monthly amount. In addition

this object could contain data as the name, address and social security number.

• Car salesmen who work in the showroom can be represented as the same type as above but with

some extra functionality: the number of transactions (sales) and the bonus per transaction.

In the hierarchy of objects we would define the dependency between the first two objects by

letting the car salesmen be ‘derived’ from the owner and mechanics.

• Finally, there are the second-hand car purchasers. These share the functionality of the sales-

men except for travel expenses. The additional functionality would therefore consist of the

expenses made and this type would be derived from the salesmen.

The hierarchy of the identified objects are further illustrated in Figure 2.1.

The overall process in the definition of a hierarchy such as the above starts with the description of

the most simple type. Traditionally (and still in vogue with some popular object oriented languages)

more complex types are then derived from the basic set, with each derivation adding a little extra

functionality. From these derived types, more complex types can be derived ad infinitum, until

a representation of the entire problem can be made. Over the years, however, this approach has

become less popular in C++ as it typically results in overly tight coupling, which in turns reduces

rather than enhances the understanding, maintainability and testability of complex programs. In

C++ object oriented program more and more favors small, easy to understand hierarchies, limited

coupling and a developmental process where design patterns (cf. Gamma et al. (1995)) play a central

role.

12 CHAPTER 2. INTRODUCTION

Figure 2.1: Hierarchy of objects in the salary administration.

Nonetheless, in C++ classes are frequently used to define the characteristics of objects. Classes

contain the necessary functionality to do useful things. Classes generally do not offer all their

functionality (and typically none of their data) to objects of other classes. As we will see, classes tend

to hide their properties in such a way that they are not directly modifiable by the outside world.

Instead, dedicated functions are used to reach or modify the properties of objects. Thus class-type

objects are able to uphold their own integrity. The core concept here is encapsulation of which data

hiding is just an example. These concepts are further explained in chapter 7.

2.5 Differences between C and C++

In this section some examples of C++ code are shown. Some differences between C and C++ are

highlighted.

2.5.1 The function ‘main’

In C++ there are only two variants of the function main: int main() and int main(int argc,

char **argv).

Notes:

• The return type of main is int, and not void;

• The function main cannot be overloaded (for other than the abovementioned signatures);

• The return type of main is int, and not void;

• It is not required to use an explicit return statement at the end of main. If omitted main

returns 0;

• The value of argv[arc] equals 0;

• The ‘third char **envp parameter’ is not defined by the C++ standard and should be avoided.

Instead, the global variable extern char **environ should be declared providing access to

the program’s environment variables. Its final element has the value 0;

• A C++ program ends normally when the main function returns. Using a function try block (cf.

section 10.11) for main is also considered a normal end of a C++ program. When a C++ ends

2.5. DIFFERENCES BETWEEN C AND C++ 13

normally, destructors (cf. section 9.2) of globally defined objects are activated. A function like

exit(3) does not normally end a C++ program and using such functions is therefore deprecated.

2.5.2 End-of-line comment

According to the ANSI/ISO definition, ‘end of line comment’ is implemented in the syntax of C++.

This comment starts with // and ends at the end-of-line marker. The standard C comment, delim-

ited by /* and */ can still be used in C++:

int main()

{

// this is end-of-line comment

// one comment per line

/*
this is standard-C comment, covering

multiple lines

*/

}

Despite the example, it is advised not to use C type comment inside the body of C++ functions.

Sometimes existing code must temporarily be suppressed, e.g., for testing purposes. In those cases

it’s very practical to be able to use standard C comment. If such suppressed code itself contains such

comment, it would result in nested comment-lines, resulting in compiler errors. Therefore, the rule

of thumb is not to use C type comment inside the body of C++ functions (alternatively, #if 0 until

#endif pair of preprocessor directives could of course also be used).

2.5.3 Strict type checking

C++ uses very strict type checking. A prototype must be known for each function before it is called,

and the call must match the prototype. The program

int main()

{

printf("Hello World\n");

}

often compiles under C, albeit with a warning that printf() is an unknown function. But C++

compilers (should) fail to produce code in such cases. The error is of course caused by the missing

#include <stdio.h> (which in C++ is more commonly included as #include <cstdio> direc-

tive).

And while we’re at it: as we’ve seen in C++ main always uses the int return value. Although it is

possible to define int main() without explicitly defining a return statement, within main it is not

possible to use a return statement without an explicit int-expression. For example:

int main()

{

return; // won’t compile: expects int expression, e.g.

// return 1;

}

14 CHAPTER 2. INTRODUCTION

2.5.4 Function Overloading

In C++ it is possible to define functions having identical names but performing different actions.

The functions must differ in their parameter lists (and/or in their const attribute). An example is

given below:

#include <stdio.h>

void show(int val)

{

printf("Integer: %d\n", val);

}

void show(double val)

{

printf("Double: %lf\n", val);

}

void show(char const *val)

{

printf("String: %s\n", val);

}

int main()

{

show(12);

show(3.1415);

show("Hello World!\n");

}

In the above program three functions show are defined, only differing in their parameter lists, ex-

pecting an int, double and char *, respectively. The functions have identical names. Functions

having identical names but different parameter lists are called overloaded. The act of defining such

functions is called ‘function overloading’.

The C++ compiler implements function overloading in a rather simple way. Although the functions

share their names (in this example show), the compiler (and hence the linker) use quite different

names. The conversion of a name in the source file to an internally used name is called ‘name

mangling’. E.g., the C++ compiler might convert the prototype void show (int) to the internal

name VshowI, while an analogous function having a char * argument might be called VshowCP.

The actual names that are used internally depend on the compiler and are not relevant for the

programmer, except where these names show up in e.g., a listing of the contents of a library.

Some additional remarks with respect to function overloading:

• Do not use function overloading for functions doing conceptually different tasks. In the exam-

ple above, the functions show are still somewhat related (they print information to the screen).

However, it is also quite possible to define two functions lookup, one of which would find a

name in a list while the other would determine the video mode. In this case the behavior of

those two functions have nothing in common. It would therefore be more practical to use names

which suggest their actions; say, findname and videoMode.

• C++ does not allow identically named functions to differ only in their return values, as it is

always the programmer’s choice to either use or ignore a function’s return value. E.g., the

fragment

2.5. DIFFERENCES BETWEEN C AND C++ 15

printf("Hello World!\n");

provides no information about the return value of the function printf. Two functions printf

which only differ in their return types would therefore not be distinguishable to the compiler.

• In chapter 7 the notion of const member functions is introduced (cf. section 7.7). Here it

is merely mentioned that classes normally have so-called member functions associated with

them (see, e.g., chapter 5 for an informal introduction to the concept). Apart from overloading

member functions using different parameter lists, it is then also possible to overload member

functions by their const attributes. In those cases, classes may have pairs of identically named

member functions, having identical parameter lists. Then, these functions are overloaded by

their const attribute. In such cases only one of these function must have the const attribute.

2.5.5 Default function arguments

In C++ it is possible to provide ‘default arguments’ when defining a function. These arguments are

supplied by the compiler when they are not specified by the programmer. For example:

#include <stdio.h>

void showstring(char *str = "Hello World!\n");

int main()

{

showstring("Here’s an explicit argument.\n");

showstring(); // in fact this says:

// showstring("Hello World!\n");

}

The possibility to omit arguments in situations where default arguments are defined is just a nice

touch: it is the compiler who supplies the lacking argument unless it is explicitly specified at the

call. The code of the program will neither be shorter nor more efficient when default arguments are

used.

Functions may be defined with more than one default argument:

void two_ints(int a = 1, int b = 4);

int main()

{

two_ints(); // arguments: 1, 4

two_ints(20); // arguments: 20, 4

two_ints(20, 5); // arguments: 20, 5

}

When the function two_ints is called, the compiler supplies one or two arguments whenever nec-

essary. A statement like two_ints(,6) is, however, not allowed: when arguments are omitted they

must be on the right-hand side.

Default arguments must be known at compile-time since at that moment arguments are supplied to

functions. Therefore, the default arguments must be mentioned at the function’s declaration, rather

than at its implementation:

16 CHAPTER 2. INTRODUCTION

// sample header file

extern void two_ints(int a = 1, int b = 4);

// code of function in, say, two.cc

void two_ints(int a, int b)

{

...

}

It is an error to supply default arguments in function definitions. When the function is used by

other sources the compiler reads the header file rather than the function definition. Consequently

the compiler has no way to determine the values of default function arguments. Current compilers

generate compile-time errors when detecting default arguments in function definitions.

2.5.6 NULL-pointers vs. 0-pointers and nullptr (C++11)

In C++ all zero values are coded as 0. In C NULL is often used in the context of pointers. This

difference is purely stylistic, though one that is widely adopted. In C++ NULL should be avoided

(as it is a macro, and macros can –and therefore should– easily be avoided in C++, see also section

8.1.4). Instead 0 can almost always be used.

Almost always, but not always. As C++ allows function overloading (cf. section 2.5.4) the program-

mer might be confronted with an unexpected function selection in the situation shown in section

2.5.4:

#include <stdio.h>

void show(int val)

{

printf("Integer: %d\n", val);

}

void show(double val)

{

printf("Double: %lf\n", val);

}

void show(char const *val)

{

printf("String: %s\n", val);

}

int main()

{

show(12);

show(3.1415);

show("Hello World!\n");

}

In this situation a programmer intending to call show(char const *) might call show(0). But

this doesn’t work, as 0 is interpreted as int and so show(int) is called. But calling show(NULL)

doesn’t work either, as C++ usually defines NULL as 0, rather than ((void *)0). So, show(int)

2.5. DIFFERENCES BETWEEN C AND C++ 17

is called once again. To solve these kinds of problems the new C++ standard introduces the key-

word nullptr representing the 0 pointer. In the current example the programmer should call

show(nullptr) to avoid the selection of the wrong function. The nullptr value can also be used

to initialize pointer variables. E.g.,

int *ip = nullptr; // OK

int value = nullptr; // error: value is no pointer

2.5.7 The ‘void’ parameter list

In C, a function prototype with an empty parameter list, such as

void func();

means that the argument list of the declared function is not prototyped: the compiler does warn

against calling func with any set of arguments. In C the keyword void is used when it is the

explicit intent to declare a function with no arguments at all, as in:

void func(void);

As C++ enforces strict type checking, in C++ an empty parameter list indicates the total absence of

parameters. The keyword void is thus omitted.

2.5.8 The ‘#define __cplusplus’

Each C++ compiler which conforms to the ANSI/ISO standard defines the symbol __cplusplus: it

is as if each source file were prefixed with the preprocessor directive #define __cplusplus.

We shall see examples of the usage of this symbol in the following sections.

2.5.9 Using standard C functions

Normal C functions, e.g., which are compiled and collected in a run-time library, can also be used in

C++ programs. Such functions, however, must be declared as C functions.

As an example, the following code fragment declares a function xmalloc as a C function:

extern "C" void *xmalloc(int size);

This declaration is analogous to a declaration in C, except that the prototype is prefixed with extern

"C".

A slightly different way to declare C functions is the following:

extern "C"

{

// C-declarations go in here

}

18 CHAPTER 2. INTRODUCTION

It is also possible to place preprocessor directives at the location of the declarations. E.g., a C header

file myheader.h which declares C functions can be included in a C++ source file as follows:

extern "C"

{

#include <myheader.h>

}

Although these two approaches may be used, they are actually seldom encountered in C++ sources.

A more frequently used method to declare external C functions is encountered in the next section.

2.5.10 Header files for both C and C++

The combination of the predefined symbol __cplusplus and the possibility to define extern "C"

functions offers the ability to create header files for both C and C++. Such a header file might, e.g.,

declare a group of functions which are to be used in both C and C++ programs.

The setup of such a header file is as follows:

#ifdef __cplusplus

extern "C"

{

#endif

/* declaration of C-data and functions are inserted here. E.g., */

void *xmalloc(int size);

#ifdef __cplusplus

}

#endif

Using this setup, a normal C header file is enclosed by extern "C" { which occurs near the top of

the file and by }, which occurs near the bottom of the file. The #ifdef directives test for the type of

the compilation: C or C++. The ‘standard’ C header files, such as stdio.h, are built in this manner

and are therefore usable for both C and C++.

In addition C++ headers should support include guards. In C++ it is usually undesirable to include

the same header file twice in the same source file. Such multiple inclusions can easily be avoided by

including an #ifndef directive in the header file. For example:

#ifndef MYHEADER_H_

#define MYHEADER_H_

// declarations of the header file is inserted here,

// using #ifdef __cplusplus etc. directives

#endif

When this file is initially scanned by the preprocessor, the symbol MYHEADER_H_ is not yet de-

fined. The #ifndef condition succeeds and all declarations are scanned. In addition, the symbol

MYHEADER_H_ is defined.

When this file is scanned next while compiling the same source file, the symbol MYHEADER_H_

has been defined and consequently all information between the #ifndef and #endif directives

is skipped by the compiler.

2.5. DIFFERENCES BETWEEN C AND C++ 19

In this context the symbol name MYHEADER_H_ serves only for recognition purposes. E.g., the name

of the header file can be used for this purpose, in capitals, with an underscore character instead of a

dot.

Apart from all this, the custom has evolved to give C header files the extension .h, and to give C++

header files no extension. For example, the standard iostreams cin, cout and cerr are avail-

able after including the header file iostream, rather than iostream.h. In the Annotations this

convention is used with the standard C++ header files, but not necessarily everywhere else.

There is more to be said about header files. Section 7.11 provides an in-depth discussion of the

preferred organization of C++ header files.

2.5.11 Defining local variables

In C local variables can only be defined at the top of a function or at the beginning of a nested block.

In C++ local variables can be created at any position in the code, even between statements.

Furthermore, local variables can be defined within some statements, just prior to their usage. A

typical example is the for statement:

#include <stdio.h>

int main()

{

for (int i = 0; i < 20; ++i)

printf("%d\n", i);

}

In this program the variable i is created in the initialization section of the for statement. According

to the ANSI-standard, the variable does not exist prior to the for-statement and not beyond the

for-statement. With some older compilers, the variable continues to exist after the execution of the

for-statement, but nowadays a warning like

warning: name lookup of ‘i’ changed for new ANSI ‘for’ scoping using obsolete binding at

‘i’

is issued when the variable is used outside of the for-loop.

The implication seems clear: define a variable just before the for-statement if it is to be used

beyond that statement. Otherwise the variable should be defined inside the for-statement itself.

This reduces its scope as much as possible, which is a very desirable characteristic.

Defining local variables when they’re needed requires a little getting used to. However, eventually it

tends to produce more readable, maintainable and often more efficient code than defining variables

at the beginning of compound statements. We suggest the following rules of thumb for defining local

variables:

• Local variables should be created at ‘intuitively right’ places, such as in the example above.

This does not only entail the for-statement, but also all situations where a variable is only

needed, say, half-way through the function.

• More in general, variables should be defined in such a way that their scope is as limited and lo-

calized as possible. When avoidable local variables are not defined at the beginning of functions

but rather where they’re first used.

20 CHAPTER 2. INTRODUCTION

• It is considered good practice to avoid global variables. It is fairly easy to lose track of which

global variable is used for what purpose. In C++ global variables are seldom required, and

by localizing variables the well known phenomenon of using the same variable for multiple

purposes, thereby invalidating each individual purpose of the variable, can easily be prevented.

If considered appropriate, nested blocks can be used to localize auxiliary variables. However, sit-

uations exist where local variables are considered appropriate inside nested statements. The just

mentioned for statement is of course a case in point, but local variables can also be defined within

the condition clauses of if-else statements, within selection clauses of switch statements and

condition clauses of while statements. Variables thus defined are available to the full statement,

including its nested statements. For example, consider the following switch statement:

#include <stdio.h>

int main()

{

switch (int c = getchar())

{

case ’a’:

case ’e’:

case ’i’:

case ’o’:

case ’u’:

printf("Saw vowel %c\n", c);

break;

case EOF:

printf("Saw EOF\n");

break;

default:

printf("Saw other character, hex value 0x%2x\n", c);

}

}

Note the location of the definition of the character ‘c’: it is defined in the expression part of the

switch statement. This implies that ‘c’ is available only to the switch statement itself, including

its nested (sub)statements, but not outside the scope of the switch.

The same approach can be used with if and while statements: a variable that is defined in the

condition part of an if and while statement is available in their nested statements. There are

some caveats, though:

• The variable definition must result in a variable which is initialized to a numeric or logical

value;

• The variable definition cannot be nested (e.g., using parentheses) within a more complex ex-

pression.

The latter point of attention should come as no big surprise: in order to be able to evaluate the

logical condition of an if or while statement, the value of the variable must be interpretable as

either zero (false) or non-zero (true). Usually this is no problem, but in C++ objects (like objects

of the type std::string (cf. chapter 5)) are often returned by functions. Such objects may or

may not be interpretable as numeric values. If not (as is the case with std::string objects), then

2.5. DIFFERENCES BETWEEN C AND C++ 21

such variables can not be defined at the condition or expression clauses of condition- or repetition

statements. The following example will therefore not compile:

if (std::string myString = getString()) // assume getString returns

{ // a std::string value

// process myString

}

The above example requires additional clarification. Often a variable can profitably be given local

scope, but an extra check is required immediately following its initialization. The initialization and

the test cannot both be combined in one expression. Instead two nested statements are required.

Consequently, the following example won’t compile either:

if ((int c = getchar()) && strchr("aeiou", c))

printf("Saw a vowel\n");

If such a situation occurs, either use two nested if statements, or localize the definition of int c

using a nested compound statement:

if (int c = getchar()) // nested if-statements

if (strchr("aeiou", c))

printf("Saw a vowel\n");

{ // nested compound statement

int c = getchar();

if (c && strchr("aeiou", c))

printf("Saw a vowel\n");

}

2.5.12 The keyword ‘typedef’

The keyword typedef is still used in C++, but is not required anymore when defining union,

struct or enum definitions. This is illustrated in the following example:

struct SomeStruct

{

int a;

double d;

char string[80];

};

When a struct, union or other compound type is defined, the tag of this type can be used as type

name (this is SomeStruct in the above example):

SomeStruct what;

what.d = 3.1415;

22 CHAPTER 2. INTRODUCTION

2.5.13 Functions as part of a struct

In C++ we may define functions as members of structs. Here we encounter the first concrete example

of an object: as previously described (see section 2.4), an object is a structure containing data while

specialized functions exist to manipulate those data.

A definition of a struct Point is provided by the code fragment below. In this structure, two int

data fields and one function draw are declared.

struct Point // definition of a screen-dot

{

int x; // coordinates

int y; // x/y

void draw(); // drawing function

};

A similar structure could be part of a painting program and could, e.g., represent a pixel. With

respect to this struct it should be noted that:

• The function draw mentioned in the struct definition is a mere declaration. The actual code

of the function defining the actions performed by the function is found elsewhere (the concept

of functions inside structs is further discussed in section 3.2).

• The size of the struct Point is equal to the size of its two ints. A function declared inside

the structure does not affect its size. The compiler implements this behavior by allowing the

function draw to be available only in the context of a Point.

The Point structure could be used as follows:

Point a; // two points on

Point b; // the screen

a.x = 0; // define first dot

a.y = 10; // and draw it

a.draw();

b = a; // copy a to b

b.y = 20; // redefine y-coord

b.draw(); // and draw it

As shown in the above example a function that is part of the structure may be selected using the

dot (.) (the arrow (->) operator is used when pointers to objects are available). This is therefore

identical to the way data fields of structures are selected.

The idea behind this syntactic construction is that several types may contain functions having iden-

tical names. E.g., a structure representing a circle might contain three int values: two values for

the coordinates of the center of the circle and one value for the radius. Analogously to the Point

structure, a Circle may now have a function draw to draw the circle.

Chapter 3

A First Impression Of C++

In this chapter C++ is further explored. The possibility to declare functions in structs is illustrated

in various examples; the concept of a class is introduced; casting is covered in detail; many new

types are introduced and several important notational extensions to C are discussed.

3.1 Extensions to C

Before we continue with the ‘real’ object-approach to programming, we first introduce some exten-

sions to the C programming language: not mere differences between C and C++, but syntactic

constructs and keywords not found in C.

3.1.1 Namespaces

C++ introduces the notion of a namespace: all symbols are defined in a larger context, called a

namespace. Namespaces are used to avoid name conflicts that could arise when a programmer

would like to define a function like sin operating on degrees, but does not want to lose the capability

of using the standard sin function, operating on radians.

Namespaces are covered extensively in chapter 4. For now it should be noted that most compilers

require the explicit declaration of a standard namespace: std. So, unless otherwise indicated, it is

stressed that all examples in the Annotations now implicitly use the

using namespace std;

declaration. So, if you actually intend to compile examples given in the C++ Annotations, make sure

that the sources start with the above using declaration.

3.1.2 The scope resolution operator ::

C++ introduces several new operators, among which the scope resolution operator (::). This op-

erator can be used in situations where a global variable exists having the same name as a local

variable:

#include <stdio.h>

23

24 CHAPTER 3. A FIRST IMPRESSION OF C++

int counter = 50; // global variable

int main()

{

for (int counter = 1; // this refers to the

counter < 10; // local variable

counter++)

{

printf("%d\n",

::counter // global variable

/ // divided by

counter); // local variable

}

}

In the above program the scope operator is used to address a global variable instead of the local

variable having the same name. In C++ the scope operator is used extensively, but it is seldom used

to reach a global variable shadowed by an identically named local variable. Its main purpose is

described in chapter 7.

3.1.3 Using the keyword ‘const’

Even though the keyword const is part of the C grammar, its use is more important and much more

common in C++ than it is in C.

The const keyword is a modifier stating that the value of a variable or of an argument may not be

modified. In the following example the intent is to change the value of a variable ival, which fails:

int main()

{

int const ival = 3; // a constant int

// initialized to 3

ival = 4; // assignment produces

// an error message

}

This example shows how ival may be initialized to a given value in its definition; attempts to

change the value later (in an assignment) are not permitted.

Variables that are declared const can, in contrast to C, be used to specify the size of an array, as in

the following example:

int const size = 20;

char buf[size]; // 20 chars big

Another use of the keyword const is seen in the declaration of pointers, e.g., in pointer-arguments.

In the declaration

char const *buf;

3.1. EXTENSIONS TO C 25

buf is a pointer variable pointing to chars. Whatever is pointed to by buf may not be changed

through buf: the chars are declared as const. The pointer buf itself however may be changed. A

statement like *buf = ’a’; is therefore not allowed, while ++buf is.

In the declaration

char *const buf;

buf itself is a const pointer which may not be changed. Whatever chars are pointed to by buf may

be changed at will.

Finally, the declaration

char const *const buf;

is also possible; here, neither the pointer nor what it points to may be changed.

The rule of thumb for the placement of the keyword const is the following: whatever occurs to the

left to the keyword may not be changed.

Although simple, this rule of thumb is often used. For example, Bjarne Stroustrup states (in

http://www.research.att.com/~bs/bs_faq2.html#constplacement):

Should I put "const" before or after the type?

I put it before, but that’s a matter of taste. "const T" and "T const" were always (both)

allowed and equivalent. For example:

const int a = 1; // OK

int const b = 2; // also OK

My guess is that using the first version will confuse fewer programmers (“is more id-

iomatic”).

But we’ve already seen an example where applying this simple ‘before’ placement rule for the key-

word const produces unexpected (i.e., unwanted) results as we will shortly see (below). Further-

more, the ‘idiomatic’ before-placement also conflicts with the notion of const functions, which we will

encounter in section 7.7. With const functions the keyword const is also placed behind rather than

before the name of the function.

The definition or declaration (either or not containing const) should always be read from the vari-

able or function identifier back to the type indentifier:

“Buf is a const pointer to const characters”

This rule of thumb is especially useful in cases where confusion may occur. In examples of C++ code

published in other places one often encounters the reverse: const preceding what should not be

altered. That this may result in sloppy code is indicated by our second example above:

char const *buf;

What must remain constant here? According to the sloppy interpretation, the pointer cannot be

altered (as const precedes the pointer). In fact, the char values are the constant entities here, as

becomes clear when we try to compile the following program:

int main()

26 CHAPTER 3. A FIRST IMPRESSION OF C++

{

char const *buf = "hello";

++buf; // accepted by the compiler

*buf = ’u’; // rejected by the compiler

}

Compilation fails on the statement *buf = ’u’; and not on the statement ++buf.

Marshall Cline’s C++ FAQ1 gives the same rule (paragraph 18.5) , in a similar context:

[18.5] What’s the difference between "const Fred* p", "Fred* const p" and "const Fred*

const p"?

You have to read pointer declarations right-to-left.

Marshal Cline’s advice can be improved, though. Here’s a recipe that will effortlessly dissect even

the most complex declaration:

1. start reading at the variable’s name

2. read as far as possible until you reach the end of the declaration or an (as yet unmatched)

closing parenthesis.

3. return to the point where you started reading, and read backwards until you reach the begin-

ning of the declaration or a matching opening parenthesis.

4. If you reached an opening parenthese, continue at step 2 beyond the parenthesis where you

previously stopped.

Let’s apply this recipe to the following (by itself irrelevant) complex declaration. Little arrows in-

dicate how far we should read at each step and the direction of the arrow indicates the reading

direction:

char const *(* const (*(*ip)())[])[]

ip Start at the variable’s name:

’ip’ is

ip) Hitting a closing paren: revert

-->

(*ip) Find the matching open paren:

<- ’a pointer to’

(*ip)()) The next unmatched closing par:

--> ’a function (not expecting

arguments)’

(*(*ip)()) Find the matching open paren:

<- ’returning a pointer to’

(*(*ip)())[]) The next closing par:

1http://www.parashift.com/c++-faq-lite/const-correctness.html

3.1. EXTENSIONS TO C 27

--> ’an array of’

(* const (*(*ip)())[]) Find the matching open paren:

<-------- ’const pointers to’

(* const (*(*ip)())[])[] Read until the end:

-> ’an array of’

char const *(* const (*(*ip)())[])[] Read backwards what’s left:

<----------- ’pointers to const chars’

Collecting all the parts, we get for char const *(* const (*(*ip)())[])[]: ip is a pointer to

a function (not expecting arguments), returning a pointer to an array of const pointers to an array of

pointers to const chars. This is what ip represents; the recipe can be used to parse any declaration

you ever encounter.

3.1.4 ‘cout’, ‘cin’, and ‘cerr’

Analogous to C, C++ defines standard input- and output streams which are available when a pro-

gram is executed. The streams are:

• cout, analogous to stdout,

• cin, analogous to stdin,

• cerr, analogous to stderr.

Syntactically these streams are not used as functions: instead, data are written to streams or read

from them using the operators <<, called the insertion operator and >>, called the extraction oper-

ator. This is illustrated in the next example:

#include <iostream>

using namespace std;

int main()

{

int ival;

char sval[30];

cout << "Enter a number:\n";

cin >> ival;

cout << "And now a string:\n";

cin >> sval;

cout << "The number is: " << ival << "\n"

"And the string is: " << sval << ’\n’;

}

This program reads a number and a string from the cin stream (usually the keyboard) and prints

these data to cout. With respect to streams, please note:

28 CHAPTER 3. A FIRST IMPRESSION OF C++

• The standard streams are declared in the header file iostream. In the examples in the C++

Annotations this header file is often not mentioned explicitly. Nonetheless, it must be included

(either directly or indirectly) when these streams are used. Comparable to the use of the

using namespace std; clause, the reader is expected to #include <iostream> with all

the examples in which the standard streams are used.

• The streams cout, cin and cerr are variables of so-called class-types. Such variables are

commonly called objects. Classes are discussed in detail in chapter 7 and are used extensively

in C++.

• The stream cin extracts data from a stream and copies the extracted information to variables

(e.g., ival in the above example) using the extraction operator (two consecutive > characters:

>>). Later in the Annotations we will describe how operators in C++ can perform quite dif-

ferent actions than what they are defined to do by the language, as is the case here. Function

overloading has already been mentioned. In C++ operators can also have multiple definitions,

which is called operator overloading.

• The operators which manipulate cin, cout and cerr (i.e., >> and <<) also manipulate vari-

ables of different types. In the above example cout << ival results in the printing of an

integer value, whereas cout << "Enter a number" results in the printing of a string. The

actions of the operators therefore depend on the types of supplied variables.

• The extraction operator (>>) performs a so called type safe assignment to a variable by ‘ex-

tracting’ its value from a text stream. Normally, the extraction operator skips all white space

characters preceding the values to be extracted.

• Special symbolic constants are used for special situations. Normally a line is terminated by

inserting "\n" or ’\n’. But when inserting the endl symbol the line is terminated followed

by the flushing of the stream’s internal buffer. Thus, endl can usually be avoided in favor of

’\n’ resulting in somewhat more efficient code.

The stream objects cin, cout and cerr are not part of the C++ grammar proper. The streams are

part of the definitions in the header file iostream. This is comparable to functions like printf that

are not part of the C grammar, but were originally written by people who considered such functions

important and collected them in a run-time library.

A program may still use the old-style functions like printf and scanf rather than the new-style

streams. The two styles can even be mixed. But streams offer several clear advantages and in

many C++ programs have completely replaced the old-style C functions. Some advantages of using

streams are:

• Using insertion and extraction operators is type-safe. The format strings which are used with

printf and scanf can define wrong format specifiers for their arguments, for which the com-

piler sometimes can’t warn. In contrast, argument checking with cin, cout and cerr is per-

formed by the compiler. Consequently it isn’t possible to err by providing an int argument in

places where, according to the format string, a string argument should appear. With streams

there are no format strings.

• The functions printf and scanf (and other functions using format strings) in fact implement

a mini-language which is interpreted at run-time. In contrast, with streams the C++ compiler

knows exactly which in- or output action to perform given the arguments used. No mini-

language here.

• In addition the possibilities of the insertion and extraction operators may be extended allowing

objects of classes that didn’t exist when the streams were originally designed to be inserted

into or extracted from streams. Mini languages as used with printf cannot be extended.

3.2. FUNCTIONS AS PART OF STRUCTS 29

• The usage of the left-shift and right-shift operators in the context of the streams illustrates yet

another capability of C++: operator overloading allowing us to redefine the actions an operator

performs in certain contexts. Ascending from C operator overloading requires some getting

used, but after a short little while these overloaded operators feel rather comfortable.

• Streams are independent of the media they operate upon. This (at this point somewhat ab-

stract) notion means that the same code can be used without any modification at all to inter-

face your code to any kind of device. The code using streams can be used when the device is a

file on disk; an Internet connection; a digital camera; a DVD device; a satellite link; and much

more: you name it. Streams allow your code to be decoupled (independent) of the devices your

code is supposed to operate on, which eases maintenance and allows reuse of the same code in

new situations.

The iostream library has a lot more to offer than just cin, cout and cerr. In chapter 6 iostreams

are covered in greater detail. Even though printf and friends can still be used in C++ programs,

streams have practically replaced the old-style C I/O functions like printf. If you think you still

need to use printf and related functions, think again: in that case you’ve probably not yet com-

pletely grasped the possibilities of stream objects.

3.2 Functions as part of structs

Earlier it was mentioned that functions can be part of structs (see section 2.5.13). Such functions

are called member functions. This section briefly discusses how to define such functions.

The code fragment below shows a struct having data fields for a person’s name and address. A

function print is included in the struct’s definition:

struct Person

{

char name[80];

char address[80];

void print();

};

When defining the member function print the structure’s name (Person) and the scope resolution

operator (::) are used:

void Person::print()

{

cout << "Name: " << name << "\n"

"Address: " << address << ’\n’;

}

The implementation of Person::print shows how the fields of the struct can be accessed without

using the structure’s type name. Here the function Person::print prints a variable name. Since

Person::print is itself a part of struct person, the variable name implicitly refers to the same

type.

This struct Person could be used as follows:

Person person;

30 CHAPTER 3. A FIRST IMPRESSION OF C++

strcpy(person.name, "Karel");

strcpy(person.address, "Marskramerstraat 33");

person.print();

The advantage of member functions is that the called function automatically accesses the data fields

of the structure for which it was invoked. In the statement person.print() the object person is

the ‘substrate’: the variables name and address that are used in the code of print refer to the data

stored in the person object.

3.2.1 Data hiding: public, private and class

As mentioned before (see section 2.3), C++ contains specialized syntactic possibilities to implement

data hiding. Data hiding is the capability of sections of a program to hide its data from other sections.

This results in very clean data definitions. It also allows these sections to enforce the integrity of

their data.

C++ has three keywords that are related to data hiding: private, protected and public. These

keywords can be used in the definition of structs. The keyword public allows all subsequent fields

of a structure to be accessed by all code; the keyword private only allows code that is part of the

struct itself to access subsequent fields. The keyword protected is discussed in chapter 13, and

is somewhat outside of the scope of the current discussion.

In a struct all fields are public, unless explicitly stated otherwise. Using this knowledge we can

expand the struct Person:

struct Person

{

private:

char d_name[80];

char d_address[80];

public:

void setName(char const *n);

void setAddress(char const *a);

void print();

char const *name();

char const *address();

};

As the data fields d_name and d_address are in a private section they are only accessible to the

member functions which are defined in the struct: these are the functions setName, setAddress

etc.. As an illustration consider the following code:

Person fbb;

fbb.setName("Frank"); // OK, setName is public

strcpy(fbb.d_name, "Knarf"); // error, x.d_name is private

Data integrity is implemented as follows: the actual data of a struct Person are mentioned in

the structure definition. The data are accessed by the outside world using special functions that are

also part of the definition. These member functions control all traffic between the data fields and

other parts of the program and are therefore also called ‘interface’ functions. The thus implemented

3.2. FUNCTIONS AS PART OF STRUCTS 31

Figure 3.1: Private data and public interface functions of the class Person.

data hiding is illustrated in Figure 3.1. The members setName and setAddress are declared with

char const * parameters. This indicates that the functions will not alter the strings which are

supplied as their arguments. Analogously, the members name and address return char const

*s: the compiler prevents callers of those members from modifying the information made accessible

through the return values of those members.

Two examples of member functions of the struct Person are shown below:

void Person::setName(char const *n)

{

strncpy(d_name, n, 79);

d_name[79] = 0;

}

char const *Person::name()

{

return d_name;

}

The power of member functions and of the concept of data hiding results from the abilities of member

functions to perform special tasks, e.g., checking the validity of the data. In the above example

setName copies only up to 79 characters from its argument to the data member name, thereby

avoiding a buffer overflow.

Another illustration of the concept of data hiding is the following. As an alternative to member

functions that keep their data in memory a library could be developed featuring member functions

storing data on file. To convert a program storing Person structures in memory to one that stores

the data on disk no special modifications are required. After recompilation and linking the program

to a new library it is converted from storage in memory to storage on disk. This example illustrates

a broader concept than data hiding; it illustrates encapsulation. Data hiding is a kind of encap-

sulation. Encapsulation in general results in reduced coupling of different sections of a program.

This in turn greatly enhances reusability and maintainability of the resulting software. By hav-

ing the structure encapsulate the actual storage medium the program using the structure becomes

independent of the actual storage medium that is used.

Though data hiding can be implemented using structs, more often (almost always) classes are

32 CHAPTER 3. A FIRST IMPRESSION OF C++

used instead. A class is a kind of struct, except that a class uses private access by default, whereas

structs use public access by default. The definition of a class Person is therefore identical to the

one shown above, except for the fact that the keyword class has replaced struct while the initial

private: clause can be omitted. Our typographic suggestion for class names (and other type names

defined by the programmer) is to start with a capital character to be followed by the remainder of

the type name using lower case letters (e.g., Person).

3.2.2 Structs in C vs. structs in C++

In this section we’ll discuss an important difference between C and C++ structs and (member) func-

tions. In C it is common to define several functions to process a struct, which then require a pointer

to the struct as one of their arguments. An imaginary C header file showing this concept is:

/* definition of a struct PERSON This is C */

typedef struct

{

char name[80];

char address[80];

} PERSON;

/* some functions to manipulate PERSON structs */

/* initialize fields with a name and address */

void initialize(PERSON *p, char const *nm,

char const *adr);

/* print information */

void print(PERSON const *p);

/* etc.. */

In C++, the declarations of the involved functions are put inside the definition of the struct or

class. The argument denoting which struct is involved is no longer needed.

class Person

{

char d_name[80];

char d_address[80];

public:

void initialize(char const *nm, char const *adr);

void print();

// etc..

};

In C++ the struct parameter is not used. A C function call such as:

PERSON x;

initialize(&x, "some name", "some address");

becomes in C++:

3.3. MORE EXTENSIONS TO C 33

Person x;

x.initialize("some name", "some address");

3.3 More extensions to C

3.3.1 References

In addition to the common ways to define variables (plain variables or pointers) C++ introduces

references defining synonyms for variables. A reference to a variable is like an alias; the variable

and the reference can both be used in statements involving the variable:

int int_value;

int &ref = int_value;

In the above example a variable int_value is defined. Subsequently a reference ref is defined,

which (due to its initialization) refers to the same memory location as int_value. In the definition

of ref, the reference operator & indicates that ref is not itself an int but a reference to one. The

two statements

++int_value;

++ref;

have the same effect: they increment int_value’s value. Whether that location is called int_value

or ref does not matter.

References serve an important function in C++ as a means to pass modifiable arguments to func-

tions. E.g., in standard C, a function that increases the value of its argument by five and returning

nothing needs a pointer parameter:

void increase(int *valp) // expects a pointer

{ // to an int

*valp += 5;

}

int main()

{

int x;

increase(&x); // pass x’s address

}

This construction can also be used in C++ but the same effect is also achieved using a reference:

void increase(int &valr) // expects a reference

{ // to an int

valr += 5;

}

int main()

34 CHAPTER 3. A FIRST IMPRESSION OF C++

{

int x;

increase(x); // passed as reference

}

It is arguable whether code such as the above should be preferred over C’s method, though. The

statement increase (x) suggests that not x itself but a copy is passed. Yet the value of x changes

because of the way increase() is defined. However, references can also be used to pass objects that

are only inspected (without the need for a copy or a const *) or to pass objects whose modification

is an accepted side-effect of their use. In those cases using references are strongly preferred over

existing alternatives like copy by value or passing pointers.

Behind the scenes references are implemented using pointers. So, as far as the compiler is concerned

references in C++ are just const pointers. With references, however, the programmer does not need

to know or to bother about levels of indirection. An important distinction between plain pointers

and references is of course that with references no indirection takes place. For example:

extern int *ip;

extern int &ir;

ip = 0; // reassigns ip, now a 0-pointer

ir = 0; // ir unchanged, the int variable it refers to

// is now 0.

In order to prevent confusion, we suggest to adhere to the following:

• In those situations where a function does not alter its parameters of a built-in or pointer type,

value parameters can be used:

void some_func(int val)

{

cout << val << ’\n’;

}

int main()

{

int x;

some_func(x); // a copy is passed

}

• When a function explicitly must change the values of its arguments, a pointer parameter is

preferred. These pointer parameters should preferably be the function’s initial parameters.

This is called return by argument.

void by_pointer(int *valp)

{

*valp += 5;

}

• When a function doesn’t change the value of its class- or struct-type arguments, or if the mod-

ification of the argument is a trivial side-effect (e.g., the argument is a stream) references can

be used. Const-references should be used if the function does not modify the argument:

void by_reference(string const &str)

3.3. MORE EXTENSIONS TO C 35

{

cout << str; // no modification of str

}

int main ()

{

int x = 7;

by_pointer(&x); // a pointer is passed

// x might be changed

string str("hello");

by_reference(str); // str is not altered

}

References play an important role in cases where the argument is not changed by the function

but where it is undesirable to copy the argument to initialize the parameter. Such a situation

occurs when a large object is passed as argument, or is returned by the function. In these cases

the copying operation tends to become a significant factor, as the entire object must be copied.

In these cases references are preferred.

If the argument isn’t modified by the function, or if the caller shouldn’t modify the returned

information, the const keyword should be used. Consider the following example:

struct Person // some large structure

{

char name[80];

char address[90];

double salary;

};

Person person[50]; // database of persons

// printperson expects a

// reference to a structure

// but won’t change it

void printperson (Person const &p)

{

cout << "Name: " << p.name << ’\n’ <<

"Address: " << p.address << ’\n’;

}

// get a person by indexvalue

Person const &person(int index)

{

return person[index]; // a reference is returned,

} // not a copy of person[index]

int main()

{

Person boss;

printperson (boss); // no pointer is passed,

// so variable won’t be

// altered by the function

printperson(person(5));

// references, not copies

36 CHAPTER 3. A FIRST IMPRESSION OF C++

// are passed here

}

• Furthermore, note that there is yet another reason for using references when passing objects

as function arguments. When passing a reference to an object, the activation of a so called copy

constructor is avoided. Copy constructors are covered in chapter 9.

References could result in extremely ‘ugly’ code. A function may return a reference to a variable, as

in the following example:

int &func()

{

static int value;

return value;

}

This allows the use of the following constructions:

func() = 20;

func() += func();

It is probably superfluous to note that such constructions should normally not be used. Nonetheless,

there are situations where it is useful to return a reference. We have actually already seen an

example of this phenomenon in our previous discussion of streams. In a statement like cout <<

"Hello" << ’\n’; the insertion operator returns a reference to cout. So, in this statement first

the "Hello" is inserted into cout, producing a reference to cout. Through this reference the ’\n’

is then inserted in the cout object, again producing a reference to cout, which is then ignored.

Several differences between pointers and references are pointed out in the next list below:

• A reference cannot exist by itself, i.e., without something to refer to. A declaration of a reference

like

int &ref;

is not allowed; what would ref refer to?

• References can be declared as external. These references were initialized elsewhere.

• References may exist as parameters of functions: they are initialized when the function is

called.

• References may be used in the return types of functions. In those cases the function determines

what the return value refers to.

• References may be used as data members of classes. We return to this usage later.

• Pointers are variables by themselves. They point at something concrete or just “at nothing”.

• References are aliases for other variables and cannot be re-aliased to another variable. Once a

reference is defined, it refers to its particular variable.

• Pointers (except for const pointers) can be reassigned to point to different variables.

• When an address-of operator & is used with a reference, the expression yields the address

of the variable to which the reference applies. In contrast, ordinary pointers are variables

themselves, so the address of a pointer variable has nothing to do with the address of the

variable pointed to.

3.3. MORE EXTENSIONS TO C 37

3.3.2 Rvalue References (C++11)

In C++, temporary (rvalue) values are indistinguishable from const & types. the C++11 standard

adds a new reference type called an rvalue reference, defined as typename &&.

The name rvalue reference is derived from assignment statements, where the variable to the left of

the assignment operator is called an lvalue and the expression to the right of the assignment opera-

tor is called an rvalue. Rvalues are often temporary (or anonymous) values, like values returned by

functions.

In this parlance the C++ reference should be considered an lvalue reference (using the notation

typename &). They can be contrasted to rvalue references (using the notation typename &&).

The key to understanding rvalue references is the concept of an anonymous variable. An anony-

mous variable has no name and this is the distinguishing feature for the compiler to associate it

automatically with an rvalue reference if it has a choice. Before introducing some interesting and

new constructions that weren’t available before C++11 let’s first have a look at some standard situ-

ations where lvalue references are used. The following function returns a temporary (anonymous)

value:

int intVal()

{

return 5;

}

Although intVal’s return value can be assigned to an int variable it requires copying, which might

become prohibitive when a function does not return an int but instead some large object. A reference

or pointer cannot be used either to collect the anonymous return value as the return value won’t

survive beyond that. So the following is illegal (as noted by the compiler):

int &ir = intVal(); // fails: refers to a temporary

int const &ic = intVal(); // OK: immutable temporary

int *ip = &intVal(); // fails: no lvalue available

Apparently it is not possible to modify the temporary returned by intVal. But now consider these

functions:

void receive(int &value) // note: lvalue reference

{

cout << "int value parameter\n";

}

void receive(int &&value) // note: rvalue reference

{

cout << "int R-value parameter\n";

}

and let’s call this function from main:

int main()

{

receive(18);

int value = 5;

receive(value);

38 CHAPTER 3. A FIRST IMPRESSION OF C++

receive(intVal());

}

This program produces the following output:

int R-value parameter

int value parameter

int R-value parameter

The program’s output shows the compiler selecting receive(int &&value) in all cases where it

receives an anonymous int as its argument. Note that this includes receive(18): a value 18

has no name and thus receive(int &&value) is called. Internally, it actually uses a temporary

variable to store the 18, as is shown by the following example which modifies receive:

void receive(int &&value)

{

++value;

cout << "int R-value parameter, now: " << value << ’\n’;

// displays 19 and 6, respectively.

}

Contrasting receive(int &value) with receive(int &&value) has nothing to do with int

&value not being a const reference. If receive(int const &value) is used the same results are

obtained. Bottom line: the compiler selects the overloaded function using the rvalue reference if the

function is passed an anonymous value.

The compiler runs into problems if void receive(int &value) is replaced by void receive(int

value), though. When confronted with the choice between a value parameter and a reference pa-

rameter (either lvalue or rvalue) it cannot make a decision and reports an ambiguity. In practical

contexts this is not a problem. Rvalue refences were added to the language in order to be able to

distinguish the two forms of references: named values (for which lvalue references are used) and

anonymous values (for which rvalue references are used).

It is this distinction that allows the implementation of move semantics and perfect forwarding. At

this point the concept of move semantics cannot yet fully be discussed (but see section 9.7 for a more

thorough discussusion) but it is very well possible to illustrate the underlying ideas.

Consider the situation where a function returns a struct Data containing a pointer to dynamically

allocated characters. Moreover, the struct defines a member function copy(Data const &other)

that takes another Data object and copies the other’s data into the current object. The (partial)

definition of the struct Data might look like this2:

struct Data

{

char *text;

size_t size;

void copy(Data const &other)

{

text = strdup(other.text);

size = strlen(text);

}

};

2To the observant reader: in this example the memory leak that results from using Data::copy() should be ignored

3.3. MORE EXTENSIONS TO C 39

Next, functions dataFactory and main are defined as follows:

Data dataFactory(char const *txt)

{

Data ret = {strdup(txt), strlen(txt)};

return ret;

}

int main()

{

Data d1 = {strdup("hello"), strlen("hello")};

Data d2;

d2.copy(d1); // 1 (see text)

Data d3;

d3.copy(dataFactory("hello")); // 2

}

At (1) d2 appropriately receives a copy of d1’s text. But at (2) d3 receives a copy of the text stored

in the temporary returned by the dataFactory function. As the temporary ceases to exist after the

call to copy() two releated and unpleasant consequences are observed:

• The return value is a temporary object: its only reason for existence is to pass its data on to

d3. Now d3 copies the temporary’s data which clearly is somewhat overdone.

• The temporary Data object is lost following the call to copy(). Unfortunately its dynamically

allocated data is lost as well resulting in a memory leak.

In cases like these rvalue reference should be used. By overloading the copy member with a member

copy(Data &&other) the compiler is able to distinguish situations (1) and (2). It now calls the ini-

tial copy() member in situation (1) and the newly defined overloaded copy() member in situation

(2):

struct Data

{

char *text;

size_t size;

void copy(Data const &other)

{

text = strdup(other.text);

}

void copy(Data &&other)

{

text = other.text;

other.text = 0;

}

};

Note that the overloaded copy() function merely moves the other.text pointer to the current

object’s text pointer followed by reassigning 0 to other.text. Struct Data suddenly has become

move-aware and implements move semantics, removing the drawbacks of the previously shown ap-

proach:

40 CHAPTER 3. A FIRST IMPRESSION OF C++

• Instead of making a deep copy (which is required in situation (1)), the pointer value is simply

moved to its new owner;

• Since the other.text doesn’t point to dynamically allocated memory anymore the memory

leak is prevented.

Rvalue references for *this and initialization of class objects by rvalues are not yet supported by

the g++ compiler.

3.3.3 Strongly typed enumerations (C++11)

Enumeration values in C++ are in fact int values, thereby bypassing type safety. E.g., values of

different enumeration types may be compared for (in)equality, albeit through a (static) type cast.

Another problem with the current enum type is that their values are not restricted to the enum type

name itself, but to the scope where the enumeration is defined. As a consequence, two enumerations

having the same scope cannot have identical values.

In the C++11 standard these problems are solved by defining enum classes. An enum class can be

defined as in the following example:

enum class SafeEnum

{

NOT_OK, // 0, by implication

OK = 10,

MAYBE_OK // 11, by implication

};

Enum classes use int values by default, but the used value type can easily be changed using the :

type notation, as in:

enum class CharEnum: unsigned char

{

NOT_OK,

OK

};

To use a value defined in an enum class its enumeration name must be provided as well. E.g., OK is

not defined, CharEnum::OK is.

Using the data type specification (noting that it defaults to int) it is possible to use enum class

forward declarations. E.g.,

enum Enum1; // Illegal: no size available

enum Enum2: unsigned int; // Legal in C++11: explicitly declared type

enum class Enum3; // Legal in C++11: default int type is used

enum class Enum4: char; // Legal in C++11: explicitly declared type

3.3.4 Initializer lists (C++11)

The C language defines the initializer list as a list of values enclosed by curly braces, possibly

themselves containing initializer lists. In C these initializer lists are commonly used to initialize

3.3. MORE EXTENSIONS TO C 41

arrays and structs.

C++ extends this concept in the C++11 standard by introducing the type initializer_list<Type>

where Type is replaced by the type name of the values used in the initializer list. Initializer lists

in C++ are, like their counterparts in C, recursive, so they can also be used with multi-dimensional

arrays, structs and classes.

Before using the initializer_list the <initializer_list> header file must have been in-

cluded.

Like in C, initializer lists consist of a list of values surrounded by curly braces. But unlike C,

functions can define initializer list parameters. E.g.,

void values(std::initializer_list<int> iniValues)

{

}

A function like values could be called as follows:

values({2, 3, 5, 7, 11, 13});

The initializer list appears as an argument which is a list of values surrounded by curly braces. Due

to the recursive nature of initializer lists a two-dimensional series of values can also be passes, as

shown in the next example:

void values2(std::initializer_list<std::initializer_list<int>> iniValues)

{

}

values2({{1, 2}, {2, 3}, {3, 5}, {4, 7}, {5, 11}, {6, 13}});

Initializer lists are constant expressions and cannot be modified. However, their size and values may

be retrieved using their size, begin, and end members as follows:

void values(initializer_list<int> iniValues)

{

cout << "Initializer list having " << iniValues.size() << "values\n";

for

(

initializer_list<int>::const_iterator begin = iniValues.begin();

begin != iniValues.end();

++begin

)

cout << "Value: " << *begin << ’\n’;

}

Initializer lists can also be used to initialize objects of classes (cf. section 7.5).

3.3.5 Type inference using ‘auto’ (C++11)

A special use of the keyword auto is defined by the C++11 standard allowing the compiler to deter-

mine the type of a variable automatically rather than requiring the software engineer to define a

variable’s type explicitly.

42 CHAPTER 3. A FIRST IMPRESSION OF C++

In parallel, the use of auto as a storage class specifier is no longer supported in the C++11 standard.

According to that standard a variable definition like auto int var results in a compilation error.

This can be very useful in situations where it is very hard to determine the variable’s type in ad-

vance. These situations occur, e.g., in the context of templates, topics covered in chapters 18 until

22.

At this point in the Annotations only simple examples can be given. Also, some hints will be provided

about more general uses of the auto keyword.

When defining and initializing a variable int variable = 5 the type of the initializing expression

is well known: it’s an int, and unless the programmer’s intentions are different this could be used

to define variable’s type (although it shouldn’t in normal circumstances as it reduces rather than

improves the clarity of the code):

auto variable = 5;

Here are some examples where using auto is useful. In chapter 5 the iterator concept is introduced

(see also chapters 12 and 18). Iterators sometimes have long type definitions, like

std::vector<std::string>::const_reverse_iterator

Functions may return types like this. Since the compiler knows the types returned by functions we

may exploit this knowledge using auto. Assuming that a function begin() is declared as follows:

std::vector<std::string>::const_reverse_iterator begin();

Rather than writing the verbose variable definition (at // 1) a much shorter definition (at // 2)

may be used:

std::vector<std::string>::const_reverse_iterator iter = begin(); // 1

auto iter = begin(); // 2

It’s easy to define additional variables of this type. When initializing those variables using iter the

auto keyword can be used again:

auto start = iter;

If start can’t be initialized immediately using an existing variable the type of a well known variable

or function can be used in combination with the decltype keyword, as in:

decltype(iter) start;

decltype(begin()) spare;

The keyword decltype may also receive an expression as its argument. This feature is already

available in the C++11 standard implementation in g++ 4.3. E.g., decltype(3 + 5) represents an

int, decltype(3 / double(3)) represents double.

The auto keyword can also be used to postpone the definition of a function’s return type. The

declaration of a function intArrPtr returning a pointer to an array of 10 ints looks like this:

int (*intArrPtr())[10];

3.3. MORE EXTENSIONS TO C 43

Such a declaration is fairly complex. E.g., among other complexities it requires ‘protection of the

pointer’ using parentheses in combination with the function’s parameter list. In situations like

these the specification of the return type can be postponed using the auto return type, followed by

the specification of the function’s return type after any other specification the function might receive

(e.g., as a const member (cf. section 7.7) or following its noexcept specification (cf. section 22.7)).

Using auto to declare the above function, the declaration becomes:

auto intArrPtr() -> int (*)[10];

A return type specification using auto is called a late-specified return type.

The auto keyword can also be used to defined types that are related to the actual auto associated

type. Here are some examples:

vector<int> vi;

auto iter = vi.begin(); // standard: auto is vector<int>::iterator

auto &&rref = vi.begin(); // auto is rvalue ref. to the iterator type

auto *ptr = &iter; // auto is pointer to the iterator type

auto *ptr = &rref; // same

3.3.6 Defining types and ’using’ declarations (C++11)

In C++ typedef is commonly used to define shorthand notations for complex types. Assume we

want to define a shorthand for ‘a pointer to a function expecting a double and an int, and returning

an unsigned long long int’. Such a function could be:

unsigned long long int compute(double, int);

A pointer to such a function has the following form:

unsigned long long int (*pf)(double, int);

If this kind of pointer is frequently used, consider defining it using typedef: simply put typedef

in front of it and the pointer’s name is turned into the name of a type. It could be capitalized to let

it stand out more clearly as the name of a type:

typedef unsigned long long int (*PF)(double, int);

After having defined this type, it can be used to declare or define such pointers:

PF pf = compute; // initialize the pointer to a function like

// ’compute’

void fun(PF pf); // fun expects a pointer to a function like

// ’compute’

However, including the pointer in the typedef might not be a very good idea, as it masks the fact

that pf is a pointer. After all, PF pf looks more like ‘int x’ than ‘int *x’. To document that pf is

in fact a pointer, slightly change the typedef:

typedef unsigned long long int FUN(double, int);

44 CHAPTER 3. A FIRST IMPRESSION OF C++

FUN *pf = compute; // now pf clearly is a pointer.

The scope of typedefs is restricted to compilation units. Therefore, typedefs are usually embedded in

header files which are then included by multiple source files in which the typedefs should be used.

In addition to typedef the C++11 standard offers the using keyword to associate a type and and

identifier. In practice typedef and using can be used interchangeably. The using keyword ar-

guably result in more readable type definitions. Consider the following three (equivalent) defini-

tions:

• The traditional, C style definition of a type, embedding the type name in the definition (turning

a variable name into a type name):

typedef unsigned long long int FUN(double, int);

• Apply using to improve the visibility (for humans) of the type name, by moving the type name

to the front of the definition:

using FUN = unsigned long long int (double, int);

• An alternative construction, using a late-specified return type (cf. section 3.3.5):

using FUN = auto (double, int) -> unsigned long long int;

3.3.7 Range-based for-loops (C++11)

The C++ for-statement is identical to C’s for-statement:

for (init; cond; inc)

statement

Often the initialization, condition, and increment parts are fairly obvious, as in situations where all

elements of an array or vector must be processed. Many languages offer the foreach statement for

that and C++ offers the std::for_each generic algorithm (cf. section 19.1.17).

The C++11 standard adds new syntax for the for-statement: the range based for loop. This new

syntax can be used to process all element of a range in turn. Three types of ranges are distinguished:

• Plain arrays (e.g., int array[10]);

• Initializer lists;

• Standard containers (or comparable) (cf. chapter 12);

• Any other type offering begin() and end() functions returning so-called iterators (cf. section

18.2).

In these cases the C++11 standard offers the following additional for-statement syntax:

// assume int array[30]

for (auto &element: array)

statement

3.3. MORE EXTENSIONS TO C 45

The part to the left of the colon is called the for range declaration. The declared variable (element)

is a formal name; use any identifier you like. The variable is only available within the nested

statement, and it refers to (or is a copy of) each of the elements of the range, from the first element

up to the last.

There’s no formal requirement to use auto, but using auto is extremely useful in many situations.

Not only in situations where the range refers to elements of some complex type, but also in situations

where you know what you can do with the elements in the range, but don’t care about their exact

type names. In the above example int could also have been used.

The reference symbol (&) is important in the following cases:

• if you want to modify the elements in the nested statements

• if the elements themselves are structs (or classes, cf. chapter 7)

When the reference symbol is omitted the variable will be a copy of each of the subsequent elements

of the range. Fine, probably, if you merely need to look at the variables when they are of primitive

types, but needlessly inefficient if you have an array of BigStruct elements:

struct BigStruct

{

double array[100];

int last;

};

Inefficient, because you don’t need to make copies of the array’s elements. Instead, use refences to

elements:

BigStruct data[100]; // assume properly initialized elsewhere

int countUsed()

{

int sum = 0;

// const &: the elements aren’t modified

for (auto const &element: data)

sum += element.last;

return sum;

}

If data is only available as a pointer to its first element in combination with the number of elements,

range-based for loops can also be used, but require a little help. Section 23.6 describes a generic

approach to using range based for loops in such cases.

3.3.8 Raw String Literals (C++11)

Standard ASCII-C strings are delimited by double quotes, supporting escape sequences like \n, \\

and \". In some cases it is useful to avoid escaping strings (e.g., in the context of XML). To this end,

the C++11 standard offers raw string literals.

Raw string literals start with an R, followed by a double quote, followed by a label (which is an

arbitrary sequence of characters not equal to (), followed by (. The raw string ends at the closing

parenthesis), followed by the label which is in turn followed by a double quote. Example:

46 CHAPTER 3. A FIRST IMPRESSION OF C++

R"(A Raw \ "String")"

R"delimiter(Another \ Raw "(String))delimiter"

In the first case, everything between "(and)" is part of the string. Escape sequences aren’t sup-

ported so the text \" within the first raw string literal defines three characters: a backslash, a blank

character and a double quote. The second example shows a raw string defined between the markers

"delimiter(and)delimiter".

3.4 New language-defined data types

In C the following built-in data types are available: void, char, short, int, long, float

and double. C++ extends these built-in types with several additional built-in types: the types bool,

wchar_t, long long and long double (Cf. ANSI/ISO draft (1995), par. 27.6.2.4.1 for examples of

these very long types). The type long long is merely a double-long long datatype. The type long

double is merely a double-long double datatype. These built-in types as well as pointer variables

are called primitive types in the C++ Annotations.

There is a subtle issue to be aware of when converting applications developed for 32-bit architectures

to 64-bit architectures. When converting 32-bit programs to 64-bit programs, only long types and

pointer types change in size from 32 bits to 64 bits; integers of type int remain at their size of

32 bits. This may cause data truncation when assigning pointer or long types to int types. Also,

problems with sign extension can occur when assigning expressions using types shorter than the

size of an int to an unsigned long or to a pointer. More information about this issue can be found

here3.

Except for these built-in types the class-type string is available for handling character strings.

The datatypes bool, and wchar_t are covered in the following sections, the datatype string is

covered in chapter 5. Note that recent versions of C may also have adopted some of these newer

data types (notably bool and wchar_t). Traditionally, however, C doesn’t support them, hence they

are mentioned here.

Now that these new types are introduced, let’s refresh your memory about letters that can be used

in literal constants of various types. They are:

• b or B: in addition to its use to indicate a hexadecimal value, it can also be used to define a

binary constant. E.g., 0b101 equals the decimal value 5 (supported by, e.g., the g++ compiler,

but not part of the C++11 standard).

• E or e: the exponentiation character in floating point literal values. For example: 1.23E+3.

Here, E should be pronounced (and interpreted) as: times 10 to the power. Therefore, 1.23E+3

represents the value 1230.

• F can be used as postfix to a non-integral numeric constant to indicate a value of type float,

rather than double, which is the default. For example: 12.F (the dot transforms 12 into

a floating point value); 1.23E+3F (see the previous example. 1.23E+3 is a double value,

whereas 1.23E+3F is a float value).

• L can be used as prefix to indicate a character string whose elements are wchar_t-type char-

acters. For example: L"hello world".

• L can be used as postfix to an integral value to indicate a value of type long, rather than

int, which is the default. Note that there is no letter indicating a short type. For that a

static_cast<short>() must be used.

3http://developers.sun.com/solaris/articles/ILP32toLP64Issues.html

3.4. NEW LANGUAGE-DEFINED DATA TYPES 47

• p, to specify the power in hexadecimal floating point numbers. E.g. 0x10p4. The exponent

itself is read as a decimal constant and can therefore not start with 0x. The exponent part is

interpreted as a power of 2. So 0x10p2 is (decimal) equal to 64: 16 * 2^2.

• U can be used as postfix to an integral value to indicate an unsigned value, rather than an

int. It may also be combined with the postfix L to produce an unsigned long int value.

And, of course: the x and a until f characters can be used to specify hexadecimal constants (option-

ally using capital letters).

3.4.1 The data type ‘bool’

The type bool represents boolean (logical) values, for which the (now reserved) constants true

and false may be used. Except for these reserved values, integral values may also be assigned

to variables of type bool, which are then implicitly converted to true and false according to

the following conversion rules (assume intValue is an int-variable, and boolValue is a bool-

variable):

// from int to bool:

boolValue = intValue ? true : false;

// from bool to int:

intValue = boolValue ? 1 : 0;

Furthermore, when bool values are inserted into streams then true is represented by 1, and false

is represented by 0. Consider the following example:

cout << "A true value: " << true << "\n"

"A false value: " << false << ’\n’;

The bool data type is found in other programming languages as well. Pascal has its type Boolean;

Java has a boolean type. Different from these languages, C++’s type bool acts like a kind of

int type. It is primarily a documentation-improving type, having just two values true and false.

Actually, these values can be interpreted as enum values for 1 and 0. Doing so would ignore the

philosophy behind the bool data type, but nevertheless: assigning true to an int variable neither

produces warnings nor errors.

Using the bool-type is usually clearer than using int. Consider the following prototypes:

bool exists(char const *fileName); // (1)

int exists(char const *fileName); // (2)

With the first prototype, readers expect the function to return true if the given filename is the name

of an existing file. However, with the second prototype some ambiguity arises: intuitively the return

value 1 is appealing, as it allows constructions like

if (exists("myfile"))

cout << "myfile exists";

On the other hand, many system functions (like access, stat, and many other) return 0 to indicate

a successful operation, reserving other values to indicate various types of errors.

48 CHAPTER 3. A FIRST IMPRESSION OF C++

As a rule of thumb I suggest the following: if a function should inform its caller about the success

or failure of its task, let the function return a bool value. If the function should return success or

various types of errors, let the function return enum values, documenting the situation by its various

symbolic constants. Only when the function returns a conceptually meaningful integral value (like

the sum of two int values), let the function return an int value.

3.4.2 The data type ‘wchar_t’

The wchar_t type is an extension of the char built-in type, to accomodate wide character values

(but see also the next section). The g++ compiler reports sizeof(wchar_t) as 4, which easily

accomodates all 65,536 different Unicode character values.

Note that Java’s char data type is somewhat comparable to C++’s wchar_t type. Java’s char type

is 2 bytes wide, though. On the other hand, Java’s byte data type is comparable to C++’s char

type: one byte. Confusing?

3.4.3 Unicode encoding (C++11)

In C++ string literals can be defined as NTB strings. Prepending an NTBS by L (e.g., L"hello")

defines a wchar_t string literal.

The new C++11 standard adds to this support for 8, 16 and 32 bit Unicode encoded strings. Further-

more, two new data types are introduced: char16_t and char32_t storing, respectively, a UTF-16

and UTF-32 unicode value.

In addition, a char type variable is large enough to contain any UTF-8 unicode value as well (i.e., it

remains an 8-bit value).

String literals for the various types of unicode encodings (and associated variables) can be defined

as follows:

char utf_8[] = u8"This is UTF-8 encoded.";

char16_t utf16[] = u"This is UTF-16 encoded.";

char32_t utf32[] = U"This is UTF-32 encoded.";

Alternatively, unicode constants may be defined using the \u escape sequence, followed by a hex-

adecimal value. Depending on the type of the unicode variable (or constant) a UTF-8, UTF-16 or

UTF-32 value is used. E.g.,

char utf_8[] = u8"\u2018";

char16_t utf16[] = u"\u2018";

char32_t utf32[] = U"\u2018";

Unicode strings can be delimited by double quotes but raw string literals can also be used.

3.4.4 The data type ‘long long int’ (C++11)

The C++11 standard adds the type long long int to the set of standard types. On 32 bit systems

it has at least 64 usable bits. Some compilers already supported long long int as an extension,

but C++11 officially adds it to C++.

3.5. A NEW SYNTAX FOR CASTS 49

3.4.5 The data type ‘size_t’

The size_t type is not really a built-in primitive data type, but a data type that is promoted by

POSIX as a typename to be used for non-negative integral values answering questions like ‘how

much’ and ‘how many’, in which case it should be used instead of unsigned int. It is not a specific

C++ type, but also available in, e.g., C. Usually it is defined implictly when a (any) system header

file is included. The header file ‘officially’ defining size_t in the context of C++ is cstddef.

Using size_t has the advantage of being a conceptual type, rather than a standard type that is

then modified by a modifier. Thus, it improves the self-documenting value of source code.

Sometimes functions explictly require unsigned int to be used. E.g., on amd-architectures the

X-windows function XQueryPointer explicitly requires a pointer to an unsigned int variable as

one of its arguments. In such situations a pointer to a size_t variable can’t be used, but the address

of an unsigned int must be provided. Such situations are exceptional, though.

Other useful bit-represented types also exists. E.g., uint32_t is guaranteed to hold 32-bits un-

signed values. Analogously, int32_t holds 32-bits signed values. Corresponding types exist for 8,

16 and 64 bits values. These types are defined in the header file cstdint.

3.5 A new syntax for casts

Traditionally, C offers the following cast syntax:

(typename)expression

here typename is the name of a valid type, and expression is an expression.

C style casts are now deprecated. C++ programs should merely use the new style C++ casts as they

offer the compiler facilities to verify the sensibility of the cast. Facilities which are not offered by

the classic C-style cast.

A cast should not be confused with the often used constructor notation:

typename(expression)

the constructor notation is not a cast, but a request to the compiler to construct an (anonymous)

variable of type typename from expression.

If casts are really necessary one of several new-style casts should be used. These new-style casts are

introduced in the upcoming sections.

3.5.1 The ‘static_cast’-operator

The static_cast<type>(expression) is used to convert ‘conceptually comparable or related

types’ to each other. Here as well as in other C++ style casts type is the type to which the type of

expression should be cast.

Here are some examples of situations where the static_cast can (or should) be used:

• When converting an int to a double.

50 CHAPTER 3. A FIRST IMPRESSION OF C++

This happens, for example when the quotient of two int values must be computed without

losing the fraction part of the division. The sqrt function called in the following fragment

returns 2:

int x = 19;

int y = 4;

sqrt(x / y);

whereas it returns 2.179 when a static_cast is used, as in:

sqrt(static_cast<double>(x) / y);

The important point to notice here is that a static_cast is allowed to change the represen-

tation of its expression into the representation that’s used by the destination type.

Also note that the division is put outside of the cast expression. If the division is performed

within the cast’s expression (as in static_cast<double>(x / y)) an integer division has

already been performed before the cast has had a chance to convert the type of an operand to

double.

• When converting enum values to int values (in any direction).

Here the two types use identical representations, but different semantics. Assigning an ordi-

nary enum value to an int doesn’t require a cast, but when the enum is a strongly typed enum

a cast is required. Conversely, a static_cast is required when assigning an int value to a

variable of some enum type. Here is an example:

enum class Enum

{

VALUE

};

cout << static_cast<int>(VALUE); // show the numeric value

• When converting related pointers to each other.

The static_cast is used in the context of class inheritance (cf. chapter 13) to convert a

pointer to a so-called ‘derived class’ to a pointer to its ‘base class’. It cannot be used for casting

unrelated types to each other (e.g., a static_cast cannot be used to cast a pointer to a short

to a pointer to an int).

A void * is a generic pointer. It is frequently used by functions in the C library (e.g., mem-

cpy(3)). Since it is the generic pointer it is related to any other pointer, and a static_cast

should be used to convert a void * to an intended destination pointer. This is a somewhat

awkward left-over from C, which should probably only be used in that context. Here is an

example:

The qsort functions from the C library expects a pointer to a (comparison) function having two

void const * parameters. In fact, these parameters point to data elements of the array to be

sorted, and so the comparison function must cast the void const * parameters to pointers

to the elements of the array to be sorted. So, if the array is an int array[] and the compare

function’s parameters are void const *p1 and void const *p2 then the compare function

obtains the address of the int pointed to by p1 by using:

static_cast<int const *>(p1);

3.5. A NEW SYNTAX FOR CASTS 51

• When undoing or introducing the signed-modifier of an int-typed variable (remember that a

static_cast is allowed to change the expression’s representation!).

Here is an example: the C function tolower requires an int representing the value of an

unsigned char. But char by default is a signed type. To call tolower using an available

char ch we should use:

tolower(static_cast<unsigned char>(ch))

3.5.2 The ‘const_cast’-operator

The const keyword has been given a special place in casting. Normally anything const is const

for a good reason. Nonetheless situations may be encountered where the const can be ignored. For

these special situations the const_cast should be used. Its syntax is:

const_cast<type>(expression)

A const_cast<type>(expression) expression is used to undo the const attribute of a (pointer)

type.

The need for a const_cast may occur in combination with functions from the standard C library

which traditionally weren’t always as const-aware as they should. A function strfun(char *s)

might be available, performing some operation on its char *s parameter without actually modi-

fying the characters pointed to by s. Passing char const hello[] = "hello"; to strfun pro-

duces the warning

passing ‘const char *’ as argument 1 of ‘fun(char *)’ discards const

A const_cast is the appropriate way to prevent the warning:

strfun(const_cast<char *>(hello));

3.5.3 The ‘reinterpret_cast’-operator

The third new-style cast is used to change the interpretation of information: the reinterpret_cast.

It is somewhat reminiscent of the static_cast, but reinterpret_cast should only be used when

it is known that the information as defined in fact is or can be interpreted as something completely

different. Its syntax is:

reinterpret_cast<pointer type>(pointer expression)

Think of the reinterpret_cast as a cast offering a poor-man’s union: the same memory location

may be interpreted in completely different ways.

The reinterpret_cast is used, for example, in combination with the write function that is avail-

able for streams. In C++ streams are the preferred interface to, e.g., disk-files. The standard streams

like std::cin and std::cout also are stream objects.

Streams intended for writing (‘output streams’ like cout) offer writemembers having the prototype

write(char const *buffer, int length)

52 CHAPTER 3. A FIRST IMPRESSION OF C++

To write the value stored within a double variable to a stream in its un-interpreted binary form

the stream’s write member is used. However, as a double * and a char * point to variables

using different and unrelated representations, a static_cast cannot be used. In this case a

reinterpret_cast is required. To write the raw bytes of a variable double value to cout we

use:

cout.write(reinterpret_cast<char const *>(&value), sizeof(double));

All casts are potentially dangerous, but the reinterpret_cast is the most dangerous of them all.

Effectively we tell the compiler: back off, we know what we’re doing, so stop fuzzing. All bets are off,

and we’d better do know what we’re doing in situations like these. As a case in point consider the

following code:

int value = 0x12345678; // assume a 32-bits int

cout << "Value’s first byte has value: " << hex <<

static_cast<int>(

*reinterpret_cast<unsigned char *>(&value)

);

The above code produces different results on little and big endian computers. Little endian comput-

ers show the value 78, big endian computers the value 12. Also note that the different represen-

tations used by little and big endian computers renders the previous example (cout.write(...))

non-portable over computers of different architectures.

As a rule of thumb: if circumstances arise in which casts have to be used, clearly document the

reasons for their use in your code, making double sure that the cast does not eventually cause a

program to misbehave. Also: avoid reinterpret_casts unless you have to use them.

3.5.4 The ‘dynamic_cast’-operator

Finally there is a new style cast that is used in combination with polymorphism (see chapter 14). Its

syntax is:

dynamic_cast<type>(expression)

Different from the static_cast, whose actions are completely determined compile-time, the dynamic_cast’s

actions are determined run-time to convert a pointer to an object of some class (e.g., Base) to a

pointer to an object of another class (e.g., Derived) which is found further down its so-called class

hierarchy (this is also called downcasting).

At this point in the Annotations a dynamic_cast cannot yet be discussed extensively, but we return

to this topic in section 14.6.1.

3.5.5 Casting ’shared_ptr’ objects

In section 18.4 we’ll encounter the shared_ptr, defined by the C++11 standard.

To complete the overview of new-style casts, the casts to be used in combination with shared_ptrs

are mentioned below.

3.6. KEYWORDS AND RESERVED NAMES IN C++ 53

This section can safely be skipped without loss of continuity; actual coverage of these specialized

casts is postponed until section 18.4.5.

These specialized casts are:

• static_pointer_cast, returning a shared_ptr to the base-class section of a derived class

object;

• const_pointer_cast, returing a shared_ptr to a non-const object from a shared_ptr to a

constant object;

• dynamic_pointer_cast, returning a shared_ptr to a derived class object from a shared_ptr

to a base class object.

3.6 Keywords and reserved names in C++

C++’s keywords are a superset of C’s keywords. Here is a list of all keywords of the language:

alignas char32_t enum namespace return typedef

alignof class explicit new short typeid

and compl export noexcept signed typename

and_eq concept extern not sizeof union

asm const false not_eq static unsigned

auto const_cast float nullptr static_assert using

axiom constexpr for operator static_cast virtual

bitand continue friend or struct void

bitor decltype goto or_eq switch volatile

bool default if private template wchar_t

break delete import protected this while

case do inline public thread_local xor

catch double int register throw xor_eq

char dynamic_cast long reinterpret_cast true

char16_t else mutable requires try

Notes:

• The export keyword is removed from the language under the C++11 standard, but remains a

keyword, reserved for future use.

• the operator keywords: and, and_eq, bitand, bitor, compl, not, not_eq, or, or_eq,

xor and xor_eq are symbolic alternatives for, respectively, &&, &=, &, |, ~, !, !=, ||,

|=, ^ and ^=.

• C++11 also recognizes the special identifiers final and override. These identifiers are spe-

cial in the sense that they acquire special meanings when declaring classes or polymorphic

functions. Section 14.4 provides further details.

Keywords can only be used for their intended purpose and cannot be used as names for other entities

(e.g., variables, functions, class-names, etc.). In addition to keywords identifiers starting with an

underscore and living in the global namespace (i.e., not using any explicit namespace or using the

mere :: namespace specification) or living in the std namespace are reserved identifiers in the sense

that their use is a prerogative of the implementor.

54 CHAPTER 3. A FIRST IMPRESSION OF C++

Chapter 4

Name Spaces

4.1 Namespaces

Imagine a math teacher who wants to develop an interactive math program. For this program

functions like cos, sin, tan etc. are to be used accepting arguments in degrees rather than

arguments in radians. Unfortunately, the function name cos is already in use, and that function

accepts radians as its arguments, rather than degrees.

Problems like these are usually solved by defining another name, e.g., the function name cosDegrees

is defined. C++ offers an alternative solution through namespaces. Namespaces can be considered as

areas or regions in the code in which identifiers may be defined. Identifiers defined in a namespace

normally won’t conflict with names already defined elsewhere (i.e., outside of their namespaces).

So, a function cos (expecting angles in degrees) could be defined in a namespace Degrees. When

calling cos from within Degrees you would call the cos function expecting degrees, rather than the

standard cos function expecting radians.

Now that the ANSI/ISO standard has been implemented to a large degree in recent compilers, the

use of namespaces is more strictly enforced than in previous versions of compilers. This affects the

setup of class header files. At this point in the Annotations this cannot be discussed in detail, but

in section 7.11.1 the construction of header files using entities from namespaces is discussed.

4.1.1 Defining namespaces

Namespaces are defined according to the following syntax:

namespace identifier

{

// declared or defined entities

// (declarative region)

}

The identifier used when defining a namespace is a standard C++ identifier.

Within the declarative region, introduced in the above code example, functions, variables, structs,

classes and even (nested) namespaces can be defined or declared. Namespaces cannot be defined

within a function body. However, it is possible to define a namespace using multiple namespace

55

56 CHAPTER 4. NAME SPACES

declarations. Namespaces are ‘open’ meaning that a namespace CppAnnotations could be defined

in a file file1.cc and also in a file file2.cc. Entities defined in the CppAnnotations namespace

of files file1.cc and file2.cc are then united in one CppAnnotations namespace region. For

example:

// in file1.cc

namespace CppAnnotations

{

double cos(double argInDegrees)

{

...

}

}

// in file2.cc

namespace CppAnnotations

{

double sin(double argInDegrees)

{

...

}

}

Both sin and cos are now defined in the same CppAnnotations namespace.

Namespace entities can be defined outside of their namespaces. This topic is discussed in section

4.1.4.1.

4.1.1.1 Declaring entities in namespaces

Instead of defining entities in a namespace, entities may also be declared in a namespace. This

allows us to put all the declarations in a header file that can thereupon be included in sources using

the entities defined in the namespace. Such a header file could contain, e.g.,

namespace CppAnnotations

{

double cos(double degrees);

double sin(double degrees);

}

4.1.1.2 A closed namespace

Namespaces can be defined without a name. Such an anonymous namespace restricts the visibility

of the defined entities to the source file defining the anonymous namespace.

Entities defined in the anonymous namespace are comparable to C’s static functions and vari-

ables. In C++ the static keyword can still be used, but its preferred use is in class definitions

(see chapter 7). In situations where in C static variables or functions would have been used the

anonymous namespace should be used in C++.

The anonymous namespace is a closed namespace: it is not possible to add entities to the same

anonymous namespace using different source files.

4.1. NAMESPACES 57

4.1.2 Referring to entities

Given a namespace and its entities, the scope resolution operator can be used to refer to its enti-

ties. For example, the function cos() defined in the CppAnnotations namespace may be used as

follows:

// assume CppAnnotations namespace is declared in the

// following header file:

#include <cppannotations>

int main()

{

cout << "The cosine of 60 degrees is: " <<

CppAnnotations::cos(60) << ’\n’;

}

This is a rather cumbersome way to refer to the cos() function in the CppAnnotations namespace,

especially so if the function is frequently used. In cases like these an abbreviated form can be used

after specifying a using declaration. Following

using CppAnnotations::cos; // note: no function prototype,

// just the name of the entity

// is required.

calling cos results in a call of the cos function defined in the CppAnnotations namespace. This

implies that the standard cos function, accepting radians, is not automatically called anymore. To

call that latter cos function the plain scope resolution operator should be used:

int main()

{

using CppAnnotations::cos;

...

cout << cos(60) // calls CppAnnotations::cos()

<< ::cos(1.5) // call the standard cos() function

<< ’\n’;

}

A using declaration can have restricted scope. It can be used inside a block. The using declaration

prevents the definition of entities having the same name as the one used in the using declaration. It

is not possible to specify a using declaration for a variable value in some namespace, and to define

(or declare) an identically named object in a block also containing a using declaration. Example:

int main()

{

using CppAnnotations::value;

...

cout << value << ’\n’; // uses CppAnnotations::value

int value; // error: value already declared.

}

58 CHAPTER 4. NAME SPACES

4.1.2.1 The ‘using’ directive

A generalized alternative to the using declaration is the using directive:

using namespace CppAnnotations;

Following this directive, all entities defined in the CppAnnotations namespace are used as if they

were declared by using declarations.

While the using directive is a quick way to import all the names of a namespace (assuming the

namespace has previously been declared or defined), it is at the same time a somewhat dirty way to

do so, as it is less clear what entity is actually used in a particular block of code.

If, e.g., cos is defined in the CppAnnotations namespace, CppAnnotations::cos is going to be

used when cos is called. However, if cos is not defined in the CppAnnotations namespace, the

standard cos function will be used. The using directive does not document as clearly as the using

declaration what entity will actually be used. Therefore use caution when applying the using

directive.

4.1.2.2 ‘Koenig lookup’

If Koenig lookup were called the ‘Koenig principle’, it could have been the title of a new Ludlum

novel. However, it is not. Instead it refers to a C++ technicality.

‘Koenig lookup’ refers to the fact that if a function is called without specifying its namespace, then

the namespaces of its argument types are used to determine the function’s namespace. If the names-

pace in which the argument types are defined contains such a function, then that function is used.

This procedure is called the ‘Koenig lookup’.

As an illustration consider the next example. The function FBB::fun(FBB::Value v) is defined

in the FBB namespace. It can be called without explicitly mentioning its namespace:

#include <iostream>

namespace FBB

{

enum Value // defines FBB::Value

{

FIRST

};

void fun(Value x)

{

std::cout << "fun called for " << x << ’\n’;

}

}

int main()

{

fun(FBB::FIRST); // Koenig lookup: no namespace

// for fun() specified

}

/*

4.1. NAMESPACES 59

generated output:

fun called for 0

*/

The compiler is rather smart when handling namespaces. If Value in the namespace FBB would

have been defined as typedef int Value then FBB::Value would be recognized as int, thus

causing the Koenig lookup to fail.

As another example, consider the next program. Here two namespaces are involved, each defining

their own fun function. There is no ambiguity, since the argument defines the namespace and

FBB::fun is called:

#include <iostream>

namespace FBB

{

enum Value // defines FBB::Value

{

FIRST

};

void fun(Value x)

{

std::cout << "FBB::fun() called for " << x << ’\n’;

}

}

namespace ES

{

void fun(FBB::Value x)

{

std::cout << "ES::fun() called for " << x << ’\n’;

}

}

int main()

{

fun(FBB::FIRST); // No ambiguity: argument determines

// the namespace

}

/*
generated output:

FBB::fun() called for 0

*/

Here is an example in which there is an ambiguity: fun has two arguments, one from each names-

pace. The ambiguity must be resolved by the programmer:

#include <iostream>

namespace ES

{

enum Value // defines ES::Value

{

60 CHAPTER 4. NAME SPACES

FIRST

};

}

namespace FBB

{

enum Value // defines FBB::Value

{

FIRST

};

void fun(Value x, ES::Value y)

{

std::cout << "FBB::fun() called\n";

}

}

namespace ES

{

void fun(FBB::Value x, Value y)

{

std::cout << "ES::fun() called\n";

}

}

int main()

{

// fun(FBB::FIRST, ES::FIRST); ambiguity: resolved by

// explicitly mentioning

// the namespace

ES::fun(FBB::FIRST, ES::FIRST);

}

/*
generated output:

ES::fun() called

*/

An interesting subtlety with namespaces is that definitions in one namespace may break the code

defined in another namespace. It shows that namespaces may affect each other and that namespaces

may backfire if we’re not aware of their peculiarities. Consider the following example:

namespace FBB

{

struct Value

{};

void fun(int x);

void gun(Value x);

}

namespace ES

{

void fun(int x)

{

4.1. NAMESPACES 61

fun(x);

}

void gun(FBB::Value x)

{

gun(x);

}

}

Whatever happens, the programmer’d better not use any of the ES::fun functions since it results

in infinite recursion. However, that’s not the point. The point is that the programmer won’t even be

given the opportunity to call ES::fun since the compilation fails.

Compilation fails for gun but not for fun. But why is that so? Why is ES::fun flawlessly compiling

while ES::gun isn’t? In ES::fun fun(x) is called. As x’s type is not defined in a namespace the

Koenig lookup does not apply and fun calls itself with infinite recursion.

With ES::gun the argument is defined in the FBB namespace. Consequently, the FBB::gun function

is a possible candidate to be called. But ES::gun itself also is possible as ES::gun’s prototype

perfectly matches the call gun(x).

Now consider the situation where FBB::gun has not yet been declared. Then there is of course

no ambiguity. The programmer responsible for the ES namespace is resting happily. Some time

after that the programmer who’s maintaining the FBB namespace decides it may be nice to add

a function gun(Value x) to the FBB namespace. Now suddenly the code in the namespace ES

breaks because of an addition in a completely other namespace (FBB). Namespaces clearly are not

completely independent of each other and we should be aware of subtleties like the above. Later in

the C++ Annotations (chapter 11) we’ll return to this issue.

4.1.3 The standard namespace

The std namespace is reserved by C++. The standard defines many entities that are part of the

runtime available software (e.g., cout, cin, cerr); the templates defined in the Standard Tem-

plate Library (cf. chapter 18); and the Generic Algorithms (cf. chapter 19) are defined in the std

namespace.

Regarding the discussion in the previous section, using declarations may be used when referring

to entities in the std namespace. For example, to use the std::cout stream, the code may declare

this object as follows:

#include <iostream>

using std::cout;

Often, however, the identifiers defined in the std namespace can all be accepted without much

thought. Because of that, one frequently encounters a using directive, allowing the programmer

to omit a namespace prefix when referring to any of the entities defined in the namespace specified

with the using directive. Instead of specifying using declarations the following using directive is

frequently encountered: construction like

#include <iostream>

using namespace std;

Should a using directive, rather than using declarations be used? As a rule of thumb one might

decide to stick to using declarations, up to the point where the list becomes impractically long, at

which point a using directive could be considered.

62 CHAPTER 4. NAME SPACES

Two restrictions apply to using directives and declarations:

• Programmers should not declare or define anything inside the namespace std. This is not

compiler enforced but is imposed upon user code by the standard;

• Using declarations and directives should not be imposed upon code written by third parties.

In practice this means that using directives and declarations should be banned from header

files and should only be used in source files (cf. section 7.11.1).

4.1.4 Nesting namespaces and namespace aliasing

Namespaces can be nested. Here is an example:

namespace CppAnnotations

{

int value;

namespace Virtual

{

void *pointer;

}

}

The variable value is defined in the CppAnnotations namespace. Within the CppAnnotations

namespace another namespace (Virtual) is nested. Within that latter namespace the variable

pointer is defined. To refer to these variable the following options are available:

• The fully qualified names can be used. A fully qualified name of an entity is a list of all the

namespaces that are encountered until reaching the definition of the entity. The namespaces

and entity are glued together by the scope resolution operator:

int main()

{

CppAnnotations::value = 0;

CppAnnotations::Virtual::pointer = 0;

}

• A using namespace CppAnnotations directive can be provided. Now value can be used

without any prefix, but pointer must be used with the Virtual:: prefix:

using namespace CppAnnotations;

int main()

{

value = 0;

Virtual::pointer = 0;

}

• A using namespace directive for the full namespace chain can be used. Now value needs its

CppAnnotations prefix again, but pointer doesn’t require a prefix anymore:

using namespace CppAnnotations::Virtual;

4.1. NAMESPACES 63

int main()

{

CppAnnotations::value = 0;

pointer = 0;

}

• When using two separate using namespace directives none of the namespace prefixes are

required anymore:

using namespace CppAnnotations;

using namespace Virtual;

int main()

{

value = 0;

pointer = 0;

}

• The same can be accomplished (i.e., no namespace prefixes) for specific variables by providing

specific using declarations:

using CppAnnotations::value;

using CppAnnotations::Virtual::pointer;

int main()

{

value = 0;

pointer = 0;

}

• A combination of using namespace directives and using declarations can also be used. E.g.,

a using namespace directive can be used for the CppAnnotations::Virtual namespace,

and a using declaration can be used for the CppAnnotations::value variable:

using namespace CppAnnotations::Virtual;

using CppAnnotations::value;

int main()

{

pointer = 0;

}

Following a using namespace directive all entities of that namespace can be used without any

further prefix. If a single using namespace directive is used to refer to a nested namespace, then

all entities of that nested namespace can be used without any further prefix. However, the entities

defined in the more shallow namespace(s) still need the shallow namespace’s name(s). Only after

providing specific using namespace directives or using declarations namespace qualifications can

be omitted.

When fully qualified names are preferred but a long name like

CppAnnotations::Virtual::pointer

is considered too long, a namespace alias may be used:

namespace CV = CppAnnotations::Virtual;

64 CHAPTER 4. NAME SPACES

This defines CV as an alias for the full name. The variable pointer may now be accessed using:

CV::pointer = 0;

A namespace alias can also be used in a using namespace directive or using declaration:

namespace CV = CppAnnotations::Virtual;

using namespace CV;

4.1.4.1 Defining entities outside of their namespaces

It is not strictly necessary to define members of namespaces inside a namespace region. But before

an entity is defined outside of a namespace it must have been declared inside its namespace.

To define an entity outside of its namespace its name must be fully qualified by prefixing the member

by its namespaces. The definition may be provided at the global level or at intermediate levels in the

case of nested namespaces. This allows us to define an entity belonging to namespace A::B within

the region of namespace A.

Assume the type int INT8[8] is defined in the CppAnnotations::Virtualnamespace. Further-

more assume that it is our intent to define a function squares, inside the namespace

CppAnnotations::Virtual returning a pointer to CppAnnotations::Virtual::INT8.

Having defined the prerequisites within the CppAnnotations::Virtual namespace, our function

could be defined as follows (cf. chapter 9 for coverage of the memory allocation operator new[]):

namespace CppAnnotations

{

namespace Virtual

{

void *pointer;

typedef int INT8[8];

INT8 *squares()

{

INT8 *ip = new INT8[1];

for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)

(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

}

}

}

The function squares defines an array of one INT8 vector, and returns its address after initializing

the vector by the squares of the first eight natural numbers.

Now the function squares can be defined outside of the CppAnnotations::Virtual namespace:

namespace CppAnnotations

4.1. NAMESPACES 65

{

namespace Virtual

{

void *pointer;

typedef int INT8[8];

INT8 *squares();

}

}

CppAnnotations::Virtual::INT8 *CppAnnotations::Virtual::squares()

{

INT8 *ip = new INT8[1];

for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)

(*ip)[idx] = (idx + 1) * (idx + 1);

return ip;

}

In the above code fragment note the following:

• squares is declared inside of the CppAnnotations::Virtual namespace.

• The definition outside of the namespace region requires us to use the fully qualified name of

the function and of its return type.

• Inside the body of the function squares we are within the CppAnnotations::Virtual

namespace, so inside the function fully qualified names (e.g., for INT8) are not required any

more.

Finally, note that the function could also have been defined in the CppAnnotations region. In

that case the Virtual namespace would have been required when defining squares() and when

specifying its return type, while the internals of the function would remain the same:

namespace CppAnnotations

{

namespace Virtual

{

void *pointer;

typedef int INT8[8];

INT8 *squares();

}

Virtual::INT8 *Virtual::squares()

{

INT8 *ip = new INT8[1];

for (size_t idx = 0; idx != sizeof(INT8) / sizeof(int); ++idx)

(*ip)[idx] = (idx + 1) * (idx + 1);

66 CHAPTER 4. NAME SPACES

return ip;

}

}

Chapter 5

The ‘string’ Data Type

C++ offers many solutions for common problems. Most of these facilities are part of the Standard

Template Library or they are implemented as generic algorithms (see chapter 19).

Among the facilities C++ programmers have developed over and over again are those manipulating

chunks of text, commonly called strings. The C programming language offers rudimentary string

support. C’s NTBS is the foundation upon which an enormous amount of code has been built1.

To process text C++ offers a std::string type. In C++ the traditional C library functions manipu-

lating NTB strings are deprecated in favor of using string objects. Many problems in C programs

are caused by buffer overruns, boundary errors and allocation problems that can be traced back

to improperly using these traditional C string library functions. Many of these problems can be

prevented using C++ string objects.

Actually, string objects are class type variables, and in that sense they are comparable to stream

objects like cin and cout. In this section the use of string type objects is covered. The focus is on

their definition and their use. When using string objects the member function syntax is commonly

used:

stringVariable.operation(argumentList)

For example, if string1 and string2 are variables of type std::string, then

string1.compare(string2)

can be used to compare both strings.

In addition to the common member functions the string class also offers a wide variety of operators,

like the assignment (=) and the comparison operator (==). Operators often result in code that is

easy to understand and their use is generally preferred over the use of member functions offering

comparable functionality. E.g., rather than writing

if (string1.compare(string2) == 0)

the following is generally preferred:

1Following the C++11 standard, an NTBS (null-terminated byte string, also NTB string) is a character sequence whose

highest-addressed element with defined content has the value zero (the terminating null character); no other character in
the sequence has the value zero.

67

68 CHAPTER 5. THE ‘STRING’ DATA TYPE

if (string1 == string2)

To define and use string-type objects, sources must include the header file <string>. To merely

declare the string type the header can be included.

In addition to std::string, the header file string defines the following string types:

• std::wstring, a string type consisting of wchar_t characters;

• std::u16string, a string type consisting of char16_t characters;

• std::u32string, a string type consisting of char32_t characters.

5.1 Operations on strings

Some of the operations that can be performed on strings return indices within the strings. Whenever

such an operation fails to find an appropriate index, the value string::npos is returned. This

value is a symbolic value of type string::size_type, which is (for all practical purposes) an

(unsigned) int.

All string members accepting string objects as arguments also accept char const * (NTBS)

arguments. The same usually holds true for operators accepting string objects.

Some string-members use iterators. Iterators are formally introduced in section 18.2. Member

functions using iterators are listed in the next section (5.2), but the iterator concept itself is not

further covered by this chapter.

Strings support a large variety of members and operators. A short overview listing their capabilities

is provided in this section, with subsequent sections offering a detailed discussion. The bottom line:

C++ strings are extremely versatile and there is hardly a reason for falling back on the C library to

process text. C++ strings handle all the required memory management and thus memory related

problems, which is the #1 source of problems in C programs, can be prevented when C++ strings are

used. Strings do come at a price, though. The class’s extensive capabilities have also turned it into

a beast. It’s hard to learn and master all its features and in the end you’ll find that not all that you

expected is actually there. For example, std::string doesn’t offer case-insensitive comparisons.

But in the end it isn’t even as simple as that. It is there, but it is somewhat hidden and at this

point in the C++ Annotations it’s too early to study into that hidden corner yet. Instead, realize

that C’s standard library does offer useful functions that can be used as long as we’re aware of their

limitations and are able to avoid their traps. So for now, to perform a traditional case-insensitive

comparison of the contents of two std::string objects str1 and str2 the following will do:

strcasecmp(str1.c_str(), str2.c_str());

Strings support the following functionality:

• initialization:

when string objects are defined they are always properly initialized. In other words,

they are always in a valid state. Strings may be initialized empty or already existing

text can be used to initialize strings.

• assignment:

strings may be given new values. New values may be assigned using member func-

tions (like assign) but a plain assignment operator (i.e., =)may also be used. Fur-

thermore, assignment to a character buffer is also supported.

5.2. A STD::STRING REFERENCE 69

• conversions:

the partial or complete contents of string objects may be interpreted as C strings

but the string’s contents may also be processed as a series of raw binary bytes, not

necessarily terminating in a 0-valued character. Furthermore, in many situations

plain characters and C strings may be used where std::strings are accepted as

well.

• breakdown:

the individual characters stored in a string can be accessed using the familiar index

operator ([]) allowing us to either access or modify information in the middle of a

string.

• comparisons:

strings may be compared to other strings (NTB strings) using the familiar logical

comparison operators ==, !=, <, <=, > and >=. There are also member functions

available offering a more fine-grained comparison.

• modification:

the contents of strings may be modified in many ways. Operators are available to add

information to string objects, to insert information in the middle of string objects, or

to replace or erase (parts of) a string’s contents.

• swapping:

the string’s swapping capability allows us in principle to exchange the contents of two

string objects without a byte-by-byte copying operation of the string’s contents.

• searching:

the locations of characters, sets of characters, or series of characters may be searched

for from any position within the string object and either searching in a forward or

backward direction.

• housekeeping:

several housekeeping facilities are offered: the string’s length, or its empty-state may

be interrogated. But string objects may also be resized.

• stream I/O:

strings may be extracted from or inserted into streams. In addition to plain string

extraction a line of a text file may be read without running the risk of a buffer over-

run. Since extraction and insertion operations are stream based the I/O facilities are

device independent.

5.2 A std::string reference

In this section the string members and string-related operations are referenced. The subsections

cover, respectively the string’s initializers, iterators, operators, and member functions. The following

terminology is used throughout this section:

• object is always a string-object;

70 CHAPTER 5. THE ‘STRING’ DATA TYPE

• argument is a string const & or a char const * unless indicated otherwise. The contents

of an argument never is modified by the operation processing the argument;

• opos refers to an offset into an object string;

• apos refers to an offset into an argument;

• on represents a number of characters in an object (starting at opos);

• an represents a number of characters in an argument (starting at apos).

Both opos and apos must refer to existing offsets, or an exception (cf. chapter 10) is generated. In

contrast, an and on may exceed the number of available characters, in which case only the available

characters are considered.

Many members declare default values for on, an and apos. Some members declare default values

for opos. Default offset values are 0, the default values of on and an is string::npos, which can

be interpreted as ‘the required number of characters to reach the end of the string’.

With members starting their operations at the end of the string object’s contents proceeding back-

wards, the default value of opos is the index of the object’s last character, with on by default equal

to opos + 1, representing the length of the substring ending at opos.

In the overview of member functions presented below it may be assumed that all these parameters

accept default values unless indicated otherwise. Of course, the default argument values cannot be

used if a function requires additional arguments beyond the ones otherwise accepting default values.

Some members have overloaded versions expecting an initial argument of type char const *.

But even if that is not the case the first argument can always be of type char const * where a

parameter of std::string is defined.

Several member functions accept iterators. Section 18.2 covers the technical aspects of iterators,

but these may be ignored at this point without loss of continuity. Like apos and opos, iterators

must refer to existing positions and/or to an existing range of characters within the string object’s

contents.

Finally, all string-member functions computing indices return the predefined constant string::npos

on failure.

5.2.1 Initializers

After defining string objects they are guaranteed to be in a valid state. At definition time string

objects may be initialized in one of the following ways: The following string constructors are avail-

able:

• string object:

initializes object to an empty string. When defining a string this way no argument

list may be specified;

• string object(string::size_type count, char ch):

initializes object with count characters ch;

• string object(string const &argument):

initializes object with argument;

5.2. A STD::STRING REFERENCE 71

• string object(std::string const &argument, string::size_type apos,

string::size_type an):

initializes object with argument’s contents starting at index position apos, using

at most an of argument’s characters;

• string object(InputIterator begin, InputIterator end):

initializes object with the characters in the range of characters defined by the two

InputIterators.

5.2.2 Iterators

See section 18.2 for details about iterators. As a quick introduction to iterators: an iterator acts

like a pointer, and pointers can often be used in situations where iterators are requested. Iterators

usually come in pairs, defining a range of entities. The begin-iterator points to the first entity, the

end-iterator points just beyond the last entity of the range. Their difference is equal to the number

of entities in the iterator-range.

Iterators play an important role in the context of generic algorithms (cf. chapter 19). The class

std::string defines the following iterator types:

• string::iterator and string::const_iterator:

these iterators are forward iterators. The const_iterator is returned by string

const objects, the plain iterator is returned by non-const string objects. Charac-

ters referred to by iterators may be modified;

• string::reverse_iterator and string::reverse_const_iterator:

these iterators are also forward iterators but when incrementing the iterator the pre-

vious character in the string object is reached. Other than that they are comparable

to, respectively, string::iterator and string::const_iterator.

5.2.3 Operators

String objects may be manipulated by member functions but also by operators. Using operators

often results in more natural-looking code. In cases where operators are available having equivalent

functionality as member function the operator is practically always preferred.

The following operators are available for string objects (in the examples ‘object’ and ‘argument’

refer to existing std::string objects).

• plain assignment:

a character, C or C++ string may be assigned to a string object. The assignment

operator returns its left-hand side operand. Example:

object = argument;

object = "C string";

object = ’x’;

object = 120; // same as object = ’x’

72 CHAPTER 5. THE ‘STRING’ DATA TYPE

• addition:

the arithmetic additive assignment operator and the addition operator add text to

a string object. The arithmetic assignment operator returns its left-hand side

operand, the addition operator returns its result in a temporary string object. When

using the addition operator either the left-hand side operand or the right-hand side

operand must be a std::string object. The other operand may be a char, a C string

or a C++ string. Example:

object += argument;

object += "hello";

object += ’x’; // integral expressions are OK

argument + otherArgument; // two std::string objects

argument + "hello"; // using + at least one

"hello" + argument; // std::string is required

argument + ’a’; // integral expressions are OK

’a’ + argument;

• index operator:

The index operator may be used to retrieve object’s individual characters, or to

assign new values to individual characters of a non-const string object. There is no

range-checking (use the at() member function for that). This operator returns a

char & or char const &. Example:

object[3] = argument[5];

• logical operators:

the logical comparison operators may be applied to two string objects or to a string

object and a C string to compare their contents. These operators return a bool value.

The ==, !=, >, >=, <, and <= operators are available. The ordering operators

perform a lexicographical comparison of their contents using the ASCII character

collating sequence. Example:

object == object; // true

object != (object + ’x’); // true

object <= (object + ’x’); // true

• stream related operators:

the insertion-operator (cf. section 3.1.4) may be used to insert a string object into

an ostream, the extraction-operator may be used to extract a string object from an

istream. The extraction operator by default first ignores all white space characters

and then extracts all consecutively non-blank characters from an istream. Instead

of a string a character array may be extracted as well, but the advantage of using a

string object should be clear: the destination string object is automatically resized to

the required number of characters. Example:

cin >> object;

cout << object;

5.2.4 Member functions

The std::string class offers many member function as well as additional non-member functions

that should be considered part of the string class. All these functions are listed below in alphabetic

order.

5.2. A STD::STRING REFERENCE 73

The symbolic value string::npos is defined by the string class. It represents ‘index-not-found’

when returned by member functions returning string offset positions. Example: when calling

‘object.find(’x’)’ (see below) on a string object not containing the character ’x’, npos is re-

turned, as the requested position does not exist.

The final 0-byte used in C strings to indicate the end of an NTBS is not considered part of a C++

string, and so the member function will return npos, rather than length() when looking for 0 in a

string object containing the characters of a C string.

Here are the standard functions that operate on objects of the class string. When a parameter of

size_t is mentioned it may be interpreted as a parameter of type string::size_type, but with-

out defining a default argument value. The type size_type should be read as string::size_type.

With size_type the default argument values mentioned in section 5.2 apply. All quoted functions

are member functions of the class std::string, except where indicated otherwise.

• char &at(size_t opos):

a reference to the character at the indicated position is returned. When called with

string const objects a char const & is returned. The member function performs

range-checking, raising an exception (that by default aborts the program) if an in-

valid index is passed.

• string &append(InputIterator begin, InputIterator end):

the characters in the range defined by begin and end are appended to the current

string object.

• string &append(string const &argument, size_type apos, size_type an):

argument (or a substring) is appended to the current string object.

• string &append(char const *argument, size_type an):

the first an characters of argument are appended to the string object.

• string &append(size_type n, char ch):

n characters ch are appended to the current string object.

• string &assign(string const &argument, size_type apos, size_type an):

argument (or a substring) is assigned to the string object. If argument is of type

char const * and one additional argument is provided the second argument is in-

terpreted as a value initializing an, using 0 to initialize apos.

• string &assign(size_type n, char ch):

n characters ch are assigned to the current string object.

• char &back():

returns a reference to the last char stored inside the string object. The result is

undefined for empty strings.

• string::iterator begin():

an iterator referring to the first character of the current string object is returned.

With const string objects a const_iterator is returned.

74 CHAPTER 5. THE ‘STRING’ DATA TYPE

• size_type capacity() const:

the number of characters that can currently be stored in the string object without

needing to resize it is returned.

• string::const_iterator cbegin():

a const_iterator referring to the first character of the current string object is

returned.

• string::const_iterator cend():

a const_iterator referring to the end of the current string object is returned.

• int compare(string const &argument) const:

the text stored in the current string object and the text stored in argument is com-

pared using a lexicographical comparison using the ASCII character collating se-

quence. zero is returned if the two strings have identical contents, a negative value

is returned if the text in the current object should be ordered before the text in

argument; a positive value is returned if the text in the current object should be

ordered beyond the text in argument.

• int compare(size_t opos, size_t on, string const &argument) const:

a substring of the text stored in the current string object is compared to the text

stored in argument. At most on characters starting at offset opos are compared to

the text in argument.

• int compare(size_t opos, size_t on, string const &argument,

size_type apos, size_type an):

a substring of the text stored in the current string object is compared to a substring

of the text stored in argument. At most on characters of the current string object,

starting at offset opos, are compared to at most an characters of argument, starting

at offset apos. In this case argument must be a string object.

• int compare(size_t opos, size_t on, char const *argument, size_t an):

a substring of the text stored in the current string object is compared to a substring of

the text stored in argument. At most on characters of the current string object start-

ing at offset opos are compared to at most an characters of argument. Argument

must have at least an characters. The characters may have arbitrary values: 0-

valued characters have no special meanings.

• size_t copy(char *argument, size_t on, size_type opos) const:

the contents of the current string object are (partially) copied into argument. The

actual number of characters copied is returned. The second argument, specifying the

number of characters to copy, from the current string object is required. No 0-valued

character is appended to the copied string but can be appended to the copied text

using an idiom like the following:

argument[object.copy(argument, string::npos)] = 0;

Of course, the programmer should make sure that argument’s size is large enough

to accomodate the additional 0-byte.

• string::const_reverse_iterator cbegin():

a const_reverse_iterator referring to the last character of the current string

object is returned.

5.2. A STD::STRING REFERENCE 75

• string::const_reverse_iterator crend():

a const_reverse_iterator referring to the begin of the current string object is

returned.

• char const *c_str() const:

the contents of the current string object as an NTBS.

• char const *data() const:

the raw contents of the current string object are returned. Since this member does not

return an NTBS (as c_str does), it can be used to retrieve any kind of information

stored inside the current string object including, e.g., series of 0-bytes:

string s(2, 0);

cout << static_cast<int>(s.data()[1]) << ’\n’;

• bool empty() const:

true is returned if the current string object contains no data.

• string::iterator end():

an iterator referring to the position just beyond the last character of the current

string object is returned. With const string objects a const_iterator is returned.

• string &erase(size_type opos, size_type on):

a (sub)string of the information stored in the current string object is erased.

• string::iterator erase(string::iterator begin, string::iterator end):

the parameter end is optional. If omitted the value returned by the current object’s

end member is used. The characters defined by the begin and end iterators are

erased. The iterator begin is returned, which is then referring to the position imme-

diately following the last erased character.

• size_t find(string const &argument, size_type opos) const:

the first index in the current string object where argument is found is returned.

• size_t find(char const *argument, size_type opos, size_type an) const:

the first index in the current string object where argument is found is returned.

When all three arguments are specified the first argument must be a char const

*.

• size_t find(char ch, size_type opos) const:

the first index in the current string object where ch is found is returned.

• size_t find_first_of(string const &argument, size_type opos) const:

the first index in the current string object where any character in argument is found

is returned.

• size_type find_first_of(char const *argument, size_type opos,

size_type an) const:

the first index in the current string object where any character in argument is found

is returned. If opos is provided it refers to the first index in the current string object

where the search for argument should start. If omitted, the string object is scanned

completely. If an is provided it indicates the number of characters of the char const

* argument that should be used in the search. It defines a substring starting at the

beginning of argument. If omitted, all of argument’s characters are used.

76 CHAPTER 5. THE ‘STRING’ DATA TYPE

• size_type find_first_of(char ch, size_type opos):

the first index in the current string object where character ch is found is returned.

• size_t find_first_not_of(char ch, size_type opos) const:

the first index in the current string object where another character than ch is found

is returned.

• size_t find_last_of(string const &argument, size_type opos) const:

the last index in the current string object where any character in argument is found

is returned.

• size_type find_last_of(char const *argument, size_type opos,

size_type an) const:

the last index in the current string object where any character in argument is found

is returned. If opos is provided it refers to the last index in the current string object

where the search for argument should start. If omitted, the string object is scanned

completely. If an is provided it indicates the number of characters of the char const

* argument that should be used in the search. It defines a substring starting at the

beginning of argument. If omitted, all of argument’s characters are used.

• size_type find_last_of(char ch, size_type opos):

the last index in the current string object where character ch is found is returned.

• size_t find_last_not_of(string const &argument, size_type opos) const:

the last index in the current string object where any character not appearing in

argument is found is returned.

• char &front():

returns a reference to the first char stored inside the string object. The result is

undefined for empty strings.

• allocator_type get_allocator():

returns the allocator of the class std::string

• istream &std::getline(istream &istr, string &object, char delimiter = ’\n’):

Note: this is not a member function of the class string.

A line of text is read from istr. All characters until delimiter (or the end of the

stream, whichever comes first) are read from istr and are stored in object. If the

delimiter is encountered it is removed from the stream, but is not stored in line.

If the delimiter is not found, istr.eof returns true (see section 6.3.1). Since

streams may be interpreted as bool values (cf. section 6.3.1) a commonly encoun-

tered idiom to read all lines from a stream successively into a string object line

looks like this:

while (getline(istr, line))

process(line);

The contents of the last line, whether or not it was terminated by a delimiter, is

eventually also assigned to object.

5.2. A STD::STRING REFERENCE 77

• string &insert(size_t opos, string const &argument, size_type

apos, size_type an)

a (sub)string of argument is inserted into the current string object at the current

string object’s index position opos. Arguments for apos and an must either both be

provided or they must both be omitted.

• string &insert(size_t opos, char const *argument, size_type an):

argument (of type char const *) is inserted at index opos into the current string

object.

• string &insert(size_t opos, size_t count, char ch):

Count characters ch are inserted at index opos into the current string object.

• string::iterator insert(string::iterator begin, char ch):

the character ch is inserted at the current object’s position referred to by begin.

Begin is returned.

• string::iterator insert(string::iterator begin, size_t count, char ch):

Count characters ch are inserted at the current object’s position referred to by begin.

Begin is returned.

• string::iterator insert(string::iterator begin, InputIterator abegin,

InputIterator aend):

the characters in the range defined by the InputIterators abegin and aend are

inserted at the current object’s position referred to by begin. Begin is returned.

• size_t length() const:

the number of characters stored in the current string object is returned.

• size_t max_size() const:

the maximum number of characters that can be stored in the current string object is

returned.

• void pop_front():

The string’s first character is removed from the string object.

• void pop_back():

The string’s last character is removed from the string object.

• void push_back(char ch):

The character ch is appended to the string object.

• void push_front(char ch):

The character ch is prepended to the string object.

• string::reverse_iterator rbegin():

a reverse iterator referring to the last character of the current string object is re-

turned. With const string objects a reverse_const_iterator is returned.

78 CHAPTER 5. THE ‘STRING’ DATA TYPE

• string::iterator rend():

a reverse iterator referring to the position just before the first character of the current

string object is returned. With const string objects a reverse_const_iterator is

returned.

• string &replace(size_t opos, size_t on, string const &

argument, size_type apos, size_type an):

a (sub)string of characters in object are replaced by the (subset of) characters of

argument. If on is specified as 0 argument is inserted into object at offset opos.

• string &replace(size_t opos, size_t on,

char const *argument, size_type an):

a series of characters in object are replaced by the first an characters of char

const * argument.

• string &replace(size_t opos, size_t on, size_type count,

char ch):

on characters of the current string object, starting at index position opos, are re-

placed by count characters ch.

• string &replace(string::iterator begin, string::iterator end, string const

&

argument):

the series of characters in the current string object defined by the iterators begin

and end are replaced by argument. If argument is a char const *, an additional

argument an may be used, specifying the number of characters of argument that are

used in the replacement.

• string &replace(string::iterator begin, string::iterator end, size_type count,

char ch):

the series of characters in the current string object defined by the iterators begin

and end are replaced by count characters having values ch.

• string &replace(string::iterator begin, string::iterator end, InputIterator

abegin, InputIterator aend):

the series of characters in the current string object defined by the iterators begin

and end are replaced by the characters in the range defined by the InputIterators

abegin and aend.

• void reserve(size_t request):

the current string object’s capacity is changed to at least request. After calling this

member, capacity’s return value will be at least request. A request for a smaller

size than the value returned by capacity is ignored. A std::length_error excep-

tion is thrown if request exceeds the value returned by max_size (std::length_error

is defined in the stdexcept header). Calling reserve() has the effect of redefining

a string’s capacity, not of actually making available the memory to the program. This

is illustrated by the exception thrown by the string’s at() member when trying to

access an element exceeding the string’s size but not the string’s capacity.

• void resize(size_t size, char ch = 0):

the current string object is resized to size characters. If the string object is resized

to a size larger than its current size the additional characters will be initialized to

ch. If it is reduced in size the characters having the highest indices are chopped off.

5.2. A STD::STRING REFERENCE 79

• size_t rfind(string const &argument, size_type opos) const:

the last index in the current string object where argument is found is returned.

Searching proceeds from the current object’s offset opos back to its beginning.

• size_t rfind(char const *argument, size_type opos, size_type an) const:

the last index in the current string object where argument is found is returned.

Searching proceeds from the current object’s offset opos back to its beginning. The

parameter an specifies the length of the substring of argument to look for, starting

at argument’s beginning.

• size_t rfind(char ch, size_type opos)const:

the last index in the current string object where ch is found is returned. Searching

proceeds from the current object’s offset opos back to its beginning.

• void shrink_to_fit():

optionally reduces the amount of memory allocated by a vector to its current size.

The implementor is free to ignore or otherwise optimize this request. In order to

guarantee a ‘shrink to fit’ operation the

string(stringObject).swap(stringObject)

idiom can be used.

• size_t size() const:

the number of characters stored in the current string object is returned. This member

is a synonym of length().

• string substr(size_type opos, size_type on) const:

a substring of the current string object of at most on characters starting at index

opos is returned.

• void swap(string &argument):

the contents of the current string object are swapped with the contents of argument.

For this member argument must be a string object and cannot be a char const *.

5.2.5 Conversion functions

C++11 added several string conversion functions operating on or producing std::string objects.

These functions are listed below in alphabetic order. They are not member functions, but class-less

(free) functions declared in the std namespace. The <string> header file must have been included

before they can be used.

• float stof(std::string const &str, size_t *pos = 0):

Initial white space characters in str are ignored. Then the following sequences of

characters are converted to a float value, which is returned:

– A decimal floating point constant:

∗ An optional + or - character

∗ A series of decimal digits, possibly containing one decimal point character

∗ An optional e or E character, followed by an optional - or + character, followed

by a series of decimal digits

80 CHAPTER 5. THE ‘STRING’ DATA TYPE

– A hexadecimal floating point constant:

∗ An optional + or - character

∗ 0x or 0X

∗ A series of hexadecimal digits, possibly containing one decimal point charac-

ter

∗ An optional p or P character, followed by an optional - or + character, followed

by a series of decimal digits

– An infinity expression:

∗ An optional + or - character

∗ The words inf or infinity (case insensitive words)

– A ‘not a number’ expression:

∗ An optional + or - character

∗ The words nan or nan(alphanumeric character sequence) (nan is a

case insensitive word), resulting in a NaN floating point value

If pos != 0 the index of the first character in str which was not converted is re-

turned in *pos. A std::invalid_argument exception is thrown if the characters

in str could not be converted to a float, a std::out_of_range exception is thrown

if the converted value would have exceeded the range of float values.

• double stod(std::string const &str, size_t *pos = 0):

A conversion as described with stof is performed, but now to a value of type double.

• double stold(std::string const &str, size_t *pos = 0):

A conversion as described with stof is performed, but now to a value of type long

double.

• int stoi(std::string const &str, size_t *pos = 0, int base = 10):

Initial white space characters in str are ignored. Then all characters representing

numeric constants of the number system whose base is specified are converted to

an int value, which is returned. An optional + or - character may prefix the nu-

meric characters. Values starting with 0 are automatically interpreted as octal val-

ues, values starting with 0x or 0X as hexadecimal characters. The value base must

be between 2 and 36. If pos != 0 the index of the first character in str which was

not converted is returned in *pos. A std::invalid_argument exception is thrown

if the characters in str could not be converted to an int, a std::out_of_range

exception is thrown if the converted value would have exceeded the range of int

values.

Here is an example of its use:

int value = stoi(string(" -123")); // assigns value -123

value = stoi(string(" 123", 0, 5)); // assigns value 38

• long stol(std::string const &str, size_t *pos = 0, int base = 10):

A conversion as described with stoi is performed, but now to a value of type long.

• long long stoll(std::string const &str, size_t *pos = 0, int base = 10):

A conversion as described with stoi is performed, but now to a value of type long

long.

• unsigned long stoul(std::string const &str, size_t *pos = 0, int base = 10):

A conversion as described with stoi (not allowing an initial + or - character) is per-

formed, but now to a value of type unsigned long.

5.2. A STD::STRING REFERENCE 81

• unsigned long long stoull(std::string const &str, size_t *pos = 0, int base

= 10):

A conversion as described with stoul is performed, but now to a value of type

unsigned long long.

• std::string to_string(Type value):

Type can be of the types int, long, long long, unsigned, unsigned long,

unsigned long long, float, double, or long double. The value of the argu-

ment is converted to a textual representation, which is returned as a std::string

value.

• std::string to_wstring(Type value):

The conversion as described at to_string is performed, returning a std::wstring.

82 CHAPTER 5. THE ‘STRING’ DATA TYPE

Chapter 6

The IO-stream Library

Extending the standard stream (FILE) approach, well known from the C programming language,

C++ offers an input/output (I/O) library based on class concepts.

All C++ I/O facilities are defined in the namespace std. The std:: prefix is omitted below, except

for situations where this would result in ambiguities.

Earlier (in chapter 3) we’ve seen several examples of the use of the C++ I/O library, in particular

showing insertion operator (<<) and the extraction operator (>>). In this chapter we’ll cover I/O in

more detail.

The discussion of input and output facilities provided by the C++ programming language heavily

uses the class concept and the notion of member functions. Although class construction has not

yet been covered (for that see chapter 7) and although inheritance is not covered formally before

chapter 13, it is quite possible to discuss I/O facilities long before the technical background of class

construction has been covered.

Most C++ I/O classes have names starting with basic_ (like basic_ios). However, these basic_

names are not regularly found in C++ programs, as most classes are also defined using typedef

definitions like:

typedef basic_ios<char> ios;

Since C++ supports various kinds of character types (e.g., char, wchar_t), I/O facilities were devel-

oped using the template mechanism allowing for easy conversions to character types other than the

traditional char type. As elaborated in chapter 20, this also allows the construction of generic soft-

ware, that could thereupon be used for any particular type representing characters. So, analogously

to the above typedef there exists a

typedef basic_ios<wchar_t> wios;

This type definition can be used for the wchar_t type. Because of the existence of these type defini-

tions, the basic_ prefix was omitted from the C++ Annotations without loss of continuity. The C++

Annotations primarily focus on the standard 8-bits char type.

It must be stressed that it is not correct anymore to declare iostream objects using standard forward

declarations, like:

class std::ostream; // now erroneous

83

84 CHAPTER 6. THE IO-STREAM LIBRARY

Instead, sources that must declare iostream classes must

#include <iosfwd> // correct way to declare iostream classes

Using C++ I/O offers the additional advantage of type safety. Objects (or plain values) are inserted

into streams. Compare this to the situation commonly encountered in C where the fprintf function

is used to indicate by a format string what kind of value to expect where. Compared to this latter

situation C++’s iostream approach immediately uses the objects where their values should appear,

as in

cout << "There were " << nMaidens << " virgins present\n";

The compiler notices the type of the nMaidens variable, inserting its proper value at the appropriate

place in the sentence inserted into the cout iostream.

Compare this to the situation encountered in C. Although C compilers are getting smarter and

smarter, and although a well-designed C compiler may warn you for a mismatch between a format

specifier and the type of a variable encountered in the corresponding position of the argument list

of a printf statement, it can’t do much more than warn you. The type safety seen in C++ prevents

you from making type mismatches, as there are no types to match.

Apart from this, iostreams offer more or less the same set of possibilities as the standard FILE-

based I/O used in C: files can be opened, closed, positioned, read, written, etc.. In C++ the basic

FILE structure, as used in C, is still available. But C++ adds to this I/O based on classes, resulting

in type safety, extensibility, and a clean design.

In the ANSI/ISO standard the intent was to create architecture independent I/O. Previous imple-

mentations of the iostreams library did not always comply with the standard, resulting in many

extensions to the standard. The I/O sections of previously developed software may have to be par-

tially rewritten. This is tough for those who are now forced to modify old software, but every feature

and extension that was once available can be rebuilt easily using ANSI/ISO standard conforming

I/O. Not all of these reimplementations can be covered in this chapter, as many reimplementations

rely on inheritance and polymorphism, which topics are formally covered by chapters 13 and 14.

Selected reimplementations are provided in chapter 23, and in this chapter references to particular

sections in other chapters are given where appropriate. This chapter is organized as follows (see

also Figure 6.1):

• The class ios_base is the foundation upon which the iostreams I/O library was built. It

defines the core of all I/O operations and offers, among other things, facilities for inspecting

the state of I/O streams and for output formatting.

• The class ioswas directly derived from ios_base. Every class of the I/O library doing input or

output is itself derived from this ios class, and so inherits its (and, by implication, ios_base’s)

capabilities. The reader is urged to keep this in mind while reading this chapter. The concept

of inheritance is not discussed here, but rather in chapter 13.

The class ios is important in that it implements the communication with a buffer that is

used by streams. This buffer is a streambuf object which is responsible for the actual I/O

to/from the underlying device. Consequently iostream objects do not perform I/O operations

themselves, but leave these to the (stream)buffer objects with which they are associated.

• Next, basic C++ output facilities are discussed. The basic class used for output operations

is ostream, defining the insertion operator as well as other facilities writing information to

streams. Apart from inserting information into files it is possible to insert information into

memory buffers, for which the ostringstream class is available. Formatting output is to a

85

Figure 6.1: Central I/O Classes

86 CHAPTER 6. THE IO-STREAM LIBRARY

great extent possible using the facilities defined in the ios class, but it is also possible to insert

formatting commands directly into streams using manipulators. This aspect of C++ output is

discussed as well.

• Basic C++ input facilities are implemented by the istream class. This class defines the extrac-

tion operator and related input facilities. Comparably to inserting information into memory

buffers (using ostringstream) a class istringstream is available to extract information

from memory buffers.

• Finally, several advanced I/O-related topics are discussed. E.g., reading and writing from the

same stream and mixing C and C++ I/O using filebuf ojects. Other I/O related topics are

covered elsewhere in the C++ Annotations, e.g., in chapter 23.

Stream objects have a limited but important role: they are the interface between, on the one hand,

the objects to be input or output and, on the other hand, the streambuf, which is responsible for

the actual input and output to the device accessed by a streambuf object.

This approach allows us to construct a new kind of streambuf for a new kind of device, and use that

streambuf in combination with the ‘good old’ istream- and ostream-class facilities. It is important

to understand the distinction between the formatting roles of iostream objects and the buffering

interface to an external device as implemented in a streambuf object. Interfacing to new devices

(like sockets or file descriptors) requires the construction of a new kind of streambuf, rather than a

new kind of istream or ostream object. A wrapper class may be constructed around the istream

or ostream classes, though, to ease the access to a special device. This is how the stringstream

classes were constructed.

6.1 Special header files

Several iostream related header files are available. Depending on the situation at hand, the follow-

ing header files should be used:

• iosfwd: sources should include this header file if only a declaration of the stream classes is

required. For example, if a function defines a reference parameter to an ostream then the

compiler does not need to know exactly what an ostream is. When declaring such a function

the ostream class merely needs to be be declared. One cannot use

class std::ostream; // erroneous declaration

void someFunction(std::ostream &str);

but, instead, one should use:

#include <iosfwd> // correctly declares class ostream

void someFunction(std::ostream &str);

• <ios>: sources should include this header file when using types and facilites (like ios::off_type,

see below) definded in the ios class.

• <streambuf>: sources should include this header file when using streambuf or filebuf

classes. See sections 14.8 and 14.8.2.

• <istream>: sources should include this preprocessor directive when using the class istream

or when using classes that do both input and output. See section 6.5.1.

6.2. THE FOUNDATION: THE CLASS ‘IOS_BASE’ 87

• <ostream>: sources should include this header file when using the class ostream class or

when using classes that do both input and output. See section 6.4.1.

• <iostream>: sources should include this header file when using the global stream objects (like

cin and cout).

• <fstream>: sources should include this header file when using the file stream classes. See

sections 6.4.2, 6.5.2, and 6.6.2.

• <sstream>: sources should include this header file when using the string stream classes. See

sections 6.4.3 and 6.5.3.

• <iomanip>: sources should include this header file when using parameterized manipulators.

See section 6.3.2.

6.2 The foundation: the class ‘ios_base’

The class std::ios_base forms the foundation of all I/O operations, and defines, among other

things, facilities for inspecting the state of I/O streams and most output formatting facilities. Every

stream class of the I/O library is, through the class ios, derived from this class, and inherits its

capabilities. As ios_base is the foundation on which all C++ I/O was built, we introduce it here as

the first class of the C++ I/O library.

Note that, as in C, I/O in C++ is not part of the language (although it is part of the ANSI/ISO

standard on C++). Although it is technically possible to ignore all predefined I/O facilities, nobody

does so, and the I/O library therefore represents a de facto I/O standard for C++. Also note that,

as mentioned before, the iostream classes themselves are not responsible for the eventual I/O, but

delegate this to an auxiliary class: the class streambuf or its derivatives.

It is neither possible nor required to construct an ios_base object directly. Its construction is

always a side-effect of constructing an object further down the class hierarchy, like std::ios. Ios

is the next class down the iostream hierarchy (see figure 6.1). Since all stream classes in turn inherit

from ios, and thus also from ios_base, the distinction between ios_base and ios is in practice

not important. Therefore, facilities actually provided by ios_base will be discussed as facilities

provided by ios. The reader who is interested in the true class in which a particular facility is

defined should consult the relevant header files (e.g., ios_base.h and basic_ios.h).

6.3 Interfacing ‘streambuf’ objects: the class ‘ios’

The std::ios class is derived directly from ios_base, and it defines de facto the foundation for all

stream classes of the C++ I/O library.

Although it is possible to construct an ios object directly, this is seldom done. The purpose of the

class ios is to provide the facilities of the class basic_ios, and to add several new facilites, all

related to the streambuf object which is managed by objects of the class ios.

All other stream classes are either directly or indirectly derived from ios. This implies, as explained

in chapter 13, that all facilities of the classes ios and ios_base are also available to other stream

classes. Before discussing these additional stream classes, the features offered by the class ios (and

by implication: by ios_base) are now introduced.

In some cases it may be required to include ios explicitly. An example is the situations where the

formatting flags themselves (cf. section 6.3.2.2) are referred to in source code.

88 CHAPTER 6. THE IO-STREAM LIBRARY

The class ios offers several member functions, most of which are related to formatting. Other

frequently used member functions are:

• std::streambuf *ios::rdbuf():

A pointer to the streambuf object forming the interface between the ios object and

the device with which the ios object communicates is returned. See sections 14.8

and 23.1.2 for more information about the class streambuf.

• std::streambuf *ios::rdbuf(std::streambuf *new):

The current ios object is associated with another streambuf object. A pointer to the

ios object’s original streambuf object is returned. The object to which this pointer

points is not destroyed when the stream object goes out of scope, but is owned by the

caller of rdbuf.

• std::ostream *ios::tie():

A pointer to the ostream object that is currently tied to the ios object is returned

(see the next member). The return value 0 indicates that currently no ostream object

is tied to the ios object. See section 6.5.5 for details.

• std::ostream *ios::tie(std::ostream *outs):

The ostream object is tied to current ios object. This means that the ostream object

is flushed every time before an input or output action is performed by the current ios

object. A pointer to the ios object’s original ostream object is returned. To break

the tie, pass the argument 0. See section 6.5.5 for an example.

6.3.1 Condition states

Operations on streams may fail for various reasons. Whenever an operation fails, further operations

on the stream are suspended. It is possible to inspect, set and possibly clear the condition state

of streams, allowing a program to repair the problem rather than having to abort. The members

that are available for interrogating or manipulating the stream’s state are described in the current

section.

Conditions are represented by the following condition flags:

• ios::badbit:

if this flag has been raised an illegal operation has been requested at the level of the

streambuf object to which the stream interfaces. See the member functions below

for some examples.

• ios::eofbit:

if this flag has been raised, the ios object has sensed end of file.

• ios::failbit:

if this flag has been raised, an operation performed by the stream object has failed

(like an attempt to extract an int when no numeric characters are available on in-

put). In this case the stream itself could not perform the operation that was requested

of it.

6.3. INTERFACING ‘STREAMBUF’ OBJECTS: THE CLASS ‘IOS’ 89

• ios::goodbit:

this flag is raised when none of the other three condition flags were raised.

Several condition member functions are available to manipulate or determine the states of ios

objects. Originally they returned int values, but their current return type is bool:

• bool ios::bad():

the value true is returned when the stream’s badbit has been set and false oth-

erwise. If true is returned it indicates that an illegal operation has been requested

at the level of the streambuf object to which the stream interfaces. What does this

mean? It indicates that the streambuf itself is behaving unexpectedly. Consider the

following example:

std::ostream error(0);

Here an ostream object is constructed without providing it with a working streambuf

object. Since this ‘streambuf’ will never operate properly, its badbit flag is raised

from the very beginning: error.bad() returns true.

• bool ios::eof():

the value true is returned when end of file (EOF) has been sensed (i.e., the eofbit

flag has been set) and false otherwise. Assume we’re reading lines line-by-line

from cin, but the last line is not terminated by a final \n character. In that case

std::getline attempting to read the \n delimiter hits end-of-file first. This raises

the eofbit flag and cin.eof() returns true. For example, assume std::string

str and main executing the statements:

getline(cin, str);

cout << cin.eof();

Then

echo "hello world" | program

prints the value 0 (no EOF sensed). But after

echo -n "hello world" | program

the value 1 (EOF sensed) is printed.

• bool ios::fail():

the value true is returned when bad returns true or when the failbit flag was

set. The value false is returned otherwise. In the above example, cin.fail()

returns false, whether we terminate the final line with a delimiter or not (as we’ve

read a line). However, executing another getline results in raising the failbit

flag, causing cin::fail() to return true. In general: fail returns true if the

requested stream operation failed. A simple example showing this consists of an

attempt to extract an int when the input stream contains the text hello world.

The value not fail() is returned by the bool interpretation of a stream object (see

below).

• ios::good():

the value of the goodbit flag is returned. It equals true when none of the other

condition flags (badbit, eofbit, failbit) was raised. Consider the following

little program:

#include <iostream>

90 CHAPTER 6. THE IO-STREAM LIBRARY

#include <string>

using namespace std;

void state()

{

cout << "\n"

"Bad: " << cin.bad() << " "

"Fail: " << cin.fail() << " "

"Eof: " << cin.eof() << " "

"Good: " << cin.good() << ’\n’;

}

int main()

{

string line;

int x;

cin >> x;

state();

cin.clear();

getline(cin, line);

state();

getline(cin, line);

state();

}

When this program processes a file having two lines, containing, respectively, hello

and world, while the second line is not terminated by a \n character the following is

shown:

Bad: 0 Fail: 1 Eof: 0 Good: 0

Bad: 0 Fail: 0 Eof: 0 Good: 1

Bad: 0 Fail: 0 Eof: 1 Good: 0

Thus, extracting x fails (good returning false). Then, the error state is cleared, and

the first line is successfully read (good returning true). Finally the second line is

read (incompletely): good returning false, and eof returning true.

• Interpreting streams as bool values:

streams may be used in expressions expecting logical values. Some examples are:

if (cin) // cin itself interpreted as bool

if (cin >> x) // cin interpreted as bool after an extraction

if (getline(cin, str)) // getline returning cin

When interpreting a stream as a logical value, it is actually ‘not fail()’ that is

interpreted. The above examples may therefore be rewritten as:

if (not cin.fail())

if (not (cin >> x).fail())

if (not getline(cin, str).fail())

The former incantation, however, is used almost exclusively.

6.3. INTERFACING ‘STREAMBUF’ OBJECTS: THE CLASS ‘IOS’ 91

The following members are available to manage error states:

• void ios::clear():

When an error condition has occurred, and the condition can be repaired, then clear

can be used to clear the error state of the file. An overloaded version exists accept-

ing state flags, that are set after first clearing the current set of flags: clear(int

state). Its return type is void

• ios::iostate ios::rdstate():

The current set of flags that are set for an ios object are returned (as an int). To

test for a particular flag, use the bitwise and operator:

if (!(iosObject.rdstate() & ios::failbit))

{

// last operation didn’t fail

}

Note that this test cannot be performed for the goodbit flag as its value equals zero.

To test for ‘good’ use a construction like:

if (iosObject.rdstate() == ios::goodbit)

{

// state is ‘good’

}

• void ios::setstate(ios::iostate state):

A stream may be assigned a certain set of states using setstate. Its return type is

void. E.g.,

cin.setstate(ios::failbit); // set state to ‘fail’

To set multiple flags in one setstate() call use the bitor operator:

cin.setstate(ios::failbit | ios::eofbit)

The member clear is a shortcut to clear all error flags. Of course, clearing the flags doesn’t

automatically mean the error condition has been cleared too. The strategy should be:

– An error condition is detected,

– The error is repaired

– The member clear is called.

C++ supports an exception mechanism to handle exceptional situations. According to the ANSI/ISO

standard, exceptions can be used with stream objects. Exceptions are covered in chapter 10. Using

exceptions with stream objects is covered in section 10.7.

6.3.2 Formatting output and input

The way information is written to streams (or, occasionally, read from streams) is controlled by

formatting flags.

Formatting is used when it is necessary to, e.g., set the width of an output field or input buffer and to

determine the form (e.g., the radix) in which values are displayed. Most formatting features belong

to the realm of the ios class. Formatting is controlled by flags, defined by the ios class. These flags

may be manipulated in two ways: using specialized member functions or using manipulators, which

92 CHAPTER 6. THE IO-STREAM LIBRARY

are directly inserted into or extracted from streams. There is no special reason for using either

method; usually both methods are possible. In the following overview the various member functions

are first introduced. Following this the flags and manipulators themselves are covered. Examples

are provided showing how the flags can be manipulated and what their effects are.

Many manipulators are parameterless and are available once a stream header file (e.g., iostream)

has been included. Some manipulators require arguments. To use the latter manipulators the

header file iomanip must be included.

6.3.2.1 Format modifying member functions

Several member functions are available manipulating the I/O formatting flags. Instead of using

the members listed below manipulators are often available that may directly be inserted into or

extracted from streams. The available members are listed in alphabetical order, but the most im-

portant ones in practice are setf, unsetf and width.

• ios &ios::copyfmt(ios &obj):

all format flags of obj are copied to the current ios object. The current ios object is

returned.

• ios::fill() const:

the current padding character is returned. By default, this is the blank space.

• ios::fill(char padding):

the padding character is redefined, the previous padding character is returned. In-

stead of using this member function the setfill manipulator may be inserted di-

rectly into an ostream. Example:

cout.fill(’0’); // use ’0’ as padding char

cout << setfill(’+’); // use ’+’ as padding char

• ios::fmtflags ios::flags() const:

the current set of flags controlling the format state of the stream for which the mem-

ber function is called is returned. To inspect whether a particular flag was set, use

the bit_and operator. Example:

if (cout.flags() & ios::hex)

cout << "Integral values are printed as hex numbers\n"

• ios::fmtflags ios::flags(ios::fmtflags flagset):

the previous set of flags are returned and the new set of flags are defined by flagset.

Multiple flags are specified using the bitor operator. Example:

// change the representation to hexadecimal

cout.flags(ios::hex | cout.flags() & ~ios::dec);

• int ios::precision() const:

the number of significant digits used when outputting floating point values is re-

turned (default: 6).

6.3. INTERFACING ‘STREAMBUF’ OBJECTS: THE CLASS ‘IOS’ 93

• int ios::precision(int signif):

the number of significant digits to use when outputting real values is set to signif.

The previously used number of significant digits is returned. If the number of re-

quired digits exceeds signif then the number is displayed in ‘scientific’ notation (cf.

section 6.3.2.2). Manipulator: setprecision. Example:

cout.precision(3); // 3 digits precision

cout << setprecision(3); // same, using the manipulator

cout << 1.23 << " " << 12.3 << " " << 123.12 << " " << 1234.3 << ’\n’;

// displays: 1.23 12.3 123 1.23e+03

• ios::fmtflags ios::setf(ios::fmtflags flags):

sets one or more formatting flags (use the bitor operator to combine multiple flags).

Already set flags are not affected. The previous set of flags is returned. Instead of

using this member function the manipulator setiosflags may be used. Examples

are provided in the next section (6.3.2.2).

• ios::fmtflags ios::setf(ios::fmtflags flags, ios::fmtflags mask):

clears all flags mentioned in mask and sets the flags specified in flags. The previous

set of flags is returned. Some examples are (but see the next section (6.3.2.2) for a

more thorough discussion):

// left-adjust information in wide fields

cout.setf(ios::left, ios::adjustfield);

// display integral values as hexadecimal numbers

cout.setf(ios::hex, ios::basefield);

// display floating point values in scientific notation

cout.setf(ios::scientific, ios::floatfield);

• ios::fmtflags ios::unsetf(fmtflags flags):

the specified formatting flags are cleared (leaving the remaining flags unaltered)

and returns the previous set of flags. A request to unset an active default flag (e.g.,

cout.unsetf(ios::dec)) is ignored. Instead of this member function the manipu-

lator resetiosflags may also be used. Example:

cout << 12.24; // displays 12.24

cout << setf(ios::fixed);

cout << 12.24; // displays 12.240000

cout.unsetf(ios::fixed); // undo a previous ios::fixed setting.

cout << 12.24; // displays 12.24

cout << resetiosflags(ios::fixed); // using manipulator rather

// than unsetf

• int ios::width() const:

the currently active output field width to use on the next insertion is returned. The

default value is 0, meaning ‘as many characters as needed to write the value’.

• int ios::width(int nchars):

the field width of the next insertion operation is set to nchars, returning the pre-

viously used field width. This setting is not persistent. It is reset to 0 after every

insertion operation. Manipulator: std::setw(int). Example:

cout.width(5);

cout << 12; // using 5 chars field width

cout << setw(12) << "hello"; // using 12 chars field width

94 CHAPTER 6. THE IO-STREAM LIBRARY

6.3.2.2 Formatting flags

Most formatting flags are related to outputting information. Information can be written to output

streams in basically two ways: using binary output information is written directly to an output

stream, without converting it first to some human-readable format and using formatted output by

which values stored in the computer’s memory are converted to human-readable text first. Format-

ting flags are used to define the way this conversion takes place. In this section all formatting flags

are covered. Formatting flags may be (un)set using member functions, but often manipulators hav-

ing the same effect may also be used. For each of the flags it is shown how they can be controlled by

a member function or -if available- a manipulator.

To display information in wide fields:

• ios::internal:

to add fill characters (blanks by default) between the minus sign of negative numbers

and the value itself. Other values and data types are right-adjusted. Manipulator:

std::internal. Example:

cout.setf(ios::internal, ios::adjustfield);

cout << internal; // same, using the manipulator

cout << ’\’’ << setw(5) << -5 << "’\n"; // displays ’- 5’

• ios::left:

to left-adjust values in fields that are wider than needed to display the values. Ma-

nipulator: std::left. Example:

cout.setf(ios::left, ios::adjustfield);

cout << left; // same, using the manipulator

cout << ’\’’ << setw(5) << "hi" << "’\n"; // displays ’hi ’

• ios::right:

to right-adjust values in fields that are wider than needed to display the values.

Manipulator: std::right. This is the default. Example:

cout.setf(ios::right, ios::adjustfield);

cout << right; // same, using the manipulator

cout << ’\’’ << setw(5) << "hi" << "’\n"; // displays ’ hi’

Using various number representations:

• ios::dec:

to display integral values as decimal numbers. Manipulator: std::dec. This is the

default. Example:

cout.setf(ios::dec, ios::basefield);

cout << dec; // same, using the manipulator

cout << 0x10; // displays 16

6.3. INTERFACING ‘STREAMBUF’ OBJECTS: THE CLASS ‘IOS’ 95

• ios::hex:

to display integral values as hexadecimal numbers. Manipulator: std::hex. Exam-

ple:

cout.setf(ios::hex, ios::basefield);

cout << hex; // same, using the manipulator

cout << 16; // displays 10

• ios::oct:

to display integral values as octal numbers. Manipulator: std::oct. Example:

cout.setf(ios::oct, ios::basefield);

cout << oct; // same, using the manipulator

cout << 16; // displays 20

• std::setbase(int radix):

This is a manipulator that can be used to change the number representation to deci-

mal, hexadecimal or octal. Example:

cout << setbase(8); // octal numbers, use 10 for

// decimal, 16 for hexadecimal

cout << 16; // displays 20

Fine-tuning displaying values:

• ios::boolalpha:

logical values may be displayed as text using the text ‘true’ for the true logical

value, and ‘false’ for the false logical value using boolalpha. By default this flag

is not set. Complementary flag: ios::noboolalpha. Manipulators: std::boolalpha

and std::noboolalpha. Example:

cout.setf(ios::boolalpha);

cout << boolalpha; // same, using the manipulator

cout << (1 == 1); // displays true

• ios::showbase:

to display the numeric base of integral values. With hexadecimal values the 0x

prefix is used, with octal values the prefix 0. For the (default) decimal value no

particular prefix is used. Complementary flag: ios::noshowbase. Manipulators:

std::showbase and std::noshowbase. Example:

cout.setf(ios::showbase);

cout << showbase; // same, using the manipulator

cout << hex << 16; // displays 0x10

• ios::showpos:

to display the + sign with positive decimal (only) values. Complementary flag:

ios::noshowpos. Manipulators: std::showpos and std::noshowpos. Example:

cout.setf(ios::showpos);

cout << showpos; // same, using the manipulator

cout << 16; // displays +16

cout.unsetf(ios::showpos); // Undo showpos

cout << 16; // displays 16

96 CHAPTER 6. THE IO-STREAM LIBRARY

• ios::uppercase:

to display letters in hexadecimal values using capital letters. Complementary flag:

ios::nouppercase. Manipulators: std::uppercase and std::nouppercase.

By default lower case letters are used. Example:

cout.setf(ios::uppercase);

cout << uppercase; // same, using the manipulator

cout << hex << showbase <<

3735928559; // displays 0XDEADBEEF

Displaying floating point numbers

• ios::fixed:

to display real values using a fixed decimal point (e.g., 12.25 rather than 1.225e+01),

the fixed formatting flag is used. It can be used to set a fixed number of digits

behind the decimal point. Manipulator: fixed. Example:

cout.setf(ios::fixed, ios::floatfield);

cout.precision(3); // 3 digits behind the .

// Alternatively:

cout << setiosflags(ios::fixed) << setprecision(3);

cout << 3.0 << " " << 3.01 << " " << 3.001 << ’\n’;

<< 3.0004 << " " << 3.0005 << " " << 3.0006 << ’\n’

// Results in:

// 3.000 3.010 3.001

// 3.000 3.001 3.001

The example shows that 3.0005 is rounded away from zero, becoming 3.001 (likewise

-3.0005 becomes -3.001). First setting precision and then fixed has the same effect.

• ios::scientific:

to display real values in scientific notation (e.g., 1.24e+03). Manipulator: std::scientific.

Example:

cout.setf(ios::scientific, ios::floatfield);

cout << scientific; // same, using the manipulator

cout << 12.25; // displays 1.22500e+01

• ios::showpoint:

to display a trailing decimal point and trailing decimal zeros when real numbers are

displayed. Complementary flag: ios::noshowpoint. Manipulators: std::showpoint,

std::noshowpoint. Example:

cout << fixed << setprecision(3); // 3 digits behind .

cout.setf(ios::showpoint); // set the flag

cout << showpoint; // same, using the manipulator

cout << 16.0 << ", " << 16.1 << ", " << 16;

// displays: 16.000, 16.100, 16

6.3. INTERFACING ‘STREAMBUF’ OBJECTS: THE CLASS ‘IOS’ 97

Note that the final 16 is an integral rather than a floating point number, so it has

no decimal point. So showpoint has no effect. If ios::showpoint is not active

trailing zeros are discarded. If the fraction is zero the decimal point is discarded as

well. Example:

cout.unsetf(ios::fixed, ios::showpoint); // unset the flags

cout << 16.0 << ", " << 16.1;

// displays: 16, 16.1

Handling white space and flushing streams

• std::endl:

manipulator inserting a newline character and flushing the stream. Often flushing

the stream is not required and doing so would needlessly slow down I/O processing.

Consequently, using endl should be avoided (in favor of inserting ’\n’) unless flus-

ing the stream is explicitly intended. Note that streams are automatically flushed

when the program terminates or when a stream is ‘tied’ to another stream (cf. tie in

section 6.3). Example:

cout << "hello" << endl; // prefer: << ’\n’;

• std::ends:

manipulator inserting a 0-byte into a stream. It is usually used in combination with

memory-streams (cf. section 6.4.3).

• std::flush:

a stream may be flushed using this member. Often flushing the stream is not required

and doing so would needlessly slow down I/O processing. Consequently, using flush

should be avoided unless it is explicitly required to do so. Note that streams are

automatically flushed when the program terminates or when a stream is ‘tied’ to

another stream (cf. tie in section 6.3). Example:

cout << "hello" << flush; // avoid if possible.

• ios::skipws:

leading white space characters (blanks, tabs, newlines, etc.) are skipped when a value

is extracted from a stream. This is the default. If the flag is not set, leading white

space characters are not skipped. Manipulator: std::skipws. Example:

cin.setf(ios::skipws); // to unset, use

// cin.unsetf(ios::skipws)

cin >> skipws; // same, using the manipulator

int value;

cin >> value; // skips initial blanks

• ios::unitbuf:

the stream for which this flag is set flushes its buffer after every output operation

Often flushing a stream is not required and doing so would needlessly slow down

I/O processing. Consequently, setting unitbuf should be avoided unless flusing the

stream is explicitly intended. Note that streams are automatically flushed when the

98 CHAPTER 6. THE IO-STREAM LIBRARY

program terminates or when a stream is ‘tied’ to another stream (cf. tie in sec-

tion 6.3). Complementary flag: ios::nounitbuf. Manipulators: std::unitbuf,

std::nounitbuf. Example:

cout.setf(ios::unitbuf);

cout << unitbuf; // same, using the manipulator

cout.write("xyz", 3); // flush follows write.

• std::ws:

manipulator removing all white space characters (blanks, tabs, newlines, etc.) at the

current file position. White space are removed if present even if the flag ios::noskipws

has been set. Example (assume the input contains 4 blank characters followed by the

character X):

cin >> ws; // skip white space

cin.get(); // returns ’X’

6.4 Output

In C++ output is primarily based on the std::ostream class. The ostream class defines the basic

operators and members inserting information into streams: the insertion operator (<<), and special

members like write writing unformatted information to streams.

The class ostream acts as base class for several other classes, all offering the functionality of the

ostream class, but adding their own specialties. In the upcoming sections the following classes are

discussed:

• The class ostream, offering the basic output facilities;

• The class ofstream, allowing us to write files (comparable to C’s fopen(filename, "w"));

• The class ostringstream, allowing us to write information to memory (comparable to C’s

sprintf function).

6.4.1 Basic output: the class ‘ostream’

The class ostream defines basic output facilities. The cout, clog and cerr objects are all ostream

objects. All facilities related to output as defined by the ios class are also available in the ostream

class.

We may define ostream objects using the following ostream constructor:

• std::ostream object(std::streambuf *sb):

this constructor creates an ostream object which is a wrapper around an existing

std::streambuf object. It isn’t possible to define a plain ostream object (e.g., using

std::ostream out;) that can thereupon be used for insertions. When cout or

its friends are used, we are actually using a predefined ostream object that has

already been defined for us and interfaces to the standard output stream using a

(also predefined) streambuf object handling the actual interfacing.

It is, however, possible to define an ostream object passing it a 0-pointer. Such an

object cannot be used for insertions (i.e., it raises its ios::bad flag when something

6.4. OUTPUT 99

is inserted into it), but it may be given a streambuf later. Thus it may be preliminary

constructed, suspending its use until an appropriate streambuf becomes available

(see also section 13.6).

To define the ostream class in C++ sources, the ostream header file must be included. To use the

predefined ostream objects (std::cin, std::cout etc.) the iostream header must be included.

6.4.1.1 Writing to ‘ostream’ objects

The class ostream supports both formatted and binary output.

The insertion operator (<<) is used to insert values in a type safe way into ostream objects. This is

called formatted output, as binary values which are stored in the computer’s memory are converted

to human-readable ASCII characters according to certain formatting rules.

The insertion operator points to the ostream object to receive the information. The normal associa-

tivity of << remains unaltered, so when a statement like

cout << "hello " << "world";

is encountered, the leftmost two operands are evaluated first (cout<< "hello "), and an ostream

& object, which is actually the same cout object, is returned. Now, the statement is reduced to

cout << "world";

and the second string is inserted into cout.

The << operator has a lot of (overloaded) variants, so many types of variables can be inserted into

ostream objects. There is an overloaded <<-operator expecting an int, a double, a pointer, etc.

etc.. Each operator returns the ostream object into which the information so far has been inserted,

and can thus immediately be followed by the next insertion.

Streams lack facilities for formatted output like C’s printf and vprintf functions. Although it is

not difficult to implement these facilities in the world of streams, printf-like functionality is hardly

ever required in C++ programs. Furthermore, as it is potentially type-unsafe, it might be better to

avoid this functionality completely.

When binary files must be written, normally no text-formatting is used or required: an int value

should be written as a series of raw bytes, not as a series of ASCII numeric characters 0 to 9. The

following member functions of ostream objects may be used to write ‘binary files’:

• ostream& put(char c):

to write a single character to the output stream. Since a character is a byte, this

member function could also be used for writing a single character to a text-file.

• ostream& write(char const *buffer, int length):

to write at most length bytes, stored in the char const *buffer to the ostream

object. Bytes are written as they are stored in the buffer, no formatting is done

whatsoever. Note that the first argument is a char const *: a type cast is required

to write any other type. For example, to write an int as an unformatted series of

byte-values use:

int x;

out.write(reinterpret_cast<char const *>(&x), sizeof(int));

100 CHAPTER 6. THE IO-STREAM LIBRARY

The bytes written by the above write call are written to the ostream in an order depending on

the endian-ness of the underlying hardware. Big-endian computers write the most significant

byte(s) of multi-byte values first, little-endian computers first write the least significant byte(s).

6.4.1.2 ‘ostream’ positioning

Although not every ostream object supports repositioning, they usually do. This means that it is

possible to rewrite a section of the stream which was written earlier. Repositioning is frequently

used in database applications where it must be possible to access the information in the database at

random.

The current position can be obtained and modified using the following members:

• ios::pos_type tellp():

the current (absolute) position in the file where the next write-operation to the stream

will take place is returned.

• ostream &seekp(ios::off_type step, ios::seekdir org):

modifies a stream’s actual position. The function expects an off_type step rep-

resenting the number of bytes the current stream position is moved with respect to

org. The step value may be negative, zero or positive.

The origin of the step, org is a value in the ios::seekdir enumeration. Its values

are:

– ios::beg:

the stepsize is computed relative to the beginning of the stream. This

value is used by default.

– ios::cur:

the stepsize is computed relative to the current position of the stream (as

returned by tellp).

– ios::end:

the stepsize is interpreted relative to the current end position of the stream.

It is OK to seek or write beyond the last file position. Writing bytes to a location

beyond EOF will pad the intermediate bytes with 0-valued bytes: null-bytes. Seeking

before ios::beg raises the ios::fail flag.

6.4.1.3 ‘ostream’ flushing

Unless the ios::unitbuf flag has been set, information written to an ostream object is not im-

mediately written to the physical stream. Rather, an internal buffer is filled during the write-

operations, and when full it is flushed.

The stream’s internal buffer can be flushed under program control:

• ostream& flush():

any buffered information stored internally by the ostream object is flushed to the

device to which the ostream object interfaces. A stream is flushed automatically

when:

– the object ceases to exist;

6.4. OUTPUT 101

– the endl or flushmanipulators (see section 6.3.2.2) are inserted into an ostream

object;

– a stream supporting the close-operation is explicitly closed (e.g., a std::ofstream

object, cf. section 6.4.2).

6.4.2 Output to files: the class ‘ofstream’

The std::ofstream class is derived from the ostream class: it has the same capabilities as the

ostream class, but can be used to access files or create files for writing.

In order to use the ofstream class in C++ sources, the fstream header file must be included.

Including fstream does not automatically make available the standard streams cin, cout and

cerr. Include iostream to declare these standard streams.

The following constructors are available for ofstream objects:

• ofstream object:

this is the basic constructor. It defines an ofstream object which may be associated

with an actual file later, using its open() member (see below).

• ofstream object(char const *name, ios::openmode mode = ios::out):

this constructor defines an ofstream object and associates it immediately with the

file named name using output mode mode. Section 6.4.2.1 provides an overview of

available output modes. Example:

ofstream out("/tmp/scratch");

It is not possible to open an ofstream using a file descriptor. The reason for this is (apparently)

that file descriptors are not universally available over different operating systems. Fortunately, file

descriptors can be used (indirectly) with a std::streambuf object (and in some implementations:

with a std::filebuf object, which is also a streambuf). Streambuf objects are discussed in

section 14.8, filebuf objects are discussed in section 14.8.2.

Instead of directly associating an ofstream object with a file, the object can be constructed first,

and opened later.

• void open(char const *name, ios::openmode mode = ios::out):

associates an ofstream object with an actual file. If the ios::fail flag was set

before calling open and opening succeeds the flag is cleared. Opening an already

open stream fails. To reassociate a stream with another file it must first be closed:

ofstream out("/tmp/out");

out << "hello\n";

out.close(); // flushes and closes out

out.open("/tmp/out2");

out << "world\n";

• void close():

closes the ofstream object. The function sets the ios::fail flag of the closed ob-

ject. Closing the file flushes any buffered information to the associated file. A file is

automatically closed when the associated ofstream object ceases to exist.

102 CHAPTER 6. THE IO-STREAM LIBRARY

• bool is_open() const:

assume a stream was properly constructed, but it has not yet been attached to a

file. E.g., the statement ofstream ostr was executed. When we now check its

status through good(), a non-zero (i.e., OK) value is returned. The ‘good’ status

here indicates that the stream object has been constructed properly. It doesn’t mean

the file is also open. To test whether a stream is actually open, is_open should be

called. If it returns true, the stream is open. Example:

#include <fstream>

#include <iostream>

using namespace std;

int main()

{

ofstream of;

cout << "of’s open state: " << boolalpha << of.is_open() << ’\n’;

of.open("/dev/null"); // on Unix systems

cout << "of’s open state: " << of.is_open() << ’\n’;

}

/*
Generated output:

of’s open state: false

of’s open state: true

*/

6.4.2.1 Modes for opening stream objects

The following file modes or file flags are available when constructing or opening ofstream (or

istream, see section 6.5.2) objects. The values are of type ios::openmode. Flags may be com-

bined using the bitor operator.

• ios::app:

reposition the stream to its end before every output command (see also ios::ate

below). The file is created if it doesn’t yet exist. When opening a stream in this mode

any existing contents of the file are kept.

• ios::ate:

start initially at the end of the file. Note that any existing contents are only kept

if some other flag tells the object to do so. For example ofstream out("gone",

ios::ate) rewrites the file gone, because the implied ios::out causes the rewrit-

ing. If rewriting of an existing file should be prevented, the ios::in mode should

be specified too. However, when ios::in is specified the file must already exist. The

ate mode only initially positions the file at the end of file position. After that infor-

mation may be written in the middle of the file using seekp. When the app mode is

used information is only written at end of file (effectively ignoring seekp operations).

• ios::binary:

open a file in binary mode (used on systems distinguishing text- and binary files, like

MS-Windows).

6.4. OUTPUT 103

• ios::in:

open the file for reading. The file must exist.

• ios::out:

open the file for writing. Create it if it doesn’t yet exist. If it exists, the file is rewrit-

ten.

• ios::trunc:

start initially with an empty file. Any existing contents of the file are lost.

The following combinations of file flags have special meanings:

in | out: The stream may be read and written. However, the

file must exist.

in | out | trunc: The stream may be read and written. It is

(re)created empty first.

An interesting subtlety is that the open members of the ifstream, ofstream and fstream

classes have a second parameter of type ios::openmode. In contrast to this, the bitor opera-

tor returns an int when applied to two enum-values. The question why the bitor operator may

nevertheless be used here is answered in a later chapter (cf. section 11.11).

6.4.3 Output to memory: the class ‘ostringstream’

To write information to memory using stream facilities, std::ostringstream objects should be

used. As the class ostringstream is derived from the class ostream all ostream’s facilities are

available to ostringstream objects as well. To use and define ostringstream objects the header

file sstream must be included. In addition the class ostringstream offers the following construc-

tors and members:

• ostringstream ostr(string const &init, ios::openmode mode = ios::out):

when specifying openmode as ios::ate, the ostringstream object is initialized

by the string init and remaining insertions are appended to the contents of the

ostringstream object.

• ostringstream ostr(ios::openmode mode = ios::out):

this constructor can also be used as default constructor. Alternatively it allows,

e.g., forced additions at the end of the information stored in the object so far (using

ios::app). Example:

std::ostringstream out;

• std::string str() const:

a copy of the string that is stored inside the ostringstream object is returned.

• void str(std::string const &str):

the current object is reinitialized with new initial contents.

104 CHAPTER 6. THE IO-STREAM LIBRARY

The following example illustrates the use of the ostringstream class: several values are inserted

into the object. Then, the text contained by the ostringstream object is stored in a std::string,

whose length and contents are thereupon printed. Such ostringstream objects are most often

used for doing ‘type to string’ conversions, like converting int values to text. Formatting flags can

be used with ostringstreams as well, as they are part of the ostream class.

Here is an example showing an ostringstream object being used:

#include <iostream>

#include <sstream>

using namespace std;

int main()

{

ostringstream ostr("hello ", ios::ate);

cout << ostr.str() << ’\n’;

ostr.setf(ios::showbase);

ostr.setf(ios::hex, ios::basefield);

ostr << 12345;

cout << ostr.str() << ’\n’;

ostr << " -- ";

ostr.unsetf(ios::hex);

ostr << 12;

cout << ostr.str() << ’\n’;

ostr.str("new text");

cout << ostr.str() << ’\n’;

ostr.seekp(4, ios::beg);

ostr << "world";

cout << ostr.str() << ’\n’;

}

/*
Output from this program:

hello

hello 0x3039

hello 0x3039 -- 12

new text

new world

*/

6.5 Input

In C++ input is primarily based on the std::istream class. The istream class defines the basic

operators and members extracting information from streams: the extraction operator (>>), and

special members like istream::read reading unformatted information from streams.

6.5. INPUT 105

The class istream acts as base class for several other classes, all offering the functionality of the

istream class, but adding their own specialties. In the upcoming sections the following classes are

discussed:

• The class istream, offering the basic facilities for doing input;

• The class ifstream, allowing us to read files (comparable to C’s fopen(filename, "r"));

• The class istringstream, allowing us to read information from text that is not stored on files

(streams) but in memory (comparable to C’s sscanf function).

6.5.1 Basic input: the class ‘istream’

The class istream defines basic input facilities. The cin object, is an istream object. All facilities

related to input as defined by the ios class are also available in the istream class.

We may define istream objects using the following istream constructor:

• istream object(streambuf *sb):

this constructor can be used to construct a wrapper around an existing std::streambuf

object. Similarly to ostream objects, istream objects may be defined by passing it

initially a 0-pointer. See section 6.4.1 for a discussion, see also section 13.6, and see

chapter 23 for examples.

To define the istream class in C++ sources, the istream header file must be included. To use the

predefined istream object cin, the iostream header file must be included.

6.5.1.1 Reading from ‘istream’ objects

The class istream supports both formatted and unformatted binary input. The extraction operator

(operator») is used to extract values in a type safe way from istream objects. This is called

formatted input, whereby human-readable ASCII characters are converted, according to certain

formatting rules, to binary values.

The extraction operator points to the objects or variables which receive new values. The normal

associativity of >> remains unaltered, so when a statement like

cin >> x >> y;

is encountered, the leftmost two operands are evaluated first (cin >> x), and an istream & object,

which is actually the same cin object, is returned. Now, the statement is reduced to

cin >> y

and the y variable is extracted from cin.

The >> operator has many (overloaded) variants and thus many types of variables can be extracted

from istream objects. There is an overloaded>> available for the extraction of an int, of a double,

of a string, of an array of characters, possibly to a pointer, etc. etc.. String or character array

extraction by default first skips all white space characters, and then extracts all consecutive non-

white space characters. Once an extraction operator has been processed the istream object from

106 CHAPTER 6. THE IO-STREAM LIBRARY

which the information was extracted is returned and it can immediately be used for additional

istream operations that appear in the same expression.

Streams lack facilities for formatted input (as used by, e.g., C’s scanf and vscanf functions). Al-

though it is not difficult to add these facilities to the world of streams, scanf-like functionality is

hardly ever required in C++ programs. Furthermore, as it is potentially type-unsafe, it might be

better to avoid formatted input completely.

When binary files must be read, the information should normally not be formatted: an int value

should be read as a series of unaltered bytes, not as a series of ASCII numeric characters 0 to 9. The

following member functions for reading information from istream objects are available:

• int gcount() const:

the number of characters read from the input stream by the last unformatted input

operation is returned.

• int get():

the next available single character is returned as an unsigned char value using an

int return type. EOF is returned if no more character are available.

• istream &get(char &ch):

the next single character read from the input stream is stored in ch. The member

function returns the stream itself which may be inspected to determine whether a

character was obtained or not.

• istream& get(char *buffer, int len, char delim = ’\n’):

At most len - 1 characters are read from the input stream into the array starting

at buffer, which should be at least len bytes long. Reading also stops when the

delimiter delim is encountered. However, the delimiter itself is not removed from

the input stream.

Having stored the characters into buffer, an 0-valued character is written beyond

the last character stored into the buffer. The functions eof and fail (see section

6.3.1) return 0 (false) if the delimiter was encountered before reading len - 1

characters or if the delimiter was not encountered after reading len - 1 characters.

It is OK to specifiy an 0-valued character delimiter: this way NTB strings may be

read from a (binary) file.

• istream& getline(char *buffer, int len, char delim = ’\n’):

this member function operates analogously to the getmember function, but getline

removes delim from the stream if it is actually encountered. The delimiter itself, if

encountered, is not stored in the buffer. If delim was not found (before reading

len - 1 characters) the fail member function, and possibly also eof returns true.

Realize that the std::string class also offers a function std::getline which is

generally preferred over this getline member function that is described here (see

section 5.2.4).

• istream& ignore():

one character is skipped from the input stream.

• istream& ignore(int n):

n characters are skipped from the input stream.

6.5. INPUT 107

• istream& ignore(int n, int delim):

at most n characters are skipped but skipping characters stops after having removed

delim from the input stream.

• int peek():

this function returns the next available input character, but does not actually re-

move the character from the input stream. EOF is returned if no more characters are

available.

• istream& putback(char ch):

The character ch is ‘pushed back’ into the input stream, to be read again as the next

available character. EOF is returned if this is not allowed. Normally, it is OK to put

back one character. Example:

string value;

cin >> value;

cin.putback(’X’);

// displays: X

cout << static_cast<char>(cin.get());

• istream &read(char *buffer, int len):

At most len bytes are read from the input stream into the buffer. If EOF is encoun-

tered first, fewer bytes are read, with the member function eof returning true. This

function is commonly used when reading binary files. Section 6.5.2 contains an ex-

ample in which this member function is used. The member function gcount() may

be used to determine the number of characters that were retrieved by read.

• istream& readsome(char *buffer, int len):

at most len bytes are read from the input stream into the buffer. All available charac-

ters are read into the buffer, but if EOF is encountered, fewer bytes are read, without

setting the ios::eofbit or ios::failbit.

• istream &unget():

the last character that was read from the stream is put back.

6.5.1.2 ‘istream’ positioning

Although not every istream object supports repositioning, some do. This means that it is possi-

ble to read the same section of a stream repeatedly. Repositioning is frequently used in database

applications where it must be possible to access the information in the database randomly.

The current position can be obtained and modified using the following members:

• ios::pos_type tellg():

the stream’s current (absolute) position where the stream’s next read-operation will

take place is returned.

• istream &seekg(ios::off_type step, ios::seekdir org):

modifies a stream’s actual position. The function expects an off_type step rep-

resenting the number of bytes the current stream position is moved with respect to

org. The step value may be negative, zero or positive.

108 CHAPTER 6. THE IO-STREAM LIBRARY

The origin of the step, org is a value in the ios::seekdir enumeration. Its values

are:

– ios::beg:

the stepsize is computed relative to the beginning of the stream. This

value is used by default.

– ios::cur:

the stepsize is computed relative to the current position of the stream (as

returned by tellp).

– ios::end:

the stepsize is interpreted relative to the current end position of the the

stream.

It is OK to seek beyond the last file position. Seeking before ios::beg raises the

ios::failbit flag.

6.5.2 Input from files: the class ‘ifstream’

The std::ifstream class is derived from the istream class: it has the same capabilities as the

istream class, but can be used to access files for reading.

In order to use the ifstream class in C++ sources, the fstream header file must be included.

Including fstream does not automatically make available the standard streams cin, cout and

cerr. Include iostream to declare these standard streams.

The following constructors are available for ifstream objects:

• ifstream object:

this is the basic constructor. It defines an ifstream object which may be associated

with an actual file later, using its open() member (see below).

• ifstream object(char const *name, ios::openmode mode = ios::in):

this constructor can be used to define an ifstream object and associate it immedi-

ately with the file named name using input mode mode. Section 6.4.2.1 provides an

overview of available input modes. Example:

ifstream in("/tmp/input");

Instead of directly associating an ifstream object with a file, the object can be constructed first,

and opened later.

• void open(char const *name, ios::openmode mode = ios::in):

associates an ifstream object with an actual file. If the ios::fail flag was set

before calling open and opening succeeds the flag is cleared. Opening an already

open stream fails. To reassociate a stream with another file it must first be closed:

ifstream in("/tmp/in");

in >> variable;

in.close(); // closes in

in.open("/tmp/in2");

in >> anotherVariable;

6.5. INPUT 109

• void close():

closes the ifstream object. The function sets the ios::fail flag of the closed ob-

ject. Closing the file flushes any buffered information to the associated file. A file is

automatically closed when the associated ifstream object ceases to exist.

• bool is_open() const:

assume a stream was properly constructed, but it has not yet been attached to a

file. E.g., the statement ifstream ostr was executed. When we now check its

status through good(), a non-zero (i.e., OK) value is returned. The ‘good’ status

here indicates that the stream object has been constructed properly. It doesn’t mean

the file is also open. To test whether a stream is actually open, is_open should be

called. If it returns true, the stream is open. Also see the example in section 6.4.2.

The following example illustrates reading from a binary file (see also section 6.5.1.1):

#include <fstream>

using namespace std;

int main(int argc, char **argv)

{

ifstream in(argv[1]);

double value;

// reads double in raw, binary form from file.

in.read(reinterpret_cast<char *>(&value), sizeof(double));

}

6.5.3 Input from memory: the class ‘istringstream’

To read information from memory using stream facilities, std::istringstream objects should

be used. As the class istringstream is derived from the class istream all istream’s facilities

are available to istringstream objects as well. To use and define istringstream objects the

header file sstream must be included. In addition the class istringstream offers the following

constructors and members:

• istringstream istr(string const &init, ios::openmode mode = ios::in):

the object is initialized with init’s contents

• istringstream istr(ios::openmode mode = ios::in) (this constructor is usually used

as the default constructor. Example:

std::istringstream in;

)

• void str(std::string const &str):

the current object is reinitialized with new initial contents.

The following example illustrates the use of the istringstream class: several values are extracted

from the object. Such istringstream objects are most often used for doing ‘string to type’ conver-

sions, like converting text to int values (cf. C’s atoi function). Formatting flags can be used with

110 CHAPTER 6. THE IO-STREAM LIBRARY

istringstreams as well, as they are part of the istream class. In the example note especially the

use of the member seekg:

#include <iostream>

#include <sstream>

using namespace std;

int main()

{

istringstream istr("123 345"); // store some text.

int x;

istr.seekg(2); // skip "12"

istr >> x; // extract int

cout << x << ’\n’; // write it out

istr.seekg(0); // retry from the beginning

istr >> x; // extract int

cout << x << ’\n’; // write it out

istr.str("666"); // store another text

istr >> x; // extract it

cout << x << ’\n’; // write it out

}

/*
output of this program:

3

123

666

*/

6.5.4 Copying streams

Usually, files are copied either by reading a source file character by character or line by line. The

basic mold to process streams is as follows:

• Continuous loop:

1. read from the stream

2. if reading did not succeed (i.e., fail returns true), break from the loop

3. process the information that was read

Note that reading must precede testing, as it is only possible to know after actually attempting to

read from a file whether the reading succeeded or not. Of course, variations are possible: getline(istream

&, string &) (see section 6.5.1.1) returns an istream &, so here reading and testing may be con-

tracted using one expression. Nevertheless, the above mold represents the general case. So, the

following program may be used to copy cin to cout:

#include <iostream>

using namespace::std;

int main()

{

while (true)

6.5. INPUT 111

{

char c;

cin.get(c);

if (cin.fail())

break;

cout << c;

}

}

Contraction is possible here by combining get with the if-statement, resulting in:

if (!cin.get(c))

break;

Even so, this would still follow the basic rule: ‘read first, test later’.

Simply copying a file isn’t required very often. More often a situation is encountered where a file

is processed up to a certain point, followed by plain copying the file’s remaining information. The

next program illustrates this. Using ignore to skip the first line (for the sake of the example it is

assumed that the first line is at most 80 characters long), the second statement uses yet another

overloaded version of the <<-operator, in which a streambuf pointer is inserted into a stream.

As the member rdbuf returns a stream’s streambuf *, we have a simple means of inserting a

stream’s contents into an ostream:

#include <iostream>

using namespace std;

int main()

{

cin.ignore(80, ’\n’); // skip the first line and...

cout << cin.rdbuf(); // copy the rest through the streambuf *
}

This way of copying streams only assumes the existence of a streambuf object. Consequently it can

be used with all specializations of the streambuf class.

6.5.5 Coupling streams

Ostream objects can be coupled to ios objects using the tie member function. Tying results in

flushing the ostream’s buffer whenever an input or output operation is performed on the ios object

to which the ostream object is tied. By default cout is tied to cin (using cin.tie(cout)). This

tie means that whenever an operation on cin is requested, cout is flushed first. To break the tie,

ios::tie(0) can be called. In the example: cin.tie(0).

Another useful coupling of streams is shown by the tie between cerr and cout. Because of the tie

standard output and error messages written to the screen are shown in sync with the time at which

they were generated:

#include <iostream>

using namespace std;

112 CHAPTER 6. THE IO-STREAM LIBRARY

int main()

{

cerr.tie(0); // untie

cout << "first (buffered) line to cout ";

cerr << "first (unbuffered) line to cerr\n";

cout << "\n";

cerr.tie(&cout); // tie cout to cerr

cout << "second (buffered) line to cout ";

cerr << "second (unbuffered) line to cerr\n";

cout << "\n";

}

/*
Generated output:

first (unbuffered) line to cerr

first (buffered) line to cout

second (buffered) line to cout second (unbuffered) line to cerr

*/

An alternative way to couple streams is to make streams use a common streambuf object. This can

be implemented using the ios::rdbuf(streambuf *) member function. This way two streams

can use, e.g. their own formatting, one stream can be used for input, the other for output, and

redirection using the stream library rather than operating system calls can be implemented. See

the next sections for examples.

6.6 Advanced topics

6.6.1 Redirecting streams

Using ios::rdbuf streams can be forced to share their streambuf objects. Thus information writ-

ten to one stream is actually written to another stream; a phenomenon normally called redirection.

Redirection is commonly implemented at the operating system level, and sometimes that is still

necessary (see section 23.2.3).

A common situation where redirection is useful is when error messages should be written to file

rather than to the standard error stream, usually indicated by its file descriptor number 2. In the

Unix operating system using the bash shell, this can be realized as follows:

program 2>/tmp/error.log

Following this command any error messages written by program are saved on the file /tmp/error.log,

instead of appearing on the screen.

Here is an example showing how this can be implemented using streambuf objects. Assume

program expects an argument defining the name of the file to write the error messages to. It could

be called as follows:

program /tmp/error.log

The program looks like this, an explanation is provided below the program’s source text:

6.6. ADVANCED TOPICS 113

#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char **argv)

{

ofstream errlog; // 1

streambuf *cerr_buffer = 0; // 2

if (argc == 2)

{

errlog.open(argv[1]); // 3

cerr_buffer = cerr.rdbuf(errlog.rdbuf()); // 4

}

else

{

cerr << "Missing log filename\n";

return 1;

}

cerr << "Several messages to stderr, msg 1\n";

cerr << "Several messages to stderr, msg 2\n";

cout << "Now inspect the contents of " <<

argv[1] << "... [Enter] ";

cin.get(); // 5

cerr << "Several messages to stderr, msg 3\n";

cerr.rdbuf(cerr_buffer); // 6

cerr << "Done\n"; // 7

}

/*
Generated output on file argv[1]

at cin.get():

Several messages to stderr, msg 1

Several messages to stderr, msg 2

at the end of the program:

Several messages to stderr, msg 1

Several messages to stderr, msg 2

Several messages to stderr, msg 3

*/

• At lines 1-2 local variables are defined: errlog is the ofstream to write the error messages

too, and cerr_buffer is a pointer to a streambuf, to point to the original cerr buffer.

• At line 3 the alternate error stream is opened.

• At line 4 redirection takes place: cerr now writes to the streambuf defined by errlog. It is

important that the original buffer used by cerr is saved, as explained below.

114 CHAPTER 6. THE IO-STREAM LIBRARY

• At line 5 we pause. At this point, two lines were written to the alternate error file. We get a

chance to take a look at its contents: there were indeed two lines written to the file.

• At line 6 the redirection is terminated. This is very important, as the errlog object is de-

stroyed at the end of main. If cerr’s buffer would not have been restored, then at that point

cerr would refer to a non-existing streambuf object, which might produce unexpected re-

sults. It is the responsibility of the programmer to make sure that an original streambuf is

saved before redirection, and is restored when the redirection ends.

• Finally, at line 7, Done is again written to the screen, as the redirection has been terminated.

6.6.2 Reading AND Writing streams

In order to both read and write to a stream an std::fstream object must be created. As with

ifstream and ofstream objects, its constructor receives the name of the file to be opened:

fstream inout("iofile", ios::in | ios::out);

Note the use of the constants ios::in and ios::out, indicating that the file must be opened

for both reading and writing. Multiple mode indicators may be used, concatenated by the bitor

operator. Alternatively, instead of ios::out, ios::app could have been used and mere writing

would become appending (at the end of the file).

Reading and writing to the same file is always a bit awkward: what to do when the file may not yet

exist, but if it already exists it should not be rewritten? Having fought with this problem for some

time I now use the following approach:

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

int main()

{

fstream rw("fname", ios::out | ios::in);

if (!rw) // file didn’t exist yet

{

rw.clear(); // try again, creating it using ios::trunc

rw.open("fname", ios::out | ios::trunc | ios::in);

}

if (!rw) // can’t even create it: bail out

{

cerr << "Opening ‘fname’ failed miserably" << ’\n’;

return 1;

}

cerr << "We’re at: " << rw.tellp() << ’\n’;

// write something

rw << "Hello world" << ’\n’;

6.6. ADVANCED TOPICS 115

rw.seekg(0); // go back and read what’s written

string s;

getline(rw, s);

cout << "Read: " << s << ’\n’;

}

Under this approach if the first construction attempt fails fname doesn’t exist yet. But then open

can be attempted using the ios::trunc flag. If the file already existed, the construction would

have succeeded. By specifying ios::ate when defining rw, the initial read/write action would by

default have taken place at EOF.

Under DOS-like operating systems that use the multiple character sequence \r\n to separate lines

in text files the flag ios::binary is required to process binary files ensuring that \r\n combina-

tions are processed as two characters. In general, ios::binary should be specified when binary

(non-text) files are to be processed. By default files are opened as text files. Unix operating systems

do not distinguish text files from binary files.

With fstream objects, combinations of file flags are used to make sure that a stream is or is not

(re)created empty when opened. See section 6.4.2.1 for details.

Once a file has been opened in read and write mode, the << operator can be used to insert infor-

mation into the file, while the >> operator may be used to extract information from the file. These

operations may be performed in any order, but a seekg or seekp operation is required when switch-

ing between insertions and extractions. The seek operation is used to activate the stream’s data

used for reading or those used for writing (and vice versa). The istream and ostream parts of

fstream objects share the stream’s data buffer and by performing the seek operation the stream

either activates its istream or its ostream part. If the seek is omitted, reading after writing and

writing after reading simply fails. The example shows a white space delimited word being read from

a file, writing another string to the file, just beyond the point where the just read word terminated.

Finally yet another string is read which is found just beyond the location where the just written

strings ended:

fstream f("filename", ios::in | ios::out);

string str;

f >> str; // read the first word

// write a well known text

f.seekg(0, ios::cur);

f << "hello world";

f.seekp(0, ios::cur);

f >> str; // and read again

Since a seek or clear operation is required when alternating between read and write (extraction and

insertion) operations on the same file it is not possible to execute a series of << and >> operations

in one expression statement.

Of course, random insertions and extractions are hardly ever used. Generally, insertions and ex-

tractions occur at well-known locations in a file. In those cases, the position where insertions or

extractions are required can be controlled and monitored by the seekg, seekp, tellg and tellp

members (see sections 6.4.1.2 and 6.5.1.2).

116 CHAPTER 6. THE IO-STREAM LIBRARY

Error conditions (see section 6.3.1) occurring due to, e.g., reading beyond end of file, reaching end

of file, or positioning before begin of file, can be cleared by the clear member function. Following

clear processing may continue. E.g.,

fstream f("filename", ios::in | ios::out);

string str;

f.seekg(-10); // this fails, but...

f.clear(); // processing f continues

f >> str; // read the first word

A situation where files are both read and written is seen in database applications, using files consist-

ing of records having fixed sizes, and where locations and sizes of pieces of information are known.

For example, the following program adds text lines to a (possibly existing) file. It can also be used to

retrieve a particular line, given its order-number in the file. A binary file index allows for the quick

retrieval of the location of lines.

#include <iostream>

#include <fstream>

#include <string>

#include <climits>

using namespace std;

void err(char const *msg)

{

cout << msg << ’\n’;

}

void err(char const *msg, long value)

{

cout << msg << value << ’\n’;

}

void read(fstream &index, fstream &strings)

{

int idx;

if (!(cin >> idx)) // read index

{

cin.clear(); // allow reading again

cin.ignore(INT_MAX, ’\n’); // skip the line

return err("line number expected");

}

index.seekg(idx * sizeof(long)); // go to index-offset

long offset;

if

(

!index.read // read the line-offset

(

reinterpret_cast<char *>(&offset),

6.6. ADVANCED TOPICS 117

sizeof(long)

)

)

return err("no offset for line", idx);

if (!strings.seekg(offset)) // go to the line’s offset

return err("can’t get string offset ", offset);

string line;

if (!getline(strings, line)) // read the line

return err("no line at ", offset);

cout << "Got line: " << line << ’\n’; // show the line

}

void write(fstream &index, fstream &strings)

{

string line;

if (!getline(cin, line)) // read the line

return err("line missing");

strings.seekp(0, ios::end); // to strings

index.seekp(0, ios::end); // to index

long offset = strings.tellp();

if

(

!index.write // write the offset to index

(

reinterpret_cast<char *>(&offset),

sizeof(long)

)

)

return err("Writing failed to index: ", offset);

if (!(strings << line << ’\n’)) // write the line itself

return err("Writing to ‘strings’ failed");

// confirm writing the line

cout << "Write at offset " << offset << " line: " << line << ’\n’;

}

int main()

{

fstream index("index", ios::trunc | ios::in | ios::out);

fstream strings("strings", ios::trunc | ios::in | ios::out);

cout << "enter ‘r <number>’ to read line <number> or "

"w <line>’ to write a line\n"

"or enter ‘q’ to quit.\n";

while (true)

118 CHAPTER 6. THE IO-STREAM LIBRARY

{

cout << "r <nr>, w <line>, q ? "; // show prompt

index.clear();

strings.clear();

string cmd;

cin >> cmd; // read cmd

if (cmd == "q") // process the cmd.

return 0;

if (cmd == "r")

read(index, strings);

else if (cmd == "w")

write(index, strings);

else if (cin.eof())

{

cout << "\n"

"Unexpected end-of-file\n";

return 1;

}

else

cout << "Unknown command: " << cmd << ’\n’;

}

}

Another example showing reading and writing of files is provided by the next program. It also

illustrates the processing of NTB strings:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{ // r/w the file

fstream f("hello", ios::in | ios::out | ios::trunc);

f.write("hello", 6); // write 2 NTB strings

f.write("hello", 6);

f.seekg(0, ios::beg); // reset to begin of file

char buffer[100]; // or: char *buffer = new char[100]

char c;

// read the first ‘hello’

cout << f.get(buffer, sizeof(buffer), 0).tellg() << ’\n’;

f >> c; // read the NTB delim

// and read the second ‘hello’

cout << f.get(buffer + 6, sizeof(buffer) - 6, 0).tellg() << ’\n’;

buffer[5] = ’ ’; // change asciiz to ’ ’

cout << buffer << ’\n’; // show 2 times ‘hello’

6.6. ADVANCED TOPICS 119

}

/*
Generated output:

5

11

hello hello

*/

A completely different way to read and write streams may be implemented using streambuf mem-

bers. All considerations mentioned so far remain valid (e.g., before a read operation following a write

operation seekg must be used). When streambuf objects are used, either an istream is associ-

ated with the streambuf object of another ostream object, or an ostream object is associated with

the streambuf object of another istream object. Here is the previous program again, now using

associated streams:

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

void err(char const *msg); // see earlier example

void err(char const *msg, long value);

void read(istream &index, istream &strings)

{

index.clear();

strings.clear();

// insert the body of the read() function of the earlier example

}

void write(ostream &index, ostream &strings)

{

index.clear();

strings.clear();

// insert the body of the write() function of the earlier example

}

int main()

{

ifstream index_in("index", ios::trunc | ios::in | ios::out);

ifstream strings_in("strings", ios::trunc | ios::in | ios::out);

ostream index_out(index_in.rdbuf());

ostream strings_out(strings_in.rdbuf());

cout << "enter ‘r <number>’ to read line <number> or "

"w <line>’ to write a line\n"

"or enter ‘q’ to quit.\n";

while (true)

{

cout << "r <nr>, w <line>, q ? "; // show prompt

120 CHAPTER 6. THE IO-STREAM LIBRARY

string cmd;

cin >> cmd; // read cmd

if (cmd == "q") // process the cmd.

return 0;

if (cmd == "r")

read(index_in, strings_in);

else if (cmd == "w")

write(index_out, strings_out);

else

cout << "Unknown command: " << cmd << ’\n’;

}

}

In this example

• the streams associated with the streambuf objects of existing streams are not ifstream or

ofstream objects but basic istream and ostream objects.

• The streambuf object is not defined by an ifstream or ofstream object. Instead it is defined

outside of the streams, using a filebuf (cf. section 14.8.2) and constructions like:

filebuf fb("index", ios::in | ios::out | ios::trunc);

istream index_in(&fb);

ostream index_out(&fb);

• An ifstream object can be constructed using stream modes normally used with ofstream

objects. Conversely, an ofstream objects can be constructed using stream modes normally

used with ifstream objects.

• If istream and ostreams share a streambuf, then their read and write pointers (should)

point to the shared buffer: they are tightly coupled.

• The advantage of using an external (separate) streambuf over a predefined fstream object

is (of course) that it opens the possibility of using stream objects with specialized streambuf

objects. These streambuf objects may specifically be constructed to control and interface par-

ticular devices. Elaborating this (see also section 14.8) is left as an exercise to the reader.

Chapter 7

Classes

The C programming language offers two methods for structuring data of different types. The C

struct holds data members of various types, and the C union also defines data members of var-

ious types. However, a union’s data members all occupy the same location in memory and the

programmer may decide on which one to use.

In this chapter classes are introduced. A class is a kind of struct, but its contents are by default

inaccessible to the outside world, whereas the contents of a C++ struct are by default accessible to

the outside world. In C++ structs find little use: they are mainly used to aggregate data within the

context of classes or to define elaborate return values. Often a C++ struct merely contains plain

old data (POD, cf. section 9.9). In C++ the class is the main data structuring device, by default

enforcing two core concepts of current-day software engineering: data hiding and encapsulation (cf.

sections 3.2.1 and 7.1.1).

The union is another data structuring device the language offers. The traditional C union is still

available in C++, but the C++11 standard adds unrestricted unions to the language. Unrestricted

unions are unions whose data fields may be of class types. The C++ Annotations covers these unre-

stricted unions in section 12.6, after having introduced several other new concepts of C++,

C++ extends the C struct and union concepts by allowing the definition of member functions

(introduced in this chapter) within these data types. Member functions are functions that can only

be used with objects of these data types or within the scope of these data types. Some of these

member functions are special in that they are always, usually automatically, called when an object

starts its life (the so-called constructor) or ends its life (the so-called destructor). These and other

types of member functions, as well as the design and construction of, and philosophy behind, classes

are introduced in this chapter.

We step-by-step construct a class Person, which could be used in a database application to store a

person’s name, address and phone number.

Let’s start by creating a class Person right away. From the onset, it is important to make the

distinction between the class interface and its implementation. A class may loosely be defined as ‘a

set of data and all the functions operating on those data’. This definition is later refined but for now

it is sufficient to get us started.

A class interface is a definition, defining the organization of objects of that class. Normally a defini-

tion results in memory reservation. E.g., when defining int variable the compiler ensures that

some memory is reserved in the final program storing variable’s values. Although it is a definition

no memory is set aside by the compiler once it has processed the class definition. But a class defini-

tion follows the one definition rule: in C++ entities may be defined only once. As a class definition

121

122 CHAPTER 7. CLASSES

does not imply that memory is being reserved the term class interface is preferred instead.

Class interfaces are normally contained in a class header file, e.g., person.h. We’ll start our class

Person interface here (cf section 7.7 for an explanation of the const keywords behind some of the

class’s member functions):

#include <string>

class Person

{

std::string d_name; // name of person

std::string d_address; // address field

std::string d_phone; // telephone number

size_t d_mass; // the mass in kg.

public: // member functions

void setName(std::string const &name);

void setAddress(std::string const &address);

void setPhone(std::string const &phone);

void setMass(size_t mass);

std::string const &name() const;

std::string const &address() const;

std::string const &phone() const;

size_t mass() const;

};

The member functions that are declared in the interface must still be implemented. The implemen-

tation of these members is properly called their definition.

In addition to the member function a class defines the data manipulated by the member functions.

These data are called the data members. In Person they are d_name, d_address, d_phone and

d_mass. Data members should be given private access rights. Since the class uses private access

rights by default they may simply be listed at the top of the interface.

All communication between the outer world and the class data is routed through the class’s member

functions. Data members may receive new values (e.g., using setName) or they may be retrieved

for inspection (e.g., using name). Functions merely returning values stored inside the object, not

allowing the caller to modify these internally stored values, are called accessors.

Syntactically there is only a marginal difference between a class and a struct. Classes by default

define private members, structs define public members. Conceptually, though, there are differences.

In C++ structs are used in the way they are used in C: to aggregate data, which are all freely

accessible. Classes, on the other hand, hide their data from access by the outside world (which is

aptly called data hiding) and offer member functions to define the communication between the outer

world and the class’s data members.

Following Lakos (Lakos, J., 2001) Large-Scale C++ Software Design (Addison-Wesley) I suggest

the following setup of class interfaces:

• All data members have private access rights, and are placed at the top of the interface.

• All data members start with d_, followed by a name suggesting their meaning (in chapter 8

we’ll also encounter data members starting with s_).

• Non-private data members do exist, but one should be hesitant to define non-private access

rights for data members (see also chapter 13).

7.1. THE CONSTRUCTOR 123

• Two broad categories of member functions are manipulators and accessors. Manipulators allow

the users of objects to modify the internal data of the objects. By convention, manipulators

start with set. E.g., setName.

• With accessors, a get-prefix is still frequently encountered, e.g., getName. However, follow-

ing the conventions promoted by the Qt (see http://www.trolltech.com) Graphical User

Interface Toolkit, the get-prefix is now deprecated. So, rather than defining the member

getAddress, it should simply be named address.

• Normally (exceptions exist) the public member functions of a class are listed first, immediately

following the class’s data members. They are the important elements of the interface as they

define the features the class is offering to its users. It’s a matter of convention to list them high

up in the interface. The keyword private is needed beyond the public members to switch back

from public members to private access rights which nicely separates the members that may be

used ‘by the general public’ from the class’s own support members.

Style conventions usually take a long time to develop. There is nothing obligatory about them,

though. I suggest that readers who have compelling reasons not to follow the above style conventions

use their own. All others are strongly advised to adopt the above style conventions.

Finally, referring back to section 3.1.1 that

using namespace std;

must be used in most (if not all) examples of source code. As explained in sections 7.11 and 7.11.1

the using directive should follow the preprocessor directive(s) including the header files, using a

setup like the following:

#include <iostream>

#include "person.h"

using namespace std;

int main()

{

...

}

7.1 The constructor

C++ classes may contain two special categories of member functions which are essential to the

proper working of the class. These categories are the constructors and the destructor. The destruc-

tor’s primary task is to return memory allocated by an object to the common pool when an object

goes ‘out of scope’. Allocation of memory is discussed in chapter 9, and destructors are therefore be

discussed in depth in that chapter. In this chapter the emphasis is on the class’s organization and

its constructors.

Constructor are recognized by their names which is equal to the class name. Constructors do not

specify return values, not even void. E.g., the class Personmay define a constructor Person::Person().

The C++ run-time system ensures that the constructor of a class is called when a variable of the class

is defined. It is possible to define a class lacking any constructor. In that case the compiler defines a

default constructor that is called when an object of that class is defined. What actually happens in

that case depends on the data members that are defined by that class (cf. section 7.3.1).

124 CHAPTER 7. CLASSES

Objects may be defined locally or globally. However, in C++ most objects are defined locally. Globally

defined objects are hardly ever required and are somewhat deprecated.

When a local object is defined its constructor is called every time the function is called. The object’s

constructor is activated at the point where the object is defined (a subtlety is that an object may be

defined implicitly as, e.g., a temporary variable in an expression).

When an object is defined as a static object it is constructed when the program starts. In this case

its constructor is called even before the function main starts. Example:

#include <iostream>

using namespace std;

class Demo

{

public:

Demo();

};

Demo::Demo()

{

cout << "Demo constructor called\n";

}

Demo d;

int main()

{}

/*
Generated output:

Demo constructor called

*/

The program contains one global object of the class Demo with main having an empty body. Nonethe-

less, the program produces some output generated by the constructor of the globally defined Demo

object.

Constructors have a very important and well-defined role. They must ensure that all the class’s

data members have sensible or at least well-defined values once the object has been constructed.

We’ll get back to this important task shortly. The default constructor has no argument. It is defined

by the compiler unless another constructor is defined and unless its definition is suppressed (cf.

section 7.6). If a default constructor is required in addition to another constructor then the default

constructor must explicitly be defined as well. The C++11 standard provides special syntax to do

that as well, which is also covered by section 7.6.

7.1.1 A first application

Our example class Person has three string data members and a size_t d_mass data member.

Access to these data members is controlled by interface functions.

Whenever an object is defined the class’s constructor(s) ensure that its data members are given ‘sen-

sible’ values. Thus, objects never suffer from uninitialized values. Data members may be given new

values, but that should never be directly allowed. It is a core principle (called data hiding) of good

7.1. THE CONSTRUCTOR 125

class design that its data members are private. The modification of data members is therefore fully

controlled by member functions and thus, indirectly, by the class-designer. The class encapsulates all

actions performed on its data members and due to this encapsulation the class object may assume

the ‘responsibility’ for its own data-integrity. Here is a minimal definition of Person’s manipulating

members:

#include "person.h" // given earlier

using namespace std;

void Person::setName(string const &name)

{

d_name = name;

}

void Person::setAddress(string const &address)

{

d_address = address;

}

void Person::setPhone(string const &phone)

{

d_phone = phone;

}

void Person::setMass(size_t mass)

{

d_mass = mass;

}

It’s a minimal definition in that no checks are performed. But it should be clear that checks are easy

to implement. E.g., to ensure that a phone number only contains digits one could define:

void Person::setPhone(string const &phone)

{

if (phone.find_first_not_of("0123456789") == string::npos)

d_phone = phone;

else

cout << "A phone number may only contain digits\n";

}

Similarly, access to the data members is controlled by encapsulating accessor members. Accessors

ensure that data members cannot suffer from uncontrolled modifications. Since accessors conceptu-

ally do not modify the object’s data (but only retrieve the data) these member functions are given

the predicate const. They are called const member functions, which, as they are guaranteed not to

modify their object’s data, are available to both modifiable and constant objects (cf. section 7.7).

To prevent backdoors we must also make sure that the data member is not modifiable through

an accessor’s return value. For values of built-in primitive types that’s easy, as they are usually

returned by value, which are copies of the values found in variables. But since objects may be fairly

large making copies are usually prevented by returning objects by reference. A backdoor is created

by returning a data member by reference, as in the following example, showing the allowed abuse

below the function definition:

string &Person::name() const

{

return d_name;

126 CHAPTER 7. CLASSES

}

Person somebody;

somebody.setName("Nemo");

somebody.name() = "Eve"; // Oops, backdoor changing the name

To prevent the backdoor objects are returned as const references from accessors. Here are the imple-

mentations of Person’s accessors:

#include "person.h" // given earlier

using namespace std;

string const &Person::name() const

{

return d_name;

}

string const &Person::address() const

{

return d_address;

}

string const &Person::phone() const

{

return d_phone;

}

size_t Person::mass() const

{

return d_mass;

}

The Person class interface remains the starting point for the class design: its member functions

define what can be asked of a Person object. In the end the implementation of its members merely

is a technicality allowing Person objects to do their jobs.

The next example shows how the class Person may be used. An object is initialized and passed to a

function printperson(), printing the person’s data. Note the reference operator in the parameter

list of the function printperson. Only a reference to an existing Person object is passed to the

function, rather than a complete object. The fact that printperson does not modify its argument

is evident from the fact that the parameter is declared const.

#include <iostream>

#include "person.h" // given earlier

using namespace std;

void printperson(Person const &p)

{

cout << "Name : " << p.name() << "\n"

"Address : " << p.address() << "\n"

"Phone : " << p.phone() << "\n"

"Mass : " << p.mass() << ’\n’;

}

int main()

{

7.1. THE CONSTRUCTOR 127

Person p;

p.setName("Linus Torvalds");

p.setAddress("E-mail: Torvalds@cs.helsinki.fi");

p.setPhone(" - not sure - ");

p.setMass(75); // kg.

printperson(p);

}

/*
Produced output:

Name : Linus Torvalds

Address : E-mail: Torvalds@cs.helsinki.fi

Phone : - not sure -

Mass : 75

*/

7.1.2 Constructors: with and without arguments

The class Person’s constructor so far has no parameters. C++ allows constructors to be defined with

or without parameter lists. The arguments are supplied when an object is defined.

For the class Person a constructor expecting three strings and a size_t might be useful. Repre-

senting, respectively, the person’s name, address, phone number and mass. This constructor is (but

see also section 7.3.1):

Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

{

d_name = name;

d_address = address;

d_phone = phone;

d_mass = mass;

}

It must of course also be declared in the class interface:

class Person

{

// data members (not altered)

public:

Person(std::string const &name, std::string const &address,

std::string const &phone, size_t mass);

// rest of the class interface (not altered)

};

Now that this constructor has been declared, the default constructor must explicitly be declared as

well if we still want to be able to construct a plain Person object without any specific initial values

128 CHAPTER 7. CLASSES

for its data members. The class Person would thus support two constructors, and the part declaring

the constructors now becomes:

class Person

{

// data members

public:

Person();

Person(std::string const &name, std::string const &address,

std::string const &phone, size_t mass);

// additional members

};

In this case, the default constructor doesn’t have to do very much, as it doesn’t have to initialize the

string data members of the Person object. As these data members are objects themselves, they are

initialized to empty strings by their own default constructor. However, there is also a size_t data

member. That member is a variable of a built-in type and such variabes do not have constructors

and so are not initialized automatically. Therefore, unless the value of the d_mass data member is

explicitly initialized its value is:

• a random value for local Person objects;

• 0 for global and static Person objects.

The 0-value might not be too bad, but normally we don’t want a random value for our data mem-

bers. So, even the default constructor has a job to do: initializing the data members which are not

initialized to sensible values automatically. Its implementation can be:

Person::Person()

{

d_mass = 0;

}

Using constructors with and without arguments is illustrated next. The object karel is initialized

by the constructor defining a non-empty parameter list while the default constructor is used with

the anon object:

int main()

{

Person karel("Karel", "Rietveldlaan 37", "542 6044", 70);

Person anon;

}

The two Person objects are defined when main starts as they are local objects, living only for as

long as main is active.

If Person objects must be definable using other arguments, corresponding constructors must be

added to Person’s interface. Apart from overloading class constructors it is also possible to provide

constructors with default argument values. These default arguments must be specified with the

constructor declarations in the class interface, like so:

class Person

7.1. THE CONSTRUCTOR 129

{

public:

Person(std::string const &name,

std::string const &address = "--unknown--",

std::string const &phone = "--unknown--",

size_t mass = 0);

};

Often, constructors use highly similar implementions. This results from the fact that the construc-

tor’s parameters are often defined for convenience: a constructor not requiring a phone number but

requiring a mass cannot be defined using default arguments, since phone is not the constructor’s

last parameter. Consequently a special constructor is required not having phone in its parameter

list.

In pre C++11 C++ this situation is commonly tackled as follows: all constructors must initialize

their reference and const data members, or the compiler (rightfully) complains. To initialize the

remaining members (non-const and non-reference members) we have two options:

• If the body of the construction process is sizeable but (parameterizable) identical to other con-

structors bodies then factorize. Define a private member init which is called by the construc-

tors to provide the object’s data members with their appropriate values.

• If the constructors act fundamentally differently, then there’s nothing to factorize and each

constructor must be implemented by itself.

C++11 allows constructors to call each other. This is illustrated in section 7.4.1 below.

7.1.2.1 The order of construction

The possibility to pass arguments to constructors allows us to monitor the construction order of

objects during program execution. This is illustrated by the next program using a class Test. The

program defines a global Test object and two local Test objects. The order of construction is as

expected: first global, then main’s first local object, then func’s local object, and then, finally, main’s

second local object:

#include <iostream>

#include <string>

using namespace std;

class Test

{

public:

Test(string const &name); // constructor with an argument

};

Test::Test(string const &name)

{

cout << "Test object " << name << " created" << ’\n’;

}

Test globaltest("global");

130 CHAPTER 7. CLASSES

void func()

{

Test functest("func");

}

int main()

{

Test first("main first");

func();

Test second("main second");

}

/*
Generated output:

Test object global created

Test object main first created

Test object func created

Test object main second created

*/

7.2 Ambiguity resolution

Defining objects may result in some unexpected surprises. Assume the following class interface is

available:

class Data

{

public:

Data();

Data(int one);

Data(int one, int two);

void display();

};

The intention is to define two objects of the class Data, using, respectively, the first and second

constructors. Your code looks like this (and compiles correctly):

#include "data.h"

int main()

{

Data d1();

Data d2(argc);

}

Now it’s time to make some good use of the Data objects. You add two statements to main:

d1.display();

d2.display();

But, surprise, the compiler complains about the first of these two:

7.2. AMBIGUITY RESOLUTION 131

error: request for member ’display’ in ’d1’, which is of non-class type ’Data()’

What’s going on here? First of all, notice the data type the compiler refers to: Data(), rather than

Data. What are those () doing there?

Before answering that question, let’s broaden our story somewhat. We know that somewhere in

a library a factory function dataFactory exists. A factory function creates and returns an object

of a certain type. This dataFactory function returns a Data object, constructed using Data’s

default constructor. Hence, dataFactory needs no arguments. We want to use dataFactory in

our program, but must declare the function. So we add the declaration to main, as that’s the only

location where dataFactory will be used. It’s a function, not requiring arguments, returning a

Data object:

Data dataFactory();

This, however, looks remarkably similar to our d1 object definition:

Data d1();

We found the source of our problem: Data d1() apparently is not the definition of a d1 object, but

the declaration of a function, returning a Data object. So, what’s happening here and how should

we define a Data object using Data’s default constructor?

First: what’s happening here is that the compiler, when confronted with Data d1(), actually had a

choice. It could either define a Data object, or declare a function. It declares a function.

In fact, we’re encountering an ambiguity in C++’s syntax here, which is solved, according to the

language’s standard, by always letting a declaration prevail over a definition. We’ll encounter more

situations where this ambiguity occurs later on in this section.

Second: there are several ways we can solve this ambiguity the way we want it to be solved. To

define an object using its default constructor:

• merely mention it (like int x): Data d1;

• use the curly-brace initialization: Data d1{};

• use the assignment operator and an anonymous default constructed Data object: Data d1 =

Data().

7.2.1 Types ‘Data’ vs. ‘Data()’

Data(), which in the above context defines a default constructed anonymous Data object, takes us

back to the compiler error. According to the compiler, our original d1 apparently was not of type

Data, but of type Data(). So what’s that?

Let’s first have a look at our second constructor. It expects an int. We would like to define another

Data object, using the second constructor, but want to pass the default int value to the constructor,

using int(). We know this defines a default int value, as cout « int() « ’\n’ nicely displays

0, and int x = int() also initialized x to 0. So we define ‘Data di(int())’ in main.

Not good: again the compiler complains when we try to use di. After ‘di.display()’ the compiler

tells us:

error: request for member ’display’ in ’di’, which is of non-class type ’Data(int (*)())’

132 CHAPTER 7. CLASSES

Oops, not as expected.... Didn’t we pass 0? Why the sudden pointer? It’s that same ‘use a declaration

when possible’ strategy again. The notation Type() not only represents the default value of type

Type, but it’s also a shorthand notation for an anonymous pointer to a function, not expecting argu-

ments, and returning a Type value, which you can verify by defining ‘int (*ip)() = nullptr’,

and passing ip as argument to di: di(ip) compiles fine.

So why doesn’t the error occur when inserting int() or assigning int() to int x? In these latter

cases nothing is declared. Rather, cout and int x = need expressions determining values, which

is provided by int()’s ‘natural’ interpretation. But with ‘Data di(int())’ the compiler again

has a choice, and (by design) it chooses a declaration because the declaration takes priority. Now

int()’s interpretation as an anonymous pointer is available and therefore used.

Likewise, if int x has been defined, ‘Data b1(int(x))’ declares b1 as a function, expecting an

int (as int(x) represents a type), while ‘Data b2((int)x)’ defines b2 as a Data object, using

the constructor expecting a single int value.

7.2.2 Superfluous parentheses

Let’s play some more. At some point in our program we defined int b. Then, in a compound state-

ment we need to construct an anonymous Data object, initialized using b, followed by displaying

b:

int b = 18;

{

Data(b);

cout << b;

}

About that cout statement the compiler tells us (I modified the error message to reveal its meaning):

error: cannot bind ‘std::ostream & « Data const &’

Here we didn’t insert int b but Data b. Had we omitted the compound statement, the compiler

would have complained about a doubly defined b entity, as Data(b) simply means Data b, a Data

object constructed by default. The compiler may omit superfluous parentheses when parsing a defi-

nition or declaration.

Of course, the question now becomes how a temporary object Data, initialized with int b can be

defined. Remember that the compiler may remove superfluous parentheses. So, what we need to do

is to pass an int to the anonymous Data object, without using the int’s name.

• We can use a cast: Data(static_cast<int>(b));

• We can use a curly-brace initialization: Data {b}.

Values and types make big differences. Consider the following definitions:

Data (*d4)(int); // 1

Data (*d5)(3); // 2

Definition 1 should cause no problems: it’s a pointer to a function, expecting an int, returning a

Data object. Hence, d4 is a pointer variable.

7.2. AMBIGUITY RESOLUTION 133

Definition 2 is slightly more complex. Yes, it’s a pointer. But it has nothing to do with a function.

So what’s that argument list containing 3 doing there? Well, it’s not an argument list. It’s an

initialization that looks like an argument list. Remember that variables can be initialized using the

assignment statement, by parentheses or by curly parentheses. So instead of ‘(3)’ we could have

written ‘= 3’ or ‘{3}’. Let’s pick the first alternative, resulting in:

Data (*d5) = 3;

Now we get to ‘play compiler’ again. Removing some superfluous parentheses we get:

Data *d5 = 3;

It’s a pointer to a Data object, initialized to 3 (semantically incorrect, but that’s only clear after the

syntactical analysis. If I had initially written

Data (*d5)(&d1); // 2

the fun resulting from contrasting int and 3 would most likely have been spoiled).

7.2.3 Existing types

Once a type name has been defined it also prevails over identifiers representing variables, if the

compiler is given a choice. This, too, can result in interesting constructions.

Assume a function process expecting an int exists in a library. We want to use this function to

process some int data values. So in main process is declared and called:

int process(int Data);

process(argc);

No problems here. But unfortunately we once decided to ‘beautify’ our code, by throwing in some

superfluous parentheses, like so:

int process(int (Data));

process(argc);

Now we’re in trouble. The compiler now generates an error, caused by its rule to let declarations

prevail over definitions. Data now becomes the name of the class Data, and analogous to int

(x) the parameter int (Data) is parsed as int (*)(Data): a pointer to a function, expecting a

Data object, returning an int.

Here is another example. When, instead of declaring

int process(int Data[10]);

we declare, e.g., to emphasize the fact that an array is passed to process:

int process(int (Data[10]));

134 CHAPTER 7. CLASSES

the process function does not expect a pointer to int values, but a pointer to a function expecting

a pointer to Data elements, returning an int.

To summarize the findings in the ‘Ambiguity Resolution’ section:

• The compiler will try to remove superfluous parentheses;

• But if the parenthesized construction represents a type, it will try to use the type;

• More in general: when possible the compiler will interpret a syntactic construction as a decla-

ration, rather than as a definition (of an object or variable).

7.3 Objects inside objects: composition

In the class Person objects are used as data members. This construction technique is called compo-

sition.

Composition is neither extraordinary nor C++ specific: in C a struct or union field is commonly

used in other compound types. In C++ it requires some special thought as their initialization some-

times is subject to restrictions, as discussed in the next few sections.

7.3.1 Composition and const objects: const member initializers

Unless specified otherwise object data members of classes are initialized by their default construc-

tors. Using the default constructor might not always be the optimal way to intialize an object and it

might not even be possible: a class might simply not define a default constructor.

Earlier we’ve encountered the following constructor of the Person:

Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

{

d_name = name;

d_address = address;

d_phone = phone;

d_mass = mass;

}

Think briefly about what is going on in this constructor. In the constructor’s body we encounter

assignments to string objects. Since assignments are used in the constructor’s body their left-hand

side objects must exist. But when objects are coming into existence constructors must have been

called. The initialization of those objects is thereupon immediately undone by the body of Person’s

constructor. That is not only inefficient but sometimes downright impossible. Assume that the class

interface mentions a string const data member: a data member whose value is not supposed

to change at all (like a birthday, which usually doesn’t change very much and is therefore a good

candidate for a string const data member). Constructing a birthday object and providing it with

an initial value is OK, but changing the initial value isn’t.

The body of a constructor allows assignments to data members. The initialization of data members

happens before that. C++ defines the member initializer syntax allowing us to specify the way

data members are initialized at construction time. Member initializers are specified as a list of

7.3. OBJECTS INSIDE OBJECTS: COMPOSITION 135

constructor specifications between a colon following a constructor’s parameter list and the opening

curly brace of a constructor’s body, as follows:

Person::Person(string const &name, string const &address,

string const &phone, size_t mass)

:

d_name(name),

d_address(address),

d_phone(phone),

d_mass(mass)

{}

Member initialization always occurs when objects are composed in classes: if no constructors are

mentioned in the member initializer list the default constructors of the objects are called. Note that

this only holds true for objects. Data members of primitive data types are not initialized automati-

cally.

Member initialization can, however, also be used for primitive data members, like int and double.

The above example shows the initialization of the data member d_mass from the parameter mass.

When member initializers are used the data member could even have the same name as the con-

structor’s parameter (although this is deprecated) as there is no ambiguity and the first (left) iden-

tifier used in a member initializer is always a data member that is initialized whereas the identifier

between parentheses is interpreted as the parameter.

The order in which class type data members are initialized is defined by the order in which those

members are defined in the composing class interface. If the order of the initialization in the con-

structor differs from the order in the class interface, the compiler complains, and reorders the ini-

tialization so as to match the order of the class interface.

Member initializers should be used as often as possible. As shown it may be required to use them

(e.g., to initialize const data members, or to initialize objects of classes lacking default constructors)

but not using member initializers also results in inefficient code as the default constructor of a data

member is always automatically called unless an explicit member initializer is specified. Reassign-

ment in the constructor’s body following default construction is then clearly inefficient. Of course,

sometimes it is fine to use the default constructor, but in those cases the explicit member initializer

can be omitted.

As a rule of thumb: if a value is assigned to a data member in the constructor’s body then try to

avoid that assignment in favor of using a member initializer.

7.3.2 Composition and reference objects: reference member initializers

Apart from using member initializers to initialize composed objects (be they const objects or not),

there is another situation where member initializers must be used. Consider the following situation.

A program uses an object of the class Configfile, defined in main to access the information in a

configuration file. The configuration file contains parameters of the program which may be set by

changing the values in the configuration file, rather than by supplying command line arguments.

Assume another object used in main is an object of the class Process, doing ‘all the work’. What

possibilities do we have to tell the object of the class Process that an object of the class Configfile

exists?

• The objects could have been declared as global objects. This is a possibility, but not a very good

136 CHAPTER 7. CLASSES

one, since all the advantages of local objects are lost.

• The Configfile object may be passed to the Process object at construction time. Bluntly

passing an object (i.e., by value) might not be a very good idea, since the object must be copied

into the Configfile parameter, and then a data member of the Process class can be used to

make the Configfile object accessible throughout the Process class. This might involve yet

another object-copying task, as in the following situation:

Process::Process(Configfile conf) // a copy from the caller

{

d_conf = conf; // copying to d_conf member

}

• The copy-instructions can be avoided if pointers to the Configfile objects are used, as in:

Process::Process(Configfile *conf) // pointer to external object

{

d_conf = conf; // d_conf is a Configfile *
}

This construction as such is OK, but forces us to use the ‘->’ field selector operator, rather

than the ‘.’ operator, which is (disputably) awkward. Conceptually one tends to think of the

Configfile object as an object, and not as a pointer to an object. In C this would probably

have been the preferred method, but in C++ we can do better.

• Rather than using value or pointer parameters, the Configfile parameter could be defined

as a reference parameter of Process’s constructor. Next, use a Config reference data member

in the class Process.

But a reference variable cannot be initialized using an assignment, and so the following is incorrect:

Process::Process(Configfile &conf)

{

d_conf = conf; // wrong: no assignment

}

The statement d_conf = conf fails, because it is not an initialization, but an assignment of one

Configfile object (i.e., conf), to another (d_conf). An assignment to a reference variable is

actually an assignment to the variable the reference variable refers to. But which variable does

d_conf refer to? To no variable at all, since we haven’t initialized d_conf. After all, the whole

purpose of the statement d_conf = conf was to initialize d_conf....

How to initialize d_conf? We once again use the member initializer syntax. Here is the correct way

to initialize d_conf:

Process::Process(Configfile &conf)

:

d_conf(conf) // initializing reference member

{}

The above syntax must be used in all cases where reference data members are used. E.g., if d_ir

would have been an int reference data member, a construction like

Process::Process(int &ir)

7.4. DATA MEMBER INITIALIZERS (C++11) 137

:

d_ir(ir)

{}

would have been required.

7.4 Data member initializers (C++11)

Non-static data members of classes are usually initialized by the class’s constructors. Frequently

(but not always) the same initializations are used by different constructors, resulting in multiple

points where the initializations are performed, which in turn complicates class maintenance.

Consider a class defining several data members: a pointer to data, a data member storing the num-

ber of data elements the pointer points at, a data member storing the sequence number of the object.

The class also offer a basic set of constructors, as shown in the following class interface:

class Container

{

Data *d_data;

size_t d_size;

size_t d_nr;

static size_t s_nObjects;

public:

Container();

Container(Container const &other);

Container(Data *data, size_t size);

Container(Container &&tmp);

};

The initial values of the data members are easy to describe, but somewhat hard to implement.

Consider the initial situation and assume the default constructor is used: all data members should

be set to 0, except for d_nr which must be given the value ++s_nObjects. Since these are non-

default actions, we can’t declare the default constructor using = default, but we must provide an

actual implementation:

Container()

:

d_data(0),

d_size(0),

d_nr(++s_nObjects)

{}

In fact, all constructors require us to state the d_nr(++s_nObjects) initialization. So if d_data’s

type would have been a (move aware) class type, we would still have to provide implementations for

all of the above constructors.

The C++11 standard, however, supports data member initializers, simplifying the initialization of

non-static data members. Data member initializers allow us to assign initial values to data mem-

bers. The compiler must be able to compute these initial values from initialization expressions, but

the initial values do not have to be constant expressions. So ++s_nObjects can be an initial value.

138 CHAPTER 7. CLASSES

Using data member initializers for the class Container we get:

class Container

{

Data *d_data = 0;

size_t d_size = 0;

size_t d_nr = ++nObjects;

static size_t s_nObjects;

public:

Container() = default;

Container(Container const &other);

Container(Data *data, size_t size);

Container(Container &&tmp);

};

Note that the data member initializations are recognized by the compiler, and are applied to its

implementation of the default constructor. In fact, all constructors will apply the data member ini-

tializations, unless explicitly initialized otherwise. E.g., the move-constructor may now be implented

like this:

Container(Container &&tmp)

:

d_data(tmp.d_data),

d_size(tmp.d_size)

{

tmp.d_data = 0;

}

Although d_nr’s intialization is left out of the implementation it is initialized due to the data mem-

ber initialization provided in the class’s interface.

7.4.1 Delegating constructors (C++11)

Often constructors are specializations of each other, allowing objects to be constructed specifying

only subsets of arguments for all of its data members, using default argument values for the re-

maining data members.

Before the C++11 standard common practice was to define a member like init performing all ini-

tializations common to constructors. Such an init function, however, cannot be used to initialize

const or reference data members, nor can it be used to perform so-called base class initializations

(cf. chapter 13).

Here is an example where such an init function might have been used. A class Stat is designed

as a wrapper class around C’s stat(2) function. The class might define three constructors: one

expecting no arguments and initializing all data members to appropriate values; a second one doing

the same, but it calls stat for the filename provided to the constructor; and a third one expecting a

filename and a search path for the provided file name. Instead of repeating the initialization code

in each constructor, the common code can be factorized into a member init which is called by the

constructors.

The C++11 standard offers an alternative by allowing constructors to call each other. This is called

7.5. UNIFORM INITIALIZATION (C++11) 139

delegating constructors The C++11 standard allows us to delegate constructors as illustrated by the

next example:

class Stat

{

public:

Stat()

:

State("", "") // no filename/searchpath

{}

Stat(std::string const &fileName)

:

Stat(fileName, "") // only a filename

{}

Stat(std::string const &fileName, std::string const &searchPath)

:

d_filename(fileName),

d_searchPath(searchPath)

{

// remaining actions to be performed by the constructor

}

};

C++ allows static const integral data members to be initialized within the class interfaces (cf. chap-

ter 8). The C++11 standard adds to this the facility to define default initializations for plain data

members in class interfaces (these data members may or may not be const or of integral types, but

(of course) they cannot be reference data members).

These default initializations may be overruled by constructors. E.g., if the class Stat uses a data

member bool d_hasPath which is false by default but the third constructor (see above) should

initialize it to true then the following approach is possible:

class Stat

{

bool d_hasPath = false;

public:

Stat(std::string const &fileName, std::string const &searchPath)

:

d_hasPath(true) // overrule the interface-specified

// value

{}

};

Here d_hasPath receives its value only once: it’s always initialized to false except when the shown

constructor is used in which case it is initialized to true.

7.5 Uniform initialization (C++11)

When defining variables and objects they may immediately be given initial values. Class type objects

are always initialized using one of their available constructors. C already supports the array and

struct initializer list consisting of a list of constant expressions surrounded by a pair of curly braces.

140 CHAPTER 7. CLASSES

A comparable initialization, called uniform initialization is added to C++ by the C++11 standard. It

uses the following syntax:

Type object {value list};

When defining objects using a list of objects each individual object may use its own uniform initial-

ization.

The advantage of uniform initialization over using constructors is that using constructor arguments

may sometimes result in an ambiguity as constructing an object may sometimes be confused with

using the object’s overloaded function call operator (cf. section 11.10). As initializer lists can only be

used with plain old data (POD) types (cf. section 9.9) and with classes that are ‘initializer list aware’

(like std::vector) the ambiguity does not arise when initializer lists are used.

Uniform initialization can be used to initialize an object or variable, but also to initialize data mem-

bers in a constructor or implicitly in the return statement of functions. Examples:

class Person

{

// data members

public:

Person(std::string const &name, size_t mass)

:

d_name {name},

d_mass {mass}

{}

Person copy() const

{

return {d_name, d_mass};

}

};

Although the uniform intialization syntax is slightly different from the syntax of an initializer list

(the latter using the assignment operator) the compiler nevertheless uses the initializer list if a

constructor supporting an initializer list is available. As an example consider:

class Vector

{

public:

Vector(size_t size);

Vector(std::initializer_list<int> const &values);

};

Vector vi = {4};

When defining vi the constructor expecting the initializer list is called rather than the constructor

expecting a size_t argument. If the latter constructor is required the definition using the standard

constructor syntax must be used. I.e., Vector vi(4).

Initializer lists are themselves objects that may be constructed using another initializer list. How-

ever, values stored in an initializer list are immutable. Once the initializer list has been defined

their values remain as-is.

7.6. DEFAULTED AND DELETED CLASS MEMBERS (C++11) 141

Before using the initializer_list the <initializer_list> header file must have been in-

cluded.

Initializer lists support a basic set of member functions and constructors:

• initializer_list<Type> object:

defines object as an empty initializer list

• initializer_list<Type> object { list of Type values }:

defines object as an initializer list containing Type values

• initializer_list<Type> object(other):

initializes object using the values stored in other

• size_t size() const:

returns the number of elements in the initializer list

• Type const *begin() const:

returns a pointer to the first element of the initializer list

• Type const *end() const:

returns a pointer just beyond the location of the last element of the initializer list

7.6 Defaulted and deleted class members (C++11)

In everyday class design two situations are frequently encountered:

• A class offering constructors explicitly has to define a default constructor;

• A class (e.g., a class implementing a stream) cannot initialize objects by copying the values

from an existing object of that class (called copy construction) and cannot assign objects to each

other.

Once a class defines at least one constructor its default constructor is not automatically defined by

the compiler. The C++11 standard relaxes that restriction somewhat by offering the ‘= default’

syntax. A class specifying ‘= default’ with its default constructor declaration indicates that the

trivial default constructor should be provided by the compiler. A trivial default constructor performs

the following actions:

• Its data members of built-in or primitive types are not initialized;

• Its composed (class type) data members are initialized by their default constructors.

• If the class is derived from a base class (cf. chapter 13) the base class is initialized by its default

constructor.

Trivial implementations can also be provided for the copy constructor, the overloaded assignment

operator, and the destructor. Those members are introduced in chapter 9.

Conversely, situations exist where some (otherwise automatically provided) members should not be

made available. This is realized by specifying ‘= delete’. Using = default and = delete is

142 CHAPTER 7. CLASSES

illustrated by the following example. The default constructor receives its trivial implementation,

copy-construction is prevented:

class Strings

{

public:

Strings() = default;

Strings(std::string const *sp, size_t size);

Strings(Strings const &other) = delete;

};

7.7 Const member functions and const objects

The keyword const is often used behind the parameter list of member functions. This keyword

indicates that a member function does not alter the data members of its object. Such member

functions are called const member functions. In the class Person, we see that the accessor functions

were declared const:

class Person

{

public:

std::string const &name() const;

std::string const &address() const;

std::string const &phone() const;

size_t mass() const;

};

The rule of thumb given in section 3.1.3 applies here too: whichever appears to the left of the keyword

const, is not altered. With member functions this should be interpreted as ‘doesn’t alter its own

data’.

When implementing a const member function the const attribute must be repeated:

string const &Person::name() const

{

return d_name;

}

The compiler prevents the data members of a class from being modified by one of its const member

functions. Therefore a statement like

d_name[0] = toupper(static_cast<unsigned char>(d_name[0]));

results in a compiler error when added to the above function’s definition.

Const member functions are used to prevent inadvertent data modification. Except for constructors

and the destructor (cf. chapter 9) only const member functions can be used with (plain, references

or pointers to) const objects.

Const objects are frequently encounterd as const & parameters of functions. Inside such functions

only the object’s const members may be used. Here is an example:

7.7. CONST MEMBER FUNCTIONS AND CONST OBJECTS 143

void displayMass(ostream &out, Person const &person)

{

out << person.name() << " weighs " << person.mass() << " kg.\n";

}

Since person is defined as a Person const & the function displayMass cannot call, e.g.,

person.setMass(75).

The const member function attribute can be used to overload member functions. When functions

are overloaded by their const attribute the compiler uses the member function matching most

closely the const-qualification of the object:

• When the object is a const object, only const member functions can be used.

• When the object is not a const object, non-const member functions are used, unless only a

const member function is available. In that case, the const member function is used.

The next example illustrates how (non) const member functions are selected:

#include <iostream>

using namespace std;

class Members

{

public:

Members();

void member();

void member() const;

};

Members::Members()

{}

void Members::member()

{

cout << "non const member\n";

}

void Members::member() const

{

cout << "const member\n";

}

int main()

{

Members const constObject;

Members nonConstObject;

constObject.member();

nonConstObject.member();

}

/*
Generated output:

const member

non const member

*/

144 CHAPTER 7. CLASSES

As a general principle of design: member functions should always be given the const attribute,

unless they actually modify the object’s data.

7.7.1 Anonymous objects

Sometimes objects are used because they offer a certain functionality. The objects only exist be-

cause of their functionality, and nothing in the objects themselves is ever changed. The following

class Print offers a facility to print a string, using a configurable prefix and suffix. A partial class

interface could be:

class Print

{

public:

Print(ostream &out);

void print(std::string const &prefix, std::string const &text,

std::string const &suffix) const;

};

An interface like this would allow us to do things like:

Print print(cout);

for (int idx = 0; idx != argc; ++idx)

print.print("arg: ", argv[idx], "\n");

This works fine, but it could greatly be improved if we could pass print’s invariant arguments to

Print’s constructor. This would simplify print’s prototype (only one argument would need to be

passed rather than three) and we could wrap the above code in a function expecting a Print object:

void allArgs(Print const &print, int argc, char *argv[])

{

for (int idx = 0; idx != argc; ++idx)

print.print(argv[idx]);

}

The above is a fairly generic piece of code, at least it is with respect to Print. Since prefix and

suffix don’t change they can be passed to the constructor which could be given the prototype:

Print(ostream &out, string const &prefix = "", string const &suffix = "");

Now allArgs may be used as follows:

Print p1(cout, "arg: ", "\n"); // prints to cout

Print p2(cerr, "err: --", "--\n"); // prints to cerr

allArgs(p1, argc, argv); // prints to cout

allArgs(p2, argc, argv); // prints to cerr

But now we note that p1 and p2 are only used inside the allArgs function. Furthermore, as we can

see from print’s prototype, print doesn’t modify the internal data of the Print object it is using.

7.7. CONST MEMBER FUNCTIONS AND CONST OBJECTS 145

In such situations it is actually not necessary to define objects before they are used. Instead anony-

mous objects may be used. Anonymous objects can be used:

• to initialize a function parameter which is a const reference to an object;

• if the object is only used inside the function call.

These anonymous objects are considered constant as they merely exist for passing the information

of (class type) objects to functions. They are not considered ’variables’. Of course, a const_cast

could be used to cast away the const reference’s constness, but any change is lost once the function

returns. These anonymous objects used to initialize const references should not be confused with

rvalue references (section 3.3.2) which have a completely different purpose in life. Rvalue references

primarily exist to be ‘swallowed’ by functions receiving them. Thus, the information made available

by rvalue references outlives the rvalue reference objects which are also anonymous.

Anonymous objects are defined when a constructor is used without providing a name for the con-

structed object. Here is the corresponding example:

allArgs(Print(cout, "arg: ", "\n"), argc, argv); // prints to cout

allArgs(Print(cerr, "err: --", "--\n"), argc, argv);// prints to cerr

In this situation the Print objects are constructed and immediately passed as first arguments to

the allArgs functions, where they are accessible as the function’s print parameter. While the

allArgs function is executing they can be used, but once the function has completed, the anonymous

Print objects are no longer accessible.

7.7.1.1 Subtleties with anonymous objects

Anonymous objects can be used to initialize function parameters that are const references to ob-

jects. These objects are created just before such a function is called, and are destroyed once the

function has terminated. C++’s grammar allows us to use anonymous objects in other situations as

well. Consider the following snippet of code:

int main()

{

// initial statements

Print("hello", "world");

// later statements

}

In this example an anonymous Print object is constructed, and it is immediately destroyed there-

after. So, following the ‘initial statements’ our Print object is constructed. Then it is destroyed

again followed by the execution of the ‘later statements’.

The example illustrates that the standard lifetime rules do not apply to anonymous objects. Their

lifetimes are limited to the statements, rather than to the end of the block in which they are defined.

Plain anonymous object are at least useful in one situation. Assume we want to put markers in

our code producing some output when the program’s execution reaches a certain point. An object’s

constructor could be implemented so as to provide that marker-functionality allowing us to put

markers in our code by defining anonymous, rather than named objects.

146 CHAPTER 7. CLASSES

C++’s grammar contains another remarkable characteristic illustrated by the next example:

int main(int argc, char **argv)

{

Print p(cout, "", ""); // 1

allArgs(Print(p), argc, argv); // 2

}

In this example a non-anonymous object p is constructed in statement 1, which is then used in

statement 2 to initialize an anonymous object. The anonymous object, in turn, is then used to

initialize allArgs’s const reference parameter. This use of an existing object to initialize another

object is common practice, and is based on the existence of a so-called copy constructor. A copy

constructor creates an object (as it is a constructor) using an existing object’s characteristics to

initialize the data of the object that’s created. Copy constructors are discussed in depth in chapter

9, but presently only the concept of a copy constructor is used.

In the above example a copy constructor is used to initialize an anonymous object. The anonymous

object was then used to initialize a parameter of a function. However, when we try to apply the

same trick (i.e., using an existing object to initialize an anonymous object) to a plain statement, the

compiler generates an error: the object p can’t be redefined (in statement 3, below):

int main(int argc, char *argv[])

{

Print p("", ""); // 1

allArgs(Print(p), argc, argv); // 2

Print(p); // 3 error!

}

Does this mean that using an existing object to initialize an anonymous object that is used as func-

tion argument is OK, while an existing object can’t be used to initialize an anonymous object in a

plain statement?

The compiler actually provides us with the answer to this apparent contradiction. About statement

3 the compiler reports something like:

error: redeclaration of ’Print p’

which solves the problem when realizing that within a compound statement objects and variables

may be defined. Inside a compound statement, a type name followed by a variable name is the

grammatical form of a variable definition. Parentheses can be used to break priorities, but if there

are no priorities to break, they have no effect, and are simply ignored by the compiler. In statement

3 the parentheses allowed us to get rid of the blank that’s required between a type name and the

variable name, but to the compiler we wrote

Print (p);

which is, since the parentheses are superfluous, equal to

Print p;

thus producing p’s redeclaration.

7.8. THE KEYWORD ‘INLINE’ 147

As a further example: when we define a variable using a built-in type (e.g., double) using superflu-

ous parentheses the compiler quietly removes these parentheses for us:

double ((((a)))); // weird, but OK.

To summarize our findings about anonymous variables:

• Anonymous objects are great for initializing const reference parameters.

• The same syntaxis, however, can also be used in stand-alone statements, in which they are

interpreted as variable definitions if our intention actually was to initialize an anonymous

object using an existing object.

• Since this may cause confusion, it’s probably best to restrict the use of anonymous objects to

the first (and main) form: initializing function parameters.

7.8 The keyword ‘inline’

Let us take another look at the implementation of the function Person::name():

std::string const &Person::name() const

{

return d_name;

}

This function is used to retrieve the name field of an object of the class Person. Example:

void showName(Person const &person)

{

cout << person.name();

}

To insert person’s name the following actions are performed:

• The function Person::name() is called.

• This function returns person’s d_name as a reference.

• The referenced name is inserted into cout.

Especially the first part of these actions causes some time loss, since an extra function call is nec-

essary to retrieve the value of the name field. Sometimes a faster procedure immediately making

the d_name data member available is preferred without ever actually calling a function name. This

can be realized using inline functions. An inline function is a request to the compiler to insert the

function’s code at the location of the function’s call. This may speed up execution by avoiding a func-

tion call, which typically comes with some (stack handling and parameter passing) overhead. Note

that inline is a request to the compiler: the compiler may decide to ignore it, and will probably

ignore it when the function’s body contains much code. Good programming discipline suggests to be

aware of this, and to avoid inline unless the function’s body is fairly small. More on this in section

7.8.2.

148 CHAPTER 7. CLASSES

7.8.1 Defining members inline

Inline functions may be implemented in the class interface itself. For the class Person this results

in the following implementation of name:

class Person

{

public:

std::string const &name() const

{

return d_name;

}

};

Note that the inline code of the function name now literally occurs inline in the interface of the class

Person. The keyword const is again added to the function’s header.

Although members can be defined in-class (i.e., inside the class interface itself), it is considered bad

practice for the following reasons:

• Defining members inside the interface contaminates the interface with implementations. The

interface’s purpose is to document what functionality the class offers. Mixing member decla-

rations and implementation details complicates understanding the interface. Readers need to

skip implementation details which takes time and makes it hard to grab the ‘broad picture’,

and thus to understand at a glance what functionality the class’s objects are offering.

• In-class implementations of private member functions may usually be avoided altogether (as

they are private members). They should be moved to the internal header file (unless inline

public members use such inline private members).

• Although members that are eligible for inline-coding should remain inline, situations do exist

where such inline members migrate from an inline to a non-inline definition. In-class inline

definitions still need editing (sometimes considerable editing) before they can be compiled.

This additional editing is undesirable.

Because of the above considerations inline members should not be defined in-class. Rather, they

should be defined following the class interface. The Person::name member is therefore preferably

defined as follows:

class Person

{

public:

std::string const &name() const;

};

inline std::string const &Person::name() const

{

return d_name;

}

If it is ever necessary to cancel Person::name’s inline implementation, then this becomes its non-

inline implementation:

#include "person.ih"

7.8. THE KEYWORD ‘INLINE’ 149

std::string const &Person::name() const

{

return d_name;

}

Only the inline keyword needs to be removed to obtain the correct non-inline implementation.

Defining members inline has the following effect: whenever an inline-defined function is called, the

compiler may insert the function’s body at the location of the function call. It may be that the function

itself is never actually called.

This construction, where the function code itself is inserted rather than a call to the function, is

called an inline function. Note that using inline functions may result in multiple occurrences of the

code of those functions in a program: one copy for each invocation of the inline function. This is

probably OK if the function is a small one, and needs to be executed fast. It’s not so desirable if

the code of the function is extensive. The compiler knows this too, and handles the use of inline

functions as a request rather than a command. If the compiler considers the function too long, it will

not grant the request. Instead it will treat the function as a normal function.

7.8.2 When to use inline functions

When should inline functions be used, and when not? There are some rules of thumb which may be

followed:

• In general inline functions should not be used. Voilà; that’s simple, isn’t it?

• Consider defining a function inline once a fully developed and tested program runs too slowly

and shows ‘bottlenecks’ in certain functions, and the bottleneck is removed by defining inline

members. A profiler, which runs a program and determines where most of the time is spent, is

necessary to perform such optimizations.

• Defining inline functions may be considered when they consist of one very simple statement

(such as the return statement in the function Person::name).

• When a function is defined inline, its implementation is inserted in the code wherever the

function is used. As a consequence, when the implementation of the inline function changes, all

sources using the inline function must be recompiled. In practice that means that all functions

must be recompiled that include (either directly or indirectly) the header file of the class in

which the inline function is defined. Not a very attractive prospect.

• It is only useful to implement an inline function when the time spent during a function call is

long compared to the time spent by the function’s body. An example of an inline function which

hardly affects the program’s speed is:

inline void Person::printname() const

{

cout << d_name << ’\n’;

}

This function contains only one statement. However, the statement takes a relatively long time

to execute. In general, functions which perform input and output take lots of time. The effect of

the conversion of this function printname() to inline would therefore lead to an insignificant

gain in execution time.

150 CHAPTER 7. CLASSES

All inline functions have one disadvantage: the actual code is inserted by the compiler and must

therefore be known at compile-time. Therefore, as mentioned earlier, an inline function can never

be located in a run-time library. Practically this means that an inline function is found near the

interface of a class, usually in the same header file. The result is a header file which not only

shows the declaration of a class, but also part of its implementation, thus always blurring the

distinction between interface and implementation.

7.8.2.1 A prelude: when NOT to use inline functions

As a prelude to chapter 14 (Polymorphism), there is one situation in which inline functions should

definitely be avoided. At this point in the C++ Annotations it’s a bit too early to expose the full

details, but since the keyword inline is the topic of this section this is considered the appropriate

location for the advice.

There are situations where the compiler is confronted with so-called vague linkage

(cf. http://gcc.gnu.org/onlinedocs/gcc-4.6.0/gcc/Vague-Linkage.html). These situa-

tions occur when the compiler does not have a clear indication in what object file to put its compiled

code. This happens, e.g., with inline functions, which are usually encountered in multiple source

files. Since the compiler may insert the code of ordinary inline functions in places where these

functions are called, vague linking is usually no problem with these ordinary functions.

However, as explained in chapter 14, when using polymorphism the compiler must ignore the

inline keyword and define so-called virtual members as true (out-of-line functions). In this sit-

uation the vague linkage may cause problems, as the compiler must decide in what object s to put

their code. Usually that’s not a big problem as long as the function is at least called once. But virtual

functions are special in the sense that they may very well never be explicitly called. On some archi-

tectures (e.g., armel) the compiler may fail to compile such inline virtual functions. This may result

in missing symbols in programs using them. To make matters slightly more complex: the problem

may emerge when shared libraries are used, but not when static libraries are used.

To avoid all of these problems virtual functions should never be defined inline, but they should

always be defined out-of-line. I.e., they should be defined in source files.

7.9 Local classes: classes inside functions

Classes are usually defined at the global or namespace level. However, it is entirely possible to

define a local class, i.e., inside a function. Such classes are called local classes.

Local classes can be very useful in advanced applications involving inheritance or templates (cf.

section 13.9). At this point in the C++ Annotations they have limited use, although their main

features can be described. At the end of this section an example is provided.

• Local classes may use almost all characteristics of normal classes. They may have constructors,

destructors, data members, and member functions;

• Local classes cannot define static data members. Static member functions, however, can be

defined.

• Since a local class may define static member functions, it is possible to define nested functions

in C++ somewhat comparable to the way programming languages like Pascal allow nested

functions to be defined.

7.9. LOCAL CLASSES: CLASSES INSIDE FUNCTIONS 151

• If a local class needs access to a constant integral value, a local enum can be used. The enum

may be anonymous, exposing only the enum values.

• Local classes cannot directly access the non-static variables of their surrounding context. For

example, in the example shown below the class Local cannot directly access main’s argc

parameter.

• Local classes may directly access global data and static variables defined by their surround-

ing function. This includes variables defined in the anonymous namespace of the source file

containing the local class.

• Local class objects can be defined inside the function body, but they cannot leave the function

as objects of their own type. I.e., a local class name cannot be used for either the return type

or for the parameter types of its surrounding function.

• As a prelude to inheritance (chapter 13): a local class may be derived from an existing class

allowing the surrounding function to return a dynamically allocated locally constructed class

object, pointer or reference could be returned via a base class pointer or reference.

#include <iostream>

#include <string>

using namespace std;

int main(int argc, char *argv[])

{

static size_t staticValue = 0;

class Local

{

int d_argc; // non-static data members OK

public:

enum // enums OK

{

VALUE = 5

};

Local(int argc) // constructors and member functions OK

: // in-class implementation required

d_argc(argc)

{

// global data: accessible

cout << "Local constructor\n";

// static function variables: accessible

staticValue += 5;

}

static void hello() // static member functions: OK

{

cout << "hello world\n";

}

};

Local::hello(); // call Local static member

Local loc(argc); // define object of a local class.

}

152 CHAPTER 7. CLASSES

7.10 The keyword ‘mutable’

Earlier, in section 7.7, the concepts of const member functions and const objects were introduced.

C++ also allows the declaration of data members which may be modified, even by const member func-

tion. The declaration of such data members in the class interface start with the keyword mutable.

Mutable should be used for those data members that may be modified without logically changing

the object, which might therefore still be considered a constant object.

An example of a situation where mutable is appropriately used is found in the implementation of a

string class. Consider the std::string’s c_str and data members. The actual data returned by

the two members are identical, but c_str must ensure that the returned string is terminated by an

0-byte. As a string object has both a length and a capacity an easy way to implement c_str is to

ensure that the string’s capacity exceeds its length by at least one character. This invariant allows

c_str to be implemented as follows:

char const *string::c_str() const

{

d_data[d_length] = 0;

return d_data;

}

This implementation logically does not modify the object’s data as the bytes beyond the object’s

initial (length) characters have undefined values. But in order to use this implementation d_data

must be declared mutable:

mutable char *d_data;

The keyword mutable is also useful in classes implementing, e.g., reference counting. Consider a

class implementing reference counting for textstrings. The object doing the reference counting might

be a const object, but the class may define a copy constructor. Since const objects can’t be modified,

how would the copy constructor be able to increment the reference count? Here the mutable key-

word may profitably be used, as it can be incremented and decremented, even though its object is a

const object.

The keyword mutable should sparingly be used. Data modified by const member functions should

never logically modify the object, and it should be easy to demonstrate this. As a rule of thumb: do

not use mutable unless there is a very clear reason (the object is logically not altered) for violating

this rule.

7.11 Header file organization

In section 2.5.10 the requirements for header files when a C++ program also uses C functions were

discussed. Header files containing class interfaces have additional requirements.

First, source files. With the exception of the occasional classless function, source files contain the

code of member functions of classes. here there are basically two approaches:

• All required header files for a member function are included in each individual source file.

• All required header files (for all member functions of a class) are included in a header file that

is included by each of the source files defining class members.

7.11. HEADER FILE ORGANIZATION 153

The first alternative has the advantage of economy for the compiler: it only needs to read the header

files that are necessary for a particular source file. It has the disadvantage that the program devel-

oper must include multiple header files again and again in sourcefiles: it both takes time to type the

include-directives and to think about the header files which are needed in a particular source file.

The second alternative has the advantage of economy for the program developer: the header file of

the class accumulates header files, so it tends to become more and more generally useful. It has the

disadvantage that the compiler frequently has to process many header files which aren’t actually

used by the function to compile.

With computers running faster and faster (and compilers getting smarter and smarter) I think the

second alternative is to be preferred over the first alternative. So, as a starting point source files of

a particular class MyClass could be organized according to the following example:

#include <myclass.h>

int MyClass::aMemberFunction()

{}

There is only one include-directive. Note that the directive refers to a header file in a direc-

tory mentioned in the INCLUDE-file environment variable. Local header files (using #include

"myclass.h") could be used too, but that tends to complicate the organization of the class header

file itself somewhat.

The organization of the header file itself requires some attention. Consider the following example,

in which two classes File and String are used.

Assume the File class has a member gets(String &destination), while the class String has

a member function getLine(File &file). The (partial) header file for the class String is

then:

#ifndef STRING_H_

#define STRING_H_

#include <project/file.h> // to know about a File

class String

{

public:

void getLine(File &file);

};

#endif

Unfortunately a similar setup is required for the class File:

#ifndef FILE_H_

#define FILE_H_

#include <project/string.h> // to know about a String

class File

{

public:

void gets(String &string);

154 CHAPTER 7. CLASSES

};

#endif

Now we have created a problem. The compiler, trying to compile the source file of the function

File::gets proceeds as follows:

• The header file project/file.h is opened to be read;

• FILE_H_ is defined

• The header file project/string.h is opened to be read

• STRING_H_ is defined

• The header file project/file.h is (again) opened to be read

• Apparently, FILE_H_ is already defined, so the remainder of project/file.h is skipped.

• The interface of the class String is now parsed.

• In the class interface a reference to a File object is encountered.

• As the class File hasn’t been parsed yet, a File is still an undefined type, and the compiler

quits with an error.

The solution to this problem is to use a forward class reference before the class interface, and to

include the corresponding class header file beyond the class interface. So we get:

#ifndef STRING_H_

#define STRING_H_

class File; // forward reference

class String

{

public:

void getLine(File &file);

};

#include <project/file.h> // to know about a File

#endif

A similar setup is required for the class File:

#ifndef FILE_H_

#define FILE_H_

class String; // forward reference

class File

{

public:

void gets(String &string);

};

7.11. HEADER FILE ORGANIZATION 155

#include <project/string.h> // to know about a String

#endif

This works well in all situations where either references or pointers to other classes are involved

and with (non-inline) member functions having class-type return values or parameters.

This setup doesn’t work with composition, nor with in-class inline member functions. Assume the

class File has a composed data member of the class String. In that case, the class interface of the

class File must include the header file of the class String before the class interface itself, because

otherwise the compiler can’t tell how big a File object is. A File object contains a String member,

but the compiler can’t determine the size of that String data member and thus, by implication, it

can’t determine the size of a File object.

In cases where classes contain composed objects (or are derived from other classes, see chapter 13)

the header files of the classes of the composed objects must have been read before the class interface

itself. In such a case the class File might be defined as follows:

#ifndef FILE_H_

#define FILE_H_

#include <project/string.h> // to know about a String

class File

{

String d_line; // composition !

public:

void gets(String &string);

};

#endif

The class String can’t declare a File object as a composed member: such a situation would again

result in an undefined class while compiling the sources of these classes.

All remaining header files (appearing below the class interface itself) are required only because they

are used by the class’s source files.

This approach allows us to introduce yet another refinement:

• Header files defining a class interface should declare what can be declared before defining the

class interface itself. So, classes that are mentioned in a class interface should be specified

using forward declarations unless

– They are a base class of the current class (see chapter 13);

– They are the class types of composed data members;

– They are used in inline member functions.

In particular: additional actual header files are not required for:

– class-type return values of functions;

– class-type value parameters of functions.

156 CHAPTER 7. CLASSES

Class header files of objects that are either composed or inherited or that are used in inline

functions, must be known to the compiler before the interface of the current class starts. The

information in the header file itself is protected by the #ifndef ... #endif construction

introduced in section 2.5.10.

• Program sources in which the class is used only need to include this header file. Lakos, (2001)

refines this process even further. See his book Large-Scale C++ Software Design for further

details. This header file should be made available in a well-known location, such as a directory

or subdirectory of the standard INCLUDE path.

• To implement member functions the class’s header file is required and usually additional

header files (like the string header file) as well. The class header file itself as well as these

additional header files should be included in a separate internal header file (for which the

extension .ih (‘internal header’) is suggested).

The .ih file should be defined in the same directory as the source files of the class. It has the

following characteristics:

– There is no need for a protective #ifndef .. #endif shield, as the header file is never

included by other header files.

– The standard .h header file defining the class interface is included.

– The header files of all classes used as forward references in the standard .h header file

are included.

– Finally, all other header files that are required in the source files of the class are included.

An example of such a header file organization is:

– First part, e.g., /usr/local/include/myheaders/file.h:

#ifndef FILE_H_

#define FILE_H_

#include <fstream> // for composed ’ifstream’

class Buffer; // forward reference

class File // class interface

{

std::ifstream d_instream;

public:

void gets(Buffer &buffer);

};

#endif

– Second part, e.g., ~/myproject/file/file.ih, where all sources of the class File are

stored:

#include <myheaders/file.h> // make the class File known

#include <buffer.h> // make Buffer known to File

#include <string> // used by members of the class

#include <sys/stat.h> // File.

7.11. HEADER FILE ORGANIZATION 157

7.11.1 Using namespaces in header files

When entities from namespaces are used in header files, no using directive should be specified in

those header files if they are to be used as general header files declaring classes or other entities

from a library. When the using directive is used in a header file then users of such a header file are

forced to accept and use the declarations in all code that includes the particular header file.

For example, if in a namespace special an object Inserter cout is declared, then special::cout

is of course a different object than std::cout. Now, if a class Flaw is constructed, in which the

constructor expects a reference to a special::Inserter, then the class should be constructed as

follows:

class special::Inserter;

class Flaw

{

public:

Flaw(special::Inserter &ins);

};

Now the person designing the class Flawmay be in a lazy mood, and might get bored by continuously

having to prefix special:: before every entity from that namespace. So, the following construction

is used:

using namespace special;

class Inserter;

class Flaw

{

public:

Flaw(Inserter &ins);

};

This works fine, up to the point where somebody wants to include flaw.h in other source files:

because of the using directive, this latter person is now by implication also using namespace

special, which could produce unwanted or unexpected effects:

#include <flaw.h>

#include <iostream>

using std::cout;

int main()

{

cout << "starting\n"; // won’t compile

}

The compiler is confronted with two interpretations for cout: first, because of the using directive

in the flaw.h header file, it considers cout a special::Inserter, then, because of the using

directive in the user program, it considers cout a std::ostream. Consequently, the compiler

reports an error.

As a rule of thumb, header files intended for general use should not contain using declarations.

This rule does not hold true for header files which are only included by the sources of a class: here

158 CHAPTER 7. CLASSES

the programmer is free to apply as many using declarations as desired, as these directives never

reach other sources.

7.12 Sizeof applied to class data members (C++11)

In the C++11 standard the sizeof operator can be applied to data members of classes without the

need to specify an object as well. Consider:

class Data

{

std::string d_name;

...

};

To obtain the size of Data’s d_name member C++11 allows the following expression:

sizeof(Data::d_name);

However, note that the compiler observes data protection here as well. Sizeof(Data::d_name)

can only be used where d_name may be visible as well, i.e., by Data’s member functions and friends.

Chapter 8

Static Data And Functions

In the previous chapters we provided examples of classes where each object had its own set of data

members data. Each of the class’s member functions could access any member of any object of its

class.

In some situations it may be desirable to define common data fields, that may be accessed by all

objects of the class. For example, the name of the startup directory, used by a program that recur-

sively scans the directory tree of a disk. A second example is a variable that indicates whether some

specific initialization has occurred. In that case the object that was constructed first would perform

the initialization and would set the flag to ‘done’.

Such situations are also encountered in C, where several functions need to access the same variable.

A common solution in C is to define all these functions in one source file and to define the variable

static: the variable name is invisible outside the scope of the source file. This approach is quite

valid, but violates our philosophy of using only one function per source file. Another C-solution is

to give the variable in question an unusual name, e.g., _6uldv8, hoping that other program parts

won’t use this name by accident. Neither the first, nor the second legacy C solution is elegant.

C++ solves the problem by defining static members: data and functions, common to all objects

of a class and (when defined in the private section) inaccessible outside of the class. These static

members are this chapter’s topic.

Static members cannot be defined as virtual functions. A virtual member function is an ordinary

member in that it has a this pointer. As static member functions have no this pointer, they cannot

be declared virtual.

8.1 Static data

Any data member of a class can be declared static; be it in the public or private section of the

class interface. Such a data member is created and initialized only once, in contrast to non-static

data members which are created again and again for each object of the class.

Static data members are created as soon as the program starts. Even though they’re created at the

very beginning of a program’s execution cycle they are nevertheless true members of their classes.

It is suggested to prefix the names of static member with s_ so they may easily be distinguished (in

class member functions) from the class’s data members (which should preferably start with d_).

159

160 CHAPTER 8. STATIC DATA AND FUNCTIONS

Public static data members are global variables. They may be accessed by all of the program’s code,

simply by using their class names, the scope resolution operator and their member names. Example:

class Test

{

static int s_private_int;

public:

static int s_public_int;

};

int main()

{

Test::s_public_int = 145; // OK

Test::s_private_int = 12; // wrong, don’t touch

// the private parts

}

The example does not present an executable program. It merely illustrates the interface, and not

the implementation of static data members, which is discussed next.

8.1.1 Private static data

To illustrate the use of a static data member which is a private variable in a class, consider the

following:

class Directory

{

static char s_path[];

public:

// constructors, destructors, etc.

};

The data member s_path[] is a private static data member. During the program’s execution only

one Directory::s_path[] exists, even though multiple objects of the class Directory may ex-

ist. This data member could be inspected or altered by the constructor, destructor or by any other

member function of the class Directory.

Since constructors are called for each new object of a class, static data members are not initialized

by constructors. At most they are modified. The reason for this is that static data members exist

before any constructor of the class has been called. Static data members are initialized when they

are defined, outside of any member function, exactly like the initialization of ordinary (non-class)

global variables.

The definition and initialization of a static data member usually occurs in one of the source files

of the class functions, preferably in a source file dedicated to the definition of static data members,

called data.cc.

The data member s_path[], used above, could thus be defined and initialized as follows in a file

data.cc:

include "directory.ih"

8.1. STATIC DATA 161

char Directory::s_path[200] = "/usr/local";

In the class interface the static member is actually only declared. In its implementation (definition)

its type and class name are explicitly mentioned. Note also that the size specification can be left out

of the interface, as shown above. However, its size is (either explicitly or implicitly) required when

it is defined.

Note that any source file could contain the definition of the static data members of a class. A separate

data.cc source file is advised, but the source file containing, e.g., main() could be used as well. Of

course, any source file defining static data of a class must also include the header file of that class,

in order for the static data member to be known to the compiler.

A second example of a useful private static data member is given below. Assume that a class

Graphics defines the communication of a program with a graphics-capable device (e.g., a VGA

screen). The initialization of the device, which in this case would be to switch from text mode to

graphics mode, is an action of the constructor and depends on a static flag variable s_nobjects.

The variable s_nobjects simply counts the number of Graphics objects which are present at one

time. Similarly, the destructor of the class may switch back from graphics mode to text mode when

the last Graphics object ceases to exist. The class interface for this Graphics class might be:

class Graphics

{

static int s_nobjects; // counts # of objects

public:

Graphics();

~Graphics(); // other members not shown.

private:

void setgraphicsmode(); // switch to graphics mode

void settextmode(); // switch to text-mode

}

The purpose of the variable s_nobjects is to count the number of objects existing at a particular

moment in time. When the first object is created, the graphics device is initialized. At the destruction

of the last Graphics object, the switch from graphics mode to text mode is made:

int Graphics::s_nobjects = 0; // the static data member

Graphics::Graphics()

{

if (!s_nobjects++)

setgraphicsmode();

}

Graphics::~Graphics()

{

if (!--s_nobjects)

settextmode();

}

Obviously, when the class Graphicswould define more than one constructor, each constructor would

need to increase the variable s_nobjects and would possibly have to initialize the graphics mode.

162 CHAPTER 8. STATIC DATA AND FUNCTIONS

8.1.2 Public static data

Data members could also be declared in the public section of a class. This, however, is deprecated

(as it violates the principle of data hiding). The static data member s_path[] (cf. section 8.1) could

be declared in the public section of the class definition. This would allow all the program’s code to

access this variable directly:

int main()

{

getcwd(Directory::s_path, 199);

}

A declaration is not a definition. Consequently the variable s_path still has to be defined. This

implies that some source file still needs to contain s_path[] array’s definition.

8.1.3 Initializing static const data

Static const data members should be initialized like any other static data member: in source files

defining these data members.

Usually, if these data members are of integral or built-in primitive data types the compiler accepts

in-class initializations of such data members. However, there is no formal rule requiring the compiler

to do so. Compilations may or may not succeed depending on the optimizations used by the compiler

(e.g., using -O2 may result in a successful compilation, but -O0 (no-optimalizations) may fail to

compile, but then maybe only when shared libraries are used...).

In-class initializations of integer constant values (e.g., of types char, int, long, etc, maybe

unsigned) is nevertheless possible using (e.g., anonymous) enums. The following example illus-

trates how this can be done:

class X

{

public:

enum { s_x = 34 };

enum: size_t { s_maxWidth = 100 };

};

To avoid confusion caused by different compiler options static data members should always explicitly

be defined and initialized in a source file, whether or not const.

8.1.4 Generalized constant expressions (constexpr, C++11)

In C macros are often used to let the preprocessor perform simple calculations. These macro func-

tions may have arguments, as illustrated in the next example:

#define xabs(x) ((x) < 0 ? -(x) : (x))

The disadvantages of macros are well-known. The main reason for avoiding macros is that they are

not parsed by the compiler, but are processed by the preprocessor resulting in mere text replace-

ments and thus avoid type-safety or syntactic checks of the macro definition by itself. Furthermore,

8.1. STATIC DATA 163

since macros are processed by the preprocessor their use is unconditional, without acknowledging

the context in which they are applied. NULL is an infamous example. Ever tried to define an enum

symbol NULL? or EOF? Chances are that, if you did, the compiler threw strange error messages at

you.

Generalized const expressions can be used as an alternative.

Generalized const expressions are recognized by the modifier constexpr (a keyword), that is ap-

plied to the expression’s type.

There is a small syntactic difference between the use of the const modifier and the use of the

constexpr modifier. While the const modifier can be applied to definitions and declarations alike,

the constexpr modifier can only be applied to definitions:

extern int const externInt; // OK: declaration of const int

extern int constexpr error; // ERROR: not a definition

Variables defined with the constexpr modifier have constant (immutable) values. But generalized

const expressions are not just used to define constant variables; they have other applications as

well. The constexpr keyword is usually applied to functions, turning the function into a constant-

expression function.

A constant-expression function should not be confused with a function returning a const value

(although a constant-expression function does return a (const) value). A constant expression function

has the following characteristics:

• it returns a value;

• its return type is given the constexpr modifier;

• its body consists of one single return statement

Such functions are also called named constant expressions with parameters.

These constant expression functions may or may not be called with arguments that have been eval-

uated at compile-time (not just ‘const arguments’, as a const parameter value is not evaluated at

compile-time). If they are called with compile-time evaluated arguments then the returned value is

considered a const value as well.

This allows us to encapsulate expressions that can be evaluated at compile-time in functions, and

it allows us to use these functions in situations where previously the expressions themselves had to

be used. The encapsulation reduces the number of occurrences of the expressions to one, simplifying

maintenance and reduces the probability of errors.

If arguments that could not be compile-time evaluated are passed to constant-expression functions,

then these functions act like any other function, in that their return values are no longer considered

constant expressions.

Assume some two-dimensional arrays must be converted to one-dimensional arrays. The one-dimensional

array must have nrows * ncols + nrows + ncols + 1 elements, to store row, column, and to-

tal marginals, as well as the elements of the source array itself. Furthermore assume that nrows

and ncols have been defined as globally available size_t const values (they could be a class’s

static data). The one-dimensional arrays are data members of a class or struct, or they are also

defined as global arrays.

Now that constant-expression functions are available the expression returning the number of the

required elements can be encapsulated in such a function:

164 CHAPTER 8. STATIC DATA AND FUNCTIONS

size_t const nRows = 45;

size_t const nCols = 10;

size_t constexpr nElements(size_t rows, size_t cols)

{

return rows * cols + rows + cols + 1;

}

....

int intLinear[nElements(nRows, nCols)];

struct Linear

{

double d_linear[nElements(nRows, nCols)];

};

If another part of the program needs to use a linear array for an array of different sizes then the

constant-expression function can also be used. E.g.,

string stringLinear[nElements(10, 4)];

Constant-expression functions can be used in other constant expression functions as well. The fol-

lowing constant-expression function returns half the value, rounded upwards, that is returned by

nElements:

size_t constexpr halfNElements(size_t rows, size_t cols)

{

return (nElements(rows, cols) + 1) >> 1;

}

Classes should not expose their data members to external software, so as to reduce coupling between

classes and external software. But if a class defines a static const size_t data member then

that member’s value could very well be used to define entities living outside of the class’s scope, like

the number of elements of an array or to define the value of some enum. In situations like these

constant-expression functions are the perfect tool to maintain proper data hiding:

class Data

{

static size_t const s_size = 7;

public:

static size_t constexpr size();

size_t constexpr mSize();

};

size_t constexpr Data::size()

{

return s_size;

}

size_t constexpr Data::mSize()

{

8.1. STATIC DATA 165

return size();

}

double data[Data::size()]; // OK: 7 elements

short data2[Data().mSize()]; // also OK: see below

Please note the following:

• Constant-expression functions are implicitly declared inline;

• Non-static constant-expression member functions are implicitly const, and a const member

modifier for them is optional;

• Constant values (e.g., static constant data members) used by constant-expression functions

must be known by the time the compiler encounters the functions’ definitions. That’s why

s_size was initialized in Data’s class interface.

8.1.4.1 Constant expression data (C++11)

As we’ve seen, (member) functions and variables of primitive data types can defined with the constexpr

modifier. What about class-type objects?

Objects of classes are values of class type, and like values of primitive types they can be defined with

the constexpr specifier. Constant expression class-type objects must be initialized with constant

expression arguments; the constructor that is actually used must itself have been declared with the

constexpr modifier. Note again that the constexpr constructor’s definition must have been seen

by the compiler before the constexpr object can be constructed:

class ConstExpr

{

public:

constexpr ConstExpr(int x);

};

ConstExpr ok(7); // OK: not declared as constexpr

constexpr ConstExpr err(7); // ERROR: constructor’s definition

// not yet seen

constexpr ConstExpr::ConstExpr(int x)

{}

constexpr ConstExpr ok(7); // OK: definition seen

constexpr ConstExpr okToo = ConstExpr(7); // also OK

A constant-expression constructor has the following characteristics:

• it is declared with the constexpr modifier;

• its member initializers only use constant expressions;

• its body is empty.

166 CHAPTER 8. STATIC DATA AND FUNCTIONS

An object constructed with a constant-expression constructor is called a user-defined literal. De-

structors and copy constructors of user-defined literals must be trivial.

The constexpr characteristic of user-defined literals may or may not be maintained by its class’s

members. If a member is not declared with a constexpr return value, then using that member

does not result in a constant-expression. If a member does declare a constexpr return value then

that member’s return value considered a constexpr if it is by itself a constant expression function.

To maintain its constexpr characteristics it can refer to its classes data members only if its object

has been defined with the constexpr modifier, as illustrated by the example:

class Data

{

int d_x;

public:

constexpr Data(int x)

:

d_x(x)

{}

int constexpr cMember()

{

return d_x;

}

int member() const

{

return d_x;

}

};

Data d1(0); // OK, but not a constant expression

enum e1 {

ERR = d1.cMember() // ERROR: cMember(): no constant

}; // expression anymore

constexpr Data d2(0); // OK, constant expression

enum e2 {

OK = d2.cMember(), // OK: cMember(): now a constant

// expression

ERR = d2.member(), // ERR: member(): not a constant

}; // expression

8.2 Static member functions

In addition to static data members, C++ allows us to define static member functions. Similar to

static data that are shared by all objects of the class, static member functions also exist without any

associated object of their class.

Static member functions can access all static members of their class, but also the members (private

or public) of objects of their class if they are informed about the existence of these objects (as in

8.2. STATIC MEMBER FUNCTIONS 167

the upcoming example). As static member functions are not associated with any object of their class

they do not have a this pointer. In fact, a static member function is completely comparable to a

global function, not associated with any class (i.e., in practice they are. See the next section (8.2.1)

for a subtle note). Since static member functions do not require an associated object, static member

functions declared in the public section of a class interface may be called without specifying an object

of its class. The following example illustrates this characteristic of static member functions:

class Directory

{

string d_currentPath;

static char s_path[];

public:

static void setpath(char const *newpath);

static void preset(Directory &dir, char const *newpath);

};

inline void Directory::preset(Directory &dir, char const *newpath)

{

// see the text below

dir.d_currentPath = newpath; // 1

}

char Directory::s_path[200] = "/usr/local"; // 2

void Directory::setpath(char const *newpath)

{

if (strlen(newpath) >= 200)

throw "newpath too long";

strcpy(s_path, newpath); // 3

}

int main()

{

Directory dir;

Directory::setpath("/etc"); // 4

dir.setpath("/etc"); // 5

Directory::preset(dir, "/usr/local/bin"); // 6

dir.preset(dir, "/usr/local/bin"); // 7

}

• at 1 a static member function modifies a private data member of an object. However, the object

whose member must be modified is given to the member function as a reference parameter.

Note that static member functions can be defined as inline functions.

• at 2 a relatively long array is defined to be able to accomodate long paths. Alternatively, a

string or a pointer to dynamic memory could be used.

• at 3 a (possibly longer, but not too long) new pathname is stored in the static data member

s_path[]. Note that only static members are used.

• at 4, setpath() is called. It is a static member, so no object is required. But the compiler must

168 CHAPTER 8. STATIC DATA AND FUNCTIONS

know to which class the function belongs, so the class is mentioned using the scope resolution

operator.

• at 5, the same is implemented as in 4. Here dir is used to tell the compiler that we’re talking

about a function in the Directory class. Static member functions can be called as normal

member functions, but this does not imply that the static member function receives the object’s

address as a this pointer. Here the member-call syntax is used as an alternative for the

classname plus scope resolution operator syntax.

• at 6, currentPath is altered. As in 4, the class and the scope resolution operator are used.

• at 7, the same is implemented as in 6. But here dir is used to tell the compiler that we’re

talking about a function in the Directory class. Here in particular note that this is not using

preset() as an ordinary member function of dir: the function still has no this-pointer, so

dir must be passed as argument to inform the static member function preset about the object

whose currentPath member it should modify.

In the example only public static member functions were used. C++ also allows the definition of

private static member functions. Such functions can only be called by member functions of their

class.

8.2.1 Calling conventions

As noted in the previous section, static (public) member functions are comparable to classless func-

tions. However, formally this statement is not true, as the C++ standard does not prescribe the same

calling conventions for static member functions as for classless global functions.

In practice the calling conventions are identical, implying that the address of a static member func-

tion could be used as an argument of functions having parameters that are pointers to (global)

functions.

If unpleasant surprises must be avoided at all cost, it is suggested to create global classless wrap-

per functions around static member functions that must be used as call back functions for other

functions.

Recognizing that the traditional situations in which call back functions are used in C are tackled in

C++ using template algorithms (cf. chapter 19), let’s assume that we have a class Person having

data members representing the person’s name, address, phone and mass. Furthermore, assume we

want to sort an array of pointers to Person objects, by comparing the Person objects these pointers

point to. Keeping things simple, we assume that the following public static member exists:

int Person::compare(Person const *const *p1, Person const *const *p2);

A useful characteristic of this member is that it may directly inspect the required data members of

the two Person objects passed to the member function using pointers to pointers (double pointers).

Most compilers allow us to pass this function’s address as the address of the comparison function for

the standard C qsort() function. E.g.,

qsort

(

personArray, nPersons, sizeof(Person *),

reinterpret_cast<int(*)(void const *, void const *)>(Person::compare)

);

8.2. STATIC MEMBER FUNCTIONS 169

However, if the compiler uses different calling conventions for static members and for classless

functions, this might not work. In such a case, a classless wrapper function like the following may

be used profitably:

int compareWrapper(void const *p1, void const *p2)

{

return

Person::compare

(

static_cast<Person const *const *>(p1),

static_cast<Person const *const *>(p2)

);

}

resulting in the following call of the qsort() function:

qsort(personArray, nPersons, sizeof(Person *), compareWrapper);

Note:

• The wrapper function takes care of any mismatch in the calling conventions of static member

functions and classless functions;

• The wrapper function handles the required type casts;

• The wrapper function might perform small additional services (like dereferencing pointers if

the static member function expects references to Person objects rather than double pointers);

• As an aside: in C++ programs functions like qsort(), requiring the specification of call back

functions are seldom used. Instead using existing generic template algorithms is preferred (cf.

chapter 19).

170 CHAPTER 8. STATIC DATA AND FUNCTIONS

Chapter 9

Classes And Memory Allocation

In contrast to the set of functions that handle memory allocation in C (i.e., malloc etc.), memory

allocation in C++ is handled by the operators new and delete. Important differences between

malloc and new are:

• The function malloc doesn’t ‘know’ what the allocated memory will be used for. E.g., when

memory for ints is allocated, the programmer must supply the correct expression using a

multiplication by sizeof(int). In contrast, new requires a type to be specified; the sizeof

expression is implicitly handled by the compiler. Using new is therefore type safe.

• Memory allocated by malloc is initialized by calloc, initializing the allocated characters to

a configurable initial value. This is not very useful when objects are available. As operator

new knows about the type of the allocated entity it may (and will) call the constructor of an

allocated class type object. This constructor may be also supplied with arguments.

• All C-allocation functions must be inspected for NULL-returns. This is not required anymore

when new is used. In fact, new’s behavior when confronted with failing memory allocation is

configurable through the use of a new_handler (cf. section 9.2.2).

A comparable relationship exists between free and delete: delete makes sure that when an

object is deallocated, its destructor is automatically called.

The automatic calling of constructors and destructors when objects are created and destroyed has

consequences which we shall discuss in this chapter. Many problems encountered during C program

development are caused by incorrect memory allocation or memory leaks: memory is not allocated,

not freed, not initialized, boundaries are overwritten, etc.. C++ does not ‘magically’ solve these

problems, but it does provide us with tools to prevent these kinds of problems.

As a consequence of malloc and friends becoming deprecated the very frequently used str...

functions, like strdup, that are all malloc based, should be avoided in C++ programs. Instead, the

facilities of the string class and operators new and delete should be used instead.

Memory allocation procedures influence the way classes dynamically allocating their own memory

should be designed. Therefore, in this chapter these topics are discussed in addition to discussions

about operators new and delete. We’ll first cover the peculiarities of operators new and delete,

followed by a discussion about:

• the destructor: the member function that’s called when an object ceases to exist;

• the assignment operator, allowing us to assign an object to another object of its own class;

171

172 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

• the this pointer, allowing explicit references to the object for which a member function was

called;

• the copy constructor: the constructor creating a copy of an object;

• the move constructor: a constructor creating an object from an anonymous temporary object.

9.1 Operators ‘new’ and ‘delete’

C++ defines two operators to allocate memory and to return it to the ‘common pool’. These operators

are, respectively new and delete.

Here is a simple example illustrating their use. An int pointer variable points to memory allocated

by operator new. This memory is later released by operator delete.

int *ip = new int;

delete ip;

Here are some characteristics of operators new and delete:

• new and delete are operators and therefore do not require parentheses, as required for func-

tions like malloc and free;

• new returns a pointer to the kind of memory that’s asked for by its operand (e.g., it returns a

pointer to an int);

• new uses a type as its operand, which has the important benefit that the correct amount of

memory, given the type of the object to be allocated, is made available;

• as a consequence, new is a type safe operator as it always returns a pointer to the type that

was mentioned as its operand. In addition, the type of the receving pointer must match the

type specified with operator new;

• new may fail, but this is normally of no concern to the programmer. In particular, the program

does not have to test the success of the memory allocation, as is required for malloc and

friends. Section 9.2.2 delves into this aspect of new;

• delete returns void;

• for each call to new a matching delete should eventually be executed, lest a memory leak

occurs;

• delete can safely operate on a 0-pointer (doing nothing);

• otherwise delete must only be used to return memory allocated by new. It should not be used

to return memory allocated by malloc and friends.

• in C++ malloc and friends are deprecated and should be avoided.

Operator new can be used to allocate primitive types but also to allocate objects. When a primitive

type or a struct type without a constructor is allocated the allocated memory is not guaranteed to

be initialized to 0, but an initialization expression may be provided:

int *v1 = new int; // not guaranteed to be initialized to 0

int *v1 = new int(); // initialized to 0

int *v2 = new int(3); // initialized to 3

int *v3 = new int(3 * *v2); // initialized to 9

9.1. OPERATORS ‘NEW’ AND ‘DELETE’ 173

When a class-type object is allocated, the arguments of its constructor (if any) are specified imme-

diately following the type specification in the new expression and the object is initialized by to the

thus specified constructor. For example, to allocate string objects the following statements could

be used:

string *s1 = new string; // uses the default constructor

string *s2 = new string(); // same

string *s3 = new string(4, ’ ’); // initializes to 4 blanks.

In addition to using new to allocate memory for a single entity or an array of entities there is also

a variant that allocates raw memory: operator new(sizeInBytes). Raw memory is returned as

a void *. Here new allocates a block of memory for unspecified purpose. Although raw memory

may consist of multiple characters it should not be interpreted as an array of characters. Since raw

memory returned by new is returned as a void * its return value can be assigned to a void *
variable. More often it is assigned to a char * variable, using a cast. Here is an example:

char *chPtr = static_cast<char *>(operator new(numberOfBytes));

The use of raw memory is frequently encountered in combination with the placement new operator,

discussed in section 9.1.5.

9.1.1 Allocating arrays

Operator new[] is used to allocate arrays. The generic notation new[] is used in the C++ An-

notations. Actually, the number of elements to be allocated must be specified between the square

brackets and it must, in turn, be prefixed by the type of the entities that must be allocated. Example:

int *intarr = new int[20]; // allocates 20 ints

string *stringarr = new string[10]; // allocates 10 strings.

Operator new is a different operator than operator new[]. A consequence of this difference is dis-

cussed in the next section (9.1.2).

Arrays allocated by operator new[] are called dynamic arrays. They are constructed during the

execution of a program, and their lifetime may exceed the lifetime of the function in which they

were created. Dynamically allocated arrays may last for as long as the program runs.

When new[] is used to allocate an array of primitive values or an array of objects, new[] must

be specified with a type and an (unsigned) expression between its square brackets. The type and

expression together are used by the compiler to determine the required size of the block of memory

to make available. When new[] is used the array’s elements are stored consecutively in memory. An

array index expression may thereafter be used to access the array’s individual elements: intarr[0]

represents the first int value, immediately followed by intarr[1], and so on until the last element

(intarr[19]). With non-class types (primitive types, struct types without constructors) the block

of memory returned by operator new[] is not guaranteed to be initialized to 0.

When operator new[] is used to allocate arrays of objects their constructors are automatically used.

Consequently new string[20] results in a block of 20 initialized string objects. When allocating

arrays of objects the class’s default constructor is used to initialize each individual object in turn. A

non-default constructor cannot be called, but often it is possible to work around that as discussed in

section 13.9.

174 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

The expression between brackets of operator new[] represents the number of elements of the array

to allocate. The C++ standard allows allocation of 0-sized arrays. The statement new int[0] is

correct C++. However, it is also pointless and confusing and should be avoided. It is pointless as it

doesn’t refer to any element at all, it is confusing as the returned pointer has a useless non-0 value.

A pointer intending to point to an array of values should be initialized (like any pointer that isn’t

yet pointing to memory) to 0, allowing for expressions like if (ptr) ...

Without using operator new[], arrays of variable sizes can also be constructed as local arrays. Such

arrays are not dynamic arrays and their lifetimes are restricted to the lifetime of the block in which

they were defined.

Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++

has no operator ‘renew’. Section 9.1.3 illustrates how to enlarge arrays.

9.1.2 Deleting arrays

Dynamically allocated arrays are deleted using operator delete[]. It expects a pointer to a block

of memory, previously allocated by operator new[].

When operator delete[]’s operand is a pointer to an array of objects two actions are performed:

• First, the class’s destructor is called for each of the objects in the array. The destructor, as

explained later in this chapter, performs all kinds of cleanup operations that are required by

the time the object ceases to exist.

• Second, the memory pointed at by the pointer is returned to the common pool.

Here is an example showing how to allocate and delete an array of 10 string objects:

std::string *sp = new std::string[10];

delete[] sp;

No special action is performed if a dynamically allocated array of primitive typed values is deleted.

Following int *it = new int[10] the statement delete[] it simply returns the memory pointed

at by it. Realize that, as a pointer is a primitive type, deleting a dynamically allocated array of

pointers to objects does not result in the proper destruction of the objects the array’s elements point

at. So, the following example results in a memory leak:

string **sp = new string *[5];

for (size_t idx = 0; idx != 5; ++idx)

sp[idx] = new string;

delete[] sp; // MEMORY LEAK !

In this example the only action performed by delete[] is to return an area the size of five pointers

to strings to the common pool.

Here’s how the destruction in such cases should be performed:

• Call delete for each of the array’s elements;

• Delete the array itself

9.1. OPERATORS ‘NEW’ AND ‘DELETE’ 175

Example:

for (size_t idx = 0; idx != 5; ++idx)

delete sp[idx];

delete[] sp;

One of the consequences is of course that by the time the memory is going to be returned not only

the pointer must be available but also the number of elements it contains. This can easily be accom-

plished by storing pointer and number of elements in a simple class and then using an object of that

class.

Operator delete[] is a different operator than operator delete. The rule of thumb is: if new[]

was used, also use delete[].

9.1.3 Enlarging arrays

Once allocated, all arrays have fixed sizes. There is no simple way to enlarge or shrink arrays. C++

has no renew operator. The basic steps to take when enlarging an array are the following:

• Allocate a new block of memory of larger size;

• Copy the old array contents to the new array;

• Delete the old array;

• Let the pointer to the array point to the newly allocated array.

Static and local arrays cannot be resized. Resizing is only possible for dynamically allocated arrays.

Example:

#include <string>

using namespace std;

string *enlarge(string *old, unsigned oldsize, unsigned newsize)

{

string *tmp = new string[newsize]; // allocate larger array

for (size_t idx = 0; idx != oldsize; ++idx)

tmp[idx] = old[idx]; // copy old to tmp

delete[] old; // delete the old array

return tmp; // return new array

}

int main()

{

string *arr = new string[4]; // initially: array of 4 strings

arr = enlarge(arr, 4, 6); // enlarge arr to 6 elements.

}

The procedure to enlarge shown in the example also has several drawbacks.

• The new array requires newsize constructors to be called;

176 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

• Having initialized the strings in the new array, oldsize of them are immediately reassigned

to the corresponding values in the original array;

• All the objects in the old arrays are destroyed.

Depending on the context various solutions exist to improve the efficiency of this rather inefficient

procedure. An array of pointers could be used (requiring only the pointers to be copied, no destruc-

tion, no superfluous initialization) or raw memory in combination with the placement new operator

could be used (an array of objects remains available, no destruction, no superfluous construction).

9.1.4 Managing ‘raw’ memory

As we’ve seen operator new allocates the memory for an object and subsequently initializes that

object by calling one of its constructors. Likewise, operator delete calls an object’s destructor and

subsequently returns the memory allocated by operator new to the common pool.

In the next section we’ll encounter another use of new, allowing us to initialize objects in so-called

raw memory: memory merely consisting of bytes that have been made available by either static or

dynamic allocation.

Raw memory is made available by operator new(sizeInBytes). This should not be interpreted

as an array of any kind but just a series of memory locations that were dynamically made available.

operator new returns a void * so a (static) cast is required to use it as memory of some type.

Here are two examples:

// room for 5 ints

int *ip = static_cast<int *>(operator new(5 * sizeof(int)));

// room for 5 strings

string *sp = static_cast<string *>(operator new(5 * sizeof(string)));

As operator new has no concept of data types the size of the intended data type must be speci-

fied when allocating raw memory for a certain number of objects of an intended type. The use of

operator new therefore somewhat resembles the use of malloc.

The counterpart of operator new is operator delete. Operator delete expects a void * (so

a pointer to any type can be passed to it). The pointer is interpreted as a pointer to raw memory

which is returned to the common pool without any further action. In particular, no destructors are

called by operator delete. The use of operator delete therefore resembles the use of free.

To return the memory pointed at by the abovementioned variables ip and sp operator delete

should be used:

// delete raw memory allocated by operator new

operator delete(ip);

operator delete(sp);

9.1.5 The ‘placement new’ operator

A remarkable form of operator new is called the placement new operator. Before using placement

new the <memory> header file must have been included.

Placement new is passed an existing block of memory into which new initializes an object or value.

The block of memory should be large enough to contain the object, but apart from that there are

9.1. OPERATORS ‘NEW’ AND ‘DELETE’ 177

no further requirements. It is easy to determine how much memory is used by en entity (object or

variable) of type Type: the sizeof operator returns the number of bytes used by an Type entity.

Entities may of course dynamically allocate memory for their own use. Dynamically allocated mem-

ory, however, is not part of the entity’s memory ‘footprint’ but it is always made available externally

to the entity itself. This is why sizeof returns the same value when applied to different string

objects that return different length and capacity values.

The placement new operator uses the following syntax (using Type to indicate the used data type):

Type *new(void *memory) Type(arguments);

Here, memory is a block of memory of at least sizeof(Type) bytes and Type(arguments) is any

constructor of the class Type.

The placement new operator is useful in situations where classes set aside memory to be used later.

This is used, e.g., by std::string to change its capacity. Calling string::reserve may en-

large that capacity without making memory beyond the string’s length immediately available to the

string object’s users. But the object itself may use its additional memory. E.g, when information is

added to a string object it can draw memory from its capacity rather than performing a reallocation

for each single character that is added to its contents.

Let’s apply that philosophy to a class Strings storing std::string objects. The class defines a

string *d_memory accessing the memory holding its d_size string objects as well as d_capacity

- d_size reserved memory. Assuming that a default constructor initializes d_capacity to 1,

doubling d_capacity whenever an additional string must be stored, the class must support the

following essential operations:

• doubling its capacity when all its spare memory (e.g., made available by reserve) has been

consumed;

• adding another string object

• properly deleting the installed strings and memory when a Strings object ceases to exist.

The private member void Strings::reserve is called when the current capacity must be en-

larged to d_capacity. It operates as follows: First new, raw, memory is allocated (line 1). This

memory is in no way initialized with strings. Then the available strings in the old memory are

copied into the newly allocated raw memory using placement new (line 2). Next, the old memory is

deleted (line 3).

void Strings::reserve()

{

using std::string;

string *newMemory = static_cast<string *>(// 1

operator new(d_capacity * sizeof(string)));

for (size_t idx = 0; idx != d_size; ++idx) // 2

new (newMemory + idx) string(d_memory[idx]);

destroy(); // 3

d_memory = newMemory;

}

The member append adds another string object to a Strings object. A (public) member reserve(request)

(enlarging d_capacity if necessary and if enlarged calling reserve()) ensures that the String

178 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

object’s capacity is sufficient. Then placement new is used to install the latest string into the raw

memory’s appropriate location:

void Strings::append(std::string const &next)

{

reserve(d_size + 1);

new (d_memory + d_size) std::string(next);

++d_size;

}

At the end of the String object’s lifetime, and during enlarging operations all currently used dynam-

ically allocated memory must be returned. This is made the responsibility of the member destroy,

which is called by the class’s destructor and by reserve(). More about the destructor itself in the

next section, but the implementation of the support member destroy is discussed below.

With placement new an interesting situation is encountered. Objects, possibly themselves allocating

memory, are installed in memory that may or may not have been allocated dynamically, but that is

usually not completely filled with such objects. So a simple delete[] can’t be used. On the other

hand, a delete for each of the objects that are available can’t be used either, since those delete

operations would also try to delete the memory of the objects themselves, which wasn’t dynamically

allocated.

This peculiar situation is solved in a peculiar way, only encountered in cases where placement new

is used: memory allocated by objects initialized using placement new is returned by explicitly calling

the object’s destructor. The destructor is declared as a member having as its name the class name

preceded by a tilde, not using any arguments. So, std::string’s destructor is named ~string. An

object’s destructor only returns memory allocated by the object itself and, despite of its name, does

not destroy its object. Any memory allocated by the strings stored in our class Strings is therefore

properly destroyed by explicitly calling their destructors. Following this d_memory is back to its

initial status: it again points to raw memory. This raw memory is then returned to the common pool

by operator delete:

void Strings::destroy()

{

for (std::string *sp = d_memory + d_size; sp-- != d_memory;)

sp->~string();

operator delete(d_memory);

}

So far, so good. All is well as long as we’re using but one object. What about allocating an array of

objects? Initialization is performed as usual. But as with delete, delete[] cannot be called when

the buffer was allocated statically. Instead, when multiple objects were initialized using placement

new in combination with a statically allocated buffer all the objects’ destructors must be called ex-

plicitly, as in the following example:

using std::string;

char buffer[3 * sizeof(string)];

string *sp = new(buffer) string [3];

for (size_t idx = 0; idx < 3; ++idx)

sp[idx].~string();

9.2. THE DESTRUCTOR 179

9.2 The destructor

Comparable to the constructor, classes may define a destructor. This function is the constructor’s

counterpart in the sense that it is invoked when an object ceases to exist. A destructor is usually

called automatically, but that’s not always true. The destructors of dynamically allocated objects are

not automatically activated, but in addition to that: when a program is interrupted by an exit call,

only the destructors of already initialized global objects are called. In that situation destructors of

objects defined locally by functions are also not called. This is one (good) reason for avoiding exit

in C++ programs.

Destructors obey the following syntactical requirements:

• a destructor’s name is equal to its class name prefixed by a tilde;

• a destructor has no arguments;

• a destructor has no return value.

Destructors are declared in their class interfaces. Example:

class Strings

{

public:

Strings();

~Strings(); // the destructor

};

By convention the constructors are declared first. The destructor is declared next, to be followed by

other member functions.

A destructor’s main task is to ensure that memory allocated by an object is properly returned when

the object ceases to exist. Consider the following interface of the class Strings:

class Strings

{

std::string *d_string;

size_t d_size;

public:

Strings();

Strings(char const *const *cStrings, size_t n);

~Strings();

std::string const &at(size_t idx) const;

size_t size() const;

};

The constructor’s task is to initialize the data fields of the object. E.g, its constructors are defined as

follows:

Strings::Strings()

:

d_string(0),

180 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

d_size(0)

{}

Strings::Strings(char const *const *cStrings, size_t size)

:

d_string(new string[size]),

d_size(size)

{

for (size_t idx = 0; idx != size; ++idx)

d_string[idx] = cStrings[idx];

}

As objects of the class Strings allocate memory a destructor is clearly required. Destructors may

or may not be called automatically. Here are the rules:

• Destructors are only called for fully constructed objects. C++ considers the object to be fully

constructed once at least one of its constructors has normally completed. It used to be the con-

structor, but as C++11 supports constructor delegation, multiple constructors can be activated

for a single object; hence ‘at least one constructor’. The remaining rules only apply to fully

constructed objects;

• Destructors of local non-static objects are called automatically when the execution flow leaves

the block in which they were defined; the destructors of objects defined somewhere in the outer

block of a function are called just before the function terminates.

• Destructors of static or global objects are called when the program itself terminates.

• The destructor of a dynamically allocated object is called by delete using the object’s address

as its operand;

• The destructors of a dynamically allocated array of objects are called by delete[] using the

address of the array’s first element as its operand;

• The destructor of an object initialized by placement new is activated by explicitly calling the

object’s destructor.

The destructor’s task is to ensure that all memory that is dynamically allocated and controlled only

by the object itself is returned. The task of the Strings’s destructor would therefore be to delete

the memory to which d_string points. Its implementation is:

Strings::~Strings()

{

delete[] d_string;

}

The next example shows Strings at work. In process a Strings store is created, and its data

are displayed. It returns a dynamically allocated Strings object to main. A Strings * receives

the address of the allocated object and deletes the object again. Another Strings object is then

created in a block of memory made available locally in main, and an explicit call to ~Strings is

required to return the memory allocated by that object. In the example only once a Strings object

is automatically destroyed: the local Strings object defined by process. The other two Strings

objects require explicit actions to prevent memory leaks.

#include "strings.h"

9.2. THE DESTRUCTOR 181

#include <iostream>

using namespace std;;

void display(Strings const &store)

{

for (size_t idx = 0; idx != store.size(); ++idx)

cout << store.at(idx) << ’\n’;

}

Strings *process(char *argv[], int argc)

{

Strings store(argv, argc);

display(store);

return new Strings(argv, argc);

}

int main(int argc, char *argv[])

{

Strings *sp = process(argv, argc);

delete sp;

char buffer[sizeof(Strings)];

sp = new (buffer) Strings(argv, argc);

sp->~Strings();

}

9.2.1 Object pointers revisited

Operators new and delete are used when an object or variable is allocated. One of the advantages

of the operators new and delete over functions like malloc and free is that new and delete call

the corresponding object constructors and destructors.

The allocation of an object by operator new is a two-step process. First the memory for the object

itself is allocated. Then its constructor is called, initializing the object. Analogously to the construc-

tion of an object, the destruction is also a two-step process: first, the destructor of the class is called

deleting the memory controlled by the object. Then the memory used by the object itself is freed.

Dynamically allocated arrays of objects can also be handled by new and delete. When allocating

an array of objects using operator new the default constructor is called for each object in the array.

In cases like this operator delete[] must be used to ensure that the destructor is called for each of

the objects in array.

However, the addresses returned by new Type and new Type[size] are of identical types, in both

cases a Type *. Consequently it cannot be determined by the type of the pointer whether a pointer

to dynamically allocated memory points to a single entity or to an array of entities.

What happens if delete rather than delete[] is used? Consider the following situation, in which

the destructor ~Strings is modified so that it tells us that it is called. In a main function an array

of two Strings objects is allocated by new, to be deleted by delete []. Next, the same actions are

repeated, albeit that the delete operator is called without []:

#include <iostream>

#include "strings.h"

182 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

using namespace std;

Strings::~Strings()

{

cout << "Strings destructor called" << ’\n’;

}

int main()

{

Strings *a = new Strings[2];

cout << "Destruction with []’s" << ’\n’;

delete[] a;

a = new Strings[2];

cout << "Destruction without []’s" << ’\n’;

delete a;

}

/*
Generated output:

Destruction with []’s

Strings destructor called

Strings destructor called

Destruction without []’s

Strings destructor called

*/

From the generated output, we see that the destructors of the individual Strings objects are called

when delete[] is used, while only the first object’s destructor is called if the [] is omitted.

Conversely, if delete[] is called in a situation where delete should have been called the results

are unpredictable, and the program will most likely crash. This problematic behavior is caused by

the way the run-time system stores information about the size of the allocated array (usually right

before the array’s first element). If a single object is allocated the array-specific information is not

available, but it is nevertheless assumed present by delete[]. Thus this latter operator encoun-

ters bogus values in the memory locations just before the array’s first element. It then dutifully

inteerprets the value it encounters there as size information, usually causing the program to fail.

If no destructor is defined, a trivial destructor is defined by the compiler. The trivial destructor

ensures that the destructors of composed objects (as well as the destructors of base classes if a

class is a derived class, cf. chapter 13) are called. This has serious implications: objects allocating

memory create memory leaks unless precautionary measures are taken (by defining an appropriate

destructor). Consider the following program:

#include <iostream>

#include "strings.h"

using namespace std;

Strings::~Strings()

{

cout << "Strings destructor called" << ’\n’;

}

int main()

9.2. THE DESTRUCTOR 183

{

Strings **ptr = new Strings* [2];

ptr[0] = new Strings[2];

ptr[1] = new Strings[2];

delete[] ptr;

}

This program produces no output at all. Why is this? The variable ptr is defined as a pointer to

a pointer. The dynamically allocated array therefore consists of pointer variables and pointers are

of a primitive type. No destructors exist for primitive typed variables. Consequently only the array

itself is returned, and no Strings destructor is called.

Of course, we don’t want this, but require the Strings objects pointed to by the elements of ptr to

be deleted too. In this case we have two options:

• In a for-statement visit all the elements of the ptr array, calling delete for each of the array’s

elements. This procedure was demonstrated in the previous section.

• A wrapper class is designed around a pointer (to, e.g., an object of some class, like Strings).

Rather than using a pointer to a pointer to Strings objects a pointer to an array of wrapper-

class objects is used. As a result delete[] ptr calls the destructor of each of the wrapper

class objects, in turn calling the Strings destructor for their d_strings members. Example:

#include <iostream>

using namespace std;

class Strings // partially implemented

{

public:

~Strings();

};

inline Strings::~Strings()

{

cout << "destructor called\n";

}

class Wrapper

{

Strings *d_strings;

public:

Wrapper();

~Wrapper();

};

inline Wrapper::Wrapper()

:

d_strings(new Strings())

{}

inline Wrapper::~Wrapper()

{

delete d_strings;

184 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

}

int main()

{

delete[] new Strings *[4]; // memory leak: no destructor called

cout << "===========\n";

delete[] new Wrapper[4]; // OK: 4 x destructor called

}

/*
Generated output:

===========

destructor called

destructor called

destructor called

destructor called

*/

9.2.2 The function set_new_handler()

The C++ run-time system ensures that when memory allocation fails an error function is activated.

By default this function throws a bad_alloc exception (see section 10.8), terminating the program.

Therefore it is not necessary to check the return value of operator new. Operator new’s default

behavior may be modified in various ways. One way to modify its behavior is to redefine the func-

tion that’s called when memory allocation fails. Such a function must comply with the following

requirements:

• it has no parameters;

• its return type is void.

A redefined error function might, e.g., print a message and terminate the program. The user-written

error function becomes part of the allocation system through the function set_new_handler.

Such an error function is illustrated below1:

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

void outOfMemory()

{

cout << "Memory exhausted. Program terminates." << ’\n’;

exit(1);

}

int main()

{

long allocated = 0;

1 This implementation applies to the Gnu C/C++ requirements. Actually using the program given in the next example is

not advised, as it probably enormously slows down your computer due to the resulting use of the operating system’s swap

area.

9.3. THE ASSIGNMENT OPERATOR 185

set_new_handler(outOfMemory); // install error function

while (true) // eat up all memory

{

memset(new int [100000], 0, 100000 * sizeof(int));

allocated += 100000 * sizeof(int);

cout << "Allocated " << allocated << " bytes\n";

}

}

Once the new error function has been installed it is automatically invoked when memory allocation

fails, and the program is terminated. Memory allocation may fail in indirectly called code as well,

e.g., when constructing or using streams or when strings are duplicated by low-level functions.

So far for the theory. On some systems the ‘out of memory’ condition may actually never be reached,

as the operating system may interfere before the run-time sypport system gets a chance to stop the

program (see also this link2).

The standard C functions allocating memory (like strdup, malloc, realloc etc.) do not trigger

the new handler when memory allocation fails and should be avoided in C++ programs.

9.3 The assignment operator

In C++ struct and class type objects can be directly assigned new values in the same way as this

is possible in C. The default action of such an assignment for non-class type data members is a

straight byte-by-byte copy from one data member to another. For now we’ll use the following simple

class Person:

class Person

{

char *d_name;

char *d_address;

char *d_phone;

public:

Person();

Person(char const *name, char const *addr, char const *phone);

~Person();

private:

char *strdupnew(char const *src); // returns a copy of src.

};

// strdupnew is easily implemented, here is its inline implementation:

inline char *Person::strdupnew(char const *src)

{

return strcpy(new char [strlen(str) + 1], str);

}

Person’s data members are initialized to zeroes or to copies of the NTB strings passed to Person’s

constructor, using some variant of strdup. The allocated memory is eventually returned by Person’s

2http://www.linuxdevcenter.com/pub/a/linux/2006/11/30/linux-out-of-memory.html

186 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

destructor.

Now consider the consequences of using Person objects in the following example:

void tmpPerson(Person const &person)

{

Person tmp;

tmp = person;

}

Here’s what happens when tmpPerson is called:

• it expects a reference to a Person as its parameter person.

• it defines a local object tmp, whose data members are initialized to zeroes.

• the object referenced by person is copied to tmp: sizeof(Person) number of bytes are copied

from person to tmp.

Now a potentially dangerous situation has been created. The actual values in person are point-

ers, pointing to allocated memory. After the assignment this memory is addressed by two objects:

person and tmp.

• The potentially dangerous situation develops into an acutely dangerous situation once the

function tmpPerson terminates: tmp is destroyed. The destructor of the class Person releases

the memory pointed to by the fields d_name, d_address and d_phone: unfortunately, this

memory is also pointed at by person....

This problematic assignment is illustrated in Figure 9.1.

Having executed tmpPerson, the object referenced by person now contains pointers to deleted

memory.

This is undoubtedly not a desired effect of using a function like tmpPerson. The deleted memory is

likely to be reused by subsequent allocations. The pointer members of person have effectively be-

come wild pointers, as they don’t point to allocated memory anymore. In general it can be concluded

that

every class containing pointer data members is a potential candidate for trouble.

Fortunately, it is possible to prevent these troubles, as discussed next.

9.3.1 Overloading the assignment operator

Obviously, the right way to assign one Person object to another, is not to copy the contents of the

object bytewise. A better way is to make an equivalent object. One having its own allocated memory

containing copies of the original strings.

The way to assign a Person object to another is illustrated in Figure 9.2. There are several ways to

assign a Person object to another. One way would be to define a special member function to handle

the assignment. The purpose of this member function would be to create a copy of an object having

its own name, address and phone strings. Such a member function could be:

void Person::assign(Person const &other)

9.3. THE ASSIGNMENT OPERATOR 187

Figure 9.1: Private data and public interface functions of the class Person, using byte-by-byte as-

signment

Figure 9.2: Private data and public interface functions of the class Person, using the ‘correct’ assign-

ment.

188 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

{

// delete our own previously used memory

delete[] d_name;

delete[] d_address;

delete[] d_phone;

// copy the other Person’s data

d_name = strdupnew(other.d_name);

d_address = strdupnew(other.d_address);

d_phone = strdupnew(other.d_phone);

}

Using assign we could rewrite the offending function tmpPerson:

void tmpPerson(Person const &person)

{

Person tmp;

// tmp (having its own memory) holds a copy of person

tmp.assign(person);

// now it doesn’t matter that tmp is destroyed..

}

This solution is valid, although it only tackles a symptom. It requires the programmer to use a

specific member function instead of the assignment operator. The original problem (assignment

produces wild pointers) is still not solved. Since it is hard to ‘strictly adhere to a rule’ a way to solve

the original problem is of course preferred.

Fortunately a solution exists using operator overloading: the possibility C++ offers to redefine the

actions of an operator in a given context. Operator overloading was briefly mentioned earlier, when

the operators << and >> were redefined to be used with streams (like cin, cout and cerr), see

section 3.1.4.

Overloading the assignment operator is probably the most common form of operator overloading in

C++. A word of warning is appropriate, though. The fact that C++ allows operator overloading does

not mean that this feature should indiscriminately be used. Here’s what you should keep in mind:

• operator overloading should be used in situations where an operator has a defined action, but

this default action has undesired side effects in a given context. A clear example is the above

assignment operator in the context of the class Person.

• operator overloading can be used in situations where the operator is commonly applied and no

surprise is introduced when it’s redefined. An example where operator overloading is appropri-

ately used is found in the class std::string: assiging one string object to another provides

the destination string with a copy of the contents of the source string. No surprises here.

• in all other cases a member function should be defined instead of redefining an operator.

An operator should simply do what it is designed to do. The phrase that’s often encountered in the

context of operator overloading is do as the ints do. The way operators behave when applied to ints

is what is expected, all other implementations probably cause surprises and confusion. Therefore,

overloading the insertion (<<) and extraction (>>) operators in the context of streams is probably

ill-chosen: the stream operations have nothing in common with bitwise shift operations.

9.3. THE ASSIGNMENT OPERATOR 189

9.3.1.1 The member ’operator=()’

To add operator overloading to a class, the class interface is simply provided with a (usually public)

member function naming the particular operator. That member function is thereupon implemented.

To overload the assignment operator =, a member operator=(Class const &rhs) is added to the

class interface. Note that the function name consists of two parts: the keyword operator, followed

by the operator itself. When we augment a class interface with a member function operator=, then

that operator is redefined for the class, which prevents the default operator from being used. In the

previous section the function assign was provided to solve the problems resulting from using the

default assignment operator. Rather than using an ordinary member function C++ commonly uses

a dedicated operator generalizing the operator’s default behavior to the class in which it is defined.

The assign member mentioned before may be redefined as follows (the member operator= pre-

sented below is a first, rather unsophisticated, version of the overloaded assignment operator. It will

shortly be improved):

class Person

{

public: // extension of the class Person

// earlier members are assumed.

void operator=(Person const &other);

};

Its implementation could be

void Person::operator=(Person const &other)

{

delete[] d_name; // delete old data

delete[] d_address;

delete[] d_phone;

d_name = strdupnew(other.d_name); // duplicate other’s data

d_address = strdupnew(other.d_address);

d_phone = strdupnew(other.d_phone);

}

This member’s actions are similar to those of the previously mentioned member assign, but this

member is automatically called when the assignment operator = is used. Actually there are two

ways to call overloaded operators as shown in the next example:

void tmpPerson(Person const &person)

{

Person tmp;

tmp = person;

tmp.operator=(person); // the same thing

}

Overloaded operators are seldom called explicitly, but explicit calls must be used (rather than using

the plain operator syntax) when you explicitly want to call the overloaded operator from a pointer to

an object (it is also possible to dereference the pointer first and then use the plain operator syntax,

see the next example):

190 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

void tmpPerson(Person const &person)

{

Person *tmp = new Person;

tmp->operator=(person);

*tmp = person; // yes, also possible...

delete tmp;

}

9.4 The ‘this’ pointer

A member function of a given class is always called in combination with an object of its class. There

is always an implicit ‘substrate’ for the function to act on. C++ defines a keyword, this, to reach

this substrate.

The this keyword is a pointer variable that always contains the address of the object for which

the member function was called. The this pointer is implicitly declared by each member function

(whether public, protected, or private). The this ponter is a constant pointer to an object of

the member function’s class. For example, the members of the class Person implicitly declare:

extern Person *const this;

A member function like Person::name could be implemented in two ways: with or without using

the this pointer:

char const *Person::name() const // implicitly using ‘this’

{

return d_name;

}

char const *Person::name() const // explicitly using ‘this’

{

return this->d_name;

}

The this pointer is seldom explicitly used, but situations do exist where the this pointer is actually

required (cf. chapter 16).

9.4.1 Sequential assignments and this

C++’s syntax allows for sequential assignments, with the assignment operator associating from right

to left. In statements like:

a = b = c;

the expression b = c is evaluated first, and its result in turn is assigned to a.

The implementation of the overloaded assignment operator we’ve encountered thus far does not

permit such constructions, as it returns void.

9.5. THE COPY CONSTRUCTOR: INITIALIZATION VS. ASSIGNMENT 191

This imperfection can easily be remedied using the this pointer. The overloaded assignment opera-

tor expects a reference to an object of its class. It can also return a reference to an object of its class.

This reference can then be used as an argument in sequential assignments.

The overloaded assignment operator commonly returns a reference to the current object (i.e., *this).

The next version of the overloaded assignment operator for the class Person thus becomes:

Person &Person::operator=(Person const &other)

{

delete[] d_address;

delete[] d_name;

delete[] d_phone;

d_address = strdupnew(other.d_address);

d_name = strdupnew(other.d_name);

d_phone = strdupnew(other.d_phone);

// return current object as a reference

return *this;

}

Overloaded operators may themselves be overloaded. Consider the string class, having overloaded

assignment operators operator=(std::string const &rhs), operator=(char const *rhs),

and several more overloaded versions. These additional overloaded versions are there to handle dif-

ferent situations which are, as usual, recognized by their argument types. These overloaded versions

all follow the same mold: when necessary dynamically allocated memory controlled by the object is

deleted; new values are assigned using the overloaded operator’s parameter values and *this is

returned.

9.5 The copy constructor: initialization vs. assignment

Consider the class Strings, introduced in section 9.2, once again. As it contains several primitive

type data members as well as a pointer to dynamically allocated memory it needs a constructor,

a destructor, and an overloaded assignment operator. In fact the class offers two constructors: in

addition to the default constructor it offers a constructor expecting a char const *const * and a

size_t.

Now consider the following code fragment. The statement references are discussed following the

example:

int main(int argc, char **argv)

{

Strings s1(argv, argc); // (1)

Strings s2; // (2)

Strings s3(s1); // (3)

s2 = s1; // (4)

}

• At 1 we see an initialization. The object s1 is initialized using main’s parameters: Strings’s

second constructor is used.

192 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

• At 2 Strings’s default constructor is used, initializing an empty Strings object.

• At 3 yet another Strings object is created, using a constructor accepting an existing Strings

object. This form of initializations has not yet been discussed. It is called a copy construction

and the constructor performing the initialization is called the copy constructor. Copy construc-

tions are also encountered in the following form:

Strings s3 = s1;

This is a construction and therefore an initialization. It is not an assignment as an assignment

needs a left-hand operand that has already been defined. C++ allows the assignment syntax

to be used for constructors having only one parameter. It is somewhat deprecated, though.

• At 4 we see a plain assignment.

In the above example three objects were defined, each using a different constructor. The actually

used constructor was deduced from the constructor’s argument list.

The copy constructor encountered here is new. It does not result in a compilation error even though

it hasn’t been declared in the class interface. This takes us to the following rule:

A copy constructor is (almost) always available, even if it isn’t declared in the class’s

interface.

The reason for the ‘(almost)’ is given in section 9.7.1.

The copy constructor made available by the compiler is also called the trivial copy constructor. Start-

ing with the C++11 standard it can easily be suppressed (using the = delete idiom). The trivial

copy constructor performs a byte-wise copy operation of the existing object’s primitive data to the

newly created object, calls copy constructors to intialize the object’s class data members from their

counterparts in the existing object and, when inheritance is used, calls the copy constructors of the

base class(es) to initialize the new object’s base classes.

Consequently, in the above example the trivial copy constructor is used. As it performs a byte-by-

byte copy operation of the object’s primitive type data members that is exactly what happens at

statement 3. By the time s3 ceases to exist its destructor deletes its array of strings. Unfortunately

d_string is of a primitive data type and so it also deletes s1’s data. Once again we encounter wild

pointers as a result of an object going out of scope.

The remedy is easy: instead of using the trivial copy constructor a copy constructor must explicitly

be added to the class’s interface and its definition must prevent the wild pointers, comparably to

the way this was realized in the overloaded assignment operator. An object’s dynamically allocated

memory is duplicated, so that it contains its own allocated data. The copy constructor is simpler than

the overloaded assignment operator in that it doesn’t have to delete previously allocated memory.

Since the object is going to be created no previously allocated memory already exists.

Strings’s copy constructor can be implemented as follows:

Strings::Strings(Strings const &other)

:

d_string(new string[other.d_size]),

d_size(other.d_size)

{

for (size_t idx = 0; idx != d_size; ++idx)

d_string[idx] = other.d_string[idx];

}

9.6. REVISING THE ASSIGNMENT OPERATOR 193

The copy constructor is always called when an object is initialized using another object of its class.

Apart from the plain copy construction that we encountered thus far, here are other situations where

the copy constructor is used:

• it is used when a function defines a class type value parameter rather than a pointer or a refer-

ence. The function’s argument initializes the function’s parameter using the copy constructor.

Example:

void process(Strings store) // no pointer, no reference

{

store.at(3) = "modified"; // doesn’t modify ‘outer’

}

int main(int argc, char **argv)

{

Strings outer(argv, argc);

process(outer);

}

• it is used when a function defines a class type value return type. Example:

Strings copy(Strings const &store)

{

return store;

}

Here store is used to initialize copy’s return value. The returned Strings object is a temporary,

anonymous object that may be immediately used by code calling copy but no assumptions can be

made about its lifetime thereafter.

9.6 Revising the assignment operator

The overloaded assignment operator has characteristics also encountered with the copy constructor

and the destructor:

• The copying of (private) data occurs (1) in the copy constructor and (2) in the overloaded as-

signment function.

• Allocated memory is deleted (1) in the overloaded assignment function and (2) in the destructor.

The copy constructor and the destructor clearly are required. If the overloaded assignment operator

also needs to return allocated memory and to assign new values to its data members couldn’t the

destructor and copy constructor be used for that?

As we’ve seen in our discussion of the destructor (section 9.2) the destructor can explicitly be called,

but that doesn’t hold true for the (copy) constructor. But let’s briefly summarize what an overloaded

assignment operator is supposed to do:

• It should delete the dynamically allocated memory controlled by the current object;

• It should reassign the current object’s data members using a provided existing object of its

class.

194 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

The second part surely looks a lot like copy construction. Copy construction becomes even more

attractive after realizing that the copy constructor also initializes any reference data members the

class might have. Realizing the copy construction part is easy: just define a local object and initialize

it using the assignment operator’s const reference parameter, like this:

Strings &operator=(Strings const &other)

{

Strings tmp(other);

// more to follow

return *this;

}

You may think the optimization operator=(String tmp) is attractive, but let’s postpone that for

a little while (at least until section 9.7).

Now that we’ve done the copying part, what about the deleting part? And isn’t there another slight

problem as well? After all we copied all right, but not into our intended (current, *this) object.

At this point it’s time to introduce swapping. Swapping two variables means that the two variables

exchange their values. We’ll discuss swapping in detail in the next section, but let’s for now as-

sume that we’ve added a member swap(Strings &other) to our class Strings. This allows us to

complete String’s operator= implementation:

Strings &operator=(Strings const &other)

{

Strings tmp(other);

swap(tmp);

return *this;

}

This implementation of operator= is generic: it can be applied to every class whose objects are

swappable. How does it work?

• The information in the other object is used to initialize a local tmp object. This takes care of

the copying part of the assignment operator;

• Calling swap ensures that the current object receives its new values (with tmp receiving the

current object’s original values);

• When operator= terminates its local tmp object ceases to exist and its destructor is called.

As it by now contains the data previously owned by the current object, the current object’s

original data are now destroyed, effectively completing the destruction part of the assignment

operation.

Nice?

9.6.1 Swapping

Many classes (e.g., std::string) offer swap members allowing us to swap two of their objects.

The Standard Template Library (STL, cf. chapter 18) offers various functions related to swapping.

There is even a swap generic algorithm (cf. section 19.1.61), which is commonly implemented using

the assignment operator. When implementing a swap member for our class Strings it could be

9.6. REVISING THE ASSIGNMENT OPERATOR 195

1 2 3 4

Before Swapping 2 and 3

1 3 2 4

After Swapping 2 and 3

Figure 9.3: Swapping a linked list

used, provided that all of String’s data members can be swapped. As this is true (why this is true

is discussed shortly) we can augment class Strings with a swap member:

void Strings::swap(Strings &other)

{

swap(d_string, other.d_string);

swap(d_size, other.d_size);

}

Having added this member to Strings the copy-and-swap implementation of String::operator=

can now be used.

When two variables (e.g., double one and double two) are swapped, each one holds the other

one’s value after the swap. So, if one == 12.50 and two == -3.14 then after swap(one, two)

one == -3.14 and two == 12.50.

Variables of primitive data types (pointers and the built-in types) can be swapped, class-type objects

can be swapped if their classes offer a swap member.

So should we provide our classes with a swap member, and if so, how should it be implemented?

The above example (Strings::swap) shows the standard way to implement a swap member: each

of its data members are swapped in turn. But there are situations where a class cannot implement a

swap member this way, even if the class only defines data members of primitive data types. Consider

the situation depicted in figure 9.3.

In this figure there are four objects, each object has a pointer pointing to the next object. The basic

organization of such a class looks like this:

class List

{

List *d_next;

...

};

Initially four objects have their d_next pointer set to the next object: 1 to 2, 2 to 3, 3 to 4. This is

shown in the upper half of the figure. At the bottom half it is shown what happens if objects 2 and 3

are swapped: 3’s d_next point is now at object 2, which still points to 4; 2’s d_next pointer points

to 3’s address, but 2’s d_next is now at object 3, which is therefore pointing to itself. Bad news!

196 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

&

a

b

&b

&

c

d

&d

&

a

b

&b

&

c

d

&d

Before:

After:

Figure 9.4: Swapping objects with self-referential data

Another situation where swapping of objects goes wrong happens with classes having data members

pointing or referring to data members of the same object. Such a situation is shown in figure 9.4.

Here, objects have two data members, as in the following class setup:

class SelfRef

{

size_t *d_ownPtr; // initialized to &d_data

size_t d_data;

};

The top-half of figure 9.4 shows two objects; their upper data members pointing to their lower data

members. But if these objects are swapped then the situation shown in the figure’s bottom half is

encountered. Here the values at addresses a and c are swapped, and so, rather than pointing to

their bottom data members they suddenly point to other object’s data members. Again: bad news.

The common cause of these failing swapping operations is easily recognized: simple swapping oper-

ations must be avoided when data members point or refer to data that is involved in the swapping.

If, in figure 9.4 the a and c data members would point to information outside of the two objects (e.g.,

if they would point to dynamically allocated memory) then the simple swapping would succeed.

However, the difficulty encountered with swapping SelfRef objects does not imply that two SelfRef

objects cannot be swapped; it only means that we must be careful when designing swap members.

Here is an implementation of SelfRef::swap:

void SelfRef::swap(SelfRef &other)

{

swap(d_data, other.d_data);

}

In this implementation swapping leaves the self-referential data member as-is, and merely swaps

the remaining data. A similar swap member could be designed for the linked list shown in figure

9.3.

9.6. REVISING THE ASSIGNMENT OPERATOR 197

9.6.1.1 Fast swapping

As we’ve seen with placement new objects can be constructed in blocks of memory of sizeof(Class)

bytes large. And so, two objects of the same class each occupy sizeof(Class) bytes.

If objects of our class can be swapped, and if our class’s data members do not refer to data actually

involved in the swapping operation then a very fast swapping method that is based on the fact that

we know how large our objects are can be implemented.

In this fast-swap method we merely swap the contents of the sizeof(Class) bytes. This procedure

may be applied to classes whose objects may be swapped using a member-by-member swapping

operation and can (in practice, although this probabaly overstretches the allowed operations as

described by the C++ ANSI/ISO standard) also be used in classes having reference data members.

It simply defines a buffer of sizeof(Class) bytes and performs a circular memcpy operation. Here

is its implementation for a hypothetical class Class. It results in very fast swapping:

#include <cstring>

void Class::swap(Class &other)

{

char buffer[sizeof(Class)];

memcpy(buffer, &other, sizeof(Class));

memcpy(&other, this, sizeof(Class));

memcpy(this, buffer, sizeof(Class));

}

Here is a simple example of a class defining a reference data member and offering a swap member

implemented like the one above. The reference data members are initialized to external streams.

After running the program one contains two hello to 1 lines, two contains two hello to 2 lines (for

brevity all members of Reference are defined inline):

#include <fstream>

#include <cstring>

class Reference

{

std::ostream &d_out;

public:

Reference(std::ostream &out)

:

d_out(out)

{}

void swap(Reference &other)

{

char buffer[sizeof(Reference)];

memcpy(buffer, this, sizeof(Reference));

memcpy(this, &other, sizeof(Reference));

memcpy(&other, buffer, sizeof(Reference));

}

std::ostream &out()

{

return d_out;

}

198 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

};

int main()

{

std::ofstream one("one");

std::ofstream two("two");

Reference ref1(one); // ref1/ref2 hold references to

Reference ref2(two); // the streams

ref1.out() << "hello to 1\n"; // generate some output

ref2.out() << "hello to 2\n";

ref1.swap(ref2);

ref2.out() << "hello to 1\n"; // more output

ref1.out() << "hello to 2\n";

}

Fast swapping should only be used for self-defined classes for which it can be proven that fast-

swapping does not corrupt its objects, when swapped.

9.7 Moving data (C++11)

Before the advent of the C++11 standard C++ offered basically two ways to assign the information

pointed to by a data member of a temporary object to an lvalue object. Either a copy constructor or

reference counting had to be used. The C++11 standard adds move semantics to these two, allowing

transfer of the data pointed to by a temporary object to its destination.

Moving information is based on the concept of anonymous (temporary) data. Temporary values

are returned by functions like operator-() and operator+(Type const &lhs, Type const

&rhs), and in general by functions returning their results ‘by value’ instead of returning references

or pointers.

Anonymous values are always short-lived. When the returned values are primitive types (int,

double, etc.) nothing special happens, but if a class-type object is returned by value then its de-

structor can be called immediately following the function call that produced the value. In any case,

the value itself becomes inaccessible immediately after the call. Of course, a temporary return value

may be bound to a reference (lvalue or rvalue), but as far as the compiler is concerned the value now

has a name, which by itself ends its status as a temporary value.

In this section we concentrate on anonymous temporary values and show how they can be used

to improve the efficiency of object construction and assignment. These special construction and

assignment methods are known as move construction and move assignment. Classes supporting

move operations are called move-aware.

Classes allocating their own memory usually benefit from becoming move-aware. But a class does

not have to use dynamic memory allocation before it can benefit from move operations. Most classes

using composition (or inheritance where the base class uses composition) can benefit from move

operations as well.

Movable parameters for class Class take the form Class &&tmp. The parameter is a rvalue refer-

ence, and a rvalue reference only binds to an anonymous temporary value. The compiler is required

9.7. MOVING DATA (C++11) 199

to call functions offering movable parameters whenever possible. This happens when the class de-

fines functions supporting Class && parameters and an anonymous temporary value is passed

to such functions. Once a temporary value has a name (which already happens inside functions

defining Class const & or Class &&tmp parameters as within such functions the names of these

parameters are available) it is no longer an anonymous temporary value, and within such functions

the compiler no longer calls functions expecting anonymous temporary values when the parameters

are used as arguments.

The next example (using inline member implementations for brevity) illustrates what happens if a

non-const object, a temporary object and a const object are passed to functions fun for which these

kinds of parameters were defined. Each of these functions call a function gun for which these kinds of

parameters were also defined. The first time fun is called it (as expected) calls gun(Class &). Then

fun(Class &&) is called as its argument is an anonymous (temporary) object. However, inside

fun the anonymous value has received a name, and so it isn’t anonymous anymore. Consequently,

gun(Class &) is called once again. Finally fun(Class const &) is called, and (as expected)

gun(Class const &) is now called.

#include <iostream>

using namespace std;

class Class

{

public:

Class()

{};

void fun(Class const &other)

{

cout << "fun: Class const &\n";

gun(other);

}

void fun(Class &other)

{

cout << "fun: Class &\n";

gun(other);

}

void fun(Class &&tmp)

{

cout << "fun: Class &&\n";

gun(tmp);

}

void gun(Class const &other)

{

cout << "gun: Class const &\n";

}

void gun(Class &other)

{

cout << "gun: Class &\n";

}

void gun(Class &&tmp)

{

cout << "gun: Class &&\n";

}

};

200 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

int main()

{

Class c1;

c1.fun(c1);

c1.fun(Class());

Class const c0;

c1.fun(c0);

}

Generally it is pointless to define a function having an rvalue reference return type. The compiler

decides whether or not to use an overloaded member expecting an rvalue reference on the basis of

the provided argument. If it is an anonymous temporary it calls the function defining the rvalue

reference parameter, if such a function is available. A rvalue reference return type is used, e.g.,

with the std::move call, to keep the rvalue reference nature of its argument, which is known to

be a temporary anonymous object. Such a situation can be exploited also in a situation where a

temporary object is passed to (and returned from) a function which must be able to modify the

temporary object. The alternative, passing a const &, is less attractive as it requires a const_cast

before the object can be modified. Here is an example:

std::string &&doubleString(std::string &&tmp)

{

tmp += tmp;

return std::move(tmp);

}

This allows us to do something like

std::cout << doubleString(std::string("hello "));

to insert hello hello into cout.

The compiler, when selecting a function to call applies a fairly simple algorithm, and also considers

copy elision. This is covered shortly (section 9.8).

9.7.1 The move constructor (dynamic data) (C++11)

Our class Strings has, among other members a data member string *d_string. Clearly, Strings

should define a copy constructor, a destructor and an overloaded assignment operator.

Now consider the following function loadStrings(std::istream &in) extracting the strings for

a Strings object from in. Next, the Strings object filled by loadStrings is returned by value.

The function loadStrings returns a temporary object, which can then used to initialize an external

Strings object:

Strings loadStrings(std::istream &in)

{

Strings ret;

// load the strings into ’ret’

return ret;

9.7. MOVING DATA (C++11) 201

}

// usage:

Strings store(loadStrings(cin));

In this example two full copies of a Strings object are required:

• initializing loadString’s value return type from its local Strings ret object;

• initializing store from loadString’s return value

We can improve the above procedure by defining a move constructor. Here is the declaration of the

Strings class move constructor:

Strings(Strings &&tmp);

Move constructors of classes using dynamic memory allocation are allowed to assign the values of

pointer data members to their own pointer data members without requiring them to make a copy of

the source’s data. Next, the temporary’s pointer value is set to zero to prevent its destructor from

destroying data now owned by the just constructed object. The move constructor has grabbed or

stolen the data from the temporary object. This is OK as the temporary object cannot be referred to

again (as it is anonymous, it cannot be accessed by other code) and the temporary objects cease to

exist shortly after the constructor’s call. Here is the implementation of Strings move constructor:

Strings::Strings(Strings &&tmp)

:

d_memory(tmp.d_memory),

d_size(tmp.d_size),

d_capacity(tmp.d_capacity)

{

tmp.d_memory = 0;

}

In section 9.5 it was stated that the copy constructor is almost always available. Almost always

as the declaration of a move constructor suppresses the default availability of the copy constructor.

The default copy constructor is also suppressed if a move assignment operator is declared (cf. section

9.7.3).

The following example shows a simple class Class, declaring a move constructor. In the main func-

tion following the class interface a Class object is defined which is then passed to the constructor of

a second Class object. Compilation fails with the compiler reporting:

error: cannot bind ’Class’ lvalue to ’Class&&’

error: initializing argument 1 of ’Class::Class(Class&&)’

class Class

{

public:

Class() = default;

Class(Class &&tmp)

{}

};

202 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

int main()

{

Class one;

Class two(one);

}

The cure is easy: after declaring a (possibly default) copy constructor the error disappears:

class Class

{

public:

Class() = default;

Class(Class const &other) = default;

Class(Class &&tmp)

{}

};

int main()

{

Class one;

Class two(one);

}

9.7.2 The move constructor (composition) (C++11)

Classes not using pointer members pointing to memory controlled by its objects (and not having

base classes doing so, see chapter 13) may also benefit from overloaded members expecting rvalue

references. The class benefits from move operations when one or more of the composed data members

themselves support move operations.

Move operations cannot be implemented if the class type of a composed data member does not sup-

port moving or copying. Currently, stream classes fall into this category.

An example of a move-aware class is the class std:string. A class Person could use composition by

defining std::string d_name and std::string d_address. Its move constructor would then

have the following prototype:

Person(Person &&tmp);

However, the following implementation of this move constructor is incorrect:

Person::Person(Person &&tmp)

:

d_name(tmp.d_name),

d_address(tmp.d_address)

{}

It is incorrect as it string’s copy constructors rather than string’s move constructors are called.

If you’re wondering why this happens then remember that move operations are only performed for

anonymous objects. To the compiler anything having a name isn’t anonymous. And so, by implica-

tion, having available a rvalue reference does not mean that we’re referring to an anonymous object.

9.7. MOVING DATA (C++11) 203

But we know that the move constructor is only called for anonymous arguments. To use the corre-

sponding string move operations we have to inform the compiler that we’re talking about anony-

mous data members as well. For this a cast could be used (e.g., static_cast<Person &&>(tmp)),

but the C++-0x standard provides the function std::move to anonymize a named object. The correct

implementation of Person’s move construction is, therefore:

Person::Person(Person &&tmp)

:

d_name(std::move(tmp.d_name)),

d_address(std::move(tmp.d_address))

{}

The function std::move is (indirectly) declared by many header files. If no header is already declar-

ing std::move then include utility.

When a class using composition not only contains class type data members but also other types of

data (pointers, references, primitive data types), then these other data types can be initialized as

usual. Primitive data type members can simply be copied; references can be initialized as usual en

pointers may use move operations as discussed in the previous section.

The compiler never calls move operations for variables having names. Let’s consider the implica-

tions of this by looking at the next example, assuming Class offers a move constructor and a copy

constructor:

Class factory();

void fun(Class const &other); // a

void fun(Class &&tmp); // b

void callee(Class &&tmp);

{

fun(tmp); // 1

}

int main()

{

callee(factory());

}

• At 1 function a is called. At first sight this might be surprising, but fun’s argument is not an

anonymous temporary object but a named temporary object.

Realizing that fun(tmp) might be called twice the compiler’s choice is understandable. If tmp’s

data would have been grabbed at the first call, the second call would receive tmp without any data.

But at the last call we might know that tmp is never used again and so we might like to ensure that

fun(Class &&) is called. For this, once again, std::move is used:

fun(std::move(tmp)); // last call!

9.7.3 Move-assignment (C++11)

In addition to the overloaded assignment operator a move assignment operator may be implemented

for classes supporting move operations. In this case, if the class supports swapping the implementa-

204 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

tion is surprisingly simple. No copy construction is required and the move assignment operator can

simply be implemented like this:

Class &operator=(Class &&tmp)

{

swap(tmp);

return *this;

}

If swapping is not supported then the assignment can be performed for each of the data members in

turn, using std::move as shown in the previous section with a class Person. Here is an example

showing how to do this with that class Person:

Person &operator=(Person &&tmp)

{

d_name = std::move(tmp.d_name);

d_address = std::move(tmp.d_address);

return *this;

}

As noted previously (section 9.7.1) declaring a move assignment operator suppresses the default

availability of the copy constructor. It is made available again by declaring the copy constructor

in the class’s interface (and of course by providing an explicit implementation or by using the =

default default implementation).

9.7.4 Revising the assignment operator (part II)

Now that we’ve familiarized ourselves with the overloaded assignment operator and the move-

assignment, let’s once again have a look at their implementations for a class Class, supporting

swapping through its swap member. Here is the generic implementation of the overloaded assign-

ment operator:

Class &operator=(Class const &other)

{

Class tmp(other);

swap(tmp);

return *this;

}

and this is the move-assignment operator:

Class &operator=(Class &&tmp)

{

swap(tmp);

return *this;

}

They look remarkably similar in the sense that the overloaded assignment operator’s code is iden-

tical to the move-assignment operator’s code once a copy of the other object is available. Since the

overloaded assignment operator’s tmp object really is nothing but a temporary Class object we can

9.7. MOVING DATA (C++11) 205

use this fact by implementing the overloaded assignment operator in terms of the move-assignment.

Here is a second revision of the overloaded assignment operator:

Class &operator=(Class const &other)

{

Class tmp(other);

return *this = std::move(tmp);

}

9.7.5 Moving and the destructor (C++11)

Once a class becomes a move-aware class one should realize that its destructor still performs its job

as implemented. Consequently, when moving pointer values from a temporary source to a desti-

nation the move constructor should make sure that the temporary’s pointer value is set to zero, to

prevent doubly freeing memory.

If a class defines pointers to pointer data members there usually is not only a pointer that is moved,

but also a size_t defining the number of elements in the array of pointers.

Once again, consider the class Strings. Its destructor is implemented like this:

Strings::~Strings()

{

for (string **end = d_string + d_size; end-- != d_string;)

delete *end;

delete[] d_string;

}

The move constructor (and other move operations!) must realize that the destructor not only deletes

d_string, but also considers d_size. A member implementing move operations should therefore

not only set d_string to zero but also d_size. The previously shown move constructor for Strings

is therefore incorrect. Its improved implementation is:

Strings::Strings(Strings &&tmp)

:

d_memory(tmp.d_memory),

d_size(tmp.d_size),

d_capacity(tmp.d_capacity)

{

tmp.d_memory = 0;

tmp.d_size = 0;

}

If operations by the destructor all depend on d_string having a non-zero value then variations of

the above approach are of course possible. The move operations merely could decide to set d_memory

to 0, and then test whether d_memory == 0 in the destructor (and if so, end the destructor’s ac-

tions), saving some d_size assignments.

9.7.6 Move-only classes (C++11)

Classes may very well allow move semantics without offering copy semantics. Most stream classes

belong to this category. Extending their definition with move semantics greatly enhances their

206 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

usability. Once move semantics becomes available for such classes, so called factory functions (func-

tions returning an object constructed by the function) can easily be implemented. E.g.,

// assume char *filename

ifstream inStream(openIstream(filename));

For this example to work an ifstream constructor must offer a move constructor. This ensures that

only one object refers to the open istream.

Once classes offer move semantics their objects can also safely be stored in standard containers.

When such containers perform reallocations (e.g., when their sizes are enlarged) they use the ob-

ject’s move constructors rather than their copy constructors. As move-only classes suppress copy

semantics containers storing objects of move-only classes implement the correct behavior in that it

is impossible to assign such containers to each other.

9.7.7 Default move constructors and assignment operators (C++11)

As we’ve seen, classes by default offer a copy constructor and assignment operator. These class

members are implemented so as to provide basic support: data members of primitive data types

are copied byte-by-byte, but for class type data members their corresponding coy constructors c.q.

assignment operators are called.

The compiler can provide default implementations for move constructors and move assignment op-

erators.

However, except for the copy constructor, default implementations for constructors (c.q. assignment

operators) are no longer provided once a class declares at least one constructor (c.q. assignment oper-

ator), while the default copy constructor is suppressed by declarations of either the move constructor

or the move assignment operator.

If default implementations should be available in these cases, it’s easy to add them to the class by

adding = default to the appropriate constructor and assignment operator declarations.

Here is an example of a class offering all defaults: constructor, copy constructor, move constructor,

assignment operator and move assignment operator:

class Defaults

{

int d_x;

Mov d_mov;

};

Assuming that Mov is a class offering move operations in addition to the standard deep copy opera-

tions, then the following actions are performed on the destination’s d_mov and d_x:

Defaults factory();

int main()

{ Mov operation: d_x:

Defaults one; Mov(), undefined

Defaults two(one); Mov(Mov const &), one.d_x

Defaults three(factory()); Mov(Mov &&tmp), tmp.d_x

9.7. MOVING DATA (C++11) 207

one = two; Mov::operator=(two.d_x

Mov const &),

one = factory(); Mov::operator=(tmp.d_x

Mov &&tmp)

}

If, however, Defaults declares at least one constructor (it could be the copy constructor) and one

assignment operator, then only those members and the copy constructor remain available. E.g.:

class Defaults

{

int d_x;

Mov d_mov;

public:

Defaults(int x);

Defaults operator=(Defaults &&tmp);

};

Defaults factory();

int main()

{ Mov operation: resulting d_x:

Defaults one; ERROR: not available

Defaults two(one); Mov(Mov const &), one.d_x

Defaults three(factory()); ERROR: not available

one = two; ERROR: not available

one = factory(); Mov::operator=(tmp.d_x

Mov &&tmp)

}

To reestablish the defaults, append = default to the appropriate declarations:

class Defaults

{

int d_x;

Mov d_mov;

public:

Defaults() = default;

Defaults(Defaults &&tmp) = default;

Defaults(int x);

// Default(Default const &) remains available

Defaults operator=(Defaults const &rhs) = default;

Defaults operator=(Defaults &&tmp);

};

Be cautious, declaring defaults, as default implementations copy data members of primitive types

208 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

byte-by-byte from the source object to the destination object. This is likely to cause problems with

pointer type data members.

The = default suffix can only be used when declaring constructors or assignment operators in the

class’s public section.

9.7.8 Moving: implications for class design (C++11)

Here are some general rules to apply when designing classes offering value semantics (i.e., classes

whose objects can be used to initialize other objectes of their class and that can be asssigned to other

objects of their class):

• Classes using pointers to dynamically allocated memory, owned by the class’s objects must be

provided with a copy constructor, an overloaded copy assignment operator and a destructor;

• Classes using pointers to dynamically allocated memory, owned by the class’s objects, should

be provided with a move constructor and a move assignment operator;

• Classes using composition may benefit from move constructors and move assignment operators

as well. Some classes support neither move nor copy construction and assignment (for example:

stream classes don’t). If your class contains data members of such class types then defining

move operations is pointless.

In the previous sections we’ve also encountered an important design principle that can be applied to

move-aware classes:

Whenever a member of a class receives a const & to an object of its own class and creates

a copy of that object to perform its actual actions on, then that function’s implementation

can be implemented by an overloaded function expecting an rvalue reference.

The former function can now call the latter by passing std::move(tmp) to it. The advantages of

this design principle should be clear: there is only one implementation of the actual actions, and the

class automatically becomes move-aware with respect to the involved function.

We’ve seen an initial example of the use of this principle in section 9.7.4. Of course, the principle

cannot be applied to the copy constructor itself, as you need a copy constructor to make a copy. The

copy- and move constructors must always be implemented independently from each other.

9.8 Copy Elision and Return Value Optimization

When the compiler selects a member function (or constructor) it applies a simple set of rules, match-

ing arguments with parameter types.

Below two tables are shown. The first table should be used in cases where a function argument has

a name, the second table should be used in cases where the argument is anonymous. In each table

select the const or non-const column and then use the topmost overloaded function that is available

having the specified parameter type.

The tables do not handle functions defining value parameters. If a function has overloads expecting,

respectively, a value parameter and some form of reference parameter the compiler reports an am-

biguity when such a function is called. In the following selection procedure we may assume, without

9.8. COPY ELISION AND RETURN VALUE OPTIMIZATION 209

loss of generality, that this ambiguity does not occur and that all parameter types are reference

parameters.

Parameter types matching a function’s argument of type T if the argument is:

• a named argument (an lvalue or a named rvalue)

the argument is:

non-const const

Use the topmost (T &)

available function (T const &) (T const &)

Example: for an int x argument a function fun(int &) is selected rather than a function

fun(int const &). If no fun(int &) is available the fun(int const &) function is used.

If neither is available the compiler reports an error.

• an anonymous argument (an anonymous temporary or a literal value)

the argument is:

non-const const

Use the topmost (T &&)

available function (T const &&) (T const &&)

available function (T const &) (T const &)

Example: when the return value of an int arg() function is passed to a function fun for

which various overloaded versions are available fun(int &&) is selected. If this function is

unavailable but fun(int const &) is, then the latter function is used. If none of these two

functions is available the compiler reports an error.

The tables show that eventually all arguments can be used with a function specifying a T const

& parameter. For anonymous arguments a similar catch all is available having a higher priority:

T const && matches all anonymous arguments. Functions having this signature are normally not

defined as their implementations are (should be) identical to the implementations of the functions

expecting a T const & parameter. Since the temporary can apparently not be modified a function

defining a T const && parameter has no alternative but to copy the temporary’s resources. As

this task is already performed by functions expecting a T const &, there is no need for implenting

functions expecting T const && parameters.

As we’ve seen the move constructor grabs the information from a temporary for its own use. That is

OK as the temporary is going to be destroyed after that anyway. It also means that the temporary’s

data members are modified.

Having defined appropriate copy and/or move constructors it may be somewhat surprising to learn

that the compiler may decide to stay clear of a copy or move operation. After all making no copy and

not moving is more efficient than copying or moving.

The option the compiler has to avoid making copies (or perform move operations) is called copy

elision or return value optimization. In all situations where copy or move constructions are appro-

priate the compiler may apply copy elision. Here are the rules. In sequence the compiler considers

the following options, stopping once an option can be selected:

• if a copy or move constructor exists, try copy elision

• if a move constructor exists, move.

• if a copy constructor exists, copy.

210 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

• report an error

All modern compilers apply copy elision. Here are some examples where it may be encountered:

class Elide;

Elide fun() // 1

{

Elide ret;

return ret;

}

void gun(Elide par);

Elide elide(fun()); // 2

gun(fun()); // 3

• At 1 ret may never exist. Instead of using ret and copying ret eventually to fun’s return

value it may directly use the area used to contain fun’s return value.

• At 2 fun’s return value may never exist. Instead of defining an area containing fun’s return

value and copying that return value to elide the compiler may decide to use elide to create

fun’s return value in.

• At 3 the compiler may decide to do the same for gun’s par parameter: fun’s return value is

directly created in par’s area, thus eliding the copy operation from fun’s return value to par.

9.9 Plain Old Data (C++11)

C++ inherited the struct concept from C and extended it with the class concept. Structs are still

used in C++, mainly to store and pass around aggregates of different data types. A commonly term

for these structs is plain old data (pod). Plain old data is commonly used in C++ programs to aggre-

gate data. E.g., when a function needs to return a double, bool and std::string these three

different data types may be aggregated using a struct that merely exists to pass along values.

Data protection and functionality is hardly ever an issue. For such cases C and C++ use structs.

But as a C++ struct is just a class with special access rights some members (constructors, de-

structor, overloaded assignment operator) may implicitly be defined. The plain old data capitalizes

on this concept by requiring that its definition remains as simple as possible. Specifically the C++11

standard considers pod to be a class or struct having the following characteristics:

• it has a trivial default constructor.

If a type has some trivial member then the type (or its base class(es), cf. chapter 13) does

not explicitly define that member. Rather, it is supplied by the compiler. A trivial default

constructor leaves all its non-class data members unitialized and calls the default constructors

of all its class data members. A class having a trivial default constructor does not define any

constructor at all (nor does/do its base class/classes). It may also define the default constructor

using the default constructor syntax introduced in section 7.6;

• it has a trivial copy constructor.

A trivial copy constructor byte-wise copies the non-class data members from the provided ex-

isting class object and uses copy constructors to initialize its base class(es) and class data

members with the information found in the provided existing class object;

9.10. CONCLUSION 211

• it has a trivial overloaded assignment operator.

A trivial assignment operator performs a byte-wise copy of the non-class data members of

the provided right-hand class object and uses overloaded assignment operators to assign new

values to its class data members using the corresponding members of the provided right-hand

class object;

• it has a trivial destructor.

A trivial destructor calls the destructors of its base class(es) and class-type data members;

• it has a standard layout.

A standard-layout class or struct

• has only non-static data members that are themselves showing the standard-layout;

• has identical access control (public, private, protected) for all its non-static members;

Furthermore, in the context of class derivation (cf. chapters 14 and 13), a standard-layout class or

struct:

• has only base classes that themselves show the standard-layout;

• has at most one (in)direct base class having non-static members;

• has no base classes of the same type as its first non-static data member;

• has no virtual base classes;

• has no virtual members.

9.10 Conclusion

Four important extensions to classes were introduced in this chapter: the destructor, the copy con-

structor, the move constructor and the overloaded assignment operator. In addition the importance

of swapping, especially in combination with the overloaded assignment operator, was stressed.

Classes having pointer data members, pointing to dynamically allocated memory controlled by the

objects of those classes, are potential sources of memory leaks. The extensions introduced in this

chapter implement the standard defense against such memory leaks.

Encapsulation (data hiding) allows us to ensure that the object’s data integrity is maintained. The

automatic activation of constructors and destructors greatly enhance our capabilities to ensure the

data integrity of objects doing dynamic memory allocation.

A simple conclusion is therefore that classes whose objects allocate memory controlled by themselves

must at least implement a destructor, an overloaded assignment operator and a copy constructor.

Implementing a move constructor remains optional, but it allows us to use factory functions with

classes not allowing copy construction and/or assignment.

In the end, assuming the availability of at least a copy or move constructor, the compiler might

avoid them using copy elision. The compiler is free to use copy elision wherever possible; it is,

however, never a requirement. The compiler may therefore always decide not to use copy elision. In

all situations where otherwise a copy or move constructor would have been used the compiler may

consider to use copy elision.

212 CHAPTER 9. CLASSES AND MEMORY ALLOCATION

Chapter 10

Exceptions

C supports several ways for a program to react to situations breaking the normal unhampered flow

of a program:

• The function may notice the abnormality and issue a message. This is probably the least

disastrous reaction a program may show.

• The function in which the abnormality is observed may decide to stop its intended task, re-

turning an error code to its caller. This is a great example of postponing decisions: now the

calling function is faced with a problem. Of course the calling function may act similarly, by

passing the error code up to its caller.

• The function may decide that things are going out of hand, and may call exit to terminate the

program completely. A tough way to handle a problem if only because the destructors of local

objects aren’t activated.

• The function may use a combination of the functions setjmp and longjmp to enforce non-local

exits. This mechanism implements a kind of goto jump, allowing the program to continue at

an outer level, skipping the intermediate levels which would have to be visited if a series of

returns from nested functions would have been used.

In C++ all these flow-breaking methods are still available. However, of the mentioned alternatives,

setjmp and longjmp isn’t frequently encountered in C++ (or even in C) programs, due to the fact

that the program flow is completely disrupted.

C++ offers exceptions as the preferred alternative to, e.g., setjmp and longjmp. Exceptions allow

C++ programs to perform a controlled non-local return, without the disadvantages of longjmp and

setjmp.

Exceptions are the proper way to bail out of a situation which cannot be handled easily by a function

itself, but which is not disastrous enough for a program to terminate completely. Also, exceptions

provide a flexible layer of control between the short-range return and the crude exit.

In this chapter exceptions are covered. First an example is given of the different impact exceptions

and the setjmp/longjmp combination have on programs. This example is followed by a discussion

of the formal aspects of exceptions. In this part the guarantees our software should be able to offer

when confronted with exceptions are presented. Exceptions and their guarantees have consequences

for constructors and destructors. We’ll encounter these consequences at the end of this chapter.

213

214 CHAPTER 10. EXCEPTIONS

10.1 Exception syntax

Before contrasting the traditional C way of handling non-local gotos with exceptions let’s introduce

the syntactic elements that are involved when using exceptions.

• Exceptions are generated by a throw statement. The keyword throw, followed by an expres-

sion of a certain type, throws the expression value as an exception. In C++ anything having

value semantics may be thrown as an exception: an int, a bool, a string, etc. However,

there also exists a standard exception type (cf. section 10.8) that may be used as base class (cf.

chapter 13) when defining new exception types.

• Exceptions are generated within a well-defined local environment, called a try-block. The

run-time support system ensures that all of the program’s code is itself surrounded by a global

try block. Thus, every exception generated by our code will always reach the boundary of at

least one try-block. A program terminates when an exception reaches the boundary of the

global try block, and when this happens destructors of local and global objects that were alive

at the point where the exception was generated are not called. This is not a desirable situation

and therefore all exceptions should be generated within a try-block explicitly defined by the

program. Here is an example of a string exception thrown from within a try-block:

try

{

// any code can be defined here

if (someConditionIsTrue)

throw string("this is the std::string exception");

// any code can be defined here

}

• catch: Immediately following the try-block, one or more catch-clauses must be defined. A

catch-clause consists of a catch-header defining the type of the exception it can catch followed

by a compound statement defining what to do with the caught exception:

catch (string const &msg)

{

// statements in which the caught string object are handled

}

Multiple catch clauses may appear underneath each other, one for each exception type that

has to be caught. In general the catch clauses may appear in any order, but there are excep-

tions requiring a specific order. To avoid confusion it’s best to put a catch clause for the most

general exception last. At most one exception clause will be activated. C++ does not support a

Java-style finally-clause activated after completing a catch clause.

10.2 An example using exceptions

In the following examples the same basic program is used. The program uses two classes, Outer

and Inner.

First, an Outer object is defined in main, and its member Outer::fun is called. Then, in Outer::fun

an Inner object is defined. Having defined the Inner object, its member Inner::fun is called.

That’s about it. The function Outer::fun terminates calling inner’s destructor. Then the program

terminates, activating outer’s destructor. Here is the basic program:

10.2. AN EXAMPLE USING EXCEPTIONS 215

#include <iostream>

using namespace std;

class Inner

{

public:

Inner();

~Inner();

void fun();

};

Inner::Inner()

{

cout << "Inner constructor\n";

}

Inner::~Inner()

{

cout << "Inner destructor\n";

}

void Inner::fun()

{

cout << "Inner fun\n";

}

class Outer

{

public:

Outer();

~Outer();

void fun();

};

Outer::Outer()

{

cout << "Outer constructor\n";

}

Outer::~Outer()

{

cout << "Outer destructor\n";

}

void Outer::fun()

{

Inner in;

cout << "Outer fun\n";

in.fun();

}

int main()

{

Outer out;

out.fun();

}

/*
Generated output:

Outer constructor

216 CHAPTER 10. EXCEPTIONS

Inner constructor

Outer fun

Inner fun

Inner destructor

Outer destructor

*/

After compiling and running, the program’s output is entirely as expected: the destructors are called

in their correct order (reversing the calling sequence of the constructors).

Now let’s focus our attention on two variants in which we simulate a non-fatal disastrous event in

the Inner::fun function. This event must supposedly be handled near main’s end.

We’ll consider two variants. In the first variant the event is handled by setjmp and longjmp; in

the second variant the event is handled using C++’s exception mechanism.

10.2.1 Anachronisms: ‘setjmp’ and ‘longjmp’

The basic program from the previous section is slightly modified to contain a variable jmp_buf

jmpBuf used by setjmp and longjmp.

The function Inner::fun calls longjmp, simulating a disastrous event, to be handled near main’s

end. In main a target location for the long jump is defined through the function setjmp. Setjmp’s

zero return indicates the initialization of the jmp_buf variable, in which case Outer::fun is called.

This situation represents the ‘normal flow’.

The program’s return value is zero only if Outer::fun terminates normally. The program, however,

is designed in such a way that this won’t happen: Inner::fun calls longjmp. As a result the

execution flow returns to the setjmp function. In this case it does not return a zero return value.

Consequently, after calling Inner::fun from Outer::fun main’s if-statement is entered and the

program terminates with return value 1. Try to follow these steps when studying the following

program source, which is a direct modification of the basic program given in section 10.2:

#include <iostream>

#include <setjmp.h>

#include <cstdlib>

using namespace std;

jmp_buf jmpBuf;

class Inner

{

public:

Inner();

~Inner();

void fun();

};

Inner::Inner()

{

cout << "Inner constructor\n";

}

void Inner::fun()

10.2. AN EXAMPLE USING EXCEPTIONS 217

{

cout << "Inner fun\n";

longjmp(jmpBuf, 0);

}

Inner::~Inner()

{

cout << "Inner destructor\n";

}

class Outer

{

public:

Outer();

~Outer();

void fun();

};

Outer::Outer()

{

cout << "Outer constructor\n";

}

Outer::~Outer()

{

cout << "Outer destructor\n";

}

void Outer::fun()

{

Inner in;

cout << "Outer fun\n";

in.fun();

}

int main()

{

Outer out;

if (setjmp(jmpBuf) != 0)

return 1;

out.fun();

}

/*
Generated output:

Outer constructor

Inner constructor

Outer fun

Inner fun

Outer destructor

*/

This program’s output clearly shows that inner’s destructor is not called. This is a direct conse-

quence of the non-local jump performed by longjmp. Processing proceeds immediately from the

longjmp call inside Inner::fun to setjmp in main. There, its return value is unequal zero, and

the program terminates with return value 1. Because of the non-local jump Inner::~Inner is

218 CHAPTER 10. EXCEPTIONS

never executed: upon return to main’s setjmp the existing stack is simply broken down disregard-

ing any destructors waiting to be called.

This example illustrates that the destructors of objects can easily be skipped when longjmp and

setjmp are used and C++ programs should therefore avoid those functions like the plague.

10.2.2 Exceptions: the preferred alternative

Exceptions are C++’s answer to the problems caused by setjmp and longjmp. Here is an example

using exceptions. The program is once again derived from the basic program of section 10.2:

#include <iostream>

using namespace std;

class Inner

{

public:

Inner();

~Inner();

void fun();

};

Inner::Inner()

{

cout << "Inner constructor\n";

}

Inner::~Inner()

{

cout << "Inner destructor\n";

}

void Inner::fun()

{

cout << "Inner fun\n";

throw 1;

cout << "This statement is not executed\n";

}

class Outer

{

public:

Outer();

~Outer();

void fun();

};

Outer::Outer()

{

cout << "Outer constructor\n";

}

Outer::~Outer()

{

cout << "Outer destructor\n";

}

void Outer::fun()

10.3. THROWING EXCEPTIONS 219

{

Inner in;

cout << "Outer fun\n";

in.fun();

}

int main()

{

Outer out;

try

{

out.fun();

}

catch (int x)

{}

}

/*
Generated output:

Outer constructor

Inner constructor

Outer fun

Inner fun

Inner destructor

Outer destructor

*/

Inner::fun now throws an int exception where a longjmp was previously used. Since in.fun is

called by out.fun, the exception is generated within the try block surrounding the out.fun call.

As an int value was thrown this value reappears in the catch clause beyond the try block.

Now Inner::fun terminates by throwing an exception instead of calling longjmp. The exception is

caught in main, and the program terminates. Now we see that inner’s destructor is properly called.

It is interesting to note that Inner::fun’s execution really terminates at the throw statement: The

cout statement, placed just beyond the throw statement, isn’t executed.

What did this example teach us?

• Exceptions provide a means to break a function’s (and program’s) normal flow without having

to use a cascade of return-statements, and without the need to terminate the program using

blunt tools like the function exit.

• Exceptions do not disrupt the proper activation of destructors. Since setjmp and longjmp do

distrupt the proper activation of destructors their use is strongly deprecated in C++.

10.3 Throwing exceptions

Exceptions are generated by throw statements. The throw keyword is followed by an expression,

defining the thrown exception value. Example:

throw "Hello world"; // throws a char *
throw 18; // throws an int

throw string("hello"); // throws a string

220 CHAPTER 10. EXCEPTIONS

Local objects cease to exist when a function terminates. This is no different for exceptions.

Objects defined locally in functions are automatically destroyed once exceptions thrown by these

functions leave these functions. This also happens to objects thrown as exceptions. However, just

before leaving the function context the object is copied and it is this copy that eventually reaches the

appropriate catch clause.

The following examples illustrates this process. Object::fun defines a local Object toThrow,

that is thrown as an exception. The exception is caught in main. But by then the object originally

thrown doesn’t exist anymore, and main received a copy:

#include <iostream>

#include <string>

using namespace std;

class Object

{

string d_name;

public:

Object(string name)

:

d_name(name)

{

cout << "Constructor of " << d_name << "\n";

}

Object(Object const &other)

:

d_name(other.d_name + " (copy)")

{

cout << "Copy constructor for " << d_name << "\n";

}

~Object()

{

cout << "Destructor of " << d_name << "\n";

}

void fun()

{

Object toThrow("’local object’");

cout << "Calling fun of " << d_name << "\n";

throw toThrow;

}

void hello()

{

cout << "Hello by " << d_name << "\n";

}

};

int main()

{

Object out("’main object’");

try

{

out.fun();

}

10.3. THROWING EXCEPTIONS 221

catch (Object o)

{

cout << "Caught exception\n";

o.hello();

}

}

Object’s copy constructor is special in that it defines its name as the other object’s name to which

the string " (copy)" is appended. This allow us to monitor the construction and destruction of

objects more closely. Object::fun generates an exception, and throws its locally defined object.

Just before throwing the exception the program has produced the following output:

Constructor of ’main object’

Constructor of ’local object’

Calling fun of ’main object’

When the exception is generated the next line of output is produced:

Copy constructor for ’local object’ (copy)

The local object is passed to throw where it is treated as a value argument, creating a copy of

toThrow. This copy is thrown as the exception, and the local toThrow object ceases to exist. The

thrown exception is now caught by the catch clause, defining an Object value parameter. Since

this is a value parameter yet another copy is created. Thus, the program writes the following text:

Destructor of ’local object’

Copy constructor for ’local object’ (copy) (copy)

The catch block now displays:

Caught exception

Following this o’s hello member is called, showing us that we indeed received a copy of the copy of

the original toThrow object:

Hello by ’local object’ (copy) (copy)

Then the program terminates and its remaining objects are now destroyed, reversing their order of

creation:

Destructor of ’local object’ (copy) (copy)

Destructor of ’local object’ (copy)

Destructor of ’main object’

The copy created by the catch clause clearly is superfluous. It can be avoided by defining object

reference parameters in catch clauses: ‘catch (Object &o)’. The program now produces the

following output:

Constructor of ’main object’

Constructor of ’local object’

222 CHAPTER 10. EXCEPTIONS

Calling fun of ’main object’

Copy constructor for ’local object’ (copy)

Destructor of ’local object’

Caught exception

Hello by ’local object’ (copy)

Destructor of ’local object’ (copy)

Destructor of ’main object’

Only a single copy of toThrow was created.

It’s a bad idea to throw a pointer to a locally defined object. The pointer is thrown, but the object

to which the pointer refers ceases to exist once the exception is thrown. The catcher receives a wild

pointer. Bad news....

Let’s summarize the above findings:

• Local objects are thrown as copied objects;

• Don’t throw pointers to local objects;

• It is possible to throw pointers to dynamically generated objects. In this case one must take

care that the generated object is properly deleted by the exception handler to prevent a memory

leak.

Exceptions are thrown in situations where a function can’t complete its assigned task, but the pro-

gram is still able to continue. Imagine a program offering an interactive calculator. The program

expects numeric expressions, which are evaluated. Expressions may show syntactic errors or it may

be mathematically impossible to evaluate them. Maybe the calculator allows us to define and use

variables and the user might refer to non-existing variables: plenty of reasons for the expression

evaluation to fail, and so many reasons for exceptions to be thrown. None of those should terminate

the program. Instead, the program’s user is informed about the nature of the problem and is invited

to enter another expression. Example:

if (!parse(expressionBuffer)) // parsing failed

throw "Syntax error in expression";

if (!lookup(variableName)) // variable not found

throw "Variable not defined";

if (divisionByZero()) // unable to do division

throw "Division by zero is not defined";

Where these throw statements are located is irrelevant: they may be found deeply nested inside the

program, or at a more superficial level. Furthermore, functions may be used to generate the excep-

tion to be thrown. An Exception object might support stream-like insertion operations allowing us

to do, e.g.,

if (!lookup(variableName))

throw Exception() << "Undefined variable ’" << variableName << "’;

10.3.1 The empty ‘throw’ statement

Sometimes it is required to inspect a thrown exception. An exception catcher may decide to ignore

the exception, to process the exception, to rethrow it after inspection or to change it into another

10.3. THROWING EXCEPTIONS 223

kind of exception. For example, in a server-client application the client may submit requests to the

server by entering them into a queue. Normally every request is eventually answered by the server.

The server may reply that the request was successfully processed, or that some sort of error has

occurred. On the other hand, the server may have died, and the client should be able to discover this

calamity, by not waiting indefinitely for the server to reply.

In this situation an intermediate exception handler is called for. A thrown exception is first inspected

at the middle level. If possible it is processed there. If it is not possible to process the exception at the

middle level, it is passed on, unaltered, to a more superficial level, where the really tough exceptions

are handled.

By placing an empty throw statement in the exception handler’s code the received exception is

passed on to the next level that might be able to process that particular type of exception. The

rethrown exception is never handled by one of its neighboring exception handlers; it is always trans-

ferred to an exception handler at a more superficial level.

In our server-client situation a function

initialExceptionHandler(string &exception)

could be designed to handle the string exception. The received message is inspected. If it’s a simple

message it’s processed, otherwise the exception is passed on to an outer level. In initialExceptionHandler’s

implementation the empty throw statement is used:

void initialExceptionHandler(string &exception)

{

if (!plainMessage(exception))

throw;

handleTheMessage(exception);

}

Below (section 10.5), the empty throw statement is used to pass on the exception received by a

catch-block. Therefore, a function like initialExceptionHandler can be used for a variety of

thrown exceptions, as long as their types match initialExceptionHandler’s parameter, which is

a string.

The next example jumps slightly ahead, using some of the topics covered in chapter 14. The example

may be skipped, though, without loss of continuity.

A basic exception handling class can be constructed from which specific exception types are derived.

Suppose we have a class Exception, having a member function ExceptionType Exception::severity.

This member function tells us (little wonder!) the severity of a thrown exception. It might be Info,

Notice, Warning, Error or Fatal. The information contained in the exception depends on its

severity and is processed by a function handle. In addition, all exceptions support a member func-

tion like textMsg, returning textual information about the exception in a string.

By defining a polymorphic function handle it can be made to behave differently, depending on the

nature of a thrown exception, when called from a basic Exception pointer or reference.

In this case, a program may throw any of these five exception types. Assuming that the classes

Message and Warning were derived from the class Exception, then the handle function matching

the exception type will automatically be called by the following exception catcher:

//

224 CHAPTER 10. EXCEPTIONS

catch(Exception &ex)

{

cout << e.textMsg() << ’\n’;

if

(

ex.severity() != ExceptionType::Warning

&&

ex.severity() != ExceptionType::Message

)

throw; // Pass on other types of Exceptions

ex.handle(); // Process a message or a warning

}

Now anywhere in the try block preceding the exception handler Exception objects or objects of

one of its derived classes may be thrown. All those exceptions will be caught by the above handler.

E.g.,

throw Info();

throw Warning();

throw Notice();

throw Error();

throw Fatal();

10.4 The try block

The try-block surrounds throw statements. Remember that a program is always surrounded by

a global try block, so throw statements may appear anywhere in your code. More often, though,

throw statements are used in function bodies and such functions may be called from within try

blocks.

A try block is defined by the keyword try followed by a compound statement. This block, in turn,

must be followed by at least one catch handler:

try

{

// any statements here

}

catch(...) // at least one catch clause here

{}

Try-blocks are commonly nested, creating exception levels. For example, main’s code is surrounded

by a try-block, forming an outer level handling exceptions. Within main’s try-block functions are

called which may also contain try-blocks, forming the next exception level. As we have seen (section

10.3.1), exceptions thrown in inner level try-blocks may or may not be processed at that level. By

placing an empty throw statement in an exception handler, the thrown exception is passed on to

the next (outer) level.

10.5. CATCHING EXCEPTIONS 225

10.5 Catching exceptions

A catch clause consists of the keyword catch followed by a parameter list defining one parameter

specifying type and (parameter) name of the exception caught by that particular catch handler.

This name may then be used as a variable in the compound statement following the catch clause.

Example:

catch (string &message)

{

// code to handle the message

}

Primitive types and objects may be thrown as exceptions. It’s a bad idea to throw a pointer or refer-

ence to a local object, but a pointer to a dynamically allocated object may be thrown if the exception

handler deletes the allocated memory to prevent a memory leak. Nevertheless, throwing such a

pointer is dangerous as the exception handler won’t be able to distinguish dynamically allocated

memory from non-dynamically allocated memory, as illustrated by the next example:

try

{

static int x;

int *xp = &x;

if (condition1)

throw xp;

xp = new int(0);

if (condition2)

throw xp;

}

catch (int *ptr)

{

// delete ptr or not?

}

Close attention should be paid to the nature of the parameter of the exception handler, to make

sure that when pointers to dynamically allocated memory are thrown the memory is returned once

the handler has processed the pointer. In general pointers should not be thrown as exceptions. If

dynamically allocated memory must be passed to an exception handler then the pointer should be

wrapped in a smart pointer, like unique_ptr or shared_ptr (cf. sections 18.3 and 18.4).

Multiple catch handlers may follow a try block, each handler defining its own exception type.

The order of the exception handlers is important. When an exception is thrown, the first exception

handler matching the type of the thrown exception is used and remaining exception handlers are

ignored. Eventually at most one exception handler following a try-block is activated. Normally this

is of no concern as each exception has its own unique type.

Example: if exception handlers are defined for char *s and void *s then NTB strings are caught

by the former handler. Note that a char * can also be considered a void *, but the exception type

matching procedure is smart enough to use the char * handler with the thrown NTBS. Handlers

should be designed very type specific to catch the correspondingly typed exception. For example,

int-exceptions are not caught by double-catchers, char-exceptions are not caught by int-catchers.

Here is a little example illustrating that the order of the catchers is not important for types not

226 CHAPTER 10. EXCEPTIONS

having any hierarchal relationship to each other (i.e., int is not derived from double; string is

not derived from an NTBS):

#include <iostream>

using namespace std;

int main()

{

while (true)

{

try

{

string s;

cout << "Enter a,c,i,s for ascii-z, char, int, string "

"exception\n";

getline(cin, s);

switch (s[0])

{

case ’a’:

throw "ascii-z";

case ’c’:

throw ’c’;

case ’i’:

throw 12;

case ’s’:

throw string();

}

}

catch (string const &)

{

cout << "string caught\n";

}

catch (char const *)

{

cout << "ASCII-Z string caught\n";

}

catch (double)

{

cout << "isn’t caught at all\n";

}

catch (int)

{

cout << "int caught\n";

}

catch (char)

{

cout << "char caught\n";

}

}

}

Rather than defining specific exception handlers a specific class can be designed whose objects con-

tain information about the exception. Such an approach was mentioned earlier, in section 10.3.1.

Using this approach, there’s only one handler required, since we know we don’t throw other types of

10.5. CATCHING EXCEPTIONS 227

exceptions:

try

{

// code throws only Exception pointers

}

catch (Exception &ex)

{

ex.handle();

}

When the code of an exception handler has been processed, execution continues beyond the last

exception handler directly following the matching try-block (assuming the handler doesn’t itself

use flow control statements (like return or throw) to break the default flow of execution). The

following cases can be distinguished:

• If no exception was thrown within the try-block no exception handler is activated, and execu-

tion continues from the last statement in the try-block to the first statement beyond the last

catch-block.

• If an exception was thrown within the try-block but neither the current level nor another level

contains an appropriate exception handler, the program’s default exception handler is called,

aborting the program.

• If an exception was thrown from the try-block and an appropriate exception handler is avail-

able, then the code of that exception handler is executed. Following that, the program’s execu-

tion continues at the first statement beyond the last catch-block.

All statements in a try block following an executed throw-statement are ignored. However, objects

that were successfully constructed within the try block before executing the throw statement are

destroyed before any exception handler’s code is executed.

10.5.1 The default catcher

At a certain level of the program only a limited set of handlers may actually be required. Exceptions

whose types belong to that limited set are processed, all other exceptions are passed on to exception

handlers of an outer level try block.

An intermediate type of exception handling may be implemented using the default exception han-

dler, which must be (due to the hierarchal nature of exception catchers, discussed in section 10.5)

placed beyond all other, more specific exception handlers.

This default exception handler cannot determine the actual type of the thrown exception and cannot

determine the exception’s value but it coould do some default processing. The exception is not lost,

however, and the default exception handler may still use the empty throw statement (see section

10.3.1) to pass the exception on to an outer level. Here is an example showing this use of a default

exception handler:

#include <iostream>

using namespace std;

int main()

{

228 CHAPTER 10. EXCEPTIONS

try

{

try

{

throw 12.25; // no specific handler for doubles

}

catch (int value)

{

cout << "Inner level: caught int\n";

}

catch (...)

{

cout << "Inner level: generic handling of exceptions\n";

throw;

}

}

catch(double d)

{

cout << "Outer level may use the thrown double: " << d << ’\n’;

}

}

/*
Generated output:

Inner level: generic handling of exceptions

Outer level may use the thrown double: 12.25

*/

The program’s output illustrates that an empty throw statement in a default exception handler

throws the received exception to the next (outer) level of exception catchers, keeping type and value

of the thrown exception. Thus basic or generic exception handling can be accomplished at an inner

level and specific handling, based on the type of the thrown expression, can then be provided at an

outer level.

10.6 Declaring exception throwers (deprecated)

Functions defined elsewhere may be linked to code that uses these functions. Such functions are

normally declared in header files, either as standalone functions or as class member functions.

Those functions may of course throw exceptions. Declarations of such functions may contain a (now

deprecated, see also section 22.7) function throw list or exception specification list specifying the

types of the exceptions that can be thrown by the function. For example, a function that may throw

‘char *’ and ‘int’ exceptions can be declared as

void exceptionThrower() throw(char *, int);

A function throw list immediately follows the function header (and it also follows a possible const

specifier). Throw lists may be empty. It has the following general form:

throw([type1 [, type2, type3, ...]])

If a function is guaranteed not to throw exceptions an empty function throw list may be used. E.g.,

10.6. DECLARING EXCEPTION THROWERS (DEPRECATED) 229

void noExceptions() throw ();

In all cases, the function header used in the function definition must exactly match the function

header used in the declaration, including a possibly empty function throw list.

A function for which a function throw list is specified may only throw exceptions of the types men-

tioned in its throw list. A run-time error occurs if it throws other types of exceptions than those

mentioned in the function throw list. Example: the function charPintThrower shown below clearly

throws a char const * exception. Since intThrower may throw an int exception, the function

throw list of charPintThrower must also contain int.

#include <iostream>

using namespace std;

void charPintThrower() throw(char const *, int);

class Thrower

{

public:

void intThrower(int) const throw(int);

};

void Thrower::intThrower(int x) const throw(int)

{

if (x)

throw x;

}

void charPintThrower() throw(char const *, int)

{

int x;

cerr << "Enter an int: ";

cin >> x;

Thrower().intThrower(x);

throw "this text is thrown if 0 was entered";

}

void runTimeError() throw(int)

{

throw 12.5;

}

int main()

{

try

{

charPintThrower();

}

catch (char const *message)

{

cerr << "Text exception: " << message << ’\n’;

}

230 CHAPTER 10. EXCEPTIONS

catch (int value)

{

cerr << "Int exception: " << value << ’\n’;

}

try

{

cerr << "Generating a run-time error\n";

runTimeError();

}

catch(...)

{

cerr << "not reached\n";

}

}

A function without a throw list may throw any kind of exception. Without a function throw list the

program’s designer is responsible for providing the correct handlers.

For various reason declaring exception throwers is now deprecated. Declaring exception throwers

does not imply that the compiler checks whether an improper exception is thrown. Rather, the

function will be surrounded by additional code in which the actual exception that is thrown is pro-

cessed. Instead of compile time checks one gets run-time overhead, resulting in additional code (and

execution time) thay is added to the function’s code. One could write, e.g.,

void fun() throw (int)

{

// code of this function, throwing exceptions

}

but the function would be compiled to something like the following (cf. section 10.11 for the use of

try immediately following the function’s header and section 10.8 for a description of bad_exception):

void fun()

try // this code resulting from throw(int)

{

// the function’s code, throwing all kinds of exceptions

}

catch (int) // remaining code resulting from throw(int)

{

throw; // rethrow the exception, so it can be caught by the

// ‘intended’ handler

}

catch (...) // catch any other exception

{

throw bad_exception;

}

Run-time overhead is caused by doubling the number of thrown and caught exceptions. Without a

throw list a thrown int is simply caught by its intended handler; with a throw list the int is first

caught by the ‘safeguarding’ handler added to the function. In there it is rethrown to be caught by

its intended handler next.

10.7. IOSTREAMS AND EXCEPTIONS 231

10.7 Iostreams and exceptions

The C++ I/O library was used well before exceptions were available in C++. Hence, normally the

classes of the iostream library do not throw exceptions. However, it is possible to modify that behav-

ior using the ios::exceptions member function. This function has two overloaded versions:

• ios::iostate exceptions():

this member returns the state flags for which the stream will throw exceptions;

• void exceptions(ios::iostate state)

this member causes the stream to throw an exception when state state is observed.

In the I/O library, exceptions are objects of the class ios::failure, derived from ios::exception.

A std::string const &message may be specified when defining a failure object. Its message

may then be retrieved using its virtual char const *what() const member.

Exceptions should be used in exceptional circumstances. Therefore, we think it is questionable

to have stream objects throw exceptions for fairly normal situations like EOF. Using exceptions to

handle input errors might be defensible (e.g., in situations where input errors should not occur and

imply a corrupted file) but often aborting the program with an appropriate error message would

probably be the more appropriate action. As an example consider the following interactive program

using exceptions to catch incorrect input:

#include <iostream>

#include <climits>

using namespace::std;

int main()

{

cin.exceptions(ios::failbit); // throw exception on fail

while (true)

{

try

{

cout << "enter a number: ";

int value;

cin >> value;

cout << "you entered " << value << ’\n’;

}

catch (ios::failure const &problem)

{

cout << problem.what() << ’\n’;

cin.clear();

cin.ignore(INT_MAX, ’\n’); // ignore the faulty line

}

}

}

By default, exceptions raised from within ostream objects are caught by these objects, which set

their ios::badbit as a result. See also the paragraph on this issue in section 14.8.

232 CHAPTER 10. EXCEPTIONS

10.8 Standard Exceptions

All data types may be thrown as exceptions. Several additional exception classes are now defined

by the C++ standard. Before using those additional exception classes the <stdexcept> header file

must have been included. All of these standard exceptions are class types by themselves, but also

offer all facilities of the std::exception class and objects of the standard exception classes may

also be considered objects of the std::exception class.

The std::exception class offers the member

char const *what() const;

describing in a short textual message the nature of the exception.

C++ defines the following standard exception classes:

• std::bad_alloc (this requires the <new> header file): thrown when operator new fails;

• std::bad_exception (this requires the header file <exception> header file): thrown when

a function tries to generate another type of exception than declared in its function throw list;

• std::bad_cast (this requires the <typeinfo> header file): thrown in the context of polymor-

phism (see section 14.6.1);

• std::bad_typeid (this requires the <typeinfo> header file): also thrown in the context of

polymorphism (see section 14.6.2);

All additional exception classes were derived from std::exception. The constructors of all these

additional classes accept std::string const & arguments summarizing the reason for the ex-

ception (retrieved by the exception::what member). The additionally defined exception classes

are:

• std::domain_error: a (mathematical) domain error is detected;

• std::invalid_argument: the argument of a function has an invalid value;

• std::length_error: thrown when an object would have exceeded its maximum permitted

length;

• std::logic_error: a logic error should be thrown when a problem is detected in the internal

logic of the program. Example: a function like C’s printf is called with more arguments than

there are format specifiers in its format string;

• std::out_of_range: thrown when an argument exceeds its permitted range. Example:

thrown by at members when their arguments exceed the range of admissible index values;

• std::overflow_error: an overflow error should be thrown when an arithmetic overflow is

detected. Example: dividing a value by a very small value;

• std::range_error: a range error should be thrown when an internal computation results in

a value exceeding a permissible range;

• std::runtime_error: a runtime error should be thrown when a problem is encountered that

can only be detected while the program is being executed. Example: a non-integral is entered

when the program’s input expects an integral value.

• std::underflow_error: an underflow error should be thrown when an arithmetic underflow

is detected. Example: dividing a very small value by a very large value.

10.9. SYSTEM ERROR, ERROR CODE AND ERROR CATEGORY (C++11) 233

10.9 System error, error code and error category (C++11)

A std::system_error can be thrown when an error occurs that has an associated error code. Such

errors are typically encountered when calling low-level (like operating system) functions.

Before using system_error the <system_error> header file must have been included.

A system_error object can be constructed using the standard textual description of the nature of

the encountered error, but in addition accepts an error_code or error_category object (see the next

two sections), further specifying the nature of the error. The error_code and error_category

classes are also declared in the system_error header file.

The header file system_error also defines an enum class errc whose values are equal to and

describe in a less cryptic way the traditional error code values as offered by C macros, e.g.,

enum class errc

{

address_family_not_supported, // EAFNOSUPPORT

address_in_use, // EADDRINUSE

address_not_available, // EADDRNOTAVAIL

already_connected, // EISCONN

argument_list_too_long, // E2BIG

argument_out_of_domain, // EDOM

bad_address, // EFAULT

...

};

In addition to the standard what member, the system_error class also offers a member code

returning a const reference to the exception’s error code. Here is the class’s public interface:

class system_error: public runtime_error

{

public:

system_error(error_code ec, string const &what_arg);

system_error(error_code ec, char const *what_arg);

system_error(error_code ec);

system_error(int ev, error_category const &ecat,

string const &what_arg);

system_error(int ev, error_category const &ecat,

char const *what_arg);

system_error(int ev, error_category const &ecat);

error_code const &code() const noexcept;

char const *what() const noexcept;

}

The NTBS returned by its what member may be formatted by a system_error object like this:

what_arg + ": " + code().message()

Note that, although system_errorwas derived from runtime_error, you’ll lose the codemember

when catching a std::exception object. Of course, downcasting is always possible, but that’s a

stopgap. Therefore, if a system_error is thrown, a matching catch(system_error const &)

234 CHAPTER 10. EXCEPTIONS

clause should be provided (for a flexible alternative, see the class FBB::Exception in the author’s

Bobcat library1.)

10.9.1 The class ‘error_code’ (C++11)

Objects of the class std:error_code hold error code values, which may be defined by the operating

system or comparable low-level functions.

Before using error_code the <system_error> header file must have been included.

The class offers the following constructors, members, and free functions:

Constructors:

• error_code() noexcept:

the default construction initializes the error code with an error value 0 and an error

category set to &system_category();

• error_code(ErrorCodeEnum e) noexcept:

this is a member template (cf. section 21.1.3), defining template <class ErrorCodeEnum>.

It initializes the object with the return value of make_error_code(e).

The copy constructor is also available.

Members:

• void assign(int val, const error_category& cat):

assigns new values to the current object’s value and category data members;

• error_category const &category() const noexcept:

returns a reference to the object’s error category;

• void clear() noexcept:

after calling this member value is set to 0 and the object’s error category set to

&system_category();

• error_condition default_error_condition() const noexcept:

returns category().default_error_condition(value());

• string message() const:

returns category().message(value());

• errorcode& operator=(ErrorCodeEnum e) noexcept:

a member template defining template <class ErrorCodeEnum>. It assigns the

return value of make_error_code(e) to the current object;

• explicit operator bool() const noexcept:

returns value() != 0;

1http://bobcat.sourceforge.net

10.9. SYSTEM ERROR, ERROR CODE AND ERROR CATEGORY (C++11) 235

• int value() const noexcept:

returns the object’s error value.

Free functions:

• error_code make_error_code(errc e) noexcept:

returns error_code(static_cast<int>(e), generic_category());

• bool operator<(error_code const &lhs, error_code const &rhs) noexcept:

returns

lhs.category() < rhs.category()

||

lhs.category() == rhs.category() && lhs.value() < rhs.value();

• std::ostream &operator«(std::ostream & os, error_code const &ec):

inserts the following text into os:

os << ec.category().name() << ’:’ << ec.value().

10.9.2 The class ‘error_category’ (C++11)

The class std::error_category serves as a base class for types used to identify the source and

encoding of a particular category of error code.

Before using error_category the <system_error> header file must have been included.

Classes that are derived from error_category to support categories of errors in addition to those

defined by the C++11 standard. Other than that, the behavior of such derived classes should differ

from the be behavior of the error_category class itself. Moreover, such derived classes should not

alter errno’s value, or error states provided by other libraries.

The equality of error_category objects is deducted from the equality of their addresses. As

error_category objects are passed by reference, programs using objects of classes derived from

error_category should ensure that only a single object of each such type is actually used: the class

is designed as a Singleton (cf. Singleton Design Pattern (cf. Gamma et al. (1995) Design Patterns,

Addison-Wesley)): looking at the class’s public interface it becomes clear that no error_category

object can immediately be constructed. There is no public constructor. Nor is it possible to copy

an existing error_category object, as the copy constructor and overloaded assignment operators

have been deleted. Derived classes should enforce these singleton characteristics as well. Here is

the error_category’s non-private class interface:

class error_category

{

public:

error_category(error_category const &) = delete;

virtual ~error_category() noexcept;

error_category& operator=(error_category const &) = delete;

virtual char const *name() const noexcept = 0;

virtual string message(int ev) const = 0;

236 CHAPTER 10. EXCEPTIONS

virtual error_condition

default_error_condition(int ev) const noexcept;

virtual bool equivalent(int code,

error_condition const &condition

) const noexcept;

virtual bool equivalent(error_code const &code,

int condition

) const noexcept;

bool operator==(error_category const &rhs) const noexcept;

bool operator!=(error_category const &rhs) const noexcept;

bool operator<(error_category const &rhs) const noexcept;

protected:

error_category() noexcept;

};

error_category const &generic_category() noexcept;

error_category const &system_category() noexcept;

Members:

• char const *name() const noexcept:

must be overridden, and should return a textual name of the error category;

• string message(int ev) const:

must be overridden, and should return a string describing the error condition denoted

by ev;

• error_condition default_error_condition(int ev) const noexcept:

returns error_condition(ev, *this) (An object of type error_condition that

corresponds to ev);

• bool equivalent(int code, error_condition const &condition) const noexcept:

returns default_error_condition(code) == condition (true if, for the cat-

egory of error represented by *this, code is considered equivalent to condition;

otherwise false);

• bool equivalent(error_code const &code, int condition) const noexcept:

returns *this == code.category() && code.value() == condition (true if,

for the category of error represented by *this, code is considered equivalent to

condition; otherwise false);

• bool operator<(error_category const &rhs) const noexcept:

returns less<const error_category*>()(this, &rhs).

Free functions:

• error_category const &generic_category() noexcept:

returns a reference to an object of a type derived from the class error_category.

Since error_category and its derived classes should be singleton classes, calls to

10.10. EXCEPTION GUARANTEES 237

this function must return references to the same object. The returned object’s name

member shall return a pointer to the string "generic";

• error_category const &system_category() noexcept:

returns a reference to an object of a type derived from the class error_category.

Since error_category and its derived classes should be singleton classes, calls to

this function must return references to the same object. The object’s name member

shall return a pointer to the string "system". If the argument ev corresponds to

a POSIX errno value ‘posv’, then the object’s default_error_condition mem-

ber should return error-condition(posv, generic_category()). Otherwise,

error_condition(ev, system_category()) shall be returned.

10.10 Exception guarantees

Software should be exception safe: the program should continue to work according to its specifica-

tions in the face of exceptions. It is not always easy to realize exception safety. In this section some

guidelines and terminology is introduced when discussing exception safety.

Since exceptions may be generated from within all C++ functions, exceptions may be generated in

many situations. Not all of these situations are immediately and intuitively recognized as situations

where exceptions can be thrown. Consider the following function and ask yourself at which points

exceptions may be thrown:

void fun()

{

X x;

cout << x;

X *xp = new X(x);

cout << (x + *xp);

delete xp;

}

If it can be assumed that cout as used above does not throw an exception there are at least 13

opportunities for exceptions to be thrown:

• X x: the default constructor could throw an exception (#1)

• cout « x: the overloaded insertion operator could throw an exception (#2), but its rvalue

argument might not be an X but, e.g., an int, and so X::operator int() const could be

called which offers yet another opportunity for an exception (#3).

• *xp = new X(x): the copy constructor may throw an exception (#4) and operator new (#5a)

too. But did you realize that this latter exception might not be thrown from ::new, but from,

e.g., X’s own overload of operator new? (#5b)

• cout « (x + *xp): we might be seduced into thinking that two X objects are added. But

it doesn’t have to be that way. A separate class Y might exist and X may have a conver-

sion operator operator Y() const, and operator+(Y const &lhs, X const &rhs),

operator+(X const &lhs, Y const &rhs), and operator+(X const &lhs, X const

&rhs) might all exist. So, if the conversion operator exists, then depending on the kind of

overload of operator+ that is defined either the addition’s left-hand side operand (#6), right-

hand side operand (#7), or operator+ itself (#8) may throw an exception. The resulting value

238 CHAPTER 10. EXCEPTIONS

may again be of any type and so the overloaded cout « return-type-of-operator+ oper-

ator may throw an exception (#9). Since operator+ returns a temporary object it is destroyed

shortly after its use. X’s destructor could throw an exception (#10).

• delete xp: whenever operator new is overloaded operator delete should be overloaded

as well and may throw an exception (#11). And of course, X’s destructor might again throw an

exception (#12).

• }: when the function terminates the local x object is destroyed: again an exception could be

thrown (#13).

It is stressed here (and further discussed in section 10.12) that although it is possible for excep-

tions to leave destructors this would violate the C++ standard and so it must be prevented in well-

behaving C++ programs.

How can we expect to create working programs when exceptions might be thrown at this many

situations?

Exceptions may be generated in a great many situations, but serious problems are prevented when

we’re able to provide at least one of the following exception guarantees:

• The basic guarantee: no resources are leaked. In practice this means: all allocated memory is

properly returned when exceptions are thrown.

• The strong guarantee: the program’s state remains unaltered when an exception is thrown (as

an example: the canonical form of the overloaded assignment operator provides this guarantee)

• The nothrow guarantee: this applies to code for which it can be proven that no exception can

be thrown from it.

10.10.1 The basic guarantee

The basic guarantee dictates that functions that fail to complete their assigned tasks must return

all allocated resources, usually memory, before terminating. Since practically all functions and oper-

ators may throw exceptions and since a function may repeatedly allocate resources the blueprint of

a function allocating resources shown below defines a try block to catch all exceptions that might be

thrown. The catch handler’s task is to return all allocated resources and then rethrow the exception.

void allocator(X **xDest, Y **yDest)

{

X *xp = 0; // non-throwing preamble

Y *yp = 0;

try // this part might throw

{

xp = new X[nX]; // alternatively: allocate one object

yp = new Y[nY];

}

catch(...)

{

delete xp;

throw;

}

10.10. EXCEPTION GUARANTEES 239

delete[] *xDest; // non-throwing postamble

*xDest = xp;

delete[] *yDest;

*yDest = yp;

}

In the pre-try code the pointers to receive the addresses returned by the operator new calls are ini-

tialized to 0. Since the catch handler must be able to return allocated memory they must be available

outside of the try block. If the allocation succeeds the memory pointed to by the destination pointers

is returned and then the pointers are given new values.

Allocation and or initialization might fail. If allocation fails new throws a std::bad_alloc excep-

tion and the catch handler simply deletes 0 pointers which is OK.

If allocation succeeds but the construction of (some) of the objects fails by throwing an exception

then the following is guaranteed to happen:

• The destructors of all successfully allocated objects are called;

• The dynamically allocated memory to contain the objects is returned

Consequently, there is no memory leak when new fails. Inside the above try block new X may fail:

this does not affect the 0-pointers and so the catch handler merely deletes 0 pointers. When new

Y fails xp points to allocated memory and so it must be returned. This happens inside the catch

handler. The final pointer (here: yp) will only be unequal zero when new Y properly completes, so

there’s no need for the catch handler to return the memory pointed at by yp.

10.10.2 The strong guarantee

The strong guarantee dictates that an object’s state should not change in the face of exceptions. This

is realized by performing all operations that might throw on a separate copy of the data. If all this

succeeds then the current object and its (now successfully modified) copy are swapped. An example

of this approach can be observed in the canonical overloaded assignment operator:

Class &operator=(Class const &other)

{

Class tmp(other);

swap(tmp);

return *this;

}

The copy construction might throw an exception, but this keeps the current object’s state intact. If

the copy construction succeeds swap swaps the current object’s contents with tmp’s contents and

returns a reference to the current object. For this to succeed it must be guaranteed that swap won’t

throw an exception. Returning a reference (or a value of a primitive data type) is also guaranteed

not to throw exceptions. The canonical form of the overloaded assignment operator therefore meets

the requirements of the strong guarantee.

Some rules of thumb were formulated that relate to the strong guarantee (cf. Sutter, H., Exceptional

C++, Addison-Wesley, 2000). E.g.,

• All the code that might throw an exception affecting the current state of an object should per-

form its tasks separately from the data controlled by the object. Once this code has performed

its tasks without throwing an exception replace the object’s data by the new data.

240 CHAPTER 10. EXCEPTIONS

• Member functions modifying their object’s data should not return original (contained) objects

by value.

The canonical assignment operator is a good example of the first rule of thumb. Another example is

found in classes storing objects. Consider a class PersonDb storing multiple Person objects. Such

a class might offer a member void add(Person const &next). A plain implementation of this

function (merely intended to show the application of the first rule of thumb, but otherwise completely

disregarding efficiency considerations) might be:

void PersonDb::newAppend(Person const &next)

{

Person *tmp = 0;

try

{

tmp = new Person[d_size + 1];

for (size_t idx = 0; idx < d_size; ++idx)

tmp[idx] = d_data[idx];

tmp[d_size] = next;

}

catch (...)

{

delete[] tmp;

throw;

}

}

void PersonDb::add(Person const &next)

{

Person *tmp = newAppend(next);

delete[] d_data;

d_data = tmp;

++d_size;

}

The (private) newAppendmember’s task is to create a copy of the currently allocated Person objects,

including the data of the next Person object. Its catch handler catches any exception that might

be thrown during the allocation or copy process and returns all memory allocated so far, rethrowing

the exception at the end. The function is exception neutral as it propagates all its exceptions to its

caller. The function also doesn’t modify the PersonDb object’s data, so it meets the strong exception

guarantee. Returning from newAppend the member add may now modify its data. Its existing data

are returned and its d_data pointer is made to point to the newly created array of Person objects.

Finally its d_size is incremented. As these three steps don’t throw exceptions add too meets the

strong guarantee.

The second rule of thumb (member functions modifying their object’s data should not return original

(contained) objects by value) may be illustrated using a member PersonDb::erase(size_t idx).

Here is an implementation attempting to return the original d_data[idx] object:

Person PersonData::erase(size_t idx)

{

if (idx >= d_size)

throw string("Array bounds exceeded");

Person ret(d_data[idx]);

Person *tmp = copyAllBut(idx);

10.10. EXCEPTION GUARANTEES 241

delete[] d_data;

d_data = tmp;

--d_size;

return ret;

}

Although copy elision usually prevents the use of the copy constructor when returning ret, this is

not guaranteed to happen. Furthermore, a copy constructor may throw an exception. If that happens

the function has irrevocably mutated the PersonDb’s data, thus losing the strong guarantee.

Rather than returning d_data[idx] by value it might be assigned to an external Person object

befor mutating PersonDb’s data:

void PersonData::erase(Person *dest, size_t idx)

{

if (idx >= d_size)

throw string("Array bounds exceeded");

*dest = d_data[idx];

Person *tmp = copyAllBut(idx);

delete[] d_data;

d_data = tmp;

--d_size;

}

This modification works, but changes the original assignment of creating a member returning the

original object. However, both functions suffer from a task overload as they modify PersonDb’s data

and also return an original object. In situations like these the one-function-one-responsibility rule of

thumb should be kept in mind: a function should have a single, well defined responsibility.

The preferred approach is to retrieve PersonDb’s objects using a member like Person const &at(size_t

idx) const and to erase an object using a member like void PersonData::erase(size_t idx).

10.10.3 The nothrow guarantee

Exception safety can only be realized if some functions and operations are guaranteed not to throw

exceptions. This is called the nothrow guarantee. An example of a function that must offer the

nothrow guarantee is the swap function. Consider once again the canonical overloaded assignment

operator:

Class &operator=(Class const &other)

{

Class tmp(other);

swap(tmp);

return *this;

}

If swap were allowed to throw exceptions then it would most likely leave the current object in a

partially swapped state. As a result the current object’s state would most likely have been changed.

As tmp has been destroyed by the time a catch handler receives the thrown exception it becomes

very difficult (as in: impossible) to retrieve the object’s original state. Losing the strong guarantee

as a consequence.

242 CHAPTER 10. EXCEPTIONS

The swap function must therefore offer the nothrow guarantee. It must have been designed as if

using the following prototype (see also section 22.7):

void Class::swap(Class &other) noexcept;

Likewise, operator delete and operator delete[] offer the nothrow guarantee, and according

to the C++ standard destructors may themselves not throw exceptions (if they do their behavior is

formally undefined, see also section 10.12 below).

Since the C programming language does not define the exception concept functions from the stan-

dard C library offer the nothrow guarantee by implication. This allowed us to define the generic

swap function in section 9.6 using memcpy.

Operations on primitive types offer the nothrow guarantee. Pointers may be reassigned, references

may be returned etc. etc. without having to worry about exceptions that might be thrown.

10.11 Function try blocks

Exceptions may be generated while a constructor is initializing its members. How can exceptions

generated in such situations be caught by the constructor itself, rather than outside the constructor?

The intuitive solution, nesting the object construction in a try block does not solve the problem.

The exception by then has left the constructor and the object we intended to construct isn’t visible

anymore.

Using a nested try block is illustrated in the next example, where main defines an object of class

PersonDb. Assuming that PersonDb’s constructor throws an exception, there is no way we can ac-

cess the resources that might have been allocated by PersonDb’s constructor from the catch handler

as the pdb object is out of scope:

int main(int argc, char **argv)

{

try

{

PersonDb pdb(argc, argv); // may throw exceptions

... // main()’s other code

}

catch(...) // and/or other handlers

{

... // pdb is inaccessible from here

}

}

Although all objects and variables defined inside a try block are inaccessible from its associated

catch handlers, object data members were available before starting the try block and so they may be

accessed from a catch handler. In the following example the catch handler in PersonDb’s constructor

is able to access its d_data member:

PersonDb::PersonDb(int argc, char **argv)

:

d_data(0),

d_size(0)

{

10.11. FUNCTION TRY BLOCKS 243

try

{

initialize(argc, argv);

}

catch(...)

{

// d_data, d_size: accessible

}

}

Unfortunately, this does not help us much. The initialize member is unable to reassign d_data

and d_size if PersonDb const pdb was defined; the initialize member should at least offer

the basic exception guarantee and return any resources it has acquired before terminating due to

a thrown exception; and although d_data and d_size offer the nothrow guarantee as they are

of primitive data types a class type data member might throw an exception, possibly resulting in

violation of the basic guarantee.

In the next implementation of PersonDb assume that constructor receives a pointer to an already

allocated block of Person objects. The PersonDb object takes ownership of the allocated memory

and it is therefore responsible for the allocated memory’s eventual destruction. Moreover, d_data

and d_size are also used by a composed object PersonDbSupport, having a constructor expecting

a Person const * and size_t argument. Our next implementation may then look something like

this:

PersonDb::PersonDb(Person *pData, size_t size)

:

d_data(pData),

d_size(size),

d_support(d_data, d_size)

{

// no further actions

}

This setup allows us to define a PersonDb const &pdb. Unfortunately, PersonDb cannot offer the

basic guarantee. If PersonDbSupport’s constructor throws an exception it isn’t caught although

d_data already points to allocated memory.

The function try block offers a solution for this problem. A function try block consists of a try

block and its associated handlers. The function try block starts immediately after the function

header, and its block defines the function body. With constructors base class and data member

initializers may be placed between the try keyword and the opening curly brace. Here is our final

implementation of PersonDb, now offering the basic guarantee:

PersonDb::PersonDb(Person *pData, size_t size)

try

:

d_data(pData),

d_size(size),

d_support(d_data, d_size)

{}

catch (...)

{

delete[] d_data;

}

244 CHAPTER 10. EXCEPTIONS

Let’s have a look at a stripped-down example. A constructor defines a function try block. The

exception thrown by the Throw object is initially caught by the object itself. Then it is rethrown. The

surrounding Composer’s constructor also defines a function try block, Throw’s rethrown exception

is properly caught by Composer’s exception handler, even though the exception was generated from

within its member initializer list:

#include <iostream>

class Throw

{

public:

Throw(int value)

try

{

throw value;

}

catch(...)

{

std::cout << "Throw’s exception handled locally by Throw()\n";

throw;

}

};

class Composer

{

Throw d_t;

public:

Composer()

try // NOTE: try precedes initializer list

:

d_t(5)

{}

catch(...)

{

std::cout << "Composer() caught exception as well\n";

}

};

int main()

{

Composer c;

}

When running this example, we’re in for a nasty surprise: the program runs and then breaks with

an abort exception. Here is the output it produces, the last two lines being added by the system’s

final catch-all handler, catching all remaining uncaught exceptions:

Throw’s exception handled locally by Throw()

Composer() caught exception as well

terminate called after throwing an instance of ’int’

Abort

The reason for this is documented in the C++ standard: at the end of a catch-handler belonging to a

constructor or destructor function try block, the original exception is automatically rethrown.

10.12. EXCEPTIONS IN CONSTRUCTORS AND DESTRUCTORS 245

The exception is not rethrown if the handler itself throws another exception, offering the constructor

or destructor a way to replace a thrown exception by another one. The exception is only rethrown if

it reaches the end of the catch handler of a constructor or destructor function try block. Exceptions

caught by nested catch handlers are not automatically rethrown.

As only constructors and destructors rethrow exceptions caught by their function try block catch

handlers the run-time error encountered in the above example may simply be repaired by providing

main with its own function try block:

int main()

try

{

Composer c;

}

catch (...)

{}

Now the program runs as planned, producing the following output:

Throw’s exception handled locally by Throw()

Composer() caught exception as well

A final note: if a function defining a function try block also declares an exception throw list then

only the types of rethrown exceptions must match the types mentioned in the throw list.

10.12 Exceptions in constructors and destructors

Object destructors are only activated for completely constructed objects. Although this may sound

like a truism, there is a subtlety here. If the construction of an object fails for some reason, the

object’s destructor is not called when the object goes out of scope. This could happen if an exception

that is generated by the constructor is not caught by the constructor. If the exception is thrown when

the object has already allocated some memory, then that memory is not returned: its destructor isn’t

called as the object’s construction wasn’t successfully completed.

The following example illustrates this situation in its prototypical form. The constructor of the class

Incomplete first displays a message and then throws an exception. Its destructor also displays a

message:

class Incomplete

{

public:

Incomplete()

{

cerr << "Allocated some memory\n";

throw 0;

}

~Incomplete()

{

cerr << "Destroying the allocated memory\n";

}

};

246 CHAPTER 10. EXCEPTIONS

Next, main() creates an Incomplete object inside a try block. Any exception that may be gener-

ated is subsequently caught:

int main()

{

try

{

cerr << "Creating ‘Incomplete’ object\n";

Incomplete();

cerr << "Object constructed\n";

}

catch(...)

{

cerr << "Caught exception\n";

}

}

When this program is run, it produces the following output:

Creating ‘Incomplete’ object

Allocated some memory

Caught exception

Thus, if Incomplete’s constructor would actually have allocated some memory, the program would

suffer from a memory leak. To prevent this from happening, the following counter measures are

available:

• Prevent the exceptions from leaving the constructor.

If part of the constructor’s body may generate exceptions, then this part may be surrounded

by a try block, allowing the exception to be caught by the constructor itself. This approach is

defensible when the constructor is able to repair the cause of the exception and to complete its

construction as a valid object.

• If an exception is generated by a base class constructor or by a member initializing constructor

then a try block within the constructor’s body won’t be able to catch the thrown exception.

This always results in the exception leaving the constructor and the object is not considered to

have been properly constructed. A try block may include the member initializers, and the try

block’s compound statement becomes the constructor’s body as in the following example:

class Incomplete2

{

Composed d_composed;

public:

Incomplete2()

try

:

d_composed(/* arguments */)

{

// body

}

catch (...)

{}

};

10.12. EXCEPTIONS IN CONSTRUCTORS AND DESTRUCTORS 247

An exception thrown by either the member initializers or the body results in the execution

never reaching the body’s closing curly brace. Instead the catch clause is reached. Since the

constructor’s body isn’t properly completed the object is not considered properly constructed

and eventually the object’s destructor won’t be called.

The catch clause of a constructor’s function try block behaves slightly different than a catch clause

of an ordinary function try block. An exception reaching a constructor’s function try block may be

transformed into another exception (which is thrown from the catch clause) but if no exception is

explicitly thrown from the catch clause the exception originally reaching the catch clause is always

rethrown. Consequently, there’s no way to confine an exception thrown from a base class constructor

or from a member initializer to the constructor: such an exception always propagates to a more

shallow block and in that case the object’s construction is always considered incomplete.

Consequently, if incompletely constructed objects throw exceptions then the constructor’s catch

clause is responsible for preventing memory (generally: resource) leaks. There are several ways

to realize this:

• When multiple inheritance is used: if initial base classes have properly been constructed and a

later base class throws, then the initial base class objects are automatically destroyed (as they

are themselves fully constructed objects)

• When composition is used: already constructed composed objects are automatically destroyed

(as they are fully constructed objects)

• Instead of using plain pointers smart pointers (cf. section 18.4) should be used to manage

dynamically allocated memory. In this case, if the constructor throws either before or after the

allocation of the dynamic memory, then allocated memory is properly returned as shared_ptr

objects are, after all, objects.

• If plain pointer data members must be used then the constructor’s body should first, in its

member initialization section, initialize its plain pointer data members. Then, in its body it

can dynamically allocate memory, reassigning the plain pointer data members. The constructor

must be provided with a function try block whose generic catch clause deletes the memory

pointed at by the class’s plain pointer data members. Example:

class Incomplete2

{

Composed d_composed;

char *d_cp; // plain pointers

int *d_ip;

public:

Incomplete2(size_t nChars, size_t nInts)

try

:

d_composed(/* arguments */), // might throw

d_cp(0),

d_ip(0)

{

preamble(); // might throw

d_cp = new char[nChars]; // might throw

d_ip = new int[nChars]; // might throw

postamble(); // might throw

}

catch (...)

248 CHAPTER 10. EXCEPTIONS

{

delete[] d_cp; // clean up

delete[] d_ip;

}

};

On the other hand, since C++11 offers constructor delegation an object may have been completely

constructed according to the C++ run-time system, but yet its constructor may have thrown an

exception. This happens if a delegated constructor successfully completes (after which the object is

considered ‘completely constructed’), but the constructor itself throws an exception, as illustrated by

the next example:

class Delegate

{

public:

Delegate()

:

Delegate(0)

{

throw 12; // throws but completely constructed

}

Delegate(int x) // completes OK

{}

};

int main()

try

{

Delegate del; // throws

} // del’s destructor is called here

catch (...)

{}

In this example it is the responsibility of Delegate’s designer to ensure that the throwing default

constructor does not invalidate the actions performed by Delegate’s destructor. E.g., if the del-

egated constructor allocates memory to be deleted by the destructor, then the default constructor

should either leave the memory as-is, or it can delete the memory and set the corresponding pointer

to zero thereafter. In any case, it is Delegate’s responsibility to ensure that the object remains in a

valid state, even though it throws an exception.

According to the C++ standard exceptions thrown by destructors may not leave their bodies. Provid-

ing a destructor with a function try block is therefore a violation of the standard: exceptions caught

by a function try block’s catch clause have already left the destructor’s body. If –in violation of the

standard– the destructor is provided with a function try block and an exception is caught by the

try block then that exception is rethrown, similar to what happens in catch clauses of constructor

functions’ try blocks.

The consequences of an exception leaving the destructor’s body is not defined, and may result in

unexpected behavior. Consider the following example:

Assume a carpenter builds a cupboard having a single drawer. The cupboard is finished, and a

customer, buying the cupboard, finds that the cupboard can be used as expected. Satisfied with the

cupboard, the customer asks the carpenter to build another cupboard, this time having two drawers.

When the second cupboard is finished, the customer takes it home and is utterly amazed when the

second cupboard completely collapses immediately after it is used for the first time.

10.12. EXCEPTIONS IN CONSTRUCTORS AND DESTRUCTORS 249

Weird story? Then consider the following program:

int main()

{

try

{

cerr << "Creating Cupboard1\n";

Cupboard1();

cerr << "Beyond Cupboard1 object\n";

}

catch (...)

{

cerr << "Cupboard1 behaves as expected\n";

}

try

{

cerr << "Creating Cupboard2\n";

Cupboard2();

cerr << "Beyond Cupboard2 object\n";

}

catch (...)

{

cerr << "Cupboard2 behaves as expected\n";

}

}

When this program is run it produces the following output:

Creating Cupboard1

Drawer 1 used

Cupboard1 behaves as expected

Creating Cupboard2

Drawer 2 used

Drawer 1 used

terminate called after throwing an instance of ’int’

Abort

The final Abort indicates that the program has aborted instead of displaying a message like Cupboard2

behaves as expected.

Let’s have a look at the three classes involved. The class Drawer has no particular characteristics,

except that its destructor throws an exception:

class Drawer

{

size_t d_nr;

public:

Drawer(size_t nr)

:

d_nr(nr)

{}

~Drawer()

{

250 CHAPTER 10. EXCEPTIONS

cerr << "Drawer " << d_nr << " used\n";

throw 0;

}

};

The class Cupboard1 has no special characteristics at all. It merely has a single composed Drawer

object:

class Cupboard1

{

Drawer left;

public:

Cupboard1()

:

left(1)

{}

};

The class Cupboard2 is constructed comparably, but it has two composed Drawer objects:

class Cupboard2

{

Drawer left;

Drawer right;

public:

Cupboard2()

:

left(1),

right(2)

{}

};

When Cupboard1’s destructor is called Drawer’s destructor is eventually called to destroy its com-

posed object. This destructor throws an exception, which is caught beyond the program’s first try

block. This behavior is completely as expected.

A subtlety here is that Cupboard1’s destructor (and hence Drawer’s destructor) is activated im-

mediately subsequent to its construction. Its destructor is called immediately subsequent to its

construction as Cupboard1() defines an anonymous object. As a result the Beyond Cupboard1

object text is never inserted into std::cerr.

Because of Drawer’s destructor throwing an exception a problem occurs when Cupboard2’s destruc-

tor is called. Of its two composed objects, the second Drawer’s destructor is called first. This destruc-

tor throws an exception, which ought to be caught beyond the program’s second try block. However,

although the flow of control by then has left the context of Cupboard2’s destructor, that object hasn’t

completely been destroyed yet as the destructor of its other (left) Drawer still has to be called.

Normally that would not be a big problem: once an exception is thrown from Cupboard2’s destruc-

tor any remaining actions would simply be ignored, albeit that (as both drawers are properly con-

structed objects) left’s destructor would still have to be called.

This happens here too and left’s destructor also needs to throw an exception. But as we’ve already

left the context of the second try block, the current flow control is now thoroughly mixed up, and

the program has no other option but to abort. It does so by calling terminate(), which in turn calls

10.12. EXCEPTIONS IN CONSTRUCTORS AND DESTRUCTORS 251

abort(). Here we have our collapsing cupboard having two drawers, even though the cupboard

having one drawer behaves perfectly.

The program aborts since there are multiple composed objects whose destructors throw exceptions

leaving the destructors. In this situation one of the composed objects would throw an exception by

the time the program’s flow control has already left its proper context causing the program to abort.

The C++ standard therefore understandably stipulates that exceptions may never leave destructors.

Here is the skeleton of a destructor whose code might throw exceptions. No function try block but

all the destructor’s actions are encapsulated in a try block nested under the destructor’s body.

Class::~Class()

{

try

{

maybe_throw_exceptions();

}

catch (...)

{}

}

252 CHAPTER 10. EXCEPTIONS

Chapter 11

More Operator Overloading

Having covered the overloaded assignment operator in chapter 9, and having shown several exam-

ples of other overloaded operators as well (i.e., the insertion and extraction operators in chapters 3

and 6), we now take a look at operator overloading in general.

11.1 Overloading ‘operator[]()’

As our next example of operator overloading, we introduce a class IntArray encapsulating an ar-

ray of ints. Indexing the array elements is possible using the standard array index operator [],

but additionally checks for array bounds overflow are performed. Furthermore, the index operator

(operator[]) is interesting in that it can be used in expressions as both lvalue and as rvalue.

Here is an example showing the basic use of the class:

int main()

{

IntArray x(20); // 20 ints

for (int i = 0; i < 20; i++)

x[i] = i * 2; // assign the elements

for (int i = 0; i <= 20; i++) // produces boundary overflow

cout << "At index " << i << ": value is " << x[i] << ’\n’;

}

First, the constructor is used to create an object containing 20 ints. The elements stored in the

object can be assigned or retrieved. The first for-loop assigns values to the elements using the

index operator, the second for-loop retrieves the values but also results in a run-time error once the

non-existing value x[20] is addressed. The IntArray class interface is:

#include <cstddef>

class IntArray

{

int *d_data;

size_t d_size;

253

254 CHAPTER 11. MORE OPERATOR OVERLOADING

public:

IntArray(size_t size = 1);

IntArray(IntArray const &other);

~IntArray();

IntArray const &operator=(IntArray const &other);

// overloaded index operators:

int &operator[](size_t index); // first

int const &operator[](size_t index) const; // second

void swap(IntArray &other); // trivial

private:

void boundary(size_t index) const;

int &operatorIndex(size_t index) const;

};

This class has the following characteristics:

• One of its constructors has a size_t parameter having a default argument value, specifying

the number of int elements in the object.

• The class internally uses a pointer to reach allocated memory. Hence, the necessary tools are

provided: a copy constructor, an overloaded assignment operator and a destructor.

• Note that there are two overloaded index operators. Why are there two?

The first overloaded index operator allows us to reach and modify the elements of non-constant

IntArray objects. This overloaded operator’s prototype is a function returning a reference to

an int. This allows us to use expressions like x[10] as rvalues or lvalues.

With non-const IntArray objects operator[] can therefore be used to retrieve and to assign

values. The return value of the non-const operator[] member is not an int const &, but

an int &. In this situation we don’t use const, as we must be able to modify the element we

want to access when the operator is used as lvalue.

This whole scheme fails if there’s nothing to assign. Consider the situation where we have

an IntArray const stable(5). Such an object is an immutable const object. The compiler

detects this and refuses to compile this object definition if only the non-const operator[] is

available. Hence the second overloaded index operator is added to the class’s interface. Here

the return value is an int const &, rather than an int &, and the member function itself is

a const member function. This second form of the overloaded index operator is only used with

const objects. It is used for value retrieval instead of value assignment. That, of course, is

precisely what we want when using const objects. In this situation members are overloaded

only by their const attribute. This form of function overloading was introduced earlier in the

C++ Annotations (sections 2.5.4 and 7.7).

Since IntArray stores values of a primitive type IntArray’s operator[] const could also

have defined a value return type. However, with objects one usually doesn’t want the extra

copying that’s implied with value return types. In those cases const & return values are

preferred for const member functions. So, in the IntArray class an int return value could

have been used as well, resulting in the following prototype:

int IntArray::operator[](size_t index) const;

• As there is only one pointer data member, the destruction of the memory allocated by the object

is a simple delete[] data.

11.1. OVERLOADING ‘OPERATOR[]()’ 255

Now, the implementation of the members (omitting the trivial implementation of swap, cf. chapter

9) are:

#include "intarray.ih"

IntArray::IntArray(size_t size)

:

d_size(size)

{

if (d_size < 1)

throw string("IntArray: size of array must be >= 1");

d_data = new int[d_size];

}

IntArray::IntArray(IntArray const &other)

:

d_size(other.d_size),

d_data(new int[d_size])

{

memcpy(d_data, other.d_data, d_size * sizeof(int));

}

IntArray::~IntArray()

{

delete[] d_data;

}

IntArray const &IntArray::operator=(IntArray const &other)

{

IntArray tmp(other);

swap(tmp);

return *this;

}

int &IntArray::operatorIndex(size_t index) const

{

boundary(index);

return d_data[index];

}

int &IntArray::operator[](size_t index)

{

return operatorIndex(index);

}

int const &IntArray::operator[](size_t index) const

{

return operatorIndex(index);

}

void IntArray::boundary(size_t index) const

{

if (index < d_size)

256 CHAPTER 11. MORE OPERATOR OVERLOADING

return;

ostringstream out;

out << "IntArray: boundary overflow, index = " <<

index << ", should be < " << d_size << ’\n’;

throw out.str();

}

Note how the operator[]members were implemented: as non-const members may call const mem-

ber functions and as the implementation of the const member function is identical to the non-const

member function’s implementation both operator[]members could be defined inline using an aux-

iliary function int &operatorIndex(size_t index) const. A const member function may

return a non-const reference (or pointer) return value, referring to one of the data members of its

object. Of course, this is a potentially dangerous backdoor that may break data hiding. However,

the members in the public interface prevent this breach and so the two public operator[] mem-

bers may themselves safely call the same int &operatorIndex() const member, that defines a

private backdoor.

11.2 Overloading the insertion and extraction operators

Classes may be adapted in such a way that their objects may be inserted into and extracted from,

respectively, a std::ostream and std::istream.

The class std::ostream defines insertion operators for primitive types, such as int, char *,

etc.. In this section we learn how to extend the existing functionality of classes (in particular

std::istream and std::ostream) in such a way that they can be used also in combination with

classes developed much later in history.

In particular we will show how the insertion operator can be overloaded allowing the insertion of

any type of object, say Person (see chapter 9), into an ostream. Having defined such an overloaded

operator we’re able to use the following code:

Person kr("Kernighan and Ritchie", "unknown", "unknown");

cout << "Name, address and phone number of Person kr:\n" << kr << ’\n’;

The statement cout << kr uses operator<<. This member function has two operands: an

ostream & and a Person &. The required action is defined in an overloaded free function operator<<

expecting two arguments:

// declared in ‘person.h’

std::ostream &operator<<(std::ostream &out, Person const &person);

// defined in some source file

ostream &operator<<(ostream &out, Person const &person)

{

return

out <<

"Name: " << person.name() << ", "

"Address: " << person.address() << ", "

"Phone: " << person.phone();

}

11.2. OVERLOADING THE INSERTION AND EXTRACTION OPERATORS 257

The free function operator<< has the following noteworthy characteristics:

• The function returns a reference to an ostream object, to enable ‘chaining’ of the insertion

operator.

• The two operands of operator<< are passed to the free function as its arguments. In the

example, the parameter out was initialized by cout, the parameter person by kr.

In order to overload the extraction operator for, e.g., the Person class, members are needed modify-

ing the class’s private data members. Such modifiers are normally offered by the class interface. For

the Person class these members could be the following:

void setName(char const *name);

void setAddress(char const *address);

void setPhone(char const *phone);

These members may easily be implemented: the memory pointed to by the corresponding data mem-

ber must be deleted, and the data member should point to a copy of the text pointed to by the

parameter. E.g.,

void Person::setAddress(char const *address)

{

delete[] d_address;

d_address = strdupnew(address);

}

A more elaborate function should check the reasonableness of the new address (address also shouldn’t

be a 0-pointer). This however, is not further pursued here. Instead, let’s have a look at the final

operator>>. A simple implementation is:

istream &operator>>(istream &in, Person &person)

{

string name;

string address;

string phone;

if (in >> name >> address >> phone) // extract three strings

{

person.setName(name.c_str());

person.setAddress(address.c_str());

person.setPhone(phone.c_str());

}

return in;

}

Note the stepwise approach that is followed here. First, the required information is extracted us-

ing available extraction operators. Then, if that succeeds, modifiers are used to modify the data

members of the object to be extracted. Finally, the stream object itself is returned as a reference.

258 CHAPTER 11. MORE OPERATOR OVERLOADING

11.3 Conversion operators

A class may be constructed around a built-in type. E.g., a class String, constructed around the

char * type. Such a class may define all kinds of operations, like assignments. Take a look at the

following class interface, designed after the string class:

class String

{

char *d_string;

public:

String();

String(char const *arg);

~String();

String(String const &other);

String const &operator=(String const &rvalue);

String const &operator=(char const *rvalue);

};

Objects of this class can be initialized from a char const *, and also from a String itself. There

is an overloaded assignment operator, allowing the assignment from a String object and from a

char const *
1.

Usually, in classes that are less directly linked to their data than this String class, there will be

an accessor member function, like a member char const *String::c_str() const. However,

the need to use this latter member doesn’t appeal to our intuition when an array of String objects

is defined by, e.g., a class StringArray. If this latter class provides the operator[] to access

individual String members, it would most likely offer at least the following class interface:

class StringArray

{

String *d_store;

size_t d_n;

public:

StringArray(size_t size);

StringArray(StringArray const &other);

StringArray const &operator=(StringArray const &rvalue);

~StringArray();

String &operator[](size_t index);

};

This interface allows us to assign String elements to each other:

StringArray sa(10);

sa[4] = sa[3]; // String to String assignment

But it is also possible to assign a char const * to an element of sa:

1Note that the assignment from a char const * also allows the null-pointer. An assignment like stringObject = 0

is perfectly in order.

11.3. CONVERSION OPERATORS 259

sa[3] = "hello world";

Here, the following steps are taken:

• First, sa[3] is evaluated. This results in a String reference.

• Next, the String class is inspected for an overloaded assignment, expecting a char const

* to its right-hand side. This operator is found, and the string object sa[3] receives its new

value.

Now we try to do it the other way around: how to access the char const * that’s stored in sa[3]?

The following attempt fails:

char const *cp = sa[3];

It fails since we would need an overloaded assignment operator for the ’class char const *’. Unfor-

tunately, there isn’t such a class, and therefore we can’t build that overloaded assignment operator

(see also section 11.13). Furthermore, casting won’t work as the compiler doesn’t know how to cast

a String to a char const *. How to proceed?

One possibility is to define an accessor member function c_str():

char const *cp = sa[3].c_str()

This compiles fine but looks clumsy.... A far better approach would be to use a conversion operator.

A conversion operator is a kind of overloaded operator, but this time the overloading is used to cast

the object to another type. In class interfaces, the general form of a conversion operator is:

operator <type>() const;

Conversion operators usually are const member functions: they are automatically called when

their objects are used as rvalues in expressions having a type lvalue. Using a conversion operator

a String object may be interpreted as a char const * rvalue, allowing us to perform the above

assignment.

Conversion operators are somewhat dangerous. The conversion is automatically performed by the

compiler and unless its use is perfectly transparent it may confuse those who read code in which

conversion operators are used. E.g., novice C++ programmers are frequently confused by statements

like ‘if (cin) ...’.

As a rule of thumb: classes should define at most one conversion operator. Multiple conversion op-

erators may be defined but frequently result in ambiguous code. E.g., if a class defines operator

bool() const and operator int() const then passing an object of this class to a function ex-

pecting a size_t argument results in an ambiguity as an int and a bool may both be used to

initialize a size_t.

In the current example, the class String could define the following conversion operator for char

const *:

String::operator char const *() const

{

return d_string;

}

260 CHAPTER 11. MORE OPERATOR OVERLOADING

Notes:

• Conversion operators do not define return types. The conversion operator returns a value of

the type specified beyond the operator keyword.

• In certain situations (e.g., when a String argument is passed to a function specifying an

ellipsis parameter) the compiler needs a hand to disambiguate our intentions. A static_cast

solves the problem.

• With template functions conversion operators may not work immediately as expected. For ex-

ample, when defining a conversion operator X::operator std::string const() const

then cout « X() won’t compile. The reason for this is explained in section 20.9, but a short-

cut allowing the conversion operator to work is to define the following overloaded operator«

function:

std::ostream &operator<<(std::ostream &out, std::string const &str)

{

return out.write(str.data(), str.length());

}

Conversion operators are also used when objects of classes defining conversion operators are inserted

into streams. Realize that the right hand sides of insertion operators are function parameters that

are initialized by the operator’s right hand side arguments. The rules are simple:

• If a class X defining a conversion operator also defines an insertion operator accepting an X

object the insertion operator is used;

• Otherwise, if the type returned by the conversion operator is insertable then the conversion

operator is used;

• Otherwise, a compilation error results. Note that this happens if the type returned by the

conversion operator itself defines a conversion operator to a type that may be inserted into a

stream.

In the following example an object of class Insertable is directly inserted; an object of the class

Convertor uses the conversion operator; an object of the class Error cannot be inserted since

it does not define an insertion operator and the type returned by its conversion operator cannot be

inserted either (Text does define an operator int() const, but the fact that a Text itself cannot

be inserted causes the error):

#include <iostream>

#include <string>

using namespace std;

struct Insertable

{

operator int() const

{

cout << "op int()\n";

}

};

ostream &operator<<(ostream &out, Insertable const &ins)

{

return out << "insertion operator";

11.4. THE KEYWORD ‘EXPLICIT’ 261

}

struct Convertor

{

operator Insertable() const

{

return Insertable();

}

};

struct Text

{

operator int() const

{

return 1;

}

};

struct Error

{

operator Text() const

{

return Text();

}

};

int main()

{

Insertable insertable;

cout << insertable << ’\n’;

Convertor convertor;

cout << convertor << ’\n’;

Error error;

cout << error << ’\n’;

}

Some final remarks regarding conversion operators:

• A conversion operator should be a ‘natural extension’ of the facilities of the object. For example,

the stream classes define operator bool(), allowing constructions like if (cin).

• A conversion operator should return an rvalue. It should do so to enforce data-hiding and

because it is the intended use of the conversion operator. Defining a conversion operator as an

lvalue (e.g., defining an operator int &() conversion operator) opens up a back door, and

the operator can only be used as lvalue when explicitly called (as in: x.operator int&() =

5). Don’t use it.

• Conversion operators should be defined as const member functions as they don’t modify their

object’s data members.

• Conversion operators returning composed objects should return const references to these ob-

jects whenever possible to avoid calling the composed object’s copy constructor.

11.4 The keyword ‘explicit’

Conversions are not only performed by conversion operators, but also by constructors accepting one

argument (i.e., constructors having one or multiple parameters, specifying default argument values

262 CHAPTER 11. MORE OPERATOR OVERLOADING

for all parameters or for all but the first parameter).

Assume a data base class DataBase is defined in which Person objects can be stored. It defines a

Person *d_data pointer, and so it offers a copy constructor and an overloaded assignment operator.

In addition to the copy constructor DataBase offers a default constructor and several additional

constructors:

• DataBase(Person const &): the DataBase initially contains a single Person object;

• DataBase(istream &in): the data about multiple persons are read from in.

• DataBase(size_t count, istream &in = cin): the data of count persons are read from

in, by default the standard input stream.

The above constructors all are perfectly reasonable. But they also allow the compiler to compile the

following code without producing any warning at all:

DataBase db;

DataBase db2;

Person person;

db2 = db; // 1

db2 = person; // 2

db2 = 10; // 3

db2 = cin; // 4

Statement 1 is perfectly reasonable: db is used to redefine db2. Statement 2 might be understand-

able since we designed DataBase to contain Person objects. Nevertheless, we might question the

logic that’s used here as a Person is not some kind of DataBase. The logic becomes even more

opaque when looking at statements 3 and 4. Statement 3 in effect waits for the data of 10 persons

to appear at the standard input stream. Nothing like that is suggested by db2 = 10.

All four statements are the result of implicit promotions. Since constructors accepting, respectively a

Person, an istream, and a size_t and an istream have been defined for DataBase and since the

assignment operator expects a DataBase right-hand side (rhs) argument the compiler first converts

the rhs arguments to anonymous DataBase objects which are then assigned to db2.

It is good practice to prevent implicit promotions by using the explicit modifier when declaring

a constructor. Constructors using the explicit modifier can only be used to construct objects

explicitly. Statements 2-4 would not have compiled if the constructors expecting one argument would

have been declared using explicit. E.g.,

explicit DataBase(Person const &person);

explicit DataBase(size_t count, std:istream &in);

Having declared all constructors accepting one argument as explicit the above assignments would

have required the explicit specification of the appropriate constructors, thus clarifying the program-

mer’s intent:

DataBase db;

DataBase db2;

Person person;

11.5. OVERLOADING THE INCREMENT AND DECREMENT OPERATORS 263

db2 = db; // 1

db2 = DataBase(person); // 2

db2 = DataBase(10); // 3

db2 = DataBase(cin); // 4

As a rule of thumb prefix one argument constructors with the explicit keyword unless implicit

promotions are perfectly natural (string’s char const * accepting constructor is a case in point).

11.4.1 Explicit conversion operators (C++11)

In addition to explicit constructors, the C++11 standard adds explicit conversion operators to C++.

For example, a class might define operator bool() const returning true if an object of that

class is in a usable state and false if not. Since the type bool is an arithmetic type this could

result in unexpected or unintended behavior. Consider:

class StreamHandler

{

public:

operator bool() const; // true: object is fit for use

...

};

int fun(StreamHandler &sh)

{

int sx;

if (sh) // intended use of operator bool()

... use sh as usual; also use ‘sx’

process(sh); // typo: ‘sx’ was intended

}

In this example process unintentionally receives the value returned by operator bool using the

implicit conversion from bool to int.

With explicit conversion operators implicit conversions like the one shown in the example are

prevented and such conversion operators can only be used in situations where the converted type is

explicitly required. E.g., in the condition sections of if or repetition statements where a bool value

is expected. In such cases an explicit operator bool() conversion operator would automati-

cally be used.

11.5 Overloading the increment and decrement operators

Overloading the increment operator (operator++) and decrement operator (operator−−) intro-

duces a small problem: there are two versions of each operator, as they may be used as postfix

operator (e.g., x++) or as prefix operator (e.g., ++x).

Used as postfix operator, the value’s object is returned as an rvalue, temporary const object and

the post-incremented variable itself disappears from view. Used as prefix operator, the variable

is incremented, and its value is returned as lvalue and it may be altered again by modifying the

264 CHAPTER 11. MORE OPERATOR OVERLOADING

prefix operator’s return value. Whereas these characteristics are not required when the operator is

overloaded, it is strongly advised to implement these characteristics in any overloaded increment or

decrement operator.

Suppose we define a wrapper class around the size_t value type. Such a class could offer the

following (partially shown) interface:

class Unsigned

{

size_t d_value;

public:

Unsigned();

explicit Unsigned(size_t init);

Unsigned &operator++();

}

The class’s last member declares the prefix overloaded increment operator. The returned lvalue is

Unsigned &. The member is easily implemented:

Unsigned &Unsigned::operator++()

{

++d_value;

return *this;

}

To define the postfix operator, an overloaded version of the operator is defined, expecting a (dummy)

int argument. This might be considered a kludge, or an acceptable application of function overload-

ing. Whatever your opinion in this matter, the following can be concluded:

• Overloaded increment and decrement operators without parameters are prefix operators, and

should return references to the current object.

• Overloaded increment and decrement operators having an int parameter are postfix operators,

and should return a value which is a copy of the object at the point where its postfix operator

is used.

The postfix increment operator is declared as follows in the class Unsigned’s interface:

Unsigned operator++(int);

It may be implemented as follows:

Unsigned Unsigned::operator++(int)

{

Unsigned tmp(*this);

++d_value;

return tmp;

}

Note that the operator’s parameter is not used. It is only part of the implementation to disambiguate

the prefix- and postfix operators in implementations and declarations.

11.6. OVERLOADING BINARY OPERATORS 265

In the above example the statement incrementing the current object offers the nothrow guarantee

as it only involves an operation on a primitive type. If the initial copy construction throws then the

original object is not modified, if the return statement throws the object has safely been modified.

But incrementing an object could itself throw exceptions. How to implement the increment operators

in that case? Once again, swap is our friend. Here are the pre- and postfix operators offering the

strong guarantee when the member increment performing the increment operation may throw:

Unsigned &Unsigned::operator++()

{

Unsigned tmp(*this);

tmp.increment();

swap(tmp);

return *this;

}

Unsigned Unsigned::operator++(int)

{

Unsigned tmp(*this);

tmp.increment();

swap(tmp);

return tmp;

}

The postfix increment operator first creates a copy of the current object. That copy is incremented

and then swapped with the current object. If increment throws the current object remains unal-

tered; the swap operation ensures that the original object is returned and the current object becomes

the incremented object.

When calling the increment or decrement operator using its full member function name then any

int argument passed to the function results in calling the postfix operator. Omitting the argument

results in calling the prefix operator. Example:

Unsigned uns(13);

uns.operator++(); // prefix-incrementing uns

uns.operator++(0); // postfix-incrementing uns

11.6 Overloading binary operators

In various classes overloading binary operators (like operator+) can be a very natural extension

of the class’s functionality. For example, the std::string class has various overloaded forms of

operator+.

Most binary operators come in two flavors: the plain binary operator (like the + operator) and the

binary assignment variant (like the += operator). Whereas the plain binary operators return values,

the binary assignment operators return a reference to the object to which the operator was applied.

For example, with std::string objects the following code (annotations below the example) may be

used:

std::string s1;

std::string s2;

std::string s3;

266 CHAPTER 11. MORE OPERATOR OVERLOADING

s1 = s2 += s3; // 1

(s2 += s3) + " postfix"; // 2

s1 = "prefix " + s3; // 3

"prefix " + s3 + "postfix"; // 4

• at // 1 the contents of s3 is added to s2. Next, s2 is returned, and its new contents are

assigned to s1. Note that += returns s2 itself.

• at // 2 the contents of s3 is also added to s2, but as += returns s2 itself, it’s possible to add

some more to s2

• at // 3 the + operator returns a std::string containing the concatenation of the text prefix

and the contents of s3. This string returned by the + operator is thereupon assigned to s1.

• at // 4 the + operator is applied twice. The effect is:

1. The first + returns a std::string containing the concatenation of the text prefix and

the contents of s3.

2. The second + operator takes this returned string as its left hand value, and returns a

string containing the concatenated text of its left and right hand operands.

3. The string returned by the second + operator represents the value of the expression.

Consider the following code, in which a class Binary supports an overloaded operator+:

class Binary

{

public:

Binary();

Binary(int value);

Binary operator+(Binary const &rvalue);

};

int main()

{

Binary b1;

Binary b2(5);

b1 = b2 + 3; // 1

b1 = 3 + b2; // 2

}

Compilation of this little program fails for statement // 2, with the compiler reporting an error

like:

error: no match for ’operator+’ in ’3 + b2’

Why is statement // 1 compiled correctly whereas statement // 2 won’t compile?

In order to understand this remember promotions. As we have seen in section 11.4, constructors

expecting a single argument may be implicitly activated when an argument of an appropriate type

is provided. We’ve encountered this repeatedly with std::string objects, where an NTBS may be

used to initialize a std::string object.

11.6. OVERLOADING BINARY OPERATORS 267

Analogously, in statement // 1, the + operator is called for the b2 object. This operator expects

another Binary object as its right hand operand. However, an int is provided. As a constructor

Binary(int) exists, the int value is first promoted to a Binary object. Next, this Binary object

is passed as argument to the operator+ member.

In statement // 2 no promotions are available: here the + operator is applied to an lvalue that is

an int. An int is a primitive type and primitive types have no concept of ‘constructors’, ‘member

functions’ or ‘promotions’.

How, then, are promotions of left-hand operands implemented in statements like "prefix " +

s3? Since promotions are applied to function arguments, we must make sure that both operands of

binary operators are arguments. This implies that plain binary operators supporting promotions for

either their left-hand side operand or right-hand side operand should be declared as free operators,

also called free functions.

Functions like the plain binary operators conceptually belong to the class for which they implement

the binary operator. Consequently they should be declared in the class’s header file. We cover

their implementations shortly, but here is our first revision of the declaration of the class Binary,

declaring an overloaded + operator as a free function:

class Binary

{

public:

Binary();

Binary(int value);

};

Binary operator+(Binary const &lhs, Binary const &rhs);

By defining binary operators as free functions, the following promotions are possible:

• If the left-hand operand is of the intended class type, the right hand argument is promoted

whenever possible;

• If the right-hand operand is of the intended class type, the left hand argument is promoted

whenever possible;

• No promotions occur when none of the operands are of the intended class type;

• An ambiguity occurs when promotions to different classes are possible for the two operands.

For example:

class A;

class B

{

public:

B(A const &a);

};

class A

{

public:

A();

A(B const &b);

};

268 CHAPTER 11. MORE OPERATOR OVERLOADING

A operator+(A const &a, B const &b);

B operator+(B const &b, A const &a);

int main()

{

A a;

a + a;

};

Here, both overloaded + operators are possible when compiling the statement a + a. The

ambiguity must be solved by explicitly promoting one of the arguments, e.g., a + B(a) allows

the compiler to resolve the ambiguity to the first overloaded + operator.

The next step is to implement the corresponding overloaded binary assignment operator, having the

form @=, with @ being a binary operator. As this operator always has a left-hand operand which is

an object of its own class, it is implemented as a true member function. Furthermore, the binary

assignment operator should return a reference to the object to which the binary operation applies,

as the object might be modified in the same statement. E.g., (s2 += s3) + " postfix". Here is

our second revision of the class Binary, showing both the declaration of the plain binary operator

and the corresponding binary assignment operator:

class Binary

{

public:

Binary();

Binary(int value);

Binary &operator+=(Binary const &rhs);

};

Binary operator+(Binary const &lhs, Binary const &rhs);

How should the binary assignment operator be implemented? When implementing the binary as-

signment operator the strong guarantee should again be kept in mind. Use a temporary object and

swap if the binary operation might throw. Example:

Binary &operator+=(Binary const &other)

{

Binary tmp(*this);

tmp.add(other); // this may throw

swap(tmp);

return *this;

}

It’s easy to implement the plain binary operator for classes offering the matching binary assignment

operator: the lhs argument is copied into a Binary tmp to which the rhs operand is added. Then

tmp is returned. The copy construction and two statements could be contracted into one single

return statement, but then compilers usually aren’t able to apply copy elision in this case. But copy

elision is usually used when the steps are taken separately:

class Binary

11.6. OVERLOADING BINARY OPERATORS 269

{

public:

Binary();

Binary(int value);

Binary &operator+=(Binary const &other);

};

Binary operator+(Binary const &lhs, Binary const &rhs)

{

Binary tmp(lhs);

tmp += rhs;

return tmp;

}

But wait! Remember the design principle for move-aware classes that was given in section 9.7.8?

When implementing binary operators we’re doing exactly that what was mentioned in that design

principle. A temporay object is constructed and the binary assignment operation is applied to the

temporary object.

If the class Binary is a move-aware class then we can add a move-aware binary operator to our class

at very little cost. The actual work is performed by the binary assignment operator, as described.

However, this operator is called from the move-aware binary operator having prototype

Binary operator+(Binary &<mp, Binary const &rhs);

The traditional binary operator’s implementation now simply consists of two steps:

• A copy of the left-hand side operand is made using the class’s copy constructor;

• The move-aware binary operator is called, passing it the anonymized copy as its left-hand side

operand and returning its result as the binary operator’s result.

Here is the declaration and implementation of the traditional and move-aware binary assignment

operator of the class Binary for operator+:

class Binary

{

public:

Binary();

Binary(int value);

Binary(Binary &&tmp) = default; // or roll your own

Binary &operator+=(Binary const &other); // see the text

};

Binary operator+(Binary const &lhs, Binary const &rhs)

{

Binary tmp(lhs);

return operator+(std::move(tmp), rhs);

}

Binary operator+(Binary &&lhs, Binary const &rhs)

270 CHAPTER 11. MORE OPERATOR OVERLOADING

{

return lhs += rhs;

}

11.7 Overloading ‘operator new(size_t)’

When operator new is overloaded, it must define a void * return type, and its first parameter

must be of type size_t. The default operator new defines only one parameter, but overloaded

versions may define multiple parameters. The first one is not explicitly specified but is deducted from

the size of objects of the class for which operator new is overloaded. In this section overloading

operator new is discussed. Overloading new[] is discussed in section 11.9.

It is possible to define multiple versions of the operator new, as long as each version defines its

own unique set of arguments. When overloaded operator newmembers must dynamically allocate

memory they can do so using the global operator new, applying the scope resolution operator ::.

In the next example the overloaded operator new of the class String initializes the substrate of

dynamically allocated String objects to 0-bytes:

#include <cstddef>

#include <iosfwd>

class String

{

std::string *d_data;

public:

void *operator new(size_t size)

{

return memset(::operator new(size), 0, size);

}

bool empty() const

{

return d_data == 0;

}

};

The above operator new is used in the following program, illustrating that even though String’s

default constructor does nothing the object’s data are initialized to zeroes:

#include "string.h"

#include <iostream>

using namespace std;

int main()

{

String *sp = new String;

cout << boolalpha << sp->empty() << ’\n’; // shows: true

}

At new String the following took place:

11.7. OVERLOADING ‘OPERATOR NEW(SIZE_T)’ 271

• First, String::operator new was called, allocating and initializing a block of memory, the

size of a String object.

• Next, a pointer to this block of memory was passed to the (default) String constructor. Since

no constructor was defined, the constructor itself didn’t do anything at all.

As String::operator new initialized the allocated memory to zero bytes the allocated String

object’s d_data member had already been initialized to a 0-pointer by the time it started to exist.

All member functions (including constructors and destructors) we’ve encountered so far define a (hid-

den) pointer to the object on which they should operate. This hidden pointer becomes the function’s

this pointer.

In the next example of pseudo C++ code, the pointer is explicitly shown to illustrate what’s happen-

ing when operator new is used. In the first part a String object str is directly defined, in the

second part of the example the (overloaded) operator new is used:

String::String(String *const this); // real prototype of the default

// constructor

String *sp = new String; // This statement is implemented

// as follows:

String *sp = static_cast<String *>(// allocation

String::operator new(sizeof(String))

);

String::String(sp); // initialization

In the above fragment the member functions were treated as object-less member functions of the

class String. Such members are called static member functions (cf. chapter 8). Actually, operator

new is such a static member function. Since it has no this pointer it cannot reach data members of

the object for which it is expected to make memory available. It can only allocate and initialize the

allocated memory, but cannot reach the object’s data members by name as there is as yet no data

object layout defined.

Following the allocation, the memory is passed (as the this pointer) to the constructor for further

processing.

Operator new can have multiple parameters. The first parameter is initialized as an implicit ar-

gument and is always a size_t parameter. Additional overloaded operators may define additional

parameters. An interesting additional operator new is the placement new operator. With the

placement new operator a block of memory has already been set aside and one of the class’s con-

structors is used to initialize that memory. Overloading placement new requires an operator new

having two parameters: size_t and char *, pointing to the memory that was already available.

The size_t parameter is implicitly initialized, but the remaining parameters must explicitly be

initialized using arguments to operator new. Hence we reach the familiar syntactical form of the

placement new operator in use:

char buffer[sizeof(String)]; // predefined memory

String *sp = new(buffer) String; // placement new call

The declaration of the placement new operator in our class String looks like this:

void *operator new(size_t size, char *memory);

272 CHAPTER 11. MORE OPERATOR OVERLOADING

It could be implemented like this (also initializing the String’s memory to 0-bytes):

void *String::operator new(size_t size, char *memory)

{

return memset(memory, 0, size);

}

Any other overloaded version of operator new could also be defined. Here is an example showing

the use and definition of an overloaded operator new storing the object’s address immediately in

an existing array of pointers to String objects (assuming the array is large enough):

// use:

String *next(String **pointers, size_t *idx)

{

return new(pointers, (*idx)++) String;

}

// implementation:

void *String::operator new(size_t size, String **pointers, size_t idx)

{

return pointers[idx] = ::operator new(size);

}

11.8 Overloading ‘operator delete(void *)’

The delete operator may also be overloaded. In fact it’s good practice to overload operator

delete whenever operator new is also overloaded.

Operator deletemust define a void * parameter. A second overloaded version defining a second

parameter of type size_t is related to overloading operator new[] and is discussed in section

11.9.

Overloaded operator delete members return void.

The ‘home-made’ operator delete is called when deleting a dynamically allocated object after

executing the destructor of the associated class. So, the statement

delete ptr;

with ptr being a pointer to an object of the class String for which the operator delete was over-

loaded, is a shorthand for the following statements:

ptr->~String(); // call the class’s destructor

// and do things with the memory pointed to by ptr

String::operator delete(ptr);

The overloaded operator delete may do whatever it wants to do with the memory pointed to by

ptr. It could, e.g., simply delete it. If that would be the preferred thing to do, then the default

delete operator can be called using the :: scope resolution operator. For example:

void String::operator delete(void *ptr)

11.9. OPERATORS ‘NEW[]’ AND ‘DELETE[]’ 273

{

// any operation considered necessary, then, maybe:

::delete ptr;

}

To declare the above overloaded operator delete simply add the following line to the class’s in-

terface:

void operator delete(void *ptr);

Like operator new operator delete is a static member function (see also chapter 8).

11.9 Operators ‘new[]’ and ‘delete[]’

In sections 9.1.1, 9.1.2 and 9.2.1 operator new[] and operator delete[]were introduced. Like

operator new and operator delete the operators new[] and delete[] may be overloaded.

As it is possible to overload new[] and delete[] as well as operator new and operator delete,

one should be careful in selecting the appropriate set of operators. The following rule of thumb

should always be applied:

If new is used to allocate memory, delete should be used to deallocate memory. If new[]

is used to allocate memory, delete[] should be used to deallocate memory.

By default these operators act as follows:

• operator new is used to allocate a single object or primitive value. With an object, the object’s

constructor is called.

• operator delete is used to return the memory allocated by operator new. Again, with

class-type objects, the class’s destructor is called.

• operator new[] is used to allocate a series of primitive values or objects. If a series of objects

is allocated, the class’s default constructor is called to initialize each object individually.

• operator delete[] is used to delete the memory previously allocated by new[]. If objects

were previously allocated, then the destructor is called for each individual object. Be careful,

though, when pointers to objects were allocated. If pointers to objects were allocated the de-

structors of the objects to which the allocated pointers point won’t automatically be called. A

pointer is a primitive type and so no further action is taken when it is returned to the common

pool.

11.9.1 Overloading ‘new[]’

To overload operator new[] in a class (e.g., in the class String) add the following line to the

class’s interface:

void *operator new[](size_t size);

274 CHAPTER 11. MORE OPERATOR OVERLOADING

The member’s size parameter is implicitly provided and is initialized by C++’s run-time system to

the amount of memory that must be allocated. Like the simple one-object operator new it should

return a void *. The number of objects that must be initialized can easily be computed from

size / sizeof(String) (and of course replacing String by the appropriate class name when

overloading operator new[] for another class). The overloaded new[] member may allocate raw

memory using e.g., the default operator new[] or the default operator new:

void *operator new[](size_t size)

{

return ::operator new[](size);

// alternatively:

// return ::operator new(size);

}

Before returning the allocated memory the overloaded operator new[] has a chance to do some-

thing special. It could, e.g., initialize the memory to zero-bytes.

Once the overloaded operator new[] has been defined, it is automatically used in statements like:

String *op = new String[12];

Like operator new additional overloads of operator new[] may be defined. One opportunity for

an operator new[] overload is overloading placement new specifically for arrays of objects. This

operator is available by default but becomes unavailable once at least one overloaded operator

new[] is defined. Implementing placement new is not difficult. Here is an example, initializing the

available memory to 0-bytes before returning:

void *String::operator new[](size_t size, char *memory)

{

return memset(memory, 0, size);

}

To use this overloaded operator, the second parameter must again be provided, as in:

char buffer[12 * sizeof(String)];

String *sp = new(buffer) String[12];

11.9.2 Overloading ‘delete[]’

To overload operator delete[] in a class String add the following line to the class’s interface:

void operator delete[](void *memory);

Its parameter is initialized to the address of a block of memory previously allocated by String::new[].

There are some subtleties to be aware of when implementing operator delete[]. Although the

addresses returned by new and new[] point to the allocated object(s), there is an additional size_t

value available immediately before the address returned by new and new[]. This size_t value is

part of the allocated block and contains the actual size of the block. This of course does not hold true

for the placement new operator.

11.9. OPERATORS ‘NEW[]’ AND ‘DELETE[]’ 275

When a class defines a destructor the size_t value preceding the address returned by new[] does

not contain the size of the allocated block, but the number of objects specified when calling new[].

Normally that is of no interest, but when overloading operator delete[] it might become a useful

piece of information. In those cases operator delete[] does not receive the address returned by

new[] but rather the address of the initial size_t value. Whether this is at all useful is not clear.

By the time delete[]’s code is executed all objects have already been destroyed, so operator

delete[] is only to determine how many objects were destroyed but the objects themselves cannot

be used anymore.

Here is an example showing this behavior of operator delete[] for a minimal Demo class:

struct Demo

{

size_t idx;

Demo()

{

cout << "default cons\n";

}

~Demo()

{

cout << "destructor\n";

}

void *operator new[](size_t size)

{

return ::operator new(size);

}

void operator delete[](void *vp)

{

cout << "delete[] for: " << vp << ’\n’;

::operator delete[](vp);

}

};

int main()

{

Demo *xp;

cout << ((int *)(xp = new Demo[3]))[-1] << ’\n’;

cout << xp << ’\n’;

cout << "==================\n";

delete[] xp;

}

// This program displays (your 0x?????? addresses might differ, but

// the difference between the two should be sizeof(size_t)):

// default cons

// default cons

// default cons

// 3

// 0x8bdd00c

// ==================

// destructor

// destructor

// destructor

// delete[] for: 0x8bdd008

276 CHAPTER 11. MORE OPERATOR OVERLOADING

Having overloaded operator delete[] for a class String, it will be used automatically in state-

ments like:

delete[] new String[5];

Operator delete[] may also be overloaded using an additional size_t parameter:

void operator delete[](void *p, size_t size);

Here size is automatically initialized to the size (in bytes) of the block of memory to which void

*p points. If this form is defined, then void operator[](void *) should not be defined, to avoid

ambiguities. An example of this latter form of operator delete[] is:

void String::operator delete[](void *p, size_t size)

{

cout << "deleting " << size << " bytes\n";

::operator delete[](ptr);

}

Additional overloads of operator delete[] may be defined, but to use them they must explicitly

be called as static member functions (cf. chapter 8). Example:

// declaration:

void String::operator delete[](void *p, ostream &out);

// usage:

String *xp = new String[3];

String::operator delete[](xp, cout);

11.9.3 ‘new[]’, ‘delete[]’ and exceptions

When an exception is thrown while executing a new[] expression, what will happen? In this sec-

tion we’ll show that new[] is exception safe even when only some of the objects were properly

constructed.

To begin, new[]might throw while trying to allocate the required memory. In this case a bad_alloc

is thrown and we don’t leak as nothing was allocated.

Having allocated the required memory the class’s default constructor is going to be used for each

of the objects in turn. At some point a constructor might throw. What happens next is defined by

the C++ standard: the destructors of the already constructed objects are called and the memory

allocated for the objects themselves is returned to the common pool. Assuming that the failing

constructor offers the basic guarantee new[] is therefore exception safe even if a constructor may

throw.

The following example illustrates this behavior. A request to allocate and initialize five objects

is made, but after constructing two objects construction fails by throwing an exception. The output

shows that the destructors of properly constructed objects are called and that the allocated substrate

memory is properly returned:

#include <iostream>

using namespace std;

11.9. OPERATORS ‘NEW[]’ AND ‘DELETE[]’ 277

static size_t count = 0;

class X

{

int x;

public:

X()

{

if (count == 2)

throw 1;

cout << "Object " << ++count << ’\n’;

}

~X()

{

cout << "Destroyed " << this << "\n";

}

void *operator new[](size_t size)

{

cout << "Allocating objects: " << size << " bytes\n";

return ::operator new(size);

}

void operator delete[](void *mem)

{

cout << "Deleting memory at " << mem << ", containing: " <<

*static_cast<int *>(mem) << "\n";

::operator delete(mem);

}

};

int main()

try

{

X *xp = new X[5];

cout << "Memory at " << xp << ’\n’;

delete[] xp;

}

catch (...)

{

cout << "Caught exception.\n";

}

// Output from this program (your 0x??? addresses might differ)

// Allocating objects: 24 bytes

// Object 1

// Object 2

// Destroyed 0x8428010

// Destroyed 0x842800c

// Deleting memory at 0x8428008, containing: 5

// Caught exception.

278 CHAPTER 11. MORE OPERATOR OVERLOADING

11.10 Function Objects

Function Objects are created by overloading the function call operator operator(). By defining the

function call operator an object masquerades as a function, hence the term function objects. Function

objects are also known as functors.

Function objects are important when using generic algorithms. The use of function objects is pre-

ferred over alternatives like pointers to functions. The fact that they are important in the context of

generic algorithms leaves us with a didactic dilemma. At this point in the C++ Annotations it would

have been nice if generic algorithms would already have been covered, but for the discussion of the

generic algorithms knowledge of function objects is required. This bootstrapping problem is solved

in a well known way: by ignoring the dependency for the time being, for now concentrating on the

function object concept.

Function objects are objects for which operator() has been defined. Function objects are not just

used in combination with generic algorithms, but also as a (preferred) alternative to pointers to

functions.

Function objects are frequently used to implement predicate functions. Predicate functions return

boolean values. Predicate functions and predicate function objects are commonly referred to as ‘pred-

icates’. Predicates are frequently used by generic algorithms such as the count_if generic algorithm,

covered in chapter 19, returning the number of times its function object has returned true. In the

standard template library two kinds of predicates are used: unary predicates receive one argument,

binary predicates receive two arguments.

Assume we have a class Person and an array of Person objects. Further assume that the array is

not sorted. A well known procedure for finding a particular Person object in the array is to use the

function lsearch, which performs a lineair search in an array. Example:

Person &target = targetPerson(); // determine the person to find

Person *pArray;

size_t n = fillPerson(&pArray);

cout << "The target person is";

if (!lsearch(&target, pArray, &n, sizeof(Person), compareFunction))

cout << " not";

cout << "found\n";

The function targetPerson determines the person we’re looking for, and fillPerson is called to

fill the array. Then lsearch is used to locate the target person.

The comparison function must be available, as its address is one of the arguments of lsearch. It

must be a real function having an address. If it is defined inline then the compiler has no choice

but to ignore that request as inline functions don’t have addresses. CompareFunction could be

implemented like this:

int compareFunction(void const *p1, void const *p2)

{

return *static_cast<Person const *>(p1) // lsearch wants 0

!= // for equal objects

*static_cast<Person const *>(p2);

}

This, of course, assumes that the operator!= has been overloaded in the class Person. But over-

11.10. FUNCTION OBJECTS 279

loading operator!= is no big deal, so let’s assume that that operator is actually available.

On average n / 2 times at least the following actions take place:

1. The two arguments of the compare function are pushed on the stack;

2. The value of the final parameter of lsearch is determined, producing compareFunction’s

address;

3. The compare function is called;

4. Then, inside the compare function the address of the right-hand argument of the

Person::operator!= argument is pushed on the stack;

5. Person::operator!= is evaluated;

6. The argument of the Person::operator!= function is popped off the stack;

7. The two arguments of the compare function are popped off the stack.

Using function objects results in a different picture. Assume we have constructed a function PersonSearch,

having the following prototype (this, however, is not the preferred approach. Normally a generic

algorithm is preferred over a home-made function. But for now we focus on PersonSearch to illus-

trate the use and implementation of a function object):

Person const *PersonSearch(Person *base, size_t nmemb,

Person const &target);

This function can be used as follows:

Person &target = targetPerson();

Person *pArray;

size_t n = fillPerson(&pArray);

cout << "The target person is";

if (!PersonSearch(pArray, n, target))

cout << " not";

cout << "found\n";

So far, not much has been changed. We’ve replaced the call to lsearch with a call to another

function: PersonSearch. Now look at PersonSearch itself:

Person const *PersonSearch(Person *base, size_t nmemb,

Person const &target)

{

for (int idx = 0; idx < nmemb; ++idx)

if (target(base[idx]))

return base + idx;

return 0;

}

280 CHAPTER 11. MORE OPERATOR OVERLOADING

PersonSearch implements a plain linear search. However, in the for-loop we see target(base[idx]).

Here target is used as a function object. Its implementation is simple:

bool Person::operator()(Person const &other) const

{

return *this == other;

}

Note the somewhat peculiar syntax: operator(). The first set of parentheses define the operator

that is overloaded: the function call operator. The second set of parentheses define the parameters

that are required for this overloaded operator. In the class header file this overloaded operator is

declared as:

bool operator()(Person const &other) const;

Clearly Person::operator() is a simple function. It contains but one statement, and we could

consider defining it inline. Assuming we do, then this is what happens when operator() is called:

1. The address of the right-hand argument of the Person::operator== argument is pushed on

the stack;

2. The operator== function is evaluated (which probably also is a semantic improvement over

calling operator!= when looking for an object equal to a specified target object);

3. The argument of Person::operator== argument is popped off the stack.

Due to the fact that operator() is an inline function, it is not actually called. Instead operator==

is called immediately. Moreover, the required stack operations are fairly modest.

Function objects may truly be defined inline. Functions that are called indirectly (i.e., using pointers

to functions) can never be defined inline as their addresses must be known. Therefore, even if the

function object needs to do very little work it is defined as an ordinary function if it is going to be

called through pointers. The overhead of performing the indirect call may annihilate the advantage

of the flexibility of calling functions indirectly. In these cases using inline function objects can result

in an increase of a program’s efficiency.

An added benefit of function objects is that they may access the private data of their objects. In a

search algorithm where a compare function is used (as with lsearch) the target and array elements

are passed to the compare function using pointers, involving extra stack handling. Using function

objects, the target person doesn’t vary within a single search task. Therefore, the target person could

be passed to the function object’s class constructor. This is in fact what happens in the expression

target(base[idx]) receiving as its only argument the subsequent elements of the array to search.

11.10.1 Constructing manipulators

In chapter 6 we saw constructions like cout << hex << 13 << to display the value 13 in hexadeci-

mal format. One may wonder by what magic the hex manipulator accomplishes this. In this section

the construction of manipulators like hex is covered.

Actually the construction of a manipulator is rather simple. To start, a definition of the manipulator

is needed. Let’s assume we want to create a manipulator w10 which sets the field width of the next

field to be written by the ostream object to 10. This manipulator is constructed as a function. The

w10 function needs to know about the ostream object in which the width must be set. By providing

11.10. FUNCTION OBJECTS 281

the function with an ostream & parameter, it obtains this knowledge. Now that the function knows

about the ostream object we’re referring to, it can set the width in that object.

Next, it must be possible to use the manipulator in an insertion sequence. This implies that the

return value of the manipulator must be a reference to an ostream object also.

From the above considerations we’re now able to construct our w10 function:

#include <ostream>

#include <iomanip>

std::ostream &w10(std::ostream &str)

{

return str << std::setw(10);

}

The w10 function can of course be used in a ‘stand alone’ mode, but it can also be used as a manipu-

lator. E.g.,

#include <iostream>

#include <iomanip>

using namespace std;

extern ostream &w10(ostream &str);

int main()

{

w10(cout) << 3 << " ships sailed to America\n";

cout << "And " << w10 << 3 << " more ships sailed too.\n";

}

The w10 function can be used as a manipulator because the class ostream has an overloaded

operator<< accepting a pointer to a function expecting an ostream & and returning an ostream

&. Its definition is:

ostream& operator<<(ostream &(*func)(ostream &str))

{

return (*func)(*this);

}

In addition to the above overloaded operator<< another one is defined

ostream &operator<<(ios_base &(*func)(ios_base &base))

{

(*func)(*this);

return *this;

}

This latter function is used when inserting, e.g., hex or internal.

The above procedure does not work for manipulators requiring arguments. It is of course possible to

overload operator<< to accept an ostream reference and the address of a function expecting an

282 CHAPTER 11. MORE OPERATOR OVERLOADING

ostream & and, e.g., an int, but while the address of such a function may be specified with the <<-

operator, the arguments itself cannot be specified. So, one wonders how the following construction

has been implemented:

cout << setprecision(3)

In this case the manipulator is defined as a macro. Macro’s, however, are the realm of the prepro-

cessor, and may easily suffer from unwelcome side-effects. In C++ programs they should be avoided

whenever possible. The following section introduces a way to implement manipulators requiring

arguments without resorting to macros, but using anonymous objects.

11.10.1.1 Manipulators requiring arguments

Manipulators taking arguments are implemented as macros: they are handled by the preprocessor,

and are not available beyond the preprocessing stage. The problem appears to be that you can’t call

a function in an insertion sequence: when using multiple operator<< operators in one statement

the compiler calls the functions, saves their return values, and then uses their return values in the

insertion sequence. That invalidates the ordering of the arguments passed to your <<-operators.

So, one might consider constructing another overloaded operator<< accepting the address of a

function receiving not just the ostream reference, but a series of other arguments as well. But this

creates the problem that it isn’t clear how the function should receive its arguments: you can’t just

call it since that takes us back to the above-mentioned problem. Merely passing its address is fine,

but then no arguments can be passed to the function.

There exists a solution, based on the use of anonymous objects:

• First, a class is constructed, e.g. Align, whose constructor expects multiple arguments. In our

example representing, respectively, the field width and the alignment.

• Furthermore, we define the function:

ostream &operator<<(ostream &ostr, Align const &align)

so we can insert an Align object into the ostream.

Here is an example of a little program using such a home-made manipulator expecting multiple

arguments:

#include <iostream>

#include <iomanip>

class Align

{

unsigned d_width;

std::ios::fmtflags d_alignment;

public:

Align(unsigned width, std::ios::fmtflags alignment);

std::ostream &operator()(std::ostream &ostr) const;

};

Align::Align(unsigned width, std::ios::fmtflags alignment)

11.11. THE CASE OF [IO]FSTREAM::OPEN() 283

:

d_width(width),

d_alignment(alignment)

{}

std::ostream &Align::operator()(std::ostream &ostr) const

{

ostr.setf(d_alignment, std::ios::adjustfield);

return ostr << std::setw(d_width);

}

std::ostream &operator<<(std::ostream &ostr, Align const &align)

{

return align(ostr);

}

using namespace std;

int main()

{

cout

<< "‘" << Align(5, ios::left) << "hi" << "’"

<< "‘" << Align(10, ios::right) << "there" << "’\n";

}

/*
Generated output:

‘hi ’‘ there’

*/

Note that in order to insert an anonymous Align object into the ostream, the operator<< func-

tion must define a Align const & parameter (note the const modifier).

11.11 The case of [io]fstream::open()

Earlier, in section 6.4.2.1, it was noted that the [io]fstream::openmembers expect an ios::openmode

value as their final argument. E.g., to open an fstream object for writing you could do as follows:

fstream out;

out.open("/tmp/out", ios::out);

Combinations are also possible. To open an fstream object for both reading and writing the follow-

ing stanza is often seen:

fstream out;

out.open("/tmp/out", ios::in | ios::out);

When trying to combine enum values using a ‘home made’ enumwe may run into problems. Consider

the following:

enum Permission

284 CHAPTER 11. MORE OPERATOR OVERLOADING

{

READ = 1 << 0,

WRITE = 1 << 1,

EXECUTE = 1 << 2

};

void setPermission(Permission permission);

int main()

{

setPermission(READ | WRITE);

}

When offering this little program to the compiler it replies with an error message like this:

invalid conversion from ’int’ to ’Permission’

The question is of course: why is it OK to combine ios::openmode values passing these combined

values to the stream’s open member, but not OK to combine Permission values.

Combining enum values using arithmetic operators results in int-typed values. Conceptually this

never was our intention. Conceptually it can be considered correct to combine enum values if the

resulting value conceptually makes sense as a value that is still within the original enumeration

domain. Note that after adding a value READWRITE = READ |WRITE to the above enum we’re still

not allowed to specify READ |WRITE as an argument to setPermission.

To answer the question about combining enumeration values and yet stay within the enumeration’s

domain we turn to operator overloading. Up to this point operator overloading has been applied to

class types. Free functions like operator« have been overloaded, and those overloads are concep-

tually within the domain of their class.

As C++ is a strongly typed language realize that defining an enum is really something beyond the

mere association of int-values with symbolic names. An enumeration type is really a type of its

own, and as with any type its operators can be overloaded. When writing READ |WRITE the compiler

performs the default conversion from enum values to int values and applies the operator to ints.

It does so when it has no alternative.

But it is also possible to overload the enum type’s operators. Thus we may ensure that we’ll re-

main within the enum’s domain even though the resulting value wasn’t defined by the enum. The

advantage of type-safety and conceptual clarity is considered to outweigh the somewhat peculiar

introduction of values hitherto not defined by the enum.

Here is an example of such an overloaded operator:

Permission operator|(Permission left, Permission right)

{

return static_cast<Permission>(static_cast<int>(left) | right);

}

Other operators can easily and analogously be constructed.

Operators like the above were defined for the ios::openmode enumeration type, allowing us to

specify ios::in |ios::out as argument to open while specifying the corresponding parameter

as ios::openmode as well. Clearly, operator overloading can be used in many situations, not nec-

essarily only involving class-types.

11.12. USER-DEFINED LITERALS (C++11) 285

11.12 User-defined literals (C++11)

The C++11 standard offers user-defined literals, also known as extensible literals. Standard C++

defines various kinds of literals, like numerical constants (with or without suffixes), character con-

stants and string (textual) literals.

A user-defined literal is defined by a function (see also section 22.3) that must be defined at names-

pace scope. Such a function is called a literal operator. A literal operator cannot be a class member

function. Under the C++11 standard the names of a literal operator must start with an underscore,

and a literal operator is used (called) by suffixing its name (including the underscore) to the argu-

ment that must be passed to it . Assuming _NM2km (nautical mile to km) is the name of a literal

operator, then it could be called as 100_NM2km, producing, e.g., the value 185.2.

Using Type to represent the return type of the literal operator its generic declaration looks like this:

Type operator "" _identifier(parameter-list);

The blank space trailing the empty string is required. The parameter lists of literal operators can

be:

• unsigned long long int. It is used as, e.g., 123_identifier. The argument to this literal

operator can be decimal constants, binary constants (initial 0b), octal constants (initial 0) and

hexadecimal constants (initial 0x);

• long double. It is used as, e.g., 12.25_NM2km;

• char const *text. The text argument is an NTBS. It is used as, e.g., 1234_pental. The

argument must not be given double quotes, and must represent a numeric constant, as also

expected by literal operators defining unsigned long long int parameters.

• char const *text, size_t len. Here, the compiler determines len as if it had called

strlen(text). It is used as, e.g., "hello"_nVowels;

• wchar_t const *text, size_t len, same as the previous one, but accepting a string of

wchar_t characters. It is used as, e.g., L"1234"_charSum;

• char16_t const *text, size_t len, same as the previous one, but accepting a string of

char16_t characters. It is used as, e.g., u"utf 16"_uc;

• char32_t const *text, size_t len, same as the previous one, but accepting a string of

char32_t characters. It is used as, e.g., U"UTF 32"_lc;

If literal operators are overloaded the compiler will pick the literal operator requiring the least

‘effort’. E.g., 120 is processed by a literal operator defining a unsigned long long int parameter

and not by its overloaded version, defining a char const * parameter. But if overloaded literal

operators exist defining char const * and long double parameters then the operator defining a

char const * parameter is used when the argument 120 is provided, while the operator defining

a long double parameter is used with the argument 120.3.

A literator operator can define any return type. Here is an example of a definition of the _NM2km

literal operator:

double operator "" _NM2km(char const *nm)

{

return std::stod(nm) * 1.852;

286 CHAPTER 11. MORE OPERATOR OVERLOADING

}

double value = 120_NM2km; // example of use

Of course, the argument could also have been a long double constant. Here’s an alternative im-

plementation, explicitly expecting a long double:

double constexpr operator "" _NM2km(long double nm)

{

return nm * 1.852;

}

double value = 450.5_NM2km; // example of use

A numeric constant can also be processed completely at compile-time. Section 22.3 provides the

details of this type of literal operator.

Arguments to literal operators are themselves always constants. A literal operator like _NM2km

cannot be used to convert, e.g., the value of a variable. A literal operator, although it is defined as

functinon, cannot be called like a function. The following examples therefore result in compilation

errors:

double speed;

speed_NM2km; // no identifier ’speed_NM2km’

_NM2km(speed); // no function _NM2km

_NM2km(120.3); // no function _NM2km

11.13 Overloadable operators

The following operators can be overloaded:

+ - * / % ^ & |

~ ! , = < > <= >=

++ -- << >> == != && ||

+= -= *= /= %= ^= &= |=

<<= >>= [] () -> ->* new new[]

delete delete[]

Several operators have textual alternatives:

textual alternative operator

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=

xor ^

xor_eq ^=

‘Textual’ alternatives

of operators are also overloadable (e.g., operator and). However, note that textual alternatives

11.13. OVERLOADABLE OPERATORS 287

are not additional operators. So, within the same context operator&& and operator and can not

both be overloaded.

Several of these operators may only be overloaded as member functions within a class. This holds

true for the ’=’, the ’[]’, the ’()’ and the ’->’ operators. Consequently, it isn’t possible to

redefine, e.g., the assignment operator globally in such a way that it accepts a char const * as an

lvalue and a String & as an rvalue. Fortunately, that isn’t necessary either, as we have seen in

section 11.3.

Finally, the following operators cannot be overloaded:

. .* :: ?: sizeof typeid

288 CHAPTER 11. MORE OPERATOR OVERLOADING

Chapter 12

Abstract Containers

C++ offers several predefined datatypes, all part of the Standard Template Library, which can be

used to implement solutions to frequently occurring problems. The datatypes discussed in this chap-

ter are all containers: you can put stuff inside them, and you can retrieve the stored information from

them.

The interesting part is that the kind of data that can be stored inside these containers has been left

unspecified at the time the containers were constructed. That’s why they are spoken of as abstract

containers.

Abstract containers rely heavily on templates, covered in chapter 20 and beyond. To use abstract

containers, only a minimal grasp of the template concept is required. In C++ a template is in fact a

recipe for constructing a function or a complete class. The recipe tries to abstract the functionality

of the class or function as much as possible from the data on which the class or function operates. As

the data types on which the templates operate were not known when the template was implemented,

the datatypes are either inferred from the context in which a function template is used, or they are

mentioned explicitly when a class template is used (the term that’s used here is instantiated). In

situations where the types are explicitly mentioned, the angle bracket notation is used to indicate

which data types are required. For example, below (in section 12.2) we’ll encounter the pair con-

tainer, which requires the explicit mentioning of two data types. Here is a pair object containing

both an int and a string:

pair<int, string> myPair;

The object myPair is defined as an object holding both an int and a string.

The angle bracket notation is used intensively in the upcoming discussion of abstract containers.

Actually, understanding this part of templates is the only real requirement for using abstract con-

tainers. Now that we’ve introduced this notation, we can postpone the more thorough discussion of

templates to chapter 20, and concentrate on their use in this chapter.

Most of the abstract containers are sequential containers: they contain data that can be stored and

retrieved in some sequential way. Examples are the array, implementing a fixed-sized array; a

vector, implementing an extendable array; the list, implementing a data structure that allows

for the easy insertion or deletion of data; the queue, also called a FIFO (first in, first out) structure,

in which the first element that is entered is the first element to be retrieved again; and the stack,

which is a first in, last out (FILO or LIFO) structure.

In addition to sequential containers several special containers are available. The pair is a basic

container in which a pair of values (of types that are left open for further specification) can be

289

290 CHAPTER 12. ABSTRACT CONTAINERS

stored, like two strings, two ints, a string and a double, etc.. Pairs are often used to return data

elements that naturally come in pairs. For example, the map is an abstract container storing keys

and their associated values. Elements of these maps are returned as pairs.

A variant of the pair is the complex container, implementing operations that are defined on com-

plex numbers.

A tuple (cf. section 21.6) generalizes the pair container to a data structure accomodating any

number of different data types.

All abstract containers described in this chapter as well as the string and stream datatypes (cf.

chapters 5 and 6) are part of the Standard Template Library.

All but the unordered containers support the following basic set of operators:

• The overloaded assignment operator, so we can assign two containers of the same types to

each other. If the container’s data type supports move assignment, then assignment of an

anonymous temporary container to a destination container will use move assignment when

assigning new values to the destination container’s element. Overloaded assignment is also

supported by the unordered containers;

• Tests for equality: == and != The equality operator applied to two containers returns true if

the two containers have the same number of elements, which are pairwise equal according to

the equality operator of the contained data type. The inequality operator does the opposite;

• Ordering operators: <, <=, > and >=. The < operator returns true if each element in the left-

hand side container is less than each corresponding element in the right-hand side container.

Additional elements in either the left-hand side container or the right-hand side container are

ignored.

container left;

container right;

left = {0, 2, 4};

right = {1, 3}; // left < right

right = {1, 3, 6, 1, 2}; // left < right

Note that before a user-defined type (usually a class-type) can be stored in a container, the user-

defined type should at least support:

• A default value (e.g., a default constructor)

• The equality operator (==)

• The less-than operator (<)

With the advent of the C++11 standard sequential containers can also be initialized using initializer

lists.

Most containers (exceptions are the stack (section 12.4.11), priority_queue (section 12.4.5), and

queue (section 12.4.4) containers) support members to determine their maximum sizes (through

their member function max_size).

Virtually all containers support copy construction. If the container supports copy construction and

the container’s data type supports move construction, then move construction is automatically used

12.1. NOTATIONS USED IN THIS CHAPTER 291

for the container’s data elements when a container is initialized with an anonymous temporary

container.

Closely linked to the standard template library are the generic algorithms. These algorithms may

be used to perform frequently occurring tasks or more complex tasks than is possible with the con-

tainers themselves, like counting, filling, merging, filtering etc.. An overview of generic algorithms

and their applications is given in chapter 19. Generic algorithms usually rely on the availability of

iterators, representing begin and end-points for processing data stored inside containers. The ab-

stract containers usually support constructors and members expecting iterators, and they often have

members returning iterators (comparable to the string::begin and string::end members). In

this chapter the iterator concept is not further investigated. Refer to chapter 18 for this.

The url http://www.sgi.com/Technology/STL is worth visiting as it offers more extensive cov-

erage of abstract containers and the standard template library than can be provided by the C++

annotations.

Containers often collect data during their lifetimes. When a container goes out of scope, its de-

structor tries to destroy its data elements. This only succeeds if the data elements themselves are

stored inside the container. If the data elements of containers are pointers to dynamically allocated

memory then the memory pointed to by these pointers is not destroyed, resulting in a memory leak.

A consequence of this scheme is that the data stored in a container should often be considered the

‘property’ of the container: the container should be able to destroy its data elements when the con-

tainer’s destructor is called. So, normally containers should not contain pointers to data. Also, a

container should not be required to contain const data, as const data prevent the use of many of

the container’s members, like the assignment operator.

12.1 Notations used in this chapter

In this chapter about containers, the following notational conventions are used:

• Containers live in the standard namespace. In code examples this will be clearly visible, but

in the text std:: is usually omitted.

• A container without angle brackets represents any container of that type. Mentally add the

required type in angle bracket notation. E.g., pair may represent pair<string, int>.

• The notation Type represents the generic type. Type could be int, string, etc.

• Identifiers object and container represent objects of the container type under discussion.

• The identifier value represents a value of the type that is stored in the container.

• Simple, one-letter identifiers, like n represent unsigned values.

• Longer identifiers represent iterators. Examples are pos, from, beyond

Some containers, e.g., the map container, contain pairs of values, usually called ‘keys’ and ‘values’.

For such containers the following notational convention is used in addition:

• The identifier key indicates a value of the used key-type

• The identifier keyvalue indicates a value of the ‘value_type’ used with the particular con-

tainer.

292 CHAPTER 12. ABSTRACT CONTAINERS

12.2 The ‘pair’ container

The pair container is a rather basic container. It is used to store two elements, called first and

second, and that’s about it. Before using pair containers the header file <utility> must have

been included.

The pair’s data types are specified when the pair object is defined (or declared) using the template’s

angle bracket notation (cf. chapter 20). Examples:

pair<string, string> piper("PA28", "PH-ANI");

pair<string, string> cessna("C172", "PH-ANG");

here, the variables piper and cessna are defined as pair variables containing two strings. Both

strings can be retrieved using the first and second fields of the pair type:

cout << piper.first << ’\n’ << // shows ’PA28’

cessna.second << ’\n’; // shows ’PH-ANG’

The first and second members can also be used to reassign values:

cessna.first = "C152";

cessna.second = "PH-ANW";

If a pair object must be completely reassigned, an anonymous pair object can be used as the right-

hand operand of the assignment. An anonymous variable defines a temporary variable (which re-

ceives no name) solely for the purpose of (re)assigning another variable of the same type. Its generic

form is

type(initializer list)

Note that when a pair object is used the type specification is not completed by just mentioning the

containername pair. It also requires the specification of the data types which are stored within

the pair. For this the (template) angle bracket notation is used again. E.g., the reassignment of the

cessna pair variable could have been accomplished as follows:

cessna = pair<string, string>("C152", "PH-ANW");

In cases like these, the type specification can become quite elaborate, which has caused a revival

of interest in the possibilities offered by the typedef keyword. If many pair<type1, type2>

clauses are used in a source, the typing effort may be reduced and readability might be improved by

first defining a name for the clause, and then using the defined name later. E.g.,

typedef pair<string, string> pairStrStr;

cessna = pairStrStr("C152", "PH-ANW");

Apart from this (and the basic set of operations (assignment and comparisons)) the pair offers no

further functionality. It is, however, a basic ingredient of the upcoming abstract containers map,

multimap and hash_map.

The C++11 standard offers a generalized pair container: the tuple, covered in section 21.6.

12.3. ALLOCATORS 293

12.3 Allocators

Most containers use a special object for allocating the memory that is managed by them. This object

is called an allocator, and it’s type is (usually by default) specified when a container is constructed. A

container’s allocator can be obtained using the container’s get_allocator member, which returns

a copy of the allocator used by the container. Allocators offer the following members:

• value_type *address(value_type &object)

returns the address of object.

• value_type *allocate(size_t count)

allocates raw memory for holding count values of the container’s value_type.

• void construct(value_type *object, Arg &&...args)

using placement new, uses the arguments following object to install a value at

object.

• void destroy(value_type *object)

calls object’s destructor (but doesn’t deallocate object’s own memory).

• void deallocate(value_type *object, size_t count)

calls operator delete to delete object’s memory, previously allocated by allocate.

• size_t max_size()

returns the maximum number of elements that allocate can allocate.

Here is an example, using the allocator of a vector of strings (see section 12.4.2 below for a descrip-

tion of the vector container):

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int main()

{

vector<string> vs;

auto allocator = vs.get_allocator(); // get the allocator

string *sp = allocator.allocate(3); // alloc. space for 3 strings

allocator.construct(&sp[0], "hello world"); // initialize 1st string

allocator.construct(&sp[1], sp[0]); // use the copy constructor

allocator.construct(&sp[2], 12, ’=’); // string of 12 = chars

cout << sp[0] << ’\n’ << // show the strings

sp[1] << ’\n’ <<

sp[2] << ’\n’ <<

"could have allocated " << allocator.max_size() << " strings\n";

294 CHAPTER 12. ABSTRACT CONTAINERS

for (size_t idx = 0; idx != 3; ++idx)

allocator.destroy(sp + idx); // delete the string’s

// contents

allocator.deallocate(sp, 3); // and delete sp itself again.

}

12.4 Sequential Containers

12.4.1 ARRAY

(The ‘array’ container) The array class implements a fixed-size array. Before using the array

container the <array> header file must have been included.

To define a std::array both the data type of its elements and its size must be specified: the

data type is given after an opening angular bracket, immediately following the ‘array’ container

name. The array’s size is provided after the data type specification. Finally, a closing angular

bracket completes the array’s type. Specifications like this are common practice with containers. The

combination of array, type and size defines a type. As a result, array<string, 4> defines another

type than array<string, 5>, and a function explicitly defining an array<Type, N> parameter

will not accept an array<Type, M> argument if N and M are unequal.

The array’s size may may be defined as 0 (although such an array probably has little use as it cannot

store any element). The elements of an array are stored contiguously. If array<Type, N> arr has

been defined, then &a[n] + m == &a[n + m, assuming 0 <= n < N and assuming 0 <= n + m

< N.

The following constructors, operators, and member functions are available:

• Constructors:

– A array may be constructed with a fixed number N of default elements:

array<string, N> object;

– An initial subset of the elements of an array may be initialized using a brace delimited

initializer list:

array<double, 4> dArr = {1.2, 2.4};

Here dArr is defined as an array of 4 element, with dArr[0] and dArr[1] initialized to,

respectively 1.2 and 2.4, and dArr[2] and dArr[3] initialized to 0. A attractive charac-

teristic of arrays (and other containers) is that containers initialize their data elements to

the data type’s default value. The data type’s default constructor is used for this initializa-

tion. With non-class data types the value 0 is used. So, for an array<double, 4> array

we know that all but its explicitly initialized elements are initialized to zero.

– A array may be initialized using a copy constructor:

extern array<string, 5> container;

array<string, 5> object(container);

• In addition to the standard operators for containers, the array supports the index operator,

which can be used to retrieve or reassign individual elements of the array. Note that the ele-

ments which are indexed must exist. For example, having defined an empty array a statement

12.4. SEQUENTIAL CONTAINERS 295

like iarr[0] = 18 produces an error, as the array is empty. Note that operator[] does

not respect its array bounds. If you want run-time array bound checking, use the array’s at

member.

• The array class offers the following member functions:

– Type &at(size_t idx):

returns a reference to the array’s element at index position idx. If idx exceeds

the array’s size a std::out_of_range exception is thrown.

– Type &back():

returns a reference to the last element in the array. It is the responsibility of the

programmer to use the member only if the array is not empty.

– array::iterator begin():

returns an iterator pointing to the first element in the array, returning end if the

array is empty.

– array::const_iterator cbegin():

returns a const_iterator pointing to the first element in the array, returning cend

if the array is empty.

– array::const_iterator cend():

returns a const_iterator pointing just beyond the array’s last element.

– array::const_reverse_iterator crbegin():

returns a const_reverse_iterator pointing to the last element in the array, return-

ing crend if the array is empty.

– array::const_reverse_iterator crend():

returns a const_reverse_iterator pointing just before the array’s first element.

– value_type *data():

returns a pointer to the array’s first data element. With a const array a value_type

const * is returned.

– bool empty():

returns true if the array contains no elements.

– array::iterator end():

returns an iterator pointing beyond the last element in the array.

– void fill(Type const &item):

fills all the array’s elements with a copy of item

– Type &front():

returns a reference to the first element in the array. It is the responsibility of the

programmer to use the member only if the array is not empty.

– array::reverse_iterator rbegin():

this member returns an iterator pointing to the last element in the array.

– array::reverse_iterator rend():

returns an iterator pointing before the first element in the array.

– constexpr size_t size():

returns the number of elements the array contains.

– void swap(<array<Type, N> &other):

swaps the contents of the current and other array. The array other’s data type

and size must be equal to the data type and size of the object calling swap.

296 CHAPTER 12. ABSTRACT CONTAINERS

Using an array rather than a standard C style array offers several advantages:

• All its elements are immediately initialized;

• Introspection is possible (e.g., size can be used);

• The array container can be used in the context of templates, there code is developed that

operates on data types that become available only after the code itself has been developed;

• Since array supports reverse iterators, it can be immediately be used with generic algorithms

performing ‘reversed’ operations (e.g., to perform a descending rather than ascending sort (cf.

section 19.1.58))

In general, when looking for a sequential data structure, the array or vector (introduced in the

next section) should be your ‘weapon of choice’. Only if these containers demonstrably do not fit the

problem at hand you should use another type of container.

12.4.2 The ‘vector’ container

The vector class implements an expandable array. Before using the vector container the <vector>

header file must have been included.

The following constructors, operators, and member functions are available:

• Constructors:

– A vector may be constructed empty:

vector<string> object;

– A vector may be initialized to a certain number of elements:

vector<string> object(5, string("Hello")); // initialize to 5 Hello’s,

vector<string> container(10); // and to 10 empty strings

vector<string> names = {"george", "frank", "tony", "karel"};

– A vector may be initialized using iterators. To initialize a vector with elements 5 until 10

(including the last one) of an existing vector<string> the following construction may

be used:

extern vector<string> container;

vector<string> object(&container[5], &container[11]);

Note here that the last element pointed to by the second iterator (&container[11]) is

not stored in object. This is a simple example of the use of iterators, in which the range

of values that is used starts at the first value, and includes all elements up to but not

including the element to which the second iterator refers. The standard notation for this

is [begin, end).

– A vector may be initialized using a copy constructor:

extern vector<string> container;

vector<string> object(container);

• In addition to the standard operators for containers, the vector supports the index operator,

which can be used to retrieve or reassign individual elements of the vector. Note that the ele-

ments which are indexed must exist. For example, having defined an empty vector a statement

like ivect[0] = 18 produces an error, as the vector is empty. So, the vector is not automat-

ically expanded, and operator[] does not respect its array bounds. In this case the vector

12.4. SEQUENTIAL CONTAINERS 297

should be resized first, or ivect.push_back(18) should be used (see below). If you need

run-time array bound checking, use the vector’s at member.

• The vector class offers the following member functions:

– void assign(...):

assigns new contents to the vector:

∗ assign(iterator begin, iterator end) assigns the values at the iterator range

[begin, end) to the vector;

∗ assign(size_type n, value_type const &val) assigns n copies of val to the

vector;

∗ assign(initializer_list<value_type> values) assigns the values in the ini-

tializer list to the vector.

– Type &at(size_t idx):

returns a reference to the vector’s element at index position idx. If idx exceeds

the vector’s size a std::out_of_range exception is thrown.

– Type &back():

returns a reference to the last element in the vector. It is the responsibility of the

programmer to use the member only if the vector is not empty.

– vector::iterator begin():

returns an iterator pointing to the first element in the vector, returning end if the

vector is empty.

– size_t capacity():

Number of elements for which memory has been allocated. It returns at least the

value returned by size

– vector::const_iterator cbegin():

returns a const_iterator pointing to the first element in the vector, returning cend

if the vector is empty.

– vector::const_iterator cend():

returns a const_iterator pointing just beyond the vector’s last element.

– void clear():

erases all the vector’s elements.

– vector::const_reverse_iterator crbegin():

returns a const_reverse_iterator pointing to the last element in the vector, return-

ing crend if the vector is empty.

– vector::const_reverse_iterator crend():

returns a const_reverse_iterator pointing just before the vector’s first element.

– value_type *data():

returns a pointer to the vector’s first data element.

– iterator emplace(const_iterator position, Args &&...args):

a value_type object is constructed from the arguments specified after position,

and the newly created element is inserted at position.

– void emplace_back(Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted beyond the vector’s last element.

298 CHAPTER 12. ABSTRACT CONTAINERS

– bool empty():

returns true if the vector contains no elements.

– vector::iterator end():

returns an iterator pointing beyond the last element in the vector.

– vector::iterator erase():

erases a specific range of elements in the vector:

∗ erase(pos) erases the element pointed to by the iterator pos. The iterator ++pos is

returned.

∗ erase(first, beyond) erases elements indicated by the iterator range [first,

beyond), returning beyond.

– Type &front():

returns a reference to the first element in the vector. It is the responsibility of the

programmer to use the member only if the vector is not empty.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the vector object.

– ... insert():

elements may be inserted starting at a certain position. The return value depends

on the version of insert() that is called:

∗ vector::iterator insert(pos) inserts a default value of type Type at pos, pos

is returned.

∗ vector::iterator insert(pos, value) inserts value at pos, pos is returned.

∗ void insert(pos, first, beyond) inserts the elements in the iterator range

[first, beyond).

∗ void insert(pos, n, value) inserts n elements having value value at position

pos.

– size_t max_size():

returns the maximum number of elements this vector may contain.

– void pop_back():

removes the last element from the vector. With an empty vector nothing happens.

– void push_back(value):

adds value to the end of the vector.

– vector::reverse_iterator rbegin():

this member returns an iterator pointing to the last element in the vector.

– vector::reverse_iterator rend():

returns an iterator pointing before the first element in the vector.

– void reserve(size_t request):

if request is less than or equal to capacity, this call has no effect. Otherwise, it

is a request to allocate additional memory. If the call is successful, then capacity

returns a value of at least request. Otherwise, capacity is unchanged. In

either case, size’s return value won’t change, until a function like resize is

called, actually changing the number of accessible elements.

– void resize():

can be used to alter the number of elements that are currently stored in the vector:

12.4. SEQUENTIAL CONTAINERS 299

Figure 12.1: A list data-structure

∗ resize(n, value) may be used to resize the vector to a size of n. Value is optional.

If the vector is expanded and value is not provided, the additional elements are ini-

tialized to the default value of the used data type, otherwise value is used to initialize

extra elements.

– void shrink_to_fit():

optionally reduces the amount of memory allocated by a vector to its current size.

The implementor is free to ignore or otherwise optimize this request. In order to

guarantee a ‘shrink to fit’ operation the

vector<Type>(vectorObject).swap(vectorObject)

idiom can be used.

– size_t size():

returns the number of elements in the vector.

– void swap():

swaps two vectors using identical data types. Example:

#include <iostream>

#include <vector>

using namespace std;

int main()

{

vector<int> v1(7);

vector<int> v2(10);

v1.swap(v2);

cout << v1.size() << " " << v2.size() << ’\n’;

}

/*
Produced output:

10 7

*/

12.4.3 The ‘list’ container

The list container implements a list data structure. Before using a list container the header file

<list> must have been included.

The organization of a list is shown in figure 12.1. Figure 12.1 shows that a list consists of separate

list-elements, connected by pointers. The list can be traversed in two directions: starting at Front

the list may be traversed from left to right, until the 0-pointer is reached at the end of the rightmost

list-element. The list can also be traversed from right to left: starting at Back, the list is traversed

from right to left, until eventually the 0-pointer emanating from the leftmost list-element is reached.

300 CHAPTER 12. ABSTRACT CONTAINERS

As a subtlety note that the representation given in figure 12.1 is not necessarily used in actual

implementations of the list. For example, consider the following little program:

int main()

{

list<int> l;

cout << "size: " << l.size() << ", first element: " <<

l.front() << ’\n’;

}

When this program is run it might actually produce the output:

size: 0, first element: 0

Its front element can even be assigned a value. In this case the implementor has chosen to provide

the list with a hidden element. The list actually is a circular list, where the hidden element serves

as terminating element, replacing the 0-pointers in figure 12.1. As noted, this is a subtlety, which

doesn’t affect the conceptual notion of a list as a data structure ending in 0-pointers. Note also that

it is well known that various implementations of list-structures are possible (cf. Aho, A.V., Hopcroft

J.E. and Ullman, J.D., (1983) Data Structures and Algorithms (Addison-Wesley)).

Both lists and vectors are often appropriate data structures in situations where an unknown number

of data elements must be stored. However, there are some rules of thumb to follow when selecting

the appropriate data structure.

• When most accesses are random, a vector is the preferred data structure. Example: in a

program counting character frequencies in a textfile, a vector<int> frequencies(256) is

the datastructure of choice, as the values of the received characters can be used as indices into

the frequencies vector.

• The previous example illustrates a second rule of thumb, also favoring the vector: if the

number of elements is known in advance (and does not notably change during the lifetime of

the program), the vector is also preferred over the list.

• In cases where insertions or deletions prevail and the data structure is large the list is gener-

ally preferred.

At present lists aren’t as useful anymore as they used to be (when computers were much slower and

more memory-constrained). Except maybe for some rare cases, a vector should be the preferred

container; even when implementing algorithms traditionally using lists.

Other considerations related to the choice between lists and vectors should also be given some

thought. Although it is true that the vector is able to grow dynamically, the dynamic growth re-

quires data-copying. Clearly, copying a million large data structures takes a considerable amount

of time, even on fast computers. On the other hand, inserting a large number of elements in a list

doesn’t require us to copy non-involved data. Inserting a new element in a list merely requires us

to juggle some pointers. In figure 12.2 this is shown: a new element is inserted between the second

and third element, creating a new list of four elements. Removing an element from a list is also

fairly easy. Starting again from the situation shown in figure 12.1, figure 12.3 shows what happens

if element two is removed from our list. Again: only pointers need to be juggled. In this case it’s even

simpler than adding an element: only two pointers need to be rerouted. To summarize the compari-

son between lists and vectors: it’s probably best to conclude that there is no clear-cut answer to the

question what data structure to prefer. There are rules of thumb, which may be adhered to. But if

worse comes to worst, a profiler may be required to find out what’s best.

12.4. SEQUENTIAL CONTAINERS 301

Figure 12.2: Adding a new element to a list

Figure 12.3: Removing an element from a list

The list container offers the following constructors, operators, and member functions:

• Constructors:

– A list may be constructed empty:

list<string> object;

As with the vector, it is an error to refer to an element of an empty list.

– A list may be initialized to a certain number of elements. By default, if the initialization

value is not explicitly mentioned, the default value or default constructor for the actual

data type is used. For example:

list<string> object(5, string("Hello")); // initialize to 5 Hello’s

list<string> container(10); // and to 10 empty strings

– A list may be initialized using a two iterators. To initialize a list with elements 5 until 10

(including the last one) of a vector<string> the following construction may be used:

extern vector<string> container;

list<string> object(&container[5], &container[11]);

– A list may be initialized using a copy constructor:

extern list<string> container;

list<string> object(container);

• The list does not offer specialized operators, apart from the standard operators for containers.

• The following member functions are available:

– void assign(...):

assigns new contents to the list:

302 CHAPTER 12. ABSTRACT CONTAINERS

∗ assign(iterator begin, iterator end) assigns the values at the iterator range

[begin, end) to the list;

∗ assign(size_type n, value_type const &val) assigns n copies of val to the

list;

– Type &back():

returns a reference to the last element in the list. It is the responsibility of the

programmer to use this member only if the list is not empty.

– list::iterator begin():

returns an iterator pointing to the first element in the list, returning end if the

list is empty.

– void clear():

erases all elements from the list.

– bool empty():

returns true if the list contains no elements.

– list::iterator end():

returns an iterator pointing beyond the last element in the list.

– list::iterator erase():

erases a specific range of elements in the list:

∗ erase(pos) erases the element pointed to by pos. The iterator ++pos is returned.

∗ erase(first, beyond) erases elements indicated by the iterator range [first,

beyond). Beyond is returned.

– Type &front():

returns a reference to the first element in the list. It is the responsibility of the

programmer to use this member only if the list is not empty.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the list object.

– ... insert():

inserts elements into the list. The return value depends on the version of insert

that is called:

∗ list::iterator insert(pos) inserts a default value of type Type at pos, pos is

returned.

∗ list::iterator insert(pos, value) inserts value at pos, pos is returned.

∗ void insert(pos, first, beyond) inserts the elements in the iterator range

[first, beyond).

∗ void insert(pos, n, value) inserts n elements having value value at position

pos.

– size_t max_size():

returns the maximum number of elements this list may contain.

– void merge(list<Type> other):

this member function assumes that the current and other lists are sorted (see

below, the member sort). Based on that assumption, it inserts the elements of

other into the current list in such a way that the modified list remains sorted.

If both list are not sorted, the resulting list will be ordered ‘as much as possible’,

given the initial ordering of the elements in the two lists. list<Type>::merge

uses Type::operator< to sort the data in the list, which operator must therefore

12.4. SEQUENTIAL CONTAINERS 303

be available. The next example illustrates the use of the merge member: the list

‘object’ is not sorted, so the resulting list is ordered ’as much as possible’.

#include <iostream>

#include <string>

#include <list>

using namespace std;

void showlist(list<string> &target)

{

for

(

list<string>::iterator from = target.begin();

from != target.end();

++from

)

cout << *from << " ";

cout << ’\n’;

}

int main()

{

list<string> first;

list<string> second;

first.push_back(string("alpha"));

first.push_back(string("bravo"));

first.push_back(string("golf"));

first.push_back(string("quebec"));

second.push_back(string("oscar"));

second.push_back(string("mike"));

second.push_back(string("november"));

second.push_back(string("zulu"));

first.merge(second);

showlist(first);

}

A subtlety is that merge doesn’t alter the list if the list itself is used as argument:

object.merge(object) won’t change the list ‘object’.

– void pop_back():

removes the last element from the list. With an empty list nothing happens.

– void pop_front():

removes the first element from the list. With an empty list nothing happens.

– void push_back(value):

adds value to the end of the list.

– void push_front(value):

adds value before the first element of the list.

– list::reverse_iterator rbegin():

returns an iterator pointing to the last element in the list.

304 CHAPTER 12. ABSTRACT CONTAINERS

– void remove(value):

removes all occurrences of value from the list. In the following example, the two

strings ‘Hello’ are removed from the list object:

#include <iostream>

#include <string>

#include <list>

using namespace std;

int main()

{

list<string> object;

object.push_back(string("Hello"));

object.push_back(string("World"));

object.push_back(string("Hello"));

object.push_back(string("World"));

object.remove(string("Hello"));

while (object.size())

{

cout << object.front() << ’\n’;

object.pop_front();

}

}

/*
Generated output:

World

World

*/

– void remove_if(Predicate pred):

removes all occurrences from the list for which the predicate function or function

object pred returns true. For each of the objects stored in the list the predi-

cate is called as pred(*iter), where iter represents the iterator used inter-

nally by remove_if. If a function pred is used, its prototype should be bool

pred(value_type const &object).

list::reverse_iterator rend():

this member returns an iterator pointing before the first element in the

list.

void resize():

alters the number of elements that are currently stored in the list:

∗ resize(n, value) may be used to resize the list to a size of n. Value is

optional. If the list is expanded and value is not provided, the extra elements

are initialized to the default value of the used data type, otherwise value is

used to initialize extra elements.

void reverse():

reverses the order of the elements in the list. The element back becomes

front and vice versa.

size_t size():

returns the number of elements in the list.

void sort():

sorts the list. Once the list has been sorted, An example of its use is given

at the description of the uniquemember function below. list<Type>::sort

12.4. SEQUENTIAL CONTAINERS 305

uses Type::operator< to sort the data in the list, which operator must

therefore be available.

void splice(pos, object):

transfers the contents of object to the current list, starting the inser-

tion at the iterator position pos of the object using the splice member.

Following splice, object is empty. For example:

#include <iostream>

#include <string>

#include <list>

using namespace std;

int main()

{

list<string> object;

object.push_front(string("Hello"));

object.push_back(string("World"));

list<string> argument(object);

object.splice(++object.begin(), argument);

cout << "Object contains " << object.size() << " elements, " <<

"Argument contains " << argument.size() <<

" elements,\n";

while (object.size())

{

cout << object.front() << ’\n’;

object.pop_front();

}

}

Alternatively, argument may be followed by an iterator of argument, in-

dicating the first element of argument that should be spliced, or by two

iterators begin and end defining the iterator-range [begin, end) on

argument that should be spliced into object.

void swap():

swaps two lists using identical data types.

void unique():

operating on a sorted list, this member function removes all consecutively

identical elements from the list. list<Type>::uniqueuses Type::operator==

to identify identical data elements, which operator must therefore be avail-

able. Here’s an example removing all multiply occurring words from the

list:

#include <iostream>

#include <string>

#include <list>

using namespace std;

// see the merge() example

void showlist(list<string> &target)

{

for

(

306 CHAPTER 12. ABSTRACT CONTAINERS

list<string>::iterator from = target.begin();

from != target.end();

++from

)

cout << *from << " ";

cout << ’\n’;

}

int main()

{

string

array[] =

{

"charley",

"alpha",

"bravo",

"alpha"

};

list<string>

target

(

array, array + sizeof(array)

/ sizeof(string)

);

cout << "Initially we have:\n";

showlist(target);

target.sort();

cout << "After sort() we have:\n";

showlist(target);

target.unique();

cout << "After unique() we have:\n";

showlist(target);

}

/*
Generated output:

Initially we have:

charley alpha bravo alpha

After sort() we have:

alpha alpha bravo charley

After unique() we have:

alpha bravo charley

*/

12.4. SEQUENTIAL CONTAINERS 307

Figure 12.4: A queue data-structure

12.4.4 The ‘queue’ container

The queue class implements a queue data structure. Before using a queue container the header file

<queue> must have been included.

A queue is depicted in figure 12.4. In figure 12.4 it is shown that a queue has one point (the back)

where items can be added to the queue, and one point (the front) where items can be removed (read)

from the queue. A queue is therefore also called a FIFO data structure, for first in, first out. It

is most often used in situations where events should be handled in the same order as they are

generated.

The following constructors, operators, and member functions are available for the queue container:

• Constructors:

– A queue may be constructed empty:

queue<string> object;

As with the vector, it is an error to refer to an element of an empty queue.

– A queue may be initialized using a copy constructor:

extern queue<string> container;

queue<string> object(container);

• The queue container only supports the basic container operators.

• The following member functions are available for queues:

– Type &back():

returns a reference to the last element in the queue. It is the responsibility of the

programmer to use the member only if the queue is not empty.

– bool empty():

returns true if the queue contains no elements.

– Type &front():

returns a reference to the first element in the queue. It is the responsibility of the

programmer to use the member only if the queue is not empty.

– void pop():

removes the element at the front of the queue. Note that the element is not re-

turned by this member. Nothing happens if the member is called for an empty

queue. One might wonder why pop returns void, instead of a value of type Type

(cf. front). One reason is found in the principles of good software design: func-

tions should perform one task. Combining the removal and return of the removed

element breaks this principle. Moreover, when this principle is abandoned pop’s

308 CHAPTER 12. ABSTRACT CONTAINERS

implementation is always flawed. Consider the prototypical implementation of a

pop member that is supposed to return the just popped value:

Type queue::pop()

{

Type ret(front());

erase_front();

return ret;

}

The venom, as usual, is in the tail: since queue has no control over Type’s behav-

ior the final statement (return ret) might throw. By that time the queue’s front

element has already been removed from the queue and so it is lost. Thus, a Type

returning pop member cannot offer the strong guarantee and consequently pop

should not return the former front element. Because of all this, we must first

use front and then pop to obtain and remove the queue’s front element.

– void push(value):

this member adds value to the back of the queue.

– size_t size():

returns the number of elements in the queue.

Note that the queue does not support iterators or a subscript operator. The only elements that can

be accessed are its front and back element. A queue can be emptied by:

• repeatedly removing its front element;

• assigning an empty queue using the same data type to it;

• having its destructor called.

12.4.5 The ‘priority_queue’ container

The priority_queue class implements a priority queue data structure. Before using a priority_queue

container the <queue> header file must have been included.

A priority queue is identical to a queue, but allows the entry of data elements according to priority

rules. A real-life priority queue is found, e.g., at airport check-in terminals. At a terminal the

passengers normally stand in line to wait for their turn to check in, but late passengers are usually

allowed to jump the queue: they receive a higher priority than other passengers.

The priority queue uses operator< of the data type stored in the priority queue to decide about the

priority of the data elements. The smaller the value, the lower the priority. So, the priority queue

could be used to sort values while they arrive. A simple example of such a priority queue application

is the following program: it reads words from cin and writes a sorted list of words to cout:

#include <iostream>

#include <string>

#include <queue>

using namespace std;

int main()

{

priority_queue<string> q;

string word;

12.4. SEQUENTIAL CONTAINERS 309

while (cin >> word)

q.push(word);

while (q.size())

{

cout << q.top() << ’\n’;

q.pop();

}

}

Unfortunately, the words are listed in reversed order: because of the underlying <-operator the

words appearing later in the ASCII-sequence appear first in the priority queue. A solution to that

problem is to define a wrapper class around the string datatype, reversing string’s operator<.

Here is the modified program:

#include <iostream>

#include <string>

#include <queue>

class Text

{

std::string d_s;

public:

Text(std::string const &str)

:

d_s(str)

{}

operator std::string const &() const

{

return d_s;

}

bool operator<(Text const &right) const

{

return d_s > right.d_s;

}

};

using namespace std;

int main()

{

priority_queue<Text> q;

string word;

while (cin >> word)

q.push(word);

while (q.size())

{

word = q.top();

cout << word << ’\n’;

q.pop();

310 CHAPTER 12. ABSTRACT CONTAINERS

}

}

Other possibilities to achieve the same exist. One would be to store the contents of the priority queue

in, e.g., a vector, from which the elements can be read in reversed order.

The following constructors, operators, and member functions are available for the priority_queue

container:

• Constructors:

– A priority_queue may be constructed empty:

priority_queue<string> object;

As with the vector, it is an error to refer to an element of an empty priority queue.

– A priority queue may be initialized using a copy constructor:

extern priority_queue<string> container;

priority_queue<string> object(container);

• The priority_queue only supports the basic operators of containers.

• The following member functions are available for priority queues:

– bool empty():

returns true if the priority queue contains no elements.

– void pop():

removes the element at the top of the priority queue. Note that the element is not

returned by this member. Nothing happens if this member is called for an empty

priority queue. See section 12.4.4 for a discussion about the reason why pop has

return type void.

– void push(value):

inserts value at the appropriate position in the priority queue.

– size_t size():

returns the number of elements in the priority queue.

– Type &top():

returns a reference to the first element of the priority queue. It is the respon-

sibility of the programmer to use the member only if the priority queue is not

empty.

Note that the priority queue does not support iterators or a subscript operator. The only element

that can be accessed is its top element. A priority queue can be emptied by:

• repeatedly removing its top element;

• assigning an empty queue using the same data type to it;

• having its destructor called.

12.4. SEQUENTIAL CONTAINERS 311

12.4.6 The ‘deque’ container

The deque (pronounce: ‘deck’) class implements a doubly ended queue data structure (deque). Be-

fore using a deque container the header file <deque> must have been included.

A deque is comparable to a queue, but it allows for reading and writing at both ends. Actually, the

deque data type supports a lot more functionality than the queue, as illustrated by the following

overview of available member functions. A deque is a combination of a vector and two queues,

operating at both ends of the vector. In situations where random insertions and the addition and/or

removal of elements at one or both sides of the vector occurs frequently using a deque should be

considered.

The following constructors, operators, and member functions are available for deques:

• Constructors:

– A deque may be constructed empty:

deque<string> object;

As with the vector, it is an error to refer to an element of an empty deque.

– A deque may be initialized to a certain number of elements. By default, if the initialization

value is not explicitly mentioned, the default value or default constructor for the actual

data type is used. For example:

deque<string> object(5, string("Hello")), // initialize to 5 Hello’s

deque<string> container(10); // and to 10 empty strings

– A deque may be initialized using two iterators. To initialize a deque with elements 5 until

10 (including the last one) of a vector<string> the following construction may be used:

extern vector<string> container;

deque<string> object(&container[5], &container[11]);

– A deque may be initialized using a copy constructor:

extern deque<string> container;

deque<string> object(container);

• In addition to the standard operators for containers, the deque supports the index operator,

which may be used to retrieve or reassign random elements of the deque. Note that the indexed

elements must exist.

• The following member functions are available for deques:

– void assign(...):

assigns new contents to the deque:

∗ assign(iterator begin, iterator end) assigns the values at the iterator range

[begin, end) to the deque;

∗ assign(size_type n, value_type const &val) assigns n copies of val to the

deque;

– Type &at(size_t idx):

returns a reference to the deque’s element at index position idx. If idx exceeds

the deque’s size a std::out_of_range exception is thrown.

– Type &back():

returns a reference to the last element in the deque. It is the responsibility of the

programmer to use the member only if the deque is not empty.

312 CHAPTER 12. ABSTRACT CONTAINERS

– deque::iterator begin():

returns an iterator pointing to the first element in the deque.

– deque::const_iterator cbegin():

returns a const_iterator pointing to the first element in the deque, returning cend

if the deque is empty.

– deque::const_iterator cend():

returns a const_iterator pointing just beyond the deque’s last element.

– void clear():

erases all elements in the deque.

– deque::const_reverse_iterator crbegin():

returns a const_reverse_iterator pointing to the last element in the deque, return-

ing crend if the deque is empty.

– deque::const_reverse_iterator crend():

returns a const_reverse_iterator pointing just before the deque’s first element.

– iterator emplace(const_iterator position, Args &&...args)

a value_type object is constructed from the arguments specified after position,

and the newly created element is inserted at position.

– void emplace_back(Args &&...args)

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted beyond the deque’s last element.

– void emplace_front(Args &&...args)

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted before the deque’s first element.

– bool empty():

returns true if the deque contains no elements.

– deque::iterator end():

returns an iterator pointing beyond the last element in the deque.

– deque::iterator erase():

the member can be used to erase a specific range of elements in the deque:

∗ erase(pos) erases the element pointed to by pos. The iterator ++pos is returned.

∗ erase(first, beyond) erases elements indicated by the iterator range [first,

beyond). Beyond is returned.

– Type &front():

returns a reference to the first element in the deque. It is the responsibility of the

programmer to use the member only if the deque is not empty.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the deque object.

– ... insert():

inserts elements starting at a certain position. The return value depends on the

version of insert that is called:

∗ deque::iterator insert(pos) inserts a default value of type Type at pos, pos

is returned.

∗ deque::iterator insert(pos, value) inserts value at pos, pos is returned.

12.4. SEQUENTIAL CONTAINERS 313

∗ void insert(pos, first, beyond) inserts the elements in the iterator range

[first, beyond).

∗ void insert(pos, n, value) inserts n elements having value value starting at

iterator position pos.

– size_t max_size():

returns the maximum number of elements this deque may contain.

– void pop_back():

removes the last element from the deque. With an empty deque nothing happens.

– void pop_front():

removes the first element from the deque. With an empty deque nothing happens.

– void push_back(value):

adds value to the end of the deque.

– void push_front(value):

adds value before the first element of the deque.

– deque::reverse_iterator rbegin():

returns an iterator pointing to the last element in the deque.

– deque::reverse_iterator rend():

this member returns an iterator pointing before the first element in the deque.

– void resize():

alters the number of elements that are currently stored in the deque:

∗ resize(n, value) may be used to resize the deque to a size of n. Value is optional.

If the deque is expanded and value is not provided, the additional elements are ini-

tialized to the default value of the used data type, otherwise value is used to initialize

extra elements.

– void shrink_to_fit():

optionally reduces the amount of memory allocated by a deque to its current size.

The implementor is free to ignore or otherwise optimize this request. In order to

guarantee a ‘shrink to fit’ operation deque<Type>(dequeObject).swap(dequeObject)

idiom can be used.

size_t size():

returns the number of elements in the deque.

void swap(argument):

swaps two deques using identical data types.

12.4.7 The ‘map’ container

The map class offers a (sorted) associative array. Before using a map container the <map> header file

must have been included.

A map is filled with key/value pairs, which may be of any container-accepted type. Since types are

associated with both the key and the value, we must specify two types in the angle bracket notation,

comparable to the specification we’ve seen with the pair container (cf. section 12.2). The first type

represents the key’s type, the second type represents the value’s type. For example, a map in which

the key is a string and the value is a double can be defined as follows:

map<string, double> object;

314 CHAPTER 12. ABSTRACT CONTAINERS

The key is used to access its associated information. That information is called the value. For

example, a phone book uses the names of people as the key, and uses the telephone number and

maybe other information (e.g., the zip-code, the address, the profession) as value. Since a map sorts

its keys, the key’s operator< must be defined, and it must be sensible to use it. For example, it is

generally a bad idea to use pointers for keys, as sorting pointers is something different than sorting

the values pointed at by those pointers.

The two fundamental operations on maps are the storage of Key/Value combinations, and the re-

trieval of values, given their keys. The index operator using a key as the index, can be used for both.

If the index operator is used as lvalue, the expression’s rvalue is inserted into the map. If it is used

as rvalue, the key’s associated value is retrieved. Each key can be stored only once in a map. If the

same key is entered again, the new value replaces the formerly stored value, which is lost.

A specific key/value combination can implicitly or explicitly be inserted into a map. If explicit inser-

tion is required, the key/value combination must be constructed first. For this, every map defines a

value_type which may be used to create values that can be stored in the map. For example, a value

for a map<string, int> can be constructed as follows:

map<string, int>::value_type siValue("Hello", 1);

The value_type is associated with the map<string, int>: the type of the key is string, the

type of the value is int. Anonymous value_type objects are also often used. E.g.,

map<string, int>::value_type("Hello", 1);

Instead of using the line map<string, int>::value_type(...) over and over again, a typedef

is frequently used to reduce typing and to improve readability:

typedef map<string, int>::value_type StringIntValue

Using this typedef, values for the map<string, int> may now be constructed using:

StringIntValue("Hello", 1);

Alternatively, pairs may be used to represent key/value combinations used by maps:

pair<string, int>("Hello", 1);

12.4.7.1 The ‘map’ constructors

The following constructors are available for the map container:

• A map may be constructed empty:

map<string, int> object;

Note that the values stored in maps may be containers themselves. For example, the following

defines a map in which the value is a pair: a container nested under another container:

map<string, pair<string, string>> object;

12.4. SEQUENTIAL CONTAINERS 315

Note the use of the two consecutive closing angle brackets. Before the advent of the C++11

standard consecutive closing brackets in container type specifications (and generally: in the

context of template type specifications) resulted in a compilation error, as the immediate con-

catenation of the two closing angle brackets would be interpreted by the compiler as a right

shift operator (operator>>), which is not what we want here. In compilers supporting the

C++11 standard this construction is accepted. Compilers not yet implementing this feature

require a separating blank between two consecutive closing angle brackets.

• A map may be initialized using two iterators. The iterators may either point to value_type

values for the map to be constructed, or to plain pair objects. If pairs are used, their first

element represents the type of the keys, and their second element represents the type of the

values. Example:

pair<string, int> pa[] =

{

pair<string,int>("one", 1),

pair<string,int>("two", 2),

pair<string,int>("three", 3),

};

map<string, int> object(&pa[0], &pa[3]);

In this example, map<string, int>::value_type could have been written instead of pair<string,

int> as well.

If begin represents the first iterator that is used to construct a map and if end represents the

second iterator, [begin, end) will be used to initialize the map. Maybe contrary to intuition,

the map constructor only enters new keys. If the last element of pa would have been "one", 3,

only two elements would have entered the map: "one", 1 and "two", 2. The value "one",

3 would silently have been ignored.

The map receives its own copies of the data to which the iterators point as illustrated by the

following example:

#include <iostream>

#include <map>

using namespace std;

class MyClass

{

public:

MyClass()

{

cout << "MyClass constructor\n";

}

MyClass(MyClass const &other)

{

cout << "MyClass copy constructor\n";

}

~MyClass()

{

cout << "MyClass destructor\n";

}

};

int main()

316 CHAPTER 12. ABSTRACT CONTAINERS

{

pair<string, MyClass> pairs[] =

{

pair<string, MyClass>("one", MyClass())

};

cout << "pairs constructed\n";

map<string, MyClass> mapsm(&pairs[0], &pairs[1]);

cout << "mapsm constructed\n";

}

/*
Generated output:

MyClass constructor

MyClass copy constructor

MyClass destructor

pairs constructed

MyClass copy constructor

MyClass copy constructor

MyClass destructor

mapsm constructed

MyClass destructor

MyClass destructor

*/

When tracing the output of this program, we see that, first, the constructor of a MyClass ob-

ject is called to initialize the anonymous element of the array pairs. This object is then copied

into the first element of the array pairs by the copy constructor. Next, the original element is

not required anymore and is destroyed. At that point the array pairs has been constructed.

Thereupon, the map constructs a temporary pair object, which is used to construct the map

element. Having constructed the map element, the temporary pair object is destroyed. Even-

tually, when the program terminates, the pair element stored in the map is destroyed too.

• A map may be initialized using a copy constructor:

extern map<string, int> container;

map<string, int> object(container);

12.4.7.2 The ‘map’ operators

The map supports, in addition to the standard operators for containers, the index operator.

The index operator may be used to retrieve or reassign individual elements of the map. The argu-

ment of the index operator is called a key.

If the provided key is not available in the map, a new data element is automatically added to the map

using the default value or default constructor to initialize the value part of the new element. This

default value is returned if the index operator is used as an rvalue.

When initializing a new or reassigning another element of the map, the type of the right-hand side

of the assignment operator must be equal to (or promotable to) the type of the map’s value part. E.g.,

to add or change the value of element "two" in a map, the following statement can be used:

mapsm["two"] = MyClass();

12.4. SEQUENTIAL CONTAINERS 317

12.4.7.3 The ‘map’ public members

The following member functions are available for the map container:

• map::iterator begin():

returns an iterator pointing to the first element of the map.

• void clear():

erases all elements from the map.

• size_t count(key):

returns 1 if the provided key is available in the map, otherwise 0 is returned.

• bool empty():

returns true if the map contains no elements.

• map::iterator end():

returns an iterator pointing beyond the last element of the map.

• pair<map::iterator, map::iterator> equal_range(key):

this member returns a pair of iterators, being respectively the return values of the

member functions lower_bound and upper_bound, introduced below. An example

illustrating these member functions is given at the discussion of the member function

upper_bound.

• ... erase():

erases a specific element or range of elements from the map:

– bool erase(key) erases the element having the given key from the map. True is re-

turned if the value was removed, false if the map did not contain an element using the

given key.

– void erase(pos) erases the element pointed to by the iterator pos.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,

beyond).

• map::iterator find(key):

returns an iterator to the element having the given key. If the element isn’t avail-

able, end is returned. The following example illustrates the use of the find member

function:

#include <iostream>

#include <map>

using namespace std;

int main()

{

map<string, int> object;

object["one"] = 1;

318 CHAPTER 12. ABSTRACT CONTAINERS

map<string, int>::iterator it = object.find("one");

cout << "‘one’ " <<

(it == object.end() ? "not " : "") << "found\n";

it = object.find("three");

cout << "‘three’ " <<

(it == object.end() ? "not " : "") << "found\n";

}

/*
Generated output:

‘one’ found

‘three’ not found

*/

• allocator_type get_allocator() const:

returns a copy of the allocator object used by the map object.

• ... insert():

inserts elements into the map. Values associated with already existing keys, however,

are not replaced by new values. Its return value depends on the version of insert

that is called:

– pair<map::iterator, bool> insert(keyvalue) inserts a new value_type into the

map. The return value is a pair<map::iterator, bool>. If the returned bool field

is true, keyvalue was inserted into the map. The value false indicates that the key

that was specified in keyvalue was already available in the map, and so keyvalue was

not inserted into the map. In both cases the map::iterator field points to the data ele-

ment having the key that was specified in keyvalue. The use of this variant of insert

is illustrated by the following example:

#include <iostream>

#include <string>

#include <map>

using namespace std;

int main()

{

pair<string, int> pa[] =

{

pair<string,int>("one", 10),

pair<string,int>("two", 20),

pair<string,int>("three", 30),

};

map<string, int> object(&pa[0], &pa[3]);

// {four, 40} and ‘true’ is returned

pair<map<string, int>::iterator, bool>

ret = object.insert

(

map<string, int>::value_type

("four", 40)

);

12.4. SEQUENTIAL CONTAINERS 319

cout << boolalpha;

cout << ret.first->first << " " <<

ret.first->second << " " <<

ret.second << " " << object["four"] << ’\n’;

// {four, 40} and ‘false’ is returned

ret = object.insert

(

map<string, int>::value_type

("four", 0)

);

cout << ret.first->first << " " <<

ret.first->second << " " <<

ret.second << " " << object["four"] << ’\n’;

}

/*
Generated output:

four 40 true 40

four 40 false 40

*/

Note the somewhat peculiar constructions like

cout << ret.first->first << " " << ret.first->second << ...

Note that ‘ret’ is equal to the pair returned by the insert member function. Its ‘first’

field is an iterator into the map<string, int>, so it can be considered a pointer to a

map<string, int>::value_type. These value types themselves are pairs too, having

‘first’ and ‘second’ fields. Consequently, ‘ret.first->first’ is the key of the map

value (a string), and ‘ret.first->second’ is the value (an int).

– map::iterator insert(pos, keyvalue). This way a map::value_type may also

be inserted into the map. pos is ignored, and an iterator to the inserted element is re-

turned.

– void insert(first, beyond) inserts the (map::value_type) elements pointed to by

the iterator range [first, beyond).

• key_compare key_comp():

returns a copy of the object used by the map to compare keys. The type map<KeyType,

ValueType>::key_compare is defined by the map container and key_compare’s

parameters have types KeyType const &. The comparison function returns true

if the first key argument should be ordered before the second key argument. To com-

pare keys and values, use value_comp, listed below.

• map::iterator lower_bound(key):

returns an iterator pointing to the first keyvalue element of which the key is at

least equal to the specified key. If no such element exists, the function returns end.

• size_t max_size():

returns the maximum number of elements this map may contain.

320 CHAPTER 12. ABSTRACT CONTAINERS

• map::reverse_iterator rbegin():

returns an iterator pointing to the last element of the map.

• map::reverse_iterator rend():

returns an iterator pointing before the first element of the map.

• size_t size():

returns the number of elements in the map.

• void swap(argument):

swaps two maps using identical key/value types.

• map::iterator upper_bound(key):

returns an iterator pointing to the first keyvalue element having a key exceed-

ing the specified key. If no such element exists, the function returns end. The fol-

lowing example illustrates the member functions equal_range, lower_bound and

upper_bound:

#include <iostream>

#include <map>

using namespace std;

int main()

{

pair<string, int> pa[] =

{

pair<string,int>("one", 10),

pair<string,int>("two", 20),

pair<string,int>("three", 30),

};

map<string, int> object(&pa[0], &pa[3]);

map<string, int>::iterator it;

if ((it = object.lower_bound("tw")) != object.end())

cout << "lower-bound ‘tw’ is available, it is: " <<

it->first << ’\n’;

if (object.lower_bound("twoo") == object.end())

cout << "lower-bound ‘twoo’ not available" << ’\n’;

cout << "lower-bound two: " <<

object.lower_bound("two")->first <<

" is available\n";

if ((it = object.upper_bound("tw")) != object.end())

cout << "upper-bound ‘tw’ is available, it is: " <<

it->first << ’\n’;

if (object.upper_bound("twoo") == object.end())

cout << "upper-bound ‘twoo’ not available" << ’\n’;

if (object.upper_bound("two") == object.end())

cout << "upper-bound ‘two’ not available" << ’\n’;

12.4. SEQUENTIAL CONTAINERS 321

pair

<

map<string, int>::iterator,

map<string, int>::iterator

>

p = object.equal_range("two");

cout << "equal range: ‘first’ points to " <<

p.first->first << ", ‘second’ is " <<

(

p.second == object.end() ?

"not available"

:

p.second->first

) <<

’\n’;

}

/*
Generated output:

lower-bound ‘tw’ is available, it is: two

lower-bound ‘twoo’ not available

lower-bound two: two is available

upper-bound ‘tw’ is available, it is: two

upper-bound ‘twoo’ not available

upper-bound ‘two’ not available

equal range: ‘first’ points to two, ‘second’ is not available

*/

• value_compare value_comp():

returns a copy of the object used by the map to compare keys. The type map<KeyType,

ValueType>::value_compare is defined by the map container and value_compare’s

parameters have types value_type const &. The comparison function returns

true if the first key argument should be ordered before the second key argument.

The Value_Type elements of the value_type objects passed to this member are not

used by the returned function.

12.4.7.4 The ‘map’: a simple example

As mentioned at the beginning of section 12.4.7, the map represents a sorted associative array. In

a map the keys are sorted. If an application must visit all elements in a map the begin and end

iterators must be used.

The following example illustrates how to make a simple table listing all keys and values found in a

map:

#include <iostream>

#include <iomanip>

#include <map>

using namespace std;

322 CHAPTER 12. ABSTRACT CONTAINERS

int main()

{

pair<string, int>

pa[] =

{

pair<string,int>("one", 10),

pair<string,int>("two", 20),

pair<string,int>("three", 30),

};

map<string, int>

object(&pa[0], &pa[3]);

for

(

map<string, int>::iterator it = object.begin();

it != object.end();

++it

)

cout << setw(5) << it->first.c_str() <<

setw(5) << it->second << ’\n’;

}

/*
Generated output:

one 10

three 30

two 20

*/

12.4.8 The ‘multimap’ container

Like the map, the multimap class implements a (sorted) associative array. Before using a multimap

container the header file <map> must have been included.

The main difference between the map and the multimap is that the multimap supports multiple

values associated with the same key, whereas the map contains single-valued keys. Note that the

multimap also accepts multiple identical values associated with identical keys.

The map and the multimap have the same set of member functions, with the exception of the index

operator which is not supported with the multimap. This is understandable: if multiple entries of

the same key are allowed, which of the possible values should be returned for object[key]?

Refer to section 12.4.7 for an overview of the multimap member functions. Some member functions,

however, deserve additional attention when used in the context of the multimap container. These

members are discussed below.

• size_t map::count(key):

returns the number of entries in the multimap associated with the given key.

• ... erase():

erases elements from the map:

– size_t erase(key) erases all elements having the given key. The number of erased

elements is returned.

12.4. SEQUENTIAL CONTAINERS 323

– void erase(pos) erases the single element pointed to by pos. Other elements possibly

having the same keys are not erased.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,

beyond).

• pair<multimap::iterator, multimap::iterator> equal_range(key):

returns a pair of iterators, being respectively the return values of lower_bound and

upper_bound, introduced below. The function provides a simple means to determine

all elements in the multimap that have the same keys. An example illustrating the

use of these member functions is given at the end of this section.

• multimap::iterator find(key):

this member returns an iterator pointing to the first value whose key is key. If the

element isn’t available, end is returned. The iterator could be incremented to visit all

elements having the same key until it is either end, or the iterator’s first member

is not equal to key anymore.

• multimap::iterator insert():

this member function normally succeeds, and so a multimap::iterator is returned, in-

stead of a pair<multimap::iterator, bool> as returned with the map container.

The returned iterator points to the newly added element.

Although the functions lower_bound and upper_bound act identically in the map and multimap

containers, their operation in a multimap deserves some additional attention. The next example

illustrates lower_bound, upper_bound and equal_range applied to a multimap:

#include <iostream>

#include <map>

using namespace std;

int main()

{

pair<string, int> pa[] =

{

pair<string,int>("alpha", 1),

pair<string,int>("bravo", 2),

pair<string,int>("charley", 3),

pair<string,int>("bravo", 6), // unordered ‘bravo’ values

pair<string,int>("delta", 5),

pair<string,int>("bravo", 4),

};

multimap<string, int> object(&pa[0], &pa[6]);

typedef multimap<string, int>::iterator msiIterator;

msiIterator it = object.lower_bound("brava");

cout << "Lower bound for ‘brava’: " <<

it->first << ", " << it->second << ’\n’;

it = object.upper_bound("bravu");

324 CHAPTER 12. ABSTRACT CONTAINERS

cout << "Upper bound for ‘bravu’: " <<

it->first << ", " << it->second << ’\n’;

pair<msiIterator, msiIterator>

itPair = object.equal_range("bravo");

cout << "Equal range for ‘bravo’:\n";

for (it = itPair.first; it != itPair.second; ++it)

cout << it->first << ", " << it->second << ’\n’;

cout << "Upper bound: " << it->first << ", " << it->second << ’\n’;

cout << "Equal range for ‘brav’:\n";

itPair = object.equal_range("brav");

for (it = itPair.first; it != itPair.second; ++it)

cout << it->first << ", " << it->second << ’\n’;

cout << "Upper bound: " << it->first << ", " << it->second << ’\n’;

}

/*
Generated output:

Lower bound for ‘brava’: bravo, 2

Upper bound for ‘bravu’: charley, 3

Equal range for ‘bravo’:

bravo, 2

bravo, 6

bravo, 4

Upper bound: charley, 3

Equal range for ‘brav’:

Upper bound: bravo, 2

*/

In particular note the following characteristics:

• lower_bound and upper_bound produce the same result for non-existing keys: they both

return the first element having a key that exceeds the provided key.

• Although the keys are ordered in the multimap, the values for equal keys are not ordered:

they are retrieved in the order in which they were enterd.

12.4.9 The ‘set’ container

The set class implements a sorted collection of values. Before using set containers the <set>

header file must have been included.

A set contains unique values (of a container-acceptable type). Each value is stored only once.

A specific value can be explicitly created: Every set defines a value_type which may be used

to create values that can be stored in the set. For example, a value for a set<string> can be

constructed as follows:

set<string>::value_type setValue("Hello");

The value_type is associated with the set<string>. Anonymous value_type objects are also

often used. E.g.,

12.4. SEQUENTIAL CONTAINERS 325

set<string>::value_type("Hello");

Instead of using the line set<string>::value_type(...) over and over again, a typedef is

often used to reduce typing and to improve readability:

typedef set<string>::value_type StringSetValue

Using this typedef, values for the set<string> may be constructed as follows:

StringSetValue("Hello");

Alternatively, values of the set’s type may be used immediately. In that case the value of type Type

is implicitly converted to a set<Type>::value_type.

The following constructors, operators, and member functions are available for the set container:

• Constructors:

– A set may be constructed empty:

set<int> object;

– A set may be initialized using two iterators. For example:

int intarr[] = {1, 2, 3, 4, 5};

set<int> object(&intarr[0], &intarr[5]);

Note that all values in the set must be different: it is not possible to store the same value

repeatedly when the set is constructed. If the same value occurs repeatedly, only the first

instance of the value is entered into the set; the remaining values are silently ignored.

Like the map, the set receives its own copy of the data it contains.

• A set may be initialized using a copy constructor:

extern set<string> container;

set<string> object(container);

• The set container only supports the standard set of operators that are available for containers.

• The set class has the following member functions:

– set::iterator begin():

returns an iterator pointing to the first element of the set. If the set is empty end

is returned.

– void clear():

erases all elements from the set.

– size_t count(key):

returns 1 if the provided key is available in the set, otherwise 0 is returned.

– bool empty():

returns true if the set contains no elements.

– set::iterator end():

returns an iterator pointing beyond the last element of the set.

326 CHAPTER 12. ABSTRACT CONTAINERS

– pair<set::iterator, set::iterator> equal_range(key):

this member returns a pair of iterators, being respectively the return values of

the member functions lower_bound and upper_bound, introduced below.

– ... erase():

erases a specific element or range of elements from the set:

∗ bool erase(value) erases the element having the given value from the set. True

is returned if the value was removed, false if the set did not contain an element

‘value’.

∗ void erase(pos) erases the element pointed to by the iterator pos.

∗ void erase(first, beyond) erases all elements indicated by the iterator range

[first, beyond).

– set::iterator find(value):

returns an iterator to the element having the given value. If the element isn’t

available, end is returned.

– allocator_type get_allocator() const:

returns a copy of the allocator object used by the set object.

– ... insert():

inserts elements into the set. If the element already exists, the existing element

is left untouched and the element to be inserted is ignored. The return value

depends on the version of insert that is called:

∗ pair<set::iterator, bool> insert(keyvalue) inserts a new set::value_type

into the set. The return value is a pair<set::iterator, bool>. If the returned

bool field is true, value was inserted into the set. The value false indicates that

the value that was specified was already available in the set, and so the provided

value was not inserted into the set. In both cases the set::iterator field points to

the data element in the set having the specified value.

∗ set::iterator insert(pos, keyvalue). This way a set::value_type may

also be inserted into the set. pos is ignored, and an iterator to the inserted element is

returned.

∗ void insert(first, beyond) inserts the (set::value_type) elements pointed

to by the iterator range [first, beyond) into the set.

– key_compare key_comp():

returns a copy of the object used by the set to compare keys. The type

set<ValueType>::key_compare is defined by the set container and key_compare’s

parameters have types ValueType const &. The comparison function returns

true if its first argument should be ordered before its second argument.

– set::iterator lower_bound(key):

returns an iterator pointing to the first keyvalue element of which the key is at

least equal to the specified key. If no such element exists, the function returns

end.

– size_t max_size():

returns the maximum number of elements this set may contain.

– set::reverse_iterator rbegin():

returns an iterator pointing to the last element of the set.

– set::reverse_iterator rend:

returns an iterator pointing before the first element of the set.

12.4. SEQUENTIAL CONTAINERS 327

– size_t size():

returns the number of elements in the set.

– void swap(argument):

swaps two sets (argument being the second set) that use identical data types.

– set::iterator upper_bound(key):

returns an iterator pointing to the first keyvalue element having a key exceeding

the specified key. If no such element exists, the function returns end.

• value_compare value_comp():

returns a copy of the object used by the set to compare keys. The type

set<ValueType>::value_compare is defined by the set container and value_compare’s

parameters have types ValueType const &. The comparison function returns true

if its first argument should be ordered before its second argument. Its operation is

identical to that of a key_compare object, returned by key_comp.

12.4.10 The ‘multiset’ container

Like the set, the multiset class implements a sorted collection of values. Before using multiset

containers the header file <set> must have been included.

The main difference between the set and the multiset is that the multiset supports multiple

entries of the same value, whereas the set contains unique values.

The set and the multiset have the same set of member functions. Refer to section 12.4.9 for an

overview of the multiset member functions. Some member functions, however, behave slightly

different than their counterparts of the set container. Those members are mentioned here.

• size_t count(value):

returns the number of entries in the multiset associated with the given value.

• ... erase():

erases elements from the set:

– size_t erase(value) erases all elements having the given value. The number of

erased elements is returned.

– void erase(pos) erases the element pointed to by the iterator pos. Other elements

possibly having the same values are not erased.

– void erase(first, beyond) erases all elements indicated by the iterator range [first,

beyond).

• pair<multiset::iterator, multiset::iterator> equal_range(value):

returns a pair of iterators, being respectively the return values of lower_bound and

upper_bound, introduced below. The function provides a simple means to determine

all elements in the multiset that have the same values.

• multiset::iterator find(value):

returns an iterator pointing to the first element having the specified value. If the

element isn’t available, end is returned. The iterator could be incremented to visit

all elements having the given value until it is either end, or the iterator doesn’t

point to ‘value’ anymore.

328 CHAPTER 12. ABSTRACT CONTAINERS

• ... insert():

this member function normally succeeds and returns a multiset::iterator rather than

a pair<multiset::iterator, bool> as returned with the set container. The

returned iterator points to the newly added element.

Although the functions lower_bound and upper_bound act identically in the set and multiset

containers, their operation in a multiset deserves some additional attention. With a multiset

container lower_bound and upper_bound produce the same result for non-existing keys: they

both return the first element having a key exceeding the provided key.

Here is an example showing the use of various member functions of a multiset:

#include <iostream>

#include <set>

using namespace std;

int main()

{

string

sa[] =

{

"alpha",

"echo",

"hotel",

"mike",

"romeo"

};

multiset<string>

object(&sa[0], &sa[5]);

object.insert("echo");

object.insert("echo");

multiset<string>::iterator

it = object.find("echo");

for (; it != object.end(); ++it)

cout << *it << " ";

cout << ’\n’;

cout << "Multiset::equal_range(\"ech\")\n";

pair

<

multiset<string>::iterator,

multiset<string>::iterator

>

itpair = object.equal_range("ech");

if (itpair.first != object.end())

cout << "lower_bound() points at " << *itpair.first << ’\n’;

for (; itpair.first != itpair.second; ++itpair.first)

cout << *itpair.first << " ";

12.4. SEQUENTIAL CONTAINERS 329

cout << ’\n’ <<

object.count("ech") << " occurrences of ’ech’" << ’\n’;

cout << "Multiset::equal_range(\"echo\")\n";

itpair = object.equal_range("echo");

for (; itpair.first != itpair.second; ++itpair.first)

cout << *itpair.first << " ";

cout << ’\n’ <<

object.count("echo") << " occurrences of ’echo’" << ’\n’;

cout << "Multiset::equal_range(\"echoo\")\n";

itpair = object.equal_range("echoo");

for (; itpair.first != itpair.second; ++itpair.first)

cout << *itpair.first << " ";

cout << ’\n’ <<

object.count("echoo") << " occurrences of ’echoo’" << ’\n’;

}

/*
Generated output:

echo echo echo hotel mike romeo

Multiset::equal_range("ech")

lower_bound() points at echo

0 occurrences of ’ech’

Multiset::equal_range("echo")

echo echo echo

3 occurrences of ’echo’

Multiset::equal_range("echoo")

0 occurrences of ’echoo’

*/

12.4.11 The ‘stack’ container

The stack class implements a stack data structure. Before using stack containers the header file

<stack> must have been included.

A stack is also called a first in, last out (FILO or LIFO) data structure as the first item to enter the

stack is the last item to leave. A stack is an extremely useful data structure in situations where

data must temporarily remain available. For example, programs maintain a stack to store local

variables of functions: the lifetime of these variables is determined by the time these functions

are active, contrary to global (or static local) variables, which live for as long as the program itself

lives. Another example is found in calculators using the Reverse Polish Notation (RPN), in which the

operands of operators are kept in a stack, whereas operators pop their operands off the stack and

push the results of their work back onto the stack.

As an example of the use of a stack, consider figure 12.5, in which the contents of the stack is shown

330 CHAPTER 12. ABSTRACT CONTAINERS

Figure 12.5: The contents of a stack while evaluating 3 4 + 2 *

while the expression (3 + 4) * 2 is evaluated. In the RPN this expression becomes 3 4 + 2 *,

and figure 12.5 shows the stack contents after each token (i.e., the operands and the operators) is

read from the input. Notice that each operand is indeed pushed on the stack, while each operator

changes the contents of the stack. The expression is evaluated in five steps. The caret between

the tokens in the expressions shown on the first line of figure 12.5 shows what token has just been

read. The next line shows the actual stack-contents, and the final line shows the steps for referential

purposes. Note that at step 2, two numbers have been pushed on the stack. The first number (3)

is now at the bottom of the stack. Next, in step 3, the + operator is read. The operator pops two

operands (so that the stack is empty at that moment), calculates their sum, and pushes the resulting

value (7) on the stack. Then, in step 4, the number 2 is read, which is dutifully pushed on the stack

again. Finally, in step 5 the final operator * is read, which pops the values 2 and 7 from the stack,

computes their product, and pushes the result back on the stack. This result (14) could then be

popped to be displayed on some medium.

From figure 12.5 we see that a stack has one location (the top) where items can be pushed onto and

popped off the stack. This top element is the stack’s only immediately visible element. It may be

accessed and modified directly.

Bearing this model of the stack in mind, let’s see what we formally can do with the stack container.

For the stack, the following constructors, operators, and member functions are available:

• Constructors:

– A stack may be constructed empty:

stack<string> object;

– A stack may be initialized using a copy constructor:

extern stack<string> container;

stack<string> object(container);

• Only the basic set of container operators are supported by the stack

• The following member functions are available for stacks:

– bool empty():

this member returns true if the stack contains no elements.

12.4. SEQUENTIAL CONTAINERS 331

– void pop():

removes the element at the top of the stack. Note that the popped element is not

returned by this member, and refer to section 12.4.4 for a discussion about the

reason why pop has return type void.

Furthermore, it is the responsibility of the stack’s user to assure that pop is not called

when the stack is empty. If pop is called for an empty stack, its internal administration

breaks, resulting, e.g., in a negative size (showing itself as a very large stacksize due to its

size member returning a size_t, and other operations (like push) fail and may crash

your program. Of course, with a well designed algorithm requests to pop from empty

stacks do not occur (which is probably why this implementation was used for the stack

container).

– void push(value):

places value at the top of the stack, hiding the other elements from view.

– size_t size():

this member returns the number of elements in the stack.

– Type &top():

this member returns a reference to the stack’s top (and only visible) element. It is

the responsibility of the programmer to use this member only if the stack is not

empty.

)

The stack does not support iterators or a subscript operator. The only elements that can be

accessed is its top element. To empty a stack:

– repeatedly remove its front element;

– assign an empty stack to it;

– have its destructor called (e.g., by ending its lifetime).

12.4.12 The ‘unordered_map’ container (‘hash table’) (C++11)

The C++11 standard officially adds hash tables (the unordered_map) to the language.

Before using unordered_map or unordered_multimap containers the header file <unordered_map>

must have been included.

The unordered_map class implements an associative array in which the elements are stored ac-

cording to some hashing scheme. As discussed, the map is a sorted data structure. The keys in

maps are sorted using the operator< of the key’s data type. Generally, this is not the fastest way

to either store or retrieve data. The main benefit of sorting is that a listing of sorted keys appeals

more to humans than an unsorted list. However, a by far faster way to store and retrieve data is to

use hashing.

Hashing uses a function (called the hash function) to compute an (unsigned) number from the key,

which number is thereupon used as an index in the table storing the keys and their values. This

number is called the bucket number. Retrieval of a key is as simple as computing the hash value of

the provided key, and looking in the table at the computed index location: if the key is present, it is

stored in the table, at the computed bucket location and its value can be returned. If it’s not present,

the key is not currently stored in the container.

Collisions occur when a computed index position is already occupied by another element. For these

situations the abstract containers have solutions available. A simple solution, adopted by the C++11

standard is to use linear chaining which uses linked list to store colliding table elements in.

332 CHAPTER 12. ABSTRACT CONTAINERS

In the C++11 standard the term unordered_map is used rather than hash to avoid name collisions

with hash tables developed before the C++11 standard was established.

Because of the hashing method, the efficiency of a unordered_map in terms of speed should greatly

exceed the efficiency of the map. Comparable conclusions may be drawn for the unordered_set,

the unordered_multimap and the unordered_multiset.

12.4.12.1 The ‘unordered_map’ constructors

When defining an unordered_map type five template arguments must be specified :

• a KeyType (becoming unordered_map::key_type),

• a ValueType (becoming unordered_map::mapped_type),

• the type of an object computing a hash value from a key value (becoming unordered_map::hasher),

and

• the type of an object that can compare two keys for equality (becoming unordered_map::key_equal).

• the type of its allocator. This is usually left unspecified, using the allocator provided by default

by the implementor.

The generic definition of an unordered_map container looks like this:

std::unordered_map <KeyType, ValueType, hash type, predicate type,

allocator type>

When KeyType is std::string or a built-in type then default types are available for the hash

type and the predicate type. In practice the allocator type is not specified, as the default allocator

suffices. In these cases an unordered_map object can be defined by merely specifying the key- and

value types, like this:

std::unordered_map<std::string, ValueType> hash(size_t size = implSize);

Here, implSize is the container’s default initial size, which is specified by the implementor. The

map’s size is automatically enlarged by the unordered_map when necessary, in which case the con-

tainer rehashes all its elements. In practice the default size argument provided by the implementor

is completely satisfactory.

The KeyType frequently consists of text. So, a unordered_map using a std::string KeyType

is frequently used. Be careful not to use a plain char const * key_type as two char const *
values pointing to equal C-strings stored at different locations are considered to be different keys, as

their pointer values rather than their textual contents are compared. Here is an example showing

how a char const * KeyType can be used. Note that in the example no arguments are specified

when constructing months, since default values and constructors are available:

#include <unordered_map>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

12.4. SEQUENTIAL CONTAINERS 333

struct EqualCp

{

bool operator()(char const *l, char const *r) const

{

return strcmp(l, r) == 0;

}

};

struct HashCp

{

size_t operator()(char const *str) const

{

return std::hash<std::string>()(str);

}

};

int main()

{

unordered_map<char const *, int, HashCp, EqualCp> months;

// or explicitly:

unordered_map<char const *, int, HashCp, EqualCp>

monthsTwo(61, HashCp(), EqualCp());

months["april"] = 30;

months["november"] = 31;

string apr("april"); // different pointers, same string

cout << "april -> " << months["april"] << ’\n’ <<

"april -> " << months[apr.c_str()] << ’\n’;

}

If other KeyTypes must be used, then the unordered_map’s constructor requires (constant refer-

ences to) a hash function object, computing a hash value from a key value, and a predicate function

object, returning true if two unordered_map::key_type objects are identical. A generic algo-

rithm (see chapter 19) exists performing tests of equality (i.e., equal_to). These tests can be used

if the key’s data type supports the equality operator. Alternatively, an overloaded operator== or

specialized function object could be constructed returning true if two keys are equal and false

otherwise.

Constructors

The unordered_map supports the following constructors:

• explicit unordered_set(size_type n = implSize, hasher const &hf = hasher(),

key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): this constructor can also be used

as default constructor;

• unordered_map(unordered_map const &other): copy-constructor;

• unordered_map(unordered_map &&tmp) move-constructor;

• unordered_map(const_iterator begin, const_iterator end, size_type n = implSize,

hasher const &hf = hasher(), key_equal const &eql = key_equal(), allocator_type

const &alloc = allocator_type()): this constructor expects two iterators specifying a

range of unordered_map::value_type const objects, and

334 CHAPTER 12. ABSTRACT CONTAINERS

• unordered_map(initializer_list<value_type> initList, size_type n = implSize,

hasher const &hf = hasher(), key_equal const &eql = key_equal(), allocator_type

const &alloc = allocator_type()): a constructor expecting an initializer_list of

unordered_map::value_type values.

The following example shows a program using an unordered_map containing the names of the

months of the year and the number of days these months (usually) have. Then, using the sub-

script operator the days in several months are displayed (the predicate used here is the generic

algorithm equal_to<string>, which is provided by the compiler as the default fourth argument

of the unordered_map constructor):

#include <unordered_map>

#include <iostream>

#include <string>

using namespace std;

int main()

{

unordered_map<string, int> months;

months["january"] = 31;

months["february"] = 28;

months["march"] = 31;

months["april"] = 30;

months["may"] = 31;

months["june"] = 30;

months["july"] = 31;

months["august"] = 31;

months["september"] = 30;

months["october"] = 31;

months["november"] = 30;

months["december"] = 31;

cout << "september -> " << months["september"] << ’\n’ <<

"april -> " << months["april"] << ’\n’ <<

"june -> " << months["june"] << ’\n’ <<

"november -> " << months["november"] << ’\n’;

}

/*
Generated output:

september -> 30

april -> 30

june -> 30

november -> 30

*/

12.4.12.2 The ‘unordered_map’ public members

The unordered_map supports the index operator operating identically to the map’s index operator:

a (const) reference to the ValueType associated with the provided KeyType’s value is returned.

If not yet available, the key is added to the unordered_map, and a default ValueType value is

returned. In addition, it supports operator==.

12.4. SEQUENTIAL CONTAINERS 335

The unordered_map provides the following member functions (key_type, value_type etc. refer

to the types defined by the unordered_map):

• mapped_type &at(key_type const &key):

returns a reference to the unordered_map’s mapped_type associated with key. If

the key is not stored in the unordered_map an std::out_of_range exception is

thrown.

• unordered_map::iterator begin():

returns an iterator pointing to the first element in the unordered_map, returning end

if the unordered_map is empty.

• size_t bucket(key_type const &key):

returns the index location where key is stored. If key wasn’t stored yet bucket adds

value_type(key, Value()) before returning its index position.

• size_t bucket_count():

returns the number of slots used by the containers. Each slot may contain one (or

more, in case of collisions) value_type objects.

• size_t bucket_size(size_t index):

returns the number of value_type objects stored at bucket position index.

• unordered_map::const_iterator cbegin():

returns a const_iterator pointing to the first element in the unordered_map, return-

ing cend if the unordered_map is empty.

• unordered_map::const_iterator cend():

returns a const_iterator pointing just beyond the unordered_map’s last element.

• void clear():

erases all the unordered_map’s elements.

• size_t count(key_type const &key):

returns the number of times a value_type object using key_type key is stored in

the unordered_map (which is either one or zero).

• pair<iterator, bool> emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. If the unordered_map

already contained an object using the same key_type value, then a std::pair is re-

turned containing an iterator pointing to the object using the same key_type value

and the value false. If no such key_type value was found, the newly constructed

object is inserted into the unordered_map, and the returned std::pair contains

an iterator pointing to the newly inserted inserted value_type as well as the value

true.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted into the unordered_map, unless the (at args) provided

key already exists. The implementation may or may not use position as a hint to

336 CHAPTER 12. ABSTRACT CONTAINERS

start looking for an insertion point. The returned iterator points to the value_type

using the provided key. It may refer to an already existing value_type or to a newly

added value_type; an existing value_type is not replaced. If a new value was

added, then the container’s size has been incremented when emplace_hint returns.

• bool empty():

returns true if the unordered_map contains no elements.

• unordered_map::iterator end():

returns an iterator pointing beyond the last element in the unordered_map.

• pair<iterator, iterator> equal_range(key):

this member returns a pair of iterators defining the range of elements having a key

that is equal to key. With the unordered_map this range includes at most one

element.

• unordered_map::iterator erase():

erases a specific range of elements in the unordered_map:

– erase(pos) erases the element pointed to by the iterator pos. The iterator ++pos is

returned.

– erase(first, beyond) erases elements indicated by the iterator range [first, beyond),

returning beyond.

• iterator find(key):

returns an iterator to the element having the given key. If the element isn’t available,

end is returned.

• allocator_type get_allocator() const:

returns a copy of the allocator object used by the unordered_map object.

• hasher hash_function() const:

returns a copy of the hash function object used by the unordered_map object.

• ... insert():

elements may be inserted starting at a certain position. No insertion is performed

if the provided key is already in use. The return value depends on the version of

insert() that is called. When a pair<iterator, bool> is returned, then the

pair’s first member is an iterator pointing to the element having a key that is

equal to the key of the provided value_type, the pair’s second member is true

if value was actually inserted into the container, and false if not.

– pair<iterator, bool> insert(value_type const &value) attempts to insert value.

– pair<iterator, bool> insert(value_type &&tmp) attempts to insert value us-

ing value_type’s move constructor.

– pair<iterator, bool> insert(const_iterator hint, value_type const &value)

attempts to insert value, possibly using hint as a starting point when trying to insert

value.

– pair<iterator, bool> insert(const_iterator hint, value_type &&tmp) at-

tempts to insert a value using value_type’s move constructor, and possibly using hint

as a starting point when trying to insert value.

12.4. SEQUENTIAL CONTAINERS 337

– void insert(first, beyond) tries to insert the elements in the iterator range [first,

beyond).

– void insert(initializer_list <value_type> iniList) attempts to insert the

elements in iniList into the container.

• hasher key_eq() const:

returns a copy of the key_equal function object used by the unordered_map object.

• float load_factor() const:

returns the container’s current load factor, i.e. size / bucket_count.

• size_t max_bucket_count():

returns the maximum number of buckets this unordered_map may contain.

• float max_load_factor() const:

identical to load_factor.

• void max_load_factor(float max):

changes the current maximum load factor to max. When a load factor of max is

reached, the container will enlarge its bucket_count, followed by a rehash of its

elements. Note that the container’s default maximum load factor equals 1.0

• size_t max_size():

returns the maximum number of elements this unordered_map may contain.

• void rehash(size_t size):

if size exceeds the current bucket count, then the bucket count is increased to size,

followed by a rehash of its elements.

• void reserve(size_t request):

if request is less than or equal to the current bucket count, this call has no effect.

Otherwise, the bucket count is increased to a value of at least request, followed by

a rehash of the container’s elements.

• size_t size():

returns the number of elements in the unordered_map.

• void swap(unordered_map &other):

swaps the contents of the current and the other unordered_map.

12.4.12.3 The ‘unordered_multimap’ container (C++11)

The unordered_multimap allows multiple objects using the same keys to be stored in an unordered

map. The unordered_multimap container offers the same set of members and constructors as the

unordered_map, but without the unique-key restriction imposed upon the unordered_map.

The unordered_multimap does not offer operator[] and does not offer the at members.

338 CHAPTER 12. ABSTRACT CONTAINERS

Below all members are described whose behavior differs from the behavior of the corresponding

unordered_map members:

• at

not supported by the unordered_multimap container

• size_t count(key_type const &key):

returns the number of times a value_type object using key_type key is stored

in the unordered_map. This member is commonly used to verify whether key is

available in the unordered_multimap.

• iterator emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. The returned iterator

points to the newly inserted inserted value_type.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted into the unordered_multimap. The implementation

may or may not use position as a hint to start looking for an insertion point. The

returned iterator points to the value_type using the provided key.

• pair<iterator, iterator> equal_range(key):

this member returns a pair of iterators defining the range of elements having a key

that is equal to key.

• terator find(key):

returns an iterator to an element having the given key. If no such element is avail-

able, end is returned.

• ... insert():

elements may be inserted starting at a certain position. The return value depends

on the version of insert() that is called. When an iterator is returned, then it

points to the element that was inserted.

– iterator insert(value_type const &value) inserts value.

– iterator insert(value_type &&tmp) inserts value using value_type’s move con-

structor.

– iterator insert(const_iterator hint, value_type const &value) inserts value,

possibly using hint as a starting point when trying to insert value.

– iterator insert(const_iterator hint, value_type &&tmp) inserts value us-

ing value_type’s move constructor, and possibly using hint as a starting point when

trying to insert value.

– void insert(first, beyond) inserts the elements in the iterator range [first, beyond).

– void insert(initializer_list <value_type> iniList) inserts the elements in

iniList into the container.

12.4. SEQUENTIAL CONTAINERS 339

12.4.13 The ‘unordered_set’ container (C++11)

The set container, like the map container, orders its elements. If ordering is not an issue, but fast

lookups are, then a hash-based set and/or multi-set may be preferred. The C++ standard has added

such hash-based sets and multi-sets to the language: the unordered_set and unordered_multiset.

Before using these hash-based set containers the header file <unordered_set> must have been

included.

Elements stored in the unordered_set are immutable, but they can be inserted and removed from

the container. Different from the unordered_map, the unordered_set does not use a ValueType.

The set merely stores elements, and the stored element itself is its own key.

The unordered_set has the same constructors as the unordered_map, but the set’s value_type

is equal to its key_type.

When defining an unordered_set type four template arguments must be specified :

• a KeyType (becoming unordered_set::key_type),

• the type of an object computing a hash value from a key value (becoming unordered_set::hasher),

and

• the type of an object that can compare two keys for equality (becoming unordered_set::key_equal).

• the type of its allocator. This is usually left unspecified, using the allocator provided by default

by the implementor.

The generic definition of an unordered_set container looks like this:

std::unordered_set <KeyType, hash type, predicate type, allocator type>

When KeyType is std::string or a built-in type then default types are available for the hash

type and the predicate type. In practice the allocator type is not specified, as the default allocator

suffices. In these cases an unordered_set object can be defined by merely specifying the key- and

value types, like this:

std::unordered_set<std::string> rawSet(size_t size = implSize);

Here, implSize is the container’s default initial size, which is specified by the implementor. The

set’s size is automatically enlarged when necessary, in which case the container rehashes all its

elements. In practice the default size argument provided by the implementor is completely satis-

factory.

The unordered_set supports the following constructors:

• explicit unordered_set(size_type n = implSize, hasher const &hf = hasher(),

key_equal const &eql = key_equal(),

allocator_type const &alloc = allocator_type()): this constructor can also be used

as default constructor;

• unordered_set(unordered_set const &other): copy-constructor;

• unordered_set(unordered_set &&tmp) move-constructor;

340 CHAPTER 12. ABSTRACT CONTAINERS

• unordered_set(const_iterator begin, const_iterator end, size_type n = implSize,

hasher const &hf = hasher(), key_equal const &eql = key_equal(), allocator_type

const &alloc = allocator_type()): this constructor expects two iterators specifying a

range of unordered_set::value_type const objects, and

• unordered_set(initializer_list<value_type> initList, size_type n = implSize,

hasher const &hf = hasher(), key_equal const &eql = key_equal(), allocator_type

const &alloc = allocator_type()): a constructor expecting an initializer_list of

unordered_set::value_type values.

The unordered_set does not offer an index operator, and it does not offer an at member. Other

than those, it offers the same members as the unordered_map. Below the members whose behavior

differs from the behavior of the unordered_map are discussed. For a description of the remaining

members, please refer to section 12.4.12.2.

• iterator emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. It is added to the

set if it is unique, and an iterator to the value_type is returned.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and if the newly

created element is unique it is inserted into the unordered_set. The implementa-

tion may or may not use position as a hint to start looking for an insertion point.

The returned iterator points to the value_type.

• unordered_set::iterator erase():

erases a specific range of elements in the unordered_set:

– erase(key_type const &key) erases key from the set. An iterator pointing to the

next element is returned.

– erase(pos) erases the element pointed to by the iterator pos. The iterator ++pos is

returned.

– erase(first, beyond) erases elements indicated by the iterator range [first, beyond),

returning beyond.

12.4.13.1 The ‘unordered_multiset’ container (C++11)

The unordered_multiset allows multiple objects using the same keys to be stored in an unordered

set. The unordered_multiset container offers the same set of members and constructors as the

unordered_set, but without the unique-key restriction imposed upon the unordered_set.

Below all members are described whose behavior differs from the behavior of the corresponding

unordered_set members:

• size_t count(key_type const &key):

returns the number of times a value_type object using key_type key is stored

in the unordered_set. This member is commonly used to verify whether key is

available in the unordered_multiset.

12.4. SEQUENTIAL CONTAINERS 341

• iterator emplace(Args &&...args):

a value_type object is constructed from emplace’s arguments. The returned iterator

points to the newly inserted inserted value_type.

• iterator emplace_hint(const_iterator position, Args &&...args):

a value_type object is constructed from the member’s arguments, and the newly

created element is inserted into the unordered_multiset. The implementation

may or may not use position as a hint to start looking for an insertion point. The

returned iterator points to the value_type using the provided key.

• pair<iterator, iterator> equal_range(key):

this member returns a pair of iterators defining the range of elements having a key

that is equal to key.

• terator find(key):

returns an iterator to an element having the given key. If no such element is avail-

able, end is returned.

• ... insert():

elements may be inserted starting at a certain position. The return value depends

on the version of insert() that is called. When an iterator is returned, then it

points to the element that was inserted.

– iterator insert(value_type const &value) inserts value.

– iterator insert(value_type &&tmp) inserts value using value_type’s move con-

structor.

– iterator insert(const_iterator hint, value_type const &value) inserts value,

possibly using hint as a starting point when trying to insert value.

– iterator insert(const_iterator hint, value_type &&tmp) inserts value us-

ing value_type’s move constructor, and possibly using hint as a starting point when

trying to insert value.

– void insert(first, beyond) inserts the elements in the iterator range [first, beyond).

– void insert(initializer_list <value_type> iniList) inserts the elements in

iniList into the container.

12.4.14 Regular Expressions (C++11, ?)

The C++11 standard adds handling of regular expressions to the language. Before using regular

expressions as offered by the C++ standard the header file <regex> must have been included.

Regular expressions were already available in C++ via its C heritage as C has always offered func-

tions like regcomp and regexec that are used by, e.g., the Pattern class of the Bobcat library1.

Regular expressions are extensively documented elsewhere (e.g., regex(7), Friedl, J.E.F Mastering

Regular Expressions2, O’Reilly) and the reader is referred to these sources for a refresher on the

topic of regular expressions.

The C++11 standard adds native object based support for regular expressions by defining several

new classes and other facilities. Currently, however, regular expressions are not yet supported by

1http://bobcat.sourceforge.net
2http://oreilly.com/catalog/

342 CHAPTER 12. ABSTRACT CONTAINERS

the g++ library and therefore in this section only the basic building blocks the C++11 standard offers

to handle regular expressions are mentioned. Once regular expressions actually become available

this section will be updated to cover the actually available features.

Eventually, regular expressions are represented by objects of the class regex. Once a regex regular

expression object has been defined its member regex_search can be called to process its regular

expression. This function expects arguments representing, respectively, the text which must be

matched against the regular expression; an object of the class cmatch representing the results of

the matching operation and an object of the class regex representing the used regular expression.

Furthermore, a member regex_replace is available performing textual replacements based on

regular expressions.

Regular expressions using the regex class are currently not yet available in the g++ library.

12.5 The ‘complex’ container

The complex container defines the standard operations that can be performed on complex numbers.

Before using complex containers the header file <complex> must have been included.

The complex number’s real and imaginary types are specified as the container’s data type. Examples:

complex<double>

complex<int>

complex<float>

Note that the real and imaginary parts of complex numbers have the same datatypes.

When initializing (or assigning) a complex object, the imaginary part may be omitted from the ini-

tialization or assignment resulting in its value being 0 (zero). By default, both parts are zero.

Below it is silently assumed that the used complex type is complex<double>. Given this assump-

tion, complex numbers may be initialized as follows:

• target: A default initialization: real and imaginary parts are 0.

• target(1): The real part is 1, imaginary part is 0

• target(0, 3.5): The real part is 0, imaginary part is 3.5

• target(source): target is initialized with the values of source.

Anonymous complex values may also be used. In the next example two anonymous complex values

are pushed on a stack of complex numbers, to be popped again thereafter:

#include <iostream>

#include <complex>

#include <stack>

using namespace std;

int main()

{

stack<complex<double>>

12.5. THE ‘COMPLEX’ CONTAINER 343

cstack;

cstack.push(complex<double>(3.14, 2.71));

cstack.push(complex<double>(-3.14, -2.71));

while (cstack.size())

{

cout << cstack.top().real() << ", " <<

cstack.top().imag() << "i" << ’\n’;

cstack.pop();

}

}

/*
Generated output:

-3.14, -2.71i

3.14, 2.71i

*/

The following member functions and operators are defined for complex numbers (below, value may

be either a primitve scalar type or a complex object):

• Apart from the standard container operators, the following operators are supported from the

complex container.

– complex operator+(value):

this member returns the sum of the current complex container and value.

– complex operator-(value):

this member returns the difference between the current complex container and

value.

– complex operator*(value):

this member returns the product of the current complex container and value.

– complex operator/(value):

this member returns the quotient of the current complex container and value.

– complex operator+=(value):

this member adds value to the current complex container, returning the new

value.

– complex operator-=(value):

this member subtracts value from the current complex container, returning the

new value.

– complex operator*=(value):

this member multiplies the current complex container by value, returning the

new value

– complex operator/=(value):

this member divides the current complex container by value, returning the new

value.

• Type real():

returns the real part of a complex number.

344 CHAPTER 12. ABSTRACT CONTAINERS

• Type imag():

returns the imaginary part of a complex number.

• Several mathematical functions are available for the complex container, such as abs, arg,

conj, cos, cosh, exp, log, norm, polar, pow, sin, sinh and sqrt. All these functions are

free functions, not member functions, accepting complex numbers as their arguments. For

example,

abs(complex<double>(3, -5));

pow(target, complex<int>(2, 3));

• Complex numbers may be extracted from istream objects and inserted into ostream objects.

The insertion results in an ordered pair (x, y), in which x represents the real part and y the

imaginary part of the complex number. The same form may also be used when extracting a

complex number from an istream object. However, simpler forms are also allowed. E.g., when

extracting 1.2345 the imaginary part is set to 0.

12.6 Unrestricted Unions (C++11)

We end this chapter about abstract containers with a small detour, introducing additions to the

union concept, made available by the C++11 standard. Although unions themselves aren’t ‘abstract

containers’, having covered containers has put us in a good position to introduce and illustrate

unrestricted unions.

The C++11 standard adds unrestricted unions to C++’s data structuring capabilities. Whereas the

traditional union can only contain primitive data, unrestricted unions allow data fields of types for

which non-trivial constructors have been defined. Such data fields commonly are of class-types.

Here is an example of such an unrestricted union:

union Union

{

int u_int;

std::string u_string;

};

One of its fields defines a constructor, turning this union into an unrestricted union. As an unre-

stricted union defines at least one field of a type having a constructor the question becomes how

these unions can be constructed and destroyed.

The destructor of a union consisting of, e.g. a std::string and an int should of course not call

the string’s destructor if the union’s last (or only) use referred to its int field. Likewise, when

the std::string field is used, and a switch is made next from the std::string to the int field,

std::string’s destructor should be called before any assignment to the double field takes place.

The compiler does not solve the issue for us, and in fact does not implement default constructors

or destructors for unrestricted unions at all. If we try to define an unrestricted union like the one

shown above, an error message like the following is issued:

error: use of deleted function ’Union::Union()’

error: ’Union::Union()’ is implicitly deleted because the default

definition would be ill-formed:

error: union member ’Union::u_string’ with non-trivial

’std::basic_string<...>::basic_string() ...’

12.6. UNRESTRICTED UNIONS (C++11) 345

12.6.1 Implementing the destructor

Although the compiler won’t provide (default) implementations for constructors and destructors of

unrestricted unions, we can. The task isn’t difficult, but there are some caveats.

Consider our unrestricted union’s destructor. It clearly should destroy u_string’s data if that is its

currently active field; but it should do nothing if u_int is its currently active field. But how does

the destructor know what field to destroy? It doesn’t as the unrestricted union holds no information

about what field is currently active.

Here is one way to tackle this problem:

If we embed the unrestricted union in a larger aggregate, like a class or a struct, then the class or

struct can be provided with a tag data member storing the currently active union-field. The tag can

be an enumeration type, defined by the aggregate. The unrestricted union may then be controlled

by the aggregate. Under this approach we start out with an explicit empty implementations of the

destructor, as there’s no way to tell the destructor itself what field to destroy:

Data::Union::~Union()

{};

12.6.2 Embedding an unrestricted union in a surrounding class

Next, we embed the unrestricted union in a surrounding aggregate: class Data. The aggregate is

provided with an enum Tag, declared in its public section, so Data’s users may request tags. Union

itself is for Data’s internal use only, so Union is declared in Data’s private section. Using a struct

Data rather than class Data we start out in a public section, saving us from having to specify the

initial public: section for enum Tag:

struct Data

{

enum Tag

{

INT,

STRING

};

private:

union Union

{

int u_int;

std::string u_string;

~Union(); // no actions

// ... to do: declarations of members

};

Tag d_tag;

Union d_union;

};

Data’s constructors receive int or string values. To pass these values on to d_union, we need

Union constructors for the various union fields; matching Data constructors also initialize d_tag to

346 CHAPTER 12. ABSTRACT CONTAINERS

proper values:

Data::Union::Union(int value)

:

u_int(value)

{}

Data::Union::Union(std::string const &str)

:

u_string(str)

{}

Data::Data(std::string const &str)

:

d_tag(STRING),

d_union(str)

{}

Data::Data(int value)

:

d_tag(INT),

d_union(value)

{}

12.6.3 Destroying an embedded unrestricted union

Data’s destructor has a data member which is an unrestricted union. As the union’s destructor can’t

perform any actions, the union’s proper destruction is delegated to a member, Union::destroy

destroying the fields for which destructors are defined. As d_tag stores the currently used Union

field, Data’s destructor can pass d_tag to Union::destroy to inform it about which field should

be destroyed.

Union::destroy does not need to perform any action for INT tags, but for STRING tags the memory

allocated by u_stringmust be returned. For this an explicit destructor call is used. Union::destroy

and Data’s destructor are therefore implemented like this:

void Data::Union::destroy(Tag myTag)

{

if (myTag == Tag::STRING)

u_string.~string();

}

Data::~Data()

{

d_union.destroy(d_tag);

}

12.6.4 Copy and move constructors

Union’s copy and move constructors suffer from the same problem as Union’s destructor does: the

union does not know which is its currently active field. But again: Data does, and by defining

‘extended’ copy and move constructors, also receiving a Tag argument, these extended constructors

can perform their proper initializations. The Union’s copy- and move-constructors are deleted, and

extended copy- and move constructors are declared:

12.6. UNRESTRICTED UNIONS (C++11) 347

Union(Union const &other) = delete;

Union &operator=(Union const &other) = delete;

Union(Union const &other, Tag tag);

Union(Union &&tmp, Tag tag);

Shortly we’ll encounter a situation where we must be able to initialize a block of memory using an

existing Union object. This task can be performed by copy members, whose implementations are

trivial, and which may be used by the above constructors. They can be declared in Union’s private

section, and have identical parameter lists as the above constructors:

void copy(Union const &other, Tag tag);

void copy(Union &&other, Tag tag);

The constructors merely have to call these copy members:

inline Data::Union::Union(Union const &other, Tag tag)

{

copy(other, tag);

}

inline Data::Union::Union(Union &&tmp, Tag tag)

{

copy(std::move(tmp), tag);

}

Interestingly, no ‘initialization followed by assignment’ happens here: d_union has not been initial-

ized in any way by the the time we reach the statement blocks of the above constructors. But upon

reaching the statement blocks, d_union memory is merely raw memory. This is no problem, as the

copy members use placement new to initialize the Union’s memory:

void Data::Union::copy(Union const &other, Tag otag)

{

if (tag == INT)

u_int = other.u_int;

else

new (this) string(other.u_string);

}

void Data::Union::copy(Union &&tmp, Tag tag)

{

if (tag == INT)

u_int = tmp.u_int;

else

new (this) string(std::move(tmp.u_string));

}

12.6.5 Assignment

To assign a Data object to another data object, we need an assignment operator. The standard mold

for the assignment operator looks like this:

348 CHAPTER 12. ABSTRACT CONTAINERS

Class &Class::operator=(Class const &other)

{

Class tmp(other);

swap(*this, tmp);

return *this;

}

This implementation is exception safe: it offers the ‘commit or roll-back’ guarantee (cf. section 9.6).

But can it be applied to Data?

It depends. It depends on whether Data objects can be fast swapped (cf. section 9.6.1.1) or not. If

Union’s fields can be fast swapped then we can simply swap bytes and we’re done. In that case Union

does not require any additional members (to be specific: it won’t need an assignment operator).

But now assume that Union’s fields cannot be fast swapped. How to implement an exception-safe

assignment (i.e., an assignment offering the ‘commit or roll-back’ guarantee) in that case? The

d_tag field clearly isn’t a problem, so we delegate the responsibility for proper assignment to Union,

implementing Data’s assignment operators as follows:

Data &Data::operator=(Data const &rhs)

{

if (d_union.assign(d_tag, rhs.d_union, rhs.d_tag))

d_tag = rhs.d_tag;

return *this;

}

Data &Data::operator=(Data &&tmp)

{

if (d_union.assign(d_tag, std::move(tmp.d_union), tmp.d_tag))

d_tag = tmp.d_tag;

return *this;

}

But now for Union::assign. Assuming that both Unions use different fields, but swapping objects

of the separate types is allowed. Now things may go wrong. Assume the left-side union uses type

X, the right-side union uses type Y and both types use allocation. First, briefly look at standard

swapping. It involves three steps:

• tmp(lhs): initialize a temporary objecct;

• lhs = rhs: assign the rhs object to the lhs object;

• rhs = tmp: assign the tmp object to the rhs

Usually we assume that these steps do not throw exceptions, as swap itself shouldn’t throw excep-

tions. How could we implement swapping for our union? Assume the fields are known (easily done

by passing Tag values to Union::swap):

• X tmp(lhs.x): initialize a temporary X;

• in-place destroy lhs.x; placement new initialize lhs.y from rhs.y (alternatively: placement new

default initialize lhs.y, then do the standard lhs.y = rhs.y)

• in-place destroy rhs.y; placement new initialize rhs.x from tmp (alternatively: placement new

default initialize rhs.x, then do the standard rhs.x = tmp)

12.6. UNRESTRICTED UNIONS (C++11) 349

By C++-standard requirement, the in-place destruction won’t throw. Since the standard swap also

performs an assignment that part should work fine as well. And since the standard swap also does

a copy construction the placement new operations should perform fine as well, and if so, Union may

be provided with the following swap member:

void Data::Union::swap(Tag myTag, Union &other, Tag oTag)

{

Union tmp(*this, myTag); // save lhs

destroy(myTag); // destroy lhs

copy(other, oTag); // assign rhs

other.destroy(oTag); // destroy rhs

other.copy(tmp, myTag); // save lhs via tmp

}

Now that swap is available Data’s assignment operators are easily realized:

Data &Data::operator=(Data const &rhs)

{

Data tmp(rhs); // tmp(std::move(rhs)) for the move assignment

d_union.swap(d_tag, tmp.d_union, tmp.d_tag);

swap(d_tag, tmp.d_tag);

return *this;

}

What if the Union constructors could throw? In that case we can provide Data with an ’commit or

roll-back’ assignment operator like this:

Data &Data::operator=(Data const &rhs)

{

Data tmp(rhs);

// rolls back before throwing an exception

d_union.assign(d_tag, rhs.d_union, rhs.d_tag);

d_tag = rhs.d_tag;

return *this;

}

How to implement Union::assign? Here are the steps assign must take:

• First save the current union in a block of memory. This merely involves a non-throwing memcpy

operation;

• Then use placement new to copy the other object’s union field into the current object. If this

throws:

– catch the exception, restore the original Union from the saved block and rethrow the

exception: we have rolled-back to our previous (valid) state.

350 CHAPTER 12. ABSTRACT CONTAINERS

• We still have to delete the original field’s allocated data. To do so, we perform the following

steps:

– (Fast) swap the current union’s new contents with the contents in the previously saved

block;

– Call destroy for the now restored original union;

– Re-install the new union from the memory block.

As none of the above steps will throw, we have committed the new situation.

Here is the implementation of the ‘commit or roll-back’ Union::assign:

void Data::Union::assign(Tag myTag, Union const &other, Tag otag)

{

char saved[sizeof(Union)];

memcpy(saved, this, sizeof(Union)); // raw copy: saved <- *this

try

{

copy(other, otag); // *this = other: may throw

fswap(*this, // *this <-> saved

*reinterpret_cast<Union *>(saved));

destroy(myTag); // destroy original *this

memcpy(this, saved, sizeof(Union)); // install new *this

}

catch (...) // copy threw

{

memcpy(this, saved, sizeof(Union)); // roll back: restore *this

throw;

}

}

The source distribution contains yo/containers/examples/unrestricted2.cc offering a small

demo-program in which the here developed Data class is used.

Chapter 13

Inheritance

When programming in C, programming problems are commonly approached using a top-down struc-

tured approach: functions and actions of the program are defined in terms of sub-functions, which

again are defined in sub-sub-functions, etc.. This yields a hierarchy of code: main at the top, followed

by a level of functions which are called from main, etc..

In C++ the relationship between code and data is also frequently defined in terms of dependencies

among classes. This looks like composition (see section 7.3), where objects of a class contain objects

of another class as their data. But the relation described here is of a different kind: a class can be

defined in terms of an older, pre-existing, class. This produces a new class having all the functionality

of the older class, and additionally defining its own specific functionality. Instead of composition,

where a given class contains another class, we here refer to derivation, where a given class is or

is-implemented-in-terms-of another class.

Another term for derivation is inheritance: the new class inherits the functionality of an existing

class, while the existing class does not appear as a data member in the interface of the new class.

When discussing inheritance the existing class is called the base class, while the new class is called

the derived class.

Derivation of classes is often used when the methodology of C++ program development is fully ex-

ploited. In this chapter we first address the syntactic possibilities offered by C++ for deriving classes.

Following this we address some of the specific possibilities offered by class derivation (inheritance).

As we have seen in the introductory chapter (see section 2.4), in the object-oriented approach to

problem solving classes are identified during the problem analysis. Under this approach objects of

the defined classes represent entities that can be observed in the problem at hand. The classes are

placed in a hierarchy, with the top-level class containing limited functionality. Each new derivation

(and hence descent in the class hierarchy) adds new functionality compared to yet existing classes.

In this chapter we shall use a simple vehicle classification system to build a hierarchy of classes.

The first class is Vehicle, which implements as its functionality the possibility to set or retrieve

the mass of a vehicle. The next level in the object hierarchy are land-, water- and air vehicles.

The initial object hierarchy is illustrated in Figure 13.1.

This chapter mainly focuses on the technicalities of class derivation. The distinction between inher-

itance used to create derived classes whose objects should be considered objects of the base class and

inheritance used to implement derived classes in-terms-of their base classes is postponed until the

next chapter (14).

Inheritance (and polymorphism, cf. chapter 14) can be used with classes and structs. It is not defined

351

352 CHAPTER 13. INHERITANCE

Figure 13.1: Initial object hierarchy of vehicles.

for unions.

13.1 Related types

The relationship between the proposed classes representing different kinds of vehicles is further

investigated here. The figure shows the object hierarchy: an Auto is a special case of a Land vehicle,

which in turn is a special case of a Vehicle.

The class Vehicle represents the ‘greatest common divisor’ in the classification system. Vehicle

is given limited functionality: it can store and retrieve a vehicle’s mass:

class Vehicle

{

size_t d_mass;

public:

Vehicle();

Vehicle(size_t mass);

size_t mass() const;

void setMass(size_t mass);

};

Using this class, the vehicle’s mass can be defined as soon as the corresponding object has been

created. At a later stage the mass can be changed or retrieved.

To represent vehicles travelling over land, a new class Land can be defined offering Vehicle’s func-

tionality and adding its own specific functionality. Assume we are interested in the speed of land

vehicles and in their mass. The relationship between Vehicles and Lands could of course be rep-

resented by composition but that would be awkward: composition suggests that a Land vehicle

is-implemented-in-terms-of, i.e., contains, a Vehicle, while the natural relationship clearly is that

the Land vehicle is a kind of Vehicle.

A relationship in terms of composition would also somewhat complicate our Land class’s design.

Consider the following example showing a class Land using composition (only the setMass func-

tionality is shown):

13.1. RELATED TYPES 353

class Land

{

Vehicle d_v; // composed Vehicle

public:

void setMass(size_t mass);

};

void Land::setMass(size_t mass)

{

d_v.setMass(mass);

}

Using composition, the Land::setMass function only passes its argument on to Vehicle::setMass.

Thus, as far as mass handling is concerned, Land::setMass introduces no extra functionality, just

extra code. Clearly this code duplication is superfluous: a Land object is a Vehicle; to state that a

Land object contains a Vehicle is at least somewhat peculiar.

The intended relationship is represented better by inheritance. A rule of thumb for choosing between

inheritance and composition distinguishes between is-a and has-a relationships. A truck is a vehicle,

so Truck should probably derive from Vehicle. On the other hand, a truck has an engine; if you

need to model engines in your system, you should probably express this by composing an Engine

class inside the Truck class.

Following the above rule of thumb, Land is derived from the base class Vehicle:

class Land: public Vehicle

{

size_t d_speed;

public:

Land();

Land(size_t mass, size_t speed);

void setspeed(size_t speed);

size_t speed() const;

};

To derive a class (e.g., Land) from another class (e.g., Vehicle) postfix the class name Land in its

interface by : public Vehicle:

class Land: public Vehicle

The class Land now contains all the functionality of its base class Vehicle as well as its own fea-

tures. Here those features are a constructor expecting two arguments and member functions to

access the d_speed data member. Here is an example showing the possibilities of the derived class

Land:

Land veh(1200, 145);

int main()

{

cout << "Vehicle weighs " << veh.mass() << ";\n"

"its speed is " << veh.speed() << ’\n’;

}

354 CHAPTER 13. INHERITANCE

This example illustrates two features of derivation.

• First, mass is not mentioned as a member in Land’s interface. Nevertheless it is used in

veh.mass. This member function is an implicit part of the class, inherited from its ‘parent’

vehicle.

• Second, although the derived class Land contains the functionality of Vehicle, the Vehicle’s

private members remain private: they can only be accessed by Vehicle’s own member func-

tions. This means that Land’s member functions must use Vehicle’s member functions (like

mass and setMass) to address the mass field. Here there’s no difference between the access

rights granted to Land and the access rights granted to other code outside of the class Vehicle.

The class Vehicle encapsulates the specific Vehicle characteristics, and data hiding is one

way to realize encapsulation.

Encapsulation is a core principle of good class design. Encapsulation reduces the dependencies

among classes improving the maintainability and testability of classes and allowing us to modify

classes without the need to modify depending code. By strictly complying with the principle of

data hiding a class’s internal data organization may change without requiring depending code to be

changed as well. E.g., a class Lines originally storing C-strings could at some point have its data

organization changed. It could abandon its char ** storage in favor of a vector<string> based

storage. When Lines uses perfect data hiding depending source code may use the new Lines class

without requiring any modification at all.

As a rule of thumb, derived classes must be fully recompiled (but don’t have to be modified) when

the data organization (i.e., the data members) of their base classes change. Adding new member

functions to the base class doesn’t alter the data organization so no recompilation is needed when

new member functions are added.

There is one subtle exception to this rule of thumb: if a new member function is added to a base

class and that function happens to be declared as the first virtual member function of the base class

(cf. chapter 14 for a discussion of the virtual member function concept) then that also changes the

data organization of the base class.

Now that Land has been derived from Vehicle we’re ready for our next class derivation. We’ll

define a class Auto to represent automobiles. Agreeing that an Auto object is a Land vehicle, and

that an Auto has a brand name it’s easy to design the class Auto:

class Auto: public Land

{

std::string d_brandName;

public:

Auto();

Auto(size_t mass, size_t speed, std::string const &name);

std::string const &brandName() const;

};

In the above class definition, Auto was derived from Land, which in turn is derived from Vehicle.

This is called nested derivation: Land is called Auto’s direct base class, while Vehicle is called

Auto’s indirect base class.

13.2. ACCESS RIGHTS: PUBLIC, PRIVATE, PROTECTED 355

13.1.1 Inheritance depth: desirable?

Now that Auto has been derived from Land and Land has been derived from Vehicle we might

easily be seduced into thinking that these class hierarchies are the way to go when designing classes.

But maybe we should temper our enthusiasm.

Repeatedly deriving classes from classes quickly results in big, complex class hierarchies that are

hard to understand, hard to use and hard to maintain. Hard to understand and use as users of our

derived class now also have to learn all its (indirect) base class features as well. Hard to maintain

because all those classes are very closely coupled. While it may be true that when data hiding is

meticulously adhered to derived classes do not have to be modified when their base classes alter

their data organization, it also quickly becomes practically infeasible to change those base classes

once more and more (derived) classes depend on their current organization.

What initially looks like a big gain, inheriting the base class’s interface, thus becomes a liability.

The base class’s interface is hardly ever completely required and in the end a class may benefit from

explicitly defining its own member functions rather than obtaining them through inheritance.

Often classes can be defined in-terms-of existing classes: some of their features are used, but others

need to be shielded off. Consider the stack container: it is commonly implemented in-terms-of a

deque, returning deque::back’s value as stack::top’s value.

When using inheritance to implement an is-a relationship make sure to get the ‘direction of use’

right: inheritance aiming at implementing an is-a relationship should focus on the base class: the

base class facilities aren’t there to be used by the derived class, but the derived class facilities should

redefine (reimplement) the base class facilities using polymorphism (which is the topic of the next

chapter), allowing code to use the derived class facilities polymorphically through the base class.

We’ve seen this approach when studying streams: the base class (e.g., ostream) is used time and

again. The facilities defined by classes derived from ostream (like ofstream and ostringstream)

are then used by code only relying on the facilities offered by the ostream class, never using the

derived classes directly.

When designing classes always aim at the lowest possible coupling. Big class hierarchies usually

indicate poor understanding of robust class design. When a class’s interface is only partially used

and if the derived class is implemented in terms of another class consider using composition rather

than inheritance and define the appropriate interface members in terms of the members offered by

the composed objects.

13.2 Access rights: public, private, protected

Early in the C++ Annotations (cf. section 3.2.1) we encountered two important design principles

when developing classes: data hiding and encapsulation. Data hiding restricts control over an

object’s data to the members of its class, encapsulating is used to restrict access to the functionality

of objects. Both principles are invaluable tools for maintaining data integrity.

The keyword private starts sections in class interfaces in which members are declared which can

only be accessed by members of the class itself. This is our main tool for realizing data hiding.

According to established good practices of class design the public sections are populated with mem-

ber functions offering a clean interface to the class’s functionality. These members allow users to

communicate with objects; leaving it to the objects how requests sent to objects are handled. In a

well-designed class its objects are in full control of their data.

Inheritance doesn’t change these principles, nor does it change the way the private and protected

keywords operate. A derived class does not have access to a base class’s private section.

356 CHAPTER 13. INHERITANCE

Sometimes this is a bit too restrictive. Consider a class implementing a random number generating

streambuf (cf. chapter 6). Such a streambuf can be used to construct an istream irand, after

which extractions from irand produces the next random number, like in the next example in which

10 random numbers are generated using stream I/O:

RandBuf buffer;

istream irand(&buffer);

for (size_t idx = 0; idx != 10; ++idx)

{

size_t next;

irand >> next;

cout << "next random number: " << next << ’\n’;

}

The question is, how many random numbers should irand be able to generate? Fortunately, there’s

no need to answer this question, as RandBuf can be made responsible for generating the next ran-

dom number. RandBuf, therefore, operates as follows:

• It generates a random number;

• It is passed in textual form to its base class streambuf;

• The istream object extracts this random number, merely using streambuf’s interface;

• this process is repeated for subsequent random numbers;

Once RandBuf has stored the text representation of the next random number in some buffer, it must

tell its base class (streambuf) where to find the random number’s characters. For this streambuf

offers a member setg, expecting the location and size of the buffer holding the random number’s

characters.

The member setg clearly cannot be declared in streambuf’s private section, as RandBuf must use

it to prepare for the extraction of the next random number. But it should also not be in streambuf’s

public section, as that could easily result in unexpected behavior by irand. Consider the following

hypothetical example:

RandBuf buffer;

istream irand(&buffer);

char buffer[] = "12";

buffer.setg(buffer, ...); // setg public: buffer now contains 12

size_t next;

irand >> next; // not a *random* value, but 12.

Clearly there is a close connection between streambuf and its derived class RandBuf. By allowing

RandBuf to specify the buffer from which streambuf reads characters RandBuf remains in control,

denying other parts of the program to break its well-defined behavior.

This close connection between base- and derived-classes is realized by a third keyword related to

the accessibility of class members: protected. Here is how the member setg could have been be

declared in a class streambuf:

class streambuf

13.2. ACCESS RIGHTS: PUBLIC, PRIVATE, PROTECTED 357

{

// private data here (as usual)

protected:

void setg(... parameters ...); // available to derived classes

public:

// public members here

};

Protected members are members that can be accessed by derived classes, but are not part of a class’s

public interface.

Avoid the temptation to declare data members in a class’s protected section: it’s a sure sign of bad

class design as it needlessly results in tight coupling of base and derived classes. the principle of

data hiding should not be abandoned now that the keyword protected has been introduced. If a

derived class (but not other parts of the software) should be given access to its base class’s data,

use member functions: accessors and modifiers declared in the base class’s protected section. This

enforces the intended restricted access without resulting in tightly coupled classes.

13.2.1 Public, protected and private derivation

With inheritance public derivation is frequently used. When public derivation is used the access

rights of the base class’s interface remains unaltered in the derived class. But the type of inheritance

may also be defined as private or protected.

Protected derivation is used when the keyword protected is put in front of the derived class’s base

class:

class Derived: protected Base

When protected derivation is used all the base class’s public and protected members become pro-

tected members in the derived class. The derived class may access all the base class’s public and

protected members. Classes that are in turn derived from the derived class view the base class’s

members as protected. Any other code (outside of the inheritance tree) is unable to access the base

class’s members.

Private derivation is used when the keyword private is put in front of the derived class’s base

class:

class Derived: private Base

When private derivation is used all the base class’s members turn into private members in the

derived class. The derived class members may access all base class public and protected members

but base class members cannot be used elsewhere.

Public derivation should be used to define an is-a relationship between a derived class and a base

class: the derived class object is-a base class object allowing the derived class object to be used poly-

morphically as a base class object in code expecting a base class object. Private inheritance is used

in situations where a derived class object is defined in-terms-of the base class where composition

cannot be used. There’s little documented use for protected inheritance, but one could maybe en-

counter protected inheritance when defining a base class that is itself a derived class and needs to

make its base class members available to classes derived from itself.

358 CHAPTER 13. INHERITANCE

Combinations of inheritance types do occur. For example, when designing a stream-class it is usually

derived from std::istream or std::ostream. However, before a stream can be constructed, a

std::streambuf must be available. Taking advantage of the fact that the inheritance order is

defined in the class interface, we use multiple inheritance (see section 13.7) to derive the class from

both std::streambuf and (then) from std::ostream. To the class’s users it is a std::ostream

and not a std::streambuf. So private derivation is used for the latter, and public derivation for

the former class:

class Derived: private std::streambuf, public std::ostream

13.2.2 Promoting access rights

When private or protected derivation is used, users of derived class objects are denied access to

the base class members. Private derivation denies access to all base class members to users of the

derived class, protected derivation does the same, but allows classes that are in turn derived from

the derived class to access the base class’s public and protected members.

In some situations this scheme is too restrictive. Consider a class RandStream derived privately

from a class RandBufwhich is itself derived from std::streambuf and also publicly from istream:

class RandBuf: public std::streambuf

{

// implements a buffer for random numbers

};

class RandStream: private RandBuf, public std::istream

{

// implements a stream to extract random values from

};

Such a class could be used to extract, e.g., random numbers using the standard istream interface.

Although the RandStream class is constructed with the functionality of istream objects in mind,

some of the members of the class std::streambuf may be considered useful by themselves. E.g.,

the function streambuf::in_avail returns a lower bound to the number of characters that can be

read immediately. The standard way to make this function available is to define a shadow member

calling the base class’s member:

class RandStream: private RandBuf, public std::istream

{

// implements a stream to extract random values from

public:

std::streamsize in_avail();

};

inline std::streamsize RandStream::in_avail()

{

return std::streambuf::in_avail();

}

This looks like a lot of work for just making available a member from the protected or private base

classes. If the intent is to make available the in_avail member access promotion can be used.

Access promotion allows us to specify which members of private (or protected) base classes become

13.3. THE CONSTRUCTOR OF A DERIVED CLASS 359

available in the protected (or public) interface of the derived class. Here is the above example, now

using access promotion:

class RandStream: private RandBuf, public std::istream

{

// implements a stream to extract random values from

public:

using std::streambuf::in_avail;

};

It should be noted that access promotion makes available all overloaded versions of the declared base

class member. So, if streambuf would offer not only in_avail but also, e.g., in_avail(size_t

*) both members would become part of the public interface.

13.3 The constructor of a derived class

A derived class inherits functionality from its base class (or base classes, as C++ supports multiple

inheritance, cf. section 13.7). When a derived class object is constructed it is built on top of its base

class object. As a consequence the base class must have been constructed before the actual derived

class elements can be initialized. This results in some requirements that must be observed when

defining derived class constructors.

A constructor exists to initialize the object’s data members. A derived class constructor is also

responsible for the proper initialization of its base class. Looking at the definition of the class Land

introduced earlier (section 13.1), its constructor could simply be defined as follows:

Land::Land(size_t mass, size_t speed)

{

setMass(mass);

setspeed(speed);

}

However, this implementation has several disadvantages.

• When constructing a derived class object a base class constructor is always called before any

action is performed on the derived class object itself. By default the base class’s default con-

structor is going to be called.

• Using the base class constructor only to reassign new values to its data members in the derived

class constructor’s body usually is inefficient, but sometimes sheer impossible as in situations

where base class reference or const data members must be initialized. In those cases a special-

ized base class constructor must be used instead of the base class default constructor.

A derived class’s base class may be initialized using a dedicated base class constructor by calling

the base class constructor in the derived class constructor’s initializer clause. Calling a base class

constructor in a constructor’s initializer clause is called a base class initializer. The base class ini-

tializer must be called before initializing any of the derived class’s data members and when using

the base class initializer none of the derived class data members may be used. When constructing a

derived class object the base class is constructed first and only after that construction has success-

fully completed the derived class data members are available for initialization. Land’s constructor

may therefore be improved:

360 CHAPTER 13. INHERITANCE

Land::Land(size_t mass, size_t speed)

:

Vehicle(mass),

d_speed(speed)

{}

Derived class constructors always by default call their base class’s default constructor. This is of

course not correct for a derived class’s copy constructor. Assuming that the class Land must be

provided with a copy constructor it may use the Land const &other to represent the other’s base

class:

Land::Land(Land const &other) // assume a copy constructor is needed

:

Vehicle(other), // copy-construct the base class part.

d_speed(other.speed) // copy-construct Land’s data members

{}

13.3.1 Move construction (C++11)

As with classes using composition derived classes may benefit from defining a move constructor. A

derived class may offer a move constructor for two reasons:

• it supports move construction for its data members

• its base class is move-aware

The design of move constructors moving data members was covered in section 9.7. A move construc-

tor for a derived class whose base class is move-aware must anonimize the rvalue reference before

passing it to the base class move constructor. The std::move function should be used when imple-

menting the move constructor to move the information in base classes or composed objects to their

new destination object.

The first example shows the move constructor for the class Auto, assuming it has a movable char

*d_brandName data member and assuming that Land is a move-aware class. The second example

shows the move constructor for the class Land, assuming that it does not itself have movable data

members, but that its Vehicle base class is move-aware:

Auto::Auto(Auto &&tmp)

:

Land(std::move(tmp)), // anonimize ‘tmp’

d_brandName(tmp.d_brandName) // move the char *’s value

{

tmp.d_brandName = 0;

}

Land(Land &&tmp)

:

Vehicle(std::move(tmp)), // move-aware Vehicle

d_speed(tmp.d_speed) // plain copying of plain data

{}

13.3. THE CONSTRUCTOR OF A DERIVED CLASS 361

13.3.2 Move assignment (C++11)

Derived classes may also benefit from move assignment operations. If the derived class and its base

class support swapping then the implementation is simple, following the standard shown earlier in

section 9.7.3. For the class Auto this could boil down to:

Auto &Auto::operator=(Auto &&tmp)

{

swap(tmp);

return *this;

}

If swapping is not supported then std::move can be used to call the base class’s move assignment

operator:

Auto &Auto::operator=(Auto &&tmp)

{

static_cast<Land &>(*this) = std::move(tmp);

// move Auto’s own data members next

return *this;

}

13.3.3 Inheriting constructors (C++11, ?)

The C++11 standard allows derived classes to be constructed without explicitly defining derived

class constructors. In those cases the available base class constructors are called.

This feature is either used or not. It is not possible to omit some of the derived class constructors,

using the corresponding base class constructors instead. To use this feature for classes that are de-

rived from multiple base classes (cf. section 13.7) all the base class constructors must have different

signatures. Considering the complexities that are involved here it’s probably best to avoid using

base class constructors for classes using multiple inheritance.

The construction of derived class objects can be delegated to base class constructor(s) using the

following syntax:

class BaseClass

{

public:

// BaseClass constructor(s)

};

class DerivedClass: public BaseClass

{

public:

using BaseClass::BaseClass; // No DerivedClass constructors

// are defined

};

362 CHAPTER 13. INHERITANCE

13.4 The destructor of a derived class

Destructors of classes are automatically called when an object is destroyed. This also holds true for

objects of classes derived from other classes. Assume we have the following situation:

class Base

{

public:

~Base();

};

class Derived: public Base

{

public:

~Derived();

};

int main()

{

Derived derived;

}

At the end of main, the derived object ceases to exists. Hence, its destructor (~Derived) is called.

However, since derived is also a Base object, the ~Base destructor is called as well. The base class

destructor is never explicitly called from the derived class destructor.

Constructors and destructors are called in a stack-like fashion: when derived is constructed, the

appropriate base class constructor is called first, then the appropriate derived class constructor is

called. When the object derived is destroyed, its destructor is called first, automatically followed

by the activation of the Base class destructor. A derived class destructor is always called before its

base class destructor is called.

When the construction of a derived class objects did not successfully complete (i.e., the construc-

tor threw an exception) then its destructor is not called. However, the destructors of properly con-

structed base classes will be called if a derived class constructor throws an exception. This, of course,

is it should be: a properly constructed object should also be destroyed, eventually. Example:

#include <iostream>

struct Base

{

~Base()

{

std::cout << "Base destructor\n";

}

};

struct Derived: public Base

{

Derived()

{

throw 1; // at this time Base has been constructed

}

};

int main()

{

13.5. REDEFINING MEMBER FUNCTIONS 363

try

{

Derived d;

}

catch(...)

{}

}

/*
This program displays ‘Base destructor’

*/

13.5 Redefining member functions

Derived classes may redefine base class members. Let’s assume that a vehicle classification system

must also cover trucks, consisting of two parts: the front part, the tractor, pulls the rear part, the

trailer. Both the tractor and the trailer have their own mass, and the mass function should return

the combined mass.

The definition of a Truck starts with a class definition. Our initial Truck class is derived from Auto

but it is then expanded to hold one more size_t field representing the additional mass information.

Here we choose to represent the mass of the front part of the truck in the Auto class and to store

the mass of the trailer in an additional field:

class Truck: public Auto

{

size_t d_trailer_mass;

public:

Truck();

Truck(size_t tractor_wt, size_t speed, char const *name,

size_t trailer_wt);

void setMass(size_t tractor_wt, size_t trailer_wt);

size_t mass() const;

};

Truck::Truck(size_t tractor_wt, size_t speed, char const *name,

size_t trailer_wt)

:

Auto(tractor_wt, speed, name)

{

d_trailer_mass = trailer_wt;

}

Note that the class Truck now contains two functions already present in the base class Auto:

setMass and mass.

• The redefinition of setMass poses no problems: this function is simply redefined to perform

actions which are specific to a Truck object.

• Redefining setMass, however, hides Auto::setMass. For a Truck only the setMass function

having two size_t arguments can be used.

364 CHAPTER 13. INHERITANCE

• The Vehicle’s setMass function remains available for a Truck, but it must now be called

explicitly, as Auto::setMass is hidden from view. This latter function is hidden, even though

Auto::setMass has only one size_t argument. To implement Truck::setMass we could

write:

void Truck::setMass(size_t tractor_wt, size_t trailer_wt)

{

d_trailer_mass = trailer_wt;

Auto::setMass(tractor_wt); // note: Auto:: is required

}

• Outside of the class Auto::setMass is accessed using the scope resolution operator. So, if a

Truck truck needs to set its Auto mass, it must use

truck.Auto::setMass(x);

• An alternative to using the scope resolution operator is to add a member having the same

function prototype as the base class member to the derived class’s interface. This derived class

member could be implemented inline to call the base class member. E.g., we add the following

member to the class Truck:

// in the interface:

void setMass(size_t tractor_wt);

// below the interface:

inline void Truck::setMass(size_t tractor_wt)

{

Auto::setMass(tractor_wt);

}

Now the single argument setMass member function can be used by Truck objects without us-

ing the scope resolution operator. As the function is defined inline, no overhead of an additional

function call is involved.

• To prevent hiding the base class members a using declaration may be added to the derived

class interface. The relevant section of Truck’s class interface then becomes:

class Truck: public Auto

{

public:

using Auto::setMass;

void setMass(size_t tractor_wt, size_t trailer_wt);

};

A using declaration imports (all overloaded versions of) the mentioned member function di-

rectly into the derived class’s interface. If a base class member has a signature that is identi-

cal to a derived class member then compilation fails (a using Auto::mass declaration can-

not be added to Truck’s interface). Now code may use truck.setMass(5000) as well as

truck.setMass(5000, 2000).

Using declarations obey access rights. To prevent non-class members from using setMass(5000)

without a scope resolution operator but allowing derived class members to do so the using

Auto::setMass declaration should be put in the class Truck’s private section.

13.5. REDEFINING MEMBER FUNCTIONS 365

• The function mass is also already defined in Auto, as it was inherited from Vehicle. In this

case, the class Truck should redefine this member function to allow for the extra (trailer) mass

in the Truck:

size_t Truck::mass() const

{

return

(// sum of:

Auto::mass() + // tractor part plus

d_trailer_mass // the trailer

);

}

Example:

int main()

{

Land veh(1200, 145);

Truck lorry(3000, 120, "Juggernaut", 2500);

lorry.Vehicle::setMass(4000);

cout << ’\n’ << "Truck weighs " <<

lorry.Vehicle::mass() << ’\n’ <<

"Truck + trailer weighs " << lorry.mass() << ’\n’ <<

"Speed is " << lorry.speed() << ’\n’ <<

"Name is " << lorry.name() << ’\n’;

}

The class Truck was derived from Auto. However, one might question this class design. Since

a truck is conceived of as a combination of an tractor and a trailer it is probably better defined

using composition. This changes our point of view from a Truck being an Auto (and some strangely

appearing data members) to a Truck consisting of an Auto (the tractor) and a Vehicle (the trailer).

Truck’s interface is now very specific, not requiring users to study Auto’s and Vehicle’s interfaces

and it opens up possibilities for defining ‘road trains’: tractors towing multiple trailers. Here is an

example of such an alternate class setup:

class Truck

{

Auto d_lorry;

Vehicle d_trailer; // use vector<Vehicle> for road trains

public:

Truck();

Truck(size_t tractor_wt, size_t speed, char const *name,

size_t trailer_wt);

void setMass(size_t tractor_wt, size_t trailer_wt);

void setTractorMass(size_t tractor_wt);

void setTrailerMass(size_t trailer_wt);

size_t mass() const;

size_t tractorMass() const;

size_t trailerMass() const;

366 CHAPTER 13. INHERITANCE

// consider:

Auto const &tractor() const;

Vehicle const &trailer() const;

};

13.6 i/ostream::init

Consider classes derived from std::istream or std::ostream. Such a class could be designed as

follows:

class XIstream: public std::istream

{

public:

...

};

Assuming that the streambuf to which XIstream interfaces is not yet available construction

time, XIstream only offers default constructors. The class could, however, offer a member void

switchStream(std::streambuf *sb) to provide XIstream objects with a streambuf to inter-

face to. How to implement switchStream?

The classes std::istream and std::ostream offer a protected member void init(std::streambuf

*sb) to realize this. The init member expects a pointer to a streambuf which is associated with

the istream or ostream object. The init member properly ends any existing association before

switching to the streambuf whose address is provided to init.

Assuming that the streambuf to which switchStream’s sb points persists, then switchStream

could simply be implemented like this:

void switchStream(streambuf *sb)

{

init(sb);

}

13.7 Multiple inheritance

Up to now, a class has always been derived from a single base class. In addition to single inheritance

C++ also supports multiple inheritance. In multiple inheritance a class is derived from several base

classes and hence inherits functionality from multiple parent classes at the same time.

When using multiple inheritance it should be defensible to consider the newly derived class an in-

stantiation of both base classes. Otherwise, composition is more appropriate. In general, linear

derivation (using only one base class) is used much more frequently than multiple derivation. Good

class design dictates that a class should have a single, well described responsibility and that prin-

ciple often conflicts with multiple inheritance where we can state that objects of class Derived are

both Base1 and Base2 objects.

But then, consider the prototype of an object for which multiple inheritance was used to its extreme:

the Swiss army knife! This object is a knife, it is a pair of scissors, it is a can-opener, it is a corkscrew,

it is

13.7. MULTIPLE INHERITANCE 367

The ‘Swiss army knife’ is an extreme example of multiple inheritance. In C++ there are some good

reasons, not violating the ‘one class, one responsibility’ principle that is covered in the next chapter.

In this section the technical details of constructing classes using multiple inheritance are discussed.

How to construct a ‘Swiss army knife’ in C++? First we need (at least) two base classes. For example,

let’s assume we are designing a toolkit allowing us to construct an instrument panel of an aircraft’s

cockpit. We design all kinds of instruments, like an artificial horizon and an altimeter. One of the

components that is often seen in aircraft is a nav-com set: a combination of a navigational beacon

receiver (the ‘nav’ part) and a radio communication unit (the ‘com’-part). To define the nav-com set,

we start by designing the NavSet class (assume the existence of the classes Intercom, VHF_Dial

and Message):

class NavSet

{

public:

NavSet(Intercom &intercom, VHF_Dial &dial);

size_t activeFrequency() const;

size_t standByFrequency() const;

void setStandByFrequency(size_t freq);

size_t toggleActiveStandby();

void setVolume(size_t level);

void identEmphasis(bool on_off);

};

Next we design the class ComSet:

class ComSet

{

public:

ComSet(Intercom &intercom);

size_t frequency() const;

size_t passiveFrequency() const;

void setPassiveFrequency(size_t freq);

size_t toggleFrequencies();

void setAudioLevel(size_t level);

void powerOn(bool on_off);

void testState(bool on_off);

void transmit(Message &message);

};

Using objects of this class we can receive messages, transmitted though the Intercom, but we

can also transmit messages using a Message object that’s passed to the ComSet object using its

transmit member function.

Now we’re ready to construct our NavCom set:

class NavComSet: public ComSet, public NavSet

{

public:

368 CHAPTER 13. INHERITANCE

NavComSet(Intercom &intercom, VHF_Dial &dial);

};

Done. Now we have defined a NavComSet which is both a NavSet and a ComSet: the facilities of

both base classes are now available in the derived class using multiple inheritance.

Please note the following:

• The keyword public is present before both base class names (NavSet and ComSet). By default

inheritance uses private derivation and the keyword public must be repeated before each of

the base class specifications. Base classes are not required to use the same derivation type. One

base class could have public derivation and another base class could use private derivation.

• The multiply derived class NavComSet introduces no additional functionality of its own, but

merely combines two existing classes into a new aggregate class. Thus, C++ offers the possi-

bility to simply sweep multiple simple classes into one more complex class.

• Here is the implementation of The NavComSet constructor:

NavComSet::NavComSet(Intercom &intercom, VHF_Dial &dial)

:

ComSet(intercom),

NavSet(intercom, dial)

{}

The constructor requires no extra code: Its purpose is to activate the constructors of its base

classes. The order in which the base class initializers are called is not dictated by their calling

order in the constructor’s code, but by the ordering of the base classes in the class interface.

• The NavComSet class definition requires no additional data members or member functions:

here (and often) the inherited interfaces provide all the required functionality and data for the

multiply derived class to operate properly.

Of course, while defining the base classes, we made life easy on ourselves by strictly using different

member function names. So, there is a function setVolume in the NavSet class and a function

setAudioLevel in the ComSet class. A bit cheating, since we could expect that both units in fact

have a composed object Amplifier, handling the volume setting. A revised class might offer an

Amplifier &lifier() const member function, and leave it to the application to set up its

own interface to the amplifier. Alternatively, a revised class could define members for setting the

volume of either the NavSet or the ComSet parts.

In situations where two base classes offer identically named members special provisions need to be

made to prevent ambiguity:

• The intended base class can explicitly be specified using the base class name and scope resolu-

tion operator:

NavComSet navcom(intercom, dial);

navcom.NavSet::setVolume(5); // sets the NavSet volume level

navcom.ComSet::setVolume(5); // sets the ComSet volume level

• The class interface is provided with member functions that can be called unambiguously. These

additional members are usually defined inline:

class NavComSet: public ComSet, public NavSet

13.8. CONVERSIONS BETWEEN BASE CLASSES AND DERIVED CLASSES 369

{

public:

NavComSet(Intercom &intercom, VHF_Dial &dial);

void comVolume(size_t volume);

void navVolume(size_t volume);

};

inline void NavComSet::comVolume(size_t volume)

{

ComSet::setVolume(volume);

}

inline void NavComSet::navVolume(size_t volume)

{

NavSet::setVolume(volume);

}

• If the NavComSet class is obtained from a third party, and cannot be modified, a disambiguat-

ing wrapper class may be used:

class MyNavComSet: public NavComSet

{

public:

MyNavComSet(Intercom &intercom, VHF_Dial &dial);

void comVolume(size_t volume);

void navVolume(size_t volume);

};

inline MyNavComSet::MyNavComSet(Intercom &intercom, VHF_Dial &dial)

:

NavComSet(intercom, dial);

{}

inline void MyNavComSet::comVolume(size_t volume)

{

ComSet::setVolume(volume);

}

inline void MyNavComSet::navVolume(size_t volume)

{

NavSet::setVolume(volume);

}

13.8 Conversions between base classes and derived classes

When public inheritance is used to define classes, an object of a derived class is at the same time an

object of the base class. This has important consequences for object assignment and for the situation

where pointers or references to such objects are used. Both situations are now discussed.

13.8.1 Conversions with object assignments

Continuing our discussion of the NavCom class, introduced in section 13.7, we now define two objects,

a base class and a derived class object:

ComSet com(intercom);

NavComSet navcom(intercom2, dial2);

370 CHAPTER 13. INHERITANCE

The object navcom is constructed using an Intercom and a VHF_Dial object. However, a NavComSet

is at the same time a ComSet, allowing the assignment from navcom (a derived class object) to com

(a base class object):

com = navcom;

The effect of this assignment is that the object com now communicates with intercom2. As a

ComSet does not have a VHF_Dial, the navcom’s dial is ignored by the assignment. When assign-

ing a base class object from a derived class object only the base class data members are assigned,

other data members are dropped, a phenomenon called slicing. In situations like these slicing proba-

bly does not have serious consequences, but when passing derived class objects to functions defining

base class parameters or when returning derived class objects from functions returning base class

objects slicing also occurs and might have unwelcome side-effects.

The assignment from a base class object to a derived class object is problematic. In a statement like

navcom = com;

it isn’t clear how to reassign the NavComSet’s VHF_Dial data member as they are missing in the

ComSet object com. Such an assignment is therefore refused by the compiler. Although derived class

objects are also base class objects, the reverse does not hold true: a base class object is not also a

derived class object.

The following general rule applies: in assignments in which base class objects and derived class

objects are involved, assignments in which data are dropped are legal (called slicing). Assignments

in which data remain unspecified are not allowed. Of course, it is possible to overload an assignment

operator to allow the assignment of a derived class object from a base class object. To compile the

statement

navcom = com;

the class NavComSet must have defined an overloaded assignment operator accepting a ComSet

object for its argument. In that case it’s up to the programmer to decide what the assignment

operator will do with the missing data.

13.8.2 Conversions with pointer assignments

We return to our Vehicle classes, and define the following objects and pointer variable:

Land land(1200, 130);

Auto auto(500, 75, "Daf");

Truck truck(2600, 120, "Mercedes", 6000);

Vehicle *vp;

Now we can assign the addresses of the three objects of the derived classes to the Vehicle pointer:

vp = &land;

vp = &auto;

vp = &truck;

13.9. USING NON-DEFAULT CONSTRUCTORS WITH NEW[] 371

Each of these assignments is acceptable. However, an implicit conversion of the derived class to the

base class Vehicle is used, since vp is defined as a pointer to a Vehicle. Hence, when using vp only

the member functions manipulating mass can be called as this is the Vehicle’s only functionality.

As far as the compiler can tell this is the object vp points to.

The same holds true for references to Vehicles. If, e.g., a function is defined having a Vehicle

reference parameter, the function may be passed an object of a class derived from Vehicle. Inside

the function, the specific Vehicle members remain accessible. This analogy between pointers and

references holds true in general. Remember that a reference is nothing but a pointer in disguise: it

mimics a plain variable, but actually it is a pointer.

This restricted functionality has an important consequence for the class Truck. Following vp =

&truck, vp points to a Truck object. So, vp->mass() returns 2600 instead of 8600 (the com-

bined mass of the cabin and of the trailer: 2600 + 6000), which would have been returned by

truck.mass().

When a function is called using a pointer to an object, then the type of the pointer (and not the type of

the object) determines which member functions are available and can be executed. In other words,

C++ implicitly converts the type of an object reached through a pointer to the pointer’s type.

If the actual type of the object pointed to by a pointer is known, an explicit type cast can be used to

access the full set of member functions that are available for the object:

Truck truck;

Vehicle *vp;

vp = &truck; // vp now points to a truck object

Truck *trp;

trp = static_cast<Truck *>(vp);

cout << "Make: " << trp->name() << ’\n’;

Here, the second to last statement specifically casts a Vehicle * variable to a Truck *. As usual

(when using casts), this code is not without risk. It only works if vp really points to a Truck.

Otherwise the program may produce unexpected results.

13.9 Using non-default constructors with new[]

An often heard complaint is that operator new[] calls the default constructor of a class to initialize

the allocated objects. For example, to allocate an array of 10 strings we can do

new string[10];

but it is not possible to use another constructor. Assuming that we’d want to initialize the strings

with the text hello world, we can’t write something like:

new string("hello world")[10];

The initialization of a dynamically allocated object usually consists of a two-step process: first the

array is allocated (implicitly calling the default constructor); second the array’s elements are initial-

ized, as in the following little example:

372 CHAPTER 13. INHERITANCE

string *sp = new string[10];

fill(sp, sp + 10, string("hello world"));

These approaches all suffer from ‘double initializations’, comparable to not using member initializers

in constructors.

One way to avoid double initialization is to use inheritance. Inheritance can profitably be used to

call non-default constructors in combination with operator new[]. The approach capitalizes on the

following:

• A base class pointer may point to a derived class object;

• A derived class without (non-static) data members has the same size as its base class.

The above also suggests a possible approach:

• Derive a simple, member-less class from the class we’re interested in;

• Use the appropriate base class initializer in its default constructor;

• Allocate the required number of derived class objects, and assign new[]’s return expression to

a pointer to base class objects.

Here is a simple example, producing 10 lines containing the text hello world:

#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

using namespace std;

struct Xstr: public string

{

Xstr()

:

string("hello world")

{}

};

int main()

{

string *sp = new Xstr[10];

copy(sp, sp + 10, ostream_iterator<string>(cout, "\n"));

}

Of course, the above example is fairly unsophisticated, but it’s easy to polish the example: the

class Xstr can be defined in an anonymous namespace, accessible only to a function getString()

which may be given a size_t nObjects parameter, allowing users to specify the number of hello

world-initialized strings they would like to allocate.

Instead of hard-coding the base class arguments it’s also possible to use variables or functions pro-

viding the appropriate values for the base class constructor’s arguments. In the next example a local

13.9. USING NON-DEFAULT CONSTRUCTORS WITH NEW[] 373

class Xstr is defined inside a function nStrings(size_t nObjects, char const *fname), ex-

pecting the number of string objects to allocate and the name of a file whose subsequent lines are

used to initialize the objects. The local class is invisible outside of the function nStrings, so no

special namespace safeguards are required.

As discussed in section 7.9, members of local classes cannot access local variables from their sur-

rounding function. However, they can access global and static data defined by the surrounding

function.

Using a local class neatly allows us to hide the implementation details within the function nStrings,

which simply opens the file, allocates the objects, and closes the file again. Since the local class is

derived from string, it can use any string constructor for its base class initializer. In this par-

ticular case it calls the string(char const *) constructor, providing it with subsequent lines of

the just opened stream via its static member function nextLine(). This latter function is, as it is a

static member function, available to Xstr default constructor’s member initializers even though no

Xstr object is available by that time.

#include <fstream>

#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

using namespace std;

string *nStrings(size_t size, char const *fname)

{

static ifstream in;

struct Xstr: public string

{

Xstr()

:

string(nextLine())

{}

static char const *nextLine()

{

static string line;

getline(in, line);

return line.c_str();

}

};

in.open(fname);

string *sp = new Xstr[size];

in.close();

return sp;

}

int main()

{

string *sp = nStrings(10, "nstrings.cc");

copy(sp, sp + 10, ostream_iterator<string>(cout, "\n"));

}

374 CHAPTER 13. INHERITANCE

When this program is run, it displays the first 10 lines of the file nstrings.cc.

Note that the above implementation can’t safely be used in a multithreaded environment. In that

case a mutex should be used to protect the three statements just before the function’s return state-

ment.

A completely different way to avoid the double initialization (not using inheritance) is to use place-

ment new (cf. section 9.1.5): simply allocate the required amount of memory followed by the proper

in-place allocation of the objects, using the appropriate constructors. The following example can also

be used in multithreaded environments. The approach uses a pair of static construct/destroy

members to perform the required initialization.

In the program shown below construct expects a istream that provides the initialization strings

for objects of a class String simply containing a std::string object. Construct first allocates

enough memory for the n String objects plus room for an initial size_t value. This initial size_t

value is then initialized with n. Next, in a for statement, lines are read from the provided stream

and the lines are passed to the constructors, using placement new calls. Finally the address of the

first String object is returned.

The member destroy handles the destruction of the objects. It retrieves the number of objects

to destroy from the size_t it finds just before the location of the address of the first object to

destroy. The objects are then destroyed by explicitly calling their destructors. Finally the raw

memory, originally allocated by construct is returned.

#include <fstream>

#include <iostream>

#include <string>

using namespace std;

class String

{

union Ptrs

{

void *vp;

String *sp;

size_t *np;

};

std::string d_str;

public:

String(std::string const &txt)

:

d_str(txt)

{}

~String()

{

cout << "destructor: " << d_str << ’\n’;

}

static String *construct(istream &in, size_t n)

{

Ptrs p = {operator new(n * sizeof(String) + sizeof(size_t))};

*p.np++ = n;

string line;

13.9. USING NON-DEFAULT CONSTRUCTORS WITH NEW[] 375

for (size_t idx = 0; idx != n; ++idx)

{

getline(in, line);

new(p.sp + idx) String(line);

}

return p.sp;

}

static void destroy(String *sp)

{

Ptrs p = {sp};

--p.np;

for (size_t n = *p.np; n--;)

sp++->~String();

operator delete (p.vp);

}

};

int main()

{

String *sp = String::construct(cin, 5);

String::destroy(sp);

}

/*
After providing 5 lines containing, respectively

alfa, bravo, charlie, delta, echo

the program displays:

destructor: alfa

destructor: bravo

destructor: charlie

destructor: delta

destructor: echo

*/

376 CHAPTER 13. INHERITANCE

Chapter 14

Polymorphism

Using inheritance classes may be derived from other classes, called base classes. In the previous

chapter we saw that base class pointers may be used to point to derived class objects. We also saw

that when a base class pointer points to an object of a derived class it is the type of the pointer

rather than the type of the object it points to what determines which member functions are visible.

So when a Vehicle *vp, points to an Auto object Auto’s speed or brandName members can’t be

used.

In the previous chapter two fundamental ways classes may be related to each other were discussed:

a class may be implemented-in-terms-of another class and it can be stated that a derived class is-a

base class. The former relationship is usually implemented using composition, the latter is usually

implemented using a special form of inheritance, called polymorphism, the topic of this chapter.

An is-a relationship between classes allows us to apply the Liskov Substitution Principle (LSP)

according to which a derived class object may be passed to and used by code expecting a pointer

or reference to a base class object. In the C++ Annotations so far the LSP has been applied many

times. Every time an ostringstream, ofstream or fstream was passed to functions expecting

an ostream we’ve been applying this principle. In this chapter we’ll discover how to design our own

classes accordingly.

LSP is implemented using a technique called polymorphism: although a base class pointer is used it

performs actions defined in the (derived) class of the object it actually points to. So, a Vehicle *vp

might behave like an Auto * when pointing to an Auto1.

Polymorphism is implemented using a feature called late binding. It’s called that way because the

decision which function to call (a base class function or a function of a derived class) cannot be made

at compile-time, but is postponed until the program is actually executed: only then it is determined

which member function will actually be called.

In C++ late binding is not the default way functions are called. By default static binding (or early

binding) is used. With static binding the functions that are called are determined by the compiler,

merely using the class types of objects, object pointers or object refences.

Late binding is an inherently different (and slightly slower) process as it is decided at run-time,

rather than at compile-time what function is going to be called. As C++ supports both late- and

early-binding C++ programmers are offered an option as to what kind of binding to use. Choices

can be optimized to the situations at hand. Many other languages offering object oriented facilities

(e.g., Java) only or by default offer late binding. C++ programmers should be keenly aware of this.

1In one of the StarTrek movies, Capt. Kirk was in trouble, as usual. He met an extremely beautiful lady who, however,
later on changed into a hideous troll. Kirk was quite surprised, but the lady told him: “Didn’t you know I am a polymorph?”

377

378 CHAPTER 14. POLYMORPHISM

Expecting early binding and getting late binding may easily produce nasty bugs.

Let’s look at a simple example to start appreciating the differences between late and early binding.

The example merely illustrates. Explanations of why things are as shown are shortly provided.

Consider the following little program:

#include <iostream>

using namespace std;

class Base

{

protected:

void hello()

{

cout << "base hello\n";

}

public:

void process()

{

hello();

}

};

class Derived: public Base

{

protected:

void hello()

{

cout << "derived hello\n";

}

};

int main()

{

Derived derived;

derived.process();

}

The important characteristic of the above program is the Base::process function, calling hello.

As process is the only member that is defined in the public interface it is the only member that can

be called by code not belonging to the two classes. The class Derived, derived from Base clearly

inherits Base’s interface and so process is also available in Derived. So the Derived object in

main is able to call process, but not hello.

So far, so good. Nothing new, all this was covered in the previous chapter. One may wonder why

Derived was defined at all. It was presumably defined to create an implementation of hello that’s

appropriate for Derived but differing from Base::hello’s implementation. Derived’s author’s

reasoning was as follows: Base’s implementation of hello is not appropriate; a Derived class object

can remedy that by providing an appropriate implementation. Furthermore our author reasoned:

“since the type of an object determines the interface that is used, process must call

Derived::hello as hello is called via process from a Derived class object”.

Unfortunately our author’s reasoning is flawed, due to static binding. When Base::process was

compiled static binding caused the compiler to bind the hello call to Base::hello().

14.1. VIRTUAL FUNCTIONS 379

The author intended to create a Derived class that is-a Base class. That only partially succeeded:

Base’s interface was inherited, but after that Derived has relinquished all control over what hap-

pens. Once we’re in process we’re only able to see Base’s member implementations. Polymorphism

offers a way out, allowing us to redefine (in a derived class) members of a base class allowing these

redefined members to be used from the base class’s interface.

This is the essence of LSP: public inheritance should not be used to reuse the base class members

(in derived classes) but to be reused (by the base class, polymorphically using derived class members

reimplementing base class members).

Take a second to appreciate the implications of the above little program. The hello and process

members aren’t too impressive, but the implications of the example are. The process member

could implement directory travel, hello could define the action to perform when encountering a

file. Base::hellomight simply show the name of a file, but Derived::hellomight delete the file;

might only list its name if its younger than a certain age; might list its name if it contains a certain

text; etc., etc.. Up to now Derived would have to implement process’s actions itself; Up to now

code expecting a Base class reference or pointer could only perform Base’s actions. Polymorphism

allows us to reimplement members of base classes and to use those reimplemented members in code

expecting base class references or pointers. Using polymorphism existing code may be reused by

derived classes reimplementing the appropriate members of their base classes. It’s about time to

uncover how this magic can be realized.

Polymorphism, which is not the default in C++, solves the problem and allows the author of the

classes to reach its goal. For the curious reader: prefix void hello() in the Base class with

the keyword virtual and recompile. Running the modified program produces the intended and

expected derived hello. Why this happens is explained next.

14.1 Virtual functions

By default the behavior of a member function called via a pointer or reference is determined by the

implementation of that function in the pointer’s or reference’s class. E.g., a Vehicle * activates

Vehicle’s member functions, even when pointing to an object of a derived class. This is known as

as early or static binding: the function to call is determined at compile-time. In C++ late or dynamic

binding is realized using virtual member functions.

A member function becomes a virtual member function when its declaration starts with the key-

word virtual. It is stressed once again that in C++, different from several other object oriented

languages, this is not the default situation. By default static binding is used.

Once a function is declared virtual in a base class, it remains virtual in all derived classes; even

when the keyword virtual is not repeated in derived classes.

In the vehicle classification system (see section 13.1) the two member functions mass and setMass

might be declared virtual. Concentrating on mass, the relevant sections of the class definitions of

the class Vehicle and Truck are shown below. Also, we show the implementations of the member

function mass:

class Vehicle

{

public:

virtual int mass() const;

};

class Truck: // inherited from Vehicle through Auto and Land

{

380 CHAPTER 14. POLYMORPHISM

// not altered

};

int Vehicle::mass() const

{

return d_mass;

}

int Truck::mass() const

{

return Auto::mass() + d_trailer_wt;

}

The keyword virtual only appears in the (Vehicle) base class. There is no need (but there is

also no penalty) to repeat it in derived classes. Once a class member has been declared virtual

it becomes a virtual member in all derived classes. A member function may be declared virtual

anywhere in a class hierarchy. The compiler is perfectly happy if mass is declared virtual in Auto,

rather than in Vehicle. The specific characteristics of virtual member functions would then only

be available for Auto objects and for objects of classes derived from Auto. For a Vehicle pointer

static binding would remain to be used. The effect of late binding is illustrated below:

Vehicle v(1200); // vehicle with mass 1200

Truck t(6000, 115, // truck with cabin mass 6000, speed 115,

"Scania", 15000); // make Scania, trailer mass 15000

Vehicle *vp; // generic vehicle pointer

int main()

{

vp = &v; // see (1) below

cout << vp->mass() << ’\n’;

vp = &t; // see (2) below

cout << vp->mass() << ’\n’;

cout << vp->speed() << ’\n’; // see (3) below

}

Now that mass is defined virtual, late binding is used:

• at (1), Vehicle::mass is called.

• at (2) Truck::mass is called.

• at (3) a syntax error is generated. The member speed is no member of Vehicle, and hence

not callable via a Vehicle*.

The example illustrates that when a pointer to a class is used only the members of that class can

be called. These functions may or may not be virtual. A member’s virtual characteristic only

influences the type of binding (early vs. late), not the set of member functions that is visible to the

pointer.

Through virtual members derived classes may redefine the behavior performed by functions called

from base class members or from pointers or references to base class objects. This redefinition of

base class members by derived classes is called overriding members.

14.2. VIRTUAL DESTRUCTORS 381

14.2 Virtual destructors

When an object ceases to exist the object’s destructor is called. Now consider the following code

fragment (cf. section 13.1):

Vehicle *vp = new Land(1000, 120);

delete vp; // object destroyed

Here delete is applied to a base class pointer. As the base class defines the available interface

delete vp calls ~Vehicle and ~Land remains out of sight. Assuming that Land allocates memory

a memory leak results. Freeing memory is not the only action destructors can perform. In general

they may perform any action that’s necessary when an object ceases to exist. But here none of the

actions defined by ~Land are performed. Bad news....

In C++ this problem is solved by virtual destructors. A destructor can be declared virtual. When

a base class destructor is declared virtual then the destructor of the actual class pointed to by a base

class pointer bp is going to be called when delete bp is executed. Thus, late binding is realized for

destructors even though the destructors of derived classes have unique names. Example:

class Vehicle

{

public:

virtual ~Vehicle(); // all derived class destructors are

// now virtual as well.

};

By declaring a virtual destructor, the above delete operation (delete vp) correctly calls Land’s

destructor, rather than Vehicle’s destructor.

Once a destructor is called it performs as usual, whether or not it is a virtual destructor. So, ~Land

first executes its own statements and then calls ~Vehicle. Thus, the above delete vp statement

uses late binding to call ~Vehicle and from this point on the object destruction proceeds as usual.

Destructors should always be defined virtual in classes designed as a base class from which

other classes are going to be derived. Often those destructors themselves have no tasks to per-

form. In these cases the virtual destructor is given an empty body. For example, the definition of

Vehicle::~Vehicle() may be as simple as:

Vehicle::~Vehicle()

{}

Resist the temptation to define virtual destructors (even empty destructors) inline as this compli-

cates class maintenance. Section 14.11 discusses the reason behind this rule of thumb.

14.3 Pure virtual functions

The base class Vehicle is provided with its own concrete implementations of its virtual members

(mass and setMass). However, virtual member functions do not necessarily have to be implemented

in base classes.

382 CHAPTER 14. POLYMORPHISM

When the implementations of virtual members are omitted from base classes the class imposes

requirements upon derived classes. The derived classes are required to provide the ‘missing imple-

mentations’.

This approach, in some languages (like C#, Delphi and Java) known as an interface, defines a pro-

tocol. Derived classes must obey the protocol by implementing the as yet not implemented members.

If a class contains at least one member whose implementation is missing no objects of that class can

be defined.

Such incompletely defined classes are always base classes. They enforce a protocol by merely declar-

ing names, return values and arguments of some of their members. These classes are call abstract

classes or abstract base classes. Derived classes become non-abtract classes by implementing the as

yet not implemented members.

Abstract base classes are the foundation of many design patterns (cf. Gamma et al. (1995)) , allowing

the programmer to create highly reusable software. Some of these design patterns are covered by the

C++ Annotations (e.g, the Template Method in section 23.2), but for a thorough discussion of design

patterns the reader is referred to Gamma et al.’s book.

Members that are merely declared in base classes are called pure virtual functions. A virtual mem-

ber becomes a pure virtual member by postfixing = 0 to its declaration (i.e., by replacing the semi-

colon ending its declaration by ‘= 0;’). Example:

#include <iosfwd>

class Base

{

public:

virtual ~Base();

virtual std::ostream &insertInto(std::ostream &out) const = 0;

};

inline std::ostream &operator<<(std::ostream &out, Base const &base)

{

return base.insertInto(out);

}

All classes derived from Base must implement the insertInto member function, or their objects

cannot be constructed. This is neat: all objects of class types derived from Base can now always be

inserted into ostream objects.

Could the virtual destructor of a base class ever be a pure virtual function? The answer to this

question is no. First of all, there is no need to enforce the availability of destructors in derived

classes as destructors are provided by default (unless a destructor is declared with the = delete

attribute using the new C++11 standard). Second, if it is a pure virtual member its implementation

does not exist. However, derived class destructors eventually call their base class destructors. How

could they call base class destructors if their implementations are lacking? More about this in the

next section.

Often, but not necessarily, pure virtual member functions are const member functions. This allows

the construction of constant derived class objects. In other situations this might not be necessary

(or realistic), and non-constant member functions might be required. The general rule for const

member functions also applies to pure virtual functions: if the member function alters the object’s

data members, it cannot be a const member function.

Abstract base classes frequently don’t have data members. However, once a base class declares a

pure virtual member it must be declared identically in derived classes. If the implementation of

a pure virtual function in a derived class alters the derived class object’s data, then that function

14.3. PURE VIRTUAL FUNCTIONS 383

cannot be declared as a const member. Therefore, the author of an abstract base class should

carefully consider whether a pure virtual member function should be a const member function or

not.

14.3.1 Implementing pure virtual functions

Pure virtual member functions may be implemented. To implement a pure virtual member func-

tion, provide it with its normal = 0; specification, but implement it as well. Since the = 0; ends in

a semicolon, the pure virtual member is always at most a declaration in its class, but an implemen-

tation may either be provided outside from its interface (maybe using inline).

Pure virtual member functions may be called from derived class objects or from its class or derived

class members by specifying the base class and scope resolution operator together with the member

to be called. Example:

#include <iostream>

class Base

{

public:

virtual ~Base();

virtual void pureimp() = 0;

};

Base::~Base()

{}

void Base::pureimp()

{

std::cout << "Base::pureimp() called\n";

}

class Derived: public Base

{

public:

virtual void pureimp();

};

inline void Derived::pureimp()

{

Base::pureimp();

std::cout << "Derived::pureimp() called\n";

}

int main()

{

Derived derived;

derived.pureimp();

derived.Base::pureimp();

Derived *dp = &derived;

dp->pureimp();

dp->Base::pureimp();

}

// Output:

// Base::pureimp() called

384 CHAPTER 14. POLYMORPHISM

// Derived::pureimp() called

// Base::pureimp() called

// Base::pureimp() called

// Derived::pureimp() called

// Base::pureimp() called

Implementing a pure virtual member has limited use. One could argue that the pure virtual member

function’s implementation may be used to perform tasks that can already be performed at the base

class level. However, there is no guarantee that the base class virtual member function is actually

going to be called. Therefore base class specific tasks could as well be offered by a separate member,

without blurring the distinction between a member doing some work and a pure virtual member

enforcing a protocol.

14.4 Explicit virtual overrides (C++11)

Consider the following situations:

• A class Value is a value class. It offers a copy constructor, an overloaded assignment operator,

maybe move operations, and a public, non-virtual constructor. In section 14.7 it is argued that

such classes is not suited as a base class. New classes should not inherit from Value. How to

enforce this?

• A polymorphic class Base defines a virtual member v_process(int32_t). A class derived

from Base needs to override this member, but the author mistakingly defined v_proces(int32_t).

How to prevent such errors, breaking the polymorphic behavior of the derived class?

• A class Derived, derived from a polymorphic Base class overrides the member Base::v_process,

but classes that are in turn derived from Derived should no longer override v_process, but

may override other virtual members like v_call and v_display. How to enforce this re-

stricted polymorphic character for classes derived from Derived?

C++11 allows the use of two special identifiers, final and override to realize the above. These

identifiers are special in the sense that they only require their special meanings in specific contexts.

Outside of this context they are just plain identifiers, allowing the programmer to define a variable

like bool final.

The identifier final can be applied to class declarations to indicate that the class cannot be used as

a base class. E.g.:

class Base1 final // cannot be a base class

{};

class Derived1: public Base1 // ERR: Base1 is final

{};

class Base2 // OK as base class

{};

class Derived2 final: public Base2 // OK, but Derived2 can’t be

{}; // used as a base class

class Derived: public Derived2 // ERR: Derived2 is final

{};

14.5. VIRTUAL FUNCTIONS AND MULTIPLE INHERITANCE 385

The identifier final can also be added to virtual member declarations. This indicates that those

virtual members cannot be overridden by derived classes. The restricted polymorphic character of a

class, mentioned above, can thus be realized as follows:

class Base

{

virtual int v_process(); // define polymorphic behavior

virtual int v_call();

virtual int v_display();

};

class Derived: public Base // Derived restricts polymorphism

{ // to v_call and v_display

virtual int v_process() final;

};

class Derived2: public Derived

{

// int v_process(); No go: Derived:v_process is final

virtual int v_display(); // OK to override

};

To allow the compiler to detect typos, differences in parameter types, or differences in member

function modifiers (e.g., const vs. non-const) the identifier override can (should) be appended to

derived class members overriding base class members. E.g.,

class Base

{

virtual int v_process();

virtual int v_call() const;

virtual int v_display(std::ostream &out);

};

class Derived: public Base

{

virtual int v_proces() override; // ERR: v_proces != v_process

virtual int v_call() override; // ERR: not const

// ERR: parameter types differ

virtual int v_display(std::istream &out) override;

};

14.5 Virtual functions and multiple inheritance

In chapter 6 we encountered the class fstream, one class offering features of ifstream and ofstream.

In chapter 13 we learned that a class may be derived from multiple base classes. Such a derived

class inherits the properties of all its base classes. Polymorphism can also be used in combination

with multiple inheritance.

Consider what would happen if more than one ‘path’ leads from the derived class up to its (base)

classes. This is illustrated in the next (fictitious) example where a class Derived is doubly derived

from Base:

class Base

{

386 CHAPTER 14. POLYMORPHISM

int d_field;

public:

void setfield(int val);

int field() const;

};

inline void Base::setfield(int val)

{

d_field = val;

}

inline int Base::field() const

{

return d_field;

}

class Derived: public Base, public Base

{

};

Due to the double derivation, Base’s functionality now occurs twice in Derived. This results in

ambiguity: when the function setfield() is called for a Derived class object, which function will

that be as there are two of them? The scope resolution operator won’t come to the rescue and so the

C++ compiler cannot compile the above example and (correctly) identifies an error.

The above code clearly duplicates its base class in the derivation, which can of course easily be

avoided by not doubly deriving from Base (or by using composition (!)). But duplication of a base

class can also occur through nested inheritance, where an object is derived from, e.g., an Auto

and from an Air (cf. section 13.1). Such a class would be needed to represent, e.g., a flying car2.

An AirAuto would ultimately contain two Vehicles, and hence two mass fields, two setMass()

functions and two mass() functions. Is this what we want?

14.5.1 Ambiguity in multiple inheritance

Let’s investigate closer why an AirAuto introduces ambiguity, when derived from Auto and Air.

• An AirAuto is an Auto, hence a Land, and hence a Vehicle.

• However, an AirAuto is also an Air, and hence a Vehicle.

The duplication of Vehicle data is further illustrated in Figure 14.1. The internal organization of

an AirAuto is shown in Figure 14.2 The C++ compiler detects the ambiguity in an AirAuto object,

and will therefore not compile statements like:

AirAuto jBond;

cout << jBond.mass() << ’\n’;

Which member function mass to call cannot be determined by the compiler but the programmer has

two possibilities to resolve the ambiguity for the compiler:

• First, the function call where the ambiguity originates can be modified. The ambiguity is

resolved using the scope resolution operator:

// let’s hope that the mass is kept in the Auto

2such as the one in James Bond vs. the Man with the Golden Gun...

14.5. VIRTUAL FUNCTIONS AND MULTIPLE INHERITANCE 387

Figure 14.1: Duplication of a base class in multiple derivation.

Figure 14.2: Internal organization of an AirAuto object.

// part of the object..

cout << jBond.Auto::mass() << ’\n’;

The scope resolution operator and the class name are put right before the name of the member

function.

• Second, a dedicated function mass could be created for the class AirAuto:

int AirAuto::mass() const

{

return Auto::mass();

}

The second possibility is preferred as it does not require the compiler to flag an error; nor does it

require the programmer using the class AirAuto to take special precautions.

However, there exists a more elegant solution, discussed in the next section.

14.5.2 Virtual base classes

As illustrated in Figure 14.2, an AirAuto represents two Vehicles. This not only results in an

ambiguity about which function to use to access the mass data, but it also defines two mass fields in

an AirAuto. This is slightly redundant, since we can assume that an AirAuto has but one mass.

It is, however, possible to define an AirAuto as a class consisting of but one Vehicle and yet using

multiple derivation. This is realized by defining the base classes that are multiply mentioned in a

derived class’s inheritance tree as a virtual base class.

388 CHAPTER 14. POLYMORPHISM

Figure 14.3: Internal organization of an AirAuto object when the base classes are virtual.

For the class AirAuto this implies a small change when deriving an AirAuto from Land and Air

classes:

class Land: virtual public Vehicle

{

// etc

};

class Auto: public Land

{

// etc

};

class Air: virtual public Vehicle

{

// etc

};

class AirAuto: public Auto, public Air

{

};

Virtual derivation ensures that a Vehicle is only added once to a derived class. This means that

the route along which a Vehicle is added to an AirAuto is no longer depending on its direct base

classes; we can only state that an AirAuto is a Vehicle. The internal organization of an AirAuto

after virtual derivation is shown in Figure 14.3.

When a class Third inherits from a base class Second which in turn inherits from a base class

First then the First class constructor called by the Second class constructor is also used when

this Second constructor is used when constructing a Third object. Example:

class First

{

public:

First(int x);

};

class Second: public First

{

public:

Second(int x)

:

First(x)

{}

14.5. VIRTUAL FUNCTIONS AND MULTIPLE INHERITANCE 389

};

class Third: public Second

{

public:

Third(int x)

:

Second(x) // calls First(x)

{}

};

The above no longer holds true when Second uses virtual derivation. When Second uses virtual

derivation its base class constructor is ignored when Second’s constructor is called from Third.

Instead Second by default calls First’s default constructor. This is illustrated by the next example:

class First

{

public:

First()

{

cout << "First()\n";

}

First(int x);

};

class Second: public virtual First // note: virtual

{

public:

Second(int x)

:

First(x)

{}

};

class Third: public Second

{

public:

Third(int x)

:

Second(x)

{}

};

int main()

{

Third third(3); // displays ‘First()’

}

When constructing Third First’s default constructor is used by default. Third’s constructor, how-

ever, may overrule this default behavior by explicitly specifying the constructor to use. Since the

First object must be available before Second can be constructed it must be specified first. To call

First(int) when constructing Third(int) the latter constructor can be defined as follows:

class Third: public Second

{

public:

Third(int x)

390 CHAPTER 14. POLYMORPHISM

:

First(x), // now First(int) is called.

Second(x)

{}

};

This behavior may seem puzzling when simple linear inheritance is used but it makes sense when

multiple inheritance is used with base classes using virtual inheritance. Consider AirAuto: when

Air and Auto both virtually inherit from Vehicle will Air and Auto both initialize the common

Vehicle object? If so, which one is going to be called first? What if Air and Auto use different

Vehicle constructors? All these questions can be avoided by passing the responsibility for the

initialization of a common base class to the class eventually using the common base class object. In

the above example Third. Hence Third is provided an opportunity to specify the constructor to use

when initializing First.

Multiple inheritance may also be used to inherit from classes that do not all use virtual inheritance.

Assume we have two classes, Derived1 and Derived2, both (possibly virtually) derived from Base.

We now address the question which constructors will be called when calling a constructor of the

class Final: public Derived1, public Derived2.

To distinguish the involved constructors Base1 indicates the Base class constructor called as base

class initializer for Derived1 (and analogously: Base2 called from Derived2). A plain Base indi-

cates Base’s default constructor.

Derived1 and Derived2 indicate the base class initializers used when constructing a Final object.

Now we’re ready to distinguish the various cases when constructing an object of the class Final:

public Derived1, public Derived2:

• classes:

Derived1: public Base

Derived2: public Base

This is normal, non virtual multiple derivation. The following constructors are called

in the order shown:

Base1,

Derived1,

Base2,

Derived2

• classes:

Derived1: public Base

Derived2: virtual public Base

Only Derived2 uses virtual derivation. Derived2’s base class constructor is ig-

nored. Instead, Base is called and it is called prior to any other constructor:

Base,

Base1,

Derived1,

Derived2

As only one class uses virtual derivation, two Base class objects remain available in

the eventual Final class.

14.5. VIRTUAL FUNCTIONS AND MULTIPLE INHERITANCE 391

• classes:

Derived1: virtual public Base

Derived2: public Base

Only Derived1 uses virtual derivation. Derived1’s base class constructor is ig-

nored. Instead, Base is called and it is called prior to any other constructor. Different

from the first (non-virtual) case Base is now called, rather than Base1:

Base,

Derived1,

Base2,

Derived2

• classes:

Derived1: virtual public Base

Derived2: virtual public Base

Both base classes use virtual derivation and so only one Base class object will be

present in the Final class object. The following constructors are called in the order

shown:

Base,

Derived1,

Derived2

Virtual derivation is, in contrast to virtual functions, a pure compile-time issue. Virtual inheritance

merely defines how the compiler defines a class’s data organization and construction process.

14.5.3 When virtual derivation is not appropriate

Virtual inheritance can be used to merge multiply occurring base classes. However, situations may

be encountered where multiple occurrences of base classes is appropriate. Consider the definition of

a Truck (cf. section 13.5):

class Truck: public Auto

{

int d_trailer_mass;

public:

Truck();

Truck(int engine_mass, int sp, char const *nm,

int trailer_mass);

void setMass(int engine_mass, int trailer_mass);

int mass() const;

};

Truck::Truck(int engine_mass, int sp, char const *nm,

int trailer_mass)

:

Auto(engine_mass, sp, nm)

{

d_trailer_mass = trailer_mass;

392 CHAPTER 14. POLYMORPHISM

}

int Truck::mass() const

{

return // sum of:

Auto::mass() + // engine part plus

trailer_mass; // the trailer

}

This definition shows how a Truck object is constructed to contain two mass fields: one via its

derivation from Auto and one via its own int d_trailer_mass data member. Such a definition

is of course valid, but it could also be rewritten. We could derive a Truck from an Auto and from

a Vehicle, thereby explicitly requesting the double presence of a Vehicle; one for the mass of

the engine and cabin, and one for the mass of the trailer. A slight complication is that a class

organization like

class Truck: public Auto, public Vehicle

is not accepted by the C++ compiler. As a Vehicle is already part of an Auto, it is therefore not

needed once again. This organzation may, however be forced using a small trick. By creating an

additional class inheriting from Vehicle and deriving Truck from that additional class rather than

directly from Vehicle the problem is solved. Simply derive a class TrailerVeh from Vehicle, and

then Truck from Auto and TrailerVeh:

class TrailerVeh: public Vehicle

{

public:

TrailerVeh(int mass)

:

Vehicle(mass)

{}

};

class Truck: public Auto, public TrailerVeh

{

public:

Truck();

Truck(int engine_mass, int sp, char const *nm, int trailer_mass);

void setMass(int engine_mass, int trailer_mass);

int mass() const;

};

inline Truck::Truck(int engine_mass, int sp, char const *nm,

int trailer_mass)

:

Auto(engine_mass, sp, nm),

TrailerVeh(trailer_mass)

{}

inline int Truck::mass() const

{

return // sum of:

Auto::mass() + // engine part plus

TrailerVeh::mass(); // the trailer

}

14.6. RUN-TIME TYPE IDENTIFICATION 393

14.6 Run-time type identification

C++ offers two ways to (run-time) retrieve the type of objects and expressions. The possibilities

of C++’s run-time type identification are limited compared to languages like Java. Usually static

type checking and static type identification is used in C++. Static type checking is possibly safer

and certainly more efficient than run-time type identification and should therefore be preferred over

run-time type identification. But situations exist where run-time type identification is appropriate.

C++ offers run-time type identification through the dynamic cast and typeid operators.

• A dynamic_cast is used to convert a base class pointer or reference to a derived class pointer

or reference. This is also known as down-casting.

• The typeid operator returns the actual type of an expression.

These operators can be used with objects of classes having at least one virtual member function.

14.6.1 The dynamic_cast operator

The dynamic_cast<> operator is used to convert a base class pointer or reference to, respectively,

a derived class pointer or reference. This is also called down-casting as direction of the cast is down

the inheritance tree.

A dynamic cast’s actions are determined run-time; it can only be used if the base class declares at

least one virtual member function. For the dynamic cast to succeed, the destination class’s Vtable

must be equal to the Vtable to which the dynamic cast’s argument refers to, lest the cast fails and

returns 0 (if a dynamic cast of a pointer was requested) or throws a std::bad_cast exception (if a

dynamic cast of a reference was requested).

In the following example a pointer to the class Derived is obtained from the Base class pointer bp:

class Base

{

public:

virtual ~Base();

};

class Derived: public Base

{

public:

char const *toString();

};

inline char const *Derived::toString()

{

return "Derived object";

}

int main()

{

Base *bp;

Derived *dp,

Derived d;

bp = &d;

394 CHAPTER 14. POLYMORPHISM

dp = dynamic_cast<Derived *>(bp);

if (dp)

cout << dp->toString() << ’\n’;

else

cout << "dynamic cast conversion failed\n";

}

In the condition of the above if statement the success of the dynamic cast is verified. This verifi-

cation is performed at run-time, as the actual class of the objects to which the pointer points is only

known by then.

If a base class pointer is provided, the dynamic cast operator returns 0 on failure and a pointer to

the requested derived class on success.

Assume a vector<Base *> is used. Such a vector’s pointers may point to objects of various classes,

all derived from Base. A dynamic cast returns a pointer to the specified class if the base class pointer

indeed points to an object of the specified class and returns 0 otherwise.

We could determine the actual class of an object a pointer points to by performing a series of checks

to find the derived class to which a base class pointer points. Example:

class Base

{

public:

virtual ~Base();

};

class Derived1: public Base;

class Derived2: public Base;

int main()

{

vector<Base *> vb(initializeBase());

Base *bp = vb.front();

if (dynamic_cast<Derived1 *>(bp))

cout << "bp points to a Derived1 class object\n";

else if (dynamic_cast<Derived2 *>(bp))

cout << "bp points to a Derived2 class object\n";

}

Alternatively, a reference to a base class object may be available. In this case the dynamic_cast

operator throws an exception if the down casting fails. Example:

#include <iostream>

#include <typeinfo>

class Base

{

public:

virtual ~Base();

virtual char const *toString();

};

14.6. RUN-TIME TYPE IDENTIFICATION 395

inline char const *Base::toString()

{

return "Base::toString() called";

}

class Derived1: public Base

{};

class Derived2: public Base

{};

Base::~Base()

{}

void process(Base &b)

{

try

{

std::cout << dynamic_cast<Derived1 &>(b).toString() << ’\n’;

}

catch (std::bad_cast)

{}

try

{

std::cout << dynamic_cast<Derived2 &>(b).toString() << ’\n’;

}

catch (std::bad_cast)

{

std::cout << "Bad cast to Derived2\n";

}

}

int main()

{

Derived1 d;

process(d);

}

/*
Generated output:

Base::toString() called

Bad cast to Derived2

*/

In this example the value std::bad_cast is used. A std::bad_cast exception is thrown if the

dynamic cast of a reference to a derived class object fails.

Note the form of the catch clause: bad_cast is the name of a type. Section 17.4.1 describes how

such a type can be defined.

The dynamic cast operator is a useful tool when an existing base class cannot or should not be

modified (e.g., when the sources are not available), and a derived class may be modified instead.

Code receiving a base class pointer or reference may then perform a dynamic cast to the derived

class to access the derived class’s functionality.

You may wonder in what way the behavior of the dynamic_cast differs from that of the static_cast.

When the static_cast is used, we tell the compiler that it must convert a pointer or reference

to its expression type to a pointer or reference of its destination type. This holds true whether the

396 CHAPTER 14. POLYMORPHISM

base class declares virtual members or not. Consequently, all the static_cast’s actions can be

determined by the compiler, and the following compiles fine:

class Base

{

// maybe or not virtual members

};

class Derived1: public Base

{};

class Derived2: public Base

{};

int main()

{

Derived1 derived1;

Base *bp = &derived1;

Derived1 &d1ref = static_cast<Derived1 &>(*bp);

Derived2 &d2ref = static_cast<Derived2 &>(*bp);

}

Pay attention to the second static_cast: here the Base class object is cast to a Derived2 class

reference. The compiler has no problems with this, as Base and Derived2 are related by inheri-

tance.

Semantically, however, it makes no sense as bp in fact points to a Derived1 class object. This is

detected by a dynamic_cast. A dynamic_cast, like the static_cast, converts related pointer or

reference types, but the dynamic_cast provides a run-time safeguard. The dynamic cast fails when

the requested type doesn’t match the actual type of the object we’re pointing at. In addition, the

dynamic_cast’s use is much more restricted than the static_cast’s use, as the dynamic_cast

can only be used for downcasting to derived classes having virtual members.

In the end a dynamic cast is a cast, and casts should be avoided whenever possible. When the

need for dynamic casting arises ask yourself whether the base class has correctly been designed.

In situations where code expects a base class reference or pointer the base class interface should

be all that is required and using a dynamic cast should not be necessary. Maybe the base class’s

virtual interface can be modified so as to prevent the use of dynamic casts. Start frowning when

encountering code using dynamic casts. When using dynamic casts in your own code always properly

document why the dynamic cast was appropriately used and was not avoided (for an example where

a dynamic cast is used on purpose, see section 23.9.3).

14.6.2 The ‘typeid’ operator

As with the dynamic_cast operator, typeid is usually applied to references to base class objects

that refer to derived class objects. Typeid should only be used with base classes offering virtual

members. Before using typeid the <typeinfo> header file must have been included.

The typeid operator returns an object of type type_info. Different compilers may offer different

implementations of the class type_info, but at the very least typeid must offer the following

interface:

class type_info

{

14.6. RUN-TIME TYPE IDENTIFICATION 397

public:

virtual ~type_info();

int operator==(type_info const &other) const;

int operator!=(type_info const &other) const;

bool before(type_info const &rhs) const

char const *name() const;

private:

type_info(type_info const &other);

type_info &operator=(type_info const &other);

};

Note that this class has a private copy constructor and a private overloaded assignment opera-

tor. This prevents code from constructing type_info objects and prevents code from assigning

type_info objects to each other. Instead, type_info objects are constructed and returned by the

typeid operator.

If the typeid operator is passed a base class reference it is able to return the actual name of the

type the reference refers to. Example:

class Base;

class Derived: public Base;

Derived d;

Base &br = d;

cout << typeid(br).name() << ’\n’;

In this example the typeid operator is given a base class reference. It prints the text “Derived”,

being the class name of the class br actually refers to. If Base does not contain virtual functions,

the text “Base” is printed.

The typeid operator can be used to determine the name of the actual type of expressions, not just

of class type objects. For example:

cout << typeid(12).name() << ’\n’; // prints: int

cout << typeid(12.23).name() << ’\n’; // prints: double

Note, however, that the above example is suggestive at most. It may print int and double, but this

is not necessarily the case. If portability is required, make sure no tests against these static, built-in

text-strings are required. Check out what your compiler produces in case of doubt.

In situations where the typeid operator is applied to determine the type of a derived class, a base

class reference should be used as the argument of the typeid operator. Consider the following

example:

class Base; // contains at least one virtual function

class Derived: public Base;

Base *bp = new Derived; // base class pointer to derived object

if (typeid(bp) == typeid(Derived *)) // 1: false

...

if (typeid(bp) == typeid(Base *)) // 2: true

...

398 CHAPTER 14. POLYMORPHISM

if (typeid(bp) == typeid(Derived)) // 3: false

...

if (typeid(bp) == typeid(Base)) // 4: false

...

if (typeid(*bp) == typeid(Derived)) // 5: true

...

if (typeid(*bp) == typeid(Base)) // 6: false

...

Base &br = *bp;

if (typeid(br) == typeid(Derived)) // 7: true

...

if (typeid(br) == typeid(Base)) // 8: false

...

Here, (1) returns false as a Base * is not a Derived *. (2) returns true, as the two pointer

types are the same, (3) and (4) return false as pointers to objects are not the objects themselves.

On the other hand, if *bp is used in the above expressions, then (1) and (2) return false as an

object (or reference to an object) is not a pointer to an object, whereas (5) now returns true: *bp

actually refers to a Derived class object, and typeid(*bp) returns typeid(Derived). A similar

result is obtained if a base class reference is used: 7 returning true and 8 returning false.

The type_info::before(type_info const &rhs) member is used to determine the collating

order of classes. This is useful when comparing two types for equality. The function returns a nonzero

value if *this precedes rhs in the hierarchy or collating order of the used types. When a derived

class is compared to its base class the comparison returns 0, otherwise a non-zero value. E.g.:

cout << typeid(ifstream).before(typeid(istream)) << ’\n’ << // not 0

typeid(istream).before(typeid(ifstream)) << ’\n’; // 0

With built-in types the implementor may implement that non-0 is returned when a ‘wider’ type is

compared to a ‘smaller’ type and 0 otherwise:

cout << typeid(double).before(typeid(int)) << ’\n’ << // not 0

typeid(int).before(typeid(double)) << ’\n’; // 0

When two equal types are compared, 0 is returned:

cout << typeid(ifstream).before(typeid(ifstream)) << ’\n’; // 0

When a 0-pointer is passed to the operator typeid a bad_typeid exception is thrown.

14.7 Inheritance: when to use to achieve what?

Inheritance should not be applied automatically and thoughtlessly. Often composition can be used

instead, improving on a class’s design by reducing coupling. When inheritance is used public inheri-

tance should not automatically be used but the type of inheritance that is selected should match the

programmer’s intent.

14.7. INHERITANCE: WHEN TO USE TO ACHIEVE WHAT? 399

We’ve seen that polymorphic classes on the one hand offer interface members defining the function-

ality that can be requested of base classes and on the other hand offer virtual members that can be

overridden. One of the signs of good class design is that member functions are designed according

to the principle of ‘one function, one task’. In the current context: a class member should either be

a member of the class’s public or protected interface or it should be available as a virtual member

for reimplementation by derived classes. Often this boils down to virtual members that are defined

in the base class’s private section. Those functions shouldn’t be called by code using the base class,

but they exist to be overridden by derived classes using polymorphism to redefine the base class’s

behavior.

The underlying principle was mentioned before in the introductional paragraph of this chapter:

according to the Liskov Substitution Principle (LSP) an is-a relationship between classes (indicating

that a derived class object is a base class object) implies that a derived class object may be used in

code expecting a base class object.

In this case inheritance is used not to let the derived class use the facilities already implemented by

the base class but to reuse the base class polymorphically by reimplementing the base class’s virtual

members in the derived class.

In this section we’ll discuss the reasons for using inheritance. Why should inheritance (not) be used?

If it is used what do we try to accomplish by it?

Inheritance often competes with composition. Consider the following two alternative class designs:

class Derived: // derived from Base

{ ... };

class Composed

{

Base d_base;

...

};

Why and when prefer Derived over Composed and vice versa? What kind of inheritance should be

used when designing the class Derived?

• Since Composed and Derived are offered as alternatives we are looking at the design of a

class (Derived or Composed) that is-implemented-in-terms-of another class.

• Since Composed does itself not make Base’s interface available, Derived shouldn’t do so ei-

ther. The underlying principle is that private inheritance should be used when deriving a classs

Derived from Base where Derived is-implemented-in-terms-of Base.

• Should we use inheritance or composition? Here are some arguments:

– In general terms composition results in looser coupling and should therefore be preferred

over inheritance.

– Composition allows us to define classes having multiple members of the same type (think

about a class having multiple std::string members) which can not be realized using

inheritance.

– Composition allows us to separate the class’s interface from its implementation. This

allows us to modify the class’s data organization without the need to recompile code using

our class. This is also known as the bridge design pattern or the compiler firewal or pimpl

(pointer to the implementation) idiom.

400 CHAPTER 14. POLYMORPHISM

– If Base offers members in its protected interface that must be used when implementing

Derived inheritance must also be used. Again: since we’re implementing-in-terms-of the

inheritance type should be private.

– Protected inheritance may be considered when the derived class (D) itself is intended as a

base class that should only make the members of its own base class (B) available to classes

that are derived from it (i.e., D).

Private inheritance should also be used when a derived class is-a certain type of base class, but in

order to initialize that base class an object of another class type must be available. Example: a new

istream class-type (say: a stream IRandStream from which random numbers can be extracted)

is derived from std::istream. Although an istream can be constructed empty (receiving its

streambuf later using its rdbuf member), it is clearly preferable to initialize the istream base

class right away.

Assuming that a Randbuffer: public std::streambuf has been created for generating ran-

dom numbers then IRandStream can be derived from Randbuffer and std::istream. That way

the istream base class can be initialized using the Randbuffer base class.

As a RandStream is definitely not a Randbuffer public inheritance is not appropriate. In this case

IRandStream is-implemented-in-terms-of a Randbuffer and so private inheritance should be used.

IRandStream’s class interface should therefore start like this:

class IRandStream: private Randbuffer, public std::istream

{

public:

IRandStream(int lowest, int highest) // defines the range

:

Randbuffer(lowest, highest),

std::istream(this) // passes &Randbuffer

{}

...

};

Public inheritance should be reserved for classes for which the LSP holds true. In those cases the

derived classes can always be used instead of the base class from which they derive by code merely

using base class references, pointers or members (I.e., conceptually the derived class is-a base class).

This most often applies to classes derived from base classes offering virtual members. To separate

the user interface from the redefinable interface the base class’s public interface should not contain

virtual members (except for the virtual destructor) and the virtual members should all be in the base

class’s private section. Such virtual members can still be overridden by derived classes (this should

not come as a surprise, considering how polymorphism is implemented) and this design offers the

base class full control over the context in which the redefined members are used. Often the public

interface merely calls a virtual member, but those members can always be redefined to perform

additional duties.

The prototypical form of a base class therefore looks like this:

class Base

{

public:

virtual ~Base()

void process(); // calls virtual members (e.g.,

// v_process)

14.8. THE ‘STREAMBUF’ CLASS 401

private:

virtual void v_process(); // overridden by derived classes

};

Alternatively a base class may offer a non-virtual destructor, which should then be protected. It

shouldn’t be public to prevent deleting objects through their base class pointers (in which case virtual

destructors should be used). It should be protected to allow derived class destructors to call their

base class destructors. Such base classes should, for the same reasons, have non-public constructors

and overloaded assignment operators.

14.8 The ‘streambuf’ class

The class std::streambuf receives the character sequences processed by streams and defines the

interface between stream objects and devices (like a file on disk). A streambuf object is usually

not directly constructed, but usually it is used as base class of some derived class implementing the

communication with some concrete device.

The primary reason for existence of the class streambuf is to decouple the stream classes from the

devices they operate upon. The rationale here is to add an extra layer between the classes allowing

us to communicate with devices and the devices themselves. This implements a chain of command

which is seen regularly in software design.

The chain of command is considered a generic pattern when designing reusable software, encoun-

tered also in, e.g., the TCP/IP stack.

A streambuf can be considered yet another example of the chain of command pattern. Here the

program talks to stream objects, which in turn forward their requests to streambuf objects, which

in turn communicate with the devices. Thus, as we will see shortly, we are able to do in user-software

what had to be done via (expensive) system calls before.

The class streambuf has no public constructor, but does make available several public member

functions. In addition to these public member functions, several member functions are only avail-

able to classes derived from streambuf. In section 14.8.2 a predefined specialization of the class

streambuf is introduced. All public members of streambuf discussed here are also available in

filebuf.

The next section shows the streambufmembers that may be overridden when deriving classes from

streambuf. Chapter 23 offers concrete examples of classes derived from streambuf.

The class streambuf is used by streams performing input operations and by streams performing

output operations and their member functions can be ordered likewise. The type std::streamsize

used below may, for all practical purposes, be considered equal to the type size_t.

When inserting information into ostream objects the information is eventually passed on to the

ostream’s streambuf. The streambuf may decide to throw an exception. However, this exception

does not leave the ostream using the streambuf. Rather, the exception is caught by the ostream,

which sets its ios::bad_bit. Exception raised by manipulators inserted into ostream objects are

not caught by the ostream objects.

Public members for input operations

• std::streamsize in_avail():

Returns a lower bound on the number of characters that can be read immediately.

402 CHAPTER 14. POLYMORPHISM

• int sbumpc():

The next available character or EOF is returned. The returned character is removed

from the streambuf object. If no input is available, sbumpc calls the (protected)

member uflow (see section 14.8.1 below) to make new characters available. EOF is

returned if no more characters are available.

• int sgetc():

The next available character or EOF is returned. The character is not removed from

the streambuf object. To remove a character from the streambuf object, sbumpc

(or sgetn) can be used.

• int sgetn(char *buffer, std::streamsize n):

At most n characters are retrieved from the input buffer, and stored in buffer. The

actual number of characters read is returned. The (protected) member xsgetn (see

section 14.8.1 below) is called to obtain the requested number of characters.

• int snextc():

The current character is obtained from the input buffer and returned as the next

available character or EOF is returned. The character is not removed from the streambuf

object.

• int sputback(char c):

Inserts c into the streambuf’s buffer to be returned as the next character to read

from the streambuf object. Caution should be exercised when using this function:

often there is a maximum of just one character that can be put back.

• int sungetc():

Returns the last character read to the input buffer, to be read again at the next input

operation. Caution should be exercised when using this function: often there is a

maximum of just one character that can be put back.

Public members for output operations

• int pubsync():

Synchronizes (i.e., flush) the buffer by writing any information currently available in

the streambuf’s buffer to the device. Normally only used by classes derived from

streambuf.

• int sputc(char c):

Character c is inserted into the streambuf object. If, after writing the character, the

buffer is full, the function calls the (protected) member function overflow to flush

the buffer to the device (see section 14.8.1 below).

• int sputn(char const *buffer, std::streamsize n):

At most n characters from buffer are inserted into the streambuf object. The

actual number of characters inserted is returned. This member function calls the

(protected) member xsputn (see section 14.8.1 below) to insert the requested number

of characters.

14.8. THE ‘STREAMBUF’ CLASS 403

Public members for miscellaneous operations

The next three members are normally only used by classes derived from streambuf.

• ios::pos_type pubseekoff(ios::off_type offset, ios::seekdir way, ios::openmode

mode = ios::in |ios::out):

Sets the offset of the next character to be read or written to offset, relative to the

standard ios::seekdir values indicating the direction of the seeking operation.

• ios::pos_type pubseekpos(ios::pos_type offset, ios::openmode mode = ios::in

|ios::out):

Sets the absolute position of the next character to be read or written to pos.

• streambuf *pubsetbuf(char* buffer, std::streamsize n):

The streambuf object is going to use the buffer accomodating at least n characters.

14.8.1 Protected ‘streambuf’ members

The protected members of the class streambuf are important for understanding and using streambuf

objects. Although there are both protected data members and protected member functions defined

in the class streambuf the protected data members are not mentioned here as using them would

violate the principle of data hiding. As streambuf’s set of member functions is quite extensive, it

is hardly ever necessary to use its data members directly. The following subsections do not even list

all protected member functions but only those are covered that are useful for constructing special-

izations.

Streambuf objects control a buffer, used for input and/or output, for which begin-, actual- and end-

pointers have been defined, as depicted in figure 14.4.

Streambuf offers one protected constructor:

• streambuf::streambuf():

Default (protected) constructor of the class streambuf.

14.8.1.1 Protected members for input operations

Several protected member functions are available for input operations. The member functions

marked virtual may or course be redefined in derived classes:

• char *eback():

Streambufmaintains three pointers controlling its input buffer: eback points to the

‘end of the putback’ area: characters can safely be put back up to this position. See

also figure 14.4. Eback points to the beginning of the input buffer.

• char *egptr():

Egptr points just beyond the last character that can be retrieved from the input

buffer. See also figure 14.4. If gptr equals egptr the buffer must be refilled. This

should be implemented by calling underflow, see below.

404 CHAPTER 14. POLYMORPHISM

Figure 14.4: Input- and output buffer pointers of the class ‘streambuf’

14.8. THE ‘STREAMBUF’ CLASS 405

• void gbump(int n):

The object’s gptr (see below) is advanced over n positions.

• char *gptr():

Gptr points to the next character to be retrieved from the object’s input buffer. See

also figure 14.4.

• virtual int pbackfail(int c):

This member function may be overridden by derived classes to do something intelli-

gent when putting back character c fails. One might consider restoring the old read

pointer when input buffer’s begin has been reached. This member function is called

when ungetting or putting back a character fails. In particular, it is called when

– gptr() == 0: no buffering used,

– gptr() == eback(): no more room to push back,

– *gptr() != c: a different character than the next character to be read must be

pushed back.

If c == endOfFile() then the input device must be reset by one character position.

Otherwise c must be prepended to the characters to be read. The function should

return EOF on failure. Otherwise 0 can be returned.

• void setg(char *beg, char *next, char *beyond):

Initializes an input buffer. beg points to the beginning of the input area, next points

to the next character to be retrieved, and beyond points to the location just beyond

the input buffer’s last character. Usually next is at least beg + 1, to allow for a put

back operation. No input buffering is used when this member is called as setg(0,

0, 0). See also the member uflow, below.

• virtual streamsize showmanyc():

(Pronounce: s-how-many-c) This member function may be overridden by derived

classes. It must return a guaranteed lower bound on the number of characters that

can be read from the device before uflow or underflow returns EOF. By default 0 is

returned (meaning no or some characters are returned before the latter two functions

return EOF). When a positive value is returned then the next call of u(nder)flow

does not return EOF.

• virtual int uflow():

This member function may be overridden by derived classes to reload an input buffer

with fresh characters. Its default implementation is to call underflow (see below).

If underflow() fails, EOF is returned. Otherwise, the next available character is re-

turned as *gptr() following a gbump(-1). Uflow also moves the pending character

that is returned to the backup sequence. This is different from underflow(), which

merely returns the next available character, but does not alter the input pointer po-

sitions.

When no input buffering is required this function, rather than underflow, can be

overridden to produce the next available character from the device to read from.

• virtual int underflow():

This member function may be overridden by derived classes to read another character

from the device. The default implementation is to return EOF.

It is called when

– there is no input buffer (eback() == 0)

406 CHAPTER 14. POLYMORPHISM

– gptr() >= egptr(): the input buffer is exhausted.

Often, when buffering is used, the complete buffer is not refreshed as this would

make it impossible to put back characters immediately following a reload. Instead,

buffers are often refreshed in halves. This system is called a split buffer.

Classes derived from streambuf for reading normally at least override underflow.

The prototypical example of an overridden underflow function looks like this:

int underflow()

{

if (not refillTheBuffer()) // assume a member d_buffer is available

return EOF;

// reset the input buffer pointers

setg(d_buffer, d_buffer, d_buffer + d_nCharsRead);

// return the next available character

// (the cast is used to prevent

// misinterpretations of 0xff characters

// as EOF)

return static_cast<unsigned char>(*gptr());

}

• virtual streamsize xsgetn(char *buffer, streamsize n):

This member function may be overridden by derived classes to retrieve at once n char-

acters from the input device. The default implementation is to call sbumpc for every

single character meaning that by default this member (eventually) calls underflow

for every single character. The function returns the actual number of characters read

or EOF. Once EOF is returned the streambuf stops reading the device.

14.8.1.2 Protected members for output operations

The following protected members are available for output operations. Again, some members may be

overridden by derived classes:

• virtual int overflow(int c):

This member function may be overridden by derived classes to flush the characters

currently stored in the output buffer to the output device, and then to reset the output

buffer pointers so as to represent an empty buffer. Its parameter c is initialized

to the next character to be processed. If no output buffering is used overflow is

called for every single character that is written to the streambuf object. No output

buffering is accomplised by setting the buffer pointers (using, setp, see below) to

0. The default implementation returns EOF, indicating that no characters can be

written to the device.

Classes derived from streambuf for writing normally at least override overflow.

The prototypical example of an overridden overflow function looks like this:

int OFdStreambuf::overflow(int c)

{

sync(); // flush the buffer

if (c != EOF) // write a character?

{

*pptr() = static_cast<char>(c); // put it into the buffer

pbump(1); // advance the buffer’s pointer

14.8. THE ‘STREAMBUF’ CLASS 407

}

return c;

}

• char *pbase():

Streambuf maintains three pointers controlling its output buffer: pbase points to

the beginning of the output buffer area. See also figure 14.4.

• char *epptr():

Streambuf maintains three pointers controlling its output buffer: epptr points just

beyond the output buffer’s last available location. See also figure 14.4. If pptr (see

below) equals epptr the buffer must be flushed. This is implemented by calling

overflow, see before.

• void pbump(int n):

The location returned by pptr (see below) is advanced by n. The next character

written to the stream will be entered at that location.

• char *pptr():

Streambufmaintains three pointers controlling its output buffer: pptr points to the

location in the output buffer where the next available character should be written.

See also figure 14.4.

• void setp(char *beg, char *beyond):

Streambuf’s output buffer is initialized to the locations passed to setp. Beg points

to the beginning of the output buffer and beyond points just beyond the last available

location of the output buffer. Use setp(0, 0) to indicate that no buffering should

be used. In that case overflow is called for every single character to write to the

device.

• virtual streamsize xsputn(char const *buffer, streamsize n):

This member function may be overridden by derived classes to write a series of at

most n characters to the output buffer. The actual number of inserted characters is

returned. If EOF is returned writing to the device stops. The default implementation

calls sputc for each individual character, so redefining this member is only necessary

if a more efficient implementation is required.

14.8.1.3 Protected members for buffer manipulation

Several protected members are related to buffer management and positioning:

• virtual streambuf *setbuf(char *buffer, streamsize n):

This member function may be overridden by derived classes to install a buffer. The

default implementation performs no actions. It is called by pubsetbuf.

• virtual pos_type seekoff(off_type offset, ios::seekdir way,

ios::openmode mode = ios::in |ios::out)

This member function may be overridden by derived classes to reset the next pointer

for input or output to a new relative position (using ios::beg, ios::cur or ios::end).

The default implementation indicates failure by returning -1. The function is called

408 CHAPTER 14. POLYMORPHISM

when tellg or tellp are called. When derived class supports seeking, then it should

also define this function to handle repositioning requests. It is called by pubseekoff.

The new position or an invalid position (i.e., -1) is returned.

• virtual pos_type seekpos(pos_type offset, ios::openmode mode =

ios::in |ios::out):

This member function may be overridden by derived classes to reset the next pointer

for input or output to a new absolute position (i.e, relative to ios::beg). The default

implementation indicates failure by returning -1.

• virtual int sync():

This member function may be overridden by derived classes to flush the output buffer

to the output device or to reset the input device just beyond the position of the char-

acter that was returned last. It returns 0 on success, -1 on failure. The default im-

plementation (not using a buffer) is to return 0, indicating successful syncing. This

member is used to ensure that any characters that are still buffered are written to

the device or to put unconsumed characters back to the device when the streambuf

object ceases to exist.

14.8.1.4 Deriving classes from ‘streambuf’

When classes are derived from streambuf at least underflow should be overridden by classes

intending to read information from devices, and overflow should be overridden by classes intending

to write information to devices. Several examples of classes derived from streambuf are provided

in chapter 23.

Fstream class type objects use a combined input/output buffer. This is a result from that istream

and ostream being virtually derived from ios, which class contains the streambuf. To construct

a class supporting both input and output using separate buffers, the streambuf itself may define

two buffers. When seekoff is called for reading, a mode parameter can be set to ios::in, other-

wise to ios::out. Thus the derived class knows whether it should access the read buffer or the

write buffer. Of course, underflow and overflow do not have to inspect the mode flag as they by

implication know on which buffer they should operate.

14.8.2 The class ‘filebuf’

The class filebuf is a specialization of streambuf used by the file stream classes. Before using

a filebuf the header file <fstream> must have been included.

In addition to the (public) members that are available through the class streambuf, filebuf

offers the following (public) members:

• filebuf():

Filebuf offers a public constructor. It initializes a plain filebuf object that is not

yet connected to a stream.

• bool is_open():

True is returned if the filebuf is actually connected to an open file, false other-

wise. See the open member, below.

14.9. A POLYMORPHIC EXCEPTION CLASS 409

• filebuf *open(char const *name, ios::openmode mode):

Associates the filebuf object with a file whose name is provided. The file is opened

according to the provided openmode.

• filebuf *close():

Closes the association between the filebuf object and its file. The association is

automatically closed when the filebuf object ceases to exist.

14.9 A polymorphic exception class

Earlier in the C++ Annotations (section 10.3.1) we hinted at the possibility of designing a class

Exception whose process member would behave differently, depending on the kind of exception

that was thrown. Now that we’ve introduced polymorphism we can further develop this example.

It probably does not come as a surprise that our class Exception should be a polymorphic base class

from which special exception handling classes can be derived. In section 10.3.1 a member severity

was used offering functionality that may be replaced by members of the Exception base class.

The base class Exception may be designed as follows:

#ifndef INCLUDED_EXCEPTION_H_

#define INCLUDED_EXCEPTION_H_

#include <iostream>

#include <string>

class Exception

{

std::string d_reason;

public:

Exception(std::string const &reason);

virtual ~Exception();

std::ostream &insertInto(std::ostream &out) const;

void handle() const;

private:

virtual void action() const;

};

inline void Exception::action() const

{

throw;

}

inline Exception::Exception(std::string const &reason)

:

d_reason(reason)

{}

inline void Exception::handle() const

{

action();

}

410 CHAPTER 14. POLYMORPHISM

inline std::ostream &Exception::insertInto(std::ostream &out) const

{

return out << d_reason;

}

inline std::ostream &operator<<(std::ostream &out, Exception const &e)

{

return e.insertInto(out);

}

#endif

Objects of this class may be inserted into ostreams but the core element of this class is the virtual

member function action, by default rethrowing an exception.

A derived class Warning simply prefixes the thrown warning text by the text Warning:, but a

derived class Fatal overrides Exception::action by calling std::terminate, forcefully termi-

nating the program.

Here are the classes Warning and Fatal

#ifndef WARNINGEXCEPTION_H_

#define WARNINGEXCEPTION_H_

#include "exception.h"

class Warning: public Exception

{

public:

Warning(std::string const &reason)

:

Exception("Warning: " + reason)

{}

};

#endif

#ifndef FATAL_H_

#define FATAL_H_

#include "exception.h"

class Fatal: public Exception

{

public:

Fatal(std::string const &reason);

private:

virtual void action() const;

};

inline Fatal::Fatal(std::string const &reason)

:

Exception(reason)

{}

14.10. HOW POLYMORPHISM IS IMPLEMENTED 411

inline void Fatal::action() const

{

std::cout << "Fatal::action() terminates" << ’\n’;

std::terminate();

}

#endif

When the example program is started without arguments it throws a Fatal exception, otherwise

it throws a Warning exception. Of course, additional exception types could also easily be defined.

To make the example compilable the Exception destructor is defined above main. The default

destructor cannot be used, as it is a virtual destructor. In practice the destructor should be defined

in its own little source file:

#include "warning.h"

#include "fatal.h"

Exception::~Exception()

{}

using namespace std;

int main(int argc, char **argv)

try

{

try

{

if (argc == 1)

throw Fatal("Missing Argument") ;

else

throw Warning("the argument is ignored");

}

catch (Exception const &e)

{

cout << e << ’\n’;

e.handle();

}

}

catch(...)

{

cout << "caught rethrown exception\n";

}

14.10 How polymorphism is implemented

This section briefly describes how polymorphism is implemented in C++. It is not necessary to un-

derstand how polymorphism is implemented if you just want to use polymorphism. However, we

think it’s nice to know how polymorphism is possible. Also, knowing how polymorphism is imple-

mented clarifies why there is a (small) penalty to using polymorphism in terms of memory usage

and efficiency.

The fundamental idea behind polymorphism is that the compiler does not know which function

412 CHAPTER 14. POLYMORPHISM

Figure 14.5: Internal organization objects when virtual functions are defined.

to call at compile-time. The appropriate function is selected at run-time. That means that the

address of the function must be available somewhere, to be looked up prior to the actual call. This

‘somewhere’ place must be accessible to the object in question. So when a Vehicle *vp points to

a Truck object, then vp->mass() calls Truck’s member function. the address of this function is

obtained through the actual object to which vp points.

Polymorphism is commonly implemented as follows: an object containing virtual member functions

also contains, usually as its first data member a hidden data member, pointing to an array containing

the addresses of the class’s virtual member functions. The hidden data member is usually called the

vpointer, the array of virtual member function addresses the vtable.

The class’s vtable is shared by all objects of that class. The overhead of polymorphism in terms of

memory consumption is therefore:

• one vpointer data member per object pointing to:

• one vtable per class.

Consequently, a statement like vp->mass first inspects the hidden data member of the object pointed

to by vp. In the case of the vehicle classification system, this data member points to a table contain-

ing two addresses: one pointer to the function mass and one pointer to the function setMass (three

pointers if the class also defines (as it should) a virtual destructor). The actually called function is

determined from this table.

The internal organization of the objects having virtual functions is illustrated in figures Figure 14.5

and Figure 14.6 (originals provided by Guillaume Caumon3).

As shown by figures Figure 14.5 and Figure 14.6, objects potentially using virtual member functions

must have one (hidden) data member to address a table of function pointers. The objects of the

classes Vehicle and Auto both address the same table. The class Truck, however, overrides mass.

Consequently, Truck needs its own vtable.

A small complication arises when a class is derived from multiple base classes, each defining virtual

functions. Consider the following example:

class Base1

{

3mailto:Guillaume.Caumon@ensg.inpl-nancy.fr

14.10. HOW POLYMORPHISM IS IMPLEMENTED 413

Figure 14.6: Complementary figure, provided by Guillaume Caumon

public:

virtual ~Base1();

void fun1(); // calls vOne and vTwo

private:

virtual void vOne();

virtual void vTwo();

};

class Base2

{

public:

virtual ~Base2();

void fun2(); // calls vThree

private:

virtual void vThree();

};

class Derived: public Base1, public Base2

{

public:

virtual ~Derived();

private:

virtual ~vOne();

virtual ~vThree();

};

In the example Derived is multiply derived from Base1 and Base2, each supporting virtual func-

tions. Because of this, Derived also has virtual functions, and so Derived has a vtable allowing

a base class pointer or reference to access the proper virtual member.

When Derived::fun1 is called (or a Base1 pointer pointing to fun1 calls fun1) then fun1 calls

Derived::vOne and Base1::vTwo. Likewise, when Derived::fun2 is called Derived::vThree

is called.

The complication occurs with Derived’s vtable. When fun1 is called its class type determines

the vtable to use and hence which virtual member to call. So when vOne is called from fun1, it

414 CHAPTER 14. POLYMORPHISM

Figure 14.7: Vtables and vpointers with multiple base classes

is presumably the second entry in Derived’s vtable, as it must match the second entry in Base1’s

vtable. However, when fun2 calls vThree it apparently is also the second entry in Derived’s vtable

as it must match the second entry in Base2’s vtable.

Of course this cannot be realized by a single vtable. Therefore, when multiple inheritance is used

(each base class defining virtual members) another approach is followed to determine which virtual

function to call. In this situation (cf. figure Figure 14.7) the class Derived receives two vtables,

one for each of its base classes and each Derived class object harbors two hidden vpointers, each

one pointing to its corresponding vtable.

Since base class pointers, base class references, or base class interface members unambiguously

refer to one of the base classes the compiler can determine which vpointer to use.

The following therefore holds true for classes multiply derived from base classes offering virtual

member functions:

• the derived class defines a vtable for each of its base classes offering virtual members;

• Each derived class object contains as many hidden vpointers as it has vtables.

• Each of a derived class object’s vpointers points to a unique vtable and the vpointer to use is

determined by the class type of the base class pointer, the base class reference, or the base class

interface function that is used.

14.11. UNDEFINED REFERENCE TO VTABLE ... 415

14.11 Undefined reference to vtable ...

Occasionaly, the linker generates an error like the following:

In function ‘Derived::Derived()’:

: undefined reference to ‘vtable for Derived’

This error is generated when a virtual function’s implementation is missing in a derived class, but

the function is mentioned in the derived class’s interface.

Such a situation is easily encountered:

• Construct a (complete) base class defining a virtual member function;

• Construct a Derived class mentioning the virtual function in its interface;

• The Derived class’s virtual function is not implemented. Of course, the compiler doesn’t know

that the derived class’s function is not implemented and will, when asked, generate code to

create a derived class object;

• Eventually, the linker is unable to find the derived class’s virtual member function. Therefore,

it is unable to construct the derived class’s vtable;

• The linker complains with the message:

undefined reference to ‘vtable for Derived’

Here is an example producing the error:

class Base

{

virtual void member();

};

inline void Base::member()

{}

class Derived: public Base

{

virtual void member(); // only declared

};

int main()

{

Derived d; // Will compile, since all members were declared.

// Linking will fail, since we don’t have the

// implementation of Derived::member()

}

It’s of course easy to correct the error: implement the derived class’s missing virtual member func-

tion.

Virtual functions should never be implemented inline. Since the vtable contains the addresses of the

class’s virtual functions, these functions must have addresses and so they must have been compiled

as real (out-of-line) functions. By defining virtual functions inline you run the risk that the compiler

simply overlooks those functions as they may very well never be explicitly called (but only polymor-

phically, from a base class pointer or reference). As a result their addresses may never enter their

416 CHAPTER 14. POLYMORPHISM

class’s vtables (and even the vtable itself might remain undefined), causing linkage problems or re-

sulting in programs showing unexpected behavior. All these kinds of problems are simply avoided:

never define virtual members inline (see also section 7.8.2.1).

14.12 Virtual constructors

In section 14.2 we learned that C++ supports virtual destructors. Like many other object oriented

languages (e.g., Java), however, the notion of a virtual constructor is not supported. Not having

virtual constructors becomes a liability when only base class references or pointers are available,

and a copy of a derived class object is required. Gamma et al. (1995) discuss the Prototype design

pattern to deal with this situation.

According to the Prototype Design Pattern each derived class is given the responsibility of implement-

ing a member function returning a pointer to a copy of the object for which the member is called.

The usual name for this function is clone. Separating the user interface from the reimplementa-

tion interface clone is made part of the interface and newCopy is defined in the reimplementation

interface. A base class supporting ‘cloning’ defines a virtual destructor, clone, returning newCopy’s

return value and the virtual copy constructor, a pure virtual function, having the prototype virtual

Base *newCopy() const = 0. As newCopy is a pure virtual function all derived classes must now

implement their own ‘virtual constructor’.

This setup suffices in most situations where we have a pointer or reference to a base class, but it fails

when used with abstract containers. We can’t create a vector<Base>, with Base featuring the pure

virtual copy member in its interface, as Base is called to initialize new elements of such a vector.

This is impossible as newCopy is a pure virtual function, so a Base object can’t be constructed.

The intuitive solution, providing newCopy with a default implementation, defining it as an ordinary

virtual function, fails too as the container calls Base(Base const &other), which would have to

call newCopy to copy other. At this point it is unclear what to do with that copy, as the new Base

object already exists, and contains no Base pointer or reference data member to assign newCopy’s

return value to.

Alternatively (and preferred) the original Base class (defined as an abstract base class) is kept as-is

and a wrapper class Clonable is used to manage the Base class pointers returned by newCopy. In

chapter 17 ways to merge Base and Clonable into one class are discussed, but for now we’ll define

Base and Clonable as separate classes.

The class Clonable is a very standard class. It contains a pointer member so it needs a copy

constructor, destructor, and overloaded assignment operator. It’s given at least one non-standard

member: Base &base() const, returning a reference to the derived object to which Clonable’s

Base * data member refers. It is also provided with an additional constructor to initialize its Base

* data member.

Any non-abstract class derived from Base must implement Base *newCopy(), returning a pointer

to a newly created (allocated) copy of the object for which newCopy is called.

Once we have defined a derived class (e.g., Derived1), we can put our Clonable and Base facilities

to good use. In the next example we see main defining a vector<Clonable>. An anonymous

Derived1 object is then inserted into the vector using the following steps:

• A new anonymous Derived1 object is created;

• It initializes a Clonable using Clonable(Base *bp);

• The just created Clonable object is inserted into the vector, using Clonable’s move con-

14.12. VIRTUAL CONSTRUCTORS 417

structor. There are only temporary Derived and Clonable objects at this point, so no copy

construction is required.

In this sequence, only the Clonable object containing the Derived1 * is used. No additional copies

need to be made (or destroyed).

Next, the base member is used in combination with typeid to show the actual type of the Base &

object: a Derived1 object.

Main then contains the interesting definition vector<Clonable> v2(bv). Here a copy of bv is

created. This copy construction observes the actual types of the Base references, making sure that

the appropriate types appear in the vector’s copy.

At the end of the program, we have created two Derived1 objects, which are correctly deleted by

the vector’s destructors. Here is the full program, illustrating the ‘virtual constructor’ concept4:

#include <iostream>

#include <vector>

#include <algorithm>

#include <typeinfo>

// Base and its inline member:

class Base

{

public:

virtual ~Base();

Base *clone() const;

private:

virtual Base *newCopy() const = 0;

};

inline Base *Base::clone() const

{

return newCopy();

}

// Clonable and its inline members:

class Clonable

{

Base *d_bp;

public:

Clonable();

explicit Clonable(Base *base);

~Clonable();

Clonable(Clonable const &other);

Clonable(Clonable &&tmp);

Clonable &operator=(Clonable const &other);

Clonable &operator=(Clonable &&tmp);

Base &base() const;

};

inline Clonable::Clonable()

:

4 Jesse van den Kieboom created an alternative implementation of a class Clonable, implemented as a class template.
His implementation is found here5.

418 CHAPTER 14. POLYMORPHISM

d_bp(0)

{}

inline Clonable::Clonable(Base *bp)

:

d_bp(bp)

{}

inline Clonable::Clonable(Clonable const &other)

:

d_bp(other.d_bp->clone())

{}

inline Clonable::Clonable(Clonable &&tmp)

:

d_bp(tmp.d_bp)

{

tmp.d_bp = 0;

}

inline Clonable::~Clonable()

{

delete d_bp;

}

inline Base &Clonable::base() const

{

return *d_bp;

}

// Derived and its inline member:

class Derived1: public Base

{

public:

~Derived1();

private:

virtual Base *newCopy() const;

};

inline Base *Derived1::newCopy() const

{

return new Derived1(*this);

}

// Members not implemented inline:

Base::~Base()

{}

Clonable &Clonable::operator=(Clonable const &other)

{

Clonable tmp(other);

std::swap(d_bp, tmp.d_bp);

return *this;

}

Clonable &Clonable::operator=(Clonable &&tmp)

{

std::swap(d_bp, tmp.d_bp);

return *this;

}

Derived1::~Derived1()

{

14.12. VIRTUAL CONSTRUCTORS 419

std::cout << "~Derived1() called\n";

}

// The main function:

using namespace std;

int main()

{

vector<Clonable> bv;

bv.push_back(Clonable(new Derived1()));

cout << "bv[0].name: " << typeid(bv[0].base()).name() << ’\n’;

vector<Clonable> v2(bv);

cout << "v2[0].name: " << typeid(v2[0].base()).name() << ’\n’;

}

/*
Output:

bv[0].name: 8Derived1

v2[0].name: 8Derived1

~Derived1() called

~Derived1() called

*/

420 CHAPTER 14. POLYMORPHISM

Chapter 15

Friends

In all examples discussed up to now, we’ve seen that private members are only accessible by the

members of their class. This is good, as it enforces encapsulation and data hiding. By encapsulating

functionality within a class we prevent that a class exposes multiple responsibilities; by hiding

data we promote a class’s data integrity and we prevent that other parts of the software become

implementation dependent on the data that belong to a class.

In this (very) short chapter we introduce the friend keyword and the principles that underly its use.

The bottom line being that by using the friend keyword functions are granted access to a class’s

private members. Even so, this does not imply that the principle of data hiding is abandoned when

the friend keyword is used.

In this chapter the topic of friendship among classes is not discussed. Situations in which it is

natural to use friendship among classes are discussed in chapters 17 and 20 and such situations are

natural extensions of the way friendship is handled for functions.

There should be a well-defined conceptual reason for declaring friendship (i.e., using the friend

keyword). The traditionally offered definition of the class concept usually looks something like this:

A class is a set of data together with the functions that operate on that set of data.

As we’ve seen in chapter 11 some functions have to be defined outside of a class interface. They are

defined outside of the class interface to allow promotions for their operands or to extend the facilities

of existing classes not directly under our control. According to the above traditional definition of the

class concept those functions that cannot be defined in the class interface itself should nevertheless

be considered functions belonging to the class. Stated otherwise: if permitted by the language’s

syntax they would certainly have been defined inside the class interface. There are two ways to

implement such functions. One way consists of implementing those functions using available public

member functions. This approach was used, e.g., in section 11.2. Another approach applies the

definition of the class concept to those functions. By stating that those functions in fact belong to

the class they should be given direct access to the data members of objects. This is accomplished by

the friend keyword.

As a general principle we state that all functions operating on the data of objects of a class that are

declared in the same file as the class interface itself belong to that class and may be granted direct

access to the class’s data members.

421

422 CHAPTER 15. FRIENDS

15.1 Friend functions

In section 11.2 the insertion operator of the class Person (cf. section 9.3) was implemented like this:

ostream &operator<<(ostream &out, Person const &person)

{

return

out <<

"Name: " << person.name() << ", "

"Address: " << person.address() << ", "

"Phone: " << person.phone();

}

Person objects can now be inserted into streams.

However, this implementation required three member functions to be called, which may be consid-

ered a source of inefficiency. An improvement would be reached by defining a member Person::insertInto

and let operator« call that function. These two functions could be defined as follows:

std::ostream &operator<<(std::ostream &out, Person const &person)

{

return person.insertInto(out);

}

std::ostream &Person::insertInto(std::ostream &out)

{

return

out << "Name: " << d_name << ", "

"Address: " << d_address << ", "

"Phone: " << d_phone;

}

As insertInto is a member function it has direct access to the object’s data members so no addi-

tional member functions must be called when inserting person into out.

The next step consists of realizing that insertInto is only defined for the benefit of operator«,

and that operator«, as it is declared in the header file containing Person’s class interface should

be considered a function belonging to the class Person. The member insertInto can therefore be

omitted when operator« is declared as a friend.

Friend functions must be declared as friends in the class interface. These friend declarations are not

member functions, and so they are independent of the class’s private, protected and public

sections. Friend declaration may be placed anywhere in the class interface. Convention dictates

that friend declaractions are listed directly at the top of the class interface. The class Person, using

friend declaration for its extraction and insertion operators starts like this:

class Person

{

friend std::ostream &operator<<(std::ostream &out, Person &pd);

friend std::istream &operator>>(std::istream &in, Person &pd);

// previously shown interface (data and functions)

};

The insertion operator may now directly access a Person object’s data members:

15.2. EXTENDED FRIEND DECLARATIONS (C++11) 423

std::ostream &operator<<(std::ostream &out, Person const &person)

{

return

cout << "Name: " << person.d_name << ", "

"Address: " << person.d_address << ", "

"Phone: " << person.d_phone;

}

Friend declarations are true declarations. Once a class contains friend declarations these friend

functions do not have to be declared again below the class’s interface. This also clearly indicates the

class designer’s intent: the friend functions are declared by the class, and can thus be considered

functions belonging to the class.

15.2 Extended friend declarations (C++11)

C++11 simplifies friend declarations by adding extended friend declarations to the language. When

a class is declared as a friend, then the class keyword no longer has to be provided. E.g.,

class Friend; // declare a class

typedef Friend FriendType; // and a typedef for it

using FName = Friend; // and a using declaration

class Class1

{

friend Friend; // FriendType and FNaem: also OK

};

In the pre-C++11 standards the friend declaration required an explicit class; e.g., friend class

Friend.

The explicit use of class remains required if the compiler hasn’t seen the friend’s name yet. E.g.,

class Class1

{

// friend Unseen; // fails to compile: Unseen unknown.

friend class Unseen; // OK

};

Section 21.10 covers the use of extended friend declarations in class templates.

424 CHAPTER 15. FRIENDS

Chapter 16

Classes Having Pointers To

Members

Classes having pointer data members have been discussed in detail in chapter 9. Classes defin-

ing pointer data-members deserve some special attention, as they usually require the definitions of

copy constructors, overloaded assignment operators and destructors

Situations exist where we do not need a pointer to an object but rather a pointer to members of

a class. Pointers to members can profitably be used to configure the behavior of objects of classes.

Depending on which member a pointer to a member points to objects will show certain behavior.

Although pointers to members have their use, polymorphism can frequently be used to realize com-

parable behavior. Consider a class having a member process performing one of a series of alternate

behaviors. Instead of selecting the behavior of choice at object construction time the class could use

the interface of some (abstract) base class, passing an object of some derived class to its constructor

and could thus configure its behavior. This allows for easy, extensible and flexible configuration,

but access to the class’s data members would be less flexible and would possibly require the use of

‘friend’ declarations. In such cases pointers to members may actually be preferred as this allows for

(somewhat less flexible) configuration as well as direct access to a class’s data members.

So the choice apparently is between on the one hand ease of configuration and on the other hand

ease of access to a class’s data members. In this chapter we’ll concentrate on pointers to members,

investigating what these pointers have to offer.

16.1 Pointers to members: an example

Knowing how pointers to variables and objects are used does not intuitively lead to the concept of

pointers to members . Even if the return types and parameter types of member functions are taken

into account, surprises can easily be encountered. For example, consider the following class:

class String

{

char const *(*d_sp)() const;

public:

char const *get() const;

};

425

426 CHAPTER 16. CLASSES HAVING POINTERS TO MEMBERS

For this class, it is not possible to let char const *(*d_sp)() const point to the String::get

member function as d_sp cannot be given the address of the member function get.

One of the reasons why this doesn’t work is that the variable d_sp has global scope (it is a pointer

to a function, not a pointer to a function within String), while the member function get is defined

within the String class, and thus has class scope. The fact that d_sp is a data member of

the class String is irrelevant here. According to d_sp’s definition, it points to a function living

somewhere outside of the class.

Consequently, to define a pointer to a member (either data or function, but usually a function)

of a class, the scope of the pointer must indicate class scope. Doing so, a pointer to the member

String::get is defined like this:

char const *(String::*d_sp)() const;

So, by prefixing the *d_sp pointer data member by String::, it is defined as a pointer in the

context of the class String. According to its definition it is a pointer to a function in the class

String, not expecting arguments, not modifying its object’s data, and returning a pointer to constant

characters.

16.2 Defining pointers to members

Pointers to members are defined by prefixing the normal pointer notation with the appropriate

class plus scope resolution operator. Therefore, in the previous section, we used char const *
(String::*d_sp)() const to indicate that d_sp

• is a pointer (*d_sp);

• points to something in the class String (String::*d_sp);

• is a pointer to a const function, returning a char const * (char const * (String::*d_sp)()

const).

The prototype of a matching function is therefore:

char const *String::somefun() const;

which is any const parameterless function in the class String, returning a char const *.

When defining pointers to members the standard procedure for constructing pointers to functions

can still be applied:

• put parentheses around the fully qualified function name (i.e., the function’s header, including

the function’s class name):

char const * (String::somefun) () const

• Put a pointer (a star (*)) character immediately before the function name itself:

char const * (String:: * somefun) () const

16.2. DEFINING POINTERS TO MEMBERS 427

• Replace the function name with the name of the pointer variable:

char const * (String::*d_sp)() const

Here is another example, defining a pointer to a data member. Assume the class String contains

a string d_text member. How to construct a pointer to this member? Again we follow standard

procedure:

• put parentheses around the fully qualified variable name:

std::string (String::d_text)

• Put a pointer (a star (*)) character immediately before the variable-name itself:

std::string (String::*d_text)

• Replace the variable name with the name of the pointer variable:

std::string (String::*tp)

In this case, the parentheses are superfluous and may be omitted:

string String::*tp

Alternatively, a very simple rule of thumb is

• Define a normal (i.e., global) pointer variable,

• Prefix the class name to the pointer character, once you point to something inside a class

For example, the following pointer to a global function

char const * (*sp)() const;

becomes a pointer to a member function after prefixing the class-scope:

char const * (String::*sp)() const;

Nothing forces us to define pointers to members in their target (String) classes. Pointers to mem-

bers may be defined in their target classes (so they become data members), or in another class, or

as a local variable or as a global variable. In all these cases the pointer to member variable can be

given the address of the kind of member it points to. The important part is that a pointer to member

can be initialized or assigned without requiring the existence an object of the pointer’s target class.

Initializing or assigning an address to such a pointer merely indicates to which member the pointer

points. This can be considered some kind of relative address; relative to the object for which the

function is called. No object is required when pointers to members are initialized or assigned. While

it is allowed to initialize or assign a pointer to member, it is (of course) not possible to call those

members without specifying an object of the correct type.

In the following example initialization of and assignment to pointers to members is illustrated (for

illustration purposes all members of the class PointerDemo are defined public). In the example

428 CHAPTER 16. CLASSES HAVING POINTERS TO MEMBERS

itself the &-operator is used to determine the addresses of the members. These operators as well as

the class-scopes are required. Even when used inside member implementations:

#include <cstddef>

class PointerDemo

{

public:

size_t d_value;

size_t get() const;

};

inline size_t PointerDemo::get() const

{

return d_value;

}

int main()

{ // initialization

size_t (PointerDemo::*getPtr)() const = &PointerDemo::get;

size_t PointerDemo::*valuePtr = &PointerDemo::d_value;

getPtr = &PointerDemo::get; // assignment

valuePtr = &PointerDemo::d_value;

}

This involves nothing special. The difference with pointers at global scope is that we’re now re-

stricting ourselves to the scope of the PointerDemo class. Because of this restriction, all pointer

definitions and all variables whose addresses are used must be given the PointerDemo class scope.

Pointers to members can also be used with virtual member functions. No special syntax is re-

quired when pointing to virtual members. Pointer construction, initialization and assignment is

done identically to the way it is done with non-virtual members.

16.3 Using pointers to members

Using pointers to members to call a member function requires the existence of an object of the class

of the members to which the pointer to member refers to. With pointers operating at global scope,

the dereferencing operator * is used. With pointers to objects the field selector operator operating on

pointers (->) or the field selector operating operating on objects (.) can be used to select appropriate

members.

To use a pointer to member in combination with an object the pointer to member field selector (.*)

must be specified. To use a pointer to a member via a pointer to an object the ‘pointer to member

field selector through a pointer to an object’ (->*) must be specified. These two operators combine

the notions of a field selection (the . and -> parts) to reach the appropriate field in an object and

of dereferencing: a dereference operation is used to reach the function or variable the pointer to

member points to.

Using the example from the previous section, let’s see how we can use pointers to member functions

and pointers to data members:

#include <iostream>

16.3. USING POINTERS TO MEMBERS 429

class PointerDemo

{

public:

size_t d_value;

size_t get() const;

};

inline size_t PointerDemo::get() const

{

return d_value;

}

using namespace std;

int main()

{ // initialization

size_t (PointerDemo::*getPtr)() const = &PointerDemo::get;

size_t PointerDemo::*valuePtr = &PointerDemo::d_value;

PointerDemo object; // (1) (see text)

PointerDemo *ptr = &object;

object.*valuePtr = 12345; // (2)

cout << object.*valuePtr << ’\n’ <<

object.d_value << ’\n’;

ptr->*valuePtr = 54321; // (3)

cout << object.d_value << ’\n’ <<

(object.*getPtr)() << ’\n’ << // (4)

(ptr->*getPtr)() << ’\n’;

}

We note:

• At (1) a PointerDemo object and a pointer to such an object is defined.

• At (2) we specify an object (and hence the .* operator) to reach the member valuePtr points

to. This member is given a value.

• At (3) the same member is assigned another value, but this time using the pointer to a PointerDemo

object. Hence we use the ->* operator.

• At (4) the .* and ->* are used once again, this time to call a function through a pointer to

member. As the function argument list has a higher priority than the pointer to member field

selector operator, the latter must be protected by parentheses.

Pointers to members can be used profitably in situations where a class has a member that behaves

differently depending on a configuration setting. Consider once again the class Person from section

9.3. Person defines data members holding a person’s name, address and phone number. Assume

we want to construct a Person database of employees. The employee database can be queried,

but depending on the kind of person querying the database either the name, the name and phone

number or all stored information about the person is made available. This implies that a member

function like address must return something like ‘<not available>’ in cases where the person

430 CHAPTER 16. CLASSES HAVING POINTERS TO MEMBERS

querying the database is not allowed to see the person’s address, and the actual address in other

cases.

The employee database is opened specifying an argument reflecting the status of the employee who

wants to make some queries. The status could reflect his or her position in the organization, like

BOARD, SUPERVISOR, SALESPERSON, or CLERK. The first two categories are allowed to see all infor-

mation about the employees, a SALESPERSON is allowed to see the employee’s phone numbers, while

the CLERK is only allowed to verify whether a person is actually a member of the organization.

We now construct a member string personInfo(char const *name) in the database class. A

standard implementation of this class could be:

string PersonData::personInfo(char const *name)

{

Person *p = lookup(name); // see if ‘name’ exists

if (!p)

return "not found";

switch (d_category)

{

case BOARD:

case SUPERVISOR:

return allInfo(p);

case SALESPERSON:

return noPhone(p);

case CLERK:

return nameOnly(p);

}

}

Although it doesn’t take much time, the switchmust nonetheless be evaluated every time personInfo

is called. Instead of using a switch, we could define a member d_infoPtr as a pointer to a member

function of the class PersonData returning a string and expecting a pointer to a Person as its

argument.

Instead of evaluating the switch this pointer can be used to point to allInfo, noPhone or nameOnly.

Furthermore, the member function the pointer points to will be known by the time the PersonData

object is constructed and so its value needs to be determined only once (at the PersonData object’s

construction time).

Having initialized d_infoPtr the personInfo member function is now implemented simply as:

string PersonData::personInfo(char const *name)

{

Person *p = lookup(name); // see if ‘name’ exists

return p ? (this->*d_infoPtr)(p) : "not found";

}

The member d_infoPtr is defined as follows (within the class PersonData, omitting other mem-

bers):

class PersonData

16.4. POINTERS TO STATIC MEMBERS 431

{

string (PersonData::*d_infoPtr)(Person *p);

};

Finally, the constructor initializes d_infoPtr. This could be realized using a simple switch:

PersonData::PersonData(PersonData::EmployeeCategory cat)

:

switch (cat)

{

case BOARD:

case SUPERVISOR:

d_infoPtr = &PersonData::allInfo;

break;

case SALESPERSON:

d_infoPtr = &PersonData::noPhone;

break;

case CLERK:

d_infoPtr = &PersonData::nameOnly;

break;

}

}

Note how addresses of member functions are determined. The class PersonData scope must be

specified, even though we’re already inside a member function of the class PersonData.

An example using pointers to data members is provided in section 19.1.60, in the context of the

stable_sort generic algorithm.

16.4 Pointers to static members

Static members of a class can be used without having available an object of their class. Public static

members can be called like free functions, albeit that their class names must be specified when they

are called.

Assume a class String has a public static member function count, returning the number of string

objects created so far. Then, without using any String object the function String::count may be

called:

void fun()

{

cout << String::count() << ’\n’;

}

Public static members can be called like free functions (but see also section 8.2.1). Private static

members can only be called within the context of their class, by their class’s member or friend

functions.

Since static members have no associated objects their addresses can be stored in ordinary func-

tion pointer variables, operating at the global level. Pointers to members cannot be used to store

addresses of static members. Example:

432 CHAPTER 16. CLASSES HAVING POINTERS TO MEMBERS

void fun()

{

size_t (*pf)() = String::count;

// initialize pf with the address of a static member function

cout << (*pf)() << ’\n’;

// displays the value returned by String::count()

}

16.5 Pointer sizes

An interesting characteristic of pointers to members is that their sizes differ from those of ‘normal’

pointers. Consider the following little program:

#include <string>

#include <iostream>

class X

{

public:

void fun();

std::string d_str;

};

inline void X::fun()

{

std::cout << "hello\n";

}

using namespace std;

int main()

{

cout <<

"size of pointer to data-member: " << sizeof(&X::d_str) << "\n"

"size of pointer to member function: " << sizeof(&X::fun) << "\n"

"size of pointer to non-member data: " << sizeof(char *) << "\n"

"size of pointer to free function: " << sizeof(&printf) << ’\n’;

}

/*
generated output (on 32-bit architectures):

size of pointer to data-member: 4

size of pointer to member function: 8

size of pointer to non-member data: 4

size of pointer to free function: 4

*/

On a 32-bit architecture a pointer to a member function requires eight bytes, whereas other kind of

pointers require four bytes (Using Gnu’s g++ compiler).

Pointer sizes are hardly ever explicitly used, but their sizes may cause confusion in statements like:

16.5. POINTER SIZES 433

printf("%p", &X::fun);

Of course, printf is likely not the right tool to produce the value of these C++ specific pointers.

The values of these pointers can be inserted into streams when a union, reinterpreting the 8-byte

pointers as a series of size_t char values, is used:

#include <string>

#include <iostream>

#include <iomanip>

class X

{

public:

void fun();

std::string d_str;

};

inline void X::fun()

{

std::cout << "hello\n";

}

using namespace std;

int main()

{

union

{

void (X::*f)();

unsigned char *cp;

}

u = { &X::fun };

cout.fill(’0’);

cout << hex;

for (unsigned idx = sizeof(void (X::*)()); idx-- > 0;)

cout << setw(2) << static_cast<unsigned>(u.cp[idx]);

cout << ’\n’;

}

434 CHAPTER 16. CLASSES HAVING POINTERS TO MEMBERS

Chapter 17

Nested Classes

Classes can be defined inside other classes. Classes that are defined inside other classes are called

nested classes. Nested classes are used in situations where the nested class has a close conceptual re-

lationship to its surrounding class. For example, with the class string a type string::iterator

is available which provides all characters that are stored in the string. This string::iterator

type could be defined as an object iterator, defined as nested class in the class string.

A class can be nested in every part of the surrounding class: in the public, protected or private

section. Such a nested class can be considered a member of the surrounding class. The normal ac-

cess and rules in classes apply to nested classes. If a class is nested in the public section of a

class, it is visible outside the surrounding class. If it is nested in the protected section it is visible

in subclasses, derived from the surrounding class, if it is nested in the private section, it is only

visible for the members of the surrounding class.

The surrounding class has no special privileges towards the nested class. The nested class has full

control over the accessibility of its members by the surrounding class. For example, consider the

following class definition:

class Surround

{

public:

class FirstWithin

{

int d_variable;

public:

FirstWithin();

int var() const;

};

private:

class SecondWithin

{

int d_variable;

public:

SecondWithin();

int var() const;

};

};

435

436 CHAPTER 17. NESTED CLASSES

inline int Surround::FirstWithin::var() const

{

return d_variable;

}

inline int Surround::SecondWithin::var() const

{

return d_variable;

}

Here access to the members is defined as follows:

• The class FirstWithin is visible outside and inside Surround. The class FirstWithin thus

has global visibility.

• FirstWithin’s constructor and its member function var are also globally visible.

• The data member d_variable is only visible to the members of the class FirstWithin.

Neither the members of Surround nor the members of SecondWithin can directly access

FirstWithin::d_variable.

• The class SecondWithin is only visible inside Surround. The public members of the class

SecondWithin can also be used by the members of the class FirstWithin, as nested classes

can be considered members of their surrounding class.

• SecondWithin’s constructor and its member function var also can only be reached by the

members of Surround (and by the members of its nested classes).

• SecondWithin::d_variable is only visible to SecondWithin’s members. Neither the mem-

bers of Surround nor the members of FirstWithin can access d_variable of the class

SecondWithin directly.

• As always, an object of the class type is required before its members can be called. This also

holds true for nested classes.

To grant the surrounding class access rights to the private members of its nested classes or to grant

nested classes access rights to the private members of the surrounding class, the classes can be

defined as friend classes (see section 17.3).

Nested classes can be considered members of the surrounding class, but members of nested classes

are not members of the surrounding class. So, a member of the class Surround may not access

FirstWithin::var directly. This is understandable considering that a Surround object is not

also a FirstWithin or SecondWithin object. In fact, nested classes are just typenames. It is not

implied that objects of such classes automatically exist in the surrounding class. If a member of

the surrounding class should use a (non-static) member of a nested class then the surrounding class

must define a nested class object, which can thereupon be used by the members of the surrounding

class to use members of the nested class.

For example, in the following class definition there is a surrounding class Outer and a nested class

Inner. The class Outer contains a member function caller. The member function caller uses

the d_inner object that is composed within Outer to call Inner::infunction:

class Outer

{

public:

void caller();

17.1. DEFINING NESTED CLASS MEMBERS 437

private:

class Inner

{

public:

void infunction();

};

Inner d_inner; // class Inner must be known

};

void Outer::caller()

{

d_inner.infunction();

}

Inner::infunction can be called as part of the inline definition of Outer::caller, even though

the definition of the class Inner is yet to be seen by the compiler. On the other hand, the compiler

must have seen the definition of the class Inner before a data member of that class can be defined.

17.1 Defining nested class members

Member functions of nested classes may be defined as inline functions. Inline member functions

can be defined as if they were defined outside of the class definition. To define the member function

Outer::caller outside of the class Outer, the function’s fully qualified name (starting from the

outermost class scope (Outer)) must be provided to the compiler. Inline and in-class functions can

be defined accordingly. They can be defined and they can use any nested class. Even if the nested

class’s definition appears later in the outer class’s interface.

When (nested) member functions are defined inline, their definitions should be put below their class

interface. Static nested data members are also usually defined outside of their classes. If the class

FirstWithinwould have had a static size_t datamember epoch, it could have been initialized

as follows:

size_t Surround::FirstWithin::epoch = 1970;

Furthermore, multiple scope resolution operators are needed to refer to public static members in

code outside of the surrounding class:

void showEpoch()

{

cout << Surround::FirstWithin::epoch;

}

Within the class Surround only the FirstWithin:: scope must be used; within the class FirstWithin

there is no need to refer explicitly to the scope.

What about the members of the class SecondWithin? The classes FirstWithin and SecondWithin

are both nested within Surround, and can be considered members of the surrounding class. Since

members of a class may directly refer to each other, members of the class SecondWithin can refer

to (public) members of the class FirstWithin. Consequently, members of the class SecondWithin

could refer to the epoch member of FirstWithin as FirstWithin::epoch.

438 CHAPTER 17. NESTED CLASSES

17.2 Declaring nested classes

Nested classes may be declared before they are actually defined in a surrounding class. Such forward

declarations are required if a class contains multiple nested classes, and the nested classes contain

pointers, references, parameters or return values to objects of the other nested classes.

For example, the following class Outer contains two nested classes Inner1 and Inner2. The class

Inner1 contains a pointer to Inner2 objects, and Inner2 contains a pointer to Inner1 objects.

Cross references require forward declarations. Forward declarations must be given an access speci-

fication that is identical to the access specification of their definitions. In the following example the

Inner2 forward declaration must be given in a private section, as its definition is also part of the

class Outer’s private interface:

class Outer

{

private:

class Inner2; // forward declaration

class Inner1

{

Inner2 *pi2; // points to Inner2 objects

};

class Inner2

{

Inner1 *pi1; // points to Inner1 objects

};

};

17.3 Accessing private members in nested classes

To grant nested classes access rights to the private members of other nested classes, or to grant a

surrounding class access to the private members of its nested classes the friend keyword must be

used.

Note that no friend declaration is required to grant a nested class access to the private members of

its surrounding class. After all, a nested class is a type defined by its surrounding class and as such

objects of the nested class are members of the outer class and thus can access all the outer class’s

members. Here is an example showing this principle. The example won’t compile as members of

the class Extern are denied access to Outer’s private members, but Outer::Inner’s members can

access Outer’s private memebrs:

class Outer

{

int d_value;

static int s_value;

public:

Outer()

:

d_value(12)

{}

class Inner

17.3. ACCESSING PRIVATE MEMBERS IN NESTED CLASSES 439

{

public:

Inner()

{

cout << "Outer’s static value: " << s_value << ’\n’;

}

Inner(Outer &outer)

{

cout << "Outer’s value: " << outer.d_value << ’\n’;

}

};

};

class Extern // won’t compile!

{

public:

Extern(Outer &outer)

{

cout << "Outer’s value: " << outer.d_value << ’\n’;

}

Extern()

{

cout << "Outer’s static value: " << Outer::s_value << ’\n’;

}

};

int Outer::s_value = 123;

int main()

{

Outer outer;

Outer::Inner in1;

Outer::Inner in2(outer);

}

Now consider the situation where a class Surround has two nested classes FirstWithin and

SecondWithin. Each of the three classes has a static data member int s_variable:

class Surround

{

static int s_variable;

public:

class FirstWithin

{

static int s_variable;

public:

int value();

};

int value();

private:

class SecondWithin

{

static int s_variable;

public:

int value();

440 CHAPTER 17. NESTED CLASSES

};

};

If the class Surround should be able to access FirstWithin and SecondWithin’s private members,

these latter two classes must declare Surround to be their friend. The function Surround::value

can thereupon access the private members of its nested classes. For example (note the friend

declarations in the two nested classes):

class Surround

{

static int s_variable;

public:

class FirstWithin

{

friend class Surround;

static int s_variable;

public:

int value();

};

int value();

private:

class SecondWithin

{

friend class Surround;

static int s_variable;

public:

int value();

};

};

inline int Surround::FirstWithin::value()

{

FirstWithin::s_variable = SecondWithin::s_variable;

return (s_variable);

}

Friend declarations may be provided beyond the definition of the entity that is to be considered a

friend. So a class can be declared a friend beyond its definition. In that situation in-class code may

already use the fact that it is going to be declared a friend by the upcoming class.

Note that members named identically in outer and inner classes (e.g., ‘s_variable’) may be ac-

cessed using the proper scope resolution expressions, as illustrated below:

class Surround

{

static int s_variable;

public:

class FirstWithin

{

friend class Surround;

static int s_variable; // identically named

public:

int value();

};

int value();

17.3. ACCESSING PRIVATE MEMBERS IN NESTED CLASSES 441

private:

class SecondWithin

{

friend class Surround;

static int s_variable; // identically named

public:

int value();

};

static void classMember();

};

inline int Surround::value()

{ // scope resolution expression

FirstWithin::s_variable = SecondWithin::s_variable;

return s_variable;

}

inline int Surround::FirstWithin::value()

{

Surround::s_variable = 4; // scope resolution expressions

Surround::classMember();

return s_variable;

}

inline int Surround::SecondWithin::value()

{

Surround::s_variable = 40; // scope resolution expression

return s_variable;

}

Nested classes aren’t automatically each other’s friends. Here friend declarations must be applied

to grant one nested classes access to another one’s private members. To grant FirstWithin access

to SecondWithin’s private members a friend declaration in SecondWithin is required. But to

grant SecondWithin access to FirstWithin’s private members the class FirstWithin cannot

simply use friend class SecondWithin, as SecondWithin’s definition is as yet unknown.

Now a forward declaration of SecondWithin is required. This forward declaration must be provided

by the class Surround, rather than by the class FirstWithin. It makes no sense to specify a

forward declaration like ‘class SecondWithin;’ in the class FirstWithin itself, as this would

refer to an external (global) class SecondWithin. SecondWithin’s forward declaration can also

not be specified inside FirstWithin as ‘class Surround::SecondWithin;’. This attempt would

generate the following error message:

‘Surround’ does not have a nested type named ‘SecondWithin’

Instead of providing a forward declaration for SecondWithin inside the nested classes the class

SecondWithin must be declared by the class Surround, before the class FirstWithin has been

defined. This way SecondWithin’s friend declaration is accepted inside FirstWithin. Here is an

example in which all classes have full access to all private members of all involved classes:

class Surround

{

// class SecondWithin; not required: friend declarations (see

// below) double as forward declarations

static int s_variable;

442 CHAPTER 17. NESTED CLASSES

public:

class FirstWithin

{

friend class Surround;

friend class SecondWithin;

static int s_variable;

public:

int value();

};

int value(); // implementation given above

private:

class SecondWithin

{

friend class Surround;

friend class FirstWithin;

static int s_variable;

public:

int value();

};

};

inline int Surround::FirstWithin::value()

{

Surround::s_variable = SecondWithin::s_variable;

return s_variable;

}

inline int Surround::SecondWithin::value()

{

Surround::s_variable = FirstWithin::s_variable;

return s_variable;

}

17.4 Nesting enumerations

Enumerations may also be nested in classes. Nesting enumerations is a good way to show the close

connection between the enumeration and its class. Nested enumerations have the same controlled

visibility as other class members. They may be defined in the private, protected or public sections

of classes and are inherited by derived classes. In the class ios we’ve seen values like ios::beg

and ios::cur. In the current Gnu C++ implementation these values are defined as values of the

seek_dir enumeration:

class ios: public _ios_fields

{

public:

enum seek_dir

{

beg,

cur,

end

};

};

17.4. NESTING ENUMERATIONS 443

As an illustration assume that a class DataStructure represents a data structure that may be

traversed in a forward or backward direction. Such a class can define an enumeration Traversal

having the values FORWARD and BACKWARD. Furthermore, a member function setTraversal can be

defined requiring a Traversal type of argument. The class can be defined as follows:

class DataStructure

{

public:

enum Traversal

{

FORWARD,

BACKWARD

};

setTraversal(Traversal mode);

private:

Traversal

d_mode;

};

Within the class DataStructure the values of the Traversal enumeration can be used directly.

For example:

void DataStructure::setTraversal(Traversal mode)

{

d_mode = mode;

switch (d_mode)

{

FORWARD:

// ... do something

break;

BACKWARD:

// ... do something else

break;

}

}

Ouside of the class DataStructure the name of the enumeration type is not used to refer to the

values of the enumeration. Here the classname is sufficient. Only if a variable of the enumeration

type is required the name of the enumeration type is needed, as illustrated by the following piece of

code:

void fun()

{

DataStructure::Traversal // enum typename required

localMode = DataStructure::FORWARD; // enum typename not required

DataStructure ds;

// enum typename not required

ds.setTraversal(DataStructure::BACKWARD);

}

Only if DataStructure defines a nested class Nested, in turn defining the enumeration Traversal,

the two class scopes are required. In that case the latter example should have been coded as follows:

444 CHAPTER 17. NESTED CLASSES

void fun()

{

DataStructure::Nested::Traversal

localMode = DataStructure::Nested::FORWARD;

DataStructure ds;

ds.setTraversal(DataStructure::Nested::BACKWARD);

}

17.4.1 Empty enumerations

Enum types usually define symbolic values. However, this is not required. In section 14.6.1 the

std::bad_cast type was introduced. A bad_cast is thrown by the dynamic_cast<> operator

when a reference to a base class object cannot be cast to a derived class reference. The bad_cast

could be caught as type, irrespective of any value it might represent.

Types may be defined without any associated values. An empty enum can be defined which is an

enum not defining any values. The empty enum’s type name may thereupon be used as a legitimate

type in, e.g. a catch clause.

The example shows how an empty enum is defined (often, but not necessarily within a class) and

how it may be thrown (and caught) as exceptions:

#include <iostream>

enum EmptyEnum

{};

int main()

try

{

throw EmptyEnum();

}

catch (EmptyEnum)

{

std::cout << "Caught empty enum\n";

}

17.5 Revisiting virtual constructors

In section 14.12 the notion of virtual constructors was introduced. In that section a class Base was

defined as an abstract base class. A class Clonable was defined to manage Base class pointers in

containers like vectors.

As the class Base is a minute class, hardly requiring any implementation, it can very well be defined

as a nested class in Clonable. This emphasizes the close relationship between Clonable and Base.

Nesting Base under Clonable changes

class Derived: public Base

17.5. REVISITING VIRTUAL CONSTRUCTORS 445

into:

class Derived: public Clonable::Base

Apart from defining Base as a nested class and deriving from Clonable::Base rather than from

Base (and providing Base members with the proper Clonable:: prefix to complete their fully

qualified names), no further modifications are required. Here are the modified parts of the program

shown earlier (cf. section 14.12), now using Base nested under Clonable:

// Clonable and nested Base, including their inline members:

class Clonable

{

public:

class Base;

private:

Base *d_bp;

public:

class Base

{

public:

virtual ~Base();

Base *clone() const;

private:

virtual Base *newCopy() const = 0;

};

Clonable();

explicit Clonable(Base *base);

~Clonable();

Clonable(Clonable const &other);

Clonable(Clonable &&tmp);

Clonable &operator=(Clonable const &other);

Clonable &operator=(Clonable &&tmp);

Base &base() const;

};

inline Clonable::Base *Clonable::Base::clone() const

{

return newCopy();

}

inline Clonable::Base &Clonable::base() const

{

return *d_bp;

}

// Derived and its inline member:

class Derived1: public Clonable::Base

{

public:

~Derived1();

private:

virtual Clonable::Base *newCopy() const;

};

inline Clonable::Base *Derived1::newCopy() const

{

446 CHAPTER 17. NESTED CLASSES

return new Derived1(*this);

}

// Members not implemented inline:

Clonable::Base::~Base()

{}

Chapter 18

The Standard Template Library

The Standard Template Library (STL) is a general purpose library consisting of containers,

generic algorithms, iterators, function objects, allocators, adaptors and data structures. The data

structures used by the algorithms are abstract in the sense that the algorithms can be used with

(practically) any data type.

The algorithms can process these abstract data types because they are template based. This chapter

does not cover template construction (see chapter 20 for that). Rather, it focuses on the use of the

algorithms.

Several elements also used by the standard template library have already been discussed in the C++

Annotations. In chapter 12 abstract containers were discussed, and in section 11.10 function objects

were introduced. Also, iterators were mentioned at several places in this document.

The main components of the STL are covered in this and the next chapter. Iterators, adaptors, smart

pointers, multi threading and other features of the STL are discussed in coming sections. Generic

algorithms are covered in the next chapter (19).

Allocators take care of the memory allocation within the STL. The default allocator class suffices for

most applications, and is not further discussed in the C++ Annotations.

All elements of the STL are defined in the standard namespace. Therefore, a using namespace

std or a comparable directive is required unless it is preferred to specify the required namespace

explicitly. In header files the std namespace should explicitly be used (cf. section 7.11.1).

In this chapter the empty angle bracket notation is frequently used. In code a typename must be

supplied between the angle brackets. E.g., plus<> is used in the C++ Annotations, but in code

plus<string> may be encountered.

18.1 Predefined function objects

Before using the predefined function objects presented in this section the <functional> header file

must have been included.

Function objects play important roles in generic algorithms. For example, there exists a generic

algorithm sort expecting two iterators defining the range of objects that should be sorted, as well

as a function object calling the appropriate comparison operator for two objects. Let’s take a quick

look at this situation. Assume strings are stored in a vector, and we want to sort the vector in

447

448 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

descending order. In that case, sorting the vector stringVec is as simple as:

sort(stringVec.begin(), stringVec.end(), greater<string>());

The last argument is recognized as a constructor: it is an instantiation of the greater<> class tem-

plate, applied to strings. This object is called as a function object by the sort generic algorithm.

The generic algorithm calls the function object’s operator() member to compare two string ob-

jects. The function object’s operator() will, in turn, call operator> of the string data type.

Eventually, when sort returns, the first element of the vector will contain the string having the

greatest string value of all.

The function object’s operator() itself is not visible at this point. Don’t confuse the parenthe-

ses in the ‘greater<string>()’ argument with calling operator(). When operator() is actu-

ally used inside sort, it receives two arguments: two strings to compare for ‘greaterness’. Since

greater<string>::operator() is defined inline, the call itself is not actually present in the

above sort call. Instead sort calls string::operator> through greater<string>::operator().

Now that we know that a constructor is passed as argument to (many) generic algorithms, we can

design our own function objects. Assume we want to sort our vector case-insensitively. How do

we proceed? First we note that the default string::operator< (for an incremental sort) is not

appropriate, as it does case sensitive comparisons. So, we provide our own CaseInsensitive class,

which compares two strings case insensitively. Using the POSIX function strcasecmp, the following

program performs the trick. It case-insensitively sorts its command-line arguments in ascending

alphabetic order:

#include <iostream>

#include <string>

#include <cstring>

#include <algorithm>

using namespace std;

class CaseInsensitive

{

public:

bool operator()(string const &left, string const &right) const

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

};

int main(int argc, char **argv)

{

sort(argv, argv + argc, CaseInsensitive());

for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";

cout << ’\n’;

}

The default constructor of the class CaseInsensitive is used to provide sort with its final

argument. So the only member function that must be defined is CaseInsensitive::operator().

Since we know it’s called with string arguments, we define it to expect two string arguments,

which are used when calling strcasecmp. Furthermore, operator() function is defined inline, so

that it does not produce overhead when called by the sort function. The sort function calls the

function object with various combinations of strings. If the compiler grants our inline requests, it

will in fact call strcasecmp, skipping two extra function calls.

18.1. PREDEFINED FUNCTION OBJECTS 449

The comparison function object is often a predefined function object. Predefined function object

classes are available for many commonly used operations. In the following sections the available

predefined function objects are presented, together with some examples showing their use. Near the

end of the section about function objects function adaptors are introduced.

Predefined function objects are used predominantly with generic algorithms. Predefined function

objects exists for arithmetic, relational, and logical operations. In section 23.3 predefined function

objects are developed performing bitwise operations.

18.1.1 Arithmetic function objects

The arithmetic function objects support the standard arithmetic operations: addition, subtraction,

multiplication, division, modulo and negation. These function objects invoke the corresponding oper-

ators of the data types for which they are instantiated. For example, for addition the function object

plus<Type> is available. If we replace Type by size_t then the addition operator for size_t

values is used, if we replace Type by string, the addition operator for strings is used. For example:

#include <iostream>

#include <string>

#include <functional>

using namespace std;

int main(int argc, char **argv)

{

plus<size_t> uAdd; // function object to add size_ts

cout << "3 + 5 = " << uAdd(3, 5) << ’\n’;

plus<string> sAdd; // function object to add strings

cout << "argv[0] + argv[1] = " << sAdd(argv[0], argv[1]) << ’\n’;

}

/*
Output when called as: a.out going

3 + 5 = 8

argv[0] + argv[1] = a.outgoing

*/

Why is this useful? Note that the function object can be used with all kinds of data types (not only

with the predefined datatypes) supporting the operator called by the function object.

Suppose we want to perform an operation on a left hand side operand which is always the same

variable and a right hand side argument for which, in turn, all elements of an array should be used.

E.g., we want to compute the sum of all elements in an array; or we want to concatenate all the

strings in a text-array. In situations like these function objects come in handy.

As stated, function objects are heavily used in the context of the generic algorithms, so let’s take a

quick look ahead at yet another one.

The generic algorithm accumulate visits all elements specified by an iterator-range, and performs

a requested binary operation on a common element and each of the elements in the range, returning

the accumulated result after visiting all elements specified by the iterator range. It’s easy to use this

algorithm. The next program accumulates all command line arguments and prints the final string:

450 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

#include <iostream>

#include <string>

#include <functional>

#include <numeric>

using namespace std;

int main(int argc, char **argv)

{

string result =

accumulate(argv, argv + argc, string(), plus<string>());

cout << "All concatenated arguments: " << result << ’\n’;

}

The first two arguments define the (iterator) range of elements to visit, the third argument is

string. This anonymous string object provides an initial value. We could also have used

string("All concatenated arguments: ")

in which case the cout statement could simply have been cout « result « ’\n’. The string-

addition operation is used, called from plus<string>. The final concatenated string is returned.

Now we define a class Time, overloading operator+. Again, we can apply the predefined function

object plus, now tailored to our newly defined datatype, to add times:

#include <iostream>

#include <string>

#include <vector>

#include <functional>

#include <numeric>

using namespace std;

class Time

{

friend ostream &operator<<(ostream &str, Time const &time);

size_t d_days;

size_t d_hours;

size_t d_minutes;

size_t d_seconds;

public:

Time(size_t hours, size_t minutes, size_t seconds);

Time &operator+=(Time const &rValue);

};

Time operator+(Time const &lValue, Time const &rValue)

{

Time ret(lValue);

ret += rValue;

return ret;

}

Time::Time(size_t hours, size_t minutes, size_t seconds)

:

d_days(0),

d_hours(hours),

d_minutes(minutes),

18.1. PREDEFINED FUNCTION OBJECTS 451

d_seconds(seconds)

{}

Time &Time::operator+=(Time const &rValue)

{

d_seconds += rValue.d_seconds;

d_minutes += rValue.d_minutes + d_seconds / 60;

d_hours += rValue.d_hours + d_minutes / 60;

d_days += rValue.d_days + d_hours / 24;

d_seconds %= 60;

d_minutes %= 60;

d_hours %= 24;

return *this;

}

ostream &operator<<(ostream &str, Time const &time)

{

return cout << time.d_days << " days, " << time.d_hours <<

" hours, " <<

time.d_minutes << " minutes and " <<

time.d_seconds << " seconds.";

}

int main(int argc, char **argv)

{

vector<Time> tvector;

tvector.push_back(Time(1, 10, 20));

tvector.push_back(Time(10, 30, 40));

tvector.push_back(Time(20, 50, 0));

tvector.push_back(Time(30, 20, 30));

cout <<

accumulate

(

tvector.begin(), tvector.end(), Time(0, 0, 0), plus<Time>()

) <<

’\n’;

}

// Displays: 2 days, 14 hours, 51 minutes and 30 seconds.

The design of the above program is fairly straightforward. Time defines a constructor, it defines

an insertion operator and it defines its own operator+, adding two time objects. In main four

Time objects are stored in a vector<Time> object. Then, accumulate is used to compute the

accumulated time. It returns a Time object, which is inserted into cout.

While the first example did show the use of a named function object, the last two examples showed

the use of anonymous objects that were passed to the (accumulate) function.

The STL supports the following set of arithmetic function objects. The function call operator (operator())

of these function objects calls the matching arithmetic operator for the objects that are passed to the

function call operator, returning that arithmetic operator’s return value. The arithmetic operator

that is actually called is mentioned below:

• plus<>: calls the binary operator+;

• minus<>: calls the binary operator-;

• multiplies<>: calls the binary operator*;

452 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

• divides<>: calls operator/;

• modulus<>: calls operator%;

• negate<>: calls the unary operator-. This arithmetic function object is a unary function

object as it expects one argument.

In the next example the transform generic algorithm is used to toggle the signs of all elements

of an array. Transform expects two iterators, defining the range of objects to be transformed; an

iterator defining the begin of the destination range (which may be the same iterator as the first

argument); and a function object defining a unary operation for the indicated data type.

#include <iostream>

#include <string>

#include <functional>

#include <algorithm>

using namespace std;

int main(int argc, char **argv)

{

int iArr[] = { 1, -2, 3, -4, 5, -6 };

transform(iArr, iArr + 6, iArr, negate<int>());

for (int idx = 0; idx < 6; ++idx)

cout << iArr[idx] << ", ";

cout << ’\n’;

}

// Displays: -1, 2, -3, 4, -5, 6,

18.1.2 Relational function objects

The relational operators are called by the relational function objects. All standard relational oper-

ators are supported: ==, !=, >, >=, < and <=.

The STL supports the following set of relational function objects. The function call operator (operator())

of these function objects calls the matching relational operator for the objects that are passed to the

function call operator, returning that relational operator’s return value. The relational operator that

is actually called is mentioned below:

• equal_to<>: calls operator==;

• not_equal_to<>: calls operator!=;

• greater<>: calls operator>;

• greater_equal<>: calls operator>=;

• less<>: this object’s operator() member calls operator<;

• less_equal<>: calls operator<=.

An example using the relational function objects in combination with sort is:

#include <iostream>

18.1. PREDEFINED FUNCTION OBJECTS 453

#include <string>

#include <functional>

#include <algorithm>

using namespace std;

int main(int argc, char **argv)

{

sort(argv, argv + argc, greater_equal<string>());

for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";

cout << ’\n’;

sort(argv, argv + argc, less<string>());

for (int idx = 0; idx < argc; ++idx)

cout << argv[idx] << " ";

cout << ’\n’;

}

The example illustrates how strings may be sorted alphabetically and reversed alphabetically. By

passing greater_equal<string> the strings are sorted in decreasing order (the first word will be

the ’greatest’), by passing less<string> the strings are sorted in increasing order (the first word

will be the ’smallest’).

Note that argv contains char * values, and that the relational function object expects a string.

The promotion from char const * to string is silently performed.

18.1.3 Logical function objects

The logical operators are called by the logical function objects. The standard logical operators are

supported: and, or, and not.

The STL supports the following set of logical function objects. The function call operator (operator())

of these function objects calls the matching logical operator for the objects that are passed to the

function call operator, returning that logical operator’s return value. The logical operator that is

actually called is mentioned below:

• logical_and<>: calls operator&&;

• logical_or<>: calls operator||;

• logical_not<>: calls operator!.

An example using operator! is provided in the following trivial program, using transform to

transform the logicalvalues stored in an array:

#include <iostream>

#include <string>

#include <functional>

#include <algorithm>

using namespace std;

454 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

int main(int argc, char **argv)

{

bool bArr[] = {true, true, true, false, false, false};

size_t const bArrSize = sizeof(bArr) / sizeof(bool);

for (size_t idx = 0; idx < bArrSize; ++idx)

cout << bArr[idx] << " ";

cout << ’\n’;

transform(bArr, bArr + bArrSize, bArr, logical_not<bool>());

for (size_t idx = 0; idx < bArrSize; ++idx)

cout << bArr[idx] << " ";

cout << ’\n’;

}

/*
Displays:

1 1 1 0 0 0

0 0 0 1 1 1

*/

18.1.4 Function adaptors

Function adaptors modify the working of existing function objects. The STL offers three kinds of

function adaptors: binders, negators and member function wrappers. Binders and negators are

described in the next two subsections; member function adaptors are covered in section 19.2 of the

next chapter, which is a more natural point of coverage than the current chapter.

18.1.4.1 Binders

Binders are function adaptors converting binary function objects to unary function objects. They

do so by binding one parameter of a binary function object to a constant value. For example, the

first parameter of the minus<int> function object may be bound to 100, meaning that the resulting

value is always equal to 100 minus the value of the function object’s second argument.

Either the first or the second parameter may be bound to a specific value. To bind the constant

value to the function object’s first parameter the function adaptor bind1st is used. To bind the

constant value to the function object’s second parameter the function adaptor bind2nd is used. As

an example, assume we want to count all elements of a vector of string objects that occur later in

the alphabetical ordering than some reference string.

The count_if generic algorithm is the algorithm of choice for solving these kinds of problems. It

expects the usual iterator range and a function object. However, instead of providing it with a

function object it is provided with the bind2nd adaptor which in turn is initialized with a relational

function object (greater<string>) and a reference string against which all strings in the iterator

range are compared. Here is the required bind2nd specification:

bind2nd(greater<string>(), referenceString)

Here is what this binder does:

18.1. PREDEFINED FUNCTION OBJECTS 455

• To begin with, an adaptor (and so a binder) is a function object, so it defines operator(). In

this case the binder function object is a unary function object.

• The binder’s operator() receives each of the strings referred to by the iterator range in turn.

• Next it passes these strings and the binder’s second argument (the reference object) to the (bi-

nary) operator() defined by the function object that is passed as the binder’s first argument.

• It returns the return value of that latter function object

Although binders are defined as templates, it is illustrative to have a look at their implementa-

tions, assuming they were ordinary classes. Here is such a pseudo-implementation of the bind2nd

function adaptor:

class bind2nd

{

FunctionObject d_object;

Operand const &d_operand;

public:

bind2nd(FunctionObject const &object, Operand const &operand);

ReturnType operator()(Operand const &lvalue);

};

inline bind2nd::bind2nd(FunctionObject const &object,

Operand const &operand)

:

d_object(object),

d_operand(operand)

{}

inline ReturnType bind2nd::operator()(Operand const &lvalue)

{

return d_object(lvalue, d_operand);

}

The binder’s operator() merely calls the function object’s operator(), providing it with two ar-

guments. It uses its parameter as the (latter) operator()’s first argument and it uses d_operand

as operator()’s second argument. The adaptor’s members are typically very small so they are

usually implemented inline.

The above application of the bind2nd adaptor has another important characteristic. Its return type

is identical to the return type of the function object that it receives as its first argument, which is

bool. Functions returning bool values are also called predicate functions. In the above application

the bind2nd adaptor therefore becomes a predicate function itself.

The count_if generic algorithm visits all the elements in an iterator range, returning the number

of times the predicate specified as its final argument returns true. Each of the elements of the

iterator range is passed to this predicate, which is therefore a unary predicate. Through the binder

the binary function object greater<> is adapted to a unary function object, that now compares each

of the elements referred to by the iterator range to the reference string. Eventually, the count_if

function is called like this:

count_if(stringVector.begin(), stringVector.end(),

bind2nd(greater<string>(), referenceString));

456 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

18.1.4.2 Negators

Negators are function adaptors converting the values returned by predicate function. Since there

are unary and binary predicate functions, two negator function adaptors were predefined: not1 is

the negator to use with unary predicates, not2 is the negator to with binary function objects.

Example: to count the number of persons in a vector<string> vector ordered alphabetically before

(i.e., not exceeding) a certain reference text one of the following alternatives could be used:

• a binary predicate that directly offers the required comparison:

count_if(stringVector.begin(), stringVector.end(),

bind2nd(less_equal<string>(), referenceText))

• not2 in combination with the greater<> predicate:

count_if(stringVector.begin(), stringVector.end(),

bind2nd(not2(greater<string>()), referenceText))

Here not2 is used as it negates the truth value of a binary operator(), in this case the

greater<string>::operator()member function.

• not1 in combination with the bind2nd predicate:

count_if(stringVector.begin(), stringVector.end(),

not1(bind2nd(greater<string>(), referenceText)))

Here not1 is used as it negates the truth value of a unary operator(), in this case the

bind2nd function adaptor.

The use of negators is illustrated by the following program:

#include <iostream>

#include <functional>

#include <algorithm>

#include <vector>

using namespace std;

int main(int argc, char **argv)

{

int iArr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

cout << count_if(iArr, iArr + 10, bind2nd(less_equal<int>(), 6)) <<

’ ’;

cout << count_if(iArr, iArr + 10, bind2nd(not2(greater<int>()), 6)) <<

’ ’;

cout << count_if(iArr, iArr + 10, not1(bind2nd(greater<int>(), 6))) <<

’\n’;

}

// Displays: 6 6 6

One may wonder which of these alternative approaches is the faster. Using the first approach, in

which a directly available function object was used, two actions must be performed for each iteration

by count_if:

• The binder’s operator() is called;

18.2. ITERATORS 457

• The operation <= is performed.

When the compiler uses inline as requested, only the second step is actually performed.

Using the second approach, using the not2 negator to negate the truth value of the complementary

logical function object, three actions must be performed for each iteration by count_if:

• The binder’s operator() is called;

• The negator’s operator() is called;

• The operation > is performed.

When the compiler uses inline as requested, only the third step is actually performed.

Using the third approach, using not1 negator to negate the truth value of the binder, three actions

must be performed for each iteration by count_if:

• The negator’s operator() is called;

• The binder’s operator() is called;

• The operation > is performed.

When the compiler uses inline as requested, only the third step is actually performed.

With a commonly used optimization flag like -O2 the compiler tries to grant inline requests. How-

ever, if the compiler ignores the inline requests the first variant will be faster.

18.2 Iterators

In addition to the conceptual iterator types presented in this section the STL defines several adap-

tors allowing objects to be passed as iterators. These adaptors are presented in the upcoming sec-

tions. Before those adaptors can be used the <iterator> header file must have been included.

Iterators are objects acting like pointers. Iterators have the following general characteristics:

• Two iterators may be compared for (in)equality using the == and != operators. The ordering

operators (e.g., >, <) can usually not be used.

• Given an iterator iter, *iter represents the object the iterator points to (alternatively, iter->

can be used to reach the members of the object the iterator points to).

• ++iter or iter++ advances the iterator to the next element. The notion of advancing an iter-

ator to the next element is consequently applied: several containers support reversed_iterator

types, in which the ++iter operation actually reaches a previous element in a sequence.

• Pointer arithmetic may be used with iterators of containers storing their elements consecu-

tively in memory like vector and deque. For such containers iter + 2 points to the second

element beyond the one to which iter points.

• Merely defining an iterator is comparable to having a 0-pointer. Example:

#include <vector>

458 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

#include <iostream>

using namespace std;

int main()

{

vector<int>::iterator vi;

cout << &*vi; // prints 0

}

STL containers usually define members offering iterators (i.e., they define their own type iterator).

These members are commonly called begin and end and (for reversed iterators (type reverse_iterator))

rbegin and rend.

Standard practice requires iterator ranges to be left inclusive. The notation [left, right) indi-

cates that left is an iterator pointing to the first element, while right is an iterator pointing just

beyond the last element. The iterator range is empty when left == right.

The following example shows how all elements of a vector of strings can be inserted into cout using

its iterator ranges [begin(), end()), and [rbegin(), rend()). Note that the for-loops for

both ranges are identical. Furthermore it nicely illustrates how the auto keyword can be used to

define the type of the loop control variable instead of using a much more verbose variable definition

like vector<string>::iterator (see also section 3.3.5):

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int main(int argc, char **argv)

{

vector<string> args(argv, argv + argc);

for (auto iter = args.begin(); iter != args.end(); ++iter)

cout << *iter << " ";

cout << ’\n’;

for (auto iter = args.rbegin(); iter != args.rend(); ++iter)

cout << *iter << " ";

cout << ’\n’;

}

Furthermore, the STL defines const_iterator types that must be used when visiting a series of ele-

ments in a constant container. Whereas the elements of the vector in the previous example could

have been altered, the elements of the vector in the next example are immutable, and const_iterators

are required:

#include <iostream>

#include <vector>

#include <string>

using namespace std;

int main(int argc, char **argv)

{

18.2. ITERATORS 459

vector<string> const args(argv, argv + argc);

for

(

vector<string>::const_iterator iter = args.begin();

iter != args.end();

++iter

)

cout << *iter << " ";

cout << ’\n’;

for

(

vector<string>::const_reverse_iterator iter = args.rbegin();

iter != args.rend();

++iter

)

cout << *iter << " ";

cout << ’\n’;

return 0;

}

The examples also illustrates that plain pointers can be used as iterators. The initialization vector<string>

args(argv, argv + argc) provides the args vector with a pair of pointer-based iterators: argv

points to the first element to initialize args with, argv + argc points just beyond the last element

to be used, ++argv reaches the next command line argument. This is a general pointer characteris-

tic, which is why they too can be used in situations where iterators are expected.

The STL defines five types of iterators. These iterator types are expected by generic algorithms, and

in order to create a particular type of iterator yourself it is important to know their characteristics.

In general, iterators (see also section 21.13) must define:

• operator==, testing two iterators for equality,

• operator!=, testing two iterators for inequality,

• operator++, incrementing the iterator, as prefix operator,

• operator*, to access the element the iterator refers to,

The following types of iterators are used when describing generic algorithms in chapter 19:

• InputIterators:

InputIterators are used to read from a container. The dereference operator is guaran-

teed to work as rvalue in expressions. Instead of an InputIterator it is also possible

to use (see below) Forward-, Bidirectional- or RandomAccessIterators. Notations like

InputIterator1 and InputIterator2 may be used as well. In these cases, num-

bers are used to indicate which iterators ‘belong together’. E.g., the generic algorithm

inner_product has the following prototype:

Type inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, Type init);

460 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

InputIterator1 first1 and InputIterator1 last1 define a pair of input it-

erators on one range, while InputIterator2 first2 defines the beginning of an-

other range. Analogous notations may be used with other iterator types.

• OutputIterators:

OutputIterators can be used to write to a container. The dereference operator is guar-

anteed to work as an lvalue in expressions, but not necessarily as rvalue. Instead

of an OutputIterator it is also possible to use (see below) Forward-, Bidirectional- or

RandomAccessIterators.

• ForwardIterators:

ForwardIterators combine InputIterators and OutputIterators. They can be used to

traverse containers in one direction, for reading and/or writing. Instead of a For-

wardIterator it is also possible to use (see below) Bidirectional- or RandomAccessIt-

erators.

• BidirectionalIterators:

BidirectionalIterators can be used to traverse containers in both directions, for read-

ing and writing. Instead of a BidirectionalIterator it is also possible to use (see below)

a RandomAccessIterator.

• RandomAccessIterators:

RandomAccessIterators provide random access to container elements. An algorithm

like sort requires a RandomAccessIterator, and can therefore not be used to sort the

elements of lists or maps, which only provide BidirectionalIterators.

The example given with the RandomAccessIterator illustrates how to relate iterators and generic

algorithms: look for the iterator that’s required by the (generic) algorithm, and then see whether

the datastructure supports the required type of iterator. If not, the algorithm cannot be used with

the particular datastructure.

18.2.1 Insert iterators

Generic algorithms often require a target container into which the results of the algorithm are

deposited. For example, the copy generic algorithm has three parameters. The first two define the

range of visited elements, the third defines the first position where the results of the copy operation

should be stored.

With the copy algorithm the number of elements to copy is usually available beforehand, since that

number can usually be provided by pointer arithmetic. However, situations exist where pointer

arithmetic cannot be used. Analogously, the number of resulting elements sometimes differs from

the number of elements in the initial range. The generic algorithm unique_copy is a case in point.

Here the number of elements that are copied to the destination container is normally not known

beforehand.

In situations like these an inserter adaptor function can often be used to create elements in the

destination container. There are three types of inserter adaptors:

• back_inserter: calls the container’s push_back member to add new elements at the end of

the container. E.g., to copy all elements of source in reversed order to the back of destination,

using the copy generic algorithm:

copy(source.rbegin(), source.rend(), back_inserter(destination));

18.2. ITERATORS 461

• front_inserter calls the container’s push_front member, adding new elements at the be-

ginning of the container. E.g., to copy all elements of source to the front of the destination

container (thereby also reversing the order of the elements):

copy(source.begin(), source.end(), front_inserter(destination));

• inserter calls the container’s insert member adding new elements starting at a specified

starting point. E.g., to copy all elements of source to the destination container, starting at

the beginning of destination, shifting up existing elements to beyond the newly inserted

elements:

copy(source.begin(), source.end(), inserter(destination,

destination.begin()));

The inserter adaptors require the existence of two typedefs:

• typedef Data value_type, where Data is the data type stored in the class offering push_back,

push_front or insert members (Example: typedef std::string value_type);

• typedef value_type const &const_reference

Concentrating on back_inserter, this iterator expects the name of a container supporting a mem-

ber push_back. The inserter’s operator() member calls the container’s push_back member. Ob-

jects of any class supporting a push_back member can be passed as arguments to back_inserter

provided the class adds

typedef DataType const &const_reference;

to its interface (where DataType const & is the type of the parameter of the class’s member

push_back). Example:

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

class Insertable

{

public:

typedef int value_type;

typedef int const &const_reference;

void push_back(int const &)

{}

};

int main()

{

int arr[] = {1};

Insertable insertable;

copy(arr, arr + 1, back_inserter(insertable));

}

462 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

18.2.2 Iterators for ‘istream’ objects

The istream_iterator<Type> can be used to define a set of iterators for istream objects. The

general form of the istream_iterator iterator is:

istream_iterator<Type> identifier(istream &in)

Here, Type is the type of the data elements read from the istream stream. It is used as the

‘begin’ iterator in an interator range. Type may be any type for which operator>> is defined in

combination with istream objects.

The default constructor is used as the end-iterator and corresponds to the end-of-stream. For exam-

ple,

istream_iterator<string> endOfStream;

The stream object that was specified when defining the begin-iterator is not mentioned with the

default constructor.

Using back_inserter and istream_iterator adaptors, all strings from a stream can easily be

stored in a container. Example (using anonymous istream_iterator adaptors):

#include <iostream>

#include <iterator>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;

int main()

{

vector<string> vs;

copy(istream_iterator<string>(cin), istream_iterator<string>(),

back_inserter(vs));

for

(

vector<string>::const_iterator begin = vs.begin(), end = vs.end();

begin != end; ++begin

)

cout << *begin << ’ ’;

cout << ’\n’;

}

18.2.2.1 Iterators for ‘istreambuf’ objects

Input iterators are also available for streambuf objects.

To read from streambuf objects supporting input operations istreambuf_iterators can be used,

supporting the operations that are also available for istream_iterator. Different from the latter

iterator type istreambuf_iterators support three constructors:

18.2. ITERATORS 463

• istreambuf_iterator<Type>:

The end iterator of an iterator range is created using the default istreambuf_iterator

constructor. It represents the end-of-stream condition when extracting values of type

Type from the streambuf.

• istreambuf_iterator<Type>(streambuf *):

A pointer to a streambuf may be used when defining an istreambuf_iterator.

It represents the begin iterator of an iterator range.

• istreambuf_iterator<Type>(istream):

An istream may be also used when defining an istreambuf_iterator. It accesses

the istream’s streambuf and it also represents the begin iterator of an iterator

range.

In section 18.2.3.1 an example is given using both istreambuf_iterators and ostreambuf_iterators.

18.2.3 Iterators for ‘ostream’ objects

An ostream_iterator<Type> adaptor can be used to pass an ostream to algorithms expecting

an OutputIterator. Two constructors are available for defining ostream_iterators:

ostream_iterator<Type> identifier(ostream &outStream);

ostream_iterator<Type> identifier(ostream &outStream, char const *delim);

Type is the type of the data elements that should be inserted into an ostream. It may be any type for

which operator<< is defined in combinations with ostream objects. The latter constructor can be

used to separate the individual Type data elements by delimiter strings. The former constructor

does not use any delimiters.

The example shows how istream_iterators and an ostream_iterator may be used to copy in-

formation of a file to another file. A subtlety here is that you probably want to use in.unsetf(ios::skipws).

It is used to clear the ios::skipws flag. As a consequence white space characters are simply re-

turned by the operator, and the file is copied character by character. Here is the program:

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

cin.unsetf(ios::skipws);

copy(istream_iterator<char>(cin), istream_iterator<char>(),

ostream_iterator<char>(cout));

}

18.2.3.1 Iterators for ‘ostreambuf’ objects

Output iterators are also available for streambuf objects.

464 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

To write to streambuf objects supporting output operations ostreambuf_iterators can be used,

supporting the operations that are also available for ostream_iterator. Ostreambuf_iterators

support two constructors:

• ostreambuf_iterator<Type>(streambuf *):

A pointer to a streambuf may be used when defining an ostreambuf_iterator.

It can be used as an OutputIterator.

• ostreambuf_iterator<Type>(ostream):

An ostream may be also used when defining an ostreambuf_iterator. It accesses

the ostream’s streambuf and it can also be used as an OutputIterator.

The next example illustrates the use of both istreambuf_iteratorsand ostreambuf_iterators

when copying a stream in yet another way. Since the stream’s streambufs are directly accessed the

streams and stream flags are bypassed. Consequently there is no need to clear ios::skipws as in

the previous section, while the next program’s efficiency probably also exceeds the efficiency of the

program shown in the previous section.

#include <iostream>

#include <algorithm>

#include <iterator>

using namespace std;

int main()

{

istreambuf_iterator<char> in(cin.rdbuf());

istreambuf_iterator<char> eof;

ostreambuf_iterator<char> out(cout.rdbuf());

copy(in, eof, out);

return 0;

}

18.3 The class ’unique_ptr’ (C++11)

Before using the unique_ptr class presented in this section the <memory> header file must have

been included.

When pointers are used to access dynamically allocated memory strict bookkeeping is required to

prevent memory leaks from happening. When a pointer variable referring to dynamically allocated

memory goes out of scope, the dynamically allocated memory becomes inaccessible and the program

suffers from a memory leak.

To prevent such memory leaks strict bookkeeping is required: the programmer has to make sure that

the dynamically allocated memory is returned to the common pool just before the pointer variable

goes out of scope.

When a pointer variable points to a dynamically allocated single value or object, bookkeeping re-

quirements are greatly simplified when the pointer variable is defined as a std::unique_ptr ob-

ject.

18.3. THE CLASS ’UNIQUE_PTR’ (C++11) 465

Unique_ptrs are objects masquerading as pointers. Since they are objects, their destructors are

called when they go out of scope. Their destructors automatically delete the dynamically allocated

memory.

Unique_ptrs have some special characteristics:

• when assigning a unique_ptr to another move semantics is used. If move semantics is not

available compilation fails. On the other hand, if compilation succeeds then the used containers

or generic algorithms support the use of unique_ptrs. Here is an example:

std::unique_ptr<int> up1(new int);

std::unique_ptr<int> up2(up1); // compilation error

The second definition fails to compile as unique_ptr’s copy constructor is private (the same

holds true for the assignment operator). But the unique_ptr class does offer facilities to

initialize and assign from rvalue references:

class unique_ptr // interface partially shown

{

public:

unique_ptr(unique_ptr &&other); // rvalues bind here

private:

unique_ptr(const unique_ptr &other);

};

In the next example move semantics is used and so it compiles correctly:

unique_ptr<int> cp(unique_ptr<int>(new int));

• a unique_ptr object should only point to memory that was made available dynamically, as

only dynamically allocated memory can be deleted.

• multiple unique_ptr objects should not be allowed to point to the same block of dynamically

allocated memory. The unique_ptr’s interface was designed to prevent this from happening.

Once a unique_ptr object goes out of scope, it deletes the memory it points to, immediately

changing any other object also pointing to the allocated memory into a wild pointer.

The class unique_ptr offers several member functions to access the pointer itself or to have a

unique_ptr point to another block of memory. These member functions (and unique_ptr con-

structors) are introduced in the next few sections.

A unique_ptr (as well as a shared_ptr, see section 18.4) can be used as a safe alternative to

the now deprecated auto_ptr. Unique_ptr also augments auto_ptr as it can be used with con-

tainers and (generic) algorithms as it adds customizable deleters. Arrays can also be handled by

unique_ptrs.

18.3.1 Defining ‘unique_ptr’ objects (C++11)

There are three ways to define unique_ptr objects. Each definition contains the usual <type>

specifier between angle brackets:

• The default constructor simply creates a unique_ptr object that does not point to a particular

block of memory. Its pointer is initialized to 0 (zero):

unique_ptr<type> identifier;

466 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

This form is discussed in section 18.3.2.

• The move constructor initializes an unique_ptr object. Following the use of the move con-

structor its unique_ptr argument no longer points to the dynamically allocated memory and

its pointer data member is turned into a zero-pointer:

unique_ptr<type> identifier(another unique_ptr for type);

This form is discussed in section 18.3.3.

• The form that is used most often initializes a unique_ptr object to the block of dynamically al-

located memory that is passed to the object’s constructor. Optionally deleter can be provided.

A (free) function (or function object) receiving the unique_ptr’s pointer as its argument can

be passed as deleter. It is supposed to return the dynamically allocated memory to the common

pool (doing nothing if the pointer equals zero).

unique_ptr<type> identifier (new-expression [, deleter]);

This form is discussed in section 18.3.4.

18.3.2 Creating a plain ‘unique_ptr’ (C++11)

Unique_ptr’s default constructor defines a unique_ptr not pointing to a particular block of mem-

ory:

unique_ptr<type> identifier;

The pointer controlled by the unique_ptr object is initialized to 0 (zero). Although the unique_ptr

object itself is not the pointer, its value can be compared to 0. Example:

unique_ptr<int> ip;

if (!ip)

cout << "0-pointer with a unique_ptr object\n";

Alternatively, the member get can be used (cf. section 18.3.5).

18.3.3 Moving another ‘unique_ptr’ (C++11)

A unique_ptr may be initialized using an rvalue reference to a unique_ptr object for the same

type:

unique_ptr<type> identifier(other unique_ptr object);

The move constructor is used, e.g., in the following example:

void mover(unique_ptr<string> &¶m)

{

unique_ptr<string> tmp(move(param));

}

18.3. THE CLASS ’UNIQUE_PTR’ (C++11) 467

Analogously, the assignment operator can be used. A unique_ptr object may be assigned to a

temporary unique_ptr object of the same type (again move-semantics is used). For example:

#include <iostream>

#include <memory>

#include <string>

using namespace std;

int main()

{

unique_ptr<string> hello1(new string("Hello world"));

unique_ptr<string> hello2(move(hello1));

unique_ptr<string> hello3;

hello3 = move(hello2);

cout << // *hello1 << /\n’ << // would have segfaulted

// *hello2 << ’\n’ << // same

*hello3 << ’\n’;

}

// Displays: Hello world

The example illustrates that

• hello1 is initialized by a pointer to a dynamically alloctated string (see the next section).

• The unique_ptr hello2 grabs the pointer controlled by hello1 using a move constructor.

This effectively changes hello1 into a 0-pointer.

• Then hello3 is defined as a default unique_ptr<string>. But then it grabs its value using

move-assignment from hello2 (which, as a consequence, is changed into a 0-pointer as well)

If hello1 or hello2 had been inserted into cout a segmentation fault would have resulted. The

reason for this should now be clear: it is caused by dereferencing 0-pointers. In the end, only hello3

actually points to the originally allocated string.

18.3.4 Pointing to a newly allocated object (C++11)

A unique_ptr is most often initialized using a pointer to dynamically allocated memory. The

generic form is:

unique_ptr<type [, deleter_type]> identifier(new-expression

[, deleter = deleter_type()]);

The second (template) argument (deleter(_type)) is optional and may refer to a free function or

function object handling the destruction of the allocated memory. A deleter is used, e.g., in situations

where a double pointer is allocated and the destruction must visit each nested pointer to destroy the

allocated memory (see below for an illustration).

Here is an example initializing a unique_ptr pointing to a string object:

unique_ptr<string> strPtr(new string("Hello world"));

468 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

The argument that is passed to the constructor is the pointer returned by operator new. Note

that type does not mention the pointer. The type that is used in the unique_ptr construction is

the same as the type that is used in new expressions.

Here is an example showing how an explicitly defined deleter may be used to delete a dynamically

allocated array of pointers to strings:

#include <iostream>

#include <string>

#include <memory>

using namespace std;

struct Deleter

{

size_t d_size;

Deleter(size_t size = 0)

:

d_size(size)

{}

void operator()(string **ptr) const

{

for (size_t idx = 0; idx < d_size; ++idx)

delete ptr[idx];

delete[] ptr;

}

};

int main()

{

unique_ptr<string *, Deleter> sp2(new string *[10], Deleter(10));

Deleter &obj = sp2.get_deleter();

}

A unique_ptr can be used to reach the member functions that are available for objects allocated by

the new expression. These members can be reached as if the unique_ptr was a plain pointer to the

dynamically allocated object. For example, in the following program the text ‘C++’ is inserted behind

the word ‘hello’:

#include <iostream>

#include <memory>

#include <cstring>

using namespace std;

int main()

{

unique_ptr<string> sp(new string("Hello world"));

cout << *sp << ’\n’;

sp->insert(strlen("Hello "), "C++ ");

cout << *sp << ’\n’;

}

/*
Displays:

Hello world

18.3. THE CLASS ’UNIQUE_PTR’ (C++11) 469

Hello C++ world

*/

18.3.5 Operators and members (C++11)

The class unique_ptr offers the following operators:

• unique_ptr<Type> &operator=(unique_ptr<Type> &&tmp):

This operator transfers the memory pointed to by the rvalue unique_ptr object to

the lvalue unique_ptr object using move semantics. So, the rvalue object loses the

memory it pointed at and turns into a 0-pointer. An existing unique_ptr may be

assigned to another unique_ptr by converting it to an rvalue reference first using

std::move. Example:

unique_ptr<int> ip1(new int);

unique_ptr<int> ip2;

ip2 = std::move(ip1);

• operator bool() const:

This operator returns false if the unique_ptr does not point to memory (i.e., its

get member, see below, returns 0). Otherwise, true is returned.

• Type &operator*():

This operator returns a reference to the information accessible via a unique_ptr

object . It acts like a normal pointer dereference operator.

• Type *operator->():

This operator returns a pointer to the information accessible via a unique_ptr

object. This operator allows you to select members of an object accessible via a

unique_ptr object. Example:

unique_ptr<string> sp(new string("hello"));

cout << sp->c_str();

The class unique_ptr supports the following member functions:

• Type *get():

A pointer to the information controlled by the unique_ptr object is returned. It

acts like operator->. The returned pointer can be inspected. If it is zero the

unique_ptr object does not point to any memory.

• Deleter &unique_ptr<Type>::get_deleter():

A reference to the deleter object used by the unique_ptr is returned.

• Type *release():

A pointer to the information accessible via a unique_ptr object is returned. At the

same time the object itself becomes a 0-pointer (i.e., its pointer data member is turned

into a 0-pointer). This member can be used to transfer the information accessible

via a unique_ptr object to a plain Type pointer. After calling this member the

proper destruction of the dynamically allocated memory is the responsibility of the

programmer.

470 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

• void reset(Type *):

The dynamically allocated memory controlled by the unique_ptr object is returned

to the common pool; the object thereupon controls the memory to which the argument

that is passed to the function points. It can also be called without argument, turning

the object into a 0-pointer. This member function can be used to assign a new block

of dynamically allocated memory to a unique_ptr object.

• void swap(unique_ptr<Type> &):

Two identically typed unique_ptrs are swapped.

18.3.6 Using ‘unique_ptr’ objects for arrays (C++11)

When a unique_ptr is used to store arrays the dereferencing operator makes little sense but with

arrays unique_ptr objects benefit from index operators. The distinction between a single object

unique_ptr and a unique_ptr referring to a dynamically allocated array of objects is realized

through a template specialization.

With dynamically allocated arrays the following syntax is available:

• the index ([]) notation is used to specify that the smart pointer controls a dynamically allo-

cated array. Example:

unique_ptr<int[]> intArr(new int[3]);

• the index operator can be used to access the array’s elements. Example:

intArr[2] = intArr[0];

In these cases the smart pointer’s destructors call delete[] rather than delete.

18.3.7 The legacy class ’auto_ptr’ (deprecated)

The (now deprecated by the C++11 standard) smart pointer class std::auto_ptr<Type> has tra-

ditionally been offered by C++. This class does not support move semantics, but when an auto_ptr

object is assigned to another, the right-hand object loses its information.

The class unique_ptr does not have auto_ptr’s drawbacks and consequently using auto_ptr is

now deprecated. Auto_ptrs suffer from the following drawbacks:

• they do not support move semantics;

• they should not be used to point to arrays;

• they cannot be used as data types of abstract containers.

Because of its drawbacks and available replacements the auto_ptr class is no longer covered by

the C++ Annotations. Existing software should be modified to use smart pointers (unique_ptrs

or shared_ptrs) and new software should, where applicable, directly be implemented in terms of

these new smart pointer types.

18.4. THE CLASS ’SHARED_PTR’ (C++11) 471

18.4 The class ’shared_ptr’ (C++11)

In addition to unique_ptr the C++11 standard offers std::shared_ptr<Type> which is a refer-

ence counting smart pointer. Before using shared_ptrs the <memory> header file must have been

included.

The shared pointer automatically destroys its contents once its reference count has decayed to zero.

Shared_ptrs support copy and move constructors as well as standard and move overloaded assign-

ment operators.

Like unique_ptrs, shared_ptrs may refer to dynamically allocated arrays.

18.4.1 Defining ‘shared_ptr’ objects (C++11)

There are four ways to define shared_ptr objects. Each definition contains the usual <type>

specifier between angle brackets:

• The default constructor simply creates a shared_ptr object that does not point to a particular

block of memory. Its pointer is initialized to 0 (zero):

shared_ptr<type> identifier;

This form is discussed in section 18.4.2.

• The copy constructor initializes a shared_ptr so that both objects share the memory pointed

at by the existing object. The copy constructor also increments the shared_ptr’s reference

count. Example:

shared_ptr<string> org(new string("hi there"));

shared_ptr<string> copy(org); // reference count now 2

• The move constructor initializes a shared_ptr with the pointer and reference count of a

temporary shared_ptr. The temporary shared_ptr is changed into a 0-pointer. An ex-

isting shared_ptr may have its data moved to a newly defined shared_ptr (turning the

existing shared_ptr into a 0-pointer as well). In the next example a temporary, anonymous

shared_ptr object is constructed, which is then used to construct grabber. Since grabber’s

constructor receives an anonymous temporary object, the compiler uses shared_ptr’s move

constructor:

shared_ptr<string> grabber(shared_ptr<string>(new string("hi there")));

• The form that is used most often initializes a shared_ptr object to the block of dynamically al-

located memory that is passed to the object’s constructor. Optionally deleter can be provided.

A (free) function (or function object) receiving the shared_ptr’s pointer as its argument can

be passed as deleter. It is supposed to return the dynamically allocated memory to the common

pool (doing nothing if the pointer equals zero).

shared_ptr<type> identifier (new-expression [, deleter]);

This form is discussed in section 18.4.3.

472 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

18.4.2 Creating a plain ‘shared_ptr’ (C++11)

Shared_ptr’s default constructor defines a shared_ptr not pointing to a particular block of mem-

ory:

shared_ptr<type> identifier;

The pointer controlled by the shared_ptr object is initialized to 0 (zero). Although the shared_ptr

object itself is not the pointer, its value can be compared to 0. Example:

shared_ptr<int> ip;

if (!ip)

cout << "0-pointer with a shared_ptr object\n";

Alternatively, the member get can be used (cf. section 18.4.4).

18.4.3 Pointing to a newly allocated object (C++11)

Most often a shared_ptr is initialized by a dynamically allocated block of memory. The generic

form is:

shared_ptr<type> identifier(new-expression [, deleter]);

The second argument (deleter) is optional and refers to a function object or free function handling

the destruction of the allocated memory. A deleter is used, e.g., in situations where a double pointer

is allocated and the destruction must visit each nested pointer to destroy the allocated memory (see

below for an illustration). It is used in situations comparable to those encountered with unique_ptr

(cf. section 18.3.4).

Here is an example initializing a shared_ptr pointing to a string object:

shared_ptr<string> strPtr(new string("Hello world"));

The argument that is passed to the constructor is the pointer returned by operator new. Note

that type does not mention the pointer. The type that is used in the shared_ptr construction is

the same as the type that is used in new expressions.

The next example illustrates that two shared_ptrs indeed share their information. After modify-

ing the information controlled by one of the objects the information controlled by the other object is

modified as well:

#include <iostream>

#include <memory>

#include <cstring>

using namespace std;

int main()

{

shared_ptr<string> sp(new string("Hello world"));

18.4. THE CLASS ’SHARED_PTR’ (C++11) 473

shared_ptr<string> sp2(sp);

sp->insert(strlen("Hello "), "C++ ");

cout << *sp << ’\n’ <<

*sp2 << ’\n’;

}

/*
Displays:

Hello C++ world

Hello C++ world

*/

18.4.4 Operators and members (C++11)

The class shared_ptr offers the following operators:

• shared_ptr &operator=(shared_ptr<Type> const &other):

Copy assignment: the reference count of the operator’s left hand side operand is

reduced. If the reference count decays to zero the dynamically allocated memory

controlled by the left hand side operand is deleted. Then it shares the information

with the operator’s right hand side operand, incrementing the information’s reference

count.

• shared_ptr &operator=(shared_ptr<Type> &&tmp):

Move assignment: the reference count of the operator’s left hand side operand is

reduced. If the reference count decays to zero the dynamically allocated memory

controlled by the left hand side operand is deleted. Then it grabs the information

controlled by the operator’s right hand side operand which is turned into a 0-pointer.

• operator bool() const:

If the shared_ptr actually points to memory true is returned, otherwise, false is

returned.

• Type &operator*():

A reference to the information stored in the shared_ptr object is returned. It acts

like a normal pointer.

• Type *operator->():

A pointer to the information controlled by the shared_ptr object is returned. Ex-

ample:

shared_ptr<string> sp(new string("hello"));

cout << sp->c_str() << ’\n’;

The following member function member functions are supported:

• Type *get():

A pointer to the information controlled by the shared_ptr object is returned. It

acts like operator->. The returned pointer can be inspected. If it is zero the

shared_ptr object does not point to any memory.

474 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

• Deleter &get_deleter():

A reference to the shared_ptr’s deleter (function or function object) is returned.

• void reset(Type *):

The reference count of the information controlled by the shared_ptr object is re-

duced and if it decays to zero the memory it points to is deleted. Thereafter the

object’s information will refer to the argument that is passed to the function, setting

its shared count to 1. It can also be called without argument, turning the object into

a 0-pointer. This member function can be used to assign a new block of dynamically

allocated memory to a shared_ptr object.

• void shared_ptr<Type>::swap(shared_ptr<Type> &&):

Two identically typed shared_ptrs are swapped.

• bool unique() const:

If the current object is the only object referring to the memory controlled by the object

true is returned otherwise (including the situation where the object is a 0-pointer)

false is returned.

• size_t use_count() const:

The number of objects sharing the memory controlled by the object is returned.

18.4.5 Casting shared pointers (C++11)

Shared pointers cannot simply be cast using the standard C++ style casts. Consider the following

two classes:

struct Base

{};

struct Derived: public Base

{};

A shared_ptr<Derived> can easily be defined. Since a Derived is also a Base a pointer to a

Derived can be cast to a pointer to a Base using a static cast:

Derived d;

static_cast<Base *>(&d);

However, a plain static_cast cannot be used when initializing a shared pointer to a Base us-

ing the object pointer of a shared pointer to a Derived object. I.e., the following statement will

eventually result in an attempt to delete the dynamically allocated Base object twice:

shared_ptr<Derived> sd(new Derived);

shared_ptr<Base> sb(static_cast<Base *>(sd.get()));

Since sd and sb point at the same object ~Base will be called for the same object when sb goes out

of scope and when sd goes out of scope, resulting in premature termination of the program due to a

double free error.

18.4. THE CLASS ’SHARED_PTR’ (C++11) 475

These errors can be prevented using casts that were specifically designed for being used with shared_ptrs.

These casts use specialized constructors that create a shared_ptr pointing to memory but shares

ownership (i.e., a reference count) with an existing shared_ptr. These special casts are:

• std::static_pointer_cast<Base>(std::shared_ptr<Derived> ptr):

A shared_ptr to a Base class object is returned. The returned shared_ptr refers

to the base class portion of the Derived class to which the shared_ptr<Derived>

ptr refers. Example:

shared_ptr<Derived> dp(new Derived());

shared_ptr<Base> bp = static_pointer_cast<Base>(dp);

• std::const_pointer_cast<Class>(std::shared_ptr<Class const> ptr):

A shared_ptr to a Class class object is returned. The returned shared_ptr refers

to a non-const Class object whereas the ptr argument refers to a Class const

object. Example:

shared_ptr<Derived const> cp(new Derived());

shared_ptr<Derived> ncp = const_pointer_cast<Derived>(cp);

• std::dynamic_pointer_cast<Derived>(std::shared_ptr<Base> ptr):

A shared_ptr to a Derived class object is returned. The Base class must have

at least one virtual member function, and the class Derived, inheriting from Base

may have overridden Base’s virtual member(s). The returned shared_ptr refers to

a Derived class object if the dynamic cast from Base * to Derived * succeeded. If

the dynamic cast did not succeed the shared_ptr’s get member returns 0. Example

(assume Derived and Derived2 were derived from Base):

shared_ptr<Base> bp(new Derived());

cout << dynamic_pointer_cast<Derived>(bp).get() << ’ ’ <<

dynamic_pointer_cast<Derived2>(bp).get() << ’\n’;

The first get returns a non-0 pointer value, the second get returns 0.

18.4.6 Using ‘shared_ptr’ objects for arrays (C++11)

Different from the unique_ptr class no specialization exists for the shared_ptr class to handle

dynamically allocated arrays of objects.

But like unique_ptrs, with shared_ptrs referring to arrays the dereferencing operator makes

little sense while in these circumstances shared_ptr objects would benefit from index operators.

It is not difficult to create a class shared_array offering such facilities. The class template shared_array,

derived from shared_ptr merely should provide an appropriate deleter to make sure that the ar-

ray and its elements are properly destroyed. In addition it should define the index operator and

optionally could declare the derefencing operators using delete.

Here is an example showing how shared_array can be defined and used:

struct X

{

~X()

{

cout << "destr\n"; // show the object’s destruction

476 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

}

};

template <typename Type>

class shared_array: public shared_ptr<Type>

{

struct Deleter // Deleter receives the pointer

{ // and calls delete[]

void operator()(Type* ptr)

{

delete[] ptr;

}

};

public:

shared_array(Type *p) // other constructors

: // not shown here

shared_ptr<Type>(p, Deleter())

{}

Type &operator[](size_t idx) // index operators

{

return shared_ptr<Type>::get()[idx];

}

Type const &operator[](size_t idx) const

{

return shared_ptr<Type>::get()[idx];

}

Type &operator*() = delete; // delete pointless members

Type const &operator*() const = delete;

Type *operator->() = delete;

Type const *operator->() const = delete;

};

int main()

{

shared_array<X> sp(new X[3]);

sp[0] = sp[1];

}

18.5 Using ‘make_shared’ to combine ‘shared_ptr’ and ‘new’

(C++11)

Usually a shared_ptr is initialized at definition time with a pointer to a newly allocated object.

Here is an example:

std::shared_ptr<string> sptr(new std::string("hello world"))

In such statements two memory allocation calls are used: one for the allocation of the std::string

and one used interally by std::shared_ptr’s constructor itself.

The two allocations can be combined into one single allocation (which is also slightly more efficient

than explicitly calling shared_ptr’s constructor) using the make_shared template. The function

template std::make_shared has the following prototype:

template<typename Type, typename ...Args>

18.6. CLASSES HAVING POINTER DATA MEMBERS (C++11) 477

std::shared_ptr<Type> std::make_shared(Args ...args);

Before using make_shared the <memory> header file must have been included.

This function template allocates an object of type Type, passing args to its constructor (using perfect

forwarding, see section 21.5.2), and returns a shared_ptr initialized with the address of the newly

allocated Type object.

Here is how the above sptr object can be initialized using std::make_shared. Notice the use of

auto which frees us from having to specify sptr’s type explicitly:

auto sptr(std::make_shared<std::string>("hello world"));

After this initialization std::shared_ptr<std::string> sptr has been defined and initialized.

It could be used as follows:

std::cout << *sptr << ’\n’;

18.6 Classes having pointer data members (C++11)

Classes having pointer data members require special attention. In particular at construction time

one must be careful to prevent wild pointers and/or memory leaks. Consider the following class

defining two pointer data members:

class Filter

{

istream *d_in;

ostream *d_out;

public:

Filter(char const *in, char const *out);

};

Assume that Filter objects filter information read from *d_in and write the filtered information

to *d_out. Using pointers to streams allows us to have them point at any kind of stream like

istreams, ifstreams, fstreams or istringstreams. The shown constructor could be imple-

mented like this:

Filter::Filter(char const *in, char const *out)

:

d_in(new ifstream(in)),

d_out(new ofstream(out))

{

if (!*d_in || !*d_out)

throw string("Input and/or output stream not available");

}

Of course, the construction could fail. new could throw an exception; the stream constructors could

throw exceptions; or the streams could not be opened in which case an exception is thrown from the

constructor’s body. Using a function try block helps. Note that if d_in’s initialization throws, there’s

nothing to be worried about. The Filter object hasn’t been constructed, its destructor is not be

478 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

called and processing continues at the point where the thrown exception is caught. But Filter’s

destructor is also not called when d_out’s initialization or the constructor’s if statement throws:

no object, and hence no destructor is called. This may result in memory leaks, as delete isn’t called

for d_in and/or d_out. To prevent this, d_in and d_out must first be initialized to 0 and only then

the initialization can be performed:

Filter::Filter(char const *in, char const *out)

try

:

d_in(0),

d_out(0)

{

d_in = new ifstream(in);

d_out = new ofstream(out);

if (!*d_in || !*d_out)

throw string("Input and/or output stream not available");

}

catch (...)

{

delete d_out;

delete d_in;

}

This quickly gets complicated, though. If Filter harbors yet another data member of a class whose

constructor needs two streams then that data cannot be constructed or it must itself be converted

into a pointer:

Filter::Filter(char const *in, char const *out)

try

:

d_in(0),

d_out(0)

d_filterImp(*d_in, *d_out) // won’t work

{ ... }

// instead:

Filter::Filter(char const *in, char const *out)

try

:

d_in(0),

d_out(0),

d_filterImp(0)

{

d_in = new ifstream(in);

d_out = new ofstream(out);

d_filterImp = new FilterImp(*d_in, *d_out);

...

}

catch (...)

{

delete d_filterImp;

delete d_out;

18.7. MULTI THREADING (C++11) 479

delete d_in;

}

Although the latter alternative works, it quickly gets hairy. In situations like these smart point-

ers should be used to prevent the hairiness. By defining the stream pointers as (smart pointer)

objects they will, once constructed, properly be destroyed even if the rest of the constructor’s code

throws exceptions. Using a FilterImp and two unique_ptr data members Filter’s setup and its

constructor becomes:

class Filter

{

std::unique_ptr<std::ifstream> d_in;

std::unique_ptr<std::ofstream> d_out;

FilterImp d_filterImp;

...

};

Filter::Filter(char const *in, char const *out)

try

:

d_in(new ifstream(in)),

d_out(new ofstream(out)),

d_filterImp(*d_in, *d_out)

{

if (!*d_in || !*d_out)

throw string("Input and/or output stream not available");

}

We’re back at the original implementation but this time without having to worry about wild pointers

and memory leaks. If one of the member initializers throws the destructors of previously constructed

data members (which are now objects) are always called.

As a rule of thumb: when classes need to define pointer data members they should define those

pointer data members as smart pointers if there’s any chance that their constructors throw excep-

tions.

18.7 Multi Threading (C++11)

The C++11 standard adds multi threading to C++ through the C++ standard library.

The C++ Annotations do not cover the concepts behind multi threading. It is assumed that the

reader has a basic knowledge of these concepts. Multi threading is a topic by itself and many good

reference sources exist (cf. Nichols, B, et al.’s Pthreads Programming1, O’Reilly for some good

introductions to multi-threading).

Multi threading facilities are offered by the class std::thread.

Thread synchronization is realized using objects of the class std::mutex and condition variables

are implemented by the class std::condition_variable.

Members of these classes may throw system_error objects (cf. section 10.9) when encountering a

low-level error condition.

1http://oreilly.com/catalog/

480 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

In order to use multi threading in C++ programs the Gnu g++ compiler requires the use of the

-pthread flag. E.g., to compile a multi-threaded program defined in a source file multi.cc the

compiler must be called as follows:

g++ --std=c++0x -pthread -Wall multi.cc

18.7.1 Specifying absolute and relative time (C++11)

Threads may postpone their actions until a specific point in time or for a specific amount of time.

A time unit is defined using the class template std::ratio. A certain amount of time is defined

using the class template duration and a specific point in time is defined using the class template

time_point. In the C++ Annotations these classes are covered for as much as required in combina-

tion with multi-threading. The user is referred to the C++11 standard for additional details about

ratio, duration, and time_point.

Before the class ratio can be used, the <ratio> header file must have been included. Before using

either duration or time_point the <chrono> header file must have been included, where the

latter header file includes the former.

18.7.1.1 Defining a unit: the class ’ratio’ (C++11)

The time unit that is used when defining time points or time intervals is specified using types defined

by std::ratio: a class template expecting one or two template arguments. E.g., ratio<1> defines

a time unit of a second, ratio<60> a time unit of a minute, and ratio<1, 1000> a time unit of

one milli second.

The ratio class template is defined in the <ratio> header file, which is automatically read when

including the chrono header file.

Once a ratio type has been defined (e.g., typedef ratio<1, 1000> milli) or becomes available

(e.g., as seconds::period, see below), then the value of the template’s first argument (e.g., 1)

can be retrieved as num (e.g., seconds::period::num), while the value of the template’s second

argument (e.g., 1000) can be retrieved as den (e.g., seconds::period::den).

A large number of predefined ratio types exist. They can be used instead of the more cumbersome

ratio<x> or ratio<x, y> specification:

18.7. MULTI THREADING (C++11) 481

yocto 10−24

zepto 10−21

atto 10−18

femto 10−15

pico 10−12

nano 10−9

micro 10−6

milli 10−3

centi 10−2

deci 10−1

deca 101

hecto 102

kilo 103

mega 106

giga 109

tera 1012

peta 1015

exa 1018

zetta 1021

yotta 1024

(the definitions of the types yocto, zepto, zetta and yotta use integral constants exceeding 64

bits, and although these constants are defined in the C++11 standard, they are not available on 64

bit or smaller architectures.)

18.7.1.2 Defining an amount of time: the class ’duration’ (C++11)

The class duration is defined in the std::chrono namespace. Like ratio it is a class template.

The class template duration requires two template type arguments: a numeric type Value (e.g.,

int64_t or size_t) to contain the duration’s value, and a time-unit, specified using ratio.

Before using the class std::chrono::duration the <chrono> header file must have been in-

cluded.

In addition to the copy constructor (and overloaded assignment operator) the following constructors

are available:

• constexpr duration(): the default duration defines a duration of zero time units.

• constexpr explicit duration(Value const &value): a specific duration of value time

units;

Using the second constructor, a duration of 30 minutes can be defined using, e.g., duration<size_t,

ratio<60» halfHour(30). Instead of explicitly defining a duration type, it is also possible to

use the following predefined duration types:

nanoseconds duration<int64_t, nano>

microseconds duration<int64_t, micro>

milliseconds duration<int64_t, milli>

seconds duration<int64_t>

minutes duration<int64_t, ratio<60>>

hours duration<int64_t, ratio<3600>>

482 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

Using, e.g., the minutes definition, a duration of 30 minutes can simply be specified using minutes

halfHour(30).

The value that is stored inside a duration is obtained using the class’s constexpr Value count()

const member. For halfHour this would return 30, not 1800, as the time unit itself is obtained as

the duration<Value, Unit>::period type.

18.7.1.3 Clocks measuring time (C++11)

The C++11 standard offers several predefined clock types that can be used in combination with

multi-threaded programs. It is also possible to define your own clock-type, which must then satisfy

the requirements defined in clause 20.11.3 of the C++11 standard.

The predefined clocks are defined in the std::chrono namespace. Before using the predefined

clocks the <chrono> header file must have been included.

Clocks define several types (like period, duration, and time_point), and a member

• static time_point now():

returning the time_point representing the current time

which may be used by multi-threaded programs.

The class system_clock represents the ‘wall clock’ time, using the system’s real time clock. In

addition to now the class system_clock offers two more static members:

• static time_t to_time_t(time_point const &timePoint):

returns a time_t value representing the same point in time as timePoint (see the

next section for a description of time_point);

• static time_point from_time_t(time_t seconds):

returns a time_point value representing the same point in time as time_t.

The class steady_clock implements a clock whose time increases in parallel with with increase of

real time.

The class high_resolution_clock implements the computer’s fastest clock (i.e., the clock having

the shortest timer-tick period).

An example of their use is given in the next section.

18.7.1.4 Defining a point in time: the class ’time_point’ (C++11)

The class time_point is defined in the std::chrono namespace. Like duration it is a class

template. The class template time_point requires two template type arguments: Clock and a

Duration.

The Clock type can be one of the predefined clock types, e.g., chrono::system_clock. By default,

the Duration is the Clock::duration type, but an explicit type may also be provided.

Before using the class std::chrono::duration the <chrono> header file must have been in-

cluded.

18.7. MULTI THREADING (C++11) 483

The class time_point offers three constructors:

• time_point():

the default constructor represents the beginning of the clock’s epoch (E.g., Jan, 1,

1970, 00:00h);

• time_point(time_point<Clock, Duration> const &timeStep):

initializes a time_point object representing a point in time timeStep Duration

units byond the clock’s epoch;

• time_point(time_point<Clock, Duration2> const &timeStep):

this constructor is defined as a member template, using the template header template

<typename Duration2>. The type Duration2 is a chrono::duration (or com-

parable) type, using a possibly different time unit than time_point’s Duration

type. It initializes a time_point object representing a point in time timeStep

Duration2 units byond the clock’s epoch.

Duration values may be added to or subtracted from a time_point object using, respectively, the

time_point &operator+=(Duration const &step) and time_point &operator-=(Duration

const &step) members. The corresponding binary + and - operators are also available.

The member constexpr Duration time_since_epoch() const returns the object’s Duration

since the epoch.

Here are some examples showing how time_point objects can be used:

#include <iostream>

#include <chrono>

using namespace std;

using namespace chrono;

int main()

{

// the current time

time_point<system_clock> now(system_clock::now());

// its value in seconds:

cout << system_clock::to_time_t(now) << ’\n’;

// now + two hours:

cout << system_clock::to_time_t(now + hours(2)) << ’\n’;

// define a time_point 1 hour after the epoch:

time_point<system_clock> oneHrLater(hours(1));

// show the epoch and the time in seconds of oneHrLater:

cout << system_clock::to_time_t(time_point<system_clock>()) << ’ ’ <<

system_clock::to_time_t(oneHrLater) << ’\n’;

}

484 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

18.7.2 The namespace ‘std::this_thread’ (C++11)

The namespace this_thread is defined within the std namespace, and contains functions that

uniquely identify the current thread of execution.

It offers the following members:

• thread::id get_id() noexcept:

returns an object of type thread::id that uniquely identifies the currently active

thread of execution. For an active thread the returned ids is unique in that it 1:1

maps to the currently active thread, and is not returned for any other thread. A de-

fault id is returned when get_id is called for a thread that is currently not running.

• void yield() noexcept:

the implementation may call yield to reschedule. Cf. thread::yield in section

18.7.3.

• void sleep_for(chrono::duration<Rep, Period> const &relTime) noexcept:

this function is defined as a function template, defining the template header template

<typename Rep, typename Period>. The template’s types are derived from the

actual relTime argument that is passed to the function, and should not explicitly be

specified. This function could be called as, e.g.,

sleep_for(seconds(5));

Calling this function blocks the thread calling this function during the specified time

interval, starting at the point in time the function is called.

• void sleep_until(chrono::time_point<Clock, Duration> const &absTime) noexcept:

this function is also defined as a function template, defining the template header

template <typename Clock, typename Duration>. The Clock and Duration

types are derived from the actual absTime argument that is passed to the function,

and should not explicitly be specified. This function could be called as, e.g.,

sleep_until(system_clock::now() + seconds(5));

Calling this function blocks the thread until the specified absolute point in time.

18.7.3 The class ‘std::thread’ (C++11)

In C++ multi threading can be realized through the use of objects of the class std::thread. Each

object of this class handles a separate thread of execution.

Before using Thread objects the <thread> header file must have been included.

Threads can be joined, i.e., wait until another thread has finished, and the states of threads may be

queried and controlled by a multi-threaded program.

Each thread object represents one unique thread of execution, but its unique thread may be trans-

ferred to another thread object. In this situation there remains but a single thread object that

represents the running thread.

If a threads of execution loses its association with a thread object that thread is said to be detached.

Conversely, thread objects by themselves are not necessarily associated with a running thread of

18.7. MULTI THREADING (C++11) 485

execution: following the default construction, a move operation in which a thread object acts as the

source thread or after detaching or joining threads the thread object may still exist, albeit in a

state where it is not or no longer associated with a running thread.

The class thread offers the following constructors:

• thread() noexcept:

the default constructor creates a thread object that is not (yet) associated with a

running thread of execution;

• explicit thread(Fun &&fun, Args &&...args):

this constructor is defined as a member template (cf. section 21.1.3), using the tem-

plate header template <typename Fun, typename ...Args>. Its first argument

is a function that implements the thread’s actions. The notation Args &&...args

indicates that any number of additional arguments may follow fun. These arguments

are then passed with their proper types and values to fun. The argument passed to

fun may also be a function object, whose function call operator then receives the

...args arguments.

Function (or function object) and arguments must be move constructible (i.e., after

assignment or initialization the target object is equivalent to the original source,

while following the assignment or construction the source’s state is not specified). Af-

ter (move-)constructing copies of fun and ...args the thread object has been con-

structed. Following the thread object construction (but not as part of the construc-

tion), a separately running thread of execution, associated with the just constructed

thread object, is started.

If the requested thread cannot be created a system_error is thrown.

• thread(thread &&tmp) noexcept:

the move constructor uses tmp to construct the target thread object and puts tmp in

the thread’s default state.

When a thread object is destroyed while its thread of execution is still active, terminate is called,

forcing the program’s end. So, before calling a thread object’s destructor its thread of execution

must have been terminated. This is accomplished by ending the function which was passed to the

thread object’s constructor.

In the following example a thread object is created, inserting the text hello world three times

into cout:

#include <thread>

#include <iostream>

#include <unistd.h>

using namespace std;

// do not forget to use -pthread with g++

void fun(size_t count, char const *txt)

{

for (; count--;)

cout << txt << endl;

}

486 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

int main()

{ // runs the thread following

// the object construction

thread display(fun, 3, "hello world");

display.join(); // see the text

}

The members of the class thread are:

• void detach():

requires joinable to return true. The thread for which detach is called continues

its execution. The (e.g., parent) thread calling detach continues its execution imme-

diately beyond the detach-call. After calling object.detach(), ‘object’ no longer

represents the, possibly still continuing but now detached, thread of execution. It is

the detached thread’s implementation’s responsibility to release its resources when

its execution ends.

Since detach disconnects a thread from the running program, e.g., main no longer

can wait for the thread’s completion. As a program ends when main ends, its still

running threads also stop, and program may not properly complete all its threads, as

demonstrated by the following program:

#include <thread>

#include <iostream>

#include <unistd.h>

using namespace std;

// do not forget to use -lpthread with g++

void fun(size_t count, char const *txt)

{

for (; count--;)

cout << count << ": " << txt << endl;

}

int main()

{ // runs the threads following

// the object construction

thread display(fun, 3, "hello world");

display.detach();

thread second(fun, 3, "a second thread");

second.detach();

cout << "leaving" << endl;

}

When this program is run, only part of the potentially generated output is inserted

into cout, like:

leaving22: hello world

18.7. MULTI THREADING (C++11) 487

• id get_id() const noexcept:

If the current object does not represent a a running thread a default id object is

returned. Otherwise, this_thread::get_id() is returned for the running thread

that is associated with the object for which get_id is called is returned.

• void join():

requires joinable to return true. Blocks the thread calling join until the thread

for which join is called has completed. Following its completion the object whose

join member was called no longer represents a running thread, and its get_id

member will return the default id.

An example of its use is provided by the above example. In that example join is

called to prevent display from being destroyed at the end of main. Without calling

join display’s thread would still have been running by the time main’s execution

would have reached its end. At that point display’s destructor would have been

called. However, when the destructor of a joinable thread is called, terminate is

called, forcing the program’s abort.

• bool joinable() const noexcept:

returns object.get_id() != id(), where object is the thread object for which

joinable was called.

• void swap(thread &other) noexcept:

The states of the thread object for which swap was called and other are swapped.

Note that threads may be swapped as well, even when their threads of execution are

currently active.

The class thread supports the move assignment operator:

• thread &operator=(thread &&tmp) noexcept: If the operator’s left-hand side operand

(lhs) is a joinable thread, then terminate is called. Otherwise, other’s state is assigned to

the operator’s lhs and sets other to the thread’s default constructed state.

Since the tread(Fun &&fun, Args &&...args) constructor not only accepts functions but also

function objects as its argument, a local context may be passed to the function object’s constructor.

Here is an example of a thread to which a function object is passed which is provided with a local

context:

#include <iostream>

#include <thread>

#include <array>

using namespace std;

class Functor

{

array<int, 30> &d_data;

int d_value;

public:

Functor(array<int, 30> &data, int value)

:

d_data(data),

488 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

d_value(value)

{}

void operator()(ostream *out)

{

for (auto &value: d_data)

{

value = d_value++;

*out << value << ’ ’;

}

*out << ’\n’;

}

};

int main()

{

array<int, 30> data;

Functor functor(data, 5);

thread funThread(functor, &cout);

funThread.join();

};

Note the argument &cout that is passed to funThread and the definition ostream *out param-

eter of the funThread’s function call operator. Here cout cannot be used (in combination with an

ostream &out parameter), since the latter parameter is not move-constructible, whereas a pointer

is.

18.7.4 Synchronization (mutexes) (C++11)

The C++11 standard offers a series of mutex classes to protect shared data.

Before using mutexes the <mutex> header file must have been included.

Mutexes should be used to prevent data corruption when multiple threads need access to common

data. For (a very simple) example: the following could happen when two threads access a common

int variable, unless mutexes are used (a context switch occurs when the operating system switches

between threads. With a mult-processor system the threads can really be executed in parallel.

To keep the example simple, assume multi threading is used on a single-core computer, switching

between multi-threads):

Time step: Thread1: var Thread2: description

0 5

1 starts T1 active

2 writes var T1 commences writing

3 stopped Context switch

4 starts T2 active

5 writes var T2 commences writing

6 10 assigns 10 T2 writes 10

7 stopped Context switch

8 assigns 12 T1 writes 12

9 12

--

18.7. MULTI THREADING (C++11) 489

The above is just a very simple illustration of what may go wrong when multiple threads access the

same data without using mutexes.

Thread 2 proceeds on the assumption that var equals 10. However, after step 9 var holds the value

12. Mutexes are used to prevent these kinds of problems by offering a guarantee that thata are only

accessed by the thread holding a mutex for the those data.

Exclusive data access completely depends on cooperation between the threads. If thread 1 uses

mutexes, but thread 2 doesn’t, then thread 2 may access the common data any which way it wants

to. Of course that’s bad practice, and mutexes allow us to write program not behaving badly in this

sense.

It is stressed that although using mutexes is the programmer’s responsibility, their implementation

isn’t. A user-program is unable to accomplish atomic locking mutexes offer. The bottom line is that

if we try to implement a mutex-like facility in our programs then each statement is compiled into

several machine instructions and in between each of these instructions the operating system may

do a context switch, rendering the instructions non-atomic.

Mutexes offer the necessary atomic calls: when requesting a mutex-lock the thread is suspended

(i.e., the mutex statement does not return) until the lock has been obtained by the thread.

More information about mutexes can be found in the mentioned O’Reilly book and in general in the

extensive literature on this topic. It is not a topic that is discussed further in the C++ Annotations.

The available facilities for using mutexes, however, are covered in this section.

Apart from the class std::mutex the class std::recursive_mutex is offered. When a recursive_mutex

is called multiple times by the same thread it increases its lock-count. Before other threads may

access the protected data the recursive mutex must be unlocked again that number of times. More-

over, the classes std::timed_mutex and std::recursive_timed_mutex are available. Their

locks expire when released, but also after a certain amount of time.

All mutex classes offer the following constructors and members:

• A default constexpr constructor;

• A destructor

• void lock():

the calling thread is blocked until it has obtained ownership of the mutex. Unless

lock is called for a recursive mutex a system_error is thrown if, e.g., the thread

already owns the lock. Recursive mutexes increment their interal lock count;

• bool try_lock() noexcept:

the calling thread tries to obtain ownership of the mutex without blocking. If owner-

ship is obtained, true is returned, otherwise false. If the lock was already obtained

by the calling thread, true is also returned, and with a recursive mutex its interal

lock count is also incremented;

• void unlock() noexcept:

the calling thread releases ownership of the mutex. A system_error is thrown if,

e.g., the thread does not own the lock. Recursive mutexes decrement their interal

lock count, releasing ownership of the mutex once the lock count has decayed to zero;

Note: mutex classes do not offer copy constructors and overloaded assignment operators.

490 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

In addition to the abovementioned members, timed mutex classes (timed_mutex,

recursive_timed_mutex) also offer:

• bool try_lock_for(chrono::duration<Rep, Period> const &relTime) noexcept:

this function is defined as a function template, defining the template header template

<typename Rep, typename Period>. The template’s types are derived from the

actual relTime argument that is passed to the function, and should not explicitly be

specified. This function could be called for a timed_mutex_lock tml as, e.g.,

tml.try_lock_for(seconds(5));

If the ownership is obtained within the specified time interval true is returned, oth-

erwise false. If the lock was already obtained by the calling thread, true is also

returned, and with a recursive timed mutex its interal lock count is also incremented;

• bool try_lock_until(chrono::time_point<Clock, Duration> const &absTime) noexcept

this function is also defined as a function template, defining the template header

template <typename Clock, typename Duration>. The Clock and Duration

types are derived from the actual absTime argument that is passed to the function,

and should not explicitly be specified. This function could be called for a timed_mutex_lock

tml as, e.g.,

tml.try_lock_until(system_clock::now() + seconds(5));

If the ownership is obtained before the specified point in time true is returned, oth-

erwise false. If the lock was already obtained by the calling thread, true is also

returned, and with a recursive timed mutex its interal lock count is also incremented;

18.7.5 Locks and lock handling (C++11)

Often locks are released at the end of some action block. To simplify locking additional template

classes std::unique_lock and std::lock_guard are provided. At construction time the mutex

type to be used must be specified. As their constructors (usually) lock the data and their destructors

unlock the data they can be defined as local variables, unlocking their data once their scopes end.

Locks by default try to acquire the ownership of the mutex type that’s passed to them at construction

time. However, that may not always be convenient. Therefore additional constructors are defined

offering additional modes of operation. These requested modes are specified by passing a tag type

to those constructors that define what should be done with the lockable object during the lock’s

construction. The tag types (and tags) are:

• struct std::defer_lock_t:

the lock is not trying to acquire ownership of the mutex. The ownership may be

requested later during the lock’s lifetime. A predefined defer_lock object which

may be passed as tag is also available;

• struct std::try_to_lock_t:

the lock is trying to acquire ownership of the mutex, but won’t block if this fails. A

predefined try_to_lock object which may be passed as tag is also available;

• struct std::adopt_lock_t:

the lock won’t try to acquire ownership of the lock, but instead assumes that the

calling thread has already obtained ownership. The lock will be released (or the lock-

count will be reduced) when the lock is destroyed. A predefined adopt_lock which

may be passed as tag is also available.

18.7. MULTI THREADING (C++11) 491

Lock types do not define copy constructors or overloaded assignment operators, nor do they define

any other member function. Basically, they only allow constructions. Their destructors release the

ownertship of their mutex (or, when recursive mutex was passed to them) reduce the mutex’s use

count.

A lock_guard may be constructed by passing it a mutex type and an optional adopt_lock_t

object.

Here is a simple example showing the use of a lock_guard. Once safeProcess ends guard is

destroyed, thereby releasing the lock on data:

std::mutex dataMutex;

Data data;

void safeProcess()

{

std::lock_guard<std::mutex> guard(dataMutex);

process(data);

}

The class template unique_lock is much more elaborate than the basic lock_guard class tem-

plate. It does not offer a copy constructor or overloaded assignment operator, but it does offer a move

constructor and move assignment operator.

Here are its constructors and members (Mutex refers to the mutex type that was specified for

the unique_lock at construction time). E.g., unique_lock<timed_mutex> defines Mutex as a

timed_mutex below.

Here are unique_lock’s constructors:

• unique_lock() noexcept:

the default constructor is not associated with a mutex type. It must be assigned a

mutex (e.g., using move-assignment) before it can do anything useful;

• explicit unique_lock(Mutex& mutex):

initializes a unique_lock with an existing Mutex object, resulting in the lock object

obtaining ownership of the Mutex;

• unique_lock(Mutex& mutex, defer_lock_t) noexcept:

initializes a unique_lock with an existing Mutex object, but will not try to obtain

ownership of the Mutex;

• unique_lock(Mutex& mutex, try_to_lock_t) noexcept:

initializes a unique_lock with an existing Mutex object, and will try to obtain own-

ership of the Mutex, but won’t block if it does not succeed;

• unique_lock(Mutex& mutex, adopt_lock_t) noexcept:

initializes a unique_lock with an existing Mutex object, assuming that the current

thread has already obtained ownership of the Mutex;

492 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

• unique_lock(Mutex& mutex, chrono::duration<Rep, Period> const &relTime) noexcept

this constructor is defined as a member template, using the template header template

<typename Rep, typename Period>. The template’s types are derived from the

actual relTime argument that is passed to the constructor, and should not explic-

itly be specified. The constructor will try to obtain ownership of the Mutex object

by calling mutex.try_lock_for(relTime). If Mutex mutex is available, this con-

structor could be called like this:

unique_lock<Mutex> ulock(mutex, seconds(5));

• unique_lock(Mutex& mutex, chrono::time_point<Clock, Duration> const &absTime)

noexcept:

this constructor is also defined as a member template, using the template header

template <typename Clock, typename Duration>. The Clock and Duration

types are derived from the actual absTime argument that is passed to the construc-

tor, and should not explicitly be specified. The constructor will try to obtain owner-

ship of the Mutex object by calling mutex.try_lock_until(absTime). If Mutex

mutex is available, this constructor could be called like this:

unique_lock<Mutex> ulock(mutex, system_clock::now() + seconds(5));

Overloaded operators:The move assignment constructor:

• explicit operator bool() const noexcept:

returns true if the unique_lock owns the mutex, otherwise false;

• unique_lock& operator=(unique_lock &&tmp) noexcept:

with the move-assignment operator, if the left-hand operand owns a lock, it will call

its mutex’s unlock member, whereafter tmp’s state is transferred to the left-hand

operand

Ordinary members:

• void lock():

blocks the current thread until ownership of the mutex that is managed by the

unique_lock is obtained. If no mutex is currently managed, then a system_error

exception is thrown.

• bool owns_lock() const noexcept:

returns true if the unique_lock owns the mutex, otherwise false;

• Mutex *release() noexcept:

returns a pointer to the mutex object previously stored inside the unique_lock ob-

ject, setting its own Mutex * data member to 0;

• void swap(unique_lock& other) noexcept:

swaps the states of the current unique_lock and other;

• bool try_lock():

tries to obtain ownership of the mutex that is managed by the unique_lock, return-

ing true if this succeeds, and false otherwise. If no mutex is currently managed,

then a system_error exception is thrown.

18.7. MULTI THREADING (C++11) 493

• bool try_lock_for(chrono::duration<Rep, Period> const &relTime):

this member is defined as a member template, using the template header template

<typename Rep, typename Period>. The template’s types are derived from the

actual relTime argument that is passed to this member, and should not explicitly be

specified. This member function will try to obtain ownership of the Mutex object man-

aged by the unique_lock object by calling the mutex’s try_lock_for(relTime)

member.

• bool try_lock_until(chrono::time_point<Clock, Duration> const &absTime):

this member is also defined as a member template, using the template header template

<typename Clock, typename Duration>. The Clock and Duration types are

derived from the actual absTime argument that is passed to th is member function,

and should not explicitly be specified. This member function will try to obtain owner-

ship of the Mutex object managed by the unique_lock object by calling the mutex’s

mutex.try_lock_until(absTime)member.

• void unlock():

releases ownership of the mutex (or reduces the mutex’s lock count). A system_error

exception is thrown if the unique_lock does not own the mutex.

• Mutex *mutex() const noexcept:

returns a pointer to the mutex object stored inside the unique_lock (a nullptr is

returned if no mutex object is currently stored inside the unique_lock object.)

Here is a simple example showing a unique_lock being used trying to obtain ownership of a

timed_mutex:

std::timed_mutex dataMutex;

Data data;

void safeProcess()

{

std::unique_lock<std::timed_mutex>

guard(dataMutex, std::chrono::milliseconds(3));

if (guard)

process(data);

}

In the above example guard tries to obtain the lock during three milliseconds. If guard’s operator

bool returns true the lock was obtained and data can be processed safely.

18.7.5.1 Deadlocks

Although they should be avoided, Deadlocks are frequently encountered in multi threaded programs.

A deadlock occurs when two locks are required to process data, but one thread obtains the first lock

and another thread obtains the second lock. The C++11 standard defines a generic std::lock

function that can be used to help preventing such situations. The std::lock function can be used

to lock multiple mutexes in one atomic action. Here is an example:

struct SafeString

494 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

{

std::mutex d_mutex;

std::string d_text;

};

void calledByThread(SafeString &first, SafeString &second)

{

std::unique_lock<std::mutex> // 1

lock_first(first.d_mutex, std::defer_lock);

std::unique_lock<std::mutex> // 2

lock_second(second.d_mutex, std::defer_lock);

std::lock(lock_first, lock_second); // 3

safeProcess(first.d_text, second.d_text);

}

At 1 and 2 unique_locks are created. Locking is deferred until calling std::lock at 3. Having ob-

tained the lock, the two SafeString text members can both be safely processed by calledByThread.

Another problematic issue with threads involves initialization. If multiple threads are running and

only the first thread calling the initialization code should actually perform the initialization then

this problem should not be solved using mutexes.

Although proper synchronization is realized, the synchronization is performed time and again for

every thread. The C++11 standard offers several ways to perform a proper initialization:

• First, suppose your constructor is declared with the constexpr keyword (cf. section 8.1.4.1),

satisfying the requirements for constant initialization. In this case, an object of static storage

lifetime, initialized using that constructor, is guaranteed to be initialized before any code is run

as part of the static initialization phase. This is the option chosen for std::mutex, because

it eliminates the possibility of race conditions with initialization of mutexes at a global scope.

Here is an example, using in-class implementations for brevity:

class MyClass

{

int d_i;

public:

constexpr MyClass(int i = 0)

:

d_i(0)

{}

void action();

};

MyClass myObject; // static initialization with constexpr constructor

int foo();

myClass other(42 + foo()); // dynamic initialization

void f()

{

18.7. MULTI THREADING (C++11) 495

other.action(); // is other initialized in some thread?

}

• Second, a static variable defined within a compound statement may be used (e.g., a static local

variable within a function body). In C++ static variables defined within a compound statement

are initialized the first time the function is called at the point in the code where the static

variable is defined as illustrated by the following example:

#include <iostream>

struct Cons

{

Cons()

{

std::cout << "Cons called\n";

}

};

void called(char const *time)

{

std::cout << time << "time called() activated\n";

static Cons cons;

}

int main()

{

std::cout << "Pre-1\n";

called("first");

called("second");

std::cout << "Pre-2\n";

Cons cons;

}

/*
Displays:

Pre-1

firsttime called() activated

Cons called

secondtime called() activated

Pre-2

Cons called

*/

This feature causes a thread to wait automatically if another thread is still initializing the

static data (note that non-static data never cause problems, as each non-static local variables

have lifes that are completely restricted to their own threads).

• If the above two approaches can’t be used. The combined use of std::call_once and std::once_flag

result in one-time execution of a specified function as illustrated by the next example:

std::string *global;

std::once_flag globalFlag;

void initializeGlobal()

{

global = new std::string("Hello world (why not?)");

}

void safeUse()

496 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

{

std::call_once(globalFlag, initializeGlobal);

process(*global);

}

18.7.6 Event handling (condition variables) (C++11)

In this section condition variables are introduced, allowing programs to synchronize threads on the

states of data, rather than on the access to data, which is realized using mutexes.

Before using condition variables the <condition_variable> header file must have been included.

To start our discussion, we consider a classic producer-consumer scenario: the producer generates

items to be consumed by a consumer. The producer can only produce a certain number of items

before its storage capacity has filled up and the client cannot consume more items than the producer

has produced.

At some point the producer has to wait until the client has consumed enough, thus creating space

in the producer’s storage. Similarly, the consumer cannot start consuming until the producer has at

least produced some items.

Mutexes (data locking) don’t result in elegant solutions of producer-consumer types of problems, as

using mutexes requires repeated locking and polling the amount of available items/storage. This

isn’t a very attractive option as it wastes resources. Polling forces threads to wait until they own the

mutex, even though continuation might already be possible. The polling interval could be reduced,

but that too isn’t an attractive option, as it results in needlessly increasing the overhead associated

with handling the associated mutexes.

On the other hand, condition variables allow you to avoid polling by synchronizing threads using

the states (e.g., values) of data.

As the the states of the data may be modified by multiple threads, threads still have to use mutexes,

but merely to control access to the data. However, condition variables allow threads to release

ownership of the mutex until a certain state has been reached, until a preset amount of time has

been passed, or until a preset point in time has been reached.

The prototypical setup of these kinds of programs look like this:

• consumer thread(s) act like this:

obtain ownership of the used mutex

while the required condition is false:

release the ownership and wait until being notified

continue processing now that the condition is true

release ownership of the mutex

• producer thread(s) act like this:

obtain ownership of the used mutex

while the condition is false:

work towards changing the condition to true

signal other waiting threads that the condition is now true

release ownership of the mutex

Condition variables come in two flavors: objects of the class std::condition_variable are used

in combination with objects of type unique_lock<mutex>. This combination allows optimizations

18.7. MULTI THREADING (C++11) 497

resulting in an increased efficiency compared to the efficiency that can be obtained with objects of the

class stdLLcondition_variable_any that can be used with any (e.g., user-supplied) lock types.

The condition variable classes offer members like wait, wait_for, wait_until, notify_one

and notify_all that may concurrently be called. The notify members are always atomically exe-

cuted. Execution of the wait members consists of three atomic parts:

• the mutex’s release, and subsequent entry into the waiting state;

• unblocking the wait state;

• reacquisition of the lock.

Therefore, returning from wait-members the thread calling wait owns the lock.

Programs using condition variables cannot make any assumption about the order in which any of

the notify_one, notify_all, wait, wait_for, and wait_until members are executed.

In addition to the condition variable classes the following free function and enum type are provided:

• void std::notify_all_at_thread_exit(condition_variable &cond,

unique_lock<mutex> lockObject):

once the current thread has ended, all other threads waiting on cond will be notified.

It is good practice to exit the thread as soon as possible after calling

notify_all_at_thread_exit.

Waiting threads must verify that the thread they were waiting for has indeed ended.

This is usually implemented by obtaining the lock on lockObject, after which these

threads verify that the condition they were waiting for is true, and that the lock was

not released and reacquired before notify_all_at_thread_exit was called.

• The cv_status enum is used by several member functions of the condition variable

classes covered below:

namespace std

{

enum class cv_status

{

no_timeout,

timeout

};

}

18.7.6.1 The class ’condition_variable’ (C++11)

The class condition_variable merely offers a default constructor. No copy constructor or over-

loaded assignment operator are provided.

Before using the class condition_variable the <condition_variable> header file must have

been included.

The class’s destructor requires that no thread is blocked by the current thread. This implies that all

other (waiting) threads must have been notified; those threads may, however, subsequently block on

the lock specified in their wait calls.

498 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

In the following member-descriptions a type Predicate indicates that the provided Predicate

argument can be called as a function without arguments, returning a bool. Also, other member

functions are frequently referred to. It is tacitly assumed that all members were called using the

same condition variable object.

The class condition_variable’s members are:

• void notify_one() noexcept:

one wait member called by other threads returns. Which one actually returns cannot

be predicted.

• void notify_all() noexcept:

all wait members called by other threads unblock their wait states. Of course, only

one of them will subsequently succeed in reacquiring the condition variable’s lock

object.

• void wait(unique_lock<mutex>& lockObject):

the current thread is blocked until it (usually) has obtained the lock of lockObject.

However, wait may also spuriously unblock, without having locked lockObject.

Therefore, returning from wait threads should always verify that they have obtained

the lock. If not, again calling wait may be appropriate.

• void wait(unique_lock<mutex>& lock, Predicate pred):

This is a member template, defining the template header template <typename

Predicate>. As long as ‘pred()’ returns false wait(lock) is called.

• cv_status wait_for(unique_lock<mutex> &lockObject, chrono::duration<Rep, Period>

const &relTime):

This member is defined as a member template, using the template header template

<typename Rep, typename Period>. The Rep and Period types are derived

from the actual relTime argument that is passed to this member, and should not

explicitly be specified.

The lockObject must be locked by the current thread and either no other thread

is waiting on this condition_variable object, or lock.mutex() returns the same

value for each of the lockObject arguments supplied by all currently waiting threads.

This member calls lockObject.unlock and the current thread is blocked. It un-

blocks when receiving a signal through a notify member, when an interval speci-

fied by relTime has passed, or spuriously. Once it unblocks it tries to reacquire the

lock on lockObject. Before this member returns the current thread has acquired

the lock on lockObject. If returning due to a timeout, cv_status::timeout is

returned, otherwise cv_status::no_timeout is returned.

• bool wait_for(unique_lock<mutex> &lockObject, chrono::duration<Rep, Period>

const &relTime, Predicate pred):

this member is also defined as a member template, using the template header template

<typename Rep, typename Period, typename Predicate>. The template types

are automatically derived from the types of the arguments that passed to this mem-

ber.

As long as pred() returns false, the previous member is called. If the previous

member returns cv_status::timeout, then pred() is returned, otherwise true.

18.7. MULTI THREADING (C++11) 499

• cv_status wait_until(unique_lock<mutex>& lockObject, chrono::time_point<Clock,

Duration> const &absTime):

This member is also defined as a member template, using the template header template

<typename Clock, typename Duration>. The template types are derived from

the types of the arguments that are passed to this member and do not have to be

specified explicitly.

This function acts identically to the wait_for(unique_lock<mutex> &lockObject,

chrono::duration<Rep, Period> const &relTime) member, but uses an ab-

solute point in time, rather than a relative time specification. If returning due to

a timeout, cv_status::timeout is returned, otherwise cv_status::no_timeout

is returned.

• bool wait_until(unique_lock<mutex> &lock, chrono::time_point<Clock, Duration>

const &absTime, Predicate pred):

this member is also defined as a member template, using the template header template

<typename Clock, typename Duration, typename Predicate>. The template

types are derived from the types of the arguments that are passed to this member and

do not have to be specified explicitly.

As long as pred() returns false, the previous member is called. If the previous

member returns cv_status::timeout, then pred() is returned, otherwise true.

18.7.6.2 The class ’condition_variable_any’ (C++11)

Different from the class condition_variable the class condition_variable_any can be used

with any (e.g., user-supplied) lock type, and not just with the stl-provided unique_lock<mutex>.

Before using the class condition_variable_any the <condition_variable> header file must

have been included.

The functionality that is offered by condition_variable_any is identical to the functionality of-

fered by the class condition_variable, albeit that the lock-type that is used by condition_variable_any

is not predefined. The class condition_variable_any requires specification of the lock-type that

must be used by its objects.

In the interface shown below this lock-type is referred to as Lock. Most of condition_variable_any’s

members are defined as member templates, defining a Lock type as one of its parameters. The

requirements of these lock-types are identical to those of the stl-provided unique_lock, and user-

defined lock-type implementations should provide at least the interface and semantics that is also

provided by unique_lock.

This section merely presents the interface of the class condition_variable_any. As its interface

offers the same members as condition_variable (allowing, where applicable, passing any lock-

type instead of just unique_lock to corresponding members), the reader is referred to the previous

section for a description of the semantics of the class members.

Like condition_variable, the class condition_variable_anymerely offers a default construc-

tor. No copy constructor or overloaded assignment operator are provided.

Also, like condition_variable, the class’s destructor requires that no thread is blocked by the

current thread. This implies that all other (waiting) threads must have been notified; those threads

may, however, subsequently block on the lock specified in their wait calls.

Note that, in addition to Lock, the types Clock, Duration, Period, Predicate, and Rep are

template types, defined just like the identically named types mentioned in the previous section.

500 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

The class condition_variable_any’smembers are:

• void notify_one() noexcept;

• void notify_all() noexcept;

• void wait(Lock& lock);

• void wait(Lock& lock, Predicate pred);

• cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>&

absTime);

• bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& absTime,

Predicate pred);

• cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& relTime);

• bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& relTime,)

Predicate pred;

18.7.6.3 An example using condition variables (C++11)

Condition variables are used to synchronize threads on the states (values) of data, rather than on

access to data (for which plain mutex-objects can be used). Using condition variables, a thread

simply sleeps until it is notified by another thread. In a producer-consumer type of program this is

usually accomplished like this:

producer loop:

- produce the next item

- wait until there’s room to store the item,

then reduce the available storage

- store the item

- increment the number of items in store

consumer loop:

- wait until there’s an item in store,

then reduce the number of items in store

- remove the item from the store

- increment the number of available storage locations

- do something with the retrieved item

It is important that the two storage administrative tasks (registering the number of available items

and available storage locations) are either performed by the client or by the producer. ‘Waiting’ in

this case means:

• Get a lock on the variable containing the actual count

• As long as the count is zero: wait, releasing the lock until another thread has increased the

count, then re-acquire the lock.

• Reduce the count

• Release the lock.

18.7. MULTI THREADING (C++11) 501

This scheme is implemented using a condition_variable. The variable containing the actual

count is called semaphore and it can be protected using, e.g. mutex sem_mutex. In addition a

condition_variable condition is defined. The following code uses three non-local variables:

size_t semaphore;

mutex sem_mutex;

condition_variable condition;

The waiting process is defined by the following function down:

void down()

{

unique_lock<mutex> lock(sem_mutex); // get the lock

while (semaphore == 0)

condition.wait(lock); // see 1, below.

--semaphore; // dec. semaphore count

} // the lock is released

At 1 condition.wait releases the lock, waits until receiving a notification, and re-acquires the

lock just before returning. Consequently, down’s code always has complete and unique control over

semaphore.

What about notifying the condition variable? This is handled by the ‘increment the number ...’ lines

in the producer and consumer loops. These parts are defined by the following up function:

void up()

{

lock_guard<std::mutex> lock(sem_mutex); // get the lock

if (semaphore++ == 0)

condition.notify_one(); // see 2, below

} // the lock is released

At 2 semaphore is always incremented. However, by using a postfix increment it is simultaneously

tested for being zero. If it was initially zero then semaphore is now one. Consequently, the thread

waiting for semaphore being unequal to zero may now continue. A waiting thread is notified by

calling condition.notify_one. In situations where multiple threads are waiting ‘notify_all’

can also be used.

Handling semaphore can nicely be encapsulated in a class Semaphore, offering members down

and up. For a more extensive discussion of semaphores see Tanenbaum, A.S. and Austin, T. (2013)

Structured Computer Organization, Pearson Prentice-Hall.

Using the facilities of the class Semaphorewhose constructor expects an initial value of its semaphore

data member, the classic producer and consumer paradigm can now easily be implemented in the

following multi-threaded program2:

Semaphore available(10);

Semaphore filled(0);

std::queue itemQueue;

void producer()

2A more elaborate example of the producer-consumer program is found in the yo/stl/examples/events.cc file in the
C++ Annotations’s source archive

502 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

{

size_t item = 0;

while (true)

{

++item;

available.down();

itemQueue.push(item);

filled.up();

}

}

void client()

{

while (true)

{

filled.down();

size_t item = itemQueue.front();

itemQueue.pop();

available.up();

process(item); // not implemented here

}

}

int main()

{

thread produce(producer);

thread consume(consumer);

produce.join();

consume.join();

}

18.8 Lambda expressions (C++11)

The C++11 standard has added lambda expressions to the language. As we’ve seen generic algo-

rithms often accept an argument that can either be a function object or it can be a plain function.

Examples are the sort and find_if generic algorithms. When the function called by the generic

algorithm must remember its state a function object is appropriate, otherwise a plain function can

be used.

The function or function object is usually not readily available. Often it must be defined in or near

the location where the generic algorithm is used. Usually this is accomplished by defining a class or

function in the anonymous namespace, passing an object of that class or passing that function to a

generic algorithm called from some other function. If the latter function is itself a member function

the need may be felt to grant the function called by the generic algorithm access to other members of

its class. Often this results in a significant amount of code (defining the class), or it results in com-

plex code (to make available software elements that aren’t automatically accessible from the called

function (object)). It may also result in code that is irrelevant at the current level of specification.

Nested classes don’t solve these problems and nested classes can’t be used in templates.

A lambda expression defines an anonymous function object, also called a closure object. When a

lambda expression is evaluated it results in a temporary object (the closure object). The type of a

closure object is called its closure type.

18.8. LAMBDA EXPRESSIONS (C++11) 503

Lambda expressions may be used inside blocks, classes or namespaces (i.e., pretty much anywhere

you like). Their implied closure type is defined in the smallest block, class or namespace scope which

contains the lamba expression. The closure object’s visibility starts at its point of definition and ends

where its closure type ends.

The closure type defines a (const) public inline function call operator. Here is an example of a

lambda expression:

[] // the ‘lambda-introducer’

(int x, int y) // the ‘lambda-declarator’

{ // a normal compound-statement

return x * y;

}

The function call operator of the closure object created by this lambda expression expects two int

arguments and returns their product. It is an inline const member of the closure type. To drop the

const attribute, the lamba expression should specify mutable, as follows:

[](int x, int y) mutable

...

The lambda-declarator may be omitted, if it does not contain parameters. The parameters in a

lamba declarator may not be provided with default arguments.

A closure object as defined by the above lamda expression could be used e.g., in combination with the

accumulate generic algorithm to compute the product of a series of int values stored in a vector:

cout << accumulate(vi.begin(), vi.end(), 1,

[](int x, int y) { return x * y; });

The above lambda function uses the implicit return type decltype(x * y). An implicit return

type can be used if the lambda expression does not contain a return stattement (i.e., a void lambda

expression), if it contains a single return statement, or if it contains multiple return statements

returning values of identical types (e.g., all int values).

If there are multiple return statements returning values of different types then the lambda ex-

pression’s return type must specified be explicitly using a late-specified return type, (cf. section

3.3.5):

[](int x, int y) -> int

{

if (y < 0)

return x / static_cast<double>(y);

return z + x;

}

Variables that are visible at the location of a lambda expression can be accessed by the lambda

expression. How these variables are accessed depends on the contents of the lambda-introducer

(the area between the square brackets, called the the lambda-capture). The lambda-capture allows

passing a local context to lambda expressions.

Visible global and static variables as well as local variables defined in the lambda expression’s com-

pound statement itself can directly be accessed and, if applicable, modified. Example:

504 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

int global;

void fun()

{

[]() // [] may contain any specification

{

int localVariable = 0;

localVariable = ++global;

};

}

If the lambda expression is defined within a (non-static) class member function then an initial & or

= character in the lambda-capture enables this, allowing the lambda expression access to all class

members (data and functions). The class’s data members can be modified.

If the lambda expression is defined inside a function then that function’s local variables that are

visible at the point of the lambda expression’s definition can be accessed by the lambda expression.

An initial & character in the lambda-capture accesses these local variables by reference. These

variables can be modified from within the lambda expression.

An initial = character in the lambda-capture creates a local copy of the referred-to local variables.

Furthermore, in this case the values of these local copies can only be changed by the lambda expres-

sion if the lambda expression is defined using the mutable keyword. E.g.,

struct Class

{

void fun()

{

int var = 0;

[=]() mutable

{

++var; // modifies the local

} // copy, not fun’s var

}

}

Fine-tuning is also possible. With an initial =, comma-separated &var specifications indicate that

the mentioned local variables should be processed by reference, rather than as copies; with an initial

&, comma separated var specifications indicate that local copies should be used of the mentioned

local variables. Again, these copies have immutable values unless the lambda expression is provided

with the mutable keyword.

Here is an example:

void showSum(vector<int> const &vi)

{

int total = 0;

for_each(

vi.begin(), vi.end(),

[&](int x)

{

total += x;

}

);

18.8. LAMBDA EXPRESSIONS (C++11) 505

std::cout << total << ’\n’;

}

The variable int total is passed to the lambda expression by reference and is directly accessed by

the function. Its parameter list merely defines an int x, which is initialized in sequence by each

of the values stored in vi. Once the generic algorithm has completed showSum’s variable total

has received a value that is equal to the sum of all the vector’s values. It has outlived the lambda

expression and its value is displayed.

Another fine-tuning consists of specifying this in the lambda-capture: it also allows the lambda-

expression to access the surrounding class members. Example:

class Data

{

std::vector<std::string> d_names;

public:

void show() const

{

int count = 0;

std::for_each(d_names.begin(), d_names.end(),

[this, &count](std::string const &name)

{

std::cout << ++count << ’ ’ <<

capitalized(name) << ’\n’;

}

);

}

private:

std::string capitalized(std::string name);

};

Lambda expressions may also be assigned to variables. An example of such an assignment (using

auto to define the variable’s type) is:

auto sqr = [](int x)

{

return x * x;

};

The lifetime of such lambda expressions is equal to the lifetime of the variable receiving the lambda

expression as its value. Named lambda functions nicely fit in the niche of local functions: when

a function needs to perform some computations that are at a conceptually lower level than the

function’s task itself, then it’s attractive to encapsulate these computations in a separate support

function, and call the support function where needed. A support function can be defined in an

anonymous namespace, but that quickly becomes awkward when the requiring function is a class

member, and the support function needs access to the class’s members as well. In that case a named

lambda expression can be used: it can be defined within the requiring function, and may be given

full access to the surrounding class. The name to which the lambda expression is assigned becomes

the name of a function which can be called from the surrounding function. Here is an example,

converting a numeric IP address to a dotted decimal string, which can also be accessed directly from

an Dotted object (all implementations in-class to conserve space):

class Dotted

506 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

{

std::string d_dotted;

public:

std::string const &dotted() const

{

return d_dotted;

}

std::string const &dotted(size_t ip)

{

auto octet =

[](size_t idx, size_t numeric)

{

return to_string(numeric >> idx * 8 & 0xff);

};

d_dotted =

octet(3, ip) + ’.’ + octet(2, ip) + ’.’ +

octet(1, ip) + ’.’ + octet(0, ip);

return d_dotted;

}

};

Now that lambda expressions have been covered let’s see how they can be used to avoid spurious

returns from condition_variable’s wait calls (cf. section 18.7.6.3). According to the C++11

standard, condition variables may spuriously return from wait calls. Therefore it is necessary to

check that the data are actually available once wait continues.

The class condition_variable allows us to do that by offering wait members expecting a lock

and a predicate. The predicate checks the data’s state, and returns true if the data’s state allows

the data’s processing. Here is an alternative implementation of the down member shown in section

18.7.6.3, checking for the data’s actual availability:

void down()

{

unique_lock<mutex> lock(sem_mutex);

condition.wait(lock,

[&]()

{

return semaphore != 0

}

);

--semaphore;

}

The lambda expression ensures that wait only returns once semaphore has been incremented.

18.9 Randomization and Statistical Distributions (C++11)

Before the statistical distributions and accompanying random number generators can be used the

<random> header file must have been included.

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 507

The C++11 standard introduces several standard mathematical (statistical) distributions into the

STL. These distributions allow programmers to obtain randomly selected values from a selected

distribution.

These statistical distributions need to be provided with a random number generating object. Several

of such random number generating objects are provided, extending the traditional rand function

that is part of the C standard library.

These random number generating objects produce pseudo-random numbers, which are then pro-

cessed by the statistical distribution to obtain values that are randomly selected from the specified

distribution.

Although the STL offers various statistical distributions their functionality is fairly limited. The

distributions allow us to obtain a random number from these distributions, but probability density

functions or cumulative distribution functions are currently not provided by the STL. These func-

tions (distributions as well as the density and the cumulative distribution functions) are, however,

available in other libraries, like the boost math library3 (specifically:

http://www.boost.org/doc/libs/1_44_0/libs/math/doc/sf_and_dist/html/index.html).

It is beyond the scope of the C++ Annotations to discuss the mathematical characteristics of the vari-

ous distributions that are supported by the C++11 standard. The interested reader is referred to the

pertinent mathematical textbooks (like Stuart and Ord’s (2009) Kendall’s Advanced Theory of Statis-

tics, Wiley) or to web-locations like http://en.wikipedia.org/wiki/Bernoulli_distribution.

18.9.1 Random Number Generators (C++11)

The following generators are available:

Class template Integral/Floating point Quality Speed Size of state

linear_congruential_engine Integral Medium Medium 1

subtract_with_carry_engine Both Medium Fast 25

mersenne_twister_engine Integral Good Fast 624

The linear_congruential_engine random number generator computes

valuei+1 = (a * valuei + c) % m

It expects template arguments for, respectively, the data type to contain the generated random val-

ues; the multiplier a; the additive constant c; and the modulo value m. Example:

linear_congruential_engine<int, 10, 3, 13> lincon;

The linear_congruential generator may be seeded by providing its constructor with a seeding-

argument. E.g., lincon(time(0)).

The subtract_with_carry_engine random number generator computes

valuei = (valuei−s - valuei−r - carryi−1) % m

It expects template arguments for, respectively, the data type to contain the generated random val-

ues; the modulo value m; and the subtractive constants s and r. Example:

3http://www.boost.org/

508 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

subtract_with_carry_engine<int, 13, 3, 13> subcar;

The subtract_with_carry_engine generator may be seeded by providing its constructor with a

seeding-argument. E.g., subcar(time(0)).

The predefined mersenne_twister_engine mt19937 (predefined using a typedef defined by the

<random> header file) is used in the examples below. It can be constructed using ‘mt19937 mt’ or it

can be seeded by providing its constructor with an argument (e.g., mt19937 mt(time(0))). Other

ways to initialize the mersenne_twister_engine are beyond the scope of the C++ Annotations

(but see Lewis et al.4 (1969)).

The random number generators may also be seeded by calling their members seed accepting unsigned

long values or generator functions (as in lc.seed(time(0)), lc.seed(mt)).

The random number generators offer members min and max returning, respectively, their minimum

and maximum values (inclusive). If a reduced range is required the generators can be nested in a

function or class adapting the range.

18.9.2 Statistical distributions (C++11)

In the following sections the various statistical distributions that are supported by the C++11

standard are covered. The notation RNG is used to indicate a Random Number Generator and

URNG is used to indicate a Uniform Random Number Generator. With each distribution a struct

param_type is defined containing the distribution’s parameters. The organization of these param_type

structs depends on (and is described at) the actual distribution.

All distributions offer the following members (result_type refers to the type name of the values re-

turned by the distribution):

• result_type max() const

returns the distribution’s least upper bound;

• result_type min() const

returns the distribution’s greatest lower bound;

• param_type param() const

returns the object’s param_type struct;

• void param(const param_type ¶m) redefines the parameters of the distribution;

• void reset(): clears all of its cached values;

All distributions support the following operators (distribution-name should be replaced by the name

of the intended distribution, e.g., normal_distribution):

• template<typename URNG> result_type operator()(URNG &urng)

returns the next random value from the statistical distribution, with the function object urng

returning the next random number selected from a uniform random distribution;

• template<typename URNG> result_type operator()

(URNG &urng, param_type ¶m)

returns the next random value from the statistical distribution initialized with the parameters

provided by the param struct. The function object urng returns the next random number

selected from a uniform random distribution;

4 Lewis, P.A.W., Goodman, A.S., and Miller, J.M. (1969), A pseudorandom number generator for the System/360, IBM
Systems Journal, 8, 136-146.

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 509

• std::istream &operator»(std::istream &in, distribution-name &object): The

parameters of the distribution are extracted from an std::istream;

• std::ostream &operator«(std::ostream &out, distribution-name const &bd): The

parameters of the distribution are inserted into an std::ostream

The following example shows how the distributions can be used. Replacing the name of the dis-

tribution (normal_distribution) by another distribution’s name is all that is required to switch

distributions. All distributions have parameters, like the mean and standard deviation of the nor-

mal distribution, and all parameters have default values. The names of the parameters vary over

distributions and are mentioned below at the individual distributions. Distributions offer members

returning or setting their parameters.

Most distributions are defined as class templates, requiring the specification of a data type that is

used for the function’s return type. If so, an empty template parameter type specification (<>) will

get you the default type. The default types are either double (for real valued return types) or int

(for integral valued return types). The template parameter type specification must be omitted with

distributions that are not defined as template classes.

Here is an example showing the use of the statistical distributions, applied to the normal distribu-

tion:

#include <iostream>

#include <ctime>

#include <random>

using namespace std;

int main()

{

std::mt19937 engine(time(0));

std::normal_distribution<> dist;

for (size_t idx = 0; idx < 10; ++idx)

std::cout << "a random value: " << dist(engine) << "\n";

cout << ’\n’ <<

dist.min() << " " << dist.max() << ’\n’;

}

18.9.2.1 Bernoulli distribution (C++11)

The bernoulli_distribution is used to generate logical truth (boolean) values with a certain

probability p. It is equal to a binomial distribution for one experiment (cf 18.9.2.2).

The bernoulli distribution is not defined as a class template.

Defined types:

typedef bool result_type;

struct param_type

{

explicit param_type(double prob = 0.5);

double p() const; // returns prob

};

510 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

Constructor and members:

• bernoulli_distribution(double prob = 0.5)

constructs a bernoulli distribution with probability prob of returning true;

• double p() const

returns prob;

• result_type min() const

returns false;

• result_type max() const

returns true;

18.9.2.2 Binomial distribution (C++11)

The binomial_distribution<IntType = int> is used to determine the probability of the num-

ber of successes in a sequence of n independent success/failure experiments, each of which yields

success with probability p.

The template type parameter IntType defines the type of the generated random value, which must

be an integral type.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(IntType trials, double prob = 0.5);

IntType t() const; // returns trials

double p() const; // returns prob

};

Constructors and members and example:

• binomial_distribution<>(IntType trials = 1, double prob = 0.5) constructs a

binomial distribution for trials experiments, each having probability prob of success.

• binomial_distribution<>(param_type const ¶m) constructs a binomial distribu-

tion according to the values stored in the param struct.

• IntType t() const

returns trials;

• double p() const

returns prob;

• result_type min() const

returns 0;

• result_type max() const

returns trials;

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 511

18.9.2.3 Cauchy distribution (C++11)

The cauchy_distribution<RealType = double> looks similar to a normal distribution. But

cauchy distributions have heavier tails. When studying hypothesis tests that assume normality,

seeing how the tests perform on data from a Cauchy distribution is a good indicator of how sensitive

the tests are to heavy-tail departures from normality.

The mean and standard deviation of the Cauchy distribution are undefined.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = RealType(0),

RealType b = RealType(1));

double a() const;

double b() const;

};

Constructors and members:

• cauchy_distribution<>(RealType a = RealType(0), RealType b = RealType(1))

constructs a cauchy distribution with specified a and b parameters.

• cauchy_distribution<>(param_type const ¶m) constructs a cauchy distribution

according to the values stored in the param struct.

• RealType a() const

returns the distribution’s a parameter;

• RealType b() const

returns the distribution’s b parameter;

• result_type min() const

returns the smallest positive result_type value;

• result_type max() const

returns the maximum value of result_type;

18.9.2.4 Chi-squared distribution (C++11)

The chi_squared_distribution<RealType = double> with n degrees of freedom is the distri-

bution of a sum of the squares of n independent standard normal random variables.

Note that even though the distribution’s parameter n usually is an integral value, it doesn’t have to

be integral, as the chi_squared distribution is defined in terms of functions (exp and Gamma) that

take real arguments (see, e.g., the formula shown in the <bits/random.h> header file, provided

with the Gnu g++ compiler distribution).

The chi-squared distribution is used, e.g., when testing the goodness of fit of an observed distribution

to a theoretical one.

512 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType n = RealType(1));

RealType n() const;

};

Constructors and members:

• chi_squared_distribution<>(RealType n = 1) constructs a chi_squared distribution

with specified number of degrees of freedom.

• chi_squared_distribution<>(param_type const ¶m) constructs a chi_squared dis-

tribution according to the value stored in the param struct;

• IntType n() const

returns the distribution’s degrees of freedom;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.5 Extreme value distribution (C++11)

The extreme_value_distribution<RealType = double> is related to the Weibull distribution

and is used in statistical models where the variable of interest is the minimum of many random

factors, all of which can take positive or negative values.

It has two parameters: a location parameter a and scale parameter b. See also

http://www.itl.nist.gov/div898/handbook/apr/section1/apr163.htm

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = RealType(0),

RealType b = RealType(1));

RealType a() const; // the location parameter

RealType b() const; // the scale parameter

};

Constructors and members:

• extreme_value_distribution<>(RealType a = 0, RealType b = 1) constructs an ex-

treme value distribution with specified a and b parameters;

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 513

• extreme_value_distribution<>(param_type const ¶m) constructs an extreme value

distribution according to the values stored in the param struct.

• RealType a() const

returns the distribution’s location parameter;

• RealType stddev() const

returns the distribution’s scale parameter;

• result_type min() const

returns the smallest positive value of result_type;

• result_type max() const

returns the maximum value of result_type;

18.9.2.6 Exponential distribution (C++11)

The exponential_distribution<RealType = double> is used to describe the lengths between

events that can be modelled with a homogeneous Poisson process. It can be interpreted as the

continuous form of the geometric distribution.

Its parameter prob defines the distribution’s lambda parameter, called its rate parameter. Its ex-

pected value and standard deviation are both 1 / lambda.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType lambda = RealType(1));

RealType lambda() const;

};

Constructors and members:

• exponential_distribution<>(RealType lambda = 1) constructs an exponential distri-

bution with specified lambda parameter.

• exponential_distribution<>(param_type const ¶m) constructs an exponential

distribution according to the value stored in the param struct.

• RealType lambda() const

returns the distribution’s lambda parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

514 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

18.9.2.7 Fisher F distribution (C++11)

The fisher_f_distribution<RealType = double> is intensively used in statistical methods

like the Analysis of Variance. It is the distribution resulting from dividing two Chi-squared distri-

butions.

It is characterized by two parameters, being the degrees of freedom of the two chi-squared distribu-

tions.

Note that even though the distribution’s parameter n usually is an integral value, it doesn’t have to

be integral, as the Fisher F distribution is constructed from Chi-squared distributions that accept a

non-integral parameter value (see also section 18.9.2.4).

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType m = RealType(1),

RealType n = RealType(1));

RealType m() const; // The degrees of freedom of the nominator

RealType n() const; // The degrees of freedom of the denominator

};

Constructors and members:

• fisher_f_distribution<>(RealType m = RealType(1), RealType n = RealType(1))

constructs a fisher_f distribution with specified degrees of freedom.

• fisher_f_distribution<>(param_type const ¶m) constructs a fisher_f distribu-

tion according to the values stored in the param struct.

• RealType m() const

returns the degrees of freedom of the nominator;

• RealType n() const

returns the degrees of freedom of the denominator;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.8 Gamma distribution (C++11)

The gamma_distribution<RealType = double> is used when working with data that are not

distributed according to the normal distribution. It is often used to model waiting times.

It has two parameters, alpha and beta. Its expected value is alpha * beta and its standard

deviation is alpha * beta2.

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 515

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType alpha = RealType(1),

RealType beta = RealType(1));

RealType alpha() const;

RealType beta() const;

};

Constructors and members:

• gamma_distribution<>(RealType alpha = 1, RealType beta = 1) constructs a gamma

distribution with specified alpha and beta parameters.

• gamma_distribution<>(param_type const ¶m) constructs a gamma distribution ac-

cording to the values stored in the param struct.

• RealType alpha() const

returns the distribution’s alpha parameter;

• RealType beta() const

returns the distribution’s beta parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.9 Geometric distribution (C++11)

The geometric_distribution<IntType = int> is used to model the number of bernoulli trials

(cf. 18.9.2.1) needed until the first success.

It has one parameter, prob, representing the probability of success in an individual bernoulli trial.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(double prob = 0.5);

double p() const;

};

Constructors, members and example:

• geometric_distribution<>(double prob = 0.5) constructs a geometric distribution for

bernoulli trials each having probability prob of success.

516 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

• geometric_distribution<>(param_type const ¶m) constructs a geometric distri-

bution according to the values stored in the param struct.

• double p() const

returns the distribution’s prob parameter;

• param_type param() const

returns the object’s param_type structure;

• void param(const param_type ¶m) redefines the parameters of the distribution;

• result_type min() const

returns the distribution’s lower bound (= 0);

• result_type max() const

returns the distribution’s upper bound;

• template<typename URNG> result_type operator()(URNG &urng)

returns the next random value from the geometric distribution

• template<typename URNG> result_type operator()

(URNG &urng, param_type ¶m)

returns the next random value from a geometric distribution initialized by the provided param

struct.

• The random number generator that is passed to the generating functions must return integral

values. Here is an example showing how the geometric distribution can be used:

#include <iostream>

#include <ctime>

#include <random>

int main()

{

std::linear_congruential_engine<unsigned, 7, 3, 61> engine(0);

std::geometric_distribution<> dist;

for (size_t idx = 0; idx < 10; ++idx)

std::cout << "a random value: " << dist(engine) << "\n";

std::cout << ’\n’ <<

dist.min() << " " << dist.max() << ’\n’;

}

18.9.2.10 Log-normal distribution (C++11)

The lognormal_distribution<RealType = double> is a probability distribution of a random

variable whose logarithm is normally distributed. If a random variable X has a normal distribution,

then Y = eX has a log-normal distribution.

It has two parameters, m and s representing, respectively, the mean and standard deviation of

ln(X).

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 517

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType m = RealType(0),

RealType s = RealType(1));

RealType m() const;

RealType s() const;

};

Constructor and members:

• lognormal_distribution<>(RealType m = 0, RealType s = 1) constructs a log-normal

distribution for a random variable whose mean and standard deviation is, respectively, m and

s.

• lognormal_distribution<>(param_type const ¶m) constructs a log-normal distri-

bution according to the values stored in the param struct.

• RealType m() const

returns the distribution’s m parameter;

• RealType stddev() const

returns the distribution’s s parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.11 Normal distribution (C++11)

The normal_distribution<RealType = double> is commonly used in science to describe com-

plex phenomena. When predicting or measuring variables, errors are commonly assumed to be

normally distributed.

It has two parameters, mean and standard deviation.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType mean = RealType(0),

RealType stddev = RealType(1));

RealType mean() const;

RealType stddev() const;

};

518 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

Constructors and members:

• normal_distribution<>(RealType mean = 0, RealType stddev = 1) constructs a nor-

mal distribution with specified mean and stddev parameters. The default parameter values

define the standard normal distribution;

• normal_distribution<>(param_type const ¶m) constructs a normal distribution

according to the values stored in the param struct.

• RealType mean() const

returns the distribution’s mean parameter;

• RealType stddev() const

returns the distribution’s stddev parameter;

• result_type min() const

returns the lowest positive value of result_type;

• result_type max() const

returns the maximum value of result_type;

18.9.2.12 Negative binomial distribution (C++11)

The negative_binomial_distribution<IntType = int> probability distribution describes the

number of successes in a sequence of Bernoulli trials before a specified number of failures occurs.

For example, if one throws a die repeatedly until the third time 1 appears, then the probability

distribution of the number of other faces that have appeared is a negative binomial distribution.

It has two parameters: (IntType) k (> 0), being the number of failures until the experiment is

stopped and (double) p the probability of success in each individual experiment.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(IntType k = IntType(1), double p = 0.5);

IntType k() const;

double p() const;

};

Constructors and members:

• negative_binomial_distribution<>(IntType k = IntType(1), double p = 0.5) con-

structs a negative_binomial distribution with specified k and p parameters;

• negative_binomial_distribution<>(param_type const ¶m) constructs a nega-

tive_binomial distribution according to the values stored in the param struct.

• IntType k() const

returns the distribution’s k parameter;

• double p() const

returns the distribution’s p parameter;

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 519

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.13 Poisson distribution (C++11)

The poisson_distribution<IntType = int> is used to model the probability of a number of

events occurring in a fixed period of time if these events occur with a known probability and inde-

pendently of the time since the last event.

It has one parameter, mean, specifying the expected number of events in the interval under consid-

eration. E.g., if on average 2 events are observed in a one-minute interval and the duration of the

interval under study is 10 minutes then mean = 20.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(double mean = 1.0);

double mean() const;

};

Constructors and members:

• poisson_distribution<>(double mean = 1) constructs a poisson distribution with spec-

ified mean parameter.

• poisson_distribution<>(param_type const ¶m) constructs a poisson distribution

according to the values stored in the param struct.

• double mean() const

returns the distribution’s mean parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.14 Student t distribution (C++11)

The student_t_distribution<RealType = double> is a probability distribution that is used

when estimating the mean of a normally distributed population from small sample sizes.

It is characterized by one parameter: the degrees of freedom, which is equal to the sample size - 1.

Defined types:

typedef RealType result_type;

520 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

struct param_type

{

explicit param_type(RealType n = RealType(1));

RealType n() const; // The degrees of freedom

};

Constructors and members:

• student_t_distribution<>(RealType n = RealType(1)) constructs a student_t distri-

bution with indicated degrees of freedom.

• student_t_distribution<>(param_type const ¶m) constructs a student_t distri-

bution according to the values stored in the param struct.

• RealType n() const

returns the degrees of freedom;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

18.9.2.15 Uniform int distribution (C++11)

The uniform_int_distribution<IntType = int> can be used to select integral values ran-

domly from a range of uniformly distributed integral values.

It has two parameters, a and b, specifying, respectively, the lowest value that can be returned and

the highest value that can be returned.

Defined types:

typedef IntType result_type;

struct param_type

{

explicit param_type(IntType a = 0, IntType b = max(IntType));

IntType a() const;

IntType b() const;

};

Constructors and members:

• uniform_int_distribution<>(IntType a = 0, IntType b = max(IntType)) constructs

a uniform_int distribution for the specified range of values.

• uniform_int_distribution<>(param_type const ¶m) constructs a uniform_int dis-

tribution according to the values stored in the param struct.

• IntType a() const

returns the distribution’s a parameter;

18.9. RANDOMIZATION AND STATISTICAL DISTRIBUTIONS (C++11) 521

• IntType b() const

returns the distribution’s b parameter;

• result_type min() const

returns the distribution’s a parameter;

• result_type max() const

returns the distribution’s b parameter;

18.9.2.16 Uniform real distribution (C++11)

The uniform_real_distribution<RealType = double> can be used to select RealType val-

ues randomly from a range of uniformly distributed RealType values.

It has two parameters, a and b, specifying, respectively, the half-open range of values ([a, b)) that

can be returned by the distribution.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = 0, RealType b = max(RealType));

RealType a() const;

RealType b() const;

};

Constructors and members:

• uniform_real_distribution<>(RealType a = 0, RealType b = max(RealType)) con-

structs a uniform_real distribution for the specified range of values.

• uniform_real_distribution<>(param_type const ¶m) constructs a uniform_real

distribution according to the values stored in the param struct.

• RealType a() const

returns the distribution’s a parameter;

• RealType b() const

returns the distribution’s b parameter;

• result_type min() const

returns the distribution’s a parameter;

• result_type max() const

returns the distribution’s b parameter;

18.9.2.17 Weibull distribution (C++11)

The weibull_distribution<RealType = double> is commonly used in reliability engineering

and in survival (life data) analysis.

522 CHAPTER 18. THE STANDARD TEMPLATE LIBRARY

It has two or three parameters and the two-parameter variant is offered by the STL. The three

parameter variant has a shape (or slope) parameter, a scale parameter and a location parameter.

The two parameter variant implicitly uses the location parameter value 0. In the two parameter

variant the shape parameter (a) and the scale parameter (b) are provided. See

http://www.weibull.com/hotwire/issue14/relbasics14.htm for an interesting coverage of

the meaning of the Weibull distribution’s parameters.

Defined types:

typedef RealType result_type;

struct param_type

{

explicit param_type(RealType a = RealType(1),

RealType b = RealType(1));

RealType a() const; // the shape (slope) parameter

RealType b() const; // the scale parameter

};

Constructors and members:

• weibull_distribution<>(RealType a = 1, RealType b = 1) constructs a weibull dis-

tribution with specified a and b parameters;

• weibull_distribution<>(param_type const ¶m) constructs a weibull distribution

according to the values stored in the param struct.

• RealType a() const

returns the distribution’s shape (or slope) parameter;

• RealType stddev() const

returns the distribution’s scale parameter;

• result_type min() const

returns 0;

• result_type max() const

returns the maximum value of result_type;

Chapter 19

The STL Generic Algorithms

19.1 The Generic Algorithms

Before using the generic algorithms presented in this chapter, except for those in the Operators

category (defined below), the <algorithm> header file must have been included. Before using a

generic algorithm in the Operators category the <numeric> header file must have been included.

In the previous chapter the Standard Template Library (STL) was introduced. An important el-

ement of the STL, the generic algorithms, was not covered in that chapter as they form a fairly

extensive part of the STL. Over time the STL has grown considerably, mainly as a result of a grow-

ing importance and appreciation of templates. Covering generic algorithm in the STL chapter itself

would turn that chapter into an unwieldy one and so the generic algorithms were moved to a chapter

of their own.

Generic algorithms perform an amazing task. Due to the strength of templates, algorithms could

be developed that can be applied to a wide range of different data types while maintaining type

safety. The prototypical example of this is the sort generic algorithm. To contrast: while C requires

programmers to write callback functions in which type-unsafe void const * parameters have to

be used, internally forcing the programmer to resort to casts, STL’s sort frequently allows the

programmer merely to state something akin to

sort(first-element, last-element)

Generic algoritms should be used wherever possible. Avoid the urge to design your own code for com-

monly encountered algorithms. Make it a habit to first thoroughly search the generic algorithms for

an available candidate. The generic algorithms should become your weapon of choice when writing

code: acquire full familiarity with them and make their use your ‘second nature’.

This chapter’s sections cover the STL’s generic algorithms in alphabetical order. For each algorithm

the following information is provided:

• The required header file;

• The function prototype;

• A short description;

• A short example.

523

524 CHAPTER 19. THE STL GENERIC ALGORITHMS

In the prototypes of the algorithms Type is used to specify a generic data type. Furthermore, the par-

ticular type of iterator (see section 18.2) that is required is mentioned as well as other generic types

that might be required (e.g., performing BinaryOperations, like plus<Type>). Although iterators

are commonly provided by abstract containers and comparable pre-defined data structrues, at some

point you may want to design your own iterators. Section 21.13 offers guidelines for constructing

your own iterator classes and provides an overview of of operators that must be implemented for the

various types of iterators.

Almost every generic algorithm expects an iterator range [first, last), defining the series of

elements on which the algorithm operates. The iterators point to objects or values. When an iter-

ator points to a Type value or object, function objects used by the algorithms usually receive Type

const & objects or values. Usually function objects cannot modify the objects they receive as their

arguments. This does not hold true for modifying generic algorithms, which are of course able to

modify the objects they operate upon.

Generic algorithms may be categorized. The C++ Annotations distinguishes the following categories

of generic algorithms:

• Comparators: comparing (ranges of) elements:

equal; includes; lexicographical_compare; max; min; mismatch;

• Copiers: performing copy operations:

copy; copy_backward; partial_sort_copy; remove_copy; remove_copy_if; replace_copy;

replace_copy_if; reverse_copy; rotate_copy; unique_copy;

• Counters: performing count operations:

count; count_if;

• Heap operators: manipulating a max-heap:

make_heap; pop_heap; push_heap; sort_heap;

• Initializers: initializing data:

fill; fill_n; generate; generate_n;

• Operators: performing arithmetic operations of some sort:

accumulate; adjacent_difference; inner_product; partial_sum;

• Searchers: performing search (and find) operations:

adjacent_find; binary_search; equal_range; find; find_end; find_first_of; find_if; lower_bound;

max_element; min_element; search; search_n; set_difference; set_intersection;

set_symmetric_difference; set_union; upper_bound;

• Shufflers: performing reordering operations (sorting, merging, permuting, shuffling, swap-

ping):

inplace_merge; iter_swap; merge; next_permutation; nth_element; partial_sort; par-

tial_sort_copy; partition; prev_permutation; random_shuffle; remove; remove_copy;

remove_copy_if; remove_if; reverse; reverse_copy; rotate; rotate_copy; sort; stable_partition;

stable_sort; swap; unique;

• Visitors: visiting elements in a range:

for_each; replace; replace_copy; replace_copy_if; replace_if; transform; unique_copy;

19.1. THE GENERIC ALGORITHMS 525

19.1.1 accumulate

• Header file: <numeric>

• Function prototypes:

– Type accumulate(InputIterator first, InputIterator last, Type init);

– Type accumulate(InputIterator first, InputIterator last, Type init,

BinaryOperation op);

• Description:

– The first prototype: operator+ is applied to all elements implied by the iterator range

and to the initial value init. The resulting value is returned.

– The second prototype: the binary operator op is applied to all elements implied by the

iterator range and to the initial value init, and the resulting value is returned.

• Example:

#include <numeric>

#include <vector>

#include <iostream>

using namespace std;

int main()

{

int ia[] = {1, 2, 3, 4};

vector<int> iv(ia, ia + 4);

cout <<

"Sum of values: " << accumulate(iv.begin(), iv.end(), int()) <<

"\n"

"Product of values: " << accumulate(iv.begin(), iv.end(), int(1),

multiplies<int>()) << ’\n’;

}

/*
Displays:

Sum of values: 10

Product of values: 24

*/

19.1.2 adjacent_difference

• Header file: <numeric>

• Function prototypes:

– OutputIterator adjacent_difference(InputIterator first,

InputIterator last, OutputIterator result);

– OutputIterator adjacent_difference(InputIterator first,

InputIterator last, OutputIterator result, BinaryOperation op);

526 CHAPTER 19. THE STL GENERIC ALGORITHMS

• Description: All operations are performed on the original values, all computed values are re-

turned values.

– The first prototype: the first returned element is equal to the first element of the input

range. The remaining returned elements are equal to the difference of the corresponding

element in the input range and its previous element.

– The second prototype: the first returned element is equal to the first element of the input

range. The remaining returned elements are equal to the result of the binary operator op

applied to the corresponding element in the input range (left operand) and its previous

element (right operand).

• Example:

#include <numeric>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

int ia[] = {1, 2, 5, 10};

vector<int> iv(ia, ia + 4);

vector<int> ov(iv.size());

adjacent_difference(iv.begin(), iv.end(), ov.begin());

copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));

cout << ’\n’;

adjacent_difference(iv.begin(), iv.end(), ov.begin(), minus<int>());

copy(ov.begin(), ov.end(), ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

1 1 3 5

1 1 3 5

*/

19.1.3 adjacent_find

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator adjacent_find(ForwardIterator first, ForwardIterator last);

– OutputIterator adjacent_find(ForwardIterator first, ForwardIterator last,

Predicate pred);

• Description:

– The first prototype: the iterator pointing to the first element of the first pair of two adja-

cent equal elements is returned. If no such element exists, last is returned.

19.1. THE GENERIC ALGORITHMS 527

– The second prototype: the iterator pointing to the first element of the first pair of two

adjacent elements for which the binary predicate pred returns true is returned. If no

such element exists, last is returned.

• Example:

#include <algorithm>

#include <string>

#include <iostream>

using namespace std;

class SquaresDiff

{

size_t d_minimum;

public:

SquaresDiff(size_t minimum)

:

d_minimum(minimum)

{}

bool operator()(size_t first, size_t second)

{

return second * second - first * first >= d_minimum;

}

};

int main()

{

string sarr[] =

{

"Alpha", "bravo", "charley", "delta", "echo", "echo",

"foxtrot", "golf"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

string *result = adjacent_find(sarr, last);

cout << *result << ’\n’;

result = adjacent_find(++result, last);

cout << "Second time, starting from the next position:\n" <<

(

result == last ?

"** No more adjacent equal elements **"

:

"*result"

) << ’\n’;

size_t iv[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

size_t *ilast = iv + sizeof(iv) / sizeof(size_t);

size_t *ires = adjacent_find(iv, ilast, SquaresDiff(10));

cout <<

"The first numbers for which the squares differ at least 10: "

<< *ires << " and " << *(ires + 1) << ’\n’;

}

/*
Displays:

528 CHAPTER 19. THE STL GENERIC ALGORITHMS

echo

Second time, starting from the next position:

** No more adjacent equal elements **
The first numbers for which the squares differ at least 10: 5 and 6

*/

19.1.4 binary_search

• Header file: <algorithm>

• Function prototypes:

– bool binary_search(ForwardIterator first, ForwardIterator last,

Type const &value);

– bool binary_search(ForwardIterator first, ForwardIterator last,

Type const &value, Comparator comp);

• Description:

– The first prototype: value is looked up using binary search in the series of elements

implied by the iterator range [first, last). The elements in the range must have

been sorted by the Type::operator< function. True is returned if the element was

found, false otherwise.

– The second prototype: value is looked up using binary search in the series of elements

implied by the iterator range [first, last). The elements in the range must have

been sorted by the Comparator function object. True is returned if the element was

found, false otherwise.

• Example:

#include <algorithm>

#include <string>

#include <iostream>

#include <functional>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

bool result = binary_search(sarr, last, "foxtrot");

cout << (result ? "found " : "didn’t find ") << "foxtrot" << ’\n’;

reverse(sarr, last); // reverse the order of elements

// binary search now fails:

result = binary_search(sarr, last, "foxtrot");

cout << (result ? "found " : "didn’t find ") << "foxtrot" << ’\n’;

// ok when using appropriate

// comparator:

19.1. THE GENERIC ALGORITHMS 529

result = binary_search(sarr, last, "foxtrot", greater<string>());

cout << (result ? "found " : "didn’t find ") << "foxtrot" << ’\n’;

return 0;

}

/*
Displays:

found foxtrot

didn’t find foxtrot

found foxtrot

*/

19.1.5 copy

• Header file: <algorithm>

• Function prototype:

– OutputIterator copy(InputIterator first, InputIterator last,

OutputIterator destination);

• Description:

– The series of elements implied by the iterator range [first, last) is copied to an out-

put range, starting at destination using the assignment operator of the underlying data

type. The return value is the OutputIterator pointing just beyond the last element that

was copied to the destination range (so, ‘last’ in the destination range is returned).

• Example:

Note the second call to copy. It uses an ostream_iterator for string objects. This iterator

writes the string values to the specified ostream (i.e., cout), separating the values by the

specified separation string (i.e., " ").

#include <algorithm>

#include <string>

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy(sarr + 2, last, sarr); // move all elements two positions left

// copy to cout using an ostream_iterator

// for strings,

copy(sarr, last, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

// Displays: charley delta echo foxtrot golf hotel golf hotel

530 CHAPTER 19. THE STL GENERIC ALGORITHMS

• See also: unique_copy

19.1.6 copy_backward

• Header file: <algorithm>

• Function prototype:

– BidirectionalIterator copy_backward(InputIterator first,

InputIterator last, BidirectionalIterator last2);

• Description:

– The series of elements implied by the iterator range [first, last) are copied from

the element at position last - 1 until (and including) the element at position first to

the element range, ending at position last2 - 1 using the assignment operator of the

underlying data type. The destination range is therefore [last2 - (last - first),

last2).

Note that this algorithm does not reverse the order of the elements when copying them to

the destination range.

The return value is the BidirectionalIterator pointing to the last element that was copied

to the destination range (so, ‘first’ in the destination range, pointed to by last2 - (last

- first), is returned).

• Example:

#include <algorithm>

#include <string>

#include <iostream>

#include <iterator>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(

copy_backward(sarr + 3, last, last - 3),

last,

ostream_iterator<string>(cout, " ")

);

cout << ’\n’;

}

// Displays: golf hotel foxtrot golf hotel foxtrot golf hotel

19.1.7 count

• Header file: <algorithm>

19.1. THE GENERIC ALGORITHMS 531

• Function prototype:

– size_t count(InputIterator first, InputIterator last, Type const &value);

• Description:

– The number of times value occurs in the iterator range [first, last) is returned.

Uses Type::operator== to determine whether value is equal to an element in the iter-

ator range.

• Example:

#include <algorithm>

#include <iostream>

using namespace std;

int main()

{

int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "Number of times the value 3 is available: " <<

count(ia, ia + sizeof(ia) / sizeof(int), 3) <<

’\n’;

}

// Displays: Number of times the value 3 is available: 3

19.1.8 count_if

• Header file: <algorithm>

• Function prototype:

– size_t count_if(InputIterator first, InputIterator last,

Predicate predicate);

• Description:

– The number of times unary predicate ‘predicate’ returns true when applied to the ele-

ments implied by the iterator range [first, last) is returned.

• Example:

#include <algorithm>

#include <iostream>

using namespace std;

class Odd

{

public:

bool operator()(int value) const

{

return value & 1;

}

};

int main()

{

532 CHAPTER 19. THE STL GENERIC ALGORITHMS

int ia[] = {1, 2, 3, 4, 3, 4, 2, 1, 3};

cout << "The number of odd values in the array is: " <<

count_if(ia, ia + sizeof(ia) / sizeof(int), Odd()) << ’\n’;

}

// Displays: The number of odd values in the array is: 5

19.1.9 equal

• Header file: <algorithm>

• Function prototypes:

– bool equal(InputIterator first, InputIterator last, InputIterator

otherFirst);

– bool equal(InputIterator first, InputIterator last, InputIterator

otherFirst, BinaryPredicate pred);

• Description:

– The first prototype: the elements in the range [first, last) are compared to a range of

equal length starting at otherFirst. The function returns true if the visited elements in

both ranges are equal pairwise. The ranges need not be of equal length, only the elements

in the indicated range are considered (and must be available).

– The second prototype: the elements in the range [first, last) are compared to a range

of equal length starting at otherFirst. The function returns true if the binary predi-

cate, applied to all corresponding elements in both ranges returns true for every pair of

corresponding elements. The ranges need not be of equal length, only the elements in the

indicated range are considered (and must be available).

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iostream>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first,

string const &second) const

{

return !strcasecmp(first.c_str(), second.c_str());

}

};

int main()

{

string first[] =

{

"Alpha", "bravo", "Charley", "delta", "Echo",

"foxtrot", "Golf", "hotel"

};

19.1. THE GENERIC ALGORITHMS 533

string second[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string *last = first + sizeof(first) / sizeof(string);

cout << "The elements of ‘first’ and ‘second’ are pairwise " <<

(equal(first, last, second) ? "equal" : "not equal") <<

’\n’ <<

"compared case-insensitively, they are " <<

(

equal(first, last, second, CaseString()) ?

"equal" : "not equal"

) << ’\n’;

}

/*
Displays:

The elements of ‘first’ and ‘second’ are pairwise not equal

compared case-insensitively, they are equal

*/

19.1.10 equal_range

• Header file: <algorithm>

• Function prototypes:

– pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator

first, ForwardIterator last, Type const &value);

– pair<ForwardIterator, ForwardIterator> equal_range(ForwardIterator

first, ForwardIterator last, Type const &value, Compare comp);

• Description (see also identically named member functions of, e.g., the map (section 12.4.7) and

multimap (section 12.4.8)):

– The first prototype: starting from a sorted sequence (where the operator< of the data

type to which the iterators point was used to sort the elements in the provided range), a

pair of iterators is returned representing the return value of, respectively, lower_bound

(returning the first element that is not smaller than the provided reference value, see sec-

tion 19.1.25) and upper_bound (returning the first element beyond the provided reference

value, see section 19.1.66).

– The second prototype: starting from a sorted sequence (where the comp function object

was used to sort the elements in the provided range), a pair of iterators is returned rep-

resenting the return values of, respectively, the functions lower_bound (section 19.1.25)

and upper_bound (section 19.1.66).

• Example:

#include <algorithm>

#include <functional>

#include <iterator>

#include <iostream>

using namespace std;

534 CHAPTER 19. THE STL GENERIC ALGORITHMS

int main()

{

int range[] = {1, 3, 5, 7, 7, 9, 9, 9};

size_t const size = sizeof(range) / sizeof(int);

pair<int *, int *> pi;

pi = equal_range(range, range + size, 6);

cout << "Lower bound for 6: " << *pi.first << ’\n’;

cout << "Upper bound for 6: " << *pi.second << ’\n’;

pi = equal_range(range, range + size, 7);

cout << "Lower bound for 7: ";

copy(pi.first, range + size, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "Upper bound for 7: ";

copy(pi.second, range + size, ostream_iterator<int>(cout, " "));

cout << ’\n’;

sort(range, range + size, greater<int>());

cout << "Sorted in descending order\n";

copy(range, range + size, ostream_iterator<int>(cout, " "));

cout << ’\n’;

pi = equal_range(range, range + size, 7, greater<int>());

cout << "Lower bound for 7: ";

copy(pi.first, range + size, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "Upper bound for 7: ";

copy(pi.second, range + size, ostream_iterator<int>(cout, " "));

cout << ’\n’;

return 0;

}

/*
Displays:

Lower bound for 6: 7

Upper bound for 6: 7

Lower bound for 7: 7 7 9 9 9

Upper bound for 7: 9 9 9

Sorted in descending order

9 9 9 7 7 5 3 1

Lower bound for 7: 7 7 5 3 1

Upper bound for 7: 5 3 1

*/

19.1. THE GENERIC ALGORITHMS 535

19.1.11 fill

• Header file: <algorithm>

• Function prototype:

– void fill(ForwardIterator first, ForwardIterator last, Type const &value);

• Description:

– all the elements implied by the iterator range [first, last) are initialized to value,

overwriting the previously stored values.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

vector<int> iv(8);

fill(iv.begin(), iv.end(), 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

// Displays: 8 8 8 8 8 8 8 8

19.1.12 fill_n

• Header file: <algorithm>

• Function prototype:

– void fill_n(ForwardIterator first, Size n, Type const &value);

• Description:

– n elements starting at the element pointed to by first are initialized to value, overwrit-

ing the previous stored values.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

vector<int> iv(8);

536 CHAPTER 19. THE STL GENERIC ALGORITHMS

fill_n(iv.begin() + 2, 4, 8);

copy(iv.begin(), iv.end(), ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

// Displays: 0 0 8 8 8 8 0 0

19.1.13 find

• Header file: <algorithm>

• Function prototype:

– InputIterator find(InputIterator first, InputIterator last, Type const

&value);

• Description:

– Element value is searched for in the range of the elements implied by the iterator range

[first, last). An iterator pointing to the first element found is returned. If the ele-

ment was not found, last is returned. The operator== of the underlying data type is

used to compare the elements.

• Example:

#include <algorithm>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(

find(sarr, last, "delta"), last,

ostream_iterator<string>(cout, " ")

);

cout << ’\n’;

if (find(sarr, last, "india") == last)

{

cout << "‘india’ was not found in the range\n";

copy(sarr, last, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

}

/*

19.1. THE GENERIC ALGORITHMS 537

Displays:

delta echo

‘india’ was not found in the range

alpha bravo charley delta echo

*/

19.1.14 find_end

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2)

– ForwardIterator1 find_end(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred)

• Description:

– The first prototype: the sequence of elements implied by [first1, last1) is searched

for the last occurrence of the sequence of elements implied by the range [first2, last2).

If the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator

pointing to the first element of the matching sequence is returned. The operator== of

the underlying data type is used to compare the elements in the two sequences.

– The second prototype: the sequence of elements implied by [first1, last1) is searched

for the last occurrence of the sequence of elements implied by [first2, last2). If

the sequence [first2, last2) is not found, last1 is returned, otherwise an iterator

pointing to the first element of the matching sequence is returned. The provided binary

predicate is used to compare the elements in the two sequences.

• Example:

#include <algorithm>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

class Twice

{

public:

bool operator()(size_t first, size_t second) const

{

return first == (second << 1);

}

};

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel",

"foxtrot", "golf", "hotel",

"india", "juliet", "kilo"

538 CHAPTER 19. THE STL GENERIC ALGORITHMS

};

string search[] =

{

"foxtrot",

"golf",

"hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(

find_end(sarr, last, search, search + 3), // sequence starting

last, ostream_iterator<string>(cout, " ") // at 2nd ’foxtrot’

);

cout << ’\n’;

size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};

size_t nrs[] = {2, 3, 4};

copy // sequence of values starting at last sequence

(// of range[] that are twice the values in nrs[]

find_end(range, range + 9, nrs, nrs + 3, Twice()),

range + 9, ostream_iterator<size_t>(cout, " ")

);

cout << ’\n’;

}

/*
Displays:

foxtrot golf hotel india juliet kilo

4 6 8 10

*/

19.1.15 find_first_of

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 first2, ForwardIterator2 last2)

– ForwardIterator1 find_first_of(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate

pred)

• Description:

– The first prototype: the sequence of elements implied by [first1, last1) is searched

for the first occurrence of an element in the sequence of elements implied by the range

[first2, last2). If no element in the sequence [first2, last2) is found, last1 is

returned, otherwise an iterator pointing to the first element in [first1, last1) that is

equal to an element in [first2, last2) is returned. The operator== of the underlying

data type is used to compare the elements in the two sequences.

– The second prototype: the sequence of elements implied by [first1, last1) is searched

for the first occurrence of an element in the sequence of elements implied by [first2,

19.1. THE GENERIC ALGORITHMS 539

last2). Each element in the range [first1, last1) is compared to each element in

the range [first2, last2), and an iterator to the first element in [first1, last1)

for which the binary predicate pred (receiving an the element out of the range [first1,

last1) and an element from the range [first2, last2)) returns true is returned.

Otherwise, last1 is returned.

• Example:

#include <algorithm>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

class Twice

{

public:

bool operator()(size_t first, size_t second) const

{

return first == (second << 1);

}

};

int main()

{

string sarr[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel",

"foxtrot", "golf", "hotel",

"india", "juliet", "kilo"

};

string search[] =

{

"foxtrot",

"golf",

"hotel"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

(// sequence starting

find_first_of(sarr, last, search, search + 3),// at 1st ’foxtrot’

last, ostream_iterator<string>(cout, " ")

);

cout << ’\n’;

size_t range[] = {2, 4, 6, 8, 10, 4, 6, 8, 10};

size_t nrs[] = {2, 3, 4};

// copy the sequence of values in ’range’, starting at the

// first element in ’range’ that is equal to twice one of the

// values in ’nrs’, and ending at the last element of ’range’

copy

(

find_first_of(range, range + 9, nrs, nrs + 3, Twice()),

540 CHAPTER 19. THE STL GENERIC ALGORITHMS

range + 9, ostream_iterator<size_t>(cout, " ")

);

cout << ’\n’;

}

/*
Displays:

foxtrot golf hotel foxtrot golf hotel india juliet kilo

4 6 8 10 4 6 8 10

*/

19.1.16 find_if

• Header file: <algorithm>

• Function prototype:

– InputIterator find_if(InputIterator first, InputIterator last, Predicate

pred);

• Description:

– An iterator pointing to the first element in the range implied by the iterator range [first,

last) for which the (unary) predicate pred returns true is returned. If the element was

not found, last is returned.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iterator>

#include <iostream>

using namespace std;

class CaseName

{

std::string d_string;

public:

CaseName(char const *str): d_string(str)

{}

bool operator()(std::string const &element) const

{

return strcasecmp(element.c_str(), d_string.c_str()) == 0;

}

};

int main()

{

string sarr[] =

{

"Alpha", "Bravo", "Charley", "Delta", "Echo"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

copy

19.1. THE GENERIC ALGORITHMS 541

(

find_if(sarr, last, CaseName("charley")),

last, ostream_iterator<string>(cout, " ")

);

cout << ’\n’;

if (find_if(sarr, last, CaseName("india")) == last)

{

cout << "‘india’ was not found in the range\n";

copy(sarr, last, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

}

/*
Displays:

Charley Delta Echo

‘india’ was not found in the range

Alpha Bravo Charley Delta Echo

*/

19.1.17 for_each

• Header file: <algorithm>

• Function prototype:

– Function for_each(ForwardIterator first, ForwardIterator last, Function

func);

• Description:

– Each of the elements implied by the iterator range [first, last) is passed in turn as a

reference to the function (or function object) func. The function may modify the elements

it receives (as the used iterator is a forward iterator). Alternatively, if the elements should

be transformed, transform (see section 19.1.63) can be used. The function itself or a

copy of the provided function object is returned: see the example below, in which an extra

argument list is added to the for_each call, which argument is eventually also passed to

the function given to for_each. Within for_each the return value of the function that

is passed to it is ignored.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iostream>

#include <cctype>

using namespace std;

void lowerCase(char &c) // ‘c’ *is* modified

{

c = tolower(static_cast<unsigned char>(c));

}

void capitalizedOutput(string const &str) // ‘str’ is *not* modified

{

542 CHAPTER 19. THE STL GENERIC ALGORITHMS

char *tmp = strcpy(new char[str.size() + 1], str.c_str());

for_each(tmp + 1, tmp + str.size(), lowerCase);

tmp[0] = toupper(*tmp);

cout << tmp << " ";

delete tmp;

};

int main()

{

string sarr[] =

{

"alpha", "BRAVO", "charley", "DELTA", "echo",

"FOXTROT", "golf", "HOTEL"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

for_each(sarr, last, capitalizedOutput)("that’s all, folks");

cout << ’\n’;

}

/*
Displays:

Alpha Bravo Charley Delta Echo Foxtrot Golf Hotel That’s all, folks

*/

• Here is another example using a function object:

#include <algorithm>

#include <string>

#include <iostream>

#include <cctype>

using namespace std;

void lowerCase(char &c)

{

c = tolower(static_cast<unsigned char>(c));

}

class Show

{

int d_count;

public:

Show()

:

d_count(0)

{}

void operator()(std::string &str)

{

std::for_each(str.begin(), str.end(), lowerCase);

str[0] = toupper(str[0]); // assuming str is not empty

std::cout << ++d_count << " " << str << "; ";

}

int count() const

{

return d_count;

19.1. THE GENERIC ALGORITHMS 543

}

};

int main()

{

string sarr[] =

{

"alpha", "BRAVO", "charley", "DELTA", "echo",

"FOXTROT", "golf", "HOTEL"

};

string *last = sarr + sizeof(sarr) / sizeof(string);

cout << for_each(sarr, last, Show()).count() << ’\n’;

}

/*
Displays (all on one line):

1 Alpha; 2 Bravo; 3 Charley; 4 Delta; 5 Echo; 6 Foxtrot;

7 Golf; 8 Hotel; 8

*/

The example also shows that the for_each algorithm may be used with functions defining const

and non-const parameters. Also, see section 19.1.63 for differences between the for_each and

transform generic algorithms.

The for_each algorithm cannot directly be used (i.e., by passing *this as the function object ar-

gument) inside a member function to modify its own object as the for_each algorithm first creates

its own copy of the passed function object. A lambda function or a wrapper class whose constructor

accepts a pointer or reference to the current object and possibly to one of its member functions solves

this problem.

19.1.18 generate

• Header file: <algorithm>

• Function prototype:

– void generate(ForwardIterator first, ForwardIterator last,

Generator generator);

• Description:

– All elements implied by the iterator range [first, last) are initialized by the return

value of generator, which can be a function or function object. Generator::operator()

does not receive any arguments. The example uses a well-known fact from algebra: in or-

der to obtain the square of n + 1, add 1 + 2 * n to n * n.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

class NaturalSquares

{

544 CHAPTER 19. THE STL GENERIC ALGORITHMS

size_t d_newsqr;

size_t d_last;

public:

NaturalSquares(): d_newsqr(0), d_last(0)

{}

size_t operator()()

{ // using: (a + 1)^2 == a^2 + 2*a + 1

return d_newsqr += (d_last++ << 1) + 1;

}

};

int main()

{

vector<size_t> uv(10);

generate(uv.begin(), uv.end(), NaturalSquares());

copy(uv.begin(), uv.end(), ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

// Displays: 1 4 9 16 25 36 49 64 81 100

19.1.19 generate_n

• Header file: <algorithm>

• Function prototypes:

– void generate_n(ForwardIterator first, Size n, Generator generator);

• Description:

– n elements starting at the element pointed to by iterator first are initialized by the

return value of generator, which can be a function or function object.

• Example:

#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

using namespace std;

class NaturalSquares

{

size_t d_newsqr;

size_t d_last;

public:

NaturalSquares(): d_newsqr(0), d_last(0)

{}

size_t operator()()

{ // using: (a + 1)^2 == a^2 + 2*a + 1

return d_newsqr += (d_last++ << 1) + 1;

}

19.1. THE GENERIC ALGORITHMS 545

};

int main()

{

vector<size_t> uv(10);

generate_n(uv.begin(), 5, NaturalSquares());

copy(uv.begin(), uv.end(), ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

// Displays: 1 4 9 16 25 0 0 0 0 0

19.1.20 includes

• Header file: <algorithm>

• Function prototypes:

– bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2

first2, InputIterator2 last2);

– bool includes(InputIterator1 first1, InputIterator1 last1, InputIterator2

first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: both sequences of elements implied by the ranges [first1, last1)

and [first2, last2) should have been sorted using the operator< of the data type

to which the iterators point. The function returns true if every element in the second

sequence [first2, last2) is contained in the first sequence [first1, last1) (the

second range is a subset of the first range).

– The second prototype: both sequences of elements implied by the ranges [first1, last1)

and [first2, last2) should have been sorted using the comp function object. The func-

tion returns true if every element in the second sequence [first2, last2) is contained

in the first sequence [first1, last1) (the second range is a subset of the first range).

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iostream>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first,

string const &second) const

{

return !strcasecmp(first.c_str(), second.c_str());

}

};

int main()

{

546 CHAPTER 19. THE STL GENERIC ALGORITHMS

string first1[] =

{

"alpha", "bravo", "charley", "delta", "echo",

"foxtrot", "golf", "hotel"

};

string first2[] =

{

"Alpha", "bravo", "Charley", "delta", "Echo",

"foxtrot", "Golf", "hotel"

};

string second[] =

{

"charley", "foxtrot", "hotel"

};

size_t n = sizeof(first1) / sizeof(string);

cout << "The elements of ‘second’ are " <<

(includes(first1, first1 + n, second, second + 3) ? "" : "not")

<< " contained in the first sequence:\n"

"second is a subset of first1\n";

cout << "The elements of ‘first1’ are " <<

(includes(second, second + 3, first1, first1 + n) ? "" : "not")

<< " contained in the second sequence\n";

cout << "The elements of ‘second’ are " <<

(includes(first2, first2 + n, second, second + 3) ? "" : "not")

<< " contained in the first2 sequence\n";

cout << "Using case-insensitive comparison,\n"

"the elements of ‘second’ are "

<<

(includes(first2, first2 + n, second, second + 3, CaseString()) ?

"" : "not")

<< " contained in the first2 sequence\n";

}

/*
Displays:

The elements of ‘second’ are contained in the first sequence:

second is a subset of first1

The elements of ‘first1’ are not contained in the second sequence

The elements of ‘second’ are not contained in the first2 sequence

Using case-insensitive comparison,

the elements of ‘second’ are contained in the first2 sequence

*/

19.1.21 inner_product

• Header file: <numeric>

• Function prototypes:

– Type inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, Type init);

19.1. THE GENERIC ALGORITHMS 547

– Type inner_product(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, Type init, BinaryOperator1 op1, BinaryOperator2

op2);

• Description:

– The first prototype: the sum of all pairwise products of the elements implied by the range

[first1, last1) and the same number of elements starting at the element pointed to

by first2 are added to init, and this sum is returned. The function uses the operator+

and operator* of the data type to which the iterators point.

– The second prototype: binary operator op1 instead of the default addition operator, and

binary operator op2 instead of the default multiplication operator are applied to all pair-

wise elements implied by the range [first1, last1) and the same number of elements

starting at the element pointed to by first2. The results of the binary operator calls are

added to init and init’s final value is returned.

• Example:

#include <numeric>

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

using namespace std;

class Cat

{

std::string d_sep;

public:

Cat(string const &sep)

:

d_sep(sep)

{}

string operator()

(string const &s1, string const &s2) const

{

return s1 + d_sep + s2;

}

};

int main()

{

size_t ia1[] = {1, 2, 3, 4, 5, 6, 7};

size_t ia2[] = {7, 6, 5, 4, 3, 2, 1};

size_t init = 0;

cout << "The sum of all squares in ";

copy(ia1, ia1 + 7, ostream_iterator<size_t>(cout, " "));

cout << "is " <<

inner_product(ia1, ia1 + 7, ia1, init) << ’\n’;

cout << "The sum of all cross-products in ";

copy(ia1, ia1 + 7, ostream_iterator<size_t>(cout, " "));

cout << "and ";

copy(ia2, ia2 + 7, ostream_iterator<size_t>(cout, " "));

cout << "is " <<

548 CHAPTER 19. THE STL GENERIC ALGORITHMS

inner_product(ia1, ia1 + 7, ia2, init) << ’\n’;

string names1[] = {"Frank", "Karel", "Piet"};

string names2[] = {"Brokken", "Kubat", "Plomp"};

cout << "A list of all combined names in ";

copy(names1, names1 + 3, ostream_iterator<string>(cout, " "));

cout << "and\n";

copy(names2, names2 + 3, ostream_iterator<string>(cout, " "));

cout << "is:" <<

inner_product(names1, names1 + 3, names2, string("\t"),

Cat("\n\t"), Cat(" ")) <<

’\n’;

}

/*
Displays:

The sum of all squares in 1 2 3 4 5 6 7 is 140

The sum of all cross-products in 1 2 3 4 5 6 7 and 7 6 5 4 3 2 1 is 84

A list of all combined names in Frank Karel Piet and

Brokken Kubat Plomp is:

Frank Brokken

Karel Kubat

Piet Plomp

*/

19.1.22 inplace_merge

• Header file: <algorithm>

• Function prototypes:

– void inplace_merge(BidirectionalIterator first, BidirectionalIterator

middle, BidirectionalIterator last);

– void inplace_merge(BidirectionalIterator first, BidirectionalIterator

middle, BidirectionalIterator last, Compare comp);

• Description:

– The first prototype: the two (sorted) ranges [first, middle) and [middle, last) are

merged, keeping a sorted list (using the operator< of the data type to which the iterators

point). The final series is stored in the range [first, last).

– The second prototype: the two (sorted) ranges [first, middle) and [middle, last)

are merged, keeping a sorted list (using the boolean result of the binary comparison oper-

ator comp). The final series is stored in the range [first, last).

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iterator>

#include <iostream>

using namespace std;

19.1. THE GENERIC ALGORITHMS 549

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string range[] =

{

"alpha", "charley", "echo", "golf",

"bravo", "delta", "foxtrot",

};

inplace_merge(range, range + 4, range + 7);

copy(range, range + 7, ostream_iterator<string>(cout, " "));

cout << ’\n’;

string range2[] =

{

"ALFA", "CHARLEY", "DELTA", "foxtrot", "hotel",

"bravo", "ECHO", "GOLF"

};

inplace_merge(range2, range2 + 5, range2 + 8, CaseString());

copy(range2, range2 + 8, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

alpha bravo charley delta echo foxtrot golf

ALFA bravo CHARLEY DELTA ECHO foxtrot GOLF hotel

*/

19.1.23 iter_swap

• Header file: <algorithm>

• Function prototype:

– void iter_swap(ForwardIterator1 iter1, ForwardIterator2 iter2);

• Description:

– The elements pointed to by iter1 and iter2 are swapped.

• Example:

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

using namespace std;

550 CHAPTER 19. THE STL GENERIC ALGORITHMS

int main()

{

string first[] = {"alpha", "bravo", "charley"};

string second[] = {"echo", "foxtrot", "golf"};

size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

for (size_t idx = 0; idx < n; ++idx)

iter_swap(first + idx, second + idx);

cout << "After:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Before:

alpha bravo charley

echo foxtrot golf

After:

echo foxtrot golf

alpha bravo charley

*/

19.1.24 lexicographical_compare

• Header file: <algorithm>

• Function prototypes:

– bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2);

– bool lexicographical_compare(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, Compare comp);

• Description:

– The first prototype: the corresponding pairs of elements in the ranges pointed to by the

ranges [first1, last1) and [first2, last2) are compared. The function returns

true

∗ at the first element in the first range which is less than the corresponding element in

the second range (using operator< of the underlying data type),

∗ if last1 is reached, but last2 isn’t reached yet.

False is returned in the other cases, which indicates that the first sequence is not lexico-

graphically less than the second sequence. So, false is returned:

19.1. THE GENERIC ALGORITHMS 551

∗ at the first element in the first range which is greater than the corresponding element

in the second range (using operator< of the data type to which the iterators point,

reversing the operands),

∗ if last2 is reached, but last1 isn’t reached yet,

∗ if last1 and last2 are reached.

– The second prototype: with this function the binary comparison operation as defined by

comp is used instead of operator< of the data type to which the iterators point.

• Example:

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first,

string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string word1 = "hello";

string word2 = "help";

cout << word1 << " is " <<

(

lexicographical_compare(word1.begin(), word1.end(),

word2.begin(), word2.end()) ?

"before "

:

"beyond or at "

) <<

word2 << " in the alphabet\n";

cout << word1 << " is " <<

(

lexicographical_compare(word1.begin(), word1.end(),

word1.begin(), word1.end()) ?

"before "

:

"beyond or at "

) <<

word1 << " in the alphabet\n";

cout << word2 << " is " <<

(

lexicographical_compare(word2.begin(), word2.end(),

552 CHAPTER 19. THE STL GENERIC ALGORITHMS

word1.begin(), word1.end()) ?

"before "

:

"beyond or at "

) <<

word1 << " in the alphabet\n";

string one[] = {"alpha", "bravo", "charley"};

string two[] = {"ALPHA", "BRAVO", "DELTA"};

copy(one, one + 3, ostream_iterator<string>(cout, " "));

cout << " is ordered " <<

(

lexicographical_compare(one, one + 3,

two, two + 3, CaseString()) ?

"before "

:

"beyond or at "

);

copy(two, two + 3, ostream_iterator<string>(cout, " "));

cout << "\n"

"using case-insensitive comparisons.\n";

}

/*
Displays:

hello is before help in the alphabet

hello is beyond or at hello in the alphabet

help is beyond or at hello in the alphabet

alpha bravo charley is ordered before ALPHA BRAVO DELTA

using case-insensitive comparisons.

*/

19.1.25 lower_bound

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const Type &value);

– ForwardIterator lower_bound(ForwardIterator first, ForwardIterator last,

const Type &value, Compare comp);

• Description:

– The first prototype: the sorted elements indicated by the iterator range [first, last)

are searched for the first element that is not less than (i.e., greater than or equal to)

value. The returned iterator marks the location in the sequence where value can be

inserted without breaking the sorted order of the elements. The operator< of the data

type to which the iterators point is used. If no such element is found, last is returned.

– The second prototype: the elements indicated by the iterator range [first, last) must

have been sorted using the comp function (-object). Each element in the range is compared

to value using the comp function. An iterator to the first element for which the binary

19.1. THE GENERIC ALGORITHMS 553

predicate comp, applied to the elements of the range and value, returns false is re-

turned. If no such element is found, last is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

#include <functional>

using namespace std;

int main()

{

int ia[] = {10, 20, 30};

cout << "Sequence: ";

copy(ia, ia + 3, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "15 can be inserted before " <<

*lower_bound(ia, ia + 3, 15) << ’\n’;

cout << "35 can be inserted after " <<

(lower_bound(ia, ia + 3, 35) == ia + 3 ?

"the last element" : "???") << ’\n’;

iter_swap(ia, ia + 2);

cout << "Sequence: ";

copy(ia, ia + 3, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "15 can be inserted before " <<

*lower_bound(ia, ia + 3, 15, greater<int>()) << ’\n’;

cout << "35 can be inserted before " <<

(lower_bound(ia, ia + 3, 35, greater<int>()) == ia ?

"the first element " : "???") << ’\n’;

}

/*
Displays:

Sequence: 10 20 30

15 can be inserted before 20

35 can be inserted after the last element

Sequence: 30 20 10

15 can be inserted before 10

35 can be inserted before the first element

*/

19.1.26 max

• Header file: <algorithm>

• Function prototypes:

– Type const &max(Type const &one, Type const &two);

554 CHAPTER 19. THE STL GENERIC ALGORITHMS

– Type const &max(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: the larger of the two elements one and two is returned, using the

operator> of the data type to which the iterators point to determine which element is

the larger one.

– The second prototype: one is returned if the binary predicate comp(one, two) returns

true, otherwise two is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(second.c_str(), first.c_str()) > 0;

}

};

int main()

{

cout << "Word ’" << max(string("first"), string("second")) <<

"’ is lexicographically last\n";

cout << "Word ’" << max(string("first"), string("SECOND")) <<

"’ is lexicographically last\n";

cout << "Word ’" << max(string("first"), string("SECOND"),

CaseString()) << "’ is lexicographically last\n";

}

/*
Displays:

Word ’second’ is lexicographically last

Word ’first’ is lexicographically last

Word ’SECOND’ is lexicographically last

*/

19.1.27 max_element

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator max_element(ForwardIterator first, ForwardIterator last);

– ForwardIterator max_element(ForwardIterator first, ForwardIterator last,

Comparator comp);

19.1. THE GENERIC ALGORITHMS 555

• Description:

– The first prototype: an iterator pointing to the largest element in the range implied by

[first, last) is returned. The operator< of the data type to which the iterators

point is used to decide which of the elements is the largest.

– The second prototype: rather than using operator<, the binary predicate comp is used

to make the comparisons between the elements implied by the iterator range [first,

last). The element for which comp returns most often true, compared with other ele-

ments, is returned.

• Example:

#include <algorithm>

#include <iostream>

using namespace std;

class AbsValue

{

public:

bool operator()(int first, int second) const

{

return abs(first) < abs(second);

}

};

int main()

{

int ia[] = {-4, 7, -2, 10, -12};

cout << "The max. int value is " << *max_element(ia, ia + 5) << ’\n’;

cout << "The max. absolute int value is " <<

*max_element(ia, ia + 5, AbsValue()) << ’\n’;

}

/*
Displays:

The max. int value is 10

The max. absolute int value is -12

*/

19.1.28 merge

• Header file: <algorithm>

• Function prototypes:

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator merge(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result,

Compare comp);

• Description:

– The first prototype: the two (sorted) ranges [first1, last1) and [first2, last2)

are merged, keeping a sorted list (using the operator< of the data type to which the

iterators point). The final series is stored in the range starting at result and ending just

before the OutputIterator returned by the function.

556 CHAPTER 19. THE STL GENERIC ALGORITHMS

– The second prototype: the two (sorted) ranges [first1, last1) and [first2, last2)

are merged, keeping a sorted list (using the boolean result of the binary comparison op-

erator comp). The final series is stored in the range starting at result and ending just

before the OutputIterator returned by the function.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iterator>

#include <iostream>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string range1[] =

{ // 5 elements

"alpha", "bravo", "foxtrot", "hotel", "zulu"

};

string range2[] =

{ // 4 elements

"delta", "echo", "golf", "romeo"

};

string result[5 + 4];

copy(result,

merge(range1, range1 + 5, range2, range2 + 4, result),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

string range3[] =

{

"ALPHA", "bravo", "foxtrot", "HOTEL", "ZULU"

};

string range4[] =

{

"delta", "ECHO", "GOLF", "romeo"

};

copy(result,

merge(range3, range3 + 5, range4, range4 + 4, result,

CaseString()),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*

19.1. THE GENERIC ALGORITHMS 557

Displays:

alpha bravo delta echo foxtrot golf hotel romeo zulu

ALPHA bravo delta ECHO foxtrot GOLF HOTEL romeo ZULU

*/

19.1.29 min

• Header file: <algorithm>

• Function prototypes:

– Type const &min(Type const &one, Type const &two);

– Type const &min(Type const &one, Type const &two, Comparator comp);

• Description:

– The first prototype: the smaller of the two elements one and two is returned using the

operator< of the data type to which the iterators point to decide which of the two ele-

ments is the smaller.

– The second prototype: one is returned if the binary predicate comp(one, two) returns

false, otherwise two is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(second.c_str(), first.c_str()) > 0;

}

};

int main()

{

cout << "Word ’" << min(string("first"), string("second")) <<

"’ is lexicographically first\n";

cout << "Word ’" << min(string("first"), string("SECOND")) <<

"’ is lexicographically first\n";

cout << "Word ’" << min(string("first"), string("SECOND"),

CaseString()) << "’ is lexicographically first\n";

}

/*
Displays:

Word ’first’ is lexicographically first

Word ’SECOND’ is lexicographically first

Word ’first’ is lexicographically first

*/

558 CHAPTER 19. THE STL GENERIC ALGORITHMS

19.1.30 min_element

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator min_element(ForwardIterator first, ForwardIterator last);

– ForwardIterator min_element(ForwardIterator first, ForwardIterator last,

Comparator comp);

• Description:

– The first prototype: an iterator pointing to the smallest element in the range implied by

the range [first, last) is returned using operator< of the data type to which the

iterators point to decide which of the elements is the smallest.

– The second prototype: rather than using operator<, the binary predicate comp is used

to make the comparisons between the elements implied by the iterator range [first,

last). The element for which comp returns false most often is returned.

• Example:

#include <algorithm>

#include <iostream>

using namespace std;

class AbsValue

{

public:

bool operator()(int first, int second) const

{

return abs(first) < abs(second);

}

};

int main()

{

int ia[] = {-4, 7, -2, 10, -12};

cout << "The minimum int value is " << *min_element(ia, ia + 5) <<

’\n’;

cout << "The minimum absolute int value is " <<

*min_element(ia, ia + 5, AbsValue()) << ’\n’;

}

/*
Displays:

The minimum int value is -12

The minimum absolute int value is -2

*/

19.1.31 mismatch

• Header file: <algorithm>

• Function prototypes:

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2);

19.1. THE GENERIC ALGORITHMS 559

– pair<InputIterator1, InputIterator2> mismatch(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2, Compare comp);

• Description:

– The first prototype: the two sequences of elements starting at first1 and first2 are

compared using the equality operator of the data type to which the iterators point. Com-

parison stops if the compared elements differ (i.e., operator== returns false) or last1

is reached. A pair containing iterators pointing to the final positions is returned. The

second sequence may contain more elements than the first sequence. The behavior of

the algorithm is undefined if the second sequence contains fewer elements than the first

sequence.

– The second prototype: the two sequences of elements starting at first1 and first2 are

compared using the binary comparison operation as defined by comp, instead of operator==.

Comparison stops if the comp function returns false or last1 is reached. A pair con-

taining iterators pointing to the final positions is returned. The second sequence may

contain more elements than the first sequence. The behavior of the algorithm is unde-

fined if the second sequence contains fewer elements than the first sequence.

• Example:

#include <algorithm>

#include <string>

#include <cstring>

#include <iostream>

#include <utility>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) == 0;

}

};

int main()

{

string range1[] =

{

"alpha", "bravo", "foxtrot", "hotel", "zulu"

};

string range2[] =

{

"alpha", "bravo", "foxtrot", "Hotel", "zulu"

};

pair<string *, string *> pss = mismatch(range1, range1 + 5, range2);

cout << "The elements " << *pss.first << " and " << *pss.second <<

" at offset " << (pss.first - range1) << " differ\n";

if

(

mismatch(range1, range1 + 5, range2, CaseString()).first

==

range1 + 5

560 CHAPTER 19. THE STL GENERIC ALGORITHMS

)

cout << "When compared case-insensitively they match\n";

}

/*
Displays:

The elements hotel and Hotel at offset 3 differ

When compared case-insensitively they match

*/

19.1.32 next_permutation

• Header file: <algorithm>

• Function prototypes:

– bool next_permutation(BidirectionalIterator first, BidirectionalIterator

last);

– bool next_permutation(BidirectionalIterator first, BidirectionalIterator

last, Comp comp);

• Description:

– The first prototype: the next permutation, given the sequence of elements in the range

[first, last), is determined. For example, if the elements 1, 2 and 3 are the range

for which next_permutation is called, then subsequent calls of next_permutation

reorders the following series:

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

This example shows that the elements are reordered such that each new permutation

represents the next bigger value (132 is bigger than 123, 213 is bigger than 132, etc.) using

operator< of the data type to which the iterators point. The value true is returned if

a reordering took place, the value false is returned if no reordering took place, which is

the case if the sequence represents the last (biggest) value. In that case, the sequence is

also sorted using operator<.

– The second prototype: the next permutation given the sequence of elements in the range

[first, last) is determined, using the binary predicate comp to compare elements.

The elements in the range are reordered. The value true is returned if a reordering took

place, the value false is returned if no reordering took place, which is the case if the

resulting sequence would haven been ordered using the binary predicate comp to compare

elements.

• Example:

#include <algorithm>

#include <iterator>

#include <iostream>

#include <string>

#include <cstring>

using namespace std;

19.1. THE GENERIC ALGORITHMS 561

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string saints[] = {"Oh", "when", "the", "saints"};

cout << "All permutations of ’Oh when the saints’:\n";

cout << "Sequences:\n";

do

{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

while (next_permutation(saints, saints + 4, CaseString()));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString());

cout << "Sequences:\n";

do

{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

while (next_permutation(saints, saints + 4, CaseString()));

}

/*
Displays (partially):

All permutations of ’Oh when the saints’:

Sequences:

Oh when the saints

saints Oh the when

saints Oh when the

saints the Oh when

...

After first sorting the sequence:

Sequences:

Oh saints the when

Oh saints when the

Oh the saints when

Oh the when saints

...

*/

19.1.33 nth_element

• Header file: <algorithm>

562 CHAPTER 19. THE STL GENERIC ALGORITHMS

• Function prototypes:

– void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last);

– void nth_element(RandomAccessIterator first, RandomAccessIterator nth,

RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: all elements in the range [first, last) are sorted relative to the

element pointed to by nth: all elements in the range [left, nth) are smaller than the

element pointed to by nth, and alle elements in the range [nth + 1, last) are greater

than the element pointed to by nth. The two subsets themselves are not sorted. The

operator< of the data type to which the iterators point is used to compare the elements.

– The second prototype: all elements in the range [first, last) are sorted relative to the

element pointed to by nth: all elements in the range [left, nth) are smaller than the

element pointed to by nth, and alle elements in the range [nth + 1, last) are greater

than the element pointed to by nth. The two subsets themselves are not sorted. The comp

function object is used to compare the elements.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

#include <functional>

using namespace std;

int main()

{

int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

nth_element(ia, ia + 3, ia + 10);

cout << "sorting with respect to " << ia[3] << ’\n’;

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

nth_element(ia, ia + 5, ia + 10, greater<int>());

cout << "sorting with respect to " << ia[5] << ’\n’;

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

sorting with respect to 4

1 2 3 4 9 7 5 6 8 10

sorting with respect to 5

10 8 7 9 6 5 3 4 2 1

*/

19.1.34 partial_sort

• Header file: <algorithm>

19.1. THE GENERIC ALGORITHMS 563

• Function prototypes:

– void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last);

– void partial_sort(RandomAccessIterator first, RandomAccessIterator middle,

RandomAccessIterator last, Compare comp);

• Description:

– The first prototype: the (middle - first) smallest elements are sorted and stored in

the range [first, middle) using the operator< of the data type to which the iterators

point to compare elements. The remaining elements of the series remain unsorted, and

are stored in the range [middle, last).

– The second prototype: the (middle - first) smallest elements (according to the pro-

vided binary predicate comp) are sorted and stored in the range [first, middle). The

remaining elements of the series remain unsorted.

• Example:

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10};

partial_sort(ia, ia + 3, ia + 10);

cout << "find the 3 smallest elements:\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "find the 5 biggest elements:\n";

partial_sort(ia, ia + 5, ia + 10, greater<int>());

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

find the 3 smallest elements:

1 2 3 7 9 5 4 6 8 10

find the 5 biggest elements:

10 9 8 7 6 1 2 3 4 5

*/

19.1.35 partial_sort_copy

• Header file: <algorithm>

• Function prototypes:

– void partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator dest_first, RandomAccessIterator dest_last);

564 CHAPTER 19. THE STL GENERIC ALGORITHMS

– void partial_sort_copy(InputIterator first, InputIterator last,

RandomAccessIterator dest_first, RandomAccessIterator dest_last, Compare

comp);

• Description:

– The first prototype: the (dest_last - dest_first) smallest elements in the range

[first, last) are copied to the range [dest_first, dest_last), using the operator<

of the data type to which the iterators point to decide which of the elements to copy.

– The second prototype: the (dest_last - dest_first) smallest elements in the range

[first, last) (as decided by the binary predicate comp returning true). The ele-

ments for which the predicate comp returns true most often are copied to the range

[dest_first, dest_last).

• Example:

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {1, 10, 3, 8, 5, 6, 7, 4, 9, 2};

int ia2[6];

partial_sort_copy(ia, ia + 10, ia2, ia2 + 6);

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "the 6 smallest elements: ";

copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "the 4 smallest elements to a larger range:\n";

partial_sort_copy(ia, ia + 4, ia2, ia2 + 6);

copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "the 4 biggest elements to a larger range:\n";

partial_sort_copy(ia, ia + 4, ia2, ia2 + 6, greater<int>());

copy(ia2, ia2 + 6, ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

1 10 3 8 5 6 7 4 9 2

the 6 smallest elements: 1 2 3 4 5 6

the 4 smallest elements to a larger range:

1 3 8 10 5 6

the 4 biggest elements to a larger range:

10 8 3 1 5 6

*/

19.1. THE GENERIC ALGORITHMS 565

19.1.36 partial_sum

• Header file: <numeric>

• Function prototypes:

– OutputIterator partial_sum(InputIterator first, InputIterator last,

OutputIterator result);

– OutputIterator partial_sum(InputIterator first, InputIterator last,

OutputIterator result, BinaryOperation op);

• Description:

– The first prototype: each element in the range [result, <returned OutputIterator>)

receives a value which is obtained by adding the elements in the corresponding range of

the range [first, last). The first element in the resulting range will be equal to the

element pointed to by first.

– The second prototype: the value of each element in the range [result, <returned

OutputIterator>) is obtained by applying the binary operator op to the previous ele-

ment in the resulting range and the corresponding element in the range [first, last).

The first element in the resulting range will be equal to the element pointed to by first.

• Example:

#include <numeric>

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {1, 2, 3, 4, 5};

int ia2[5];

copy(ia2,

partial_sum(ia, ia + 5, ia2),

ostream_iterator<int>(cout, " "));

cout << ’\n’;

copy(ia2,

partial_sum(ia, ia + 5, ia2, multiplies<int>()),

ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

1 3 6 10 15

1 2 6 24 120

*/

19.1.37 partition

• Header file: <algorithm>

566 CHAPTER 19. THE STL GENERIC ALGORITHMS

• Function prototype:

– BidirectionalIterator partition(BidirectionalIterator first,

BidirectionalIterator last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates

as true are placed before the elements which evaluate as false. The return value points

just beyond the last element in the partitioned range for which pred evaluates as true.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

class LessThan

{

int d_x;

public:

LessThan(int x)

:

d_x(x)

{}

bool operator()(int value) const

{

return value <= d_x;

}

};

int main()

{

int ia[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};

int *split;

split = partition(ia, ia + 10, LessThan(ia[9]));

cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Last element <= 4 is ia[3]

1 3 4 2 9 10 7 8 6 5

*/

19.1.38 prev_permutation

• Header file: <algorithm>

• Function prototypes:

19.1. THE GENERIC ALGORITHMS 567

– bool prev_permutation(BidirectionalIterator first, BidirectionalIterator

last);

– bool prev_permutation(BidirectionalIterator first, BidirectionalIterator

last, Comp comp);

• Description:

– The first prototype: the previous permutation given the sequence of elements in the range

[first, last) is determined. The elements in the range are reordered such that the

first ordering is obtained representing a ‘smaller’ value (see next_permutation (section

19.1.32) for an example involving the opposite ordering). The value true is returned if a

reordering took place, the value false is returned if no reordering took place, which is

the case if the provided sequence was already ordered, according to the operator< of the

data type to which the iterators point.

– The second prototype: the previous permutation given the sequence of elements in the

range [first, last) is determined , using the binary predicate comp to compare ele-

ments. The elements in the range are reordered. The value true is returned if a reorder-

ing took place, the value false is returned if no reordering took place, which is the case

if the original sequence was already ordered, using the binary predicate comp to compare

two elements.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

class CaseString

{

public:

bool operator()(string const &first, string const &second) const

{

return strcasecmp(first.c_str(), second.c_str()) < 0;

}

};

int main()

{

string saints[] = {"Oh", "when", "the", "saints"};

cout << "All previous permutations of ’Oh when the saints’:\n";

cout << "Sequences:\n";

do

{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

while (prev_permutation(saints, saints + 4, CaseString()));

cout << "After first sorting the sequence:\n";

sort(saints, saints + 4, CaseString());

cout << "Sequences:\n";

while (prev_permutation(saints, saints + 4, CaseString()))

568 CHAPTER 19. THE STL GENERIC ALGORITHMS

{

copy(saints, saints + 4, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

cout << "No (more) previous permutations\n";

}

/*
Displays:

All previous permutations of ’Oh when the saints’:

Sequences:

Oh when the saints

Oh when saints the

Oh the when saints

Oh the saints when

Oh saints when the

Oh saints the when

After first sorting the sequence:

Sequences:

No (more) previous permutations

*/

19.1.39 random_shuffle

• Header file: <algorithm>

• Function prototypes:

– void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);

– void random_shuffle(RandomAccessIterator first, RandomAccessIterator last,

RandomNumberGenerator rand);

• Description:

– The first prototype: the elements in the range [first, last) are randomly reordered.

– The second prototype: The elements in the range [first, last) are randomly re-

ordered using the rand random number generator, which should return an int in the

range [0, remaining), where remaining is passed as argument to the operator()

of the rand function object. Alternatively, the random number generator may be a func-

tion expecting an int remaining parameter and returning an int randomvalue in the

range [0, remaining). Note that when a function object is used, it cannot be an anony-

mous object. The function in the example uses a procedure outlined in Press et al. (1992)

Numerical Recipes in C: The Art of Scientific Computing (New York: Cambridge

University Press, (2nd ed., p. 277)).

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <time.h>

#include <iterator>

using namespace std;

int randomValue(int remaining)

19.1. THE GENERIC ALGORITHMS 569

{

return rand() % remaining;

}

class RandomGenerator

{

public:

RandomGenerator()

{

srand(time(0));

}

int operator()(int remaining) const

{

return randomValue(remaining);

}

};

void show(string *begin, string *end)

{

copy(begin, end, ostream_iterator<string>(cout, " "));

cout << "\n\n";

}

int main()

{

string words[] =

{ "kilo", "lima", "mike", "november", "oscar", "papa"};

size_t const size = sizeof(words) / sizeof(string);

cout << "Using Default Shuffle:\n";

random_shuffle(words, words + size);

show(words, words + size);

cout << "Using RandomGenerator:\n";

RandomGenerator rg;

random_shuffle(words, words + size, rg);

show(words, words + size);

srand(time(0) << 1);

cout << "Using the randomValue() function:\n";

random_shuffle(words, words + size, randomValue);

show(words, words + size);

}

/*
Displays (for example):

Using Default Shuffle:

lima oscar mike november papa kilo

Using RandomGenerator:

kilo lima papa oscar mike november

Using the randomValue() function:

mike papa november kilo oscar lima

*/

570 CHAPTER 19. THE STL GENERIC ALGORITHMS

19.1.40 remove

• Header file: <algorithm>

• Function prototype:

– ForwardIterator remove(ForwardIterator first, ForwardIterator last,

Type const &value);

• Description:

– The elements in the range pointed to by [first, last) are reordered such that all

values unequal to value are placed at the beginning of the range. The returned for-

ward iterator points to the first element that can be removed after reordering. The range

[returnvalue, last) is called the leftover of the algorithm. Note that the leftover may

contain elements different from value, but these elements can be removed safely, as such

elements are also present in the range [first, returnvalue). Such duplication is the

result of the fact that the algorithm copies, rather than moves elements into new locations.

The function uses operator== of the data type to which the iterators point to determine

which elements to remove.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"alpha", "alpha", "papa", "quebec" };

string *removed;

size_t const size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";

removed = remove(words, words + size, "alpha");

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << ’\n’

<< "Leftover elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Removing all "alpha"s:

kilo lima mike november papa quebec

Leftover elements are:

alpha alpha alpha papa quebec

*/

19.1.41 remove_copy

• Header file: <algorithm>

19.1. THE GENERIC ALGORITHMS 571

• Function prototypes:

– OutputIterator remove_copy(InputIterator first, InputIterator last,

OutputIterator result, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) not matching value are copied

to the range [result, returnvalue), where returnvalue is the value returned by

the function. The range [first, last) is not modified. The function uses operator==

of the data type to which the iterators point to determine which elements not to copy.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

string remaining

[

size -

count_if

(

words, words + size,

bind2nd(equal_to<string>(), string("alpha"))

)

];

string *returnvalue =

remove_copy(words, words + size, remaining, "alpha");

cout << "Removing all \"alpha\"s:\n";

copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Removing all "alpha"s:

kilo lima mike november oscar papa quebec

*/

19.1.42 remove_copy_if

• Header file: <algorithm>

• Function prototype:

572 CHAPTER 19. THE STL GENERIC ALGORITHMS

– OutputIterator remove_copy_if(InputIterator first, InputIterator last,

OutputIterator result, UnaryPredicate pred);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate

pred returns true are removed from the resulting copy. All other elements are copied to

the range [result, returnvalue), where returnvalue is the value returned by the

function. The range [first, last) is not modified.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

string remaining[

size -

count_if

(

words, words + size,

bind2nd(equal_to<string>(), "alpha")

)

];

string *returnvalue =

remove_copy_if

(

words, words + size, remaining,

bind2nd(equal_to<string>(), "alpha")

);

cout << "Removing all \"alpha\"s:\n";

copy(remaining, returnvalue, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Removing all "alpha"s:

kilo lima mike november oscar papa quebec

*/

19.1.43 remove_if

• Header file: <algorithm>

19.1. THE GENERIC ALGORITHMS 573

• Function prototype:

– ForwardIterator remove_if(ForwardIterator first, ForwardIterator last,

UnaryPredicate pred);

• Description:

– The elements in the range pointed to by [first, last) are reordered such that all

values for which the unary predicate pred evaluates as false are placed at the beginning

of the range. The returned forward iterator points to the first element, after reordering,

for which pred returns true. The range [returnvalue, last) is called the leftover of

the algorithm. The leftover may contain elements for which the predicate pred returns

false, but these can safely be removed, as such elements are also present in the range

[first, returnvalue). Such duplication is the result of the fact that the algorithm

copies, rather than moves elements into new locations.

• Example:

#include <functional>

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

cout << "Removing all \"alpha\"s:\n";

string *removed = remove_if(words, words + size,

bind2nd(equal_to<string>(), string("alpha")));

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << ’\n’

<< "Trailing elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Removing all "alpha"s:

kilo lima mike november oscar papa quebec

Trailing elements are:

oscar alpha alpha papa quebec

*/

19.1.44 replace

• Header file: <algorithm>

574 CHAPTER 19. THE STL GENERIC ALGORITHMS

• Function prototype:

– ForwardIterator replace(ForwardIterator first, ForwardIterator last,

Type const &oldvalue, Type const &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced

by a copy of newvalue. The algorithm uses operator== of the data type to which the

iterators point.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa" };

size_t const size = sizeof(words) / sizeof(string);

replace(words, words + size, string("alpha"), string("ALPHA"));

copy(words, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.45 replace_copy

• Header file: <algorithm>

• Function prototype:

– OutputIterator replace_copy(InputIterator first, InputIterator last,

OutputIterator result, Type const &oldvalue, Type const &newvalue);

• Description:

– All elements equal to oldvalue in the range pointed to by [first, last) are replaced

by a copy of newvalue in a new range [result, returnvalue), where returnvalue

is the return value of the function. The algorithm uses operator== of the data type to

which the iterators point.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

19.1. THE GENERIC ALGORITHMS 575

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa"};

size_t const size = sizeof(words) / sizeof(string);

string remaining[size];

copy

(

remaining,

replace_copy(words, words + size, remaining, string("alpha"),

string("ALPHA")),

ostream_iterator<string>(cout, " ")

);

cout << ’\n’;

}

/*
Displays:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.46 replace_copy_if

• Header file: <algorithm>

• Function prototypes:

– OutputIterator replace_copy_if(ForwardIterator first, ForwardIterator

last, OutputIterator result, UnaryPredicate pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range [result,

returnvalue), where returnvalue is the value returned by the function. The elements

for which the unary predicate pred returns true are replaced by value. The range

[first, last) is not modified.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november",

"alpha", "oscar", "alpha", "alpha", "papa"};

576 CHAPTER 19. THE STL GENERIC ALGORITHMS

size_t const size = sizeof(words) / sizeof(string);

string result[size];

// Note: the comparisons are: "mike" > word[i]

replace_copy_if(words, words + size, result,

bind1st(greater<string>(), string("mike")),

string("ALPHA"));

copy (result, result + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays (all strings in words[] which are exceeded by ’mike’ are

replaced by ALPHA):

ALPHA ALPHA ALPHA mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1.47 replace_if

• Header file: <algorithm>

• Function prototype:

– ForwardIterator replace_if(ForwardIterator first, ForwardIterator last,

UnaryPredicate pred, Type const &value);

• Description:

– The elements in the range pointed to by [first, last) for which the unary predicate

pred evaluates as true are replaced by value.

Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "alpha", "lima", "mike", "alpha", "november", "alpha",

"oscar", "alpha", "alpha", "papa"};

size_t const size = sizeof(words) / sizeof(string);

replace_if(words, words + size,

bind1st(equal_to<string>(), string("alpha")),

string("ALPHA"));

copy(words, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

kilo ALPHA lima mike ALPHA november ALPHA oscar ALPHA ALPHA papa

*/

19.1. THE GENERIC ALGORITHMS 577

19.1.48 reverse

• Header file: <algorithm>

• Function prototype:

– void reverse(BidirectionalIterator first, BidirectionalIterator last);

• Description:

– The elements in the range pointed to by [first, last) are reversed.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

int main()

{

string line;

while (getline(cin, line))

{

reverse(line.begin(), line.end());

cout << line << ’\n’;

}

}

19.1.49 reverse_copy

• Header file: <algorithm>

• Function prototype:

– OutputIterator reverse_copy(BidirectionalIterator first,

BidirectionalIterator last, OutputIterator result);

• Description:

– The elements in the range pointed to by [first, last) are copied to the range [result,

returnvalue) in reversed order. The value returnvalue is the value that is returned

by the function.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

int main()

{

string line;

578 CHAPTER 19. THE STL GENERIC ALGORITHMS

while (getline(cin, line))

{

size_t size = line.size();

char copy[size + 1];

cout << "line: " << line << ’\n’ <<

"reversed: ";

reverse_copy(line.begin(), line.end(), copy);

copy[size] = 0; // 0 is not part of the reversed

// line !

cout << copy << ’\n’;

}

}

19.1.50 rotate

• Header file: <algorithm>

• Function prototype:

– void rotate(ForwardIterator first, ForwardIterator middle, ForwardIterator

last);

• Description:

– The elements implied by the range [first, middle) are moved to the end of the con-

tainer, the elements implied by the range [middle, last) are moved to the beginning

of the container, keeping the order of the elements in the two subsets intact.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "lima", "mike", "november", "oscar",

"foxtrot", "golf", "hotel", "india", "juliet" };

size_t const size = sizeof(words) / sizeof(string);

size_t const midsize = size / 2;

rotate(words, words + midsize, words + size);

copy(words, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

foxtrot golf hotel india juliet kilo lima mike november oscar

*/

19.1. THE GENERIC ALGORITHMS 579

19.1.51 rotate_copy

• Header file: <algorithm>

• Function prototypes:

– OutputIterator rotate_copy(ForwardIterator first, ForwardIterator middle,

ForwardIterator last, OutputIterator result);

• Description:

– The elements implied by the range [middle, last) and then the elements implied

by [first, middle) are copied to the destination container having range [result,

returnvalue), where returnvalue is the iterator returned by the function. The origi-

nal order of the elements in the two subsets is not altered.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string words[] =

{ "kilo", "lima", "mike", "november", "oscar",

"foxtrot", "golf", "hotel", "india", "juliet" };

size_t const size = sizeof(words) / sizeof(string);

size_t const midsize = size / 2;

string out[size];

copy(out,

rotate_copy(words, words + midsize, words + size, out),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

foxtrot golf hotel india juliet kilo lima mike november oscar

*/

19.1.52 search

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2);

– ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,

ForwardIterator2 first2, ForwardIterator2 last2, BinaryPredicate pred);

580 CHAPTER 19. THE STL GENERIC ALGORITHMS

• Description:

– The first prototype: an iterator into the first range [first1, last1) is returned where

the elements in the range [first2, last2) are found using operator== of the data

type to which the iterators point. If no such location exists, last1 is returned.

– The second prototype: an iterator into the first range [first1, last1) is returned

where the elements in the range [first2, last2) are found using the provided bi-

nary predicate pred to compare the elements in the two ranges. If no such location exists,

last1 is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

using namespace std;

class absInt

{

public:

bool operator()(int i1, int i2) const

{

return abs(i1) == abs(i2);

}

};

int main()

{

int range1[] = {-2, -4, -6, -8, 2, 4, 6, 8};

int range2[] = {6, 8};

copy

(

search(range1, range1 + 8, range2, range2 + 2),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << ’\n’;

copy

(

search(range1, range1 + 8, range2, range2 + 2, absInt()),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << ’\n’;

}

/*
Displays:

6 8

-6 -8 2 4 6 8

*/

19.1. THE GENERIC ALGORITHMS 581

19.1.53 search_n

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator1 search_n(ForwardIterator1 first1, ForwardIterator1 last1,

Size count, Type const &value);

– ForwardIterator1 search_n(ForwardIterator1 first1, ForwardIterator1 last1,

Size count, Type const &value, BinaryPredicate pred);

• Description:

– The first prototype: an iterator into the first range [first1, last1) is returned where

n consecutive elements having value value are found using operator== of the data type

to which the iterators point to compare the elements. If no such location exists, last1 is

returned.

– The second prototype: an iterator into the first range [first1, last1) is returned

where n consecutive elements having value value are found using the provided binary

predicate pred to compare the elements. If no such location exists, last1 is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <iterator>

using namespace std;

bool eqInt(int i1, int i2)

{

return abs(i1) == abs(i2);

}

int main()

{

int range1[] = {-2, -4, -4, -6, -8, 2, 4, 4, 6, 8};

copy

(

search_n(range1, range1 + 8, 2, 4),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << ’\n’;

copy

(

search_n(range1, range1 + 8, 2, 4, eqInt),

range1 + 8,

ostream_iterator<int>(cout, " ")

);

cout << ’\n’;

}

/*
Displays:

4 4

582 CHAPTER 19. THE STL GENERIC ALGORITHMS

-4 -4 -6 -8 2 4 4

*/

19.1.54 set_difference

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set_difference(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result,

Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) is returned, starting at

result, and ending at the OutputIterator returned by the function. The elements in

the two ranges must have been sorted using operator< of the data type to which the

iterators point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) is returned, starting at

result, and ending at the OutputIterator returned by the function. The elements in

the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[7];

string *returned;

copy(result,

set_difference(set1, set1 + 7, set2, set2 + 3, result),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

19.1. THE GENERIC ALGORITHMS 583

copy(result,

set_difference(set1, set1 + 7, set3, set3 + 3, result,

caseless),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

kilo lima mike november oscar

kilo lima mike november oscar

*/

19.1.55 set_intersection

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_intersection(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2, OutputIterator

result);

– OutputIterator set_intersection(InputIterator1 first1, InputIterator1

last1, InputIterator2 first2, InputIterator2 last2, OutputIterator

result, Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are also present in the range [first2, last2) is returned, starting at

result, and ending at the OutputIterator returned by the function. The elements in

the two ranges must have been sorted using operator< of the data type to which the

iterators point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are also present in the range [first2, last2) is returned, starting at

result, and ending at the OutputIterator returned by the function. The elements in

the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

584 CHAPTER 19. THE STL GENERIC ALGORITHMS

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[7];

string *returned;

copy(result,

set_intersection(set1, set1 + 7, set2, set2 + 3, result),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_intersection(set1, set1 + 7, set3, set3 + 3, result,

caseless),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

papa quebec

papa quebec

*/

19.1.56 set_symmetric_difference

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_symmetric_difference(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2,

InputIterator2 last2, OutputIterator result);

– OutputIterator set_symmetric_difference(InputIterator1 first1,

InputIterator1 last1, InputIterator2 first2,

InputIterator2 last2, OutputIterator result,

Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) and those in the range

[first2, last2) that are not present in the range [first1, last1) is returned,

starting at result, and ending at the OutputIterator returned by the function. The

elements in the two ranges must have been sorted using operator< of the data type to

which the iterators point.

– The second prototype: a sorted sequence of the elements pointed to by the range [first1,

last1) that are not present in the range [first2, last2) and those in the range

[first2, last2) that are not present in the range [first1, last1) is returned,

starting at result, and ending at the OutputIterator returned by the function. The

elements in the two ranges must have been sorted using the comp function object.

• Example:

#include <algorithm>

19.1. THE GENERIC ALGORITHMS 585

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[7];

copy(result,

set_symmetric_difference(set1, set1 + 7, set2, set2 + 3,

result),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_symmetric_difference(set1, set1 + 7, set3, set3 + 3,

result, caseless),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

kilo lima mike november oscar romeo

kilo lima mike november oscar ROMEO

*/

19.1.57 set_union

• Header file: <algorithm>

• Function prototypes:

– OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result);

– OutputIterator set_union(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, InputIterator2 last2, OutputIterator result,

Compare comp);

• Description:

– The first prototype: a sorted sequence of the elements that are present in either the range

[first1, last1) or the range [first2, last2) or in both ranges is returned, start-

ing at result, and ending at the OutputIterator returned by the function. The el-

586 CHAPTER 19. THE STL GENERIC ALGORITHMS

ements in the two ranges must have been sorted using operator< of the data type to

which the iterators point. Note that in the final range each element appears only once.

– The second prototype: a sorted sequence of the elements that are present in either the

range [first1, last1) or the range [first2, last2) or in both ranges is returned,

starting at result, and ending at the OutputIterator returned by the function. The

elements in the two ranges must have been sorted using comp function object. Note that

in the final range each element appears only once.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

bool caseless(string const &left, string const &right)

{

return strcasecmp(left.c_str(), right.c_str()) < 0;

}

int main()

{

string set1[] = { "kilo", "lima", "mike", "november",

"oscar", "papa", "quebec" };

string set2[] = { "papa", "quebec", "romeo"};

string result[8];

copy(result,

set_union(set1, set1 + 7, set2, set2 + 3, result),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

string set3[] = { "PAPA", "QUEBEC", "ROMEO"};

copy(result,

set_union(set1, set1 + 7, set3, set3 + 3, result, caseless),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

kilo lima mike november oscar papa quebec romeo

kilo lima mike november oscar papa quebec ROMEO

*/

19.1.58 sort

• Header file: <algorithm>

• Function prototypes:

– void sort(RandomAccessIterator first, RandomAccessIterator last);

19.1. THE GENERIC ALGORITHMS 587

– void sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: the elements in the range [first, last) are sorted in ascending

order using operator< of the data type to which the iterators point.

– The second prototype: the elements in the range [first, last) are sorted in ascending

order using the comp function object to compare the elements. The binary predicate comp

should return true if its first argument should be placed earlier in the sorted sequence

than its second argument.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

string words[] = {"november", "kilo", "mike", "lima",

"oscar", "quebec", "papa"};

sort(words, words + 7);

copy(words, words + 7, ostream_iterator<string>(cout, " "));

cout << ’\n’;

sort(words, words + 7, greater<string>());

copy(words, words + 7, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

kilo lima mike november oscar papa quebec

quebec papa oscar november mike lima kilo

*/

19.1.59 stable_partition

• Header file: <algorithm>

• Function prototype:

– BidirectionalIterator stable_partition(BidirectionalIterator first,

BidirectionalIterator last, UnaryPredicate pred);

• Description:

– All elements in the range [first, last) for which the unary predicate pred evaluates

as true are placed before the elements which evaluate as false. Apart from this reorder-

ing, the relative order of all elements for which the predicate evaluates to false and the

588 CHAPTER 19. THE STL GENERIC ALGORITHMS

relative order of all elements for which the predicate evaluates to true is kept. The re-

turn value points just beyond the last element in the partitioned range for which pred

evaluates as true.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int org[] = {1, 3, 5, 7, 9, 10, 2, 8, 6, 4};

int ia[10];

int *split;

copy(org, org + 10, ia);

split = partition(ia, ia + 10, bind2nd(less_equal<int>(), ia[9]));

cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

copy(org, org + 10, ia);

split = stable_partition(ia, ia + 10,

bind2nd(less_equal<int>(), ia[9]));

cout << "Last element <= 4 is ia[" << split - ia - 1 << "]\n";

copy(ia, ia + 10, ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Last element <= 4 is ia[3]

1 3 4 2 9 10 7 8 6 5

Last element <= 4 is ia[3]

1 3 2 4 5 7 9 10 8 6

*/

19.1.60 stable_sort

• Header file: <algorithm>

• Function prototypes:

– void stable_sort(RandomAccessIterator first, RandomAccessIterator last);

– void stable_sort(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

19.1. THE GENERIC ALGORITHMS 589

– The first prototype: the elements in the range [first, last) are stable-sorted in as-

cending order using operator< of the data type to which the iterators point: the relative

order of equal elements is kept.

– The second prototype: the elements in the range [first, last) are stable-sorted in

ascending order using the comp binary predicate to compare the elements. This predicate

should return true if its first argument should be placed before its second argument in

the sorted set of element.

• Example (annotated below):

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

#include <iterator>

using namespace std;

struct Pss: public pair<string, string> // 1

{

Pss(string const &s1, string const &s2)

:

pair<string, string>(s1, s2)

{}

};

ostream &operator<<(ostream &out, Pss const &p) // 2

{

return out << " " << p.first << " " << p.second << ’\n’;

}

class Sortby

{

string Pss::*d_field;

public:

Sortby(string Pss::*field) // 3

:

d_field(field)

{}

bool operator()(Pss const &p1, Pss const &p2) const // 4

{

return p1.*d_field < p2.*d_field;

}

};

int main()

{

vector<Pss> namecity; // 5

namecity.push_back(Pss("Hampson", "Godalming"));

namecity.push_back(Pss("Moran", "Eugene"));

namecity.push_back(Pss("Goldberg", "Eugene"));

namecity.push_back(Pss("Moran", "Godalming"));

namecity.push_back(Pss("Goldberg", "Chicago"));

namecity.push_back(Pss("Hampson", "Eugene"));

sort(namecity.begin(), namecity.end(), Sortby(&Pss::first)); // 6

cout << "sorted by names:\n";

590 CHAPTER 19. THE STL GENERIC ALGORITHMS

copy(namecity.begin(), namecity.end(), ostream_iterator<Pss>(cout));

// 7

stable_sort(namecity.begin(), namecity.end(), Sortby(&Pss::second));

cout << "sorted by names within sorted cities:\n";

copy(namecity.begin(), namecity.end(), ostream_iterator<Pss>(cout));

}

/*
Displays:

sorted by names:

Goldberg Eugene

Goldberg Chicago

Hampson Godalming

Hampson Eugene

Moran Eugene

Moran Godalming

sorted by names within sorted cities:

Goldberg Chicago

Goldberg Eugene

Hampson Eugene

Moran Eugene

Hampson Godalming

Moran Godalming

*/

Note that the example implements a solution to an often occurring problem: how to sort using

multiple hierarchal criteria. The example deserves some additional attention:

• First, at // 1 a wrapper struct Pss is created around std::pair<std::string, std::string>.

Once the C++11 standard supports the direct use of base class constructors in derived classes

(cf. section 13.3.3) it becomes even simpler to create this struct. The intent here is to define

a type that is a wrapper around a class that is defined in the std namespace for which no

insertion operation has been defined. This struct design conflicts with the principles outlined

in section 14.7. However, inheritance is defensible here as the intention is not to add ‘missing

features’ and as pair itself is in essence just Plain Old Data.

• Next (// 2), operator<< is overloaded for Pss objects. Although the compiler wouldn’t have

complained if this operator had been defined in the std namespace for the pair<string,

string> type, this would also have been bad style as the std namespace is off limits to

ordinary programs. By defining a wrapper type around pair<string, string> bad style

can be prevented.

• Then (// 3), a class Sortby is defined, allowing us to construct an anonymous object receiving

a pointer to one of the Pss data members that are used for sorting. In this case, as both

members are string objects, its constructor can easily be defined. It expects a pointer to a

string member of the class Pss.

• Sortby’s operator() member (// 4) receives two references to Pss objects and uses its

pointer to member to compare the appropriate fields of the Pss objects.

• In main some data is stored in a vector (// 5).

• Then (// 6) the first sort takes place. The least important criterion must be sorted first and

for this a simple sort suffices. Since we want the names to be sorted within cities, the names

represent the least important criterion, so we sort by names: Sortby(&Pss::first).

19.1. THE GENERIC ALGORITHMS 591

• The next important criterion, the cities, are sorted next (// 7). Since the relative ordering of

the names are not altered anymore by stable_sort, the ties that are observed when cities

are sorted are solved in such a way that the existing relative ordering is not broken. So, we

end up getting Goldberg in Eugene before Hampson in Eugene, before Moran in Eugene. To

sort by cities, we use another anonymous Sortby object: Sortby(&Pss::second).

19.1.61 swap

• Header file: <algorithm>

• Function prototype:

– void swap(Type &object1, Type &object2);

• Description:

– The elements object1 and object2 exchange their values. They do so by either cyclic

copy assignment or cyclic move assignment (if available).

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string first[] = {"alpha", "bravo", "charley"};

string second[] = {"echo", "foxtrot", "golf"};

size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

for (size_t idx = 0; idx < n; ++idx)

swap(first[idx], second[idx]);

cout << "After:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Before:

alpha bravo charley

echo foxtrot golf

After:

echo foxtrot golf

592 CHAPTER 19. THE STL GENERIC ALGORITHMS

alpha bravo charley

*/

19.1.62 swap_ranges

• Header file: <algorithm>

• Function prototype:

– ForwardIterator2 swap_ranges(ForwardIterator1 first1, ForwardIterator1

last1, ForwardIterator2 result);

• Description:

– The elements in the range pointed to by [first1, last1) are swapped with the el-

ements in the range [result, returnvalue), where returnvalue is the value re-

turned by the function. The two ranges must be disjoint.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <iterator>

using namespace std;

int main()

{

string first[] = {"alpha", "bravo", "charley"};

string second[] = {"echo", "foxtrot", "golf"};

size_t const n = sizeof(first) / sizeof(string);

cout << "Before:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

swap_ranges(first, first + n, second);

cout << "After:\n";

copy(first, first + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

copy(second, second + n, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

Before:

alpha bravo charley

echo foxtrot golf

After:

echo foxtrot golf

alpha bravo charley

*/

19.1. THE GENERIC ALGORITHMS 593

19.1.63 transform

• Header file: <algorithm>

• Function prototypes:

– OutputIterator transform(InputIterator first, InputIterator last,

OutputIterator result, UnaryOperator op);

– OutputIterator transform(InputIterator1 first1, InputIterator1 last1,

InputIterator2 first2, OutputIterator result, BinaryOperator op);

• Description:

– The first prototype: the unary operator op is applied to each of the elements in the range

[first, last), and the resulting values are stored in the range starting at result.

The return value points just beyond the last generated element.

– The second prototype: the binary operator op is applied to each of the elements in the

range [first1, last1) and the corresponding element in the second range starting at

first2. The resulting values are stored in the range starting at result. The return

value points just beyond the last generated element.

• Example:

#include <functional>

#include <vector>

#include <algorithm>

#include <iostream>

#include <string>

#include <cctype>

#include <iterator>

using namespace std;

string caps(string const &src)

{

string tmp;

tmp.resize(src.length());

transform(src.begin(), src.end(), tmp.begin(), ::toupper);

return tmp;

}

int main()

{

string words[] = {"alpha", "bravo", "charley"};

copy(words, transform(words, words + 3, words, caps),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

int values[] = {1, 2, 3, 4, 5};

vector<int> squares;

transform(values, values + 5, values,

back_inserter(squares), multiplies<int>());

copy(squares.begin(), squares.end(),

594 CHAPTER 19. THE STL GENERIC ALGORITHMS

ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

/*
Displays:

ALPHA BRAVO CHARLEY

1 4 9 16 25

*/

the following differences between the for_each (section 19.1.17) and transform generic algo-

rithms should be noted:

• With transform the return value of the function object’s operator() member is used; the

argument that is passed to the operator() member itself is not changed.

• With for_each the function object’s operator() receives a reference to an argument, which

itself may be changed by the function object’s operator().

19.1.64 unique

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator unique(ForwardIterator first, ForwardIterator last);

– ForwardIterator unique(ForwardIterator first, ForwardIterator last,

BinaryPredicate pred);

• Description:

– The first prototype: using operator== of the data type to which the iterators point, all

but the first of consecutively equal elements in the range pointed to by [first, last)

are relocated to the end of the range. The returned forward iterator marks the beginning

of the leftover. All elements in the range [first, return-value) are unique, all ele-

ments in the range [return-value, last) are equal to elements in the range [first,

return-value).

– The second prototype: all but the first of consecutive elements in the range pointed to

by [first, last) for which the binary predicate pred (expecting two arguments of

the data type to which the iterators point) returns true, are relocated to the end of the

range. The returned forward iterator marks the beginning of the leftover. For all pairs

of elements in the range [first, return-value) pred returns false (i.e., they are

unique), while pred returns true for a combination of, as its first operand, an element in

the range [return-value, last) and, as its second operand, an element in the range

[first, return-value).

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <cstring>

#include <iterator>

using namespace std;

19.1. THE GENERIC ALGORITHMS 595

bool casestring(string const &first, string const &second)

{

return strcasecmp(first.c_str(), second.c_str()) == 0;

}

int main()

{

string words[] = {"alpha", "alpha", "Alpha", "papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

string *removed = unique(words, words + size);

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << ’\n’

<< "Trailing elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

removed = unique(words, words + size, casestring);

copy(words, removed, ostream_iterator<string>(cout, " "));

cout << ’\n’

<< "Trailing elements are:\n";

copy(removed, words + size, ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

alpha Alpha papa quebec

Trailing elements are:

quebec

alpha papa quebec

Trailing elements are:

quebec quebec

*/

19.1.65 unique_copy

• Header file: <algorithm>

• Function prototypes:

– OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result);

– OutputIterator unique_copy(InputIterator first, InputIterator last,

OutputIterator result, BinaryPredicate pred);

• Description:

– The first prototype: the elements in the range [first, last) are copied to the resulting

container, starting at result. Consecutively equal elements (using operator== of the

data type to which the iterators point) are copied only once (keeping the first of a series of

equal elements). The returned output iterator points just beyond the last copied element.

– The second prototype: the elements in the range [first, last) are copied to the re-

sulting container, starting at result. Consecutive elements in the range pointed to by

[first, last) for which the binary predicate pred returns true are copied only once

596 CHAPTER 19. THE STL GENERIC ALGORITHMS

(keeping the first of a series of equal elements). The returned output iterator points just

beyond the last copied element.

• Example:

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

#include <iterator>

#include <cstring>

using namespace std;

bool casestring(string const &first, string const &second)

{

return strcasecmp(first.c_str(), second.c_str()) == 0;

}

int main()

{

string words[] = {"oscar", "Alpha", "alpha", "alpha",

"papa", "quebec" };

size_t const size = sizeof(words) / sizeof(string);

vector<string> remaining;

unique_copy(words, words + size, back_inserter(remaining));

copy(remaining.begin(), remaining.end(),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

vector<string> remaining2;

unique_copy(words, words + size,

back_inserter(remaining2), casestring);

copy(remaining2.begin(), remaining2.end(),

ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
Displays:

oscar Alpha alpha papa quebec

oscar Alpha papa quebec

*/

19.1.66 upper_bound

• Header file: <algorithm>

• Function prototypes:

– ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

Type const &value);

19.1. THE GENERIC ALGORITHMS 597

– ForwardIterator upper_bound(ForwardIterator first, ForwardIterator last,

Type const &value, Compare comp);

• Description:

– The first prototype: the sorted elements (using ascending sort) stored in the iterator range

[first, last) are searched for the first element that is greater than value. The re-

turned iterator marks the first location in the sequence where value can be inserted

without breaking the sorted order of the elements using operator< of the data type to

which the iterators point. If no such element is found, last is returned.

– The second prototype: the elements implied by the iterator range [first, last) must

have been sorted using the comp function or function object. Each element in the range

is compared to value using the comp function. An iterator to the first element for which

the binary predicate comp, applied to the elements of the range and value, returns true

is returned. If no such element is found, last is returned.

• Example:

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

int main()

{

int ia[] = {10, 15, 15, 20, 30};

size_t n = sizeof(ia) / sizeof(int);

cout << "Sequence: ";

copy(ia, ia + n, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "15 can be inserted before " <<

*upper_bound(ia, ia + n, 15) << ’\n’;

cout << "35 can be inserted after " <<

(upper_bound(ia, ia + n, 35) == ia + n ?

"the last element" : "???") << ’\n’;

sort(ia, ia + n, greater<int>());

cout << "Sequence: ";

copy(ia, ia + n, ostream_iterator<int>(cout, " "));

cout << ’\n’;

cout << "15 can be inserted before " <<

*upper_bound(ia, ia + n, 15, greater<int>()) << ’\n’;

cout << "35 can be inserted before " <<

(upper_bound(ia, ia + n, 35, greater<int>()) == ia ?

"the first element " : "???") << ’\n’;

}

/*
Displays:

Sequence: 10 15 15 20 30

15 can be inserted before 20

598 CHAPTER 19. THE STL GENERIC ALGORITHMS

Figure 19.1: A binary tree representation of a heap

35 can be inserted after the last element

Sequence: 30 20 15 15 10

15 can be inserted before 10

35 can be inserted before the first element

*/

19.1.67 Heap algorithms

A heap is a kind of binary tree which can be represented by an array. In the standard heap, the key

of an element is not smaller than the key of its children. This kind of heap is called a max heap. A

tree in which numbers are keys could be organized as shown in figure 19.1. Such a tree may also be

organized in an array:

12, 11, 10, 8, 9, 7, 6, 1, 2, 4, 3, 5

In the following description, keep two pointers into this array in mind: a pointer node indicates the

location of the next node of the tree, a pointer child points to the next element which is a child of

the node pointer. Initially, node points to the first element, and child points to the second element.

• *node++ (== 12). 12 is the top node. its children are *child++ (11) and *child++ (10),

both less than 12.

• The next node (*node++ (== 11)), in turn, has *child++ (8) and *child++ (9) as its chil-

dren.

• The next node (*node++ (== 10)) has *child++ (7) and *child++ (6) as its children.

• The next node (*node++ (== 8)) has *child++ (1) and *child++ (2) as its children.

• Then, node (*node++ (== 9)) has children *child++ (4) and *child++ (3).

• Finally (as far as children are concerned) (*node++ (== 7)) has one child *child++ (5)

Since child now points beyond the array, the remaining nodes have no children. So, nodes 6, 1, 2,

4, 3 and 5 don’t have children.

Note that the left and right branches are not ordered: 8 is less than 9, but 7 is larger than 6.

19.1. THE GENERIC ALGORITHMS 599

A heap is created by traversing a binary tree level-wise, starting from the top node. The top node

is 12, at the zeroth level. At the first level we find 11 and 10. At the second level 8, 9, 7 and 6 are

found, etc.

Heaps can be constructed in containers supporting random access. So, a list is not an appropriate

data structure for a heap. Heaps can be constructed from an (unsorted) array (using make_heap).

The top-element can be pruned from a heap, followed by reordering the heap (using pop_heap), a

new element can be added to the heap, followed by reordering the heap (using push_heap), and the

elements in a heap can be sorted (using sort_heap, which, of course, invalidates the heap).

19.1.67.1 The ‘make_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void make_heap(RandomAccessIterator first, RandomAccessIterator last);

– void make_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: the elements in the range [first, last) are reordered to form a

max-heap using operator< of the data type to which the iterators point.

– The second prototype: the elements in the range [first, last) are reordered to form a

max-heap using the binary comparison function object comp to compare elements.

19.1.67.2 The ‘pop_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void pop_heap(RandomAccessIterator first, RandomAccessIterator last);

– void pop_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: the first element in the range [first, last) is moved to last - 1.

Then, the elements in the range [first, last - 1) are reordered to form a max-heap

using the operator< of the data type to which the iterators point.

– The second prototype: the first element in the range [first, last) is moved to last

- 1. Then, the elements in the range [first, last - 1) are reordered to form a max-

heap using the binary comparison function object comp to compare elements.

19.1.67.3 The ‘push_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void push_heap(RandomAccessIterator first, RandomAccessIterator last);

600 CHAPTER 19. THE STL GENERIC ALGORITHMS

– void push_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: assuming that the range [first, last - 1) contains a valid heap,

and the element at last - 1 contains an element to be added to the heap, the elements in

the range [first, last - 1) are reordered to form a max-heap using the operator<

of the data type to which the iterators point.

– The second prototype: assuming that the range [first, last - 1) contains a valid

heap, and the element at last - 1 contains an element to be added to the heap, the

elements in the range [first, last - 1) are reordered to form a max-heap using the

binary comparison function object comp to compare elements.

19.1.67.4 The ‘sort_heap’ function

• Header file: <algorithm>

• Function prototypes:

– void sort_heap(RandomAccessIterator first, RandomAccessIterator last);

– void sort_heap(RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

• Description:

– The first prototype: assuming the elements in the range [first, last) form a valid

max-heap, the elements in the range [first, last) are sorted using operator< of the

data type to which the iterators point.

– The second prototype: assuming the elements in the range [first, last) form a valid

heap, the elements in the range [first, last) are sorted using the binary comparison

function object comp to compare elements.

19.1.67.5 An example using the heap functions

Here is an example showing the various generic algorithms manipulating heaps:

#include <algorithm>

#include <iostream>

#include <functional>

#include <iterator>

using namespace std;

void show(int *ia, char const *header)

{

cout << header << ":\n";

copy(ia, ia + 20, ostream_iterator<int>(cout, " "));

cout << ’\n’;

}

int main()

{

int ia[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20};

19.2. STL: MORE FUNCTION ADAPTORS 601

make_heap(ia, ia + 20);

show(ia, "The values 1-20 in a max-heap");

pop_heap(ia, ia + 20);

show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20);

show(ia, "Adding 20 (at the end) to the heap again");

sort_heap(ia, ia + 20);

show(ia, "Sorting the elements in the heap");

make_heap(ia, ia + 20, greater<int>());

show(ia, "The values 1-20 in a heap, using > (and beyond too)");

pop_heap(ia, ia + 20, greater<int>());

show(ia, "Removing the first element (now at the end)");

push_heap(ia, ia + 20, greater<int>());

show(ia, "Re-adding the removed element");

sort_heap(ia, ia + 20, greater<int>());

show(ia, "Sorting the elements in the heap");

}

/*
Displays:

The values 1-20 in a max-heap:

20 19 15 18 11 13 14 17 9 10 2 12 6 3 7 16 8 4 1 5

Removing the first element (now at the end):

19 18 15 17 11 13 14 16 9 10 2 12 6 3 7 5 8 4 1 20

Adding 20 (at the end) to the heap again:

20 19 15 17 18 13 14 16 9 11 2 12 6 3 7 5 8 4 1 10

Sorting the elements in the heap:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The values 1-20 in a heap, using > (and beyond too):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Removing the first element (now at the end):

2 4 3 8 5 6 7 16 9 10 11 12 13 14 15 20 17 18 19 1

Re-adding the removed element:

1 2 3 8 4 6 7 16 9 5 11 12 13 14 15 20 17 18 19 10

Sorting the elements in the heap:

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

*/

19.2 STL: More function adaptors

Before using the function adaptors presented in these (sub)sections the <functional> header file

must have been included.

Member function adaptors are part of the Standard Template Library (STL). They are most useful

602 CHAPTER 19. THE STL GENERIC ALGORITHMS

in combination with the generic algorithms, which is why they are discussed in this chapter instead

of the previous chapter which was devoted to the STL.

The member function adaptors defined in the STL allow us to call (parameterless) member functions

of class objects as though they were non-member functions and to compose unary or binary argument

functions into single function objects so that they can jointly be used with generic algorithms.

In the next section calling member functions as non-member functions is discussed; adaptable func-

tions are covered thereafter.

19.2.1 Member function adaptors

Member function adaptors allow the use of generic algorithms when the function to call is a member

function of a class. Consider the following class:

class Data

{

public:

void display();

};

Obviously, the display member is used to display the information stored in Data objects.

When storing Data objects in a vector the for_each generic algorithm cannot easily be used to

call the display member for each of the objects stored in the vector, as for_each accepts either

a (non-member) function or a function object as its third argument, but does not accept a member

function.

The member function adaptor mem_fun_ref can be used to solve this problem. It expects the ad-

dress of a member function without any parameters and its function call operator calls that function

for the object that is passed to its function call operator. In the next example vector<Data> data

is filled with Data objects. Then for_each is used to display the information in the various Data

objects that are stored in the data vector:

int main()

{

vector<Data> data;

// the ’data’ vector is filled with Data objects here

for_each(data.begin(), data.end(), mem_fun_ref(&Data::display));

}

A second member function adaptor is mem_fun, which is used to call a member function from a

pointer to an object. The above example could be rewritten to something like:

int main()

{

vector<Data *> data;

data.push_back(new Data); // multiple push-backs if applicable

for_each(data.begin(), data.end(), mem_fun(&Data::display));

19.2. STL: MORE FUNCTION ADAPTORS 603

// delete the Data objects pointed to by data’s elements

}

An interesting observation is that http://www.sgi.comprovides an example of the use of mem_fun

where polymorphic members are used. If Data::display is a virtual member function and Derived1

and Derived2 (both derived from Data) provide their own implementations of display, then point-

ers to Derived1 and Derived2 objects can be entered into the data vector. The for_each algo-

rithm then calls the proper (overridden) display function. E.g.,

int main()

{

vector<Data *> data;

data.push_back(new Derived1);

data.push_back(new Derived2);

// calls Derived1::display or

// Derived2::display.

for_each(data.begin(), data.end(), mem_fun(&Data::display));

}

This example, however, uses public virtual members, confounding the virtual and public interfaces

of classes (cf. section 14.7) and is therefore deprecated. Polymorphism could still be used, though,

but the public interface should be provided by Data as follows:

class Data

{

public:

void display(); // calls v_display

private:

virtual void v_display(); // overriden by derived

}; // classes

In the above example mem_funwould simply receive &Data::display’s address. No need to modify

the above main function, but now Data’s polymorphic features are completely separated from its

public interface.

19.2.2 Adaptable functions

Within the context of the STL an adaptable function is a function object defining

• argument_type as a synonym of the type of its unary function operator’s argument, and

• first_argument_type and second_argument_type as synonyms of the types of its binary

function operator’s arguments

and defining result_type as the type of the return value of its function call operator.

The STL defines pointer_to_unary_function and pointer_to_binary_function as adap-

tors accepting pointers to, respectively, unary and binary functions, converting them into adaptable

604 CHAPTER 19. THE STL GENERIC ALGORITHMS

functions. In the context of the STL using adaptable functions should probably be preferred over

pointers to functions as the STL’s adaptable functions define the abovementioned types describing

their arguments and result types. At the end of this section an example is given where these types

are actually required, and a plain pointer to a function cannot be used.

In practice the pointer_to_unary_function and pointer_to_binary_function adaptors are

hardly ever explicitly used. Instead, the overloaded function adaptor ptr_fun is used.

When ptr_fun is provided with a unary function it uses pointer_to_unary_function to create

an adaptable unary function and it uses pointer_to_binary_function when provided with a

binary function to create an adaptable binary function.

Here is an example showing the use of ptr_fun, creating an adaptable binary function. In main,

the word to search for is extracted from the standard input stream as well as additional words that

are stored in a vector of string objects. If the target word is found the program displays the word

following the target word in the vector of string objects. Searching is performed case insensitively,

for which the POSIX function strcasecmp is used:

#include <vector>

#include <algorithm>

#include <functional>

#include <cstring>

#include <string>

#include <iterator>

#include <iostream>

using namespace std;

inline int stringcasecmp(string lhs, string rhs)

{

return strcasecmp(lhs.c_str(), rhs.c_str());

}

int main()

{

string target;

cin >> target;

vector<string> v1;

copy(istream_iterator<string>(cin), istream_iterator<string>(),

back_inserter(v1));

auto pos = find_if(

v1.begin(), v1.end(),

not1(bind2nd(ptr_fun(stringcasecmp), target))

);

if (pos != v1.end())

cout << "The search for ‘" << target << "’ was successful.\n"

"The next string is: ‘" << pos[1] << "’.\n";

}

// on input:

// VERY I have existed for years, but very little has changed

// the program displays:

19.2. STL: MORE FUNCTION ADAPTORS 605

// The search for ‘VERY’ was successful.

// The next string is: ‘little’.

The observant reader may have noticed that this is not a very efficient program. The function

stringcasecmp defines value type parameters forcing the construction of copies of the arguments

passed to stringcasecmp every time it is called. However, when changing the parameter defini-

tions into

inline int stringcasecmp(string const &lhs, string const &rhs)

the compiler generates an error message like:

In instantiation of ’std::binder2nd<std::pointer_to_binary_function<

const std::string&, const std::string&, int> >’:

typename _Operation::result_type std::binder2nd<_Operation>::operator()(

typename _Operation::first_argument_type&) const

cannot be overloaded with:

typename _Operation::result_type std::binder2nd<_Operation>::operator()(

const typename _Operation::first_argument_type&) const

This problem (and its solution) is covered in a later chapter (cf. section 21.5.2.1).

606 CHAPTER 19. THE STL GENERIC ALGORITHMS

Chapter 20

Function Templates

C++ supports syntactic constructs allowing programmers to define and use completely general (or

abstract) functions or classes, based on generic types and/or (possibly inferred) constant values. In

the chapters on abstract containers (chapter 12) and the STL (chapter 18) we’ve already used these

constructs, commonly known as the template mechanism.

The template mechanism allows us to specify classes and algorithms, fairly independently of the

actual types for which the templates are eventually going to be used. Whenever the template is used,

the compiler generates code that is tailored to the particular data type(s) used with the template.

This code is generated at compile-time from the template’s definition. The piece of generated code is

called an instantiation of the template.

In this chapter the syntactic peculiarities of templates are covered. The notions of template type

parameter, template non-type parameter, and function template are introduced and several examples

of templates are provided (both in this chapter and in chapter 23). Template classes are covered in

chapter 21.

Templates already offered by the language include the abstract containers (cf. chapter 12); the

string (cf. chapter 5); streams (cf. chapter 6); and the generic algorithms (cf. chapter 19). So,

templates play a central role in present-day C++, and should not be considered an esoteric feature

of the language.

Templates should be approached somewhat similarly as generic algorithms: they’re a way of life; a

C++ software engineer should actively look for opportunities to use them. Initially, templates may

appear to be rather complex and you might be tempted to turn your back on them. However, over

time their strengths and benefits are more and more appreciated. Eventually you’ll be able to rec-

ognize opportunities for using templates. That’s the time where your efforts should no longer focus

on constructing ordinary functions and classes (i.e., functions or classes that are not templates), but

on constructing templates.

This chapter starts by introducing function templates. The emphasis is on the required syntax. This

chapter lays the foundation upon which the other chapters about templates are built.

20.1 Defining function templates

A function template’s definition is very similar to the definition of a normal function. A function

template has a function head, a function body, a return type, possibly overloaded definitions, etc..

However, different from ordinary functions, function templates always use one or more formal types:

607

608 CHAPTER 20. FUNCTION TEMPLATES

types for which almost any existing (class or primitive) type could be used. Let’s have a look at a

simple example. The following function add expects two Type arguments and returns their sum:

Type add(Type const &lvalue, Type const &rvalue)

{

return lvalue + rvalue;

}

Note how closely the above function’s definition follows its description. It receives two arguments,

and returns its sum. Now consider what would happen if we defined this function for, e.g., int

values. We would write:

int add(int const &lvalue, int const &rvalue)

{

return lvalue + rvalue;

}

So far, so good. However, were we to add two doubles, we would overload this function:

double add(double const &lvalue, double const &rvalue)

{

return lvalue + rvalue;

}

There is no end to the number of overloaded versions we might be forced to construct: an overloaded

version for string, for size_t, for In general, we would need an overloaded version for every

type supporting operator+ and a copy constructor. All these overloaded versions of basically the

same function are required because of the strongly typed nature of C++. Because of this, a truly

generic function cannot be constructed without resorting to the template mechanism.

Fortunately, we’ve already seen an important part of a template function. Our initial function add

actually is an implementation of such a function although it isn’t a full template definition yet. If

we gave the first add function to the compiler, it would produce an error message like:

error: ‘Type’ was not declared in this scope

error: parse error before ‘const’

And rightly so, as we failed to define Type. The error is prevented when we change add into a full

template definition. To do this, we look at the function’s implementation and decide that Type is

actually a formal typename. Comparing it to the alternate implementations, it is clear that we could

have changed Type into int to get the first implementation, and into double to get the second.

The full template definition allows for this formal nature of the Type typename. Using the keyword

template, we prefix one line to our initial definition, obtaining the following function template

definition:

template <typename Type>

Type add(Type const &lvalue, Type const &rvalue)

{

return lvalue + rvalue;

}

20.1. DEFINING FUNCTION TEMPLATES 609

In this definition we distinguish:

• The keyword template, starting a template definition or declaration.

• The angle bracket enclosed list following template. This is a list containing one or more

comma-separated elements. This angle bracket enclosed list is called the template parameter

list. Template parameter lists using multiple elements could look like this:

typename Type1, typename Type2

• Inside the template parameter list we find the formal type name Type. It is a formal type

name, comparable to a formal parameter name in a function’s definition. Up to now we’ve only

encountered formal variable names with functions. The types of the parameters were always

known by the time the function was defined. Templates escalate the notion of formal names

one step further up the ladder. Templates allow type names to be formalized, rather than just

the variable names themselves. The fact that Type is a formal type name is indicated by the

keyword typename, prefixed to Type in the template parameter list. A formal type name like

Type is also called a template type parameter. Template non-type parameters also exist, and

are shortly introduced.

Other texts on C++ sometimes use the keyword class where we use typename. So, in other

texts template definitions might start with a line like:

template <class Type>

In the C++ Annotations the use of typename over class is preferred, reasoning that a tem-

plate type parameter is, after all, a type name (some authors prefer class over typename; in

the end it’s a matter of taste).

• The template keyword and the template parameter list is called the template header.

• The function head: it is like a normal function head, albeit that the template’s type parameters

must be used in its parameter list. When the function is eventually called using actual argu-

ments having actual types, these actual types are used by the compiler to infer which version

(i.e., overload to fit the actual argument types) of the function template must be used. At the

point where the function is called the compiler creates the function that is called, a process

called instantiation. The function head may also use a formal type to specify its return value.

This feature was actually used in the add template’s definition.

• The function parameters are specified as Type const & parameters. This has the usual

meaning: the parameters are references to Type objects or values that will not be modified

by the function.

• The function body is like a normal function body. In the body the formal type names may be

used to define or declare variables, which may then be used as any other local variable. But

some restrictions apply. Looking at add’s body, it is clear that operator+ is used, as well as

a copy constructor, as the function returns a value. This allows us to formulate the following

restrictions for the formal type Type as used by our add function template:

– Type should support operator+

– Type should support a copy constructor

Consequently, while Type could be a string, it could never be an ostream, as neither operator+

nor the copy constructor are available for streams.

Normal scope rules and identifier visibility rules apply to templates. Within the template definition’s

scope formal type names overrule identically named identifiers of broader scopes.

610 CHAPTER 20. FUNCTION TEMPLATES

20.1.1 Considerations regarding template parameters

We’ve managed to design our first function template:

template <typename Type>

Type add(Type const &lvalue, Type const &rvalue)

{

return lvalue + rvalue;

}

Look again at add’s parameters. By specifying Type const & rather than Type superfluous copy-

ing is prevented, at the same time allowing values of primitive types to be passed as arguments

to the function. So, when add(3, 4) is called, int(4) is assigned to Type const &rvalue. In

general, function parameters should be defined as Type const & to prevent unnecessary copying.

The compiler is smart enough to handle ‘references to references’ in this case, which is something

the language normally does not support. For example, consider the following main function (here

and in the following simple examples it is assumed that the template and the required headers and

namespace declarations have been provided):

int main()

{

size_t const &var = size_t(4);

cout << add(var, var) << ’\n’;

}

Here var is a reference to a constant size_t. It is passed as argument to add, thereby initializing

lvalue and rvalue as Type const & to size_t const & values. The compiler interprets Type

as size_t. Alternatively, the parameters might have been specified using Type &, rather than

Type const &. The disadvantage of this (non-const) specification being that temporary values

cannot be passed to the function anymore. The following therefore fails to compile:

int main()

{

cout << add(string("a"), string("b")) << ’\n’;

}

Here, a string const & cannot be used to initialize a string &. Had add defined Type &&

parameters then the above program would have compiled just fine. In addition the following example

correctly compiles as the compiler decides that Type apparently is a string const:

int main()

{

string const &s = string("a");

cout << add(s, s) << ’\n’;

}

What can we deduce from these examples?

• In general, function parameters should be specified as Type const & parameters to prevent

unnecessary copying.

20.1. DEFINING FUNCTION TEMPLATES 611

• The template mechanism is fairly flexible. Formal types are interpreted as plain types, const

types, pointer types, etc., depending on the actually provided types. The rule of thumb is that

the formal type is used as a generic mask for the actual type, with the formal type name

covering whatever part of the actual type must be covered. Some examples, assuming the

parameter is defined as Type const &:

Provided argument: Actually used Type:

size_t const size_t

size_t size_t

size_t * size_t *
size_t const * size_t const *

As a second example of a function template, consider the following function template:

template <typename Type, size_t Size>

Type sum(Type const (&array)[Size])

{

Type tp = Type();

for (size_t idx = 0; idx < Size; idx++)

tp += array[idx];

return tp;

}

This template definition introduces the following new concepts and features:

• The template parameter list. This template parameter list has two elements. The first element

is a well-known template type parameter, but the second element has a very specific type: a

size_t. Template parameters of specific (i.e., non-formal) types used in template parameter

lists are called template non-type parameters. A template non-type parameter defines the type

of a constant expression, which must be known by the time the template is instantiated and

which is specified in terms of existing types, such as a size_t.

• Looking at the function’s head, we see one parameter:

Type const (&array)[Size]

This parameter defines array as a reference to an array having Size elements of type Type

that may not be modified.

• In the parameter definition, both Type and Size are used. Type is of course the template’s

type parameter Type, but Size is also a template parameter. It is a size_t, whose value

must be inferable by the compiler when it compiles an actual call of the sum function template.

Consequently, Size must be a const value. Such a constant expression is called a template

non-type parameter, and its type is named in the template’s parameter list.

• When the function template is called, the compiler must be able to infer not only Type’s con-

crete value, but also Size’s value. Since the function sum only has one parameter, the compiler

is only able to infer Size’s value from the function’s actual argument. It can do so if the pro-

vided argument is an array (of known and fixed size) rather than a pointer to Type elements.

So, in the following main function the first statement will compile correctly but the second

statement will not:

int main()

612 CHAPTER 20. FUNCTION TEMPLATES

{

int values[5];

int *ip = values;

cout << sum(values) << ’\n’; // compiles OK

cout << sum(ip) << ’\n’; // won’t compile

}

• Inside the function’s body the statement Type tp = Type() is used to initialize tp to a de-

fault value. Note here that no fixed value (like 0) is used. Any type’s default value may be

obtained using its default constructor rather than using a fixed numeric value. Of course, not

every class accepts a numeric value as an argument to one of its constructors. But all types,

even the primitive types, support default constructors (actually, some classes do not implement

a default constructor, or make it inaccessible; but most do). The default constructor of prim-

itive types initializes their variables to 0 (or false). Furthermore, the statement Type tp

= Type() is a true initialization: tp is initialized by Type’s default constructor, rather than

using Type’s copy constructor to assign Type’s copy to tp.

It’s interesting to note here (although not directly related to the current topic) that the syntactic

construction Type tp(Type()) cannot be used, even though it also looks like a proper initial-

ization. Usually an initializing argument can be provided to an object’s definition, like string

s("hello"). Why, then, is Type tp = Type() accepted, whereas Type tp(Type()) isn’t?

When Type tp(Type()) is used it won’t result in an error message. So we don’t immediately

detect that it’s not a Type object’s default initialization. Instead, the compiler starts generat-

ing error messages once tp is used. This is caused by the fact that in C++ (and in C alike)

the compiler does its best to recognize a function or function pointer whenever possible: the

function prevalence rule. According to this rule Type() is (because of the pair of parentheses)

interpreted as a pointer to a function expecting no arguments; returning a Type. The compiler

will do so unless it clearly isn’t possible to do so. In the initialization Type tp = Type()

it can’t see a pointer to a function as a Type object cannot be given the value of a function

pointer (remember: Type() is interpreted as Type (*)() whenever possible). But in Type

tp(Type()) it can use the pointer interpretation: tp is now declared as a function expecting

a pointer to a function returning a Type, with tp itself also returning a Type. E.g., tp could

have been defined as:

Type tp(Type (*funPtr)())

{

return (*funPtr)();

}

• Comparable to the first function template, sum also assumes the existence of certain public

members in Type’s class. This time operator+= and Type’s copy constructor.

Like class definitions, template definitions should not contain using directives or declarations: the

template might be used in a situation where such a directive overrides the programmer’s intentions:

ambiguities or other conflicts may result from the template’s author and the programmer using

different using directives (E.g, a cout variable defined in the std namespace and in the program-

mer’s own namespace). Instead, within template definitions only fully qualified names, including

all required namespace specifications should be used.

20.1.2 Late-specified return type (C++11)

Traditional C++ requires function templates to specify their return type or to specify the return type

as a template type parameter. Consider the following function:

20.1. DEFINING FUNCTION TEMPLATES 613

int add(int lhs, int rhs)

{

return lhs + rhs;

}

The above function may be converted to a function template:

template <typename Lhs, typename Rhs>

Lhs add(Lhs lhs, Rhs rhs)

{

return lhs + rhs;

}

Unfortunately, when the function template is called as

add(3, 3.4)

the intended return type is probably a double rather than an int. This can be solved by adding an

additional template type parameter specifying the return type but then that type must explicitly be

specified:

add<double>(3, 3.4);

Using decltype (cf. section 3.3.5) to define the return type won’t work as lhs and rhs aren’t known

to the compiler by the time decltype is used. Thus the next attempt to get rid of the additional

template type parameter fails to compile:

template <typename Lhs, typename Rhs>

decltype(lhs + rhs) add(Lhs lhs, Rhs rhs)

{

return lhs + rhs;

}

The decltype-based definition of a function’s return type may become fairly complex. To reduce

the complexities the C++11 standard provides the late-specified return type syntax that does allow

the use of decltype to define a function’s return type. It is primarily used with function templates

but it may also be used for ordinary (non-template) functions:

template <typename Lhs, typename Rhs>

auto add(Lhs lhs, Rhs rhs) -> decltype(lhs + rhs)

{

return lhs + rhs;

}

When this function is used in a statement like cout « add(3, 3.4) the resulting value will be

6.4, which is most likely the intended result, rather than 6. As an example how a late-specified

return type may reduce the complexity of a function’s return type definition consider the following:

template <typename T, typename U>

decltype((*(T*)0)+(*(U*)0)) add(T t, U u);

614 CHAPTER 20. FUNCTION TEMPLATES

Using a late-specified return type we get the equivalent:

template <typename T, typename U>

auto add(T t, U u) -> decltype(t+u);

which most people think is easier to read.

The expression specified with decltype does not necessarily use the parameters lhs and rhs them-

selves. In the next function definition lhs.length is used instead of lhs itself:

template <typename Class, typename Rhs>

auto add(Class lhs, Rhs rhs) -> decltype(lhs.length() + rhs)

{

return lhs.length() + rhs;

}

Any variable visible at the time decltype is compiled can be used in the decltype expression.

However, it is currently not possible to handle member selection through pointers to members. The

following code aims at specifying the address of a member function as add’s first argument and then

use its return value type to determine the function template’s return type:

std::string global;

template <typename MEMBER, typename RHS>

auto add(MEMBER mem, RHS rhs) -> decltype((global.*mem)() + rhs)

{

return (global.*mem)() + rhs;

}

Although the above function compiles fine, it cannot currently be used as it results in a compiler

error message like unimplemented: mangling dotstar_expr (generated for a statement like cout «

add(&string::length, 3.4)).

20.2 Passing arguments by reference (reference wrappers)

(C++11)

Before using the reference wrappers discussed in this section the <functional> header file must

have been included.

Situations exist where the compiler is unable to infer that a reference rather than a value is passed

to a function template. In the following example the function template outer receives int x as its

argument and the compiler dutifully infers that Type is int:

template <typename Type>

void outer(Type t)

{

t.x();

}

void useInt()

{

20.2. PASSING ARGUMENTS BY REFERENCE (REFERENCE WRAPPERS) (C++11) 615

int arg;

outer(arg);

}

Compilation will of course fail and the compiler nicely reports the inferred type, e.g.:

In function ’void outer(Type) [with Type = int]’: ...

Unfortunately the same error is generated when using call in the next example. The function call

is a template expecting a function that takes an argument which is then itself modified, and a value

to pass on to that function. Such a function is, e.g., sqrtArg expecting a reference to a double,

which is modified by calling std::sqrt.

void sqrtArg(double &arg)

{

arg = sqrt(arg);

}

template<typename Fun, typename Arg>

void call(Fun fun, Arg arg)

{

fun(arg);

cout << "In call: arg = " << arg << ’\n’;

}

Assuming double value = 3 then call(sqrtArg, value) does not modify value as the com-

piler infers Arg to be double and hence passes value by value.

To have value itself changed the compiler must be informed that value must be passed by ref-

erence. Note that it might not be acceptable to define call’s template argument as Arg & as not

changing the actual argument might be appropriate in some situations.

The C++11 standard offers the ref(arg) and cref(arg) reference wrappers that take an argument

and return it as a reference-typed argument. To actually change value it can be passed to call

using ref(value) as shown in the following main function:

int main()

{

double value = 3;

call(sqrtArg, value);

cout << "Passed value, returns: " << value << ’\n’;

call(sqrtArg, ref(value));

cout << "Passed ref(value), returns: " << value << ’\n’;

}

/*
Displays:

In call: arg = 1.73205

Passed value, returns: 3

In call: arg = 1.73205

Passed ref(value), returns: 1.73205

*/

616 CHAPTER 20. FUNCTION TEMPLATES

20.3 Using Local and unnamed types as template arguments

(C++11)

Usually, types have names. But an anonymous type may also be defined:

enum

{

V1,

V2,

V3

};

Here, the enum defines an unnamed or anonymous type.

When defining a function template, the compiler normally deducts the types of its template type

parameters from its arguments:

template <typename T>

void fun(T &&t);

fun(3); // T is int

fun(’c’); // T is char

C++11, however, also allows the following to be used:

fun(V1); // T is a value of the above enum type

Within fun a T variable may be defined, even if it’s an anonymous type:

template <typename T>

void fun(T &&t)

{

T var(t);

}

C++11 also allows values or objects of locally defined types to be passed as arguments to function

templates. E.g.,

void definer()

{

struct Local

{

double dVar;

int iVar;

};

Local local; // using a local type

fun(local); // OK: T is ’Local’

}

20.4. TEMPLATE PARAMETER DEDUCTION 617

20.4 Template parameter deduction

In this section we’ll concentrate on the process by which the compiler deduces the actual types of

the template type parameters. These types are deduced when a function template is called using a

process called template parameter deduction. As we’ve already seen, the compiler is able to substi-

tute a wide range of actual types for a single formal template type parameter. Even so, not every

thinkable conversion is possible. In particular when a function has multiple parameters of the same

template type parameter, the compiler is very restrictive when determining what argument types

are actually accepted.

When the compiler deduces the actual types for template type parameters it only considers the types

of the arguments that are actually used. Neither local variables nor the function’s return value is

considered in this process. This is understandable. When a function is called the compiler is only

certain about the types of the function template’s arguments. At the point of the call it definitely

does not see the types of the function’s local variables. Also, the function’s return value might not

actually be used or may be assigned to a variable of a subrange (or super-range) type of a deduced

template type parameter. So, in the following example, the compiler won’t ever be able to call fun(),

as it won’t be able to deduce the actual type for the Type template type parameter.

template <typename Type>

Type fun() // can never be called as ‘fun()’

{

return Type();

}

Although the compiler won’t be able to handle a call to ‘fun()’, it is possible to call fun() using an

explicit type specification. E.g., fun<int>() calls fun, instantiated for int. This is of course not

the same as compiler argument deduction.

In general, when a function has multiple parameters of identical template type parameters, the

actual types must be exactly the same. So, whereas

void binarg(double x, double y);

may be called using an int and a double, with the int argument silently being converted to a

double, a similar function template cannot be called using an int and double argument: the

compiler won’t by itself promote int to double deciding that Type should be double:

template <typename Type>

void binarg(Type const &p1, Type const &p2)

{}

int main()

{

binarg(4, 4.5); // ?? won’t compile: different actual types

}

What, then, are the transformations the compiler applies when deducing the actual types of tem-

plate type parameters? It performs but three types of parameter type transformations and a fourth

one to function template non-type parameters. If it cannot deduce the actual types using these

transformations, the function template will not be considered. The transformations performed by

the compiler are:

• lvalue transformations, creating an rvalue from an lvalue;

618 CHAPTER 20. FUNCTION TEMPLATES

• qualification transformations, inserting a const modifier to a non-constant argument type;

• transformation to a base class instantiated from a class template, using a template base class

when an argument of a template derived class type was provided in the call.

• Standard transformations for function template non-type parameters. This isn’t a template

type parameter transformation, but it refers to any remaining template non-type parameter

of function templates. For these function parameters the compiler performs any standard

conversion it has available (e.g., int to size_t, int to double, etc.).

The purpose of the various template parameter type deduction transformations is not to match

function arguments to function parameters, but rather, having matched arguments to parameters,

to determine the actual types of the various template type parameters.

20.4.1 Lvalue transformations

There are three types of lvalue transformations:

• lvalue-to-rvalue transformations.

An lvalue-to-rvalue transformation is applied when an rvalue is required, but an

lvalue is provided. This happens when a variable is used as argument to a function

specifying a value parameter. For example,

template<typename Type>

Type negate(Type value)

{

return -value;

}

int main()

{

int x = 5;

x = negate(x); // lvalue (x) to rvalue (copies x)

}

• array-to-pointer transformations.

An array-to-pointer transformation is applied when the name of an array is assigned

to a pointer variable. This is frequently used with functions defining pointer pa-

rameters. Such functions frequently receive arrays as their arguments. The array’s

address is then assigned to the pointer-parameter and its type is used to deduce the

corresponding template parameter’s type. For example:

template<typename Type>

Type sum(Type *tp, size_t n)

{

return accumulate(tp, tp + n, Type());

}

int main()

{

int x[10];

sum(x, 10);

}

In this example, the location of the array x is passed to sum, expecting a pointer to

some type. Using the array-to-pointer transformation, x’s address is considered a

pointer value which is assigned to tp, deducing that Type is int in the process.

20.4. TEMPLATE PARAMETER DEDUCTION 619

• function-to-pointer transformations.

This transformation is most frequently used with function templates defining a pa-

rameter which is a pointer to a function. When calling such a function the name

of a function may be specified as its argument. The address of the function is then

assigned to the pointer-parameter, deducing the template type parameter in the pro-

cess. This is called a function-to-pointer transformation. For example:

#include <cmath>

template<typename Type>

void call(Type (*fp)(Type), Type const &value)

{

(*fp)(value);

}

int main()

{

call(sqrt, 2.0);

}

In this example, the address of the sqrt function is passed to call, expecting a

pointer to a function returning a Type and expecting a Type for its argument. Using

the function-to-pointer transformation, sqrt’s address is assigned to fp, deducing

that Type is double in the process (note that sqrt is the address of a function, not

a variable that is a pointer to a function, hence the lvalue transformation).

The argument 2.0 could not have been specified as 2 as there is no int sqrt(int)

prototype. Furthermore, the function’s first parameter specifies Type (*fp)(Type),

rather than Type (*fp)(Type const &) as might have been expected from our

previous discussion about how to specify the types of function template’s parameters,

preferring references over values. However, fp’s argument Type is not a function

template parameter, but a parameter of the function fp points to. Since sqrt has

prototype double sqrt(double), rather than double sqrt(double const &),

call’s parameter fp must be specified as Type (*fp)(Type). It’s that strict.

20.4.2 Qualification transformations

A qualification transformation adds const or volatile qualifications to pointers. This transforma-

tion is applied when the function template’s type parameter explicitly specifies const (or volatile)

but the function’s argument isn’t a const or volatile entity. In that case const or volatile is

provided by the compiler. Subsequently the compiler deduces the template’s type parameter. For

example:

template<typename Type>

Type negate(Type const &value)

{

return -value;

}

int main()

{

int x = 5;

x = negate(x);

}

Here we see the function template’s Type const &value parameter: a reference to a const Type.

However, the argument isn’t a const int, but an int that can be modified. Applying a qualification

620 CHAPTER 20. FUNCTION TEMPLATES

transformation, the compiler adds const to x’s type, and so it matches int const x. This is then

matched against Type const &value allowing the compiler to deduce that Type must be int.

20.4.3 Transformation to a base class

Although the construction of class templates is the topic of chapter 21, we’ve already extensively

used class templates before. For example, abstract containers (cf. chapter 12) are defined as class

templates. Class templates can, like ordinary classes, participate in the construction of class hier-

archies.

In section 21.11 it is shown how a class template can be derived from another class template.

As class template derivation remains to be covered, the following discussion is necessarily somewhat

premature. The reader may of course skip briefly to section 21.11 returning back to this section

thereafter.

In this section it should be assumed, for the sake of argument, that a class template Vector has

somehow been derived from a std::vector. Furthermore, assume that the following function

template has been constructed to sort a vector using some function object obj:

template <typename Type, typename Object>

void sortVector(std::vector<Type> vect, Object const &obj)

{

sort(vect.begin(), vect.end(), obj);

}

To sort std::vector<string> objects case-insensitively, a class Caseless could be constructed

as follows:

class CaseLess

{

public:

bool operator()(std::string const &before,

std::string const &after) const

{

return strcasecmp(before.c_str(), after.c_str()) < 0;

}

};

Now various vectors may be sorted using sortVector():

int main()

{

std::vector<string> vs;

std::vector<int> vi;

sortVector(vs, CaseLess());

sortVector(vi, less<int>());

}

Applying the transformation transformation to a base class instantiated from a class template, the

function template sortVector may now also be used to sort Vector objects. For example:

20.4. TEMPLATE PARAMETER DEDUCTION 621

int main()

{

Vector<string> vs; // ‘Vector’ instead of ‘std::vector’

Vector<int> vi;

sortVector(vs, CaseLess());

sortVector(vi, less<int>());

}

In this example, Vectors were passed as argument to sortVector. Applying the transformation to

a base class instantiated from a class template, the compiler considers Vector to be a std::vector

enabling it to deduce the template’s type parameter. A std::string for the Vector vs, an int

for Vector vi.

20.4.4 The template parameter deduction algorithm

The compiler uses the following algorithm to deduce the actual types of its template type parameters:

• In turn, the function template’s parameters are identified using the arguments of the called

function.

• For each template parameter used in the function template’s parameter list, the template type

parameter is associated with the corresponding argument’s type (e.g., Type is int if the argu-

ment is int x, and the function’s parameter is Type &value).

• While matching the argument types to the template type parameters, the three allowed trans-

formations (see section 20.4) for template type parameters are applied where necessary.

• If identical template type parameters are used with multiple function parameters, the deduced

template types must exactly match. So, the next function template cannot be called with an

int and a double argument:

template <typename Type>

Type add(Type const &lvalue, Type const &rvalue)

{

return lvalue + rvalue;

}

When calling this function template, two identical types must be used (albeit that the three

standard transformations are of course allowed). If the template deduction mechanism does

not come up with identical actual types for identical template types, then the function template

is not going to be instantiated.

20.4.5 Template type contractions

With function templates the combination of the types of template arguments and template parame-

ters shows some interesting contractions. What happens, for example if a template type parameter

is specified as an rvalue reference but an lvalue reference argument type is provided?

In such cases the compiler performs type contractions. Doubling identical reference types results in

a simple contraction: the type is deduced to be a single reference type. Example: if the template

parameter type is specified as a Type && and the actual parameter is an int && then Type is

deduced to be an int, rather than an int &&.

622 CHAPTER 20. FUNCTION TEMPLATES

This is fairly intuitive. But what happens if the actual type is int &? There is no such thing

as an int & &¶m and so the compiler contracts the double reference by removing the rvalue

reference, keeping the lvalue reference. Here the following rules are applied:

1. A function template parameter defined as an lvalue reference to a template’s type

parameter (e.g., Type &) receiving an lvalue reference argument results in a single lvalue

reference.

2. A function template parameter defined as an rvalue reference to a template’s type

parameter (e.g., Type &&) receiving any kind of reference argument uses the reference

type of the argument.

Examples:

• When providing an Actual & argument then Type & becomes an Actual & and Type is

inferred as Actual;

• When providing an Actual & then Type && becomes an Actual & and Type is inferred as

Actual;

• When providing an Actual && then Type & also becomes Actual & and Type is inferred as

Actual;

• When providing an Actual && then Type && becomes Actual && and Type is inferred as

Actual;

Let’s look at a concrete exampe where contraction occurs. Consider the following function template

where a function parameter is defined as an rvalue references to some template type parameter:

template <typename Type>

void function(Type &¶m)

{

callee(static_cast<Type &&>(param));

}

In this situation, when function is called with an (lvalue) argument of type TP & the template type

parameter Type is deduced to be Tp &. Therefore, Type &¶m is instantiated as Tp ¶m,

Type becomes Tp and the rvalue reference is replaced by an lvalue reference.

Likewise, when callee is called using the static_cast the same contraction occurs, so Type

&¶m operates on Tp ¶m. Therefore (using contraction) the static cast also uses type Tp

¶m. If param happened to be of type Tp && then the static cast uses type Tp &¶m.

This characteristic allows us to pass a function argument to a nested function without changing its

type: lvalues remain lvalues, rvalues remain rvalues. This characteristic is therefore also known as

perfect forwarding which is discussed in greater detail in section 21.5.2. Perfect forwarding prevents

the template author from having to define multiply overloaded versions of a function template.

20.5 Declaring function templates

Up to now, we’ve only defined function templates. There are various consequences of including

function template definitions in multiple source files, none of them serious, but worth knowing.

20.5. DECLARING FUNCTION TEMPLATES 623

• Like class interfaces, template definitions are usually included in header files. Every time a

header file containing a template definition is read by the compiler it must process the full

definition. It must do so even if it does not actually use the template. This somewhat slows-

down the compilation. For example, compiling a template header file like algorithm on my

old laptop takes about four times the amount of time it takes to compile a plain header file

like cmath. The header file iostream is even harder to process, requiring almost 15 times the

amount of time it takes to process cmath. Clearly, processing templates is serious business for

the compiler. On the other hand this drawback shouldn’t be taken too seriously. Compilers are

continuously improving their template processing capacity and computers keep getting faster

and faster. What was a nuisance a few years ago is hardly noticeable today.

• Every time a function template is instantiated, its code appears in the resulting object module.

However, if multiple instantiations of a template using the same actual types for its template

parameters exist in multiple object files the one definition rule is lifted. The linker weeds out

superfluous instantiations (i.e., identical definitions of instantiated templates). In the final

program only one instantiation for a particular set of actual template type parameters remain

available (see section 20.6 for an illustration). Therefore, the linker has an additional task to

perform (viz. weeding out multiple instantiations), which somewhat slows down the linking

process.

• Sometimes the definitions themselves are not required, but references or pointers to the tem-

plates are. Requiring the compiler to process the full template definitions in those cases need-

lessly slows down the compilation process.

• In the context of template meta programming (see chapter 22) it is sometimes not even re-

quired to provide a template implementation. Instead, only specializations (cf. section 20.9)

are created which are based upon the mere declaration.

So in some contexts template definitions may not be required. Instead the software engineer may

opt to declare a template rather than to include the template’s definition time and again in various

source files.

When templates are declared, the compiler does not have to process the template’s definitions again

and again; and no instantiations are created on the basis of template declarations alone. Any ac-

tually required instantiation must then be available elsewhere (of course, this holds true for decla-

rations in general). Unlike the situation we encounter with ordinary functions, which are usually

stored in libraries, it is currently not possible to store templates in libraries (although the compiler

may construct precompiled header files). Consequently, using template declarations puts a burden

on the shoulders of the software engineer, who has to make sure that the required instantiations

exist. Below a simple way to accomplish that is introduced.

To create a function template declaration simply replace the function’s body by a semicolon. Note

that this is exactly identical to the way ordinary function declarations are constructed. So, the

previously defined function template add can simply be declared as

template <typename Type>

Type add(Type const &lvalue, Type const &rvalue);

We’ve already encountered template declarations. The header file iosfwd may be included in

sources not requiring instantiations of elements from the class ios and its derived classes. For

example, to compile the declaration

std::string getCsvLine(std::istream &in, char const *delim);

it is not necessary to include the string and istream header files. Rather, a single

624 CHAPTER 20. FUNCTION TEMPLATES

#include <iosfwd>

is sufficient. Processing iosfwd requires only a fraction of the time it takes to process the string

and istream header files.

20.5.1 Instantiation declarations

If declaring function templates speeds up the compilation and the linking phases of a program, how

can we make sure that the required instantiations of the function templates are available when the

program is eventually linked together?

For this a variant of a template declaration is available, a so-called explicit instantiation declaration.

An explicit instantiation declaration consists of the following elements:

• It starts with the keyword template, omitting the template parameter list.

• Next the function template’s return type and name are specified.

• The function template’s name is followed by a type specification list. A type specification list

is an angle brackets enclosed list of type names. Each type specifies the actual type of the

corresponding template type parameter in the template’s parameter list.

• Finally the function template’s parameter list is specified, terminated by a semicolon.

Although this is a declaration, it is understood by the compiler as a request to instantiate that

particular variant of the function template.

Using explicit instantiation declarations all instantiations of template functions required by a pro-

gram can be collected in one file. This file, which should be a normal source file, should include the

template definition header file and should subsequently specify the required explicit instantiation

declarations. Since it’s a source file, it is not included by other sources. So namespace using direc-

tives and declarations may safely be used once the required headers have been included. Here is an

example showing the required instantiations for our earlier add function template, instantiated for

double, int, and std::string types:

#include "add.h"

#include <string>

using namespace std;

template int add<int>(int const &lvalue, int const &rvalue);

template double add<double>(double const &lvalue, double const &rvalue);

template string add<string>(string const &lvalue, string const &rvalue);

If we’re sloppy and forget to mention an instantiation required by our program then the repair is

easily made by adding the missing instantiation declaration to the above list. After recompiling the

file and relinking the program we’re done.

20.6 Instantiating function templates

Different from an ordinary function that results in code once the compiler reads its definition a

template is not instantiated when its definition is read. A template is merely a recipe telling the

20.6. INSTANTIATING FUNCTION TEMPLATES 625

compiler how to create particular code once it’s time to do so. It’s indeed very much like a recipe in

a cooking book. You reading how to bake a cake doesn’t mean you have actually baked that cake by

the time you’ve read the recipe.

So, when is a function template actually instantiated? There are two situations where the compiler

decides to instantiate templates:

• They are instantiated when they are used (e.g., the function add is called with a pair of size_t

values);

• When addresses of function templates are taken they are instantiated. Example:

char (*addptr)(char const &, char const &) = add;

The location of statements causing the compiler to instantiate a template is called the template’s

point of instantiation. The point of instantiation has serious implications for the function template’s

code. These implications are discussed in section 20.13.

The compiler is not always able to deduce the template’s type parameters unambiguously. When the

compiler reports an ambiguity it must be solved by the software engineer. Consider the following

code:

#include <iostream>

#include "add.h"

size_t fun(int (*f)(int *p, size_t n));

double fun(double (*f)(double *p, size_t n));

int main()

{

std::cout << fun(add);

}

When this little program is compiled, the compiler reports an ambiguity it cannot resolve. It has

two candidate functions as for each overloaded version of fun an add function can be instantiated:

error: call of overloaded ’fun(<unknown type>)’ is ambiguous

note: candidates are: int fun(size_t (*)(int*, size_t))

note: double fun(double (*)(double*, size_t))

Such situations should of course be avoided. Function templates can only be instantiated if there’s no

ambiguity. Ambiguities arise when multiple functions emerge from the compiler’s function selection

mechanism (see section 20.14). It is up to us to resolve the ambiguities. They could be resolved using

a blunt static_cast (by which we select among alternatives, all of them possible and available):

#include <iostream>

#include "add.h"

int fun(int (*f)(int const &lvalue, int const &rvalue));

double fun(double (*f)(double const &lvalue, double const &rvalue));

int main()

{

626 CHAPTER 20. FUNCTION TEMPLATES

std::cout << fun(

static_cast<int (*)(int const &, int const &)>(add)

);

}

But it’s good practice to avoid type casts wherever possible. How to do this is explained in the next

section (20.7).

20.6.1 Instantiations: no ‘code bloat’

As mentioned in section 20.5, the linker removes identical instantiations of a template from the final

program, leaving only one instantiation for each unique set of actual template type parameters. To

illustrate the linker’s behavior we do as follows:

• First we construct several source files:

– source1.cc defines a function fun, instantiating add for int-type arguments, including

add’s template definition. It displays add’s address:

union PointerUnion

{

int (*fp)(int const &, int const &);

void *vp;

};

#include <iostream>

#include "add.h"

#include "pointerunion.h"

void fun()

{

PointerUnion pu = { add };

std::cout << pu.vp << ’\n’;

}

– source2.cc defines the same function, but merely declares the proper add template us-

ing a template declaration (not an instantiation declaration). Here is source2.cc:

#include <iostream>

#include "pointerunion.h"

template<typename Type>

Type add(Type const &, Type const &);

void fun()

{

PointerUnion pu = { add };

std::cout << pu.vp << ’\n’;

}

– main.cc again includes add’s template definition, declares the function fun and defines

main, defining add for int-type arguments as well and displaying add’s function address.

It also calls the function fun. Here is main.cc:

#include <iostream>

20.7. USING EXPLICIT TEMPLATE TYPES 627

#include "add.h"

#include "pointerunion.h"

void fun();

int main()

{

PointerUnion pu = { add };

fun();

std::cout << pu.vp << ’\n’;

}

• All sources are compiled to object modules. Note the different sizes of source1.o (1912 bytes

using g++ version 4.3.4 (sizes of object modules reported in this section may differ for different

compilers and/or run-time libraries)) and source2.o (1740 bytes). Since source1.o contains

the instantiation of add, it is somewhat larger than source2.o, containing only the template’s

declaration. Now we’re ready to start our little experiment.

• Linking main.o and source1.o, we obviously link together two object modules, each contain-

ing its own instantiation of the same template function. The resulting program produces the

following output:

0x80486d8

0x80486d8

Furthermore, the size of the resulting program is 6352 bytes.

• Linking main.o and source2.o, we now link together an object module containing the in-

stantiation of the add template, and another object module containing the mere declaration of

the same template function. So, the resulting program cannot but contain a single instantia-

tion of the required function template. This program has exactly the same size, and produces

exactly the same output as the first program.

From our little experiment we conclude that the linker indeed removes identical template instanti-

ations from a final program. Furthermore we conclude that using mere template declarations does

not result in template instantiations.

20.7 Using explicit template types

In the previous section we saw that the compiler may encounter ambiguities when attempting to

instantiate a template. In an example overloaded versions of a function (fun) existed, expecting

different types of arguments. The ambiguity resulted from the fact that both arguments could have

been provided by an instantiation of a function template. The intuitive way to solve such an ambi-

guity is to use a static_cast. But casts should be avoided wherever possible.

With function templates static casts may indeed be avoided using explicit template type arguments.

Explicit template type arguments can be used to inform the compiler about the actual types it should

use when instantiating a template. To use explicit type arguments the function’s name is followed

by an actual template type argument list which may again be followed by the function’s argument

list. The actual types mentioned in the actual template argument list are used by the compiler to

‘deduce’ what types to use when instantiating the template. Here is the example from the previous

section, now using explicit template type arguments:

628 CHAPTER 20. FUNCTION TEMPLATES

#include <iostream>

#include "add.h"

int fun(int (*f)(int const &lvalue, int const &rvalue));

double fun(double (*f)(double const &lvalue, double const &rvalue));

int main()

{

std::cout << fun(add<int>) << ’\n’;

}

Explicit template type arguments can be used in situations where the compiler has no way to detect

which types should actually be used. E.g., in section 20.4 the function template Type fun() was

defined. To instantiate this function for the double type, we can call fun<double>().

20.8 Overloading function templates

Let’s once again look at our add template. That template was designed to return the sum of two

entities. If we would want to compute the sum of three entities, we could write:

int main()

{

add(add(2, 3), 4);

}

This is an acceptable solution for the occasional situation. However, if we would have to add three

entities regularly, an overloaded version of the add function expecting three arguments might be

a useful function to have. There’s a simple solution to this problem: function templates may be

overloaded.

To define an overloaded function template, merely put multiple definitions of the template in its

header file. For the add function this would boil down to:

template <typename Type>

Type add(Type const &lvalue, Type const &rvalue)

{

return lvalue + rvalue;

}

template <typename Type>

Type add(Type const &lvalue, Type const &mvalue, Type const &rvalue)

{

return lvalue + mvalue + rvalue;

}

The overloaded function does not have to be defined in terms of simple values. Like all overloaded

functions, a unique set of function parameters is enough to define an overloaded function template.

For example, here’s an overloaded version that can be used to compute the sum of the elements of a

vector:

template <typename Type>

Type add(std::vector<Type> const &vect)

20.8. OVERLOADING FUNCTION TEMPLATES 629

{

return accumulate(vect.begin(), vect.end(), Type());

}

When overloading function templates we do not have to restrict ourselves to the function’s parameter

list. The template’s type parameter list itself may also be overloaded. The last definition of the add

template allows us to specify a vector as its first argument, but no deque or map. Overloaded

versions for those types of containers could of course be constructed, but how far should we go? A

better approach seems to be to look for common characteristics of these containers. If found we

may be able to define an overloaded function template based on these common characteristics. One

common characteristic of the mentioned containers is that they all support begin and endmembers,

returning iterators. Using this, we could define a template type parameter representing containers

that must support these members. But mentioning a plain ‘container type’ doesn’t tell us for what

type of data it was instantiated. So we need a second template type parameter representing the

container’s data type, thus overloading the template’s type parameter list. Here is the resulting

overloaded version of the add template:

template <typename Container, typename Type>

Type add(Container const &cont, Type const &init)

{

return std::accumulate(cont.begin(), cont.end(), init);

}

One may wonder whether the init parameter could not be left out of the parameter list as init

often has a default initialization value. The answer is ‘yes’, but there are complications. It is possible

to define the add function as follows:

template <typename Type, typename Container>

Type add(Container const &cont)

{

return std::accumulate(cont.begin(), cont.end(), Type());

}

Note, however, that the template’s type parameters were reordered, which is necessary because the

compiler won’t be able to determine Type in a call like:

int x = add(vectorOfInts);

After reordering the template type parameters, putting Type first, an explicit template type argu-

ment can be provided for the first template type parameter:

int x = add<int>(vectorOfInts);

In this example we provided a vector<int> argument. One might wonder why we have to specify

int explicitly to allow the compiler to determine the template type parameter Type. In fact, we

don’t. A third kind of template parameter exists, a template template parameter, allowing the com-

piler to determine Type directly from the actual container argument. Template template parameters

are discussed in section 22.4.

630 CHAPTER 20. FUNCTION TEMPLATES

20.8.1 An example using overloaded function templates

With all these overloaded versions in place, we may now start the compiler to compile the following

function:

using namespace std;

int main()

{

vector<int> v;

add(3, 4); // 1 (see text)

add(v); // 2

add(v, 0); // 3

}

• In statement 1 the compiler recognizes two identical types, both int. It therefore instantiates

add<int>, our very first definition of the add template.

• In statement 2 a single argument is used. Consequently, the compiler looks for an overloaded

version of add requiring but one argument. It finds the overloaded function template expecting

a std::vector, deducing that the template’s type parameter must be int. It instantiates

add<int>(std::vector<int> const &)

• In statement 3 the compiler again encounters an argument list having two arguments. How-

ever, this time the types of the arguments aren’t equal, so add template’s first definition can’t

be used. But it can use the last definition, expecting entities having different types. As a

std::vector supports begin and end, the compiler is now able to instantiate the function

template

add<std::vector<int>, int>(std::vector<int> const &, int const &)

Having defined the add function template for two equal and two different template type parame-

ters we’ve exhausted the possibilities for using an add function template having two template type

parameters.

20.8.2 Ambiguities when overloading function templates

Although it is possible to define another function template add this introduces an ambiguity as the

compiler won’t be able to choose which of the two overloaded versions defining two differently typed

function parameters should be used. For example when defining:

#include "add.h"

template <typename T1, typename T2>

T1 add(T1 const &lvalue, T2 const &rvalue)

{

return lvalue + rvalue;

}

int main()

{

20.8. OVERLOADING FUNCTION TEMPLATES 631

add(3, 4.5);

}

the compiler reports an ambiguity like the following:

error: call of overloaded ‘add(int, double)’ is ambiguous

error: candidates are: Type add(const Container&, const Type&)

[with Container = int, Type = double]

error: T1 add(const T1&, const T2&)

[with T1 = int, T2 = double]

Now recall the overloaded function template accepting three arguments:

template <typename Type>

Type add(Type const &lvalue, Type const &mvalue, Type const &rvalue)

{

return lvalue + mvalue + rvalue;

}

It may be considered as a disadvantage that only equally typed arguments are accepted by this

function (three ints, three doubles, etc.). To remedy this we define yet another overloaded function

template, this time accepting arguments of any type. This function template can only be used if

operator+ is defined between the function’s actually used types, but apart from that there appears

to be no problem. Here is the overloaded version accepting arguments of any type:

template <typename Type1, typename Type2, typename Type3>

Type1 add(Type1 const &lvalue, Type2 const &mvalue, Type3 const &rvalue)

{

return lvalue + mvalue + rvalue;

}

Now that we’ve defined the above two overloaded function templates expecting three arguments let’s

call add as follows:

add(1, 2, 3);

Should we expect an ambiguity here? After all, the compiler might select the former function,

deducing that Type == int, but it might also select the latter function, deducing that Type1 ==

int, Type2 == int and Type3 == int. Remarkably, the compiler reports no ambiguity.

No ambiguity is reported because of the following. If overloaded template functions are defined using

less and more specialized template type parameters (e.g., less specialized: all types different vs.

more specialized: all types equal) then the compiler selects the more specialized function whenever

possible.

As a rule of thumb: overloaded function templates must allow a unique combination of template type

arguments to be specified to prevent ambiguities when selecting which overloaded function template

to instantiate. The ordering of template type parameters in the function template’s type parameter

list is not important. E.g., trying to instantiate one of the following function templates results in an

ambiguity:

template <typename T1, typename T2>

632 CHAPTER 20. FUNCTION TEMPLATES

void binarg(T1 const &first, T2 const &second)

{}

template <typename T1, typename T2>

void binarg(T2 const &first, T1 const &second)

{}

This should not come as a surprise. After all, template type parameters are just formal names. Their

names (T1, T2 or Whatever) have no concrete meanings.

20.8.3 Declaring overloaded function templates

Like any function, overloaded functions may be declared, either using plain declarations or instan-

tiation declarations. Explicit template argument types may also be used. Example:

• To declare a function template add accepting certain containers:

template <typename Container, typename Type>

Type add(Container const &container, Type const &init);

• to use an instantiation declaration (in which case the compiler must already have seen the

template’s definition):

template int add<std::vector<int>, int>

(std::vector<int> const &vect, int const &init);

• to use explicit template type arguments:

std::vector<int> vi;

int sum = add<std::vector<int>, int>(vi, 0);

20.9 Specializing templates for deviating types

The initial add template, defining two identically typed parameters works fine for all types sup-

porting operator+ and a copy constructor. However, these assumptions are not always met. For

example, with char *s, using operator+ or a ‘copy constructor’ does not make sense. The com-

piler tries to instantiate the function template, but compilation fails as operator+ is not defined

for pointers.

In such situations the compiler may be able to resolve the template type parameters but it (or we ...)

may then detect that the standard implementation is pointless or produces errors.

To solve this problem a template explicit specialization may be defined. A template explicit spe-

cialization defines the function template for which a generic definition already exists using specific

actual template type parameters. As we saw in the previous section the compiler always prefers

a more specialized function over a less specialized one. So the template explicit specialization is

selected whenever possible.

A template explicit specialization offers a specialization for its template type parameter(s). The

special type is consistently subsituted for the template type parameter in the function template’s

code. For example if the explicitly specialized type is char const * then in the template definition

template <typename Type>

20.9. SPECIALIZING TEMPLATES FOR DEVIATING TYPES 633

Type add(Type const &lvalue, Type const &rvalue)

{

return lvalue + rvalue;

}

Type must be replaced by char const *, resulting in a function having prototype

char const *add(char const *const &lvalue, char const *const &rvalue);

Now we try to use this function:

int main(int argc, char **argv)

{

add(argv[0], argv[1]);

}

However, the compiler ignores our specialization and tries to instantiate the initial function tem-

plate. This fails, leaving us wondering why it didn’t select the explicit specialization....

To see what happened here we replay, step by step, the compiler’s actions:

• add is called with char * arguments.

• Both types are equal, so the compiler deduces that Type equals char *.

• Now it inspects the specialization. Can a char * template type argument match a char

const *const & template parameter? Here opportunities for the allowable transformations

from section 20.4 may arise. A qualification transformation seems to be the only viable one,

allowing the compiler to bind a const-parameter to a non-const argument.

• So, in terms of Type the compiler can match an argument of some Type or an argument of

some Type const to a Type const &.

• Type itself is not modified, and so Type is a char *.

• Next the compiler inspects the available explicit specializations. It finds one, specializing for

char const *.

• Since a char const * is not a char * it rejects the explicit specialization and uses the

generic form, resulting in a compilation error.

If our add function template should also be able to handle char * template type arguments another

explicit specialization for char * may be required, resulting in the prototype

char *add(char *const &lvalue, char *const &rvalue);

Instead of defining another explicit specialization an overloaded function template could be designed

expecting pointers. The following function template definition expects two pointers to constant Type

values and returns a pointer to a non-constant Type:

template <typename Type>

Type *add(Type const *t1, Type const *t2)

{

std::cout << "Pointers\n";

return new Type;

}

634 CHAPTER 20. FUNCTION TEMPLATES

What actual types may be bound to the above function parameters? In this case only a Type const

*, allowing char const *’s to be passed as arguments. There’s no opportunity for a qualification

transformation here. The qualification transformation allows the compiler to add a const to a non-

const argument if the parameter itself (and not Type) is specified in terms of a const or const &.

Loooking at, e.g., t1 we see that it’s defined as a Type const *. There’s nothing const here that’s

referring to the parameter (in which case it would have been Type const *const t1 or Type

const *const &t1). Consequently a qualification transformation cannot be applied here.

As the above overloaded function template only accepts char const * arguments, it will not accept

(without a reinterpret cast) char * arguments. So main’s argv elements cannot be passed to our

overloaded function template.

20.9.1 Avoiding too many specializations

So do we have to define yet another overloaded function template, this time expecting Type * ar-

guments? It is possible, but at some point it should become clear that our approach doesn’t scale.

Like ordinary functions and classes, function templates should have one conceptually clear purpose.

Trying to add overloaded function templates to overloaded function templates quickly turns the tem-

plate into a kludge. Don’t use this approach. A better approach is to construct the template so that

it fits its original purpose, to make allowances for the occasional specific case and to describe its

purpose clearly in its documentation.

In some situations constructing template explicit specialization may of course be defensible. Two

specializations for const and non-const pointers to characters might be appropriate for our add

function template. Here’s how they are constructed:

• Start with the keyword template.

• Next, an empty set of angle brackets is written. This indicates to the compiler that there must

be an existing template whose prototype matches the one we’re about to define. If we err and

there is no such template then the compiler reports an error like:

error: template-id ‘add<char*>’ for ‘char* add(char* const&, char*
const&)’ does not match any template declaration

• Now the function’s head is defined. It must match the prototype of the initial function tem-

plate or the form of a template explicit instantiation declaration (see section 20.5.1) if its spe-

cialized type cannot be determined from the function’s arguments. It must specify the correct

returntype, function name, maybe explicit template type arguments, as well as the function’s

parameter list.

• Finally the function’s body is defined, providing the special implementation that is required for

the specialization.

Here are two explicit specializations for the function template add, expecting char * and char

const * arguments:

template <> char *add<char *>(char *const &p1,

char *const &p2)

{

std::string str(p1);

str += p2;

return strcpy(new char[str.length() + 1], str.c_str());

20.9. SPECIALIZING TEMPLATES FOR DEVIATING TYPES 635

}

template <> char const *add<char const *>(char const *const &p1,

char const *const &p2)

{

static std::string str;

str = p1;

str += p2;

return str.c_str();

}

Template explicit specializations are normally included in the file containing the other function

template’s implementations.

20.9.2 Declaring specializations

Template explicit specializations can be declared in the usual way. I.e., by replacing its body with a

semicolon.

When declaring a template explicit specialization the pair of angle brackets following the template

keyword are essential. If omitted, we would have constructed a template instantiation declaration.

The compiler would silently process it, at the expense of a somewhat longer compilation time.

When declaring a template explicit specialization (or when using an instantiation declaration) the

explicit specification of the template type parameters can be omitted if the compiler is able to de-

duce these types from the function’s arguments. As this is the case with the char (const) *
specializations, they could also be declared as follows:

template <> char *add(char *const &p1, char *const &p2)

template <> char const *add(char const *const &p1,

char const *const &p2);

If in addition template <> could be omitted the template character would be removed from the

declaration. The resulting declaration is now a mere function declaration. This is not an error: func-

tion templates and ordinary (non-template) functions may mutually overload each other. Ordinary

functions are not as restrictive as function templates with respect to allowed type conversions. This

could be a reason to overload a template with an ordinary function every once in a while.

A function template explicit specialization is not just another overloaded version of the function

template. Whereas an overloaded version may define a completely different set of template param-

eters, a specialization must use the same set of template parameters as its non-specialized variant.

The compiler uses the specialization in situations where the actual template arguments match the

types defined by the specialization (following the rule that the most specialized set of parameters

matching a set of arguments will be used). For different sets of parameters overloaded versions of

functions (or function templates) must be used.

20.9.3 Complications when using the insertion operator

Now that we’ve covered explicit specializations and overloading let’s consider what happens when a

class defines a std::string conversion operator (cf. section 11.3).

A conversion operator is guaranteed to be used as an rvalue. This means that objects of a class

defining a string conversion operator can be assigned to, e.g., string objects. But when trying to

636 CHAPTER 20. FUNCTION TEMPLATES

insert objects defining string conversion operators into streams then the compiler complains that

we’re attemping to insert an inappropriate type into an ostream.

On the other hand, when this class defines an int conversion operator insertion is performed flaw-

lessly.

The reason for this distinction is that operator« is defined as a plain (free) function when inserting

a basic type (like int) but it is defined as a function template when inserting a string. Hence, when

trying to insert an object of our class defining a string conversion operator the compiler visits all

overloaded versions of insertion operators inserting into ostream objects.

Since no basic type conversion is available the basic type insertion operators can’t be used. Since

the available conversions for template arguments do not allow the compiler to look for conversion

operators our class defining the string conversion operator cannot be inserted into an ostream.

If it should be possible to insert objects of such a class into ostream objects the class must define its

own overloaded insertion operator (in addition to the string conversion operator that was required

to use the class’s objects as rvalue in string assignments).

20.10 Static assertions (C++11)

The

static_assert(constant expression, error message)

utility is defined by the C++11 standard to allow assertions to be made within template definitions.

Here are two examples of its use:

static_assert(BUFSIZE1 == BUFSIZE2,

"BUFSIZE1 and BUFSIZE2 must be equal");

template <typename Type1, typename Type2>

void rawswap(Type1 &type1, Type2 &type2)

{

static_assert(sizeof(Type1) == sizeof(Type2),

"rawswap: Type1 and Type2 must have equal sizes");

// ...

}

The first example shows how to avoid yet another preprocessor directive (in this case the #error

directive).

The second example shows how static_assert can be used to ensure that a template operates

under the right condition(s).

The string defined in static_assert’s second argument is displayed and compilation stops if the

condition specified in static_assert’s first argument is false.

Like the #error preprocessor directive static_assert is a compile-time matter that doesn’t have

any effect on the run-time efficiency of the code in which it is used.

20.11. NUMERIC LIMITS 637

20.11 Numeric limits

The header file <climits> defines constants for various types, e.g., INT_MAX defines the maximum

value that can be stored in an int.

The disadvantage of the limits defined in climits is that they are fixed limits. Let’s assume you

write a function template that receives an argument of a certain type. E.g,

template<typename Type>

Type operation(Type &&type);

Assume this function should return the largest negative value for Type if type is a negative value

and the largest positive value if type is a positive value. However, 0 should be returned if the type

is not an integral value.

How to proceed?

Since the constants in climits can only be used if the type to use is already known, the only

approach seems to be to create function template specializations for the various integral types, like:

template<>

int operation<int>(int &&type)

{

return type < 0 ? INT_MIN : INT_MAX;

}

The facilities provided by numeric_limits provide an alternative. To use these facilities the header

file <limits> header file must be included.

The class template numeric_limits offers various members answering all kinds of questions that

could be asked of numeric types. Before introducing these members, let’s have a look at how we

could implement the operation function template as just one single function template:

template<typename Type>

Type operation(Type &&type)

{

return

not numeric_limits<Type>::is_integer ? 0 :

type < 0 ? numeric_limits<Type>::min() :

numeric_limits<Type>::max();

}

Now operation can be used for all the language’s primitive types.

Here is an overview of the facilities offered by numeric_limits. Note that the member functions

defined by numeric_limits return constexpr values. A member ‘member’ defined by numeric_limits

for type Type can be used as follows:

numeric_limits<Type>::member // data members

numeric_limits<Type>::member() // member functions

All numeric_limits member functions return constexpr values.

638 CHAPTER 20. FUNCTION TEMPLATES

• Type denorm_min():

if available for Type: its minimum positive denormalized value; otherwise it returns

numeric_limits<Type>::min().

• int digits:

the number of non-sign bits used by Type values, or (floating point types) the number

of digits in the mantissa are returned.

• int digits10:

the number of digits that are required to represent a Type value without changing

it.

• Type constexpr epsilon():

The difference for Type between the smallest value exceeding 1 and 1 itself.

• float_denorm_style has_denorm:

denormalized floating point value representations use a variable number of exponent

bits. The has_denorm member returns information about denormalized values for

type Type:

– denorm_absent: Type does not allow denormalized values;

– denorm_indeterminate: Type may or may not use denormalized values; the

compiler cannot determine this at compile-time;

– denorm_present: Type uses denormalized values;

• bool has_denorm_loss:

true if a loss of accuracy was detected as a result of using denormalization (rather

than being an inexact result).

• bool has_infinity:

true if Type has a representation for positive infinity.

• bool has_quiet_NaN:

true if Type has a representation for a non-signaling ‘Not-a-Number’ value.

• bool has_signaling_NaN:

true if Type has a representation for a signaling ‘Not-a-Number’ value.

• Type constexpr infinity():

if available for Type: its positive infiniy value.

• bool is_bounded:

true if Type contains a finite set of values.

• bool is_exact:

true if Type uses an exact representation.

• bool is_iec559:

true if Type uses the IEC-559 (IEEE-754) standard. Such types always return true

for has_infinity, has_quiet_NaN and has_signaling_NaN, while infinity(),

quiet_NaN() and signaling_NaN() return non-zero values.

20.11. NUMERIC LIMITS 639

• bool is_integer:

true if Type is an integral type.

• bool is_modulo:

true if Type is a ‘modulo’ type. Values of modulo types can always be added, but

the addition may ‘wrap around’ producing a smaller Type result than either of the

addition’s two operands.

• bool is_signed:

true if Type is signed.

• bool is_specialized:

true for specializations of Type.

• T constexpr max():

Type’s maximum value.

• T constexpr min():

Type’s minimum value. For denormalized floating point types the minimum positive

normalized value.

• int max_exponent:

maximum positive integral value for the exponent of a floating point type Type pro-

ducing a valid Type value.

• int max_exponent10:

maximum integral value for the exponent that can be used for base 10, producing a

valid Type value.

• int min_exponent:

minimum negative integral value for the exponent of a floating point type Type pro-

ducing a valid Type value.

• int min_exponent10:

minimum negative integral value for the exponent that can be used for base 10, pro-

ducing a valid Type value.

• Type constexpr quiet_NaN():

if available for Type: its a non-signaling ‘Not-a-Number’ value.

• int radix:

if Type is an integral type: base of the representation; if Type is a floating point type:

the base of the exponent of the representation.

• Type constexpr round_error():

the maximum rounding error for Type.

• float_round_style round_syle:

the rounding style used by Type. It has one of the following enum float_round_style

values:

– round_toward_zero: values are rounded toward zero;

640 CHAPTER 20. FUNCTION TEMPLATES

– round_to_nearest: values are rounded to the nearest representable value;

– round_toward_infinity:values are rounded toward infinity;

– round_toward_neg_infinity: if it rounds toward negative infinity;

– round_indeterminate: if the rounding style is indeterminable at compile-time.

• Type constexpr signaling_NaN():

if available for Type: its a signaling ‘Not-a-Number’ value.

• bool tinyness_before:

true if Type allows tinyness to be detected before rounding.

• bool traps:

true if Type implements trapping.

20.12 Polymorphous wrappers for function objects (C++11)

In C++ pointers to (member) functions have fairly strict rvalues. They can only point to functions

matching their types. This becomes a problem when defining templates where the type of a function

pointer may depend on the template’s parameters.

To solve this problem the C++11 standard introduces polymorphous (function object) wrappers.

Polymorphous wrappers refer to function pointers, member functions or function objects, as long as

their parameters match in type and number.

Before using polymorphic function wrappers the header file ‘<functional>’ must have been in-

cluded.

Polymorphic function wrappers are made available through the std::function class template. Its

template argument is the prototype of the function to create a wrapper for. Here is an example of

the definition of a polymorphic function wrapper that can be used to point to a function expecting

two int values and returning an int:

std::function<int (int, int)> ptr2fun;

Here, the template’s parameter is int (int, int), indicating a function expecting two int argu-

ments, and returning and int. Other prototypes return other, matching, function wrappers.

Such a function wrapper can now be used to point to any function the wrapper was created for.

E.g., ‘plus<int> add’ creates a functor defining an int operator()(int, int) function call

member. As this qualifies as a function having prototype int (int, int), our ptr2fun may point

to add:

ptr2fun = add;

If ptr2fun does not yet point to a function (e.g., it is merely defined) and an attempt is made to

call a function through it a ‘std::bad_function_call’ exception is thrown. Also, a polymorphic

function wrapper that hasn’t been assigned to a function’s address represents the value false in

logical expressions (as if it had been a pointer having value zero):

std::function<int(int)> ptr2int;

20.13. COMPILING TEMPLATE DEFINITIONS AND INSTANTIATIONS 641

if (not ptr2int)

cout << "ptr2int is not yet pointing to a function\n";

Polymorphous function wrappers can also be used to refer to functions, functors or other polymor-

phous function wrappers having prototypes for which standard conversions exist for either parame-

ters or return values. E.g.,

bool predicate(long long value);

void demo()

{

std::function<int(int)> ptr2int;

ptr2int = predicate; // OK, convertible param. and return type

struct Local

{

short operator()(char ch);

};

Local object;

std::function<short(char)> ptr2char(object);

ptr2int = object; // OK, object is a functor whose function

// operator has a convertible param. and

// return type.

ptr2int = ptr2char; // OK, now using a polym. funct. wrapper

}

20.13 Compiling template definitions and instantiations

Consider this definition of the add function template:

template <typename Container, typename Type>

Type add(Container const &container, Type init)

{

return std::accumulate(container.begin(), container.end(), init);

}

Here std::accumulate is called using container’s begin and end members.

The calls container.begin() and container.end() are said to depend on template type pa-

rameters. The compiler, not having seen container’s interface, cannot check whether container

actually has members begin and end returning input iterators.

On the other hand, std::accumulate itself is independent of any template type parameter. Its

arguments depend on template parameters, but the function call itself isn’t. Statements in a tem-

plate’s body that are independent of template type parameters are said not to depend on template

type parameters.

642 CHAPTER 20. FUNCTION TEMPLATES

When the compiler encounters a template definition, it verifies the syntactic correctness of all state-

ments not depending on template parameters. I.e., it must have seen all class definitions, all type

definitions, all function declarations etc. that are used in those statements. If the compiler hasn’t

seen the required definitions and declarations then it will reject the template’s definition. Therefore,

when submitting the above template to the compiler the header file numeric must first have been

included as this header file declares std::accumulate.

With statements depending on template parameters the compiler cannot perform those extensive

syntactic checks. It has no way to verify the existence of a member begin for the as yet unspec-

ified type Container. In these cases the compiler performs superficial checks, assuming that the

required members, operators and types eventually become available.

The location in the program’s source where the template is instantiated is called its point of in-

stantiation. At the point of instantiation the compiler deduces the actual types of the template’s

parameters. At that point it checks the syntactic correctness of the template’s statements that de-

pend on template type parameters. This implies that the compiler must have seen the required

declarations only at the point of instantiation. As a rule of thumb, you should make sure that all

required declarations (usually: header files) have been read by the compiler at every point of in-

stantiation of the template. For the template’s definition itself a more relaxed requirement can be

formulated. When the definition is read only the declarations required for statements not depending

on the template’s type parameters must have been provided.

20.14 The function selection mechanism

When the compiler encounters a function call, it must decide which function to call when overloaded

functions are available. Earlier we’ve encountered principles like ‘the most specific function is se-

lected’. This is a fairly intuitive description of the compiler’s function selection mechanism. In this

section we’ll have a closer look at this mechanism.

Assume we ask the compiler to compile the following main function:

int main()

{

process(3, 3);

}

Furthermore assume that the compiler has encountered the following function declarations when

it’s about to compile main:

template <typename T>

void process(T &t1, int i); // 1

template <typename T1, typename T2>

void process(T1 const &t1, T2 const &t2); // 2

template <typename T>

void process(T const &t, double d); // 3

template <typename T>

void process(T const &t, int i); // 4

template <>

20.15. DETERMINING THE TEMPLATE TYPE PARAMETERS 643

void process<int, int>(int i1, int i2); // 5

void process(int i1, int i2); // 6

void process(int i, double d); // 7

void process(double d, int i); // 8

void process(double d1, double d2); // 9

void process(std::string s, int i) // 10

int add(int, int); // 11

The compiler, having read main’s statement, must now decide which function must actually be

called. It proceeds as follows:

• First, a set of candidate functions is constructed. This set contains all functions that:

– are visible at the point of the call;

– have the same names as the called function.

As function 11 has a different name, it is removed from the set. The compiler is left with a set

of 10 candidate functions.

• Second, the set of viable functions is constructed. Viable functions are functions for which type

conversions exist that can be applied so as to match the types of the function’s parameters to

the types of the actual arguments.

This implies that at least the number of arguments must match the number of parameters

of the viable functions. Function 10’s first argument is a string. As a string cannot be

initialized by an int value no approprate conversion exists and function 10 is removed from

the list of candidate functions. double parameters can be retained. Standard conversions

do exists for ints to doubles, so all functions having ordinary double parameters can be

retained. Therefore, the set of viable functions consists of functions 1 through 9.

At this point the compiler tries to determine the types of the template type parameters. This step is

outlined in the following subsection.

20.15 Determining the template type parameters

Having determined the set of candidate functions and from that set the set of viable functions the

compiler must now determine the actual types of the template type parameters.

It may use any of the three standard template parameter transformation procedures (cf. section

20.4) when trying to match actual types to template type parameters. In this process it concludes

that no type can be determined for the T in function 1’s T &t1 parameter as the argument 3 is a

constant int value. Thus function 1 is removed from the list of viable functions. The compiler is

now confronted with the following set of potentially instantiated function templates and ordinary

functions:

void process(T1 [= int] const &t1, T2 [= int] const &t2); // 2

void process(T [= int] const &t, double d); // 3

644 CHAPTER 20. FUNCTION TEMPLATES

void process(T [= int] const &t, int i); // 4

void process<int, int>(int i1, int i2); // 5

void process(int i1, int i2); // 6

void process(int i, double d); // 7

void process(double d, int i); // 8

void process(double d1, double d2); // 9

The compiler associates a direct match count value to each of the viable functions. The direct match

count counts the number of arguments that can be matched to function parameters without an

(automatic) type conversion. E.g., for function 2 this count equals 2, for function 7 it is 1 and for

function 9 it is 0. The functions are now (decrementally) sorted by their direct match count values:

match

count

void process(T1 [= int] const &t1, T2 [= int] const &t2); 2 // 2

void process(T [= int] const &t, int i); 2 // 4

void process<int, int>(int i1, int i2); 2 // 5

void process(int i1, int i2); 2 // 6

void process(T [= int] const &t, double d); 1 // 3

void process(int i, double d); 1 // 7

void process(double d, int i); 1 // 8

void process(double d1, double d2); 0 // 9

If there is no draw for the top value the corresponding function is selected and the function selection

process is completed.

When multiple functions appear at the top the compiler verifies that no ambiguity has been encoun-

tered. An ambiguity is encountered if the sequences of parameters for which type conversions were

(not) required differ. As an example consider functions 3 and 8. Using D for ‘direct match’ and C

for ‘conversion’ the arguments match function 3 as D,C and function 8 as C,D. Assuming that 2, 4,

5 and 6 were not available, then the compiler would have reported an ambiguity as the sequences

of argument/parameter matching procedures differ for functions 3 and 8. The same difference is en-

countered comparing functions 7 and 8, but no such difference is encountered comparing functions

3 and 7.

At this point there is a draw for the top value and the compiler proceeds with the subset of associated

functions (functions 2, 4, 5 and 6). With each of these functions an ‘ordinary parameter count’ is

associated counting the number of non-template parameters of the functions. The functions are

decrementally sorted by this count, resulting in:

ordin. param.

count

void process(int i1, int i2); 2 // 6

void process(T [= int] const &t, int i); 1 // 4

void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2

void process<int, int>(int i1, int i2); 0 // 5

Now there is no draw for the top value. The corresponding function (process(int, int), function

6) is selected and the function selection process is completed. Function 6 is used in main’s function

call statement.

Had function 6 not been defined, function 4 would have been used. Assuming that neither function

4 nor function 6 had been defined, the selection process would continue with functions 2 and 5:

ordin. param.

20.15. DETERMINING THE TEMPLATE TYPE PARAMETERS 645

Create candidate

functions
(names match)

Create viable

functions
(#params match)

Determine

template

parameters

Sort by

direct-match count

Select the

topmost function

Type conversion

ambiguity check

Sort by

ordinary params.

Sort by

function type

ReReport

Ambiguity

Figure 20.1: The function template selection mechanism

count

void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2

void process<int, int>(int i1, int i2); 0 // 5

In this situation a draw is encountered once again and the selection process continues. A ‘type

of function’ value is associated with each of the functions having the highest ordinary parameter

count and these functions are decrementally sorted by their type of function values. Value 2 is

associated to ordinary functions, value 1 to template explicit specializations and value 0 to plain

function templates.

If there is no draw for the top value the corresponding function is selected and the function selection

process is completed. If there is a draw the compiler reports an ambiguity and cannot determine

which function to call. Assuming only functions 2 and 5 existed then this selection step would have

resulted in the following ordering:

function

type

void process<int, int>(int i1, int i2); 1 // 5

void process(T1 [= int] const &t1, T2 [= int] const &t2); 0 // 2

Function 5, the template explicit specialization, would have been selected. Here is a summary of the

function template selection mechanism (cf. figure Figure 20.1):

646 CHAPTER 20. FUNCTION TEMPLATES

• The set of candidate functions is constructed: identical names;

• The set of viable functions is constructed: correct number of parameters and available type

conversions;

• Template type determination, dropping templates whose type parameters cannot be deter-

mined;

• Decrementally sort the functions by their direct match count values. If there is no draw for the

top value the associated function is selected, completing the selection process.

• Inspect the functions associated with the top value for ambiguities in automatic type conver-

sion sequences. If different sequences are encountered report an ambiguity and terminate the

selection process.

• Decrementally sort the functions associated with the top value by their ordinary parameter

count values. If there is no draw for the top value the associated function is selected, completing

the selection process.

• Decrementally sort the functions associated with the top value by their function type values

using 2 for ordinary functions, 1 for template explicit specializations and 0 for plain function

templates. If there is no draw for the top value the associated function is selected, completing

the selection process.

• Report an ambiguity and terminate the selection process.

20.16 SFINAE: Substitution Failure Is Not An Error

Consider the following struct definition:

struct Int

{

typedef int type;

};

Although at this point it may seem strange to embed a typedef in a struct, in chapter 22 we’ll

encounter situations where this is actually very useful. It allows us to define a variable of a type that

is required by the template. E.g., (ignore the use of typename in the following function parameter

list, but see section 21.2.1 for details):

template <typename Type>

void func(typename Type::type value)

{

}

To call func(10) Int has to be specified explicitly since there may be many structs that define

type: the compiler needs some assistance. The correct call is func<Int>(10). Now that it’s clear

that Int is meant, and the compiler correctly deduces that value is an int.

But templates may be overloaded and our next definition is:

template <typename Type>

void func(Type value)

{}

20.17. SUMMARY OF THE TEMPLATE DECLARATION SYNTAX 647

Now, to make sure this function is used we specify func<int>(10) and again this compiles flaw-

lessly.

But as we’ve seen in the previous section when the compiler determines which template to instan-

tiate it creates a list of viable functions by matching the parameter types of available function pro-

totypes with the provided actual argument types. To do so it has to determine the types of the

parameters and herein lies a problem.

When evaluating Type = int the compiler encounters the prototypes func(int::type) (first

template definition) and func(int) (second template definition). But there is no int::type, and

so in a way this generates an error. However, the error results from substituting the provided tem-

plate type argument into the various template definitions.

A type-problem caused by substituting a type in a template definition is not considered an error,

but merely an indication that that particular type cannot be used in that particular template. The

template is therefore removed from the list of candidate functions.

This principle is known as substitution failure is not an error (SFINAE) and it is often used by the

compiler to select not only a simple overloaded function (as shown here) but also to choose among

available template specializations (see also chapters 21 and 22).

20.17 Summary of the template declaration syntax

In this section the basic syntactic constructions for declaring templates are summarized. When

defining templates, the terminating semicolon should be replaced by a function body.

Not every template declaration may be converted into a template definition. If a definition may be

provided it is explicitly mentioned.

• A plain template declaration (a definition may be provided):

template <typename Type1, typename Type2>

void function(Type1 const &t1, Type2 const &t2);

• A template instantiation declaration (no definition may be provided):

template

void function<int, double>(int const &t1, double const &t2);

• A template using explicit types (no definition may be provided):

void (*fp)(double, double) = function<double, double>;

void (*fp)(int, int) = function<int, int>;

• A template explicit specialization (a definition may be provided):

template <>

void function<char *, char *>(char *const &t1, char *const &t2);

• A template declaration declaring friend function templates within class templates (covered in

section 21.10, no definition may be provided):

friend void function<Type1, Type2>(parameters);

648 CHAPTER 20. FUNCTION TEMPLATES

Chapter 21

Class Templates

Templates can not only be constructed for functions but also for complete classes. Consider con-

structing a class template when a class should be able to handle different types of data. Class

templates are frequently used in C++: chapter 12 discusses data structures like vector, stack

and queue, that are implemented as class templates. With class templates, the algorithms and the

data on which the algorithms operate are completely separated from each other. To use a particular

data structure in combination with a particular data type only the data type needs to be specified

when defining or declaring a class template object (as in stack<int> iStack).

In this chapter constructing and using class templates is discussed. In a sense, class templates

compete with object oriented programming (cf. chapter 14), that uses a mechanism resembling that

of templates. Polymorphism allows the programmer to postpone the implementation of algorithms

by deriving classes from base classes in which algorithms are only partially implemented. The actual

definition and processing of the data upon which the algorithms operate may be postponed until

derived classes are defined. Likewise, templates allow the programmer to postpone the specification

of the data upon which the algorithms operate. This is most clearly seen with abstract containers,

that completely specify the algorithms and that at the same time leave the data type on which the

algorithms operate completely unspecified.

The correspondence between class templates and polymorphic classes is well known. In their book

C++ Coding Standards (Addison-Wesley, 2005) Sutter and Alexandrescu refer to static polymor-

phism and dynamic polymorphism. Dynamic polymorphism is what we use when overriding virtual

members. Using vtables the function that is actually called depends on the type of object a (base)

class pointer points at. Static polymorphism is encountered in the context of templates. Depending

on the actual types, the compiler itself creates the code, during the compilation phase, that’s appro-

priate for those particular types. There’s no need to consider static and dynamic polymorphism as

mutually exclusive variants of polymorphism. Rather, both can be used together, combining their

strengths. A warning is in place, though. When a class template defines virtual members all virtual

members are instantiated for every instantiated type. All virtual members must be instantiated

(whether they are used or not) as the compiler must construct the vtable for each data type for

which an object of the class is instantiated.

Generally, class templates are easier to use than polymorphism. It is certainly easier to write

stack<int> istack to create a stack of ints than to derive a new class Istack: public

stack and to implement all necessary member functions defining a similar stack of ints using

object oriented programming. On the other hand, for each different type for which an object of a

class template is defined another, possibly complete class must be reinstantiated. This is not re-

quired in the context of object oriented programming where derived classes use, rather than copy,

the functions that are already available in their base classes (but see also section 21.11).

649

650 CHAPTER 21. CLASS TEMPLATES

Previously we’ve already used class templates. Objects like vector<int> vi and vector<string>

vs are commonly used. The data types for which these templates are defined and instantiated are

an inherent part of such container types. It is stressed that it is the combination of a class tem-

plate type and its template parameter(s), rather than the mere class template’s type that defines or

generates a type. So vector<int> is a type as is vector<string>. Such types could very well be

represented by typedefs:

typedef std::vector<int> IntVector;

typedef std::vector<std::string> StringVector;

IntVector vi;

StringVector vs;

21.1 Defining class templates

Having covered the construction of function templates, we’re now ready for the next step: con-

structing class templates. Many useful class templates already exist. Rather than illustrating the

construction of a class template by looking at an already existing class template the construction of

another potentially useful new class template will be undertaken.

The new class implements a circular queue. A circular queue has a fixed number of max_size

elements. New elements are inserted at its back and only its head and tail elements can be accessed.

Only the head element can be removed from a circular queue. Once n elements have been appended

the next element is inserted again at the queue’s (physical) first position. The circular queue allows

insertions until it holds max_size elements. As long as a circular queue contains at least one

element elements may be removed from it. Trying to remove an element from an empty circular

queue or to add another element to a full circular queue results in exceptions being thrown. In

addition to other constructors a circular queue must offer a constructor initializing its objects for

max_size elements. This constructor must make available the memory for the max_size elements

but must not call those elements default constructors (hinting at the use of the placement new

operator). A circular queue should offer value semantics as well as a move constructor.

Please note that in the above description the actual data type that is used for the circular queue

is nowhere mentioned. This is a clear indication that our class could very well be defined as a

class template. Alternatively, the class could be defined for some concrete data type which is then

abstracted when converting the class to a class template.

The actual construction of a class template is provided in the next section, where the class template

CirQue (circular queue) is developed.

21.1.1 Constructing the circular queue: CirQue

The construction of a class template is illustrated in this section. Here, we’ll develop the class

template CirQue (circular queue). This class template has one template type parameter, Data,

representing the data type that is stored in the circular queue. The outline of the interface of this

class template looks like this:

template<typename Data>

class CirQue

{

// member declarations

21.1. DEFINING CLASS TEMPLATES 651

};

A class template’s definition starts like a function template’s definition:

• The keyword template, starting a template definition or declaration.

• The angle bracket enclosed list following template: a list containing one or more comma-

separated elements is called the template parameter list. Template parameter lists may have

multiple elements, like this:

typename Type1, typename Type2, typename Type3

When a class template defines multiple template type parameters they are matched in se-

quence with the list of template type arguments provided when defining objects of such a class

template. Example:

template <typename Type1, typename Type2, typename Type3>

class MultiTypes

{

...

};

MultiTypes<int, double, std::string> multiType;

// Type1 is int, Type2 is double, Type3 is std::string

• Inside the template parameter list we find the formal type name (Data for CirQue). It is a

formal (type) name, like the formal types used in function template parameter lists.

• Following the template header the class interface is defined. It may use the formal type names

defined in the template header as type names.

Once the CirQue class template has been defined it can be used to create all kinds of circular queues.

As one of its constructors expects a size_t argument defining the maximum number of elements

that can be stored in the circular queue, circular queues could be defined like this:

CirQue<int> cqi(10); // max 10 ints

CirQue<std::string> cqstr(30); // max 30 strings

As noted in the introductory section of this chapter the combination of name of the class template

and the data type for which it is instantiated defines a data type. Also note the similarity between

defining a std::vector (of some data type) and a CirQue (of some data type).

Like std::map containers class templates may be defined with multiple template type parameters.

Back to CirQue. A CirQue must be capable of storing max_size Data elements. These elements

are eventually stored in memory pointed at by a pointer Data *d_data, initially pointing to raw

memory. New elements are added at the backside of the CirQue. A pointer Data *d_back is used

to point to the location where the next element is going to be stored. Likewise, Data *d_front

points to the location of the CirQue’s first element. Two size_t data members are used to monitor

the filling state of the CirQue: d_size represents the number of elements currently stored in the

CirQue, d_maxSize represents the maximum number of elements that the CirQue can contain.

Thus, the CirQue’s data members are:

size_t d_size;

652 CHAPTER 21. CLASS TEMPLATES

size_t d_maxSize;

Data *d_data;

Data *d_front;

Data *d_back;

21.1.2 Non-type parameters

Function template parameters are either template type parameters or template non-type parame-

ters (actually, a third type of template parameter exists, the template template parameter, which is

discussed in chapter 22 (section 22.4)).

Class templates may also define non-type parameters. Like the function template non-type param-

eters they must be (integral) constants whose values must be known at object instantiation time.

Different from function template non-type parameters the values of class template non-type param-

eters are not deduced by the compiler using arguments passed to class template members.

Assume we extend our design of the class template CirQue so that it defines a second (non-type)

parameter size_t Size. Our intent is to use this Size parameter in the constructor defining an

array parameter of Size elements of type Data.

The CirQue class template now becomes (only showing the relevant constructor):

template <typename Data, size_t Size>

class CirQue

{

// ... data members

public:

CirQue(Data const (&arr)[Size]);

...

};

template <typename Data, size_t Size>

CirQue<Data, Size>::CirQue(Data const (&arr)[Size])

:

d_maxSize(Size),

d_size(0),

d_data(operator new(Size * sizeof(Data))),

d_front(d_data),

d_back(d_data),

{

std::copy(arr, arr + Size, back_inserter(*this));

}

Unfortunately, this setup doesn’t satisfy our needs as the values of template non-type parameters

are not deduced by the compiler. When the compiler is asked to compile the following main function

it reports a mismatch between the required and actual number of template parameters:

int main()

{

int arr[30];

CirQue<int> ap(arr);

21.1. DEFINING CLASS TEMPLATES 653

}

/*
Error reported by the compiler:

In function ‘int main()’:

error: wrong number of template arguments (1, should be 2)

error: provided for ‘template<class Data, size_t Size>

class CirQue’

*/

Defining Size as a non-type parameter having a default value doesn’t work either. The compiler

always uses the default unless its value is explicitly specified. Reasoning that Size can be 0 unless

we need another value, we might be tempted to specify size_t Size = 0 in the template’s param-

eter type list. Doing so we create a mismatch between the default value 0 and the actual size of the

array arr as defined in the above main function. The compiler, using the default value, reports:

In instantiation of ‘CirQue<int, 0>’:

...

error: creating array with size zero (‘0’)

So, although class templates may use non-type parameters they must always be specified like type

parameters when an object of that class is defined. Default values can be specified for those non-type

parameters causing the compiler to use the default when the non-type parameter is left unspecified.

Default template parameter values (either type or non-type template parameters) may not be speci-

fied when defining template member functions. In general: function template definitions (and thus:

class template member functions) may not be given default template (non) type arguments. If de-

fault template arguments are to be used for class template members, they have to be specified by

the class interface.

Similar to non-type parameters of function templates default argument values for non-type class

template parameters may only be specified as constants:

• Global variables have constant addresses, which can be used as arguments for non-type pa-

rameters.

• Local and dynamically allocated variables have addresses that are not known by the compiler

when the source file is compiled. These addresses can therefore not be used as arguments for

non-type parameters.

• Lvalue transformations are allowed: if a pointer is defined as a non-type parameter, an array

name may be specified.

• Qualification conversions are allowed: a pointer to a non-const object may be used with a non-

type parameter defined as a const pointer.

• Promotions are allowed: a constant of a ‘narrower’ data type may be used when specifying a

default argument for a non-type parameter of a ‘wider’ type (e.g., a short can be used when

an int is called for, a long when a double is called for).

• Integral conversions are allowed: if a size_t parameter is specified, an int may be used as

well.

• Variables cannot be used to specify template non-type parameters as their values are not con-

stant expressions. Variables defined using the const modifier, however, may be used as their

values never change.

654 CHAPTER 21. CLASS TEMPLATES

Although our attempts to define a constructor of the class CirQue accepting an array as its argument

has failed so far, we’re not yet out of options. In the next section a method is described that does

allow us to reach our goal.

21.1.3 Member templates

Our previous attempt to define a template non-type parameter that is initialized by the compiler

to the number of elements of an array failed because the template’s parameters are not implicitly

deduced when a constructor is called. Instead, they must explicitly be specified when an object

of the class template is defined. As the template arguments are specified just before the template’s

constructor is called the compiler doesn’t have to deduce anything and it can simply use the explicitly

specified template arguments.

In contrast, when function templates are used, the actual template parameters are deduced from

the arguments used when calling the function. This opens up an alley leading to the solution of

our problem. If the constructor itself is turned into a function template (having its own template

header), then the compiler will be able to deduce the non-type parameter’s value and there is no

need anymore to specify it explicitly using a class template non-type parameter.

Members (functions or nested classes) of class templates that are themselves templates are called

member templates.

Member templates are defined as any other template, including its own template header.

When converting our earlier CirQue(Data const (&array)[Size]) constructor into a member

template the class template’s Data type parameter can still be used, but we must provide the mem-

ber template with a non-type parameter of its own. Its declaration in the (partially shown) class

interface looks like this:

template <typename Data>

class CirQue

{

public:

template <size_t Size>

explicit CirQue(Data const (&arr)[Size]);

};

Its implementation becomes:

template <typename Data>

template <size_t Size>

CirQue<Data>::CirQue(Data const (&arr)[Size])

:

d_size(0),

d_maxSize(Size),

d_data(static_cast<Data *>(operator new(sizeof(arr)))),

d_front(d_data),

d_back(d_data)

{

std::copy(arr, arr + Size, back_inserter(*this));

}

The implementation uses the STL’s copy algorithm and a back_inserter adapter to insert the

21.1. DEFINING CLASS TEMPLATES 655

array’s elements into the CirQue. To use the back_inserter CirQue must define two (public)

typedefs (cf. section 18.2.1):

typedef Data value_type;

typedef value_type const &const_reference;

Member templates have the following characteristics:

• Two template headers must be used: the class template’s template header is specified first

followed by the member template’s template header;

• Normal access rules apply: the member template can be used by programs to construct an

CirQue object of a given data type. As usual for class templates, the data type must be specified

when the object is constructed. To construct a CirQue object from the array int array[30]

we define:

CirQue<int> object(array);

• Any member can be defined as a member template, not just a constructor;

• When a template member is implemented below its class interface, the template class header

must precede the function template header of the member template;

• The implementation of the member template must specify its proper scope. The member tem-

plate is defined as a member of the class CirQue, instantiated for the formal template param-

eter type Data;

• The template parameter names in the declaration and implementation must be identical;

• The member template should be defined inside its proper namespace environment. The orga-

nization of files defining class templates within a namespace should therefore be:

namespace SomeName

{

template <typename Type, ...> // class template definition

class ClassName

{

...

};

template <typename Type, ...> // non-inline member definition(s)

ClassName<Type, ...>::member(...)

{

...

}

} // namespace closes

A potentially occurring problem remains. Assume that in addition to the above member template

a CirQue<Data>::CirQue(Data const *data) has been defined. Some (here not further elabo-

rated) protocol could be defined allowing the constructor to determine the number of elements that

should be stored in the CirQue object. When we now define

CirQue<int> object(array);

656 CHAPTER 21. CLASS TEMPLATES

it is this latter constructor, rather than the member template, that the compiler will use.

The compiler selects this latter constructor as it is a more specialized version of a constructor of

the class CirQue than the member template (cf. section 20.14). Problems like these can be solved

by defining the constructor CirQue(Data const *data) into a member template as well or by

defining a constructor using two parameters, the second parameter defining the number of elements

to copy.

When using the former constructor (i.e., the member template) it must define a template type pa-

rameter Data2. Here ‘Data’ cannot be used as template parameters of a member template may not

shadow template parameters of its class. Using Data2 instead of Data takes care of this subtlety.

The following declaration of the constructor CirQue(Data2 const *) could appear in CirQue’s

header file:

template <typename Data>

class CirQue

{

template <typename Data2>

explicit CirQue(Data2 const *data);

}

Here is how the two constructors are selected in code defining two CirQue objects:

int main()

{

int array[30];

int *iPtr = array;

CirQue<int> ac(array); // calls CirQue(Data const (&arr)[Size])

CirQue<int> acPtr(iPtr); // calls CirQue(Data2 const *)

}

21.1.4 CirQue’s constructors and member functions

It’s time to return to Cirque’s design and construction again.

The class CirQue offers various member functions. Normal design principles should be adhered to

when constructing class template members. Class template type parameters should preferably be

defined as Type const &, rather than Type, to prevent unnecessary copying of large data struc-

tures. Template class constructors should use member initializers rather than member assignment

within the body of the constructors. Member function definitions should preferably not be provided

in-class but below the class interface. Since class template member functions are function templates

their definitions should be provided in the header file offering the class interface. They may be given

the inline attribute.

CirQue declares several constructors and (public) members (their definitions are provided as well;

all definitions are provided below the class interface).

Here are the constructors and the destrctor:

• explicit CirQue(size_t maxSize = 0):

Constructor initializing a CirQue capable of storing max_size Data elements. As

the constructor’s parameter is given a default argument value this constructor can

21.1. DEFINING CLASS TEMPLATES 657

also be used as a default constructor, allowing us to define, e.g., vectors of CirQues.

The constructor initializes the Cirque object’s d_data member to a block of raw

memory and d_front and d_back are initialized to d_data. As class template mem-

ber functions are themselves function templates their implementations outside of the

class template’s interface must start with the class template’s template header. Here

is the implementation of the CirQue(size_t) constructor:

template<typename Data>

CirQue<Data>::CirQue(size_t maxSize)

:

d_size(0),

d_maxSize(maxSize),

d_data(

maxSize == 0 ?

0

:

static_cast<Data *>(

operator new(maxSize * sizeof(Data)))

),

d_front(d_data),

d_back(d_data)

{}

• CirQue(CirQue<Data> const &other):

The copy constructor has no special features. It uses a private support member inc to

increment d_back (see below) and placement new to copy the other’s Data elements

to the current object. The implementation of the copy constructor is straightforward:

template<typename Data>

CirQue<Data>::CirQue(CirQue<Data> const &other)

:

d_size(other.d_size),

d_maxSize(other.d_maxSize),

d_data(

d_maxSize == 0 ?

0

:

static_cast<Data *>(

operator new(d_maxSize * sizeof(Data)))

),

d_front(d_data + (other.d_front - other.d_data))

{

Data const *src = other.d_front;

d_back = d_front;

for (size_t count = 0; count != d_size; ++count)

{

new(d_back) Data(*src);

d_back = inc(d_back);

if (++src == other.d_data + d_maxSize)

src = other.d_data;

}

}

• CirQue(CirQue<Data> &&tmp):

The move constructor merely initializes the current object’s d_data pointer to 0 and

swaps (see the member swap, below) the temporary object with the current object.

658 CHAPTER 21. CLASS TEMPLATES

CirQue’s destructor inspects d_data and immediately returns when it’s zero. Imple-

mentation:

template<typename Data>

CirQue<Data>::CirQue(CirQue<Data> &&tmp)

:

d_data(0)

{

swap(tmp);

}

• CirQue(CirQue(Data const (&arr)[Size])):

This constructor is declared as a member template, providing the Size non-type

parameter. It allocates room for Size data elements and copies arr’s contents to the

newly allocated memory.Implementation:

template <typename Data>

template <size_t Size>

CirQue<Data>::CirQue(Data const (&arr)[Size])

:

d_size(0),

d_maxSize(Size),

d_data(static_cast<Data *>(operator new(sizeof(arr)))),

d_front(d_data),

d_back(d_data)

{

std::copy(arr, arr + Size, back_inserter(*this));

}

• CirQue(CirQue(Data const *data, size_t size)):

This constructor acts very much like the previous one, but is provided with a pointer

to the first Data element and with a size_t providing the number of elements to

copy. In our current design the member template variant of this constructor is left

out of the design. As the implementation of this constructor is very similar to that of

the previous constructor, it is left as an exercise to the reader.

• ~CirQue():

The destructor inspects the d_data member. If it is zero then nothing has been allo-

cated and the destructor immediately returns. This may occur in two situations: the

circular queue contains no elements or the information was grabbed from a tempo-

rary object by some move operation, setting the temporary’s d_data member to zero.

Otherwise d_size elements are destroyed by explicitly calling their destructors fol-

lowed by returning the element’s raw memory to the common pool. Implementation:

template<typename Data>

CirQue<Data>::~CirQue()

{

if (d_data == 0)

return;

for (; d_size--;)

{

d_front->~Data();

d_front = inc(d_front);

}

operator delete(d_data);

}

21.1. DEFINING CLASS TEMPLATES 659

Here are Cirque’s members:

• CirQue &operator=(CirQue<Data> const &other):

The copy assignment operator has a standard implementation:

template<typename Data>

CirQue<Data> &CirQue<Data>::operator=(CirQue<Data> const &rhs)

{

CirQue<Data> tmp(rhs);

swap(tmp);

return *this;

}

• CirQue &operator=(CirQue<Data> &&tmp):

The move assignment operator also has a standard implementation. As its imple-

mentation merely calls swap it is defined as an inline function template:

template<typename Data>

inline CirQue<Data> &CirQue<Data>::operator=(CirQue<Data> &&tmp)

{

swap(tmp);

return *this;

}

• void pop_front():

removes the element pointed at by d_front from the CirQue. Throws an excep-

tion if the CirQue is empty. The exception is thrown as a CirQue<Data>::EMPTY

value, defined by the enum CirQue<Data>::Exception (see push_back). The im-

plementation is straightforward (explicitly calling the destructor of the element that

is removed):

template<typename Data>

void CirQue<Data>::pop_front()

{

if (d_size == 0)

throw EMPTY;

d_front->~Data();

d_front = inc(d_front);

--d_size;

}

• void push_back(Data const &object):

adds another element to the CirQue. Throws a CirQue<Data>::FULL exception if

the CirQue is full. The exceptions that can be thrown by a CirQue are defined in its

Exception enum:

enum Exception

{

EMPTY,

FULL

};

660 CHAPTER 21. CLASS TEMPLATES

A copy of object is installed in the CirQue’s raw memory using placement new and

its d_size is incremented.

template<typename Data>

void CirQue<Data>::push_back(Data const &object)

{

if (d_size == d_maxSize)

throw FULL;

new (d_back) Data(object);

d_back = inc(d_back);

++d_size;

}

• void swap(CirQue<Data> &other):

swaps the current CirQue object with another CirQue<Data> object;

template<typename Data>

void CirQue<Data>::swap(CirQue<Data> &other)

{

char tmp[sizeof(CirQue<Data>)];

memcpy(tmp, &other, sizeof(CirQue<Data>));

memcpy(&other, this, sizeof(CirQue<Data>));

memcpy(this, tmp, sizeof(CirQue<Data>));

}

The remaining public members all consist of one-liners and were implemented as inline function

templates:

• Data &back():

returns a reference to the element pointed at by d_back (undefined result if the

CirQue is empty):

template<typename Data>

inline Data &CirQue<Data>::back()

{

return d_back == d_data ? d_data[d_maxSize - 1] : d_back[-1];

}

• Data &front():

returns reference to the element pointed at by d_front (undefined result if the

CirQue is empty);

template<typename Data>

inline Data &CirQue<Data>::front()

{

return *d_front;

}

• bool empty() const:

returns true if the CirQue is empty;

template<typename Data>

inline bool CirQue<Data>::empty() const

{

21.1. DEFINING CLASS TEMPLATES 661

return d_size == 0;

}

• bool full() const:

returns true if the CirQue is full;

template<typename Data>

inline bool CirQue<Data>::full() const

{

return d_size == d_maxSize;

}

• size_t size() const:

returns the number of elements currently stored in the CirQue;

template<typename Data>

inline size_t CirQue<Data>::size() const

{

return d_size;

}

• size_t maxSize() const:

returns the maximum number of elements that can be stored in the CirQue;

template<typename Data>

inline size_t CirQue<Data>::maxSize() const

{

return d_maxSize;

}

Finally, the class has one private member, inc, returning a cyclically incremented pointer into

CirQue’s raw memory:

template<typename Data>

Data *CirQue<Data>::inc(Data *ptr)

{

++ptr;

return ptr == d_data + d_maxSize ? d_data : ptr;

}

21.1.5 Using CirQue objects

When objects of a class template are instantiated, only the definitions of all the template’s member

functions that are actually used must have been seen by the compiler.

That characteristic of templates could be refined to the point where each definition is stored in a

separate function template definition file. In that case only the definitions of the function templates

that are actually needed would have to be included. However, it is hardly ever done that way.

Instead, the usual way to define class templates is to define the interface and to define the remaining

function templates immediately below the class template’s interface (defining some functions inline).

Now that the class CirQue has been defined, it can be used. To use the class its object must

be instantiated for a particular data type. In the following example it is initialized for data type

std::string:

662 CHAPTER 21. CLASS TEMPLATES

#include "cirque.h"

#include <iostream>

#include <string>

using namespace std;

int main()

{

CirQue<string> ci(4);

ci.push_back("1");

ci.push_back("2");

cout << ci.size() << ’ ’ << ci.front() << ’ ’ << ci.back() << ’\n’;

ci.push_back("3");

ci.pop_front();

ci.push_back("4");

ci.pop_front();

ci.push_back("5");

cout << ci.size() << ’ ’ << ci.front() << ’ ’ << ci.back() << ’\n’;

CirQue<string> copy(ci);

copy.pop_front();

cout << copy.size() << ’ ’ << copy.front() << ’ ’ << copy.back() << ’\n’;

int arr[] = {1, 3, 5, 7, 9};

CirQue<int> ca(arr);

cout << ca.size() << ’ ’ << ca.front() << ’ ’ << ca.back() << ’\n’;

// int *ap = arr;

// CirQue<int> cap(ap);

}

This program produces the following output:

2 1 2

3 3 5

2 4 5

5 1 9

21.1.6 Default class template parameters

Different from function templates, template parameters of template classes may be given default ar-

gument values. This holds true for both template type- and template non-type parameters. If default

template arguments were defined and if a class template object is instantiated without specifying

arguments for its template parameters then the template parameter’s defaults are used.

When defining defaults keep in mind that they should be suitable for the majority of instantiations

of the class. E.g., for the class template CirQue the template’s type parameter list could have been

altered by specifying int as its default type:

template <typename Data = int>

Even though default arguments can be specified, the compiler must still be informed that object

definitions refer to templates. When instantiating class template objects using default template ar-

21.1. DEFINING CLASS TEMPLATES 663

guments the type specifications may be omitted but the angle brackets must be retained. Assuming

a default type for the CirQue class, an object of that class may be defined as:

CirQue<> intCirQue(10);

Default template arguments cannot be specified when defining template members. So, the definition

of, e.g., the push_back member must always begin with the same template specification:

template <typename Data>

When a class template uses multiple template parameters, all may be given default values. Like

default function arguments, once a default value is used all remaining template parameters must

also use their default values. A template type specification list may not start with a comma, nor may

it contain multiple consecutive commas.

21.1.7 Declaring class templates

Class templates may also be declared. This may be useful in situations where forward class decla-

rations are required. To declare a class template, simply remove its interface (the part between the

curly braces):

template <typename Data>

class CirQue;

Default template arguments may also be specified when declaring class templates. However, de-

fault template arguments cannot be specified for both the declaration and the definition of a class

template. As a rule of thumb default template arguments should be omitted from declarations, as

class template declarations are never used when instantiating objects but are only occasionally used

as forward references. Note that this differs from default parameter value specifications for mem-

ber functions in ordinary classes. Such defaults are always specified when declaring the member

functions in the class interface.

21.1.8 Preventing template instantiations (C++11)

In C++ templates are instantiated when the address of a function template or class template object

is taken or when a function template or class template is used. As described in section 21.1.7 it is

possible to (forward) declare a class template to allow the definition of a pointer or reference to that

template class or to allow it being used as a return type.

In other situations templates are instantiated when they are being used. If this happens many times

(i.e., in many different source files) then this may slow down the compilation process considerably.

The C++11 standard allows programmers to prevent templates from being instantiated. For this the

C++11 standard introduces the extern template syntax. Example:

extern template class std::vector<int>;

Having declared the class template it can be used in its translation unit. E.g., the following function

properly compiles:

#include <vector>

664 CHAPTER 21. CLASS TEMPLATES

#include <iostream>

using namespace std;

extern template class vector<int>;

void vectorUser()

{

vector<int> vi;

cout << vi.size() << ’\n’;

}

But be careful:

• The declaration by itself does not make the class definition available. The vector header file

still needs to be included to make the features of the class vector known to the compiler. But

due to the extern template declaration none of the used members will be instantiated for

the current compilation unit;

• The compiler assumes (as it always does) that what is declared has been implemented else-

where. In this case the compiler encounters an implicit declaration: the features of the vector

class that are actually used by the above program are not individually declared but they are

declared as a group, using the extern template declaration. This not only holds true for

explicitly used members but hidden members (copy constructors, move constructors, conver-

sion operators, constructors called during promotions, to name a few): all are assumed by the

compiler to have been instantiated elsewhere;

• Although the above source file compiles, the instantiations of the templates must be available

before the linker can build the final program. To accomplish this one or more sourcefiles may

be constructed in which all required instantiations are made available.

In a stand-alone program one might postpone defining the required members and wait for the

linker to complain about unresolved external references. These may then be used to create a

series of instantiation declarations which are then linked to the program to satisfy the linker.

Not a very simple task, though, as the declarations must strictly match the way the members

are declared in the class interface. An easier approach is to define an instantiation source file in

which all facilities that are used by the program are actually instantiated in a function that is

never called by the program. By adding this instantiation function to the source file containing

main we can be sure that all required members are instantiated as well. Here is an example

of how this can be done:

#include <vector>

#include <iostream>

extern void vectorUser();

int main()

{

vectorUser();

}

// this part is never called. It is added to make sure all required

// features of declared templates will also be instantiated.

namespace

{

21.2. STATIC DATA MEMBERS 665

void instantiator()

{

std::vector<int> vi;

vi.size();

}

}

• Last, but certainly not least: a fully matching instantiation declaration of a class template

(e.g., for std::vector<int>) looks like this:

template class std::vector<int>;

Adding this to a source file, however, will instantiate the full class, i.e., all its members are now

instantiated. This may not what you want, as it might needlessly inflate your final executable.

• On the other hand, if it is known that the required template members have already been

instantiated elsewhere, then an extern template declaration can be used to prevent member

instantiations in the current compilation unit, which may speed up compilation. E.g.,

// the compiler assumes that required members of

// vector<int> have already been instantiated elsewhere

extern template class std::vector<int>;

int main()

{

std::vector<int> vi(5); // constructor and operator[]

++vi[0]; // are NOT instantiated

}

21.2 Static data members

When static members are defined in class templates, they are defined for every new type for which

the class template is instantiated. As they are static members, there will only be one member per

type for which the class template is instantiated. For example, in a class like:

template <typename Type>

class TheClass

{

static int s_objectCounter;

};

There will be one TheClass<Type>::objectCounter for each different Type specification. The

following object definitions result in the instantiation of just one single static variable, shared among

the two objects:

TheClass<int> theClassOne;

TheClass<int> theClassTwo;

Mentioning static members in interfaces does not mean these members are actually defined. They

are only declared and must be defined separately. With static members of class templates this is

no different. The definitions of static members are usually provided immediately following (i.e.,

666 CHAPTER 21. CLASS TEMPLATES

below) the template class interface. For example, the static member s_objectCounter’s definition,

positioned just below its class interface, looks like this:

template <typename Type> // definition, following

int TheClass<Type>::s_objectCounter = 0; // the interface

Here s_objectCounter is an int and is thus independent of the template type parameter Type.

Multiple instantiations of s_objectCounter for identical Types cause no problem, as the linker

will remove all but one instantation from the final executable (cf. section 20.5).

In list-like constructions, where a pointer to objects of the class itself is required, the template type

parameter Type must be used when defining the static variable. Example:

template <typename Type>

class TheClass

{

static TheClass *s_objectPtr;

};

template <typename Type>

TheClass<Type> *TheClass<Type>::s_objectPtr = 0;

As usual, the definition can be read from the variable name back to the beginning of the definition:

s_objectPtr of the class TheClass<Type> is a pointer to an object of TheClass<Type>.

When a static variable of a template’s type parameter’s type is defined, it should of course not

be given the initial value 0. The default constructor (e.g., Type()) is usually more appropriate.

Example:

template <typename Type> // s_type’s definition

Type TheClass<Type>::s_type = Type();

21.2.1 Extended use of the keyword ‘typename’

Until now the keyword typename has been used to indicate a template type parameter. However, it

is also used to disambiguate code inside templates. Consider the following function template:

template <typename Type>

Type function(Type t)

{

Type::Ambiguous *ptr;

return t + *ptr;

}

When this code is processed by the compiler, it complains with an -at first sight puzzling- error

message like:

4: error: ’ptr’ was not declared in this scope

The error message is puzzling as it was the programmer’s intention to declare a pointer to a type

Ambiguous defined within the class template Type. But the compiler, confronted with Type::Ambiguous

21.2. STATIC DATA MEMBERS 667

may interpret the statement in various ways. Clearly it cannot inspect Type itself trying to uncover

Type’s true nature as Type is a template type. Because of this Type’s actual definition isn’t available

yet.

The compiler is confronted with two possibilities: either Type::Ambiguous is a static member of

the as yet mysterious template Type, or it is a subtype of Type. As the standard specifies that the

compiler must assume the former, the statement

Type::Ambiguous *ptr;

is interpreted as a multiplication of the static member Type::Ambiguous and the (now undeclared)

entity ptr. The reason for the error message should now be clear: in this context ptr is unknown.

To disambiguate code in which an identifier refers to a subtype of a template type parameter the

keyword typename must be used. Accordingly, the above code is altered into:

template <typename Type>

Type function(Type t)

{

typename Type::Ambiguous *ptr;

return t + *ptr;

}

Classes fairly often define subtypes. When such subtypes appear inside template definitions as

subtypes of template type parameters the typename keyword must be used to identify them as

subtypes. Example: a class template Handler defines a typename Container as its template type

parameter. It also defines a data member storing the iterator returned by the container’s begin

member. In addition Handler offers a constructor accepting any container supporting a begin

member. Handler’s class interface could then look like this:

template <typename Container>

class Handler

{

Container::const_iterator d_it;

public:

Handler(Container const &container)

:

d_it(container.begin())

{}

};

What did we have in mind when designing this class?

• The typename Container represents any container supporting iterators.

• The container presumably supports a member begin. The initialization d_it(container.begin())

clearly depends on the template’s type parameter, so it’s only checked for basic syntactic cor-

rectness.

• Likewise, the container presumably supports a subtype const_iterator, defined in the class

Container.

668 CHAPTER 21. CLASS TEMPLATES

The final consideration is an indication that typename is required. If this is omitted and a Handler

is instantiated the compiler produces a peculiar compilation error:

#include "handler.h"

#include <vector>

using namespace std;

int main()

{

vector<int> vi;

Handler<vector<int> > ph(vi);

}

/*
Reported error:

handler.h:4: error: syntax error before ‘;’ token

*/

Clearly the line

Container::const_iterator d_it;

in the class Handler causes a problem. It is interpreted by the compiler as a static member instead

of a subtype. The problem is solved using typename:

template <typename Container>

class Handler

{

typename Container::const_iterator d_it;

...

};

An interesting illustration that the compiler indeed assumes X::a to be a member a of the class X

is provided by the error message we get when we try to compile main using the following implemen-

tation of Handler’s constructor:

Handler(Container const &container)

:

d_it(container.begin())

{

size_t x = Container::ios_end;

}

/*
Reported error:

error: ‘ios_end’ is not a member of type ‘std::vector<int,

std::allocator<int> >’

*/

Now consider what happens if the function template introduced at the beginning of this section

doesn’t return a Type value, but a Type::Ambiguous value. Again, a subtype of a template type is

referred to, and typename must be used:

21.3. SPECIALIZING CLASS TEMPLATES FOR DEVIATING TYPES 669

template <typename Type>

typename Type::Ambiguous function(Type t)

{

return t.ambiguous();

}

Using typename in the specification of a return type is further discussed in section 22.1.1.

Typenames can be embedded in typedefs. As is often the case, this reduces the complexities of

declarations and definitions appearing elsewhere. In the next example the type Iterator is defined

as a subtype of the template type Container. Iterator may now be used without requiring the

use of the keyword typename:

template <typename Container>

class Handler

{

typedef typename Container::const_iterator Iterator;

Iterator d_it;

...

};

21.3 Specializing class templates for deviating types

The class CirQue can be used for many different types. Their common characteristic is that they

can simply be pointed at by the class’s d_data member. But this is not always as simple as it looks.

What if Data turns out to be a vector<int>? For such data types the vanilla CirQue implemen-

tation cannot be used and a specialization could be considered. When considering a specialization

one should also consider inheritance. Often a class derived from the class template accepting the

incompatible data structure as its argument but otherwise equal to the original class template can

easily be designed. The developmental advantage of inheritance over specialization is clear: the

inherited class inherits the members of its base class while the specialization inherits nothing. All

members defined by the original class template must be implemented again by the class template’s

specialization.

The specialization considered here is a true specialization in that the data members and represen-

tation used by the specialization greatly differ from the original CirQue class template. Therefore

all members defined by the orginal class template must be modified to fit the specialization’s data

organization.

Like function template specializations class template specializations start with a template header

that may or may not have an empty template parameter list. If the template parameters are directly

specialized by the specialization it remains empty (e.g., CirQue’s template type parameter Data is

specialized for char * data). But the template parameter list may show typename Data when

specializing for a vector<Data>, i.e., a vector storing any type of data. This leads to the following

principle:

A template specialization is recognized by the template argument list following a function

or class template’s name and not by an empty template parameter list. Class template

specializations may have non-empty template parameter lists. If so, a partial class tem-

plate specialization is defined.

A completely specialized class has the following characteristics:

670 CHAPTER 21. CLASS TEMPLATES

• The class template specialization must be provided after the generic class template definition.

As it is a specialization the compiler must first have seen the original class template;

• The completely specialized class template’s template parameter list is empty;

• All of the class’s template parameters are given explicit type names or (for the non-type pa-

rameters) explicit values. These explicitations are provided in a template parameter specifi-

cation list (surrounded by angle brackets) that is inserted immediately after the specialized

template’s class name;

• All members of the specialized class template use specialized types and values where original

template parameters are used in the original template definition;

• All original template’s members (maybe with the exception of some constructors) should be

redefined by the specialization. If a member is left out of the specialization, it cannot be used

for a specialized class template object;

• The specialization may define additional members (but maybe shouldn’t as it breaks the one-

to-one correspondence between the original and specialized class template);

• Member functions of specialized class templates may be declared by the specializing class and

implemented below their class interface. If their implementations follow the class interface

they may not begin with a template <> header, but must immediately start with the member

function’s header.

21.3.1 Example of a class specialization

Here is an example of a completely specialized CirQue class, specialized for a vector<int>. All

members of the specialized class are declared, but only non-trivial implementations of its members

are provided. The specialized class uses a copy of the vector passed to the constructor and imple-

ments a circular queue using its vector data member:

#ifndef INCLUDED_CIRQUEVECTOR_H_

#define INCLUDED_CIRQUEVECTOR_H_

#include <vector>

#include "cirque.h"

template<>

class CirQue<std::vector<int>>

{

typedef std::vector<int> IntVect;

IntVect d_data;

size_t d_size;

typedef IntVect::iterator iterator;

iterator d_front;

iterator d_back;

public:

typedef int value_type;

typedef value_type const &const_reference;

enum Exception

21.3. SPECIALIZING CLASS TEMPLATES FOR DEVIATING TYPES 671

{

EMPTY,

FULL

};

CirQue();

CirQue(IntVect const &iv);

CirQue(CirQue<IntVect> const &other);

CirQue &operator=(CirQue<IntVect> const &other);

int &back();

int &front();

bool empty() const;

bool full() const;

size_t maxSize() const;

size_t size() const;

void pop_front();

void push_back(int const &object);

void swap(CirQue<IntVect> &other);

private:

iterator inc(iterator const &iter);

};

CirQue<std::vector<int>>::CirQue()

:

d_size(0)

{}

CirQue<std::vector<int>>::CirQue(IntVect const &iv)

:

d_data(iv),

d_size(iv.size()),

d_front(d_data.begin()),

d_back(d_data.begin())

{}

CirQue<std::vector<int>>::CirQue(CirQue<IntVect> const &other)

:

d_data(other.d_data),

d_size(other.d_size),

d_front(d_data.begin() + (other.d_front - other.d_data.begin())),

d_back(d_data.begin() + (other.d_back - other.d_data.begin()))

{}

CirQue<std::vector<int>> &CirQue<std::vector<int>>::operator=(

CirQue<IntVect> const &rhs)

{

CirQue<IntVect> tmp(rhs);

swap(tmp);

}

void CirQue<std::vector<int>>::swap(CirQue<IntVect> &other)

{

char tmp[sizeof(CirQue<IntVect>)];

memcpy(tmp, &other, sizeof(CirQue<IntVect>));

memcpy(&other, this, sizeof(CirQue<IntVect>));

672 CHAPTER 21. CLASS TEMPLATES

memcpy(this, tmp, sizeof(CirQue<IntVect>));

}

void CirQue<std::vector<int>>::pop_front()

{

if (d_size == 0)

throw EMPTY;

d_front = inc(d_front);

--d_size;

}

void CirQue<std::vector<int>>::push_back(int const &object)

{

if (d_size == d_data.size())

throw FULL;

*d_back = object;

d_back = inc(d_back);

++d_size;

}

inline int &CirQue<std::vector<int>>::back()

{

return d_back == d_data.begin() ? d_data.back() : d_back[-1];

}

inline int &CirQue<std::vector<int>>::front()

{

return *d_front;

}

CirQue<std::vector<int>>::iterator CirQue<std::vector<int>>::inc(

CirQue<std::vector<int>>::iterator const &iter)

{

iterator tmp(iter + 1);

tmp = tmp == d_data.end() ? d_data.begin() : tmp;

return tmp;

}

#endif

The next example shows how to use the specialized CirQue class:

static int iv[] = {1, 2, 3, 4, 5};

int main()

{

vector<int> vi(iv, iv + 5);

CirQue<vector<int>> ci(vi);

cout << ci.size() << ’ ’ << ci.front() << ’ ’ << ci.back() << ’\n’;

ci.pop_front();

ci.pop_front();

CirQue<vector<int>> cp;

cp = ci;

cout << cp.size() << ’ ’ << cp.front() << ’ ’ << cp.back() << ’\n’;

21.4. PARTIAL SPECIALIZATIONS 673

cp.push_back(6);

cout << cp.size() << ’ ’ << cp.front() << ’ ’ << cp.back() << ’\n’;

}

/*
Displays:

5 1 5

3 3 5

4 3 6

*/

21.4 Partial specializations

In the previous section class template specializations were introduced. In this section we’ll introduce

a variant of this specialization, both in number and type of template parameters that are specialized.

Partial specializations may be defined for class templates having multiple template parameters.

Function templates cannot be partially specialized.

With partial specializations a subset (any subset) of template type parameters are given specific

values. It is also possible to use a class template partial specialization when the intent is to specialize

the class template, but to parameterize the data type that is processed by the specialization.

To start our discussion with an example of the latter use of a partial class template specializa-

tion consider the class CirQue<vector<int» developed in the previous section. When designing

CirQue<vector<int» you may have asked yourself how many specializations you’d have to imple-

ment. One for vector<int>, one for vector<string>, one for vector<double>? As long as the

data types handled by the vector used by the class CirQue<vector<...» behaves like an int

(i.e., is a value-type of class) the answer is: zero. Instead of defining full specializations for each new

data type the data type itself can be parameterized, resulting in a partial specialization:

template <typename Data>

class CirQue<std::vector<Data>>

{

...

};

The above class is a specialization as a template argument list is appended to the CirQue class

name. But as the class template itself has a non-empty template parameter list it is in fact recog-

nized as a partial specialization. There is one characteristic that distinguishes the implementation

(subsequent to the class template’s interface) of a class template member function of a partial spe-

cialization from the implementation of a member function of a full specialization. Implementations

of partially specialized class template member functions receive a template header. No template

headers are used when implementing fully specialized class template members.

Implementing the partial specialization for CirQue is not difficult and is left as an exercise for

the reader (hints: simply change int into Data in the CirQue<vector<int» specialization of the

previous section). Remember to prefix the type iterator by typename (as in typedef typename

DataVect::iterator iterator) (as discussed in section 21.2.1).

In the next subsections we’ll concentrate on specializing class template non-type template parame-

ters. These partial specializations are now illustrated using some simple concepts defined in matrix

algebra, a branch of linear algebra.

674 CHAPTER 21. CLASS TEMPLATES

21.4.1 Intermezzo: some simple matrix algebraic concepts

In this section some simple matrix algebraic terms are introduced. These terms are used in the

next sections to illustrate and discuss partial specializations of class templates. Readers proficient

in matrix algebra may skip this section without loss of continuity.

A matrix is commonly thought of as a table of some rows and columns, filled with numbers. Immedi-

ately we recognize an opening for using templates: the numbers might be plain double values, but

they could also be complex numbers, for which our complex container (cf. section 12.5) might prove

useful. Our class template is therefore provided with a DataType template type parameter. It is

specified when a matrix is constructed. Some simple matrices using double values, are:

1 0 0 An identity matrix,

0 1 0 (a 3 x 3 matrix).

0 0 1

1.2 0 0 0 A rectangular matrix,

0.5 3.5 18 23 (a 2 x 4 matrix).

1 2 4 8 A matrix of one row

(a 1 x 4 matrix), also known as a

‘row vector’ of 4 elements.

(column vectors are analogously defined)

Various operations are defined on matrices. They may, for example be added, subtracted or multi-

plied. Here we will not focus on these operations. Rather, we concentrate on some simple operations:

computing marginals and sums.

Marginals are the sums of row elements or the sums of column elements of a matrix. These two

kinds of marginals are also known as, respectively, row marginals and column marginals.

• Row marginals are obtained by adding, for each row, all the row’s elements and putting these

(Rows) sums in corresponding elements of a (column) vector of Rows elements.

• Column marginals are obtained by adding, for each column, all the column’s elements and

putting these (Columns) sums in corresponding elements of a (row) vector of Columns ele-

ments.

• The sum of all elements of a matrix can of course be computed as the sum of the elements of

one of its marginals.

The following example shows a matrix, its marginals, and the sum of its values:

row

matrix marginals

1 2 3 6

4 5 6 15

column 5 7 9 21 (sum)

marginals

21.4. PARTIAL SPECIALIZATIONS 675

21.4.2 The Matrix class template

We’ll start out by introducing a class template defining a matrix. Having defined this class template

we’ll continue with defining several specializations.

Since matrices consist of well defined numbers of rows and columns (the dimensions of the matrix),

that normally do not change when matrices are used, we might consider specifying their values

as template non-type parameters. The DataType = double will be used in the majority of cases.

Therefore, double can be selected as the template’s default type argument. Since it’s a sensible

default, the DataType template type parameter is used last in the template type parameter list.

Our template class Matrix begins its life as:

template <size_t Rows, size_t Columns, typename DataType = double>

class Matrix

...

What do we want our class template to offer?

• It needs a place to store its matrix elements. This can be defined as an array of ‘Rows’ rows each

containing ‘Columns’ elements of type DataType. It can be an array, rather than a pointer,

since the matrix’ dimensions are known a priori. Since a vector of Columns elements (a row

of the matrix), as well as a vector of Row elements (a column of the matrix) is often used, the

class could use typedefs to represent them. The class interface’s initial section thus contains:

typedef Matrix<1, Columns, DataType> MatrixRow;

typedef Matrix<Rows, 1, DataType> MatrixColumn;

MatrixRow d_matrix[Rows];

• It should offer constructors: a default constructor and (e.g.,) a constructor initializing the ma-

trix from a stream. A copy or move constructor is not required as the class does not use pointers.

Likewise, no overloaded assignment operator or destructor is required. Implementations:

template <size_t Rows, size_t Columns, typename DataType>

Matrix<Rows, Columns, DataType>::Matrix()

{

std::fill(d_matrix, d_matrix + Rows, MatrixRow());

}

template <size_t Rows, size_t Columns, typename DataType>

Matrix<Rows, Columns, DataType>::Matrix(std::istream &str)

{

for (size_t row = 0; row < Rows; row++)

for (size_t col = 0; col < Columns; col++)

str >> d_matrix[row][col];

}

• The class’s operator[] member (and its const variant) only handles the first index, return-

ing a reference to a complete MatrixRow. How elements in a MatrixRow can be retrieved is

shortly covered. To keep the example simple, no array bound check has been implemented:

template <size_t Rows, size_t Columns, typename DataType>

Matrix<1, Columns, DataType>

&Matrix<Rows, Columns, DataType>::operator[](size_t idx)

676 CHAPTER 21. CLASS TEMPLATES

{

return d_matrix[idx];

}

• Now we get to the interesting parts: computing marginals and the sum of all elements in a

Matrix. We’ll define the type MatrixColumn as the type containing the row marginals of a

matrix, and the type MatrixRow as the type containing the column marginals of a matrix.

There is also the sum of all the elements of a matrix. This sum of all the elements of a matrix

is a number that itself can be thought of as a 1 x 1 matrix.

Marginals can be considered as special forms of matrices. To represent these marginals we can

construct partial specializations defining the class templates MatrixRow and MatrixColumn

objects; and we construct a partial specialization handling 1 x 1 matrices. These partial

specializations are used to compute marginals and the sum of all the elements of a matrix.

Before concentrating on these partial specializations themselves we’ll use them here to imple-

ment the members computing the marginals and the sum of all elements of a matrix:

template <size_t Rows, size_t Columns, typename DataType>

Matrix<1, Columns, DataType>

Matrix<Rows, Columns, DataType>::columnMarginals() const

{

return MatrixRow(*this);

}

template <size_t Rows, size_t Columns, typename DataType>

Matrix<Rows, 1, DataType>

Matrix<Rows, Columns, DataType>::rowMarginals() const

{

return MatrixColumn(*this);

}

template <size_t Rows, size_t Columns, typename DataType>

DataType Matrix<Rows, Columns, DataType>::sum() const

{

return rowMarginals().sum();

}

21.4.3 The MatrixRow partial specialization

Class template partial specializations can be defined for any (subset) of template parameters. They

can be defined for template type parameters and for template non-type parameters alike. Our first

partial specialization defines a row of a generic Matrix, mainly (but not only) used for the construc-

tion of column marginals. Here is how such a partial specialization is designed:

• The partial specialization starts with a template header defining all template parameters that

are not specialized in the partial specialization. This template header cannot specify any de-

faults (like DataType = double) since defaults were already specified by the generic class

template definition. The specialization must follow the definition of the generic class tem-

plate’s definition, or the compiler complains that it doesn’t know what class is being special-

ized. Following the template header, the class’s interface starts. It’s a class template (partial)

specialization so the class name must be followed by a template argument list specifying the

template arguments used by the partial specialization. The arguments specify explicit types

or values for some of the template’s parameters. Remaining types are simply copied from the

21.4. PARTIAL SPECIALIZATIONS 677

class template partial specialization’s template parameter list. E.g., the MatrixRow special-

ization specifies 1 for the generic class template’s Rows non-type parameter (as we’re talking

here about a single row). Both Columns and DataType remain to be specified. The MatrixRow

partial specialization therefore starts as follows:

template <size_t Columns, typename DataType> // no default allowed

class Matrix<1, Columns, DataType>

• A MatrixRow holds the data of a single row. So it needs a data member storing Columns

values of type DataType. Since Columns is a constant value, the d_row data member can be

defined as an array:

DataType d_column[Columns];

• The class template partial specialization’s constructors require some attention. The default

constructor is simple. It merely initializes the MatrixRow’s data elements using DataType’s

default constructor:

template <size_t Columns, typename DataType>

Matrix<1, Columns, DataType>::Matrix()

{

std::fill(d_column, d_column + Columns, DataType());

}

Another constructor is needed initializing a MatrixRow object with the column marginals of

a generic Matrix object. This requires us to provide the constructor with a non-specialized

Matrix parameter.

The rule of thumb here is to define a member template that allows us to keep the general na-

ture of the parameter. The generic Matrix template requires three template parameters. Two

of these were already provided by the template specialization. The third parameter is men-

tioned in the member template’s template header. Since this parameter refers to the number

of rows of the generic matrix it is simply called Rows.

Here then is the implementation of the second constructor, initializing the MatrixRow’s data

with the column marginals of a generic Matrix object:

template <size_t Columns, typename DataType>

template <size_t Rows>

Matrix<1, Columns, DataType>::Matrix(

Matrix<Rows, Columns, DataType> const &matrix)

{

std::fill(d_column, d_column + Columns, DataType());

for (size_t col = 0; col < Columns; col++)

for (size_t row = 0; row < Rows; row++)

d_column[col] += matrix[row][col];

}

The constructor’s parameter is a reference to a Matrix template using the additional Row

template parameter as well as the template parameters of the partial specialization.

• We don’t really require additional members to satisfy our current needs. To access the data

elements of the MatrixRow an overloadedoperator[]() is of course useful. Again, the const

variant can be implemented like the non-const variant. Here is its implementation:

template <size_t Columns, typename DataType>

678 CHAPTER 21. CLASS TEMPLATES

DataType &Matrix<1, Columns, DataType>::operator[](size_t idx)

{

return d_column[idx];

}

Now that we have defined the generic Matrix class and the partial specialization defining a single

row the compiler selects the row’s specialization whenever a Matrix is defined using Row = 1. For

example:

Matrix<4, 6> matrix; // generic Matrix template is used

Matrix<1, 6> row; // partial specialization is used

21.4.4 The MatrixColumn partial specialization

The partial specialization for a MatrixColumn is constructed similarly. Let’s present its high-

lights (the full Matrix class template definition as well as all its specializations are provided in the

cplusplus.yo.zip archive (at SourceForge1) in the file yo/classtemplates/examples/matrix.h):

• The class template partial specialization once again starts with a template header. Now the

class interface specifies a fixed value for the second template parameter of the generic class

template. This illustrates that we can construct partial specializations for every single tem-

plate parameter; not just for the first or the last:

template <size_t Rows, typename DataType>

class Matrix<Rows, 1, DataType>

• Its constructors are implemented completely analogously to the way the MatrixRow construc-

tors were implemented. Their implementations are left as an exercise to the reader (and they

can be found in matrix.h).

• An additional member sum is defined to compute the sum of the elements of a MatrixColumn

vector. It’s simply implemented using the accumulate generic algorithm:

template <size_t Rows, typename DataType>

DataType Matrix<Rows, 1, DataType>::sum()

{

return std::accumulate(d_row, d_row + Rows, DataType());

}

21.4.5 The 1x1 matrix: avoid ambiguity

The reader might wonder what happens if we define the following matrix:

Matrix<1, 1> cell;

Is this a MatrixRow or a MatrixColumn specialization? The answer is: neither.

It’s ambiguous, precisely because both the columns and the rows could be used with a (different)

template partial specialization. If such a Matrix is actually required, yet another specialized tem-

plate must be designed.

1http://sourceforge.net/projects/cppannotations/

21.4. PARTIAL SPECIALIZATIONS 679

Since this template specialization can be useful to obtain the sum of the elements of a Matrix, it’s

covered here as well.

• This class template partial specialization also needs a template header, this time only specify-

ing DataType. The class definition specifies two fixed values: 1 for the number of rows and 1

for the number of columns:

template <typename DataType>

class Matrix<1, 1, DataType>

• The specialization defines the usual batch of constructors. Constructors expecting a more

generic Matrix type are again implemented as member templates. For example:

template <typename DataType>

template <size_t Rows, size_t Columns>

Matrix<1, 1, DataType>::Matrix(

Matrix<Rows, Columns, DataType> const &matrix)

:

d_cell(matrix.rowMarginals().sum())

{}

template <typename DataType>

template <size_t Rows>

Matrix<1, 1, DataType>::Matrix(Matrix<Rows, 1, DataType> const &matrix)

:

d_cell(matrix.sum())

{}

• Since Matrix<1, 1> is basically a wrapper around a DataType value, we need members to

access that latter value. A type conversion operator might be useful, but we also defined a

get member to obtain the value if the conversion operator isn’t used by the compiler (which

happens when the compiler is given a choice, see section 11.3). Here are the accessors (leaving

out their const variants):

template <typename DataType>

Matrix<1, 1, DataType>::operator DataType &()

{

return d_cell;

}

template <typename DataType>

DataType &Matrix<1, 1, DataType>::get()

{

return d_cell;

}

Finally, the main function shown below illustrates how the Matrix class template and its partial

specializations can be used:

#include <iostream>

#include "matrix.h"

using namespace std;

int main(int argc, char **argv)

680 CHAPTER 21. CLASS TEMPLATES

{

Matrix<3, 2> matrix(cin);

Matrix<1, 2> colMargins(matrix);

cout << "Column marginals:\n";

cout << colMargins[0] << " " << colMargins[1] << ’\n’;

Matrix<3, 1> rowMargins(matrix);

cout << "Row marginals:\n";

for (size_t idx = 0; idx < 3; idx++)

cout << rowMargins[idx] << ’\n’;

cout << "Sum total: " << Matrix<1, 1>(matrix) << ’\n’;

return 0;

}

/*
Generated output from input: 1 2 3 4 5 6

Column marginals:

9 12

Row marginals:

3

7

11

Sum total: 21

*/

21.5 Variadic templates (C++11)

Up to this point we’ve only encountered templates having a fixed number of template parameters.

The C++11 standard extends this with variadic templates.

Variadic templates are defined for function templates and for class templates. Variadic templates

allow us to specify an arbitrary number of template arguments of any type.

Variadic templates were added to the language to prevent us from having to define many overloaded

templates and to be able to create type safe variadic functions.

Although C (and C++) support variadic functions, their use has always been deprecated in C++

as those functions are notoriously type-unsafe. Variadic function templates can be used to process

objects that until now couldn’t be processed properly by C-style variadic functions.

Template headers of variadic templates use the phrase typename ...Params (Params being a

formal name). A variadic class template Variadic could be declared as follows:

template<typename ...Params> class Variadic;

Assuming the class template’s definition is available then this template can be instantiated using

any number of template arguments. Example:

class Variadic<

int,

std::vector<int>,

21.5. VARIADIC TEMPLATES (C++11) 681

std::map<std::string, std::vector<int>>

> v1;

The template argument list of a variadic template can also be empty. Example:

class Variadic<> empty;

If this is considered undesirable using an empty template argument list can be prevented by provid-

ing one or more fixed parameters. Example:

template<typename First, typename ...Rest>

class tuple;

C’s function printf is a well-known example of a type-unsafe function. It is turned into a type-

safe function when it is implemented as a variadic function template. Not only does this turn the

function into a type-safe function but it is also automatically extended to accept any type that can

be defined by C++. Here is a possible declaration of a variadic function template printcpp:

template<typename ...Params>

void printcpp(std::string const &strFormat, Params ...parameters);

The ellipsis (...) used in the declaration serves two purposes:

• In the template header it is written to the left of a template parameter name where it declares

a parameter pack. A parameter pack allows us to specify any number of template arguments

when instantiating the template. Parameter packs can be used to bind type and non-type

template arguments to template parameters.

• In a template implementation it appears to the right of the template pack’s parameter name.

In that case it represents a series of template arguments that are subsequently matched with

a function parameter that in turn is provided to the right of the ellipsis. Here the ellipsis is

known as the unpack operator as it ‘unpacks’ a series of arguments in a function’s argument

list thereby implicitly defining its parameters.

C++ offers no syntax to access the individual template arguments directly. However, the arguments

can be visited recursively. An example is provided in the next section. The number of arguments is

determined using a new invocation of the sizeof operator:

template<typename ...Params>

struct StructName

{

enum: size_t { s_size = sizeof ...(Params) };

};

// StructName<int, char>::s_size -- initialized to 2

21.5.1 Defining and using variadic templates (C++11)

The arguments associated with a variadic template parameter are not directly available to the im-

plementation of a function or class template. We have to resort to other means to obtain them.

682 CHAPTER 21. CLASS TEMPLATES

By defining a partial specialization of a variadic template, explicitly defining an additional template

type parameter, we can associate the first template argument of a parameter pack with this addi-

tional (first) type parameter. The setup of such a variadic function template (e.g., printcpp, see the

previous section) is as follows:

• The printcpp function receives at least a format string. Following the format string any

number of additional arguments may be specified.

• If there are no arguments trailing the format string then there is no need to use a function

template. An overloaded (non-template) function is defined to handle this situation.

• A variadic function template handles all remaining situations. In this case there is always

at least one argument trailing the format string. That argument’s type is matched with the

variadic template function’s first (ordinary) template type parameter First. The types of any

remaining arguments are bound to the template function’s second template parameter, which

is a parameter pack.

• The variadic function template processes the argument trailing the format string. Then it

recursively calls itself passing the format string and the parameter pack to the recursive call

• If the recursive call merely receives the format string the overloaded (non-template) function is

called (cf. section 20.14) ending the recursion. Otherwise the parameter pack’s first argument

is matched with the recursive call’s First parameter. As this reduces the size of the recursive

call’s parameter pack the recursion eventually stops.

The overloaded non-template function prints the remainder of the format string, en passant checking

for any left-over format specifications:

void printcpp(string const &format)

{

size_t left = 0;

size_t right = 0;

while (true)

{

if ((right = format.find(’%’, right)) == string::npos)

break;

if (format.find("%%", right) != right)

throw std::runtime_error(

"printcpp: missing arguments");

++right;

cout << format.substr(left, right - left);

left = ++right;

}

cout << format.substr(left);

}

Here is the variadic function template’s implementation:

template<typename First, typename ...Params>

void printcpp(std::string const &format, First value, Params ...params)

{

size_t left = 0;

size_t right = 0;

21.5. VARIADIC TEMPLATES (C++11) 683

while (true)

{

if ((right = format.find(’%’, right)) == string::npos) // 1

throw std::runtime_error("printcpp: too many arguments");

if (format.find("%%", right) != right) // 2

break;

++right;

cout << format.substr(left, right - left);

left = ++right;

}

cout << format.substr(left, right - left) << value;

printcpp(format.substr(right + 1), params...);

}

• At 1 the format string is searched for a parameter specification %. If none is found then the

function is called with too many arguments and it throws an exception;

• At 2 it verifies that it has not encountered %%. If only a single % has been seen the while-loop

ends, the format string is inserted into cout up to the % followed by value, and the recursive

call receives the remaing part of the format string as well as the remaining parameter pack;

• If %% was seen the format string is inserted up to the second %, which is ignored, and processing

of the format string continues beyond the %%.

Make sure that the overloaded function is at least declared before the compiler processes the function

template’s definition or it won’t call the overloaded function printcpp when compiling the function

template.

Different from C’s printf function printcpp only recognizes % and %% as format specifiers. The

above implementation does not recognize, e.g., field widths. Type specifiers like %c and %x are of

course not needed as ostream’s insertion operator is aware of the types of the arguments that are

inserted into the ostream. Extending the format specifiers so that field widths etc. are recognized

by this printcpp implementation is left as an exercise to the reader. Here is an example showing

how printcpp can be called:

printcpp("Hello % with %%main%% called with % args"

" and a string showing %\n",

"world", argc, string("A String"));

21.5.2 Perfect forwarding (C++11)

Consider string’s member insert. String::insert has several overloaded implementations. It

can be used to insert text (completely or partially) provided by a string or by a char const *
argument; to insert single characters a specified number of times; iterators can be used to specify

the range of characters to be inserted; etc., etc.. All in all, string offers as many as five overloaded

insert members.

Assume the existence of a class Inserter that is used to insert information into all kinds of objects.

Such a class could have a string data member into which information can be inserted. Inserter’s

interface only partially has to copy string’s interface to realize this: only string::insert’s inter-

faces must be duplicated. The members duplicating interfaces often contain one statement (calling

684 CHAPTER 21. CLASS TEMPLATES

the appropriate member function of the object’s data member) and are for this reason often imple-

mented in-line. Such wrapper functions merely forward their parameters to the matching member

functions of the object’s data member.

Another example is found in factory functions that also frequently forward their parameters to the

constructors of objects that they return.

Before the C++11 standard the interfaces of overloaded functions needed to be duplicated by the for-

warding entity: Inserter needed to duplicate the interfaces of all five string::insert members;

a factory function needed to duplicate the interfaces of the constructors of the class of the objects it

returned.

The C++11 standard simplifies and generalizes forwarding of parameters by offering perfect for-

warding, implemented through rvalue references and variadic templates. With perfect forwarding

the arguments passed to functions are ‘perfectly forwarded’ to nested functions. Forwarding is called

perfect as the arguments are forwarded in a type-safe way. To use perfect forwarding nested func-

tions must define parameter lists matching the forwarding parameters both in types and number.

Perfect forwarding is easily implemented:

• The forwarding function is defined as a template

(usually a variadic template, but single argument forwarding is also possible. To define and

forward a single argument omit the ellipsis from the following code);

• The forwarding function’s parameter list is an rvalue reference parameter pack (e.g., Params

&&...params);

• std::forward is used to forward the forwarding function’s arguments to the nested function,

keeping track of their types and number. Before forward can be used the <utility> header

file must have been included.

• The nested function is called using this stanza to specify its arguments:

std::forward<Params>(params)....

In the next example perfect forwarding is used to implement one member Inserter::insert that

can be used to call any of the five overloaded string::insert members. The insert function

that’s actually called now simply depends on the types and number of arguments that are passed to

Inserter::insert:

class Inserter

{

std::string d_str; // somehow initialized

public:

// constructors not implemented,

// but see below

Inserter();

Inserter(std::string const &str);

Inserter(Inserter const &other);

Inserter(Inserter &&other);

template<typename ...Params>

void insert(Params &&...params)

{

d_str.insert(std::forward<Params>(params)...);

}

};

21.5. VARIADIC TEMPLATES (C++11) 685

A factory function returning an Inserter can also easily be implemented using perfect forwarding.

Rather than defining four overloaded factory functions a single one now suffices. By providing the

factory function with an additional template type parameter specifying the class of the object to

construct the factory function is turned into a completely general factory function:

template <typename Class, typename ...Params>

Class factory(Params &&...params)

{

return Class(std::forward<Params>(params)...);

}

Here are some examples showing its use:

Inserter inserter(factory<Inserter>("hello"));

string delimiter(factory<string>(10, ’=’));

Inserter copy(factory<Inserter>(inserter));

The function std::forward is provided by the standard library. It performs no magic, but merely

returns params as a nameless object. That way it acts like std::move that also removes the name

from an object, returning it as a nameless object. The unpack operator has nothing to do with the

use of forward but merely tells the compiler to apply forward to each of the arguments in turn.

Thus it behaves similarly to C’s ellipsis operator used by variadic functions.

Perfect forwarding was introduced in section 20.4.5: a template function defining a Type &¶m,

with Type being a template type parameter converts Type && to Tp & if the function is called with

an argument of type Tp &. Otherwise it binds Type to Tp, with param being defined as Tp &¶m.

As a result an lvalue argument binds to an lvalue-type (Tp &), while an rvalue argument binds to

an rvalue-type (Tp &&).

The function std::forward merely passes the argument (and its type) on to the called function or

object. Here is its simplified implementation:

typedef <type T>

T &&forward(T &&a)

{

return a;

}

Since T && turns into an lvalue reference when forward is called with an lvalue (or lvalue ref-

erence) and remains an rvalue reference if forward is called with an rvalue reference, and since

forward (like std::move) anonymizes the variable passed as argument to forward, the argument

value is forwarded while passing its type from the function’s parameter to the called function’s ar-

gument.

This is called perfect forwarding as the nested function can only be called if the types of the argu-

ments that were used when calling the ‘outer’ function (e.g., factory) exactly match the types of

the parameters of the nested function (e.g., Class’s constructor). Perfect forwarding therefore is a

tool to realize type safety.

A cosmetic improvement to forward requires users of forward to specify the type to use rather than

to have the compiler deduct the type as a result of the function template parameter type deduction’s

process. This is realized by a small support struct template:

template <typename T>

686 CHAPTER 21. CLASS TEMPLATES

struct identity

{

typedef T type;

};

This struct merely defines identity::type as T, but as it is a struct it must be specified explic-

itly. It cannot be determined from the function’s argument itself. The subtle modification to the

above implementation of forward thus becomes (cf. section 21.2.1 for an explanation of the use of

typename):

typedef <type T>

T &&forward(typename identity<T>::type &&arg)

{

return arg;

}

Now forward must explicitly state arg’s type, as in:

std::forward<Params>(params)

Using the std::forward function and the rvalue reference specification is not restricted to the con-

text of parameter packs. Because of the special way rvalue references to template type parameters

are treated (cf. section 20.4.5) they can profitably be used to forward individual function parame-

ters as well. Here is an example showing how an argument to a function can be forwarded from a

template to a function that is itself passed to the template as a pointer to an (unspecified) function:

template<typename Fun, typename ArgType>

void caller(Fun fun, ArgType &&arg)

{

fun(std::forward<ArgType>(arg));

}

A function display(ostream &out) and increment(int &x) may now both be called through

caller. Example:

caller(display, cout);

int x = 0;

caller(increment, x);

21.5.2.1 References to references

Whenever a class template’s parameter is a reference the compiler can’t distinguish between mem-

ber functions overloading const and non-const references. Here is an example of a program that

won’t compile:

template <typename T>

class Wrap

{

public:

Wrap(T const &tr);

21.5. VARIADIC TEMPLATES (C++11) 687

Wrap(T &tr);

};

int main()

{

int i;

Wrap<int &> wrap(i);

}

and the compiler generates an error message like

’Wrap<T>::Wrap(T&) [with T = int&]’ cannot be overloaded

with ’Wrap<T>::Wrap(const T&) [with T = int&]’

Earlier, in section 19.2.2 a program was shown using a support function having signature

int stringcasecmp(string lhs, string rhs)

In that section it was noted that this function did introduce inefficiency, but that an improved sig-

nature, using string const & parameters fails to compile. With a function declaring a string

const & parameter std::bind2nd (cf. section 18.1.4) generates an error like the one mentioned

here. Following the call

auto pos = find_if(

v1.begin(), v1.end(),

not1(bind2nd(ptr_fun(stringcasecmp), target))

);

that was used in section 19.2.2 as well as the definition of bind2nd (usually found in the system

header file binders.h) we encounter the following series of instantiated templates:

• First, ptr_fun was instantiated, receiving stringcasecmp. The function template ptr_fun

returns a pointer_to_binary_function, for which its first_argument_type and

second_argument_typeare determined as string const & if stringcasecmp defines string

const & parameters;

• Next, the pointer_to_binary_function object is passed to bind2nd. As you may have

guessed, we’re already on dangerous grounds as pointer_to_binary_function is a class

template defining reference template type parameters;

• The bind2nd function template merely creates and returns a binder2nd object, initializing

it with the pointer_to_binary_function object and the type of the second parameter of

stringcasecmp (which can be ignored in the current discussion);

• The binder2nd class template object is a functor defining two overloaded function operators

(using declarations and simplified type names to ease focussing on the essence):

result_type operator()(first_argument_type const &x) const;

result_type operator()(first_argument_type &x) const;

As first_argument_type is a template type parameter deducted to be string const & we

have overloaded functions using reference parameters and a template type parameter which

itself is a reference parameter. As a consequence the ‘cannot be overloaded’ error mes-

sage results and stringcasecmp cannot be defined as a function having string const &

parameters.

688 CHAPTER 21. CLASS TEMPLATES

Before the arrival of the C++11 standard this problem could not elegantly be solved, as pre-C++11

versions of C++ did not offer perfect forwarding. The solution requires a reformulation of bind2nd

and binder2nd, exploiting features offered by perfect forwarding. Other adaptors defined by the

STL may require comparable reformulations. The modifications required for bind2nd and binder2nd

are covered here; it’s up to the reader to implement such modifications for other adaptors when ap-

propriate.

std::bind2nd is rewritten here as Bind2nd. It’s actually a copy of bind2nd, but this time creating

Binder2nd rather than binder2nd. As the (non-configurable) venom is in bind2nd’s binder2nd

call an alternative for bind2nd is needed to avoid calling binder2nd. Alternative approaches are

also possible. A class template specialization for binder2nd could be developed expecting a partic-

ular class which is a wrapper around pointer_to_binary_function. It wouldn’t make much of

a difference, as in that case ptr_fun would have to be rewritten as well.

So we stick to Bind2nd having the following obvious implementation (all functions defined in-class

to save some space):

template<typename Operation, typename SecondArg>

inline Binder2nd<Operation> Bind2nd(Operation const &operation,

SecondArg const &arg2)

{

return Binder2nd<Operation>(

operation,

typename Operation::second_argument_type(arg2)

);

}

The meat of the solution is of course in Binder2nd, now using perfect forwarding. There is now only

one function operator member (operator()) which is now defined as a function template, using

the perfect forwarding incantation. Its body forwards the arguments that were actually passed

to the function call operator as well as Binder2nd’s (fixed) second argument to the ‘operation’,

which is stringcasecmp. Please note that the forwarded arguments can very well be followed by

additional arguments (here: d_arg2). In Binder2nd’s implementation there’s no guarantee that

there will actually only be one perfectly forwarded argument. Although such a guarantee could

easily be built-in (cf. section 22.9) it really isn’t required as the compiler detects whether there are

indeed two arguments bing passed to stringcasecmp, generating an error message if not. Here is

Binder2nd’s implementation:

template<typename Operation>

class Binder2nd:

public std::unary_function<typename Operation::first_argument_type,

typename Operation::result_type>

{

typedef typename Operation::second_argument_type SecondArg;

protected:

Operation d_operation;

SecondArg d_arg2;

public:

Binder2nd(Operation const &operation, SecondArg const &arg2)

:

d_operation(operation),

d_arg2(arg2)

21.5. VARIADIC TEMPLATES (C++11) 689

{}

template <typename Param>

typename Operation::result_type

operator()(Param &¶m) const

{

return d_operation(std::forward<Param>(param), d_arg2);

}

};

The program shown in section 19.2.2 remains unaltered but for the use of bind2nd, which now

becomes Bind2nd:

...

auto pos = find_if(

v1.begin(), v1.end(),

not1(Bind2nd(ptr_fun(stringicmp), target))

);

The two programs produce identical output, but the program developed here is a lot more efficient

than the one developed originally, in section 19.2.2.

21.5.3 The unpack operator (C++11)

The unpack operator is used to obtain template arguments in many situations. No mechanism other

than recursion (as shown in section 21.5.1) is available to obtain the individual types and values of

a variadic template.

The unpack operator can also be used to define template classes that are derived from any number

of base classes. Here is how it’s done:

template <typename ...BaseClasses>

class Combi: public BaseClasses... // derive from base classes

{

public:

// specify base class objects

// to its constructor using

// perfect forwarding

Combi(BaseClasses &&...baseClasses)

:

BaseClasses(baseClasses)... // use base class initializers

{} // for each of the base

}; // classes

This allows us to define classes that combine the features of any number of other classes. If the class

Combi is derived of classes A, B, and C then Combi is-an A, B, and C. It should of course be given

a virtual destructor. A Combi object can be passed to functions expecting pointers or references to

any of its base class type objects. Here is an example defining Combi as a class derived from a vector

of complex numbers, a string and a pair of ints and doubles (using uniform intializers in a sequence

matching the sequence of the types specified for the used Combi type):

typedef Combi<

690 CHAPTER 21. CLASS TEMPLATES

vector<complex<double>>, string, pair<int, double>

> MultiTypes;

MultiTypes mt = {{3.5, 4}, "mt", {1950, 1.72}};

The same construction can also be used to define template data members supporting variadic type

lists such as tuples (cf. section 21.6). Such a class could be designed along these lines:

template <typename ...Types>

struct Multi

{

std::tuple<Types...> d_tup; // define tuple for Types types

Multi(Types ...types)

: // initialize d_tup from Multi’s

d_tup(std::forward<Types>(types)...) // arguments

{}

};

The ellipses that are used when forwarding parameter packs are essential. The compiler considers

their omission an error. In the following struct definition it was the intent of the programmer to

pass a parameter pack on to a nested object construction but ellipses were omitted while specifying

the template parameters, resulting in a parameter packs not expanded with ‘...’ error message:

template <int size, typename ...List>

struct Call

{

Call(List &&...list)

{

Call<size - 1, List &&> call(std::forward<List>(list)...);

}

};

Instead of the above definition of the call object the programmer should have used:

Call<size - 1, List &&...> call(std::forward<List>(list)...);

21.5.4 Non-type variadic templates (C++11)

Variadic templates not necesssarily define template types. Non-types can also be used with variadic

templates. The following function template accepts any series of int values, forwarding these values

to a class template. The class template defines an enum value result which is returned by the

function, unless no int values were specified, in which case 0 is returned.

template <int ... Ints>

int forwarder()

{

return computer<Ints ...>::result; // forwarding the Ints

}

template <> // specialization if no ints are provided

21.6. TUPLES (C++11) 691

int forwarder<>()

{

return 0;

}

// use as:

cout << forwarder<1, 2, 3>() << ’ ’ << forwarder<>() << ’\n’;

The sizeof operator can be used for variadic non-type parameters as well: sizeof...(Ints)

would return 3 when used in the first function template for forwarder<1, 2, 3>().

Variadic non-type parameters are used to define variadic literal operators, introduced in section

22.3.

21.6 Tuples (C++11)

The C++11 standard offers a generalized pair container: the tuple, covered in this section. Before

tuples can be used the header file <tuple> must have been included.

Whereas std::pair containers have limited functionality and only support two members, tuples

have slightly more functionality and may contain an unlimited number of different data types. In

that respect a tuple can be considered the ‘template’s answer to C’s struct’.

A tuple’s generic declaration (and definition) uses the variadic template notation:

template <class ...Types>

class tuple;

Here is an example of its use:

typedef std::tuple<int, double &, std::string, char const *> tuple_idsc;

double pi = 3.14;

tuple_idsc idsc(59, pi, "hello", "fixed");

// access a field:

std::get<2>(idsc) = "hello world";

The std::get<idx>(tupleObject) function template returns a reference to the idxth (zero based)

field of the tuple tupleObject. The index is specified as the function template’s non-type template

argument.

Tuples may be constructed without specifying initial values. Primitive types are initialized to zeroes;

class type fields are initialized by their default constructors. Be aware that in some situations the

construction of a tuple may succeed but its use may fail. Consider:

tuple<int &> empty;

cout << get<0>(empty);

Here the tuple empty cannot be used as its int & field is an undefined reference. However, empty’s

construction succeeds.

692 CHAPTER 21. CLASS TEMPLATES

Tuples may be assigned to each other if their type lists are identical; if supported by their constituent

types copy constructors are available as well. Copy construction and assignment is also available if

a right-hand type can be converted to its matching left-hand type or if the left-hand type can be con-

structed from the matching right-hand type. Tuples (matching in number and (convertible) types)

can be compared using relational operators as long as their constituent types support comparisons.

In this respect tuples are like pairs.

Tuples offer the following static elements (using compile-time initialization):

• std::tuple_size<Tuple>::value returns the number of types defined for the tuple type

Tuple. Example:

cout << tuple_size<tuple_idsc>::value << ’\n’; // displays: 4

• std::tuple_element<idx, Tuple>::type returns the type of element idx of Tuple. Ex-

ample:

tuple_element<2, tuple_idsc>::type text; // defines std::string text

The unpack operator can also be used to forward the arguments of a constructor to a tuple data

member. Consider a class Wrapper that is defined as a variadic template:

template <typename ...Params>

class Wrapper

{

...

public:

Wrapper(Params &&...params);

};

This class may be given a tuple data member which should be initialized by the types and values

that are used when initializing an object of the class Wrapper using perfect forwarding. Comparable

to the way a class may inherit from its template types (cf. section 21.5.3) it may forward its types

and constructor arguments to its tuple data member:

template <typename ...Params>

class Wrapper

{

std::tuple<Params...> d_tuple; // same types as used for

// Wrapper itself

public:

Wrapper(Params &&...params)

: // initialize d_tuple with

// Wrapper’s arguments

d_tuple(std::forward<Params>(params)...)

{}

};

21.7 Computing the return type of function objects (C++11)

As amply illustrated in chapter 19 function objects play an important role with generic algorithms.

Like generic algorithms themselves, function objects can be generically defined as members of class

21.7. COMPUTING THE RETURN TYPE OF FUNCTION OBJECTS (C++11) 693

templates. If the function call operators (operator()) of such classes define parameters then the

types of those parameters may also be abstracted by defining the function call operators themselves

as member templates. Example:

template <typename Class>

class Filter

{

Class obj;

public:

template <typename Param>

Param operator()(Param const ¶m) const

{

return obj(param);

}

};

The template class Filter is a wrapper around Class, filtering Class’s function call operator

through its own function call operator. In the above example the return value of Class’s function

call operator is simply passed on, but any other manipulation is of course also possible.

A type that is specified as Filter’s template type argument may of course have multiple function

call operators:

struct Math

{

int operator()(int x);

double operator()(double x);

};

Math objects can now be filtered using Filter<Math> fm using Math’s first or second function

call operator, depending on the actual argument type. With fm(5) the int-version is used, with

fm(12.5) the double-version is used.

Unfortunately this scheme doesn’t work if the function call operators have different return and

argument types. Because of this the following class Convert cannot be used with Filter:

struct Convert

{

double operator()(int x); // int-to-double

std::string operator()(double x); // double-to-string

};

This problem can be tackled successfully by the class template std::result_of<Functor(Typelist)>

that is defined by the C++11 standard. Before using std::result_of the header file <functional>

must have been included.

The result_of class template offers a typedef (type), representing the type that is returned by

Functor<TypeList>. It can be used as follows to improve the implementation of Filter:

template <typename Class>

class Filter

{

Class obj;

694 CHAPTER 21. CLASS TEMPLATES

public:

template <typename Arg>

typename std::result_of<Class(Arg)>::type

operator()(Arg const &arg) const

{

return obj(arg);

}

};

Using this definition, Filter<Convert> fc can be constructed. Now fc(5) returns a double,

while fc(4.5) returns a std::string.

The class Convertmust define the relationships between its function call operators and their return

types. Predefined function objects (like those in the standard template library) already do so, but

self-defined function objects must do this explicitly.

If a function object class defines only one function call operator it can define its return type by a

typedef. If the above class Convert would only define the first of its two function call operators

then the typedef (in the class’s public section) should be:

typedef double type;

If multiple function call operators are defined, each with its own signature and return type, then the

association between signature and return type is set up as follows (all in the class’s public section):

• define a generic struct result like this:

template <typename Signature>

struct result;

• For each function call signature define a specialization of struct result. Convert’s first

function call operator gives rise to:

template <typename Class>

struct result<Class(int)>

{

typedef double type;

};

and Convert’s second function call operator to:

template <typename Class>

struct result<Class(double)>

{

typedef std::string type;

};

• In cases where function call operators have multiple arguments the specifications should again

provide for the correct signatures. A function call operator called with an int and a double,

returning a size_t gets:

template <typename Class>

struct result<Class(int, double)>

{

typedef size_t type;

};

21.8. INSTANTIATING CLASS TEMPLATES 695

21.8 Instantiating class templates

Class templates are instantiated when an object of a class template is defined. When a class tem-

plate object is defined or declared its template parameters must explicitly be specified.

Template parameters are also specified when default template parameter values are specified albeit

that in that case the compiler provides the defaults (cf. section 21.4 where double is used as the

default type to use for the template’s DataType parameter). The actual values or types of template

parameters are never deduced from arguments as is done with function template parameters. So to

define a Matrix of complex-valued elements, the following syntax is used:

Matrix<3, 5, std::complex> complexMatrix;

Since the class template Matrix uses a default data type a matrix of double-valued elements can

be defined like this:

Matrix<3, 5> doubleMatrix;

A class template object may be declared using the keyword extern. For example, to declare the

matrix complexMatrix use:

extern Matrix<3, 5, std::complex> complexMatrix;

A class template declaration suffices to compile return values or parameters that are of class tem-

plate types. Example: the following source file may be compiled, although the compiler hasn’t seen

the definition of the Matrix class template. Generic classes and (partial) specializations may all be

declared. A function expecting or returning a class template object, reference, or parameter auto-

matically becomes a function template itself. This is necessary to allow the compiler to tailor the

function to the types of various actual arguments that may be passed to the function:

#include <cstddef>

template <size_t Rows, size_t Columns, typename DataType = double>

class Matrix;

template <size_t Columns, typename DataType>

class Matrix<1, Columns, DataType>;

Matrix<1, 12> *function(Matrix<2, 18, size_t> &mat);

When class templates are used the compiler must first have seen their implementations. So, tem-

plate member functions must be known to the compiler when the template is instantiated. This does

not mean that all members of a template class are instantiated or must have been seen when a class

template object is defined. The compiler only instantiates those members that are actually used.

This is illustrated by the following simple class Demo that has two constructors and two members.

When we use one constructor and call one member in main note the sizes of the resulting object file

and executable program. Next the class definition is modified in that the unused constructor and

member are commented out. Again we compile and link the program. Now observe that these latter

sizes are identical to the former sizes. There are other ways to illustrate that only used members

are instantiated. The nm program could be used. It shows the symbolic contents of object files. Us-

ing nm we’ll reach the same conclusion: only template member functions that are actually used are

instantiated. Here is the class template Demo that was used for our little experiment. In main only

696 CHAPTER 21. CLASS TEMPLATES

the first constructor and the first member function are called and thus only these members were

instantiated:

#include <iostream>

template <typename Type>

class Demo

{

Type d_data;

public:

Demo();

Demo(Type const &value);

void member1();

void member2(Type const &value);

};

template <typename Type>

Demo<Type>::Demo()

:

d_data(Type())

{}

template <typename Type>

void Demo<Type>::member1()

{

d_data += d_data;

}

// the following members should be commented out before

// compiling for the 2nd time:

template <typename Type>

Demo<Type>::Demo(Type const &value)

:

d_data(value)

{}

template <typename Type>

void Demo<Type>::member2(Type const &value)

{

d_data += value;

}

int main()

{

Demo<int> demo;

demo.member1();

}

21.9 Processing class templates and instantiations

In section 20.13 the distinction between code depending on template parameters and code not de-

pending on template parameters was introduced. The same distinction also holds true when class

templates are defined and used.

21.10. DECLARING FRIENDS 697

Code not depending on template parameters is verified by the compiler when the template is defined.

If a member function in a class template uses a qsort function, then qsort does not depend on

a template parameter. Consequently, qsort must be known to the compiler when it encounters

qsort’s function call. In practice this implies that the <cstdlib> header file must have been

processed by the compiler before it is able to compile the class template definition.

On the other hand, if a template defines a <typename Ret> template type parameter to parame-

terize the return type of some template member function as in:

Ret member();

then the compiler may encounter member or the class to which member belongs in the following

locations:

• the location where a class template object is defined. This is called the point of instantiation

of the class template object. The compiler must have read the class template’s implementation

and has performed a basic check for syntactic correctness of member functions like member. It

won’t accept a definition or declaration like Ret && *member, because C++ does not support

functions returning pointers to rvalue references. Furthermore, it checks whether the actual

type name that is used for instantiating the object is valid. This type name must be known to

the compiler at the object’s point of instantiation.

• the location where the template member function is used. This is called the template member

function’s point of instantiation. Here the Ret parameter must have been specified (or deduced)

and at this point member’s statements that depend on the Ret template parameter are checked

for syntactic correctness. For example, if member contains a statement like

Ret tmp(Ret(), 15);

then this is in principle a syntactically valid statement. However, when Ret = int the state-

ment fails to compile as int does not have a constructor expecting two int arguments. Note

that this is not a problem when the compiler instantiates an object of member’s class. At the

point of instantiation of the object its member function ‘member’ is not instantiated and so the

invalid int construction remains undetected.

21.10 Declaring friends

Friend functions are normally constructed as support (free) functions of a class that cannot be imple-

mented and declared as class members. The insertion operator for output streams is a well known

example. Friend classes are most often seen in the context of nested classes. Here the inner class

declares the outer class as its friend (or the other way around). Again we see a support mechanism:

the inner class is constructed to support the outer class.

Like ordinary classes, class templates may declare other functions and classes as their friends. Con-

versely, ordinary classes may declare template classes as their friends. Here too, the friend is con-

structed as a special function or class augmenting or supporting the functionality of the declaring

class. Although the friend keyword can be used by any type of class (ordinary or template) when

using class templates the following cases should be distinguished:

• A class template may declare an ordinary function or class as its friend. This is a common

friend declaration, such as the insertion operator for ostream objects.

698 CHAPTER 21. CLASS TEMPLATES

• A class template may declare another function template or class template as its friend. In this

case, the friend’s template parameters may have to be specified.

If the actual values of the friend’s template parameters must be equal to the template param-

eters of the class declaring the friend, the friend is said to be a bound friend class or function

template. In this case the template parameters of the template specifying the friend decla-

ration determine (bind) the values of the template parameters of the friend class or function.

Bound friends result in a one-to-one correspondence between the template’s parameters and

the friend’s template parameters.

• In the most general case a class template may declare another function template or class tem-

plate to be its friend, irrespective of the friend’s actual template arguments.

In this case an unbound friend class or function template is declared. The template parame-

ters of the friend class or function template remain to be specified and are not related in some

predefined way to the template parameters of the class declaring the friend. If a class tem-

plate has data members of various types, specified by its template parameters and another

class should be allowed direct access to these data members we want to specify any of the

current template arguments when specifying such a friend. Rather than specifying multiple

bound friends, a single generic (unbound) friend may be declared, specifying the friend’s actual

template parameters only when this is required.

• The above cases, in which a template is declared as a friend, may also be encountered when

ordinary classes are used:

– The ordinary class declaring ordinary friends has already been covered (chapter 15).

– The equivalent of bound friends occurs if an ordinary class specifies specific actual tem-

plate parameters when declaring its friend.

– The equivalent of unbound friends occurs if an ordinary class declares a generic template

as its friend.

21.10.1 Non-templates used as friends in templates

A class template may declare an ordinary function, ordinary member function or ordinary class as

its friend. Such a friend may access the class template’s private members.

Concrete classes and ordinary functions can be declared as friends, but before a single member

function of a class can be declared as a friend, the compiler must have seen the class interface

declaring that member. Let’s consider the various possibilities:

• A class template may declare an ordinary function to be its friend. It is not completely clear

why we would like to declare an ordinary function as a friend. Usually we pass an object of the

class declaring the friend to such a function. With class templates this requires us to provide

the (friend) function with a template parameter without specifying its types. As the language

does not support constructions like

void function(std::vector<Type> &vector)

unless function itself is a template, it is not immediately clear how and why such a friend

should be constructed. One reason could be to allow the function access to the class’s private

static members. In addition such friends could instantiate objects of classes that declare them

as their friends. This would allow the friend functions direct access to such object’s private

members. For example:

template <typename Type>

21.10. DECLARING FRIENDS 699

class Storage

{

friend void basic();

static size_t s_time;

std::vector<Type> d_data;

public:

Storage();

};

template <typename Type>

size_t Storage<Type>::s_time = 0;

template <typename Type>

Storage<Type>::Storage()

{}

void basic()

{

Storage<int>::s_time = time(0);

Storage<double> storage;

std::random_shuffle(storage.d_data.begin(), storage.d_data.end());

}

• Declaring an ordinary class to be a class template’s friend probably finds more applications.

Here the ordinary (friend) class may instantiate any kind of object of the class template. The

friend class may then access all private members of the instantiated class template:

template <typename Type>

class Composer

{

friend class Friend;

std::vector<Type> d_data;

public:

Composer();

};

class Friend

{

Composer<int> d_ints;

public:

Friend(std::istream &input);

};

inline::Friend::Friend(std::istream &input)

{

std::copy(std::istream_iterator<int>(input),

std::istream_iterator<int>(),

back_inserter(d_ints.d_data));

}

• Alternatively, just a single member function of an ordinary class may be declared as a friend.

This requires that the compiler has read the friend class’s interface before declaring the friend.

Omitting the required destructor and overloaded assignment operators, the following shows an

example of a class whose member randomizer is declared as a friend of the class Composer:

template <typename Type>

class Composer;

700 CHAPTER 21. CLASS TEMPLATES

class Friend

{

Composer<int> *d_ints;

public:

Friend(std::istream &input);

void randomizer();

};

template <typename Type>

class Composer

{

friend void Friend::randomizer();

std::vector<Type> d_data;

public:

Composer(std::istream &input)

{

std::copy(std::istream_iterator<int>(input),

std::istream_iterator<int>(),

back_inserter(d_data));

}

};

inline Friend::Friend(std::istream &input)

:

d_ints(new Composer<int>(input))

{}

inline void Friend::randomizer()

{

std::random_shuffle(d_ints->d_data.begin(), d_ints->d_data.end());

}

In this example Friend::d_ints is a pointer member. It cannot be a Composer<int> object

as the Composer class interface hasn’t yet been seen by the compiler when it reads Friend’s

class interface. Disregarding this and defining a data member Composer<int> d_ints re-

sults in the compiler generating the error

error: field ‘d_ints’ has incomplete type

‘Incomplete type’, as the compiler at this points knows of the existence of the class Composer,

but as it hasn’t seen Composer’s interface it doesn’t know what size the d_ints data member

has.

21.10.2 Templates instantiated for specific types as friends

With bound friend class or function templates there is a one-to-one mapping between the template

arguments of the friend templates and the template arguments of the class templates declaring them

as friends. In this case, the friends themselves are templates too. Here are the various possibilities:

• A function template is a friend of a class template. In this case we don’t experience the prob-

lems we encountered with ordinary functions declared as friends of class templates. Since the

friend function template itself is a template it may be provided with the required template

21.10. DECLARING FRIENDS 701

arguments allowing it to become the declaring class’s friend. The various declarations are

organized like this:

– The class template declaring the bound template friend function is defined;

– The (friend) function template is defined, now having access to all the class template’s

(private) members.

The bound template friend declaration specifies the required template arguments immediately

following the template’s function name. Without the template argument list affixed to the func-

tion name it would remain an ordinary friend function. Here is an example showing a bound

friend to create a subset of the entries of a dictionary. For real life examples, a dedicated func-

tion object returning !key1.find(key2) is probably more useful. For the current example,

operator== is acceptable:

template <typename Key, typename Value>

class Dictionary

{

friend Dictionary<Key, Value>

subset<Key, Value>(Key const &key,

Dictionary<Key, Value> const &dict);

std::map<Key, Value> d_dict;

public:

Dictionary();

};

template <typename Key, typename Value>

Dictionary<Key, Value>

subset(Key const &key, Dictionary<Key, Value> const &dict)

{

Dictionary<Key, Value> ret;

std::remove_copy_if(dict.d_dict.begin(), dict.d_dict.end(),

std::inserter(ret.d_dict, ret.d_dict.begin()),

std::bind2nd(std::equal_to<Key>(), key));

return ret;

}

• By declaring a full class template as a class template’s friend, all members of the friend class

may access all private members of the class declaring the friend. As the friend class only needs

to be declared, the organization of the declaration is much easier than when function templates

are declared as friends. In the following example a class Iterator is declared as a friend of

a class Dictionary. Thus, the Iterator is able to access Dictionary’s private data. There

are some interesting points to note here:

– To declare a class template as a friend, that class only needs to be declared as a class

template before it is declared as a friend:

template <typename Key, typename Value>

class Iterator;

template <typename Key, typename Value>

class Dictionary

{

friend class Iterator<Key, Value>;

702 CHAPTER 21. CLASS TEMPLATES

– However, members of the friend class may already be used, even though the compiler

hasn’t seen the friend class’s interface yet:

template <typename Key, typename Value>

template <typename Key2, typename Value2>

Iterator<Key2, Value2> Dictionary<Key, Value>::begin()

{

return Iterator<Key, Value>(*this);

}

template <typename Key, typename Value>

template <typename Key2, typename Value2>

Iterator<Key2, Value2> Dictionary<Key, Value>::subset(Key const &key)

{

return Iterator<Key, Value>(*this).subset(key);

}

– Of course, the friend class’s interface must eventually be seen by the compiler. Since it’s a

support class for Dictionary it can safely define a std::map data member that is initial-

ized by the friend class’s constructor. The constructor may then access the Dictionary’s

private data member d_dict:

template <typename Key, typename Value>

class Iterator

{

std::map<Key, Value> &d_dict;

public:

Iterator(Dictionary<Key, Value> &dict)

:

d_dict(dict.d_dict)

{}

– The Iterator member begin may return a map iterator. Since the compiler does not

know what the instantiation of the map looks like, a map<Key, Value>::iterator is

a template subtype. So it cannot be used as-is, but it must be prefixed by typename (see

the function begin’s return type in the next example):

template <typename Key, typename Value>

typename std::map<Key, Value>::iterator Iterator<Key, Value>::begin()

{

return d_dict.begin();

}

• In the previous example we might decide that only a Dictionary should be able to con-

struct an Iterator (maybe because we conceptually consider Iterator to be a sub-type

of Dictionary). This is easily accomplished by defining Iterator’s constructor in its pri-

vate section, and by declaring Dictionary to be a friend of Iterator. Consequently, only a

Dictionary can create an Iterator. By declaring the constructor of a specific Dictionary

type as a friend of Iterator’s we declare a bound friend. This ensures that only that particu-

lar type of Dictionary can create Iterators using template parameters identical to its own.

Here is how it’s done:

template <typename Key, typename Value>

class Iterator

{

friend Dictionary<Key, Value>::Dictionary();

std::map<Key, Value> &d_dict;

Iterator(Dictionary<Key, Value> &dict);

21.10. DECLARING FRIENDS 703

public:

In this example, Dictionary’s constructor is Iterator’s friend. The friend is a template

member. Other members can be declared as a class’s friend as well. In those cases their

prototypes must be used, also specifying the types of their return values. Assuming that

std::vector<Value> sortValues()

is a member of Dictionary then the matching bound friend declaration is:

friend std::vector<Value> Dictionary<Key, Value>::sortValues();

Finally, the following example can be used as a prototype for situations where bound friends are

useful:

template <typename T> // a function template

void fun(T *t)

{

t->not_public();

};

template <typename X> // a class template

class A

{ // fun() is used as friend bound to A,

// instantiated for X, whatever X may be

friend void fun<A<X>>(A<X> *);

public:

A();

private:

void not_public();

};

template <typename X>

A<X>::A()

{

fun(this);

}

template <typename X>

void A<X>::not_public()

{}

int main()

{

A<int> a;

fun(&a); // fun instantiated for A<int>.

}

21.10.3 Unbound templates as friends

When a friend is declared as an unbound friend it merely declares an existing template to be its

friend (no matter how it is instantiated). This may be useful in situations where the friend should

be able to instantiate objects of class templates declaring the friend, allowing the friend to access

704 CHAPTER 21. CLASS TEMPLATES

the instantiated object’s private members. Functions, classes, and member functions may all be

declared as unbound friends.

Here are the syntactic conventions declaring unbound friends:

• Declaring a function template as an unbound friend: any instantiation of the function template

may instantiate objects of the template class and may access its private members. Assume the

following function template has been defined

template <typename Iterator, typename Class, typename Data>

Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

This function template can be declared as an unbound friend in the following class template

Vector2:

template <typename Type>

class Vector2: public std::vector<std::vector<Type> >

{

template <typename Iterator, typename Class, typename Data>

friend Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

...

};

If the function template is defined inside some namespace this namespace must be mentioned

as well. Assuming that ForEach is defined in the namespace FBB its friend declaration be-

comes:

template <typename Iterator, typename Class, typename Data>

friend Class &FBB::ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

The following example illustrates the use of an unbound friend. The class Vector2 stores vec-

tors of elements of template type parameter Type. Its process member allows ForEach to

call its private rows member. The rows member, in turn, uses another ForEach to call its pri-

vate columns member. Consequently, Vector2 uses two instantiations of ForEach which is a

clear hint for using an unbound friend. It is assumed that Type class objects can be inserted

into ostream objects (the definition of the ForEach function template can be found in the

cplusplus.yo.zip archive at http://sourceforge.net/projects/cppannotations/).

Here is the program:

template <typename Type>

class Vector2: public std::vector<std::vector<Type> >

{

typedef typename Vector2<Type>::iterator iterator;

template <typename Iterator, typename Class, typename Data>

friend Class &ForEach(Iterator begin, Iterator end, Class &object,

void (Class::*member)(Data &));

public:

void process();

private:

void rows(std::vector<Type> &row);

21.10. DECLARING FRIENDS 705

void columns(Type &str);

};

template <typename Type>

void Vector2<Type>::process()

{

ForEach<iterator, Vector2<Type>, std::vector<Type> >

(this->begin(), this->end(), *this, &Vector2<Type>::rows);

}

template <typename Type>

void Vector2<Type>::rows(std::vector<Type> &row)

{

ForEach(row.begin(), row.end(), *this,

&Vector2<Type>::columns);

std::cout << ’\n’;

}

template <typename Type>

void Vector2<Type>::columns(Type &str)

{

std::cout << str << " ";

}

using namespace std;

int main()

{

Vector2<string> c;

c.push_back(vector<string>(3, "Hello"));

c.push_back(vector<string>(2, "World"));

c.process();

}

/*
Generated output:

Hello Hello Hello

World World

*/

• Analogously, a full class template may be declared as friend. This allows all instantiations of

the friend’s member functions to instantiate objects of the class template declaring the friend

class. In this case, the class declaring the friend should offer functionality that is useful to

different instantiations of its friend class (i.e., instantiations using different template argu-

ments). The syntactic convention is comparable to the convention used when declaring an

unbound friend function template:

template <typename Type>

class PtrVector

{

template <typename Iterator, typename Class>

friend class Wrapper; // unbound friend class

};

706 CHAPTER 21. CLASS TEMPLATES

All members of the class template Wrapper may now instantiate PtrVectors using any ac-

tual type for its Type parameter. This allows the Wrapper instantiation to access all of

PtrVector’s private members.

• When only some members of a class template need access to private members of another class

template (e.g., the other class template has private constructors and only some members of the

first class template need to instantiate objects of the second class template), then the latter

class template may declare only those members of the former class template requiring access

to its private members as its friends. Again, the friend class’s interface may be left unspecified.

However, the compiler must be informed that the friend member’s class is indeed a class. A

forward declaration of that class must therefore be provided. In the next example PtrVector

declares Wrapper::begin as its friend. Note the forward declaration of the class Wrapper:

template <typename Iterator>

class Wrapper;

template <typename Type>

class PtrVector

{

template <typename Iterator> friend

PtrVector<Type> Wrapper<Iterator>::begin(Iterator const &t1);

...

};

21.10.4 Extended friend declarations (C++11)

The C++11 standard defines extended friend declarations. Extended friend declarations are also

available for class templates.

Extended friend declarations for class templates allow us to use template type parameters as friend

declarations. A template type argument, however, does not necessarily have to be a type for which

the keyword friend makes sense, like int. In those cases the friend declaration is simply ignored.

Consider the following class template, declaring Friend as a friend:

template <typename Friend>

class Class

{

friend Friend;

void msg(); // private, displays some message

};

Now, an actual Friend class may access all of Class’s members

class Concrete

{

Class<Concrete> d_class;

Class<std::string> d_string;

public:

void msg()

{

d_class.msg(); // OK: calls private Class<Concrete>::msg()

21.11. CLASS TEMPLATE DERIVATION 707

//d_string.msg(); // fails to compile: msg() is private

}

};

A declaration like Class<int> intClass is also OK, but here the friend declaration is simply

ignored. After all, there are no ‘int members’ to access Class<int>’s private members.

21.11 Class template derivation

Class templates can be used for inheritance purposes as well. When a class template is used in class

derivation, the following situations should be distinguished:

• An existing class template is used as base class when deriving a ordinary class. The derived

class itself will partially be a class template, but this is somewhat hidden from view when an

object of the derived class is defined.

• An existing class template is used as the base class when deriving another class template.

Here the class template characteristics remain clearly visible.

• An ordinary class is used as the base class when deriving a template class. This interesting

hybrid allows us to construct class templates that are partially compiled.

These three variants of class template derivation are elaborated in this and the upcoming sections.

Consider the following base class:

template<typename T>

class Base

{

T const &t;

public:

Base(T const &t);

};

The above class is a class template that can be used as a base class for the following derived class

template Derived:

template<typename T>

class Derived: public Base<T>

{

public:

Derived(T const &t);

};

template<typename T>

Derived<T>::Derived(T const &t)

:

Base(t)

{}

708 CHAPTER 21. CLASS TEMPLATES

Other combinations are also possible. The base class may be instantiated by specifying template

arguments, turning the derived class into an ordinary class (showing a class object’s definition as

well):

class Ordinary: public Base<int>

{

public:

Ordinary(int x);

};

inline Ordinary::Ordinary(int x)

:

Base(x)

{}

Ordinary ordinary(5);

This approach allows us to add functionality to a class template, without the need for constructing

a derived class template.

Class template derivation pretty much follows the same rules as ordinary class derivation, not in-

volving class templates. Some subtleties that are specific for class template derivation may easily

cause confusion like the use of this when members of a template base class are called from a de-

rived class. The reasons for using this are discussed in section 22.1. In the upcoming sections the

focus will be on the class derivation proper.

21.11.1 Deriving ordinary classes from class templates

When an existing class template is used as a base class for deriving an ordinary class, the class

template parameters are specified when defining the derived class’s interface. If in a certain context

an existing class template lacks a particular functionality, then it may be useful to derive an ordinary

class from a class template. For example, although the class map can easily be used in combination

with the find_if() generic algorithm (section 19.1.16), it requires the construction of a class and

at least two additional function objects of that class. If this is considered too much overhead then

extending a class template with tailor-made functionality might be considered.

Example: a program executing commands entered at the keyboard might accept all unique initial

abbreviations of the commands it defines. E.g., the command list might be entered as l, li,

lis or list. By deriving a class Handler from

map<string, void (Handler::*)(string const &cmd)>

and by defining a member function process(string const &cmd) to do the actual command

processing a program might simply execute the following main() function:

int main()

{

string line;

Handler cmd;

while (getline(cin, line))

cmd.process(line);

}

21.11. CLASS TEMPLATE DERIVATION 709

The class Handler itself is derived from a std::map, in which the map’s values are pointers to

Handler’s member functions, expecting the command line entered by the user. Here are Handler’s

characteristics:

• The class is derived from a std::map, expecting the command associated with each command-

processing member as its keys. Since Handler uses the map merely to define associations

between the commands and the processing member functions and to make available map’s

typedefs, private derivation is used:

class Handler: private std::map<std::string,

void (Handler::*)(std::string const &cmd)>

• The actual association can be defined using static private data members: s_cmds is an array

of Handler::value_type values, and s_cmds_end is a constant pointer pointing beyond the

array’s last element:

static value_type s_cmds[];

static value_type *const s_cmds_end;

• The constructor simply initializes the map from these two static data members. It could be

implemented inline:

inline Handler::Handler()

:

std::map<std::string,

void (Handler::*)(std::string const &cmd)>

(s_cmds, s_cmds_end)

{}

• The member process iterates along the map’s elements. Once the first word on the command

line matches the initial characters of the command, the corresponding command is executed.

If no such command is found, an error message is issued:

void Handler::process(std::string const &line)

{

istringstream istr(line);

string cmd;

istr >> cmd;

for (iterator it = begin(); it != end(); it++)

{

if (it->first.find(cmd) == 0)

{

(this->*it->second)(line);

return;

}

}

cout << "Unknown command: " << line << ’\n’;

}

21.11.2 Deriving class templates from class templates

Although it’s perfectly acceptable to derive an ordinary class from a class template, the resulting

class of course has limited generality compared to its template base class. If generality is important,

710 CHAPTER 21. CLASS TEMPLATES

it’s probably a better idea to derive a class template from a class template. This allows us to extend

an existing class template with new functionality or to override the functionality of the existing class

template.

The class template SortVector presented below is derived from the existing class template std::vector.

It allows us to perform a hierarchic sort of its elements using any ordering of any data members its

data elements may contain. To accomplish this there is but one requirement. SortVector’s data

type must offer dedicated member functions comparing its members.

For example, if SortVector’s data type is an object of class MultiData, then MultiData should

implement member functions having the following prototypes for each of its data members which

can be compared:

bool (MultiData::*)(MultiData const &rhv)

So, if MultiData has two data members, int d_value and std::string d_text and both may

be used by a hierarchic sort, then MultiData should offer the following two members:

bool intCmp(MultiData const &rhv); // returns d_value < rhv.d_value

bool textCmp(MultiData const &rhv); // returns d_text < rhv.d_text

Furthermore, as a convenience it is assumed that operator<< and operator>> have been defined

for MultiData objects.

The class template SortVector is directly derived from the template class std::vector. Our

implementation inherits all members from that base class. It also offers two simple constructors:

template <typename Type>

class SortVector: public std::vector<Type>

{

public:

SortVector()

{}

SortVector(Type const *begin, Type const *end)

:

std::vector<Type>(begin, end)

{}

Its member hierarchicSort is the true raison d’être for the class. It defines the hierarchic sort

criteria. It expects a pointer to a series of pointers to member functions of the class Type as well as

a size_t representing the size of the array.

The array’s first element indicates Type’s most significant sort criterion, the array’s last element

indicates the class’s least significant sort criterion. Since the stable_sort generic algorithm

was designed explicitly to support hierarchic sorting, the member uses this generic algorithm to

sort SortVector’s elements. With hierarchic sorting, the least significant criterion should be

sorted first. hierarchicSort’s implementation is therefore easy. It requires a support class

SortWith whose objects are initialized by the addresses of the member functions passed to the

hierarchicSort() member:

template <typename Type>

void SortVector<Type>::hierarchicSort(

bool (Type::**arr)(Type const &rhv) const,

21.11. CLASS TEMPLATE DERIVATION 711

size_t n)

{

while (n--)

stable_sort(this->begin(), this->end(), SortWith<Type>(arr[n]));

}

The class SortWith is a simple wrapper class around a pointer to a predicate function. Since it

depends on SortVector’s actual data type the class SortWith must also be a class template:

template <typename Type>

class SortWith

{

bool (Type::*d_ptr)(Type const &rhv) const;

SortWith’s constructor receives a pointer to a predicate function and initializes the class’s d_ptr

data member:

template <typename Type>

SortWith<Type>::SortWith(bool (Type::*ptr)(Type const &rhv) const)

:

d_ptr(ptr)

{}

Its binary predicate member (operator()) must return true if its first argument should eventually

be placed ahead of its second argument:

template <typename Type>

bool SortWith<Type>::operator()(Type const &lhv, Type const &rhv) const

{

return (lhv.*d_ptr)(rhv);

}

The following examples, which can be embedded in a main function, provides an illustration:

• First, A SortVector object is created for MultiData objects. It uses the copy generic al-

gorithm to fill the SortVector object from information appearing at the program’s standard

input stream. Having initialized the object its elements are displayed to the standard output

stream:

SortVector<MultiData> sv;

copy(istream_iterator<MultiData>(cin),

istream_iterator<MultiData>(),

back_inserter(sv));

• An array of pointers to members is initialized with the addresses of two member functions.

The text comparison is the most significant sort criterion:

bool (MultiData::*arr[])(MultiData const &rhv) const =

{

&MultiData::textCmp,

&MultiData::intCmp,

};

712 CHAPTER 21. CLASS TEMPLATES

• Next, the array’s elements are sorted and displayed to the standard output stream:

sv.hierarchicSort(arr, 2);

• Then the two elements of the array of pointers to MultiData’s member functions are swapped,

and the previous step is repeated:

swap(arr[0], arr[1]);

sv.hierarchicSort(arr, 2);

After compiling the program the following command can be given:

echo a 1 b 2 a 2 b 1 | a.out

This results in the following output:

a 1 b 2 a 2 b 1

====

a 1 a 2 b 1 b 2

====

a 1 b 1 a 2 b 2

====

21.11.3 Deriving class templates from ordinary classes

An ordinary class may be used as the base class for deriving a template class. The advantage of

such an inheritance tree is that the base class’s members may all be compiled beforehand. When

objects of the class template are now instantiated only the actually used members of the derived

class template must be instantiated.

This approach may be used for all class templates having member functions whose implementations

do not depend on template parameters. These members may be defined in a separate class which is

then used as a base class of the class template derived from it.

As an illustration of this approach we’ll develop such a class template below. We’ll develop a class

Table derived from an ordinary class TableType. The class Table displays elements of some type

in a table having a configurable number of columns. The elements are either displayed horizontally

(the first k elements occupy the first row) or vertically (the first r elements occupy a first column).

When displaying the table’s elements they are inserted into a stream. The table is handled by a

separate class (TableType), implementing the table’s presentation. Since the table’s elements are

inserted into a stream, the conversion to text (or string) is implemented in Table, but the han-

dling of the strings themselves is left to TableType. We’ll cover some characteristics of TableType

shortly, concentrating on Table’s interface first:

• The class Table is a class template, requiring only one template type parameter: Iterator

referring to an iterator to some data type:

template <typename Iterator>

class Table: public TableType

{

• Table doesn’t need any data members. All data manipulations are performed by TableType.

21.11. CLASS TEMPLATE DERIVATION 713

• Table has two constructors. The constructor’s first two parameters are Iterators used to

iterate over the elements that must be entered into the table. The constructors require us

to specify the number of columns we would like our table to have as well as a FillDirec-

tion. FillDirection is an enum, defined by TableType, having values HORIZONTAL and

VERTICAL. To allow Table’s users to exercise control over headers, footers, captions, horizon-

tal and vertical separators, one constructor has a TableSupport reference parameter. The

class TableSupport is developed at a later stage as a virtual class allowing clients to exercise

this control. Here are the class’s constructors:

Table(Iterator const &begin, Iterator const &end,

size_t nColumns, FillDirection direction);

Table(Iterator const &begin, Iterator const &end,

TableSupport &tableSupport,

size_t nColumns, FillDirection direction);

• The constructors are Table’s only two public members. Both constructors use a base class ini-

tializer to initialize their TableType base class and then call the class’s private member fill

to insert data into the TableType base class object. Here are the constructor’s implementa-

tions:

template <typename Iterator>

Table<Iterator>::Table(Iterator const &begin, Iterator const &end,

TableSupport &tableSupport,

size_t nColumns, FillDirection direction)

:

TableType(tableSupport, nColumns, direction)

{

fill(begin, end);

}

template <typename Iterator>

Table<Iterator>::Table(Iterator const &begin, Iterator const &end,

size_t nColumns, FillDirection direction)

:

TableType(nColumns, direction)

{

fill(begin, end);

}

• The class’s fill member iterates over the range of elements [begin, end), as defined by

the constructor’s first two parameters. As we will see shortly, TableType defines a protected

data member std::vector<std::string> d_string. One of the requirements of the data

type to which the iterators point is that this data type can be inserted into streams. So, fill

uses an ostringstream object to obtain the textual representation of the data, which is then

appended to d_string:

template <typename Iterator>

void Table<Iterator>::fill(Iterator it, Iterator const &end)

{

while (it != end)

{

std::ostringstream str;

str << *it++;

d_string.push_back(str.str());

}

714 CHAPTER 21. CLASS TEMPLATES

init();

}

This completes the implementation of the class Table. Note that this class template only has three

members, two of them being constructors. Therefore, in most cases only two function templates must

be instantiated: a constructor and the class’s fill member. For example, the following defines a

table having four columns, vertically filled by strings extracted from the standard input stream:

Table<istream_iterator<string> >

table(istream_iterator<string>(cin), istream_iterator<string>(),

4, TableType::VERTICAL);

The fill-direction is specified as TableType::VERTICAL. It could also have been specified using

Table, but since Table is a class template its specification would have been slightly more complex:

Table<istream_iterator<string> >::VERTICAL.

Now that the Table derived class has been designed, let’s turn our attention to the class TableType.

Here are its essential characteristics:

• It is an ordinary class, designed to operate as Table’s base class.

• It uses various private data members, among which d_colWidth, a vector storing the width

of the widest element per column and d_indexFun, pointing to the class’s member func-

tion returning the element in table[row][column], conditional to the table’s fill direction.

TableType also uses a TableSupport pointer and a reference. The constructor not requir-

ing a TableSupport object uses the TableSupport * to allocate a (default) TableSupport

object and then uses the TableSupport & as the object’s alias. The other constructor initial-

izes the pointer to 0 and uses the reference data member to refer to the TableSupport object

provided by its parameter. Alternatively, a static TableSupport object could have been used

to initialize the reference data member in the former constructor. The remaining private data

members are probably self-explanatory:

TableSupport *d_tableSupportPtr;

TableSupport &d_tableSupport;

size_t d_maxWidth;

size_t d_nRows;

size_t d_nColumns;

WidthType d_widthType;

std::vector<size_t> d_colWidth;

size_t (TableType::*d_widthFun)

(size_t col) const;

std::string const &(TableType::*d_indexFun)

(size_t row, size_t col) const;

• The actual string objects populating the table are stored in a protected data member:

std::vector<std::string> d_string;

• The (protected) constructors perform basic tasks: they initialize the object’s data members.

Here is the constructor expecting a reference to a TableSupport object:

#include "tabletype.ih"

TableType::TableType(TableSupport &tableSupport, size_t nColumns,

21.11. CLASS TEMPLATE DERIVATION 715

FillDirection direction)

:

d_tableSupportPtr(0),

d_tableSupport(tableSupport),

d_maxWidth(0),

d_nRows(0),

d_nColumns(nColumns),

d_widthType(COLUMNWIDTH),

d_colWidth(nColumns),

d_widthFun(&TableType::columnWidth),

d_indexFun(direction == HORIZONTAL ?

&TableType::hIndex

:

&TableType::vIndex)

{}

• Once d_string has been filled, the table is initialized by Table::fill. The init protected

member resizes d_string so that its size is exactly rows x columns, and it determines the

maximum width of the elements per column. Its implementation is straightforward:

#include "tabletype.ih"

void TableType::init()

{

if (!d_string.size()) // no elements

return; // then do nothing

d_nRows = (d_string.size() + d_nColumns - 1) / d_nColumns;

d_string.resize(d_nRows * d_nColumns); // enforce complete table

// determine max width per column,

// and max column width

for (size_t col = 0; col < d_nColumns; col++)

{

size_t width = 0;

for (size_t row = 0; row < d_nRows; row++)

{

size_t len = stringAt(row, col).length();

if (width < len)

width = len;

}

d_colWidth[col] = width;

if (d_maxWidth < width) // max. width so far.

d_maxWidth = width;

}

}

• The public member insert is used by the insertion operator (operator<<) to insert a Table

into a stream. First it informs the TableSupport object about the table’s dimensions. Next it

displays the table, allowing the TableSupport object to write headers, footers and separators:

#include "tabletype.ih"

ostream &TableType::insert(ostream &ostr) const

716 CHAPTER 21. CLASS TEMPLATES

{

if (!d_nRows)

return ostr;

d_tableSupport.setParam(ostr, d_nRows, d_colWidth,

d_widthType == EQUALWIDTH ? d_maxWidth : 0);

for (size_t row = 0; row < d_nRows; row++)

{

d_tableSupport.hline(row);

for (size_t col = 0; col < d_nColumns; col++)

{

size_t colwidth = width(col);

d_tableSupport.vline(col);

ostr << setw(colwidth) << stringAt(row, col);

}

d_tableSupport.vline();

}

d_tableSupport.hline();

return ostr;

}

• The cplusplus.yo.zip archive contains TableSupport’s full implementation. This imple-

mentation is found in the directory yo/classtemplates/examples/table. Most of its re-

maining members are private. Among those, these two members return table element [row][column]

for, respectively, a horizontally filled table and a vertically filled table:

inline std::string const &TableType::hIndex(size_t row, size_t col) const

{

return d_string[row * d_nColumns + col];

}

inline std::string const &TableType::vIndex(size_t row, size_t col) const

{

return d_string[col * d_nRows + row];

}

The support class TableSupport is used to display headers, footers, captions and separators. It has

four virtual members to perform those tasks (and, of course, a virtual constructor):

• hline(size_t rowIndex): called just before displaying the elements in row rowIndex.

• hline(): called immediately after displaying the final row.

• vline(size_t colIndex): called just before displaying the element in column colIndex.

• vline(): called immediately after displaying all elements in a row.

The reader is referrred to the cplusplus.yo.zip archive for the full implementation of the classes

Table, TableType and TableSupport. Here is a little program showing their use:

/*

21.12. CLASS TEMPLATES AND NESTING 717

table.cc

*/

#include <fstream>

#include <iostream>

#include <string>

#include <iterator>

#include <sstream>

#include "tablesupport/tablesupport.h"

#include "table/table.h"

using namespace std;

using namespace FBB;

int main(int argc, char **argv)

{

size_t nCols = 5;

if (argc > 1)

{

istringstream iss(argv[1]);

iss >> nCols;

}

istream_iterator<string> iter(cin); // first iterator isn’t const

Table<istream_iterator<string> >

table(iter, istream_iterator<string>(), nCols,

argc == 2 ? TableType::VERTICAL : TableType::HORIZONTAL);

cout << table << ’\n’;

return 0;

}

/*
Example of generated output:

After: echo a b c d e f g h i j | demo 3

a e i

b f j

c g

d h

After: echo a b c d e f g h i j | demo 3 h

a b c

d e f

g h i

j

*/

21.12 Class templates and nesting

When a class is nested within a class template, it automatically becomes a class template itself. The

nested class may use the template parameters of the surrounding class, as shown by the follow-

ing skeleton program. Within a class PtrVector, a class iterator is defined. The nested class

718 CHAPTER 21. CLASS TEMPLATES

receives its information from its surrounding class, a PtrVector<Type> class. Since this surround-

ing class should be the only class constructing its iterators, iterator’s constructor is made private

and the surrounding class is given access to the private members of iterator using a bound friend

declaration. Here is the initial section of PtrVector’s class interface:

template <typename Type>

class PtrVector: public std::vector<Type *>

This shows that the std::vector base class stores pointers to Type values, rather than the values

themselves. Of course, a destructor is now required as the (externally allocated) memory for the

Type objects must eventually be freed. Alternatively, the allocation might be part of PtrVector’s

tasks, when it stores new elements. Here it is assumed that PtrVector’s clients do the required

allocations and that the destructor is implemented later on.

The nested class defines its constructor as a private member, and allows PtrVector<Type> objects

access to its private members. Therefore only objects of the surrounding PtrVector<Type> class

type are allowed to construct their iterator objects. However, PtrVector<Type>’s clients may

construct copies of the PtrVector<Type>::iterator objects they use.

Here is the nested class iterator, using a (required) friend declaration. Note the use of the

typename keyword: since std::vector<Type *>::iterator depends on a template parameter,

it is not yet an instantiated class. Therefore iterator becomes an implicit typename. The compiler

issues a warning if typename has been omitted. Here is the class interface:

class iterator

{

friend class PtrVector<Type>;

typename std::vector<Type *>::iterator d_begin;

iterator(PtrVector<Type> &vector);

public:

Type &operator*();

};

The implementation of the members shows that the base class’s begin member is called to initialize

d_begin. PtrVector<Type>::begin’s return type must again be preceded by typename:

template <typename Type>

PtrVector<Type>::iterator::iterator(PtrVector<Type> &vector)

:

d_begin(vector.std::vector<Type *>::begin())

{}

template <typename Type>

Type &PtrVector<Type>::iterator::operator*()

{

return **d_begin;

}

The remainder of the class is simple. Omitting all other functions that might be implemented, the

function begin returns a newly constructed PtrVector<Type>::iterator object. It may call the

constructor since the class iterator declared its surrounding class as its friend:

21.12. CLASS TEMPLATES AND NESTING 719

template <typename Type>

typename PtrVector<Type>::iterator PtrVector<Type>::begin()

{

return iterator(*this);

}

Here is a simple skeleton program, showing how the nested class iterator might be used:

int main()

{

PtrVector<int> vi;

vi.push_back(new int(1234));

PtrVector<int>::iterator begin = vi.begin();

std::cout << *begin << ’\n’;

}

Nested enumerations and nested typedefs can also be defined by class templates. The class Table,

mentioned before (section 21.11.3) inherited the enumeration TableType::FillDirection. Had

Table been implemented as a full class template, then this enumeration would have been defined

in Table itself as:

template <typename Iterator>

class Table: public TableType

{

public:

enum FillDirection

{

HORIZONTAL,

VERTICAL

};

...

};

In this case, the actual value of the template type parameter must be specified when referring to

a FillDirection value or to its type. For example (assuming iter and nCols are defined as in

section 21.11.3):

Table<istream_iterator<string> >::FillDirection direction =

argc == 2 ?

Table<istream_iterator<string> >::VERTICAL

:

Table<istream_iterator<string> >::HORIZONTAL;

Table<istream_iterator<string> >

table(iter, istream_iterator<string>(), nCols, direction);

720 CHAPTER 21. CLASS TEMPLATES

21.13 Constructing iterators

In section 18.2 the iterators used with generic algorithms were introduced. We’ve seen that several

types of iterators were distinguished: InputIterators, ForwardIterators, OutputIterators, Bidirec-

tionalIterators and RandomAccessIterators.

To ensure that an object of a class is interpreted as a particular type of iterator, the class must be de-

rived from the class std::iterator. Before a class can be derived from this class the <iterator>

header file must have been included.

In section 18.2 the characteristics of iterators were discussed. All iterators should support (using

Iterator as the generic name of the designed iterator class and Type to represent the (possibly

const, in which case the associated operator should be a const member as well) data type to which

Iterator objects refer):

• a prefix increment operator (Iterator &operator++());

• a dereference operator (Type &operator*());

• a ’pointer to’ operator (Type *operator->());

• comparison operators testing the (in)equality of two iterator objects (bool operator==(Iterator

const &other), bool operator!=(Iterator const &other)).

When iterators are to be used in the context of generic algorithms they must meet additional re-

quirements. This is caused by the fact that generic algorithms perform checks on the types of the

iterators they receive. Simple pointers are usually accepted, but if an iterator-object is used it must

be able to specify the kind of iterator it represents.

When deriving a class from the class iterator the type of iterator is defined by the class template’s

first parameter, and the data type to which the iterator refers is defined by the class template’s

second parameter.

The type of iterator that is implemented by the derived class is specified using a so-called itera-

tor_tag, provided as the first template argument of the class iterator. For the five basic iterator

types, these tags are:

• std::input_iterator_tag. This tag defines an InputIterator. Iterators of this type allow

reading operations, iterating from the first to the last element of the series to which the iterator

refers.

The InputIterator dereference operator should be declared as follows:

Type const &operator*() const;

Except for the standard operators there are no further requirements for InputIterators.

• std::output_iterator_tag. This tag defines an OutputIterator. Iterators of this type allow

for assignment operations, iterating from the first to the last element of the series to which the

iterator refers.

The OutputIterator dereference operator should allow assignment to the data its dereference

operator refers to. Therefore, the OutputIterator dereference operator should be declared as

follows:

Type &operator*();

21.13. CONSTRUCTING ITERATORS 721

Except for the standard operators there are no further requirements for OutputIterators.

• std::forward_iterator_tag. This tag defines a ForwardIterator. Iterators of this type

allow reading and assignment operations, iterating from the first to the last element of the

series to which the iterator refers.

The ForwardIterator dereference operator should allow assignment to the data its dereference

operator refers to. Therefore, the ForwardIterator dereference operator should be declared as

follows:

Type &operator*();

Except for the standard operators there are no further requirements for ForwardIterators.

• std::bidirectional_iterator_tag. This tag defines a BidirectionalIterator. Iterators of

this type allow reading and assignment operations, iterating step by step, possibly in alternat-

ing directions, over all elements of the series to which the iterator refers.

The ForwardIterator dereference operator should allow assignment to the data its dereference

operator refers to and it should allow stepping backward. ForwardIterator should therefore, in

addition to the standard operators required for iterators, offer the following operators:

Type &operator*();

Iterator &operator--();

• std::random_access_iterator_tag. This tag defines a RandomAccessIterator. Iterators

of this type allow reading and assignment operations, iterating, possibly in alternating direc-

tions, over all elements of the series to which the iterator refers using any available (random)

stepsize.

RandomIterator class dereference operators should allow assignment to the data they refer to,

and, in addition to the standard operators required for iterators, offer the following operators:

– Type &operator*(), allowing assignment to the data the dereference operator refers to;

– Iterator &operator-(), allowing single steps backward;

– Type operator-(Iterator const &rhs) const, returning the number of data ele-

ments between the current and rhs iterator (returning a negative value if rhs refers to a

data element beyond the data element this iterator refers to);

– Iterator operator+(int step) const, returning an iterator referring to a data el-

ement step data elements beyond the data element this iterator refers to;

– Iterator operator-(int step) const, returning an iterator referring to a data el-

ement step data elements before the data element this iterator refers to;

– bool operator<(Iterator const &rhs) const, returning true if the data element

this iterator refers to is located before the data element the rhs iterator refers to.

Each iterator tag assumes that a certain set of operators is available. The RandomAccessIterator is

the most complex of iterators, as it implies all other iterators.

Note that iterators are always defined over a certain range ([begin, end)). Increment and decre-

ment operations may result in undefined behavior of the iterator if the resulting iterator value would

refer to a location outside of this range.

Often, iterators only access the elements of the series to which they refer. Internally, an iterator may

use an ordinary pointer but it is hardly ever necessary for the iterator to allocate its own memory.

Therefore, as the assignment operator and the copy constructor do not have to allocate any memory,

their default implementations usually suffice. For the same reason iterators usually don’t require

destructors.

722 CHAPTER 21. CLASS TEMPLATES

Most classes offering members returning iterators do so by having members construct the required

iterators that are thereupon returned as objects by those member functions. As the caller of these

member functions only has to use or sometimes copy the returned iterator objects, there is usually no

need to provide any publicly available constructor, except for the copy constructor. Therefore these

constructors are usually defined as private or protected members. To allow an outer class to create

iterator objects, the iterator class usually declares the outer class as its friend.

In the following sections the construction of a RandomAccessIterator, the most complex of all iter-

ators, and the construction of a reverse RandomAccessIterator is discussed. The container class for

which a random access iterator must be developed may actually store its data elements in many

different ways (e.g., using containers or pointers to pointers). Therefore it is difficult to construct a

template iterator class which is suitable for a large variety of container classes.

In the following sections the available std::iterator class is used to construct an inner class

representing a random access iterator. The reader may follow the approach illustrated there to

construct iterator classes for other contexts. An example of such a template iterator class is provided

in section 23.8.

The random access iterator developed in the next sections reaches data elements that are only ac-

cessible through pointers. The iterator class is designed as an inner class of a class derived from a

vector of string pointers.

21.13.1 Implementing a ‘RandomAccessIterator’

In the chapter about containers (chapter 12) it was noted that containers own the information

they contain. If they contain objects, then those objects are destroyed once the containers are de-

stroyed. As pointers are not objects their use in containers is discouraged (STL’s unique_ptr and

shared_ptr type objects may be used, though). Although discouraged, we might be able to use

pointer data types in specific contexts. In the following class StringPtr, an ordinary class is de-

rived from the std::vector container that uses std::string * as its data type:

#ifndef INCLUDED_STRINGPTR_H_

#define INCLUDED_STRINGPTR_H_

#include <string>

#include <vector>

class StringPtr: public std::vector<std::string *>

{

public:

StringPtr(StringPtr const &other);

~StringPtr();

StringPtr &operator=(StringPtr const &other);

};

#endif

This class needs a destructor: as the object stores string pointers, a destructor is required to de-

stroy the strings once the StringPtr object itself is destroyed. Similarly, a copy constructor and

overloaded assignment is required. Other members (in particular: constructors) are not explicitly

declared here as they are not relevant to this section’s topic.

21.13. CONSTRUCTING ITERATORS 723

Assume that we want to be able to use the sort generic algorithm with StringPtr objects. This

algorithm (see section 19.1.58) requires two RandomAccessIterators. Although these iterators are

available (via std::vector’s begin and end members), they return iterators to std::string *s,

which cannot sensibly be compared.

To remedy this, we may define an internal type StringPtr::iterator, not returning iterators to

pointers, but iterators to the objects these pointers point to. Once this iterator type is available,

we can add the following members to our StringPtr class interface, hiding the identically named,

but useless members of its base class:

StringPtr::iterator begin(); // returns iterator to the first element

StringPtr::iterator end(); // returns iterator beyond the last

// element

Since these two members return the (proper) iterators, the elements in a StringPtr object can

easily be sorted:

int main()

{

StringPtr sp; // assume sp is somehow filled

sort(sp.begin(), sp.end()); // sp is now sorted

}

To make this all work, the type StringPtr::iterator must be defined. As suggested by its

type name, iterator is a nested type of StringPtr. To use a StringPtr::iterator in com-

bination with the sort generic algorithm it must also be a RandomAccessIterator. Therefore,

StringPtr::iterator itself must be derived from the existing class std::iterator.

To derive a class from std::iterator, both the iterator type and the data type the iterator points

to must be specified. Caveat: our iterator takes care of the string * dereferencing; so the re-

quired data type is std::string, and not std::string *. The class iterator therefore starts

its interface as:

class iterator:

public std::iterator<std::random_access_iterator_tag, std::string>

Since its base class specification is quite complex, we could consider associating this type with a

shorter name using the following typedef:

typedef std::iterator<std::random_access_iterator_tag, std::string>

Iterator;

In practical situations, if the type (Iterator) is used only once or twice, the type definition only

adds clutter to the interface, and is better not used.

Now we’re ready to redesign StringPtr’s class interface. It offers members returning (reverse)

iterators, and a nested iterator class. Here is its interface:

class StringPtr: public std::vector<std::string *>

{

public:

724 CHAPTER 21. CLASS TEMPLATES

class iterator: public

std::iterator<std::random_access_iterator_tag, std::string>

{

friend class StringPtr;

std::vector<std::string *>::iterator d_current;

iterator(std::vector<std::string *>::iterator const ¤t);

public:

iterator &operator--();

iterator operator--(int);

iterator &operator++();

iterator operator++(int);

bool operator==(iterator const &other) const;

bool operator!=(iterator const &other) const;

int operator-(iterator const &rhs) const;

std::string &operator*() const;

bool operator<(iterator const &other) const;

iterator operator+(int step) const;

iterator operator-(int step) const;

iterator &operator+=(int step); // increment over ‘n’ steps

iterator &operator-=(int step); // decrement over ‘n’ steps

std::string *operator->() const;// access the fields of the

// struct an iterator points

// to. E.g., it->length()

};

typedef std::reverse_iterator<iterator> reverse_iterator;

iterator begin();

iterator end();

reverse_iterator rbegin();

reverse_iterator rend();

};

As usual, the interface offers hooks for a more detailed study of the class.

First we have a look at StringPtr::iterator’s characteristics:

• iterator defines StringPtr as its friend, so iterator’s constructor may remain private.

Only the StringPtr class itself is now able to construct iterators, which seems like a sen-

sible thing to do. Under the current implementation, copy-construction should of course also

be possible. Furthermore, since an iterator is already provided by StringPtr’s base class, we

can use that iterator to access the information stored in the StringPtr object.

• StringPtr::begin and StringPtr::end may simply return iterator objects. They are

implementated like this:

inline StringPtr::iterator StringPtr::begin()

{

return iterator(this->std::vector<std::string *>::begin());

}

inline StringPtr::iterator StringPtr::end()

{

return iterator(this->std::vector<std::string *>::end());

21.13. CONSTRUCTING ITERATORS 725

}

• All of iterator’s remaining members are public. It’s very easy to implement them, mainly ma-

nipulating and dereferencing the available iterator d_current. A RandomAccessIterator

(which is the most complex of iterators) requires a series of operators. They usually have very

simple implementations, making them good candidates for inline-members:

– iterator &operator++(); the pre-increment operator:

inline StringPtr::iterator &StringPtr::iterator::operator++()

{

++d_current;

return *this;

}

– iterator operator++(int); the post-increment operator:

inline StringPtr::iterator StringPtr::iterator::operator++(int)

{

return iterator(d_current++);

}

– iterator &operator−−(); the pre-decrement operator:

inline StringPtr::iterator &StringPtr::iterator::operator--()

{

--d_current;

return *this;

}

– iterator operator−−(int); the post-decrement operator:

inline StringPtr::iterator StringPtr::iterator::operator--(int)

{

return iterator(d_current--);

}

– iterator &operator=(iterator const &other); the overloaded assignment oper-

ator. Since iterator objects do not allocate any memory themselves, the default assign-

ment operator can be used.

– bool operator==(iterator const &rhv) const; testing the equality of two iterator

objects:

inline bool StringPtr::iterator::operator==(iterator const &other) const

{

return d_current == other.d_current;

}

– bool operator<(iterator const &rhv) const; testing whether the left-hand side

iterator points to an element of the series located before the element pointed to by the

right-hand side iterator:

inline bool StringPtr::iterator::operator<(iterator const &other) const

{

return d_current < other.d_current;

}

– int operator-(iterator const &rhv) const; returning the number of elements

between the element pointed to by the left-hand side iterator and the right-hand side

726 CHAPTER 21. CLASS TEMPLATES

iterator (i.e., the value to add to the left-hand side iterator to make it equal to the value

of the right-hand side iterator):

inline int StringPtr::iterator::operator-(iterator const &rhs) const

{

return d_current - rhs.d_current;

}

– Type &operator*() const; returning a reference to the object to which the current

iterator points. With an InputIterator and with all const_iterators, the return type

of this overloaded operator should be Type const &. This operator returns a reference to

a string. This string is obtained by dereferencing the dereferenced d_current value. As

d_current is an iterator to string * elements, two dereference operations are required

to reach the string itself:

inline std::string &StringPtr::iterator::operator*() const

{

return **d_current;

}

– iterator operator+(int stepsize) const; this operator advances the current it-

erator by stepsize:

inline StringPtr::iterator StringPtr::iterator::operator+(int step) const

{

return iterator(d_current + step);

}

– iterator operator-(int stepsize) const; this operator decreases the current it-

erator by stepsize:

inline StringPtr::iterator StringPtr::iterator::operator-(int step) const

{

return iterator(d_current - step);

}

– iterator(iterator const &other); iterators may be constructed from existing iter-

ators. This constructor doesn’t have to be implemented, as the default copy constructor

can be used.

– std::string *operator->() const is an additionally added operator. Here only one

dereference operation is required, returning a pointer to the string, allowing us to access

the members of a string via its pointer.

inline std::string *StringPtr::iterator::operator->() const

{

return *d_current;

}

– Two more additionally added operators are operator+= and operator-=. They are not

formally required by RandomAccessIterators, but they come in handy anyway:

inline StringPtr::iterator &StringPtr::iterator::operator+=(int step)

{

d_current += step;

return *this;

}

inline StringPtr::iterator &StringPtr::iterator::operator-=(int step)

{

d_current -= step;

return *this;

}

21.13. CONSTRUCTING ITERATORS 727

The interfaces required for other iterator types are simpler, requiring only a subset of the inter-

face required by a random access iterator. E.g., the forward iterator is never decremented and

never incremented over arbitrary step sizes. Consequently, in that case all decrement operators and

operator+(int step) can be omitted from the interface. Of course, the tag to use would then be

std::forward_iterator_tag. The tags (and the set of required operators) vary accordingly for

the other iterator types.

21.13.2 Implementing a ‘reverse_iterator’

Once we’ve implemented an iterator, the matching reverse iterator can be implemented in a jiffy.

Comparable to the std::iterator a std::reverse_iterator exists, that nicely implements

the reverse iterator for us once we have defined an iterator class. Its constructor merely requires an

object of the iterator type for which we want to construct a reverse iterator.

To implement a reverse iterator for StringPtrwe only need to define the reverse_iterator type

in its interface. This requires us to specify only one line of code, which must be inserted after the

interface of the class iterator:

typedef std::reverse_iterator<iterator> reverse_iterator;

Also, the well known members rbegin and rend are added to StringPtr’s interface. Again, they

can easily be implemented inline:

inline StringPtr::reverse_iterator StringPtr::rbegin()

{

return reverse_iterator(end());

}

inline StringPtr::reverse_iterator StringPtr::rend()

{

return reverse_iterator(begin());

}

Note the arguments the reverse_iterator constructors receive: the begin point of the reversed

iterator is obtained by providing reverse_iterator’s constructor with the value returned by the

member end: the endpoint of the normal iterator range; the endpoint of the reversed iterator is

obtained by providing reverse_iterator’s constructor with the value returned by the member

begin: the begin point of the normal iterator range.

The following small program illustrates the use of StringPtr’s RandomAccessIterator:

#include <iostream>

#include <algorithm>

#include "stringptr.h"

using namespace std;

int main(int argc, char **argv)

{

StringPtr sp;

while (*argv)

sp.push_back(new string(*argv++));

728 CHAPTER 21. CLASS TEMPLATES

sort(sp.begin(), sp.end());

copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));

cout << "\n======\n";

sort(sp.rbegin(), sp.rend());

copy(sp.begin(), sp.end(), ostream_iterator<string>(cout, " "));

cout << ’\n’;

}

/*
when called as:

a.out bravo mike charlie zulu quebec

generated output:

a.out bravo charlie mike quebec zulu

======

zulu quebec mike charlie bravo a.out

*/

Although it is thus possible to construct a reverse iterator from a normal iterator, the opposite does

not hold true: it is not possible to initialize a normal iterator from a reverse iterator.

Assume we would like to process all lines stored in vector<string> lines up to any trailing

empty lines (or lines only containing blanks) it might contain. How should we proceed? One ap-

proach is to start the processing from the first line in the vector, continuing until the first of the

trailing empty lines. However, once we encounter an empty line it does of course not have to be the

first line of the set of trailing empty lines. In that case, we’d better use the following algorithm:

• First, use

rit = find_if(lines.rbegin(), lines.rend(), NonEmpty());

to obtain a reverse_iterator rit pointing to the last non-empty line.

• Next, use

for_each(lines.begin(), --rit, Process());

to process all lines up to the first empty line.

However, we can’t mix iterators and reverse iterators when using generic algorithms. So how can

we initialize the second iterator using the available reverse_iterator? The solution is not very

difficult, as an iterator may be initialized from a pointer. Although the reverse iterator rit is not a

pointer, &*(rit - 1) or &*-rit is. So we use

for_each(lines.begin(), &*--rit, Process());

to process all the lines up to the first of the set of trailing empty lines. In general, if rit is a

reverse_iterator pointing to some element and we need an iterator to point to that element,

we may use &*rit to initialize the iterator. Here, the dereference operator is applied to reach the

element the reverse iterator refers to. Then the address operator is applied to obtain its address

with which we can initialize the iterator.

Chapter 22

Advanced Template Use

The main purpose of templates is to provide a generic definition of classes and functions that may

then be tailored to specific types.

But templates allow us to do more than that. If not for compiler implementation limitations, tem-

plates could be used to program, at compile-time, just about anything we use computers for. This

remarkable feat, offered by no other current-day computer language, stems from the fact that tem-

plates allow us to do three things at compile-time:

• Templates allow us to do integer arithmetic (and to save computed values symbolically);

• Templates allow us to make compile-time decisions;

• Templates allow us to do things repeatedly.

Of course, asking the compiler to compute, e.g., prime numbers, is one thing. But it’s a completely

different thing to do so in an award winning way. Don’t expect speed records to be broken when

the compiler performs complex calculations for us. But that’s all beside the point. In the end we

can ask the compiler to compute virtually anything using C++’s template language, including prime

numbers....

In this chapter these remarkable features of templates are discussed. Following a short overview

of subtleties related to templates the main characteristics of template meta programming are intro-

duced.

In addition to template type and template non-type parameters there is a third kind of template

parameter, the template template parameter. This kind of template parameter is introduced next,

laying the groundwork for the discusion of trait classes and policy classes.

This chapter ends with the discussion of several additional and interesting applications of templates:

adapting compiler error messages, conversions to class types and an elaborate example discussing

compile-time list processing.

Much of the inspiration for this chapter came from two highly recommended books: Andrei Alexan-

drescu’s 2001 book Modern C++ design (Addison-Wesley) and Nicolai Josutis and David Vandevo-

orde’s 2003 book Templates (Addison-Wesley).

729

730 CHAPTER 22. ADVANCED TEMPLATE USE

22.1 Subtleties

In section 21.2.1 a special application of the keyword typename was discussed. There we learned

that it is not only used to define a name for a (complex) type, but also to distinguish types defined

by class templates from members defined by class templates. In this section two more applications

of typename are introduced:

• In section 22.1.1 we apply typename to situations where types nested in templates are re-

turned from member functions of class templates;

• in section 22.1.2 we cover the problem of how to refer to base class templates from derived class

templates.

In addition to the special applications of typename section 22.1.3 introduces some new syntax that is

related to the extended use of the keyword typename: ::template, .template and ->template

are used to inform the compiler that a name used inside a template is itself a class template.

22.1.1 Returning types nested under class templates

In the following example a nested class, not depending on a template parameter, is defined inside

a class template. The class template member nested returns an object of this nested class. The

example uses a (deprecated) in-class member implementation. The reason for this shortly becomes

clear.

template <typename T>

class Outer

{

public:

class Nested

{};

Nested nested() const

{

return Nested();

}

};

The above example compiles flawlessly. Inside the class Outer there is no ambiguity with respect to

the meaning of nested’s return type.

However, following good practices inline and template members should be implemented below their

class interfaces (see section 7.8.1). So we remove the implementation from the interface and put it

below the interface:

template <typename T>

class Outer

{

public:

class Nested

{};

Nested nested() const;

22.1. SUBTLETIES 731

};

template <typename T>

Outer<T>::Nested Outer<T>::nested() const

{

return Nested();

}

Suddenly the compiler refuses to compile the nested member, producing an error message like

error: expected constructor, destructor, or type conversion before ’Outer’.

Now that the implementation is moved out of the interface the return type (i.e., Outer<T>::Nested)

refers to a type defined by Outer<T> rather than to a member of Outer<T>.

Here typename must once again be used. The general rule being: the keyword typename must be

used whenever a type is referred to that is a subtype of a type that itself depends on a template

type parameter. When using the inline implementation no such dependency is used as the func-

tion’s return type is simply Nested. When implementing the function outside of the class interface

(which should be considered ‘good practice’) then a specification of the class defining Nested must

be provided for the function’s return type. So it becomes Outer<T>::Nestedwhich clearly is a type

depending on a template type parameter.

Like before, writing typename in front of Outer<T>::Nested removes the compilation error. Thus,

the correct implementation of the function nested becomes:

template <typename T>

typename Outer<T>::Nested Outer<T>::nested() const

{

return Nested();

}

22.1.2 Type resolution for base class members

Below we see two class templates. Base and Derived, Base being Derived’s base class:

#include <iostream>

template <typename T>

class Base

{

public:

void member();

};

template <typename T>

void Base<T>::member()

{

std::cout << "This is Base<T>::member()\n";

}

template <typename T>

class Derived: public Base<T>

{

732 CHAPTER 22. ADVANCED TEMPLATE USE

public:

Derived();

};

template <typename T>

Derived<T>::Derived()

{

member();

}

This example won’t compile, and the compiler tells us something like:

error: there are no arguments to ’member’ that depend on a template

parameter, so a declaration of ’member’ must be available

This error causes some confusion as ordinary (non-template) base classes readily make their public

and protected members available to classes that are derived from them. This is no different for class

templates, but only if the compiler can figure out what we mean. In the above example the compiler

can’t as it doesn’t know for what type T the member function membermust be initialized when called

from Derived<T>::Derived.

To appreciate why this is true, consider the situation where we have defined a specialization:

template <>

Base<int>::member()

{

std::cout << "This is the int-specialization\n";

}

Since the compiler, when Derived<SomeType>::Derived is called, does not know whether a spe-

cialization of member is in effect, it can’t decide (when compiling Derived<T>::Derived) for what

type to instantiate member. It can’t decide this when compiling Derived<T>::Derived as member’s

call in Derived::Derived doesn’t require a template type parameter.

In cases like these, where no template type parameter is available to determine which type to use,

the compiler must be told that it should postpone its decision about the template type parameter to

use (and therefore about the particular (here: member) function to call) until instantiation time.

This may be implemented in two ways: either by using this or by explicitly mentioning the base

class, instantiated for the derived class’s template type(s). When this is used the compiler is in-

formed that we’re referring to the type T for which the template was instantiated. Any confusion

about which member function to use (the derived class or base class member) is resolved in favor of

the derived class member. Alternatively, the base or derived class can explicitly be mentioned (using

Base<T> or Derived<T>) as shown in the next example. Note that with the int template type the

int specialization is used.

#include <iostream>

template <typename T>

class Base

{

public:

virtual void member();

};

template <typename T>

22.1. SUBTLETIES 733

void Base<T>::member()

{

std::cout << "This is Base<T>::member()\n";

}

template <>

void Base<int>::member()

{

std::cout << "This is the int-specialization\n";

}

template <typename T>

class Derived: public Base<T>

{

public:

Derived();

virtual void member();

};

template <typename T>

void Derived<T>::member()

{

std::cout << "This is Derived<T>::member()\n";

}

template <typename T>

Derived<T>::Derived()

{

this->member(); // Using ‘this’ implies using the

// type for which T was instantiated

Derived<T>::member(); // Same: calls the Derived member

Base<T>::member(); // Same: calls the Base member

std::cout << "Derived<T>::Derived() completed\n";

}

int main()

{

Derived<double> d;

Derived<int> i;

}

/*
Generated output:

This is Derived<T>::member()

This is Derived<T>::member()

This is Base<T>::member()

Derived<T>::Derived() completed

This is Derived<T>::member()

This is Derived<T>::member()

This is the int-specialization

Derived<T>::Derived() completed

*/

The above example also illustrates the use of virtual member templates (although virtual member

templates aren’t often used). In the example Base declares a virtual void member and Derived

defines its overriding function member. In that case this->member() in Derived::Derived calls,

due to member’s virtual nature, Derived::member. The statement Base<T>::member(), however,

always calls Base’s member function and can be used to bypass dynamic polymorphism.

734 CHAPTER 22. ADVANCED TEMPLATE USE

22.1.3 ::template, .template and ->template

In general, the compiler is able to determine the true nature of a name. As discussed, this is not

always the case and sometimes we have to advise the compiler. The typename keyword may often

be used for that purpose.

But typename cannot always come to the rescue. While parsing a source the compiler receives a

series of tokens, representing meaningful units of text encountered in the program’s source. A token

could represent, e.g., an identifier or a number. Other tokens represent operators, like =, + or <.

It is precisely the last token that may cause problems as it may have very different meanings. The

correct meaning cannot always be determined from the context in which the compiler encounters <.

In some situations the compiler does know that < does not represent the less than operator, as when

a template parameter list follows the keyword template, e.g.,

template <typename T, int N>

Clearly, in this case < does not represent a ‘less than’ operator.

The special meaning of < when it is preceded by template forms the basis for the syntactic con-

structs discussed in this section.

Assume the following class has been defined:

template <typename Type>

class Outer

{

public:

template <typename InType>

class Inner

{

public:

template <typename X>

void nested();

};

};

The class template Outer defines a nested class template Inner. Inner in turn defines a template

member function.

Next a class template Usage is defined, offering a member function caller expecting an object of

the above Inner type. An initial setup for Usage looks like this:

template <typename T1, typename T2>

class Usage

{

public:

void caller(Outer<T1>::Inner<T2> &obj);

...

};

The compiler won’t accept this as it interprets Outer<T1>::Inner as a class type. But there is no

class Outer<T1>::Inner. Here the compiler generates an error like:

error: ’class Outer<T1>::Inner’ is not a type

22.1. SUBTLETIES 735

To inform the compiler that Inner itself is a template, using the template type parameter <T2>, the

::template construction is required. It tells the compiler that the next < should not be interpreted

as a ‘less than’ token, but rather as a template type argument. So, the declaration is modified to:

void caller(Outer<T1>::template Inner<T2> &obj);

This still doesn’t get us where we want to be: after all Inner<T2> is a type, nested under a class

template, depending on a template type parameter. In fact, the original Outer<T1>::Inner<T2>

&obj declaration results in a series of error messages, one of them looking like this:

error: expected type-name before ’&’ token

As is often the case this error message nicely indicates what should be done to get it right: add

typename:

void caller(typename Outer<T1>::template Inner<T2> &obj);

Of course, caller itself is not only just declared, it must also be implemented. Assume that its

implementation should call Inner’s member nested, instantiated for yet another type X. The class

template Usage should therefore receive a third template type parameter, called T3. Assume it has

been defined. To implement caller, we write:

void caller(typename Outer<T1>::template Inner<T2> &obj)

{

obj.nested<T3>();

}

Once again we run into a problem. In the function’s body the compiler once again interprets < as

‘less than’, seeing a logical expression having as its right-hand side a primary expression instead of

a function call specifying a template type T3.

To tell the compiler that is should interpret <T3> as a type to instantiate, the template keyword

must once again be used. This time it is used in the context of the member selection operator. We

write .template to inform the compiler that what follows is not a ‘less than’ operator, but rather a

type specification. The function’s final implementation becomes:

void caller(typename Outer<T1>::template Inner<T2> &obj)

{

obj.template nested<T3>();

}

Instead of defining value or reference parameters functions may also define pointer parameters. Had

obj been defined as a pointer parameter the implementation would have had to use the ->template

construction, rather than the .template construction. E.g.,

void caller(typename Outer<T1>::template Inner<T2> *ptr)

{

ptr->template nested<T3>();

}

736 CHAPTER 22. ADVANCED TEMPLATE USE

22.2 Template Meta Programming

22.2.1 Values according to templates

In template programming values are preferably represented by enum values. Enums are preferred

over, e.g., int const values since enums never require any linkage. They are pure symbolic values

with no memory representation whatsoever.

Consider the situation where a programmer must use a cast, say a reinterpret_cast. A problem

with a reinterpret_cast is that it is the ultimate way to turn off all compiler checks. All bets are

off, and we can write extreme but absolutely pointless reinterpret_cast statements, like

int intVar = 12;

ostream &ostr = reinterpret_cast<ostream &>(intVar);

Wouldn’t it be nice if the compiler would warn us against such oddities by generating an error

message?

If that’s what we’d like the compiler to do, there must be some way to distinguish madness from

weirdness. Let’s assume we agree on the following distinction: reinterpret casts are never acceptable

if the target type represents a larger type than the expression (source) type, since that would imme-

diately result in exceeding the amount of memory that’s actually available to the target type. For this

reason it’s clearly silly to reinterpret_cast<double *>(&intVar), but reinterpret_cast<char

*>(&intVar) could be defensible.

The intent is now to create a new kind of cast, let’s call it reinterpret_to_smaller_cast. It

should only be allowed to perform a reinterpret_to_smaller_cast if the target type occupies

less memory than the source type (note that this exactly the opposite reasoning as used by Alexan-

drescu (2001), section 2.1).

To start, we construct the following template:

template<typename Target, typename Source>

Target &reinterpret_to_smaller_cast(Source &source)

{

// determine whether Target is smaller than source

return reinterpret_cast<Target &>(source);

}

At the comment an enum-definition is inserted defining a symbol having a suggestive name. A

compile-time error results if the required condition is not met and the error message displays the

name of the symbol. A division by zero is clearly not allowed, and noting that a false value repre-

sents a zero value, the condition could be:

1 / (sizeof(Target) <= sizeof(Source));

The interesting part is that this condition doesn’t result in any code at all. The enum’s value is a

plain value that’s computed by the compiler while evaluating the expression:

template<typename Target, typename Source>

Target &reinterpret_to_smaller_cast(Source &source)

{

22.2. TEMPLATE META PROGRAMMING 737

enum

{

the_Target_size_exceeds_the_Source_size =

1 / (sizeof(Target) <= sizeof(Source))

};

return reinterpret_cast<Target &>(source);

}

When reinterpret_to_smaller_cast is used to cast from int to double an error is produced

by the compiler, like this:

error: enumerator value for ’the_Target_size_exceeds_the_Source_size’

is not an integer constant

whereas no error is reported if, e.g., reinterpret_to_smaller_cast<int>(doubleVar) is re-

quested with doubleVar defined as a double.

In the above example an enum was used to compute (at compile-time) a value that is illegal if an

assumption is not met. The creative part is finding an appropriate expression.

Enum values are well suited for these situations as they do not consume any memory and their

evaluation does not produce any executable code. They can be used to accumulate values too: the re-

sulting enum value then contains a final value, computed by the compiler rather than by executable

code as the next sections illustrate. In general, programs shouldn’t do run-time what they can do at

compile-time and performing complex calculations resulting in constant values is a clear example of

this principle.

22.2.1.1 Converting integral types to types

Another use of values buried inside templates is to ‘templatize’ simple scalar int values. This is

useful in situations where a scalar value (often a bool value) is available to select a specialization

but a type is required to base the selection on. This situation is shortly encountered (section 22.2.2).

Templatizing integral values is based on the fact that a class template together with its template

arguments defines a type. E.g., vector<int> and vector<double> are different types.

Turning integral values into templates is easily done. Define a template (it does not have to have

any contents at all) and store the integral value in an enum:

template <int x>

struct IntType

{

enum { value = x };

};

As IntType does not have any members the ‘class IntType’ can be defined as ‘struct IntType’,

saving us from having to type public:.

Defining the enum value ‘value’ allows us to retrieve the value used at the instantiation at no cost

in storage. Enum values are neither variables nor data members and thus have no address. They

are mere values.

It’s easy to use the struct IntType. An anonymous or named object can be defined by specifying

a value for its int non-type parameter. Example:

738 CHAPTER 22. ADVANCED TEMPLATE USE

int main()

{

IntType<1> it;

cout << "IntType<1> objects have value: " << it.value << "\n" <<

"IntType<2> objects are of a different type "

"and have values " << IntType<2>().value << ’\n’;

}

Actually, neither the named object nor the anonymous object is required. As the enum is defined as

a plain value, associated with the struct IntType we merely have to specify the specific int for

which the struct IntType is defined to retrieve its ‘value’, like this:

int main()

{

cout << "IntType<100>, no object, defines ‘value’: " <<

IntType<100>::value << "\n";

}

22.2.2 Selecting alternatives using templates

An essential characteristic of programming languages is that they allow the conditional execution

of code. For this C++ offers the if and switch statements. If we want to be able to ‘program the

compiler’ this feature must also be offered by templates.

Like templates storing values templates making choices do not require any code to be executed at

run-time. The selection is purely made by the compiler, at compile-time. The essence of template

meta programming is that we are not using or relying on any executable code. The result of a

template meta program often is executable code, but that code is a function of decisions merely

made by the compiler.

Template (member) functions are only instantiated when they are actually used. Consequently we

can define specializations of functions that are mutually exclusive. Thus it is possible to define a

specialization that can be compiled in situation one, but not in situation two and to define another

specialization that can be compiled in situation two, but not in situation one. Using specializations

code can be generated that is tailored to the demands of a particular situation.

A feature like this cannot be implemented in run-time executable code. For example, when designing

a generic storage class the software engineer may intend to store value class type objects as well as

objects of polymorphic class types in the final storage class. Thus the software engineer may conclude

that the storage class should contain pointers to objects, rather than the objects themselves. The

initial implementation attempt could look like this:

template <typename Type>

void Storage::add(Type const &obj)

{

d_data.push_back(

d_ispolymorphic ?

obj.clone()

:

new Type(obj)

);

}

22.2. TEMPLATE META PROGRAMMING 739

The intent is to use the clone member function of the class Type if Type is a polymorphic class and

the standard copy constructor if Type is a value class.

Unfortunately, this scheme usually fails as value classes do not define clone member functions and

polymorphic base classes should delete their copy constructors (cf. section 7.6). It doesn’t matter

to the compiler that clone is never called for value classes and that the copy constructor is only

available in value classes and not in polymorphic classes. It merely has some code to compile, and

can’t do that because of missing members. It’s as simple as that.

22.2.2.1 Defining overloading members

Template meta programming comes to the rescue. Knowing that class template member functions

are only instantiated when used, our plan is to design overloaded add member functions of which

only one is going to be called (and thus instantiated). Our selection will be based on an additional

(in addition to Type itself) template non-type parameter that indicates whether we’ll use Storage

for polymorphic or non-polymorphic classes. Our class Storage starts like this:

template <typename Type, bool isPolymorphic>

class Storage

Initially two overloaded versions of our add member are defined: one used with Storage objects

storing polymorphic objects (using true as its template non-type argument) and one storing value

class objects (using false as its template non-type argument).

Unfortunately we run into a small problem: functions cannot be overloaded by their argument values

but only by their argument types. But the small problem may be solved. Realizing that types are

defined by the combination of template names and their template arguments we may convert the

values true and false into types using the knowledge from section 22.2.1.1 about how to convert

integral values to types.

We’ll provide one (private) add member with a IntType<true> parameter (implementing the poly-

morphic class) and another (private) add member with a IntType<false> parameter (implement-

ing the non-polymorphic class).

In addition to these two private members a third (public) member add is defined calling the ap-

propriate private add member by providing an IntType argument, constructed from Storage’s

template non-type parameter.

Here are the implementations of the three add members:

// declared in Storage’s private section:

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<true>)

{

d_data.push_back(obj.clone());

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<false>)

{

d_data.push_back(new Type(obj));

}

740 CHAPTER 22. ADVANCED TEMPLATE USE

// declared in Storage’s public section:

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj)

{

add(obj, IntType<isPolymorphic>());

}

The appropriate add member is instantiated and called because a primitive value can be converted

to a type. Each of the possible template non-type values is thus used to define an overloaded class

template member function.

Since class template members are only instantiated when used only one of the overloaded private

add members is instantiated. Since the other one is never called (and thus never instantiated)

compilation errors are prevented.

22.2.2.2 Class structure as a function of template parameters

Some software engineers have reservations when thinking about the Storage class that uses point-

ers to store copies of value class objects. Their argument is that value class objects can very well

be stored by value, rather than by pointer. They’d rather store value class objects by value and

polymorphic class objects by pointer.

Such distinctions frequently occur in template meta programming and the following struct IfElse

may be used to obtain one of two types, depending on a bool selector value.

First define the generic form of the template:

template<bool selector, typename FirstType, typename SecondType>

struct IfElse

{

typedef FirstType type;

};

Then define a partial specialization. The specialization represents a specific selector value (e.g.,

false) and leaves the remaining types open to further specification:

template<typename FirstType, typename SecondType>

struct IfElse<false, FirstType, SecondType>

{

typedef SecondType type;

};

The former (generic) definition associates FirstType with the IfElse::type type definition, the

latter definition (partially specialized for the logical value false) associates SecondType with the

IfElse::type type definition.

The IfElse template allows us to define class templates whose data organization is conditional to

the template’s parameters. Using IfElse the Storage class may define pointers to store copies of

polymorphic class type objects and values to store value class type objects:

template <typename Type, bool isPolymorphic>

22.2. TEMPLATE META PROGRAMMING 741

class Storage

{

typedef typename IfElse<isPolymorphic, Type *, Type>::type

DataType;

std::vector<DataType> d_data;

private:

void add(Type const &obj, IntType<true>);

void add(Type const &obj, IntType<false>);

public:

void add(Type const &obj);

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<true>)

{

d_data.push_back(obj.clone());

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj, IntType<false>)

{

d_data.push_back(obj);

}

template <typename Type, bool isPolymorphic>

void Storage<Type, isPolymorphic>::add(Type const &obj)

{

add(obj, IntType<isPolymorphic>());

}

The above example uses IfElse’s type, defined by IfElse as either FirstType or SecondType.

IfElse’s type defines the actual data type to use for Storage’s vector data type.

The remarkable result in this example is that the data organization of the Storage class now

depends on its template arguments. Since the isPolymorphic == true situation uses different

data types than the isPolymorphic == false situation, the overloaded private add members can

utilize this difference immediately. E.g., add(Type const &obj, IntType<false>) uses direct

copy construction to store a copy of obj in d_vector.

It is also possible to make a selection from multiple types as IfElse structs can be nested. Realize

that using IfElse never has any effect on the size or execution time of the final executable program.

The final program simply contains the appropriate type, conditional to the type that’s eventually

selected.

22.2.2.3 An illustrative example

The next example, defining MapType as a map having plain types or pointers for either its key or

value types, illustrates this approach:

template <typename Key, typename Value, int selector>

class Storage

742 CHAPTER 22. ADVANCED TEMPLATE USE

{

typedef typename IfElse<

selector == 1, // if selector == 1:

map<Key, Value>, // use map<Key, Value>

typename IfElse<

selector == 2, // if selector == 2:

map<Key, Value *>, // use map<Key, Value *>

typename IfElse<

selector == 3, // if selector == 3:

map<Key *, Value>, // use map<Key *, Value>

// otherwise:

map<Key *, Value *> // use map<Key *, Value *>

>::type

>::type

>::type

MapType;

MapType d_map;

public:

void add(Key const &key, Value const &value);

private:

void add(Key const &key, Value const &value, IntType<1>);

...

};

template <typename Key, typename Value, int selector>

inline void Storage<selector, Key, Value>::add(Key const &key,

Value const &value)

{

add(key, value, IntType<selector>());

}

The principle used in the above examples is: if class templates may use data types that depend on

template non-type parameters, an IfElse struct can be used to select the appropriate data types.

Knowledge about the various data types may also be used to define overloaded member functions.

The implementations of these overloaded members may then be optimized to the various data types.

In programs only one of these alternate functions (the one that is optimized to the actually used

data types) will then be instantiated.

The private add functions define the same parameters as the public add wrapper function, but add

a specific IntType type, allowing the compiler to select the appropriate overloaded version based on

the template’s non-type selector parameter.

22.2.3 Templates: Iterations by Recursion

As there are no variables in template meta programming, there is no template equivalent to a for

or while statement. However, iterations can always be rewritten as recursions. Recursions are

supported by templates and so iterations can always be implemented as (tail) recursions.

To implement iterations by (tail) recursion do as follows:

22.2. TEMPLATE META PROGRAMMING 743

• define a specialization implementing the end-condition;

• define all other steps using recursion.

• store intermediate values as enum values.

The compiler selects a more specialized template implementation over a more generic one. By the

time the compiler reaches the end-condition the recursion stops since the specialization does not use

recursion.

Most readers are probably familiar with the recursive implementation of the mathematical ‘factorial’

operator, commonly represented by the exclamation mark (!). Factorial n (so: n!) returns the

successive products n * (n - 1) * (n - 2) * ... * 1, representing the number of ways n

objects can be permuted. Interestingly, the factorial operator is itself usually defined by a recursive

definition:

n! = (n == 0) ?

1

:

n * (n - 1)!

To compute n! from a template, a template Factorial can be defined using an int n template

non-type parameter. A specialization is defined for the case n == 0. The generic implementation

uses recursion according to the factorial definition. Furthermore, the Factorial template defines

an enum value ‘value’ containing its factorial value. Here is the generic definition:

template <int n>

struct Factorial

{

enum { value = n * Factorial<n - 1>::value };

};

Note how the expression assigning a value to ‘value’ uses constant values that can be determined

by the compiler. The value n is provided, and Factorial<n - 1> is computed using template meta

programming. Factorial<n-1> in turn results in value that can be determined by the compiler

(viz. Factorial<n-1>::value). Factorial<n-1>::value represents the value defined by the

type Factorial<n - 1>. It is not the value returned by an object of that type. There are no objects

here but merely values defined by types.

The recursion ends in a specialization. The compiler selects the specialization (provided for the

terminating value 0) instead of the generic implementation whenever possible. Here is the special-

ization’s implementation:

template <>

struct Factorial<0>

{

enum { value = 1 };

};

The Factorial template can be used to determine, compile time, the number of permutations of a

fixed number of objects. E.g.,

int main()

744 CHAPTER 22. ADVANCED TEMPLATE USE

{

cout << "The number of permutations of 5 objects = " <<

Factorial<5>::value << "\n";

}

Once again, Factorial<5>::value is not evaluated at run-time, but at compile-time. The run-

time equivalent of the above cout statement is, therefore:

int main()

{

cout << "The number of permutations of 5 objects = " <<

120 << "\n";

}

22.3 User-defined literals (C++11)

In addition to the literal operators discussed in section 11.12 the C++11 standard also offers a func-

tion template literal operator, matching the prototype

template <char ...Chars>

Type operator "" _identifier()

This variadic non-type parameter function template defines no parameters, but merely a variadic

non-type parameter list.

Its argument must be an int constant, as is also expected by the literal operator defining an unsigned

long long int parameter. All the characters of the int constant are passed as individual char

non-type template arguments to the literal operator.

For example, if _NM2km is a literal operator function template, it can be called as 80_NM2km. The

function template is then actually called as _NM2km<’8’, ’0’>(). If this function template merely

uses template meta programming techniques and only processes integral data then its actions can

be performed completely at compile-time. To illustrate this, let’s assume NM2km only processes and

returns unsigned values.

The function template _NM2km can forward its argument to a class template, defining an enum

constant value, and that performs the required computations. Here is the implementation of the

variadic literal operator function template _NM2km:

template <char ... Chars>

size_t constexpr operator "" _NM2km()

{

return static_cast<size_t>(// forward Chars to NM2km

NM2km<0, Chars ...>::value * 1.852);

}

The class template NM2km defines three non-type parameters: acc accumulates the value, c is the

first character of the variadic non-type parameters, while ...Chars represents the remaining non-

type parameters, contained in a non-type parameter pack. Since c is, at each recursive call, the

next character from the original non-type parameter pack, the value so far multiplied by 10 plus the

22.3. USER-DEFINED LITERALS (C++11) 745

value of the next character is passed as the next accumulated value to its recursive call, together

with the remaining elements of the parameter pack, represented by Chars ...:

template <size_t acc, char c, char ...Chars>

struct NM2km

{

enum

{

value = NM2km<10 * acc + c - ’0’, Chars ...>::value

};

};

Eventually, the parameter pack is empty. For this case a partial specialization of NM2km is available:

template <size_t acc, char c> // empty parameter pack

struct NM2km<acc, c>

{

enum

{

value = 10 * acc + c - ’0’

};

};

This works fine, but of course not in cases where binary, octal, or hexadecimal values must also be

interpreted. In that case we must first determine whether the first character(s) indicate a special

number system. This can be determined by the class template NM2kmBase, that is now called from

the _NM2km literal operator:

template <char ... Chars>

size_t constexpr operator "" _NM2km()

{

return static_cast<size_t>(// forward Chars to NM2kmBase

NM2kmBase<Chars ...>::value * 1.852);

}

The NM2kmBase class template normally assumes the decimal number system, passing base value

10 and initial sum 0 to NM2km. The NM2km class template is provided with an additional (first)

non-type parameter representing the base value of the number system to use. Here is NM2kmBase:

template <char ...Chars>

struct NM2kmBase

{

enum

{

value = NM2km<10, 0, Chars ...>::value

};

};

Partial specializations handle the different number systems, by inspecting the first (one or two)

characters:

template <char ...Chars>

746 CHAPTER 22. ADVANCED TEMPLATE USE

struct NM2kmBase<’0’, Chars ...> // "0..."

{

enum

{ // octal value: base 8

value = NM2km<8, 0, Chars ...>::value

};

};

template <char ...Chars>

struct NM2kmBase<’0’, ’b’, Chars ...> // "0b..."

{

enum

{ // binary value: base 2

value = NM2km<2, 0, Chars ...>::value

};

};

template <char ...Chars>

struct NM2kmBase<’0’, ’x’, Chars ...> // "0x..."

{

enum

{ // hex value: base 16

value = NM2km<16, 0, Chars ...>::value

};

};

NM2km is implemented as before, albeit that it can now handle various number systems. The conver-

sion from character to numeric value is left to a small support function template, cVal:

template <char c>

int constexpr cVal()

{

return ’0’ <= c <= ’9’ ? c - ’0’ : 10 + c - ’a’;

}

template <size_t base, size_t acc, char c, char ...Chars>

struct NM2km

{

enum

{

value = NM2km<base, base * acc + cVal<c>(),

Chars ...>::value

};

};

template <size_t base, size_t acc, char c>

struct NM2km<base, acc, c>

{

enum { value = base * acc + cVal<c>() };

};

22.4. TEMPLATE TEMPLATE PARAMETERS 747

22.4 Template template parameters

Consider the following situation: a software engineer is asked to design a storage class Storage.

Data stored in Storage objects may either make and store copies of the data or store the data as

received. Storage objects may also either use a vector or a linked list as its underlying storage

medium. How should the engineer tackle this request? Should four different Storage classes be

designed?

The engineer’s first reaction could be to develop an all-in Storage class. It could have two data

members, a list and a vector, and its constructor could be provided with maybe an enum value

indicating whether the data itself or new copies should be stored. The enum value can be used

to initialize a series of pointers to member functions performing the requested tasks (e.g., using a

vector to store the data or a list to store copies).

Complex, but doable. Then the engineer is asked to modify the class: in the case of new copies a

custom-made allocation scheme should be used rather than the standard new operator. He’s also

asked to allow the use of yet another type of container, in addition to the vector and the list that

were already part of the design. Maybe a deque would be preferred or maybe even a stack.

It’s clear that the approach aiming at implementing all functionality and all possible combinations

in one class doesn’t scale. The class Storage soon becomes a monolithic giant which is hard to

understand, maintain, test, and deploy.

One of the reasons why the big, all-encompassing class is hard to deploy and understand is that

a well-designed class should enforce constraints: the design of the class should, by itself, disallow

certain operations, violations of which should be detected by the compiler, rather than by a program

that might terminate in a fatal error.

Think about the above request. If the class offers both an interface to access the vector data storage

and an interface to access the list data storage, then it’s likely that the class offers an overloaded

operator[] member to access elements in the vector. This member, however, will be syntacti-

cally present, but semantically invalid when the list data storage is selected, which doesn’t support

operator[].

Sooner or later, users of the monolithic all-encompassing class Storagewill fall into the trap of using

operator[] even though they’ve selected the list as the underlying data storage. The compiler

won’t be able to detect the error, which only appears once the program is running, confusing its

users.

The question remains: how should the engineer proceed, when confronted with the above questions?

It’s time to introduce policies.

22.4.1 Policy classes - I

A policy defines (in some contexts: prescribes) a particular kind of behavior. In C++ a policy class

defines a certain part of the class interface. It may also define inner types, member functions, and

data members.

In the previous section the problem of creating a class that might use any of a series of allocation

schemes was introduced. These allocation schemes all depend on the actual data type to use, and so

the ‘template reflex’ should kick in.

Allocation schemes should probably be defined as template classes, applying the appropriate alloca-

tion procedures to the data type at hand. When such allocation schemes are used by the familiar

STL containers (like std::vector, std::stack, etc.), then such home-made allocation schemes

748 CHAPTER 22. ADVANCED TEMPLATE USE

should probably be derived from std::allocator, to provide for the requirements made by these

containers. The class template std::allocator is declared by the <memory> header file and the

three allocation schemes developed here were all derived from std::allocator.

Using in-class implementations for brevity the following allocation classes could be defined:

• No special allocation takes place, Data is used ‘as is’:

template <typename Data>

class PlainAlloc: public std::allocator<Data>

{

template<typename IData>

friend std::ostream &operator<<(std::ostream &out,

PlainAlloc<IData> const &alloc);

Data d_data;

public:

PlainAlloc()

{}

PlainAlloc(Data const &data)

:

d_data(data)

{}

PlainAlloc(PlainAlloc<Data> const &other)

:

d_data(other.d_data)

{}

};

• The second allocation scheme uses the standard new operator to allocate a new copy of the

data:

template <typename Data>

class NewAlloc: public std::allocator<Data>

{

template<typename IData>

friend std::ostream &operator<<(std::ostream &out,

NewAlloc<IData> const &alloc);

Data *d_data;

public:

NewAlloc()

:

d_data(0)

{}

NewAlloc(Data const &data)

:

d_data(new Data(data))

{}

NewAlloc(NewAlloc<Data> const &other)

:

d_data(new Data(*other.d_data))

{}

~NewAlloc()

{

22.4. TEMPLATE TEMPLATE PARAMETERS 749

delete d_data;

}

};

• The third allocation scheme uses the placement new operator (see section 9.1.5), requesting

memory from a common pool (the implementation of the member request, obtaining the re-

quired amount of memory, is left as an exercise to the reader):

template<typename Data>

class PlacementAlloc: public std::allocator<Data>

{

template<typename IData>

friend std::ostream &operator<<(std::ostream &out,

PlacementAlloc<IData> const &alloc);

Data *d_data;

static char s_commonPool[];

static char *s_free;

public:

PlacementAlloc()

:

d_data(0)

{}

PlacementAlloc(Data const &data)

:

d_data(new(request()) Data(data))

{}

PlacementAlloc(PlacementAlloc<Data> const &other)

:

d_data(new(request()) Data(*other.d_data))

{}

~PlacementAlloc()

{

d_data->~Data();

}

private:

static char *request();

};

The above three classes define policies that may be selected by the user of the class Storage intro-

duced in the previous section. In addition to these classes, additional allocation schemes could be

implemented by the user as well.

To apply the proper allocation scheme to the class Storage, Storage should be designed as a class

template itself. The class also needs a template type parameter allowing users to specify the data

type.

The data type to be used by a particular allocation scheme could of course be specified when specify-

ing the allocation scheme to use. The class Storage would then have two template type parameters,

one for the data type, one for the allocation scheme:

template <typename Data, typename Scheme>

class Storage ...

750 CHAPTER 22. ADVANCED TEMPLATE USE

To use the class Storage we would then write, e.g.:

Storage<string, NewAlloc<string>> storage;

Using Storage this way is fairly complex and potentially error-prone, as it requires the user to

specify the data type twice. Instead, the allocation scheme should be specified using a new type

of template parameter, not requiring the user to specify the data type required by the allocation

scheme. This new kind of template parameter (in addition to the well-known template type parame-

ter and template non-type parameter) is called the template template parameter.

22.4.2 Policy classes - II: template template parameters

Template template parameters allow us to specify a class template as a template parameter. By

specifying a class template, it is possible to add a certain kind of behavior (called a policy) to an

existing class template.

To specify an allocation policy, rather than an allocation type for the class Storage we rephrase its

class template header: definition starts as follows:

template <typename Data, template <typename> class Policy>

class Storage...

The second template parameter is new. It is a template template parameter. It has the following

elements:

• The keyword template, starting the template template parameter;

• The keyword template is followed (between pointed brackets) by a list of template parameters

that must be specified for the template template parameter. These parameters may be given

names, but names are usually omitted as those names cannot be used in subsequent template

definitions. On the other hand, providing formal names may help the reader of the template to

understand the kind of templates that must be specified with the template template parameter.

• Template template parameters must match, in numbers and types (i.e., template type param-

eters, template non-type parameters, template template parameters) the template parameters

that must be specified for the policy. This can be tricky, as some templates use default param-

eters that are hardly ever changed (like the allocation schemes for containers). Programmers

may not immediately realize that these defaults exist and be confused when the compiler re-

jects such templates when trying to pass them as template template parameters for which

these additional (default) parameters weren’t specified. However, the C++11 standard offers a

solution for this problem in the form of template aliases, introduced in section 22.5.

• Following the bracketed list the keyword class must be specified. In this case, typename can

not be used.

• All parameters may be provided with default arguments. This is shown in the next example of

a hypothetical class template:

template <

template <

typename = std::string,

int = 12,

template <typename = int> class Inner = std::vector

22.4. TEMPLATE TEMPLATE PARAMETERS 751

>

class Policy

>

class Demo

{

...

};

Here, the class template Demo expects a template template parameter named Policy, expect-

ing three template parameters: a template type parameter (by default std::string); a tem-

plate non-type parameter (by default having value 12); and Policy itself expects a template

template parameter, called Inner, by default using an int as its template type parameter.

Policy classes are often an integral part of the class under consideration. Because of this they are

often deployed as base classes. In the example the class Policy could be used as a base class of the

class Storage.

The policy operates on the class Storage’s data type. Therefore the policy is informed about that

data type as well. Our class Storage now begins like this:

template <typename Data, template <typename> class Policy>

class Storage: public Policy<Data>

This automatically allows us to use Policy’s members when implementing the members of the class

Storage.

Our home-made allocation classes do not really provide us with many useful members. Except for

the extraction operator they offer no immediate access to the data. This can easily be repaired by

adding more members. E.g., the class NewAlloc could be augmented with operators allowing access

to and modification of stored data:

operator Data &() // optionally add a ‘const’ member too

{

return *d_data;

}

NewAlloc &operator=(Data const &data)

{

*d_data = data;

}

The other allocation classes could be given comparable members.

Let’s use the allocation schemes in some real code. The next example shows how Storage can be

defined using some data type and an allocation scheme. We start out again with a class Storage:

template <typename Data, template <typename> class Allocate>

class Storage: public std::vector<Data, Allocate<Data>>

{};

That’s all we have to do. Note that std::vector formally has two template parameters. The first

one is the vector’s data type, which is always specified; the second one is the allocator used by the

vector. Usually the allocator is left unspecified (in which case the default STL allocator is used), but

here it is mentioned explicitly, allowing us to pass our own allocation policy to Storage.

752 CHAPTER 22. ADVANCED TEMPLATE USE

All required functionality is inherited from the vector base class, while the policy is ‘factored into

the equation’ using a template template parameter. Here’s an example showing how this is done:

Storage<std::string, NewAlloc> storage;

copy(istream_iterator<std::string>(cin), istream_iterator<std::string>(),

back_inserter(storage));

cout << "Element index 1 is " << storage[1] << ’\n’;

storage[1] = "hello";

copy(storage.begin(), storage.end(),

ostream_iterator<NewAlloc<std::string> >(cout, "\n"));

Since Storage objects are also std::vector objects the STL copy function can be used in com-

bination with the back_inserter iterator to add some data to the storage object. Its elements can

be accessed and modified using the index operator. Then NewAlloc<std::string> objects are

inserted into cout (also using the copy function).

Interestingly, this is not the end of the story. Remember that our intention was to create a class

allowing us to specify the storage type as well. What if we don’t want to use a vector, but instead

would like to use a list?

It’s easy to change Storage’s setup so that a completely different storage type can be used on re-

quest, like a deque. To implement this, the storage class is parameterized as well, using yet another

template template parameter:

template <typename Data, template <typename> class AllocatonPolicy,

template <typename, typename> class Container = std::vector>

class Storage: public Container<Data, AllocationPolicy<Data>>

{};

The earlier example using a Storage object can be used again without requiring any modifications

at all (except for the above redefinition). It clearly can’t be used with a list container, as the list

lacks operator[]. Trying to do so is immediately recognized by the compiler, producing an error

if an attempt is made to use operator[] on, e.g., a list.1 A list container, however can still be

specified as the container to use. In that case a Storage is implemented as a list, offering list’s

interface, rather than vector’s interface, to its users.

22.4.2.1 The destructor of Policy classes

In the previous section policy classes were used as base classes of template classes. This resulted

in the interesting observation that a policy class may serve as a base class of a derived class. As a

policy class may act as a base class, a pointer or reference to such a policy class can be used to point

or refer to the derived class using the policy.

This situation, although legal, should be avoided for various reasons:

• Destruction of a derived class object using the base class’s destructor requires the implemen-

tation of a virtual destructor;

1A complete example showing the definition of the allocation classes and the class Storage as well as its use is provided
in the Annotation’s distribution in the file yo/advancedtemplates/examples/storage.cc.

22.4. TEMPLATE TEMPLATE PARAMETERS 753

• A virtual destructor introduces overhead to a class that normally has no data members, but

merely defines behavior: suddenly a vtable is required as well as a data member pointing to

the vtable;

• Virtual member functions somewhat reduce the efficiency of code; virtual member functions

use dynamic polymorphism, which in principle is undoing the advantages of static polymor-

phism as offered by templates;

• Virtual member functions in templates may result in code bloat: once an instantiation of a

class’s member is required, the class’s vtable and all its virtual members must be implemented

too.

To avoid these drawbacks, it is good practice to prevent the use of references or pointers to policy

classes to refer or point to derived class objects. This is accomplished by providing policy classes with

non-virtual protected destructors. With a non-virtual destructor there is no performance penalty and

since its destructor is protected users cannot refer to classes derived from the policy class using a

pointer or reference to the policy class.

22.4.3 Structure by Policy

Policy classes usually define behavior, not structure. Policy classes are normally used to parameter-

ize some aspect of the behavior of classes that are derived from them. However, different policies

may require different data members. These data members may also be defined by the policy classes.

Policy classes may therefore be used to define both behavior and structure.

By providing a well-defined interface a class derived from a policy class may define member spe-

cializations using the different structures of policy classes to their advantage. For example, a

plain pointer-based policy class could offer its functionality by resorting to C-style pointer juggling,

whereas a vector-based policy class could use the vector’s members directly.

In this example a generic class template Size could be designed expecting a container-like policy

using features commonly found in containers, defining the data (and hence the structure) of the

container specified in the policy. E.g.:

template <typename Data, template <typename> class Container>

struct Size: public Container<Data>

{

size_t size()

{ // relies on the container’s ‘size()’

// note: can’t use ‘this->size()’

return Container<Data>::size();

}

};

A specialization can now be defined for a much simpler storage class using, e.g., plain pointers (the

implementation capitalizes on first and second, data members of std::pair. Cf. the example

at the end of this section):

template <typename Data>

struct Size<Data, Plain>: public Plain<Data>

{

size_t size()

{ // relies on pointer data members

754 CHAPTER 22. ADVANCED TEMPLATE USE

return this->second - this->first;

}

};

Depending on the intentions of the template’s author other members could be implemented as well.

To simplify the real use of the above templates, a generic wrapper class can be constructed: it uses

the Size template matching the actually used storage type (e.g., a std::vector or some plain

storage class) to define its structure:

template <typename Data, template <typename> class Store>

class Wrapper: public Size<Data, Store>

{};

The above classes could now be used as follows (en passant showing an extremely basic Plain class):

#include <iostream>

#include <vector>

template <typename Data>

struct Plain: public std::pair<Data *, Data *>

{};

int main()

{

Wrapper<int, std::vector> wiv;

std::cout << wiv.size() << "\n";

Wrapper<int, Plain> wis;

std::cout << wis.size() << "\n";

}

The wiv object now defines vector-data, the wis object merely defines a std::pair object’s data

members.

22.5 Template aliases (C++11)

In addition to function and class templates, C++11 also uses templates to define an alias for a set of

types. This is called a template alias. Template aliases can be specialized. The name of a template

alias is a type name.

Template aliases can be used as arguments to template template parameters. This allows us to avoid

the ‘unexpected default parameters’ you may encounter when using template template parameters.

E.g., defining a template specifying a template <typename> class Container is fine, but it is

impossible to specify a container like vector or set as template template argument, as vector

and set containers also define a second template parameter, specifying their allocation policy.

Template aliases are defined as using declarations, specifying an alias for an existing (maybe par-

tially or fully specialized) template type. In the following example Vector is defined as an alias for

vector:

template <typename Type>

22.6. TRAIT CLASSES 755

using Vector = std::vector<Type>;

Vector<int> vi; // same as std::vector<int>

std::vector<int> vi2(vi); // copy construction: OK

So, what’s the point of doing this? Looking at the vector container, we see that it defines two,

rather than one, template parameters, the second parameter being the allocation policy _Alloc, by

default set to std::allocator<_Tp>:

template<typename _Tp, typename _Alloc = std::allocator<_Tp> >

class vector: ...

Now define a class template Generic defining a template template parameter:

template <typename Type, template <typename> class Container>

class Generic: public Container<Type>

{

...

};

Most likely, Generic offers members made available by the container that is actually used to create

the Generic object, and adds to those some members of it own. However, a simple container like

std::vector cannot be used, as std::vector doesn’t match a template <typename> class

Container> parameter; it requires a template <typename, typename> class Container>

template template parameter.

The Vector template alias, however, is defined as a template having one template type parameter,

and it uses the vector’s default allocator. Consequently, passing a Vector to Generic works fine:

Generic<int, Vector> giv; // OK

Generic<int, std::vector> err; // won’t compile: 2nd argument mismatch

With the aid of a small template alias it is also possible to use a completely different kind of con-

tainer, like a map, with Generic:

template <typename Type>

using MapString = std::map<Type, std::string>;

Generic<int, MapString> gim; // uses map<int, string>

22.6 Trait classes

Scattered over the std namespace trait classes are found. E.g., most C++ programmers have

seen the compiler mentioning ‘std::char_traits<char>’ when performing an illegal operation

on std::string objects, as in std::string s(1).

Trait classes are used to make compile-time decisions about types. Trait classes allow us to apply

the proper code to the proper data type, be it a pointer, a reference, or a plain value, all this maybe

in combination with const. The particular type of data to use can be inferred from the actual type

that is specified (or implied) when the template is used. This can be fully automated, not requiring

the template writer to make any decision.

756 CHAPTER 22. ADVANCED TEMPLATE USE

Trait classes allow us to develop a template <typename Type1, typename Type2, ...>with-

out the need to specify many specializations covering all combinations of, e.g., values, (const) point-

ers, or (const) references, which would soon result in an unmaintainable exponential explosion of

template specializations (e.g., allowing these five different types for each template parameter al-

ready results in 25 combinations when two template type parameters are used: each must be covered

by potentially different specializations).

Having available a trait class, the actual type can be inferred compile time, allowing the com-

piler to deduce whether or not the actual type is a pointer, a pointer to a member, or a const

pointer, and to make comparable deductions in case the actual type is, e.g., an lvalue or rvalue

reference type. This in turn allows us to write templates that define types like argument_type,

first_argument_type, second_argument_type and result_type, which are required by sev-

eral generic algorithms (e.g., count_if()).

A trait class usually performs no behavior. I.e., it has no constructor and no members that can be

called. Instead, it defines a series of types and enum values that have certain values depending on

the actual type that is passed to the trait class template. The compiler uses one of a set of available

specializations to select the one appropriate for an actual template type parameter.

The point of departure when defining a trait template is a plain vanilla struct, defining the charac-

teristics of a plain value type like an int. This sets the stage for specific specializations, modifying

the characteristics for any other type that could be specified for the template.

To make matters concrete, assume the intent is to create a trait class BasicTraits telling us

whether a type is a plain value type, a pointer type, an lvalue reference type or an rvalue reference

type (all of which may or may not be const types).

Whatever the actually provided type, we want to be able to determine the ‘plain’ type (i.e., the type

without any modifiers, pointers or references), the ‘pointer type’ and the ‘reference type’, allowing

us to define in all cases, e.g., an rvalue reference to its built-in type, even though we passed a const

pointer to that type.

Our point of departure, as mentioned, is a plain struct defining the required parameter. Maybe

something like this:

template <typename T>

struct Basic

{

typedef T Type;

enum

{

isPointer = false,

isConst = false,

isRef = false,

isRRef = false

};

};

Although some conclusions can be drawn by combining various enum values (e.g., a plain type is not

a pointer or a reference or a rvalue reference or a const), it is good practice to provide a full imple-

mentation of trait classes, not requiring its users to construct these logical expressions themselves.

Therefore, the basic decisions in a trait class are usually made by a nested trait class, leaving the

task of creating appropriate logical expressions to a surrounding trait class.

So, the struct Basic defines the generic form of our inner trait class. Specializations handle

specific details. E.g., a pointer type is recognized by the following specialization:

22.6. TRAIT CLASSES 757

template <typename T>

struct Basic<T *>

{

typedef T Type;

enum

{

isPointer = true,

isConst = false,

isRef = false,

isRRef = false

};

};

whereas a pointer to a const type is matched with the next specialization:

template <typename T>

struct Basic<T const *>

{

typedef T Type;

enum

{

isPointer = true,

isConst = true,

isRef = false,

isRRef = false

};

};

Several other specializations should be defined: e.g., recognizing const value types or (rvalue) ref-

erence types. Eventually all these specializations are implemented as nested structs of an outer

class BasicTraits, offering the public traits class interface. The outline of the outer trait class is:

template <typename TypeParam>

class BasicTraits

{

// Define specializations of the template ‘Base’ here

public:

BasicTraits(BasicTraits const &other) = delete;

typedef typename Basic<TypeParam>::Type ValueType;

typedef ValueType *PtrType;

typedef ValueType &RefType;

typedef ValueType &&RvalueRefType;

enum

{

isPointerType = Basic<TypeParam>::isPointer,

isReferenceType = Basic<TypeParam>::isRef,

isRvalueReferenceType = Basic<TypeParam>::isRRef,

isConst = Basic<TypeParam>::isConst,

isPlainType = not (isPointerType or isReferenceType or

isRvalueReferenceType or isConst)

758 CHAPTER 22. ADVANCED TEMPLATE USE

};

};

The trait class’s public interface explicitly deletes its copy constructor. As it therefore defines no

constructor at all and as it has no static members it does not offer any run-time executable code. All

the trait class’s facilities must therefore be used compile time.

A trait class template can be used to obtain the proper type, irrespective of the template type ar-

gument provided. It can also be used to select a proper specialization that depends on, e.g., the

const-ness of a template type. Example:

cout <<

"int: plain type? " << BasicTraits<int>::isPlainType << "\n"

"int: ptr? " << BasicTraits<int>::isPointerType << "\n"

"int: const? " << BasicTraits<int>::isConst << "\n"

"int *: ptr? " << BasicTraits<int *>::isPointerType << "\n"

"int const *: ptr? " << BasicTraits<int const *>::isPointerType <<

"\n"

"int const: const? " << BasicTraits<int const>::isConst << "\n"

"int: reference? " << BasicTraits<int>::isReferenceType << "\n"

"int &: reference? " << BasicTraits<int &>::isReferenceType << "\n"

"int const &: ref ? " << BasicTraits<int const &>::isReferenceType <<

"\n"

"int const &: const ? " << BasicTraits<int const &>::isConst << "\n"

"int &&: r-reference? " << BasicTraits<int &&>::isRvalueReferenceType <<

"\n"

"int &&: const? " << BasicTraits<int &&>::isConst << "\n"

"int const &&: r-ref ? "<< BasicTraits<int const &&>::

isRvalueReferenceType << "\n"

"int const &&: const ? "<< BasicTraits<int const &&>::isConst << "\n"

"\n";

BasicTraits<int *>::ValueType value = 12;

BasicTraits<int const *>::RvalueRefType rvalue = int(10);

BasicTraits<int const &&>::PtrType ptr = new int(14);

cout << value << ’ ’ << rvalue << ’ ’ << *ptr << ’\n’;

22.6.1 Distinguishing class from non-class types

In the previous section the TypeTrait trait class was developed. Using specialized versions of a

nested struct Type modifiers, pointers, references and values could be distinguished.

Knowing whether a type is a class type or not (e.g., the type represents a primitive type) could also

be a useful bit of knowledge to a template developer. The class template developer might want to

define a specialization when the template’s type parameter represents a class type (maybe using

some member function that should be available) and another specialization for non-class types.

This section addresses the question how a trait class can distinguish class types from non-class

types.

In order to distinguish classes from non-class types a distinguishing feature that can be used at

compile-time must be found. It may take some thinking to find such a distinguishing characteristic,

but a good candidate eventually is found in the pointer to members syntactic construct. Pointers to

22.6. TRAIT CLASSES 759

members are only available for classes. Using the pointer to member construct as the distinguish-

ing characteristic, a specialization can be developed that uses the pointer to member if available.

Another specialization (or the generic template) does something else if the pointer to member con-

struction is not available.

How can we distinguish a pointer to a member from ‘a generic situation’, not being a pointer to

a member? Fortunately, such a distinction is possible. A function template specialization can be

defined having a parameter which is a pointer to a member function. The generic function template

then accepts any other argument. The compiler selects the former (specialized) function when the

provided type is a class type as class types may support a pointer to a member. The interesting verb

here is ‘may’: the class does not have to define a pointer to member.

Furthermore, the compiler does not actually call any function: we’re talking compile-time here. All

the compiler does is to select the appropriate function by evaluating a constant expression.

So, our intended function template now looks like this:

template <typename ClassType>

static ‘some returntype’ fun(void (ClassType::*)());

The function’s return type (‘(some returntype)’) will be defined shortly. Let’s first have a closer

look at the function’s parameter. The function’s parameter defines a pointer to a member returning

void. Such a function does not have to exist for the concrete class-type that’s specified when the

function is used. In fact, no implementation is provided. The function fun is only declared as a

static member in the trait class. It’s not implemented and no trait class object is required to call it.

What, then, is its use?

To answer the question we now have a look at the generic function template that should be used

when the template’s argument is not a class type. The language offers a ‘worst case’ parameter in

its ellipsis parameter list. The ellipsis is a final resort the compiler may turn to if everything else

fails. The generic function template specifies a plain ellipsis in its parameter list:

template <typename NonClassType>

static ‘some returntype’ fun(...);

It would be an error to define the generic alternative as a function expecting an int. The com-

piler, when confronted with alternatives, favors the simplest, most specified alternative over a more

complex, generic one. So, when providing fun with an argument it selects int whenever possible

and it won’t select fun(void (ClassType::*)()). When given the choice between fun(void

(ClassType::*)()) and fun(...) it selects the former unless it can’t do that.

The question now becomes: what argument can be used for both a pointer to a member and for

the ellipsis? Actually, there is such a ‘one size fits all’ argument: 0. The value 0 can be passed as

argument value to functions defining an ellipsis parameter and to functions defining a pointers-to-

member parameter.

But 0 does not specify a particular class. Therefore, fun must specify an explicit template argument,

appearing in our code as fun<Type>(0), with Type being the template type parameter of the trait

class.

Now for the return type. The function’s return type cannot be a simple value (like true or false).

Our eventual intent is to provide the trait class with an enum telling us whether the trait class’s

template argument represents a class type or not. That enum becomes something like this:

enum { isClass = some class/non-class distinguishing expression } ;

760 CHAPTER 22. ADVANCED TEMPLATE USE

The distinguishing expression cannot be

enum { isClass = fun<Type>(0) } ;

as fun<Type>(0) is not a constant expression and enum values must be defined by constant ex-

pressions so they can be determined at compile-time.

To determine isClass’s value we must find an expression allowing for compile-time discriminations

between fun<Type>(...) and fun<Type>(void (Type::*)()).

In situations like these the sizeof operator often is our tool of choice as it is evaluated at compile-

time. By defining different sized return types for the two fun declarations we are able to distinguish

(at compile-time) which of the two fun alternatives is selected by the compiler.

The char type is by definition a type having size 1. By defining another type containing two consec-

utive char values a larger type is obtained. A char [2] is of course not a type, but a char[2] can

be defined as a data member of a struct, and a struct does define a type. That struct then has a size

exceeding 1. E.g.,

struct Char2

{

char data[2];

};

Char2 can be defined as a nested type of our traits class. The two fun function template declarations

become:

template <typename ClassType>

static Char2 fun(void (ClassType::*)());

template <typename NonClassType>

static char fun(...);

Since sizeof expressions are evaluated at compile-time we can now determine isClass’s value:

enum { isClass = sizeof(fun<Type>(0)) == sizeof(Char2) };

This expression has several interesting implications:

• no fun function template is ever instantiated;

• the compiler considers Type and selects fun’s function template specialization if Type is a

class type and the generic function template if not;

• From the selected function it determines the return type and thus the return type’s size;

• Resulting in the proper evaluation of isClass.

Without requiring any instantiation the trait class can now provide an answer to the question

whether a template type argument represents a class type or not. Marvelous!

22.6. TRAIT CLASSES 761

22.6.2 Available type traits (C++11)

The C++11 standard offers many facilities to identify and modifiy characteristics of types. Before

using these facilities the <type_traits> header file must be included.

All facilities offered by type_traits are defined in the std namespace (omitted from the examples

given below), allowing programmers to determine various characteristics of types and values.

At the description of several of these facilities the concept of a trivial member function is used.

Trivial member functions are never declared (other than default) in their class interfaces and (for

default constructors or assignment operators) only perform byte-by-byte actions. Here are two ex-

amples: struct Pod only has trivial members as it doesn’t explicitly declare any member function

and its data member is plain old data. struct Nonpod is not plain old data. Although it doesn’t

explictly declare any member function either, its data member is a std::string, which itself isn’t

plain old data as std::string has non-trivial constructors:

struct Pod

{

int x;

};

struct Nonpod

{

std::string s;

};

Facilities are provided to:

• determine whether a type is an lvalue reference

(is_lvalue_reference<typename Type>::value);

• determine whether a type is an rvalue reference

(is_rvalue_reference<typename Type>::value);

• determine whether a type is a reference

(is_reference<typename Type>::value);

• determine whether a type is a signed type

(is_signed<typename Type>::value);

• determine whether a type is an unsigned type

(is_unsigned<typename Type>::value);

• determine whether a type is plain old data (e.g., a struct not having non-trivial member func-

tions)

(is_pod<typename Type>::value);

• determine whether a type has a trivial default constructor

(has_trivial_default_constructor<typename Type>::value);

• determine whether a type has a trivial copy constructor

(has_trivial_copy_constructor<typename Type>::value);

• determine whether a type has a trivial destructor

(has_trivial_destructor<typename Type>::value);

• determine whether a type has a trivial assignment operator

(has_trivial_assign<typename Type>::value);

762 CHAPTER 22. ADVANCED TEMPLATE USE

• determine whether a type has a constructor not throwing exceptions

(has_nothrow_default_constructor<typename Type>::value);

• determine whether a type has a destructor not throwing exceptions

(has_nothrow_destructor<typename Type>::value);

• determine whether a type has a copy constructor not throwing exceptions

(has_nothrow_copy_constructor<typename Type>::value);

• determine whether a type has an assignment operator not throwing exceptions

(has_nothrow_assign<typename Type>::value);

• determine whether a type Base is a base class of another type Derived

(is_base_of<typename Base, typename Derived>::value);

• determine whether a type From may be converted to a type To (e.g., using a static_cast)

(is_convertible<typename From, typename To>::value);

• conditionally define Type if cond is true

(enable_if<bool cond, typename Type>::type);

• conditionally use TrueType if cond is true, FalseType if not

(conditional<bool cond, typename TrueType, typename FalseType>::type);

• remove a reference from a type

(remove_reference<typename Type>::type);

• add an lvalue reference to a type

(add_lvalue_reference<typename Type>::type);

• add an rvalue reference to a type

(add_rvalue_reference<typename Type>::type);

• construct an unsigned type

(make_unsigned<typename Type>::type);

• construct a signed type

(make_signed<typename Type>::type);

22.7 Using ‘noexcept’ when offering the ‘strong guarantee’

(C++11)

When throwing exceptions while trying to achieve the strong guarantee a function’s actions are

usually split in two parts

• First, usually on a temporary object, all operations that may throw are performed (which

doesn’t affect the target object)

• Then, the target object is modified using operations that offer the nothrow guarantee.

The actions in the first step might be made move aware by using std::move (e.g., to assign the

source’s values to a (possibly temporary) destination). However, using std::move can easily affect

the source (e.g., when extending the source’s memory, moving the existing data to its new locations),

which breaks the first step’s assumption, as the target object is now modified.

22.7. USING ‘NOEXCEPT’ WHEN OFFERING THE ‘STRONG GUARANTEE’ (C++11) 763

In this case (and generally) the move operation should not be allowed to throw exceptions. This, in

turn, implies that it is difficult to write code which must offer a non-throwing moving constructor, if

it uses (external) data types over which the moving constructor has no control. E.g.,

template <typename Type>

class MyClass

{

Type d_f;

public:

MyClass() = default;

MyClass(MyClass &&tmp)

:

d_f(move(tmp.d_f))

{}

};

Here, MyClass’s author has no control over the design of Type. If Foreign merely has a (possibly

throwing) copy constructor, then the following code breaks the no-throw assumption underlying

move constructors:

MyClass<Foreign> s2(move(MyClass<Foreign>()));

If templates are able to detect whether Type has non-throwing move constructors then their imple-

mentations may be optimized by calling these move constructors (already modifying their targets in

the first part of code offering the strong guarantee) in situations where otherwise the non-modifying,

but more expensive copy constructor has to be used.

The noexcept keyword was introduced to allow such templates to perform such optimizations. As

with throw lists, checking for noexcept is a run-time check, but the consequence of violating a

noexept declaration are more serious than violating a throw list: violating noexcept results in

calling std::terminate, terminating the program, possibly without unwinding the stack. In the

context of the previous example, the following code is flawlessly accepted by the compiler, demon-

strating that there is no compile-time checking of noexcept:

class Foreign

{

public:

Foreign() = default;

Foreign(Foreign const &other) noexcept

{

throw 1;

}

};

However, when this class’s copy constructor is called, execution aborts with the following message:

terminate called after throwing an instance of ’int’

Abort

Keep in mind that the current purpose of noexcept is to allow templates to optimize their code

by using move operations where the code must also be able to offer the string exception guarantee.

Since noexcept also offers the conditional noexcept(condition) syntax (with noexcept(true)

764 CHAPTER 22. ADVANCED TEMPLATE USE

and noexcept having identical semantics), noexcept can be made conditional to the ‘noexcepting’

nature of template types. Note that this is not possible with throw lists.

The following rules of thumb by be used to decide whether or not to use noexcept in your code:

• General rule: don’t use noexcept (this is identical to the advise given for throw lists);

• Default implementations of constructors, copy- and move-assignment operators and destruc-

tors are provided with noexcept(true) if the compiler can deduct that composing types also

offer noexcept(true), allowing template optimizations using move operations where possi-

ble.

• Functions provided with noexcept declarations may still throw exceptions (see the example

given above). In the end noexcept merely means that if such a function throws an exception

std::terminate rather than std::unexpected is called.

• Functions previously provided with an empty throw list (throw()) should now be provided

with noexcept(true).

• noexcept specifications are required when using the following std traits (declared in the

<type_traits> header file):

– is_nothrow_constructible

– is_nothrow_default_constructible

– is_nothrow_move_constructible

– is_nothrow_copy_constructible

– is_nothrow_assignable

– is_nothrow_move_assignable

– is_nothrow_copy_assignable

– is_nothrow_destructible

These type traits provide the member constant value which is true if the class (and possibly

its argument type list) matches the characteristic after which the trait was named. E.g., if

MyClass(string const &) noexcept is a constructor, then

std::is_nothrow_constructible<MyClass, string>::value

equals true. For the named members (like is_nothrow_move_constructible) parameter

types do not have to be specified, as they are implied. E.g.,

std::is_nothrow_move_constructible<MyClass>::value

returns true if the move constructor has the noexcept modifier.

22.8 More conversions to class types

22.8.1 Types to types

Although class templates may be partially specialized, function templates may not. At times this

is annoying. Assume a function template is available implementing a certain unary operator that

could be used with the transform generic algorithm (cf. section 19.1.63):

template <typename Return, typename Argument>

22.8. MORE CONVERSIONS TO CLASS TYPES 765

Return chop(Argument const &arg)

{

return Return(arg);

}

Furthermore assume that if Return is std::string then the above implementation should not be

used. Instead, with std::string a second argument 1 should always be provided. If Argument

is a C++ string, this would allow us to, e.g., return a copy of arg from which its first character has

been chopped off.

Since chop is a function, it is not possible to define a partial specialization like this:

template <typename Argument> // This won’t compile!

std::string chop<std::string, Argument>(Argument const &arg)

{

return string(arg, 1);

}

Although a function template cannot be partially specialized it is possible to use overloading, defin-

ing a second, dummy, string parameter:

template <typename Argument>

std::string chop(Argument const &arg, std::string)

{

return string(arg, 1);

}

Now it is possible to distinguish the two cases, but at the expense of a more complex function call.

Moreover, in code this function may require the use of the bind2nd binder (cf. section 18.1.4) to

provide the dummy second argument, or it may require a (possibly expensive to construct) dummy

argument to allow the compiler to choose among the two overloaded function templates.

Instead of providing a string dummy argument the functions could use the IntType template (cf.

section 22.2.1.1) to select the proper overloaded version. E.g., IntType<0> could be defined as the

type of the second argument of the first overloaded chop function, and IntType<1> could be used

for the second overloaded function. From the point of view of program efficiency this is an attractive

option, as the provided IntType objects are extremely lightweight. IntType objects contain no data

at all. But there’s also an obvious disadvantage as there is no intuitively clear association between

the int value used and the intended type.

Instead of defining arbitrary IntType types it is more attractive to use another lightweight solution,

using an automatic type-to-type association. The struct TypeType is a lightweight type wrapper,

much like IntType. Here is its definition:

template <typename T>

struct TypeType

{

typedef T Type;

};

TypeType is also a lightweight type as it doesn’t have any data fields either. TypeType allows us

to use a natural type association for chop’s second argument. E.g, the overloaded functions can now

be defined as follows:

766 CHAPTER 22. ADVANCED TEMPLATE USE

template <typename Return, typename Argument>

Return chop(Argument const &arg, TypeType<Argument>)

{

return Return(arg);

}

template <typename Argument>

std::string chop(Argument const &arg, TypeType<std::string>)

{

return std::string(arg, 1);

}

Using the above implementations any type can be specified for Result. If it happens to be a

std::string the appropriate overloaded version is automatically selected. The following addi-

tional overload of the function chop capitalizes on this:

template <typename Result>

Result chop(char const *txt) // char const * could also be a 2nd

{ // template type parameter

return chop(std::string(txt), TypeType<Result>());

}

Using the third chop function, the following statement produces the text ‘ello world’:

cout << chop<string>("hello world") << ’\n’;

Template functions do not support partial specializations. But they can be overloaded. By providing

overloads with dummy type-arguments that depend on other parameters and calling these overloads

from a overloaded function that does not require the dummy type argument a situation similar to

partial specializations with class templates can often be realized.

22.8.2 An empty type

At times (cf. section 22.9) an empty struct is a useful tool. It can be used as a type acting

analogously to the final 0-byte in NTB-strings. It can simply be defined as:

struct NullType

{};

22.8.3 Type convertibility

In what situations can a type T be used as a ‘stand in’ for another type U? Since C++ is a strongly

typed language the answer is surprisingly simple: Ts can be used instead of Us if a T is accepted as

argument in cases where Us are requested.

This reasoning is behind the following class which can be used to determine whether a type T can

be used where a type U is expected. The interesting part is that no code is actually generated or

executed. All decisions are made by the compiler.

22.8. MORE CONVERSIONS TO CLASS TYPES 767

In the second part of this section we’ll show how the code developed in the first part can be used

to detect whether a class B is a base class of another class D (the is_base_of template (cf. sec-

tion 22.6.2) also provides an answer to this question). The code developed here closely follows the

example provided by Alexandrescu (2001, p. 35).

First, a function test is designed accepting a type U. The function test returns a value of the as

yet unknown type Convertible:

Convertible test(U const &);

The function test is never implemented. It is only declared. If a type T can be used instead of a

type U then T can also be passed as argument to the above test function.

On the other hand, if the alternate type T cannot be used where a U is expected, then the compiler

won’t be able to use the above test function. Instead, it uses an alternative function that has a

lower selection priority but that can always be used with any T type.

C (and C++) offer a very general parameter list, a parameter list that is always considered accept-

able. This parameter list is the familiar ellipsis which represents the worst case the compiler may

encounter. If everything else fails, then the function defining an ellipsis as its parameter list is

selected.

Usually that’s not a productive alternative, but in the current situation it is exactly what is needed.

When confronted with two candidate functions, one of which defines an ellipsis parameter, the com-

piler selects the function defining the ellipsis parameter only if the alternative(s) can’t be used.

Following the above reasoning an alternative function test(...) is declared as well. This alternate

function does not return a Convertible value but a NotConvertible value:

NotConvertible test(...);

If test’s argument is of type T and if T can be converted to U then test’s return type is Convertible.

Otherwise NotConvertible is returned.

This situation clearly shows similarities with the situation encountered in section 22.6.1 where the

value isClass had to be determined compile time. Here two related problems must be solved:

• how do we obtain a T argument? This is more difficult than might be expected at first sight as

it might not be possible to define a T. If type T does not define any constructor then no T object

can be defined.

• how can Convertible be distinguished from NotConvertible?

The first problem is solved by realizing that no T needs to be defined. After all, the intent is to decide

compile-time whether a type is convertible and not to define a T value or object. Defining objects is

not a compile-time but a run-time matter.

By simply declaring a function returning a T we can tell the compiler where it should assume a T:

T makeT();

This mysterious function has the magical power of enticing the compiler into thinking that a T

object comes out of it. However, this function needs a small modification before it will actually suit

our needs. If, for whatever reason, T happens to be an array then the compiler will choke on T

768 CHAPTER 22. ADVANCED TEMPLATE USE

makeT() as functions cannot return arrays. This, however, is easily solved, as functions can return

references to arrays. So the above declaration is changed into:

T const &makeT();

Next we pass a T const & to test: following code:

test(makeT())

Now that the compiler sees test being called with a T const & argument it decides that its return

value is Convertible if a conversion is in fact possible. Otherwise it decides that its return value

is NotConvertible (as the compiler, in that case, selected test(...)).

The second problem, distinguishing Convertible from NotConvertible is solved exactly the way

isClass could be determined in section 22.6.1, viz. by making their sizes different. Having done so

the following expression determines whether T is convertible from U or not:

isConvertible = sizeof(test(makeT())) == sizeof(Convertible);

By using char for Convertible and Char2 (cf. section 22.6.1) for NotConvertible the distinction

can be made.

The above can be summarized in a class template LconvertibleToR, having two template type

parameters:

template <typename T, typename U>

class LconvertibleToR

{

struct Char2

{

char array[2];

};

static T const &makeT();

static char test(U const &);

static Char2 test(...);

public:

LconvertibleToR(LconvertibleToR const &other) = delete;

enum { yes = sizeof(test(makeT())) == sizeof(char) };

enum { sameType = 0 };

};

template <typename T>

class LconvertibleToR<T, T>

{

public:

LconvertibleToR(LconvertibleToR const &other) = delete;

enum { yes = 1 };

enum { sameType = 1 };

};

As the class template deletes its copy constructor no object can be created. Only its enum values can

be interrogated. The next example writes 1 0 1 0 when run from a main function:

22.8. MORE CONVERSIONS TO CLASS TYPES 769

cout <<

LconvertibleToR<ofstream, ostream>::yes << " " <<

LconvertibleToR<ostream, ofstream>::yes << " " <<

LconvertibleToR<int, double>::yes << " " <<

LconvertibleToR<int, string>::yes <<

"\n";

22.8.3.1 Determining inheritance

Now that it is possible to determine type convertibility, it’s easy to determine whether a type Base

is a (public) base class of a type Derived.

Inheritance is determined by inspecting convertibility of (const) pointers. Derived const * can

be converted to Base const * if

• both types are identical;

• Base is a public and unambiguous base class of Derived;

• and (usually not intended) if Base is void.

Assuming the last conversion isn’t used inheritance can be determined using the following trait class

LBaseRDerived. LBaseRDerived provides an enum yes which is 1 if the left type is a base class

of the right type and both types are different:

template <typename Base, typename Derived>

struct LBaseRDerived

{

LBaseRDerived(LBaseRDerived const &) = delete;

enum {

yes =

LconvertibleToR<Derived const *, Base const *>::yes &&

not LconvertibleToR<Base const *, void const *>::sameType

};

};

If code should not consider a class to be its own base class, then the trait class LBaseRtrulyDerived

can be used to perform a strict test. This trait class adds a test for type-equality:

template <typename Base, typename Derived>

struct LBaseRtrulyDerived

{

LBaseRtrulyDerived(LBaseRtrulyDerived const &) = delete;

enum {

yes =

LBaseRDerived<Base, Derived>::yes &&

not LconvertibleToR<Base const *, Derived const *>::sameType

};

};

Example: the next statement displays 1: 0, 2: 1, 3: 0, 4: 1, 5: 0 when executed

from a main function:

cout << "\n" <<

770 CHAPTER 22. ADVANCED TEMPLATE USE

"1: " << LBaseRDerived<ofstream, ostream>::yes << ", " <<

"2: " << LBaseRDerived<ostream, ofstream>::yes << ", " <<

"3: " << LBaseRDerived<void, ofstream>::yes << ", " <<

"4: " << LBaseRDerived<ostream, ostream>::yes << ", " <<

"5: " << LBaseRtrulyDerived<ostream, ostream>::yes <<

"\n";

22.9 Template TypeList processing

This section serves two purposes. It illustrates capabilities of the various template meta-programming

techniques, which can be used as a source of inspiration when developing your own templates; and

it offers a concrete example, illustrating some of the power offered by these techniques.

This section itself was inspired by Andrei Alexandrescu’s (2001) book Modern C++ design. It

diverts from Alexandrescu’s book in its use of variadic templates which were not yet available when

he wrote his book. Even so, the algorithms used by Alexandrescu are still useful when using variadic

templates.

The C++11 standard offers the tuple to store and retrieve values of multiple types. Here the focus is

merely on processing types. A simple struct TypeList is going to be used as our working horse for

the upcoming subsections. Here is its definition:

template <typename ...Types>

struct TypeList

{

TypeList(TypeList const &) = delete;

enum { size = sizeof ...(Types) };

};

A typelist allows us to store any number of types. Here is an example storing the three types char,

short, int in a TypeList:

TypeList<char, short, int>

22.9.1 The length of a TypeList

As the number of types in a parameter pack may be obtained using the sizeof operator (cf. section

21.5) it is easy to obtain the number of types that were specified with a certain TypeList. For

example, the following statement displays the value 3:

std::cout << TypeList<int, char, bool>::size << ’\n’;

However, it’s illustrative to see how the number of types specified with a TypeList could be deter-

mined if sizeof hadn’t been available.

To obtain the number of types that were specified with a TypeList the following algorithm is used:

• If the TypeList contains no types, its size equals zero;

• If the TypeList contains types, its size equals 1 plus the number of types that follow its first

type.

22.9. TEMPLATE TYPELIST PROCESSING 771

The algorithm uses recursion to define the length of a TypeList. In executable C++ recursion could

also be used in comparable situations. For example recursion can be used to determine the length of

an NTBS:

size_t c_length(char const *cp)

{

return *cp == 0 ? 0 : 1 + c_length(cp + 1);

}

While C++ functions usually use iteration rather than recursion, iteration is not available to tem-

plate meta programming algorithms. In template meta programming repetition must be imple-

mented using recursion. Furthermore, while C++ run-time code may use conditions to decide

whether or not to start the next recursion template meta programming cannot do so. Template

meta programming algorithms must resort to (partial) specializations. The specializations are used

to select alternatives.

The number of types that are specified in a TypeList can be computed using the following alternate

implementation of TypeList, using a generic struct declaration and two specialization for the

empty and non-empty TypeList (cf. the above description of the algorithm):

template <typename ...Types>

struct TypeList;

template <typename Head, typename ...Tail>

struct TypeList

{

enum { size = 1 + TypeList<Tail...>::size };

};

template <>

struct TypeList<>

{

enum { size = 0 };

};

22.9.2 Searching a TypeList

To determine whether a particular type (called SearchType below) is present in a given TypeList,

an algorithm is used that either defines ‘index’ as -1 (if SearchType is not an element of the TypeList

) or it defines ‘index’ as the index of the first occurrence of SearchType in the TypeList. The follow-

ing algorithm is used:

• If the TypeList is empty, ‘index’ is -1;

• If the TypeList’s first element equals SearchType, ‘index’ is 0;

• Otherwise ‘index’ is:

– -1 if searching for SearchType in TypeList’s tail results in ‘index’ == -1;

– Otherwise (SearchType was found in TypeList’s tail) index is set to 1 + the index ob-

tained when searching for SearchType in the TypeList’s tail.

The algorithm is implemented using a variadic template struct ListSearch expecting a parameter

pack:

772 CHAPTER 22. ADVANCED TEMPLATE USE

template <typename ...Types>

struct ListSearch

{

ListSearch(ListSearch const &) = delete;

};

Specializations handle the alternatives mentioned with the algorithm:

• If TypeList is empty, ‘index’ is -1:

template <typename SearchType>

struct ListSearch<SearchType, TypeList<>>

{

ListSearch(ListSearch const &) = delete;

enum { index = -1 };

};

• If TypeList’s head equals SearchType, ‘index’ is 0. Note that SearchType is explicitly men-

tioned as the TypeList’s first element:

template <typename SearchType, typename ...Tail>

struct ListSearch<SearchType, TypeList<SearchType, Tail...>>

{

ListSearch(ListSearch const &) = delete;

enum { index = 0 };

};

• Otherwise a search is performed on the TypeList’s tail. The index value returned by this

search is stored in a tmp enum value, which is then used to determine index’s value.

template <typename SearchType, typename Head, typename ...Tail>

struct ListSearch<SearchType, TypeList<Head, Tail...> >

{

ListSearch(ListSearch const &) = delete;

enum {tmp = ListSearch<SearchType, TypeList<Tail...>>::index};

enum {index = tmp == -1 ? -1 : 1 + tmp};

};

Here is an example showing how ListSearch can be used:

std::cout <<

ListSearch<char, TypeList<int, char, bool>>::index << "\n" <<

ListSearch<float, TypeList<int, char, bool>>::index << "\n";

22.9.3 Selecting from a TypeList

The inverse operation of determining the index of a certain type in a TypeList is retrieving the

type given its index. This inverse operation is the topic of this section.

The algorithm is implemented using a struct TypeAt. TypeAt uses a typedef to define the type

matching a given index. But the index might be out of bounds. In that case we have several options:

• Use a static_assert to stop the compilation. This is an appropriate action if the index should

simply not be out of bounds;

22.9. TEMPLATE TYPELIST PROCESSING 773

• Define a local type (e.g., Null) that should not be used as a type in the TypeList. This type is

going to be returned when the index is out of bounds. Using this local type as one of the types

in a TypeList is considered an error as its would conflict with the special meaning of Null as

the type returned at an invalid index.

To prevent Null from being returned by TypeAt a static_assert is used to catch the Null

type when it is encountered while evaluating TypeAt;

• The struct TypeAt may define an enum value validIndex set to true if the index was valid

and set to false if not.

The first alternative is implemented below. The other alternatives are not difficult to implement and

are left as exercises for the reader. Here’s how TypeAt works:

• The foundation consists of a variadic template struct TypeAt, expecting an index and a TypeList:

template <size_t index, typename Typelist>

struct TypeAt;

• If the typelist is empty a static_assert ends the compilation

template <size_t index>

struct TypeAt<index, TypeList<>>

{

static_assert(index < 0, "TypeAt index out of bounds");

typedef TypeAt Type;

};

• If the search index equals 0, define Type as the first type in the TypeList:

template <typename Head, typename ...Tail>

struct TypeAt<0, TypeList<Head, Tail...>>

{

typedef Head Type;

};

• Otherwise, Type is defined as Type defined by TypeAt<index - 1> operating on the TypeList’s

tail:

template <size_t index, typename Head, typename ...Tail>

struct TypeAt<index, TypeList<Head, Tail...>>

{

typedef typename TypeAt<index - 1, TypeList<Tail...>>::Type Type;

};

Here is how typeAt can be used. Uncommenting the first variable definition causes a TypeAt

index out of bounds compilation error:

typedef TypeList<int, char, bool> list3;

// TypeAt<3, list3>::Type invalid;

TypeAt<0, list3>::Type intVariable = 13;

TypeAt<2, list3>::Type boolVariable = true;

cout << "The size of the first type is " <<

774 CHAPTER 22. ADVANCED TEMPLATE USE

sizeof(TypeAt<0, list3>::Type) << ", "

"the size of the third type is " <<

sizeof(TypeAt<2, list3>::Type) << "\n";

if (typeid(TypeAt<1, list3>::Type) == typeid(char))

cout << "The typelist’s 2nd type is char\n";

if (typeid(TypeAt<2, list3>::Type) != typeid(char))

cout << "The typelist’s 3nd type is not char\n";

22.9.4 Prefixing/Appending to a TypeList

Prepending or appending a type to a TypeList is easy and doesn’t require recursive template meta

programs. Two variadic template structs Append and Prefix and two specializations are all it

takes.

Here are the declarations of the two variadic template structs:

template <typename ...Types>

struct Append;

template <typename ...Types>

struct Prefix;

To append or prefix a new type to a typelist, specializations expect a typelist and a type to add. Then,

they simply define a new TypeList also including the new type. The Append specialization shows

that a template pack does not have to be used as the first argument when defining another variadic

template type:

template <typename NewType, typename ...Types>

struct Append<TypeList<Types...>, NewType>

{

typedef TypeList<Types..., NewType> List;

};

template <typename NewType, typename ...Types>

struct Prefix<NewType, TypeList<Types...>>

{

typedef TypeList<NewType, Types...> List;

};

22.9.5 Erasing from a TypeList

It is also possible to erase types from a TypeList. Again, there are several possibilities, each

resulting in a different algorithm.

• The type to erase is specified, and the first occurrence of that type is removed from the TypeList;

• The index of the type to erase is specified, and the type at that index position is erased from

the TypeList;

• The type to erase is specified, and all occurrences of that type are removed from the TypeList.

22.9. TEMPLATE TYPELIST PROCESSING 775

• As a variant of erasure: we may want to erase all multiply occurring types in a TypeList,

keeping each type only once.

Doubtlessly there are other ways of erasing types from a TypeList. Which ones are eventually im-

plemented depends of course on the circumstances. As template meta programming is very powerful

most if not all algorithms can probably be implemented. As an illustration of how to erase types from

a TypeList the above-mentioned algorithms are now developed in the upcoming subsections.

22.9.5.1 Erasing the first occurrence

To erase the first occurrence of a specified EraseType from a TypeList a recursive algorithm is

used once again. The template meta program uses a generic Erase struct and several specializa-

tions. The specializations define a type List containing the resulting TypeList after the erasure.

Here is the algorithm:

• The foundation of the algorithm consists of a struct template Erase expecting the type to erase

and a TypeList:

template <typename EraseType, typename TypeList>

struct Erase;

• If the typelist is empty, there’s nothing to erase, and an empty TypeList results:

template <typename EraseType>

struct Erase<EraseType, TypeList<>>

{

typedef TypeList<> List;

};

• If the TypeList’s head matches the type to erase, then List becomes a TypeList containing

the original TypeList’s tail types:

template <typename EraseType, typename ...Tail>

struct Erase<EraseType, TypeList<EraseType, Tail...>>

{

typedef TypeList<Tail...> List;

};

• In all other cases the erase operation is applied to the TypeList’s tail. This results in a

TypeList to which the orginal TypeList’s head must be prefixed. The TypeList returned

by the prefix operation is then returned as Erase::List:

template <typename EraseType, typename Head, typename ...Tail>

struct Erase<EraseType, TypeList<Head, Tail...>>

{

typedef typename

Prefix<Head,

typename Erase<EraseType, TypeList<Tail...>>::List

>::List List;

};

776 CHAPTER 22. ADVANCED TEMPLATE USE

Here is a statement showing how Erase can be used:

cout <<

Erase<int, TypeList<char, double, int>>::List::size << ’\n’ <<

Erase<char, TypeList<int>>::List::size << ’\n’ <<

Erase<int, TypeList<int>>::List::size << ’\n’ <<

Erase<int, TypeList<>>::List::size << "\n";

22.9.5.2 Erasing a type by its index

To erase a type from a TypeList by its index we again use a recursive template meta program.

EraseIdx expects a size_t index value and a TypeList from which its idxth (0-based) type must

be erased. EraseIdx defines the type List containing the resulting TypeList. Here is the algo-

rithm:

• The foundation of the algorithm consists of a struct template EraseIdx expecting the index of

the type to erase and a TypeList:

template <size_t idx, typename TypeList>

struct EraseIdx;

• If the typelist is empty, there’s nothing to erase, and an empty TypeList results:

template <size_t idx>

struct EraseIdx<idx, TypeList<>>

{

typedef TypeList<> List;

};

• The recursion otherwise ends once idx becomes 0. At that point the TypeList’s first type is

ignored and List is initialized to a TypeList containing the types in the orginal TypeList’s

tail:

template <typename EraseType, typename ...Tail>

struct EraseIdx<0, TypeList<EraseType, Tail...>>

{

typedef TypeList<Tail...> List;

};

• In all other cases EraseIdx is applied to the TypeList’s tail, providing it with a decre-

mented value of idx. To the resulting TypeList the orginal TypeList’s head is prefixed.

The TypeList returned by the prefix operation is then returned as EraseIdx::List:

template <size_t idx, typename Head, typename ...Tail>

struct EraseIdx<idx, TypeList<Head, Tail...>>

{

typedef typename Prefix<

Head,

typename EraseIdx<idx - 1, TypeList<Tail...>>::List

>::List List;

};

22.9. TEMPLATE TYPELIST PROCESSING 777

Here is a statement showing how EraseIdx can be used:

if

(

typeid(TypeAt<2,

EraseIdx<1,

TypeList<int, char, size_t, double, int>>::List

>::Type

)

== typeid(double)

)

cout << "the third type is now a double\n";

22.9.5.3 Erasing all occurrences of a type

Erasing all types EraseType from a TypeList can easily be accomplished by applying the erasure

procedure not only to the head of the TypeList but also to the TypeList’s tail.

Here is the algorithm, described in a slightly different order than Erase’s algorithm:

• If the TypeList is empty, there’s nothing to erase, and an empty TypeList results. This

is exactly what we do with Erase, so we can use inheritance to prevent us from having to

duplicate elements of a template meta program:

template <size_t idx>

struct EraseIdx<idx, TypeList<>>

{

typedef TypeList<> List;

};

• The foundation of the algorithm is therefore a struct template EraseAll expecting the type to

erase and a TypeList that is derived from Erase, thus already offering the empty TypeList

handling specialization:

template <typename EraseType, typename TypeList>

struct EraseAll: public Erase<EraseType, TypeList>

{};

• If TypeList’s head matches EraseType EraseAll is also applied to the TypeList’s tail, thus

removing all occurrences of EraseType from TypeList:

template <typename EraseType, typename ...Tail>

struct EraseAll<EraseType, TypeList<EraseType, Tail...>>

{

typedef typename EraseAll<EraseType, TypeList<Tail...>>::List List;

};

• In all other cases (i.e., TypeList’s head does not match EraseType) EraseAll is applied to

the TypeList’s tail. The returned TypeList consists of the original TypeList’s initial type

and the types of the TypeList returned by the recursive EraseAll call:

template <typename EraseType, typename Head, typename ...Tail>

struct EraseAll<EraseType, TypeList<Head, Tail...>>

778 CHAPTER 22. ADVANCED TEMPLATE USE

{

typedef typename Prefix<

Head,

typename EraseAll<EraseType, TypeList<Tail...>>::List

>::List List;

};

Here is a statement showing how EraseAll can be used:

cout <<

"After erasing size_t from "

"TypeList<char, int, size_t, double, size_t>\n"

"it contains " <<

EraseAll<size_t,

TypeList<char, int, size_t, double, size_t>

>::List::size << " types\n";

22.9.5.4 Erasing duplicates

To remove all duplicates from a TypeList all the TypeList’s first elements must be erased from the

TypeList’s tail, applying the procedure recursively to the TypeList’s tail. The algorithm, outlined

below, merely expects a TypeList:

• First, the generic EraseDup struct template is declared. EraseDup structures define a type

List representing the TypeList that they generate. EraseDup calls expect a TypeList as

their template type parameters:

template <typename TypeList>

struct EraseDup;

• If the TypeList is empty it can be returned empty and we’re done:

template <>

struct EraseDup<TypeList<>>

{

typedef TypeList<> List;

};

• In all other cases

– EraseDup is first applied to the original TypeList’s tail. By definition this results in a

TypeList from which all duplicates have been removed;

– The TypeList returned by the previous step might contain the original TypeList’s initial

type. If so, it is removed by applying Erase on the returned TypeList, specifying the

original TypeList’s initial type as the type to remove;

– The returned TypeList consists of the original TypeList’s initial type to which the types

of the TypeList produced by the previous step are appended.

This specialization is implemented like this:

template <typename Head, typename ...Tail>

struct EraseDup<TypeList<Head, Tail...>>

{

22.10. USING A TYPELIST 779

typedef typename EraseDup<TypeList<Tail...>>::List UniqueTail;

typedef typename Erase<Head, UniqueTail>::List NewTail;

typedef typename Prefix<Head, NewTail>::List List;

};

Here is an example showing how EraseDup can be used:

cout <<

"After erasing duplicates from "

"TypeList<double, char, int, size_t, int, double, size_t>\n"

"it contains " <<

EraseDup<

TypeList<double, char, int, size_t, int, double, size_t>

>::List::size << " types\n";

22.10 Using a TypeList

In the previous sections the definition and some of the features of typelists were discussed. Most

C++ programmers consider typelists both exciting and an intellectual challenge, honing their skills

in the area of recursive programming.

But there’s more to typelist than a mere intellectual challenge. In the final sections of this chapter

the following topics are covered:

• Creating classes from a typelist.

Here the aim is to construct a new class consisting of instantiations of an existing basic tem-

plate for each of the types mentioned in a provided typelist;

• Accessing data members from the thus constructed conglomerate class by index, rather than

name.

Again, much of the material covered by these sections was inspired by Alexandrescu’s (2001) book,

this time combined with the features offered by the C++11 standard.

22.10.1 The Wrap and Multi class templates

To illustrate template meta programming concepts the template class Multi is now developed. The

class template Multi creates a new class from a template template parameter Policy defining

the data storage policy and a series of types from which Multi is eventually derived. It does so

by passing its template parameters to its base class MultiBase that in turn creates a final class

inheritance tree. Since we don’t know how many types are going to be used Multi is defined as a

variadic class template using a template pack ...Types.

In fact, the types that are specified with Multi aren’t that interesting. They primarily serve to ‘seed’

the class Policy. Therefore, rather than forwarding Multi’s types to MultiBase they are passed

to Policy and the sequence of Policy<Type> types is then forwarded to MultiBase. Multi’s con-

structor expects initialization values for its various Policy<Type>s which are perfectly forwarded

to MultiBase.

780 CHAPTER 22. ADVANCED TEMPLATE USE

The class Multi (implementing its constructor in-class to save some space) shows how a template

pack can be wrapped into a policy. Here is Multi’s definition:

template <template <typename> class Policy, typename ...Types>

struct Multi: public MultiBase<0, Policy<Types>...>

{

typedef TypeList<Types...> PlainTypes;

typedef MultiBase<0, Policy<Types>...> Base;

enum { size = PlainTypes::size };

Multi(Policy<Types> &&...types)

:

MultiBase<0, Policy<Types>...>(

std::forward<Policy<Types>>(types)...)

{}

};

Unfortunately, the design as described contains some flaws.

• As the Policy template template parameter is defined as template <typename> class

Policy it can only accept policies expecting one type argument. Contrary to this, std::vector

is a template expecting two template arguments, the second one defining the allocation scheme

used by std::vector. This allocation scheme is hardly ever changed, and most applications

merely define objects of types like vector<int>, vector<string> etc.. Template template

parameters must, however, be specified with the correct number and types of required tem-

plate parameters so vector can’t be specified as a policy for Multi. This can be solved by

wrapping a more complex template in a simpler wrapper template, like so:

template <class Type>

struct Vector: public std::vector<Type>

{

Vector(std::initializer_list<Type> iniValues)

:

std::vector<Type>(iniValues)

{}

};

Now Vector provides std::vector’s second parameter using its default template argument.

Alternatively, a template using declaration could be used.

• If the TypeList contains two types like int and double and the policy class is Vector, then

the MultiBase class eventually inherits from vector<int> and vector<double>. But if the

TypeList contains identical types, like two int type specifications MultiBase would inherit

from two vector<int> classes. Classes cannot be derived from identical base classes as that

would make it impossible to distinguish among their members. Regarding this, Alexandrescu

(2001) writes (p.67):

There is one major source of annoyance...: you cannot use it when you have duplicate

types in your TypeList.

.... There is no easy way to solve the ambiguity, [as the eventually derived class/FBB]

ends up inheriting [the same base class/FBB] twice.

There is a way around the problem of duplicate base class types. If instead of inheriting directly from

base classes these base classes are first wrapped in unique type defining classes, then these unique

22.10. USING A TYPELIST 781

classes can be used to access the base classes using principles of inheritance. As these unique type-

defining wrapper classes are merely classes that are derived from the ‘real’ base classes they inherit

(and thus: offer) the functionality of their base classes. A unique type defining wrapper class can

be designed after the class IntType, defined earlier. The wrapper class we’re looking combines class

derivation with the uniqueness offered by IntType. The class template UWrap has two template

parameters: one non-type parameter idx and one type parameter. By ensuring that each UWrap

definition uses a unique idx value unique class types are created. These unique class types are

then used as base classes of the derived class MultiBase:

template <size_t nr, typename Type>

struct UWrap: public Type

{

UWrap(Type const &type)

:

Type(type)

{}

};

Using UWrap it’s easy to distinguish, e.g., two vector<int> classes: UWrap<0, vector<int»

could refer to the first vector<int>, UWrap<1, vector<int» to the second vector.

Uniqueness of the various UWrap types is assured by the class template MultiBase as discussed in

the next section.

It must also be possible to initialize a Multi class object. Its constructor therefore expects the

initialization values for all its Policy values. So if a Multi is defined for Vector, int, string

then its constructor can receive the matching initialization values. E.g.,

Multi<Vector, int, string> mvis({1, 2, 3}, {"one", "two", "three"});

22.10.2 The MultiBase class template

The class template MultiBase is Multi’s base class. It defines a class that, eventually, is derived

from the list of Policy types that, in turn, were created by Multi using any additional types that

were passed to it.

MultiBase itself has no concept of a Policy. To MultiBase the world appears to consist of a

simple template pack whose types are used to define a class from. In addition to the PolicyTypes

template pack, MultiBase also defines a size_t nr non-type parameter that is used to create

unique UWrap types. Here is MultiBase’s generic class declaration:

template <size_t nr, typename ...PolicyTypes>

struct MultiBase;

Two specializations handle all possible MultiBase invocations. One specialization is a recursive

template. This template handles the first type of MultiBase’s template parameter pack and re-

cursively uses itself to handle the remaining types. The second specialization is invoked once the

template parameter pack is exhausted and does nothing. Here is the definition of the latter special-

ization:

template <size_t nr>

struct MultiBase<nr>

{};

782 CHAPTER 22. ADVANCED TEMPLATE USE

MultiBase<0, T1, T2, T3>

MultiBase<1, T2, T3>UWrap<0, T1>

UWrap<2, T3>

UWrap<1, T2>

MultiBase<3>

MultiBase<2, T3>

Figure 22.1: Layout of a MultiBase class hierarchy

The recursively defined specialization is the interesting one. It performs the following tasks:

• It is derived from a unique UWrap type. The uniqueness is guaranteerd by using MultiBase’s

nr parameter when defining UWrap. In addition to nr the UWrap class receives the first type

of the template parameter pack made available to MultiBase;

• It is also recursively derived from itself. The recursive MultiBase type is defined using as its

first template argument an incremented nr value (thus ensuring the uniqueness of the UWrap

types defined by recursive MultiWrap types). Its second template argument is the tail of the

template parameter pack made available to MultiBase

An illustration showing the layout of the MultiBase class hierarchy is provided in figure 22.1.

MultiBase’s constructor simply receives the initialization values that were (originally) passed to

the Multi object. Perfect forwarding is used to accomplish this. MultiBase’s constructor passes its

first parameter value to its UWrap base class, also using perfect forwarding. MultiBase’s recursive

definition is:

template <size_t nr, typename PolicyT1, typename ...PolicyTypes>

struct MultiBase<nr, PolicyT1, PolicyTypes...> :

public UWrap<nr, PolicyT1>,

public MultiBase<nr + 1, PolicyTypes...>

{

typedef PolicyT1 Type;

typedef MultiBase<nr + 1, typename PolicyTypes...> Base;

MultiBase(PolicyT1 && policyt1, PolicyTypes &&...policytypes)

:

UWrap<nr, PolicyT1>(std::forward<PolicyT1>(policyt1)),

MultiBase<nr + 1, PolicyTypes...>(

std::forward<PolicyTypes>(policytypes)...)

{}

};

22.10. USING A TYPELIST 783

22.10.3 Support templates

The Multi class template defines PlainTypes as the TypeList holding all the types of its param-

eter pack. Each MultiBase derived from a UWrap type also defines a type Type representing the

policy type that was used to define the UWrap type and a type Base representing the type of its

nested MultiBase class.

These three type definitions allow us to access the types from which the Multi object was created

as well as the values of those types.

The class template typeAt, is a pure template meta program class template (it has no run-time

executable code). It expects a size_t idx template argument specifying the index of the policy

type in a Multi type object as well as a Multi class type. It defines the type Type as the Type

defined by Multi’s MultiBase<idx, ...> base class. Example:

typeAt<0, Multi<Vector, int, double>>::Type // Type is vector<int>

The class template typeAt defines (and uses) a nested class template PolType doing all the work.

PolType’s generic definition specifies two template parameters: an index used to specify the index

of the requested type and a typename initialized by a MultiBase type argument. PolType’s re-

cursive definition recursively reduces its index non-type parameter, passing the next base class in

MultiBase’s inheritance tree to the recursive call. As PolType eventually defines the type Type to

be the requested policy type the recursive definition defines its Type as the type defined by the re-

cursive call. The final (non-recursive) specialization defines the initial policy type of the MultiBase

type as Type. Here is typeAt’s definition:

template <size_t index, typename Multi>

class typeAt

{

template <size_t idx, typename MultiBase>

struct PolType;

template <size_t idx,

size_t nr, typename PolicyT1, typename ...PolicyTypes>

struct PolType<idx, MultiBase<nr, PolicyT1, PolicyTypes...>>

{

typedef typename PolType<

idx - 1, MultiBase<nr + 1, PolicyTypes...>>::Type Type;

};

template <size_t nr, typename PolicyT1, typename ...PolicyTypes>

struct PolType<0, MultiBase<nr, PolicyT1, PolicyTypes...>>

{

typedef PolicyT1 Type;

};

public:

typeAt(typeAt const &) = delete;

typedef typename PolType<index, typename Multi::Base>::Type Type;

};

The types specified by Multi’s parameter pack can also be retrieved using a second helper class

template: plainTypeAt. Example:

plainTypeAt<0, Multi<Vector, int, double>>::Type // Type is int

784 CHAPTER 22. ADVANCED TEMPLATE USE

The class template plainTypeAt uses a comparable (but simpler) implementation than typeAt.

It is also a pure template meta program class template defining a nested class template At. At is

implemented like typeAt but it visits the types of the original template pack that was passed to

Multi, and made available by Multi as its PlainTypes type. Here is plainTypeAt’s definition:

template <size_t index, typename Multi>

class plainTypeAt

{

template <size_t idx, typename List>

struct At;

template <size_t idx, typename Head, typename ...Tail>

struct At<idx, TypeList<Head, Tail...>>

{

typedef typename At<idx - 1, TypeList<Tail...>>::Type Type;

};

template <typename Head, typename ...Tail>

struct At<0, TypeList<Head, Tail...>>

{

typedef Head Type;

};

public:

plainTypeAt(plainTypeAt const &) = delete;

typedef typename At<index, typename Multi::PlainTypes>::Type Type;

};

Arguably the neatest support template is get. This is a function template defining size_t idx as

its first template parameter and typename Multi as its second template parameter. The function

template get defines one function parameter: a reference to a Multi, so it can deduct Multi’s type

by itself. Knowing that it’s a Multi, we reason that it is also a UWrap<nr, PolicyType> and

therefore also a PolicyType, as the latter class is defined as a base class of UWrap.

Since class type objects can initialize references to their base classes the PolicyType & can be

initialized by an appropriate UWrap reference, which in turn can be initialized by a Multi object.

Since we can determine PolicyType using TypeAt (note that evaluating typename typeAt<idx,

Multi>::Type is a purely compile-time matter), the get function can very well be implemented

inline by a single return statement:

template <size_t idx, typename Multi>

inline typename typeAt<idx, Multi>::Type &get(Multi &multi)

{

return static_cast<

UWrap<idx, typename typeAt<idx, Multi>::Type> &>(multi);

}

The intermediate UWrap cast is required to disambiguate between identical policy types (like two

vector<int> types). As UWrap is uniquely determined by its nr template argument and this is the

number argument that is passed to get ambiguities can easily be prevented.

22.10. USING A TYPELIST 785

22.10.4 Using Multi

Now that Multi and its support templates have been developed, how can a Multi be used?

A word of warning is in place. To reduce the size of the developed classes they were designed in a

minimalist way. For example, the get function template cannot be used with Multi const objects

and there is no default, or move constructor available for Multi types. Multi was designed to illus-

trate some of the possibilities of template meta programming and hopefully Multi’s implementation

served that purpose well. But can it be used? If so, how?

This section provides some annotated examples. They may be concatenated to define a series of

statements that could be placed in a main function’s body, which would result in a working program.

• A simple Policy could be defined:

template <typename Type>

struct Policy

{

Type d_type;

Policy(Type &&type)

:

d_type(std::forward<Type>(type))

{}

};

Policy defines a data member and it can be used to define Multi objects:

Multi<Policy, string> ms(Policy<string>("hello"));

Multi<Policy, string, string> ms2s(Policy<string>("hello"),

Policy<string>("world"));

typedef Multi<Policy, string, int> MPSI;

MPSI mpsi(string("hello"), 4);

• To obtain the number of types defined by a Multi class or object either use the ::size enum

value (using the Multi class) or the .size member (using the Multi object):

cout << "There are " << MPSI::size << " types in MPSI\n"

"There are " << mpsi.size << " types in mpsi\n";

• Variables of constituting types can be defined using plainTypeAt:

plainTypeAt<0, MPSI>::Type sx = "String type";

plainTypeAt<1, MPSI>::Type ix = 12;

• Raw static casts can be used to obtain the constituent type:

cout << static_cast<Policy<string> &>(mpsi).d_type << ’\n’ <<

static_cast<Policy<int> &>(mpsi).d_type << ’\n’;

• However, this won’t work when the template parameter pack contains identical types, as a cast

can’t distinguish between identical Policy<Type> types. In that case get still works fine:

typedef Multi<Policy, int, int> MPII;

MPII mpii(4, 18);

cout << get<0>(mpii).d_type << ’ ’ << get<1>(mpii).d_type << ’\n’;

786 CHAPTER 22. ADVANCED TEMPLATE USE

• Here is an example wrapping a std::vector in a Vector:

typedef Multi<Vector, int, double> MVID;

MVID mi({1, 2, 3}, {1.2, 3.4, 5.6, 7.8});

• Such a vector can be defined by its Multi type:

typeAt<0, Multi<Vector, int>>::Type vi = {1, 2, 3};

• Knowing that a Vector is a std::vector, the reference returned by get support index oper-

ators that can be used as left hand side or right hand side operands:

cout << get<0>(mi)[2] << ’\n’;

get<1>(mi)[3] = get<0>(mi)[0];

cout << get<1>(mi)[3] << ’\n’;

Chapter 23

Concrete Examples

In this chapter concrete examples of C++ programs, classes and templates are presented. Topics

covered by the C++ Annotations such as virtual functions, static members, etc. are illustrated in

this chapter. The examples roughly follow the organization of earlier chapters.

As an additional topic, not just providing examples of C++ the subjects of scanner and parser genera-

tors are covered. We show how these tools may be used in C++ programs. These additional examples

assume a certain familiarity with the concepts underlying these tools, like grammars, parse-trees

and parse-tree decoration. Once the input for a program exceeds a certain level of complexity, it’s

attractive to use scanner- and parser-generators to create the code doing the actual input processing.

One of the examples in this chapter describes the usage of these tools in a C++ environment.

23.1 Using file descriptors with ‘streambuf’ classes

23.1.1 Classes for output operations

Reading and writing from and to file descriptors are not part of the C++ standard. But on most

operating systems file descriptors are available and can be considered a device. It seems natural to

use the class std::streambuf as the starting point for constructing classes interfacing such file

descriptor devices.

Below we’ll construct classes that can be used to write to a device given its file descriptor. The

devices may be files, but they could also be pipes or sockets. Section 23.1.2 covers reading from such

devices; section 23.2.3 reconsiders redirection, discussed earlier in section 6.6.1.

Using the streambuf class as a base class it is relatively easy to design classes for output operations.

The only member function that must be overridden is the (virtual) member int streambuf::overflow(int

c). This member’s responsibility is to write characters to the device. If fd is an output file descriptor

and if output should not be buffered then the member overflow() can simply be implemented as:

class UnbufferedFD: public std::streambuf

{

public:

virtual int overflow(int c);

...

};

787

788 CHAPTER 23. CONCRETE EXAMPLES

int UnbufferedFD::overflow(int c)

{

if (c != EOF)

{

if (write(d_fd, &c, 1) != 1)

return EOF;

}

return c;

}

The argument received by overflow is either written to the file descriptor (and returned from

overflow), or EOF is returned.

This simple function does not use output buffering. For various reasons, using a buffer is usually a

good idea (see also the next section).

When output buffering is used, the overflowmember is a bit more complex as it is only called when

the buffer is full. Once the buffer is full, we first have to flush the buffer. Flushing the buffer is the

responsibility of the (virtual) function streambuf::sync. Since sync is a virtual function, classes

derived from streambuf may redefine sync to flush a buffer streambuf itself doesn’t know about.

Overriding sync and using it in overflow is not all that has to be done. When the object of the

class defining the buffer reaches the end of its lifetime the buffer may be only partially full. In that

situation the buffer must also be flushed. This is easily done by simply calling sync from the class’s

destructor.

Now that we’ve considered the consequences of using an output buffer, we’re almost ready to design

our derived class. Several more features are added as well, though:

• First, we should allow the user of the class to specify the size of the output buffer.

• Second, it should be possible to construct an object of our class before the file descriptor is

actually known. Later, in section 23.2 we’ll encounter a situation where this feature is actually

used.

To save some space in the C++ Annotations, the successful completion of the functions designed here

is not checked in the example code. In ‘real life’ implementations these checks should of course not

be omitted. Our class OFdnStreambuf has the following characteristics:

• Its member functions use low-level functions operating on file descriptors. So apart from

streambuf the <unistd.h> header file must have been read by the compiler before its mem-

ber functions can be compiled.

• The class is derived from std::streambuf.

• It defines three data members. These data members keep track of, respectively, the size of the

buffer, the file descriptor, and the buffer itself. Here is the full class interface

class OFdnStreambuf: public std::streambuf

{

size_t d_bufsize;

int d_fd;

char *d_buffer;

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 789

public:

OFdnStreambuf();

OFdnStreambuf(int fd, size_t bufsize = 1);

virtual ~OFdnStreambuf();

void open(int fd, size_t bufsize = 1);

private:

virtual int sync();

virtual int overflow(int c);

};

• Its default constructor merely initializes the buffer to 0. Slightly more interesting is its con-

structor expecting a file descriptor and a buffer size. This constructor passes its arguments on

to the class’s open member (see below). Here are the constructors:

inline OFdnStreambuf::OFdnStreambuf()

:

d_bufsize(0),

d_buffer(0)

{}

inline OFdnStreambuf::OFdnStreambuf(int fd, size_t bufsize)

{

open(fd, bufsize);

}

• The destructor calls sync, flushing any characters stored in the output buffer to the device. In

implementations not using a buffer the destructor can be given a default implementation:

inline OFdnStreambuf::~OFdnStreambuf()

{

if (d_buffer)

{

sync();

delete[] d_buffer;

}

}

This implementation does not close the device. It is left as an exercise to the reader to change

this class in such a way that the device is optionally closed (or optionally remains open). This

approach was adopted by, e.g., the Bobcat library1. See also section 23.1.2.2.

• The open member initializes the buffer. Using streambuf::setp, the begin and end points of

the buffer are defined. This is used by the streambuf base class to initialize streambuf::pbase,

streambuf::pptr, and streambuf::epptr:

inline void OFdnStreambuf::open(int fd, size_t bufsize)

{

d_fd = fd;

d_bufsize = bufsize == 0 ? 1 : bufsize;

d_buffer = new char[d_bufsize];

setp(d_buffer, d_buffer + d_bufsize);

}

1http://bobcat.sourceforge.net

790 CHAPTER 23. CONCRETE EXAMPLES

• The member sync flushes the as yet unflushed contents of the buffer to the device. After the

flush the buffer is reinitialized using setp. After successfully flushing the buffer sync returns

0:

inline int OFdnStreambuf::sync()

{

if (pptr() > pbase())

{

write(d_fd, d_buffer, pptr() - pbase());

setp(d_buffer, d_buffer + d_bufsize);

}

return 0;

}

• The member streambuf::overflow is also overridden. Since this member is called from the

streambuf base class when the buffer is full it should first call sync to flush the buffer to the

device. Next it should write the character c to the (now empty) buffer. The character c should

be written using pptr and streambuf::pbump. Entering a character into the buffer should

be implemented using available streambuf member functions, rather than ‘by hand’ as doing

so might invalidate streambuf’s internal bookkeeping. Here is overflow’s implementation:

inline int OFdnStreambuf::overflow(int c)

{

sync();

if (c != EOF)

{

*pptr() = c;

pbump(1);

}

return c;

}

The next program uses the OFfdStreambuf class to copy its standard input to file descriptor

STDOUT_FILENO, which is the symbolic name of the file descriptor used for the standard output:

#include <string>

#include <iostream>

#include <istream>

#include "fdout.h"

using namespace std;

int main(int argc, char **argv)

{

OFdnStreambuf fds(STDOUT_FILENO, 500);

ostream os(&fds);

switch (argc)

{

case 1:

for (string s; getline(cin, s);)

os << s << ’\n’;

os << "COPIED cin LINE BY LINE\n";

break;

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 791

case 2:

cin >> os.rdbuf(); // Alternatively, use: cin >> &fds;

os << "COPIED cin BY EXTRACTING TO os.rdbuf()\n";

break;

case 3:

os << cin.rdbuf();

os << "COPIED cin BY INSERTING cin.rdbuf() into os\n";

break;

}

}

23.1.2 Classes for input operations

When classes for input operation are derived from std::streambuf, they should be provided with

an input buffer of at least one character. The one-character input buffer allows for the use of the

member functions istream::putback or istream::ungetc. Strictly speaking it is not necessary

to implement a buffer in classes derived from streambuf. But using buffers in these classes is

strongly advised. Their implementation is very simple and straightforward and the applicability of

such classes is greatly improved. Therefore, all our classes derived from the class streambuf define

a buffer of at least one character.

23.1.2.1 Using a one-character buffer

When deriving a class (e.g., IFdStreambuf) from streambuf using a buffer of one character, at least

its member streambuf::underflow should be overridden, as this member eventually receives all

requests for input. The member streambuf::setg is used to inform the streambuf base class

of the size and location of the input buffer, so that it is able to set up its input buffer pointers

accordingly. This ensures that streambuf::eback, streambuf::gptr, and streambuf::egptr

return correct values.

The class IFdStreambuf is designed like this:

• Its member functions use low-level functions operating on file descriptors. Therefore, in addi-

tion to streambuf, the <unistd.h> header file must have been read by the compiler before

its member functions can be compiled.

• Like most classes designed for input operations, this class is derived from std::streambuf

as well.

• The class defines two data members, one of them a fixed-sized one character buffer. The data

members are defined as protected data members so that derived classes (e.g., see section

23.1.2.3) can access them. Here is the full class interface:

class IFdStreambuf: public std::streambuf

{

protected:

int d_fd;

char d_buffer[1];

public:

IFdStreambuf(int fd);

private:

int underflow();

792 CHAPTER 23. CONCRETE EXAMPLES

};

• The constructor initializes the buffer. However, the initialization sets gptr’s return value equal

to egptr’s return value. This implies that the buffer is empty so underflow is immediately

called to fill the buffer:

inline IFdStreambuf::IFdStreambuf(int fd)

:

d_fd(fd)

{

setg(d_buffer, d_buffer + 1, d_buffer + 1);

}

• Finally underflow is overridden. The buffer is refilled by reading from the file descriptor. If

this fails (for whatever reason), EOF is returned. More sophisticated implementations could

act more intelligently here, of course. If the buffer could be refilled, setg is called to set up

streambuf’s buffer pointers correctly:

inline int IFdStreambuf::underflow()

{

if (read(d_fd, d_buffer, 1) <= 0)

return EOF;

setg(d_buffer, d_buffer, d_buffer + 1);

return *gptr();

}

The following main function shows how IFdStreambuf can be used:

int main()

{

IFdStreambuf fds(STDIN_FILENO);

istream is(&fds);

cout << is.rdbuf();

}

23.1.2.2 Using an n-character buffer

How complex would things get if we decided to use a buffer of substantial size? Not that complex.

The following class allows us to specify the size of a buffer, but apart from that it is basically the same

class as IFdStreambuf developed in the previous section. To make things a bit more interesting,

in the class IFdNStreambuf developed here, the member streambuf::xsgetn is also overridden,

to optimize reading a series of characters. Also a default constructor is provided that can be used

in combination with the open member to construct an istream object before the file descriptor

becomes available. In that case, once the descriptor becomes available, the open member can be

used to initiate the object’s buffer. Later, in section 23.2, we’ll encounter such a situation.

To save some space, the success of various calls was not checked. In ‘real life’ implementations, these

checks should of course not be omitted. The class IFdNStreambuf has the following characteristics:

• Its member functions use low-level functions operating on file descriptors. So apart from

streambuf the <unistd.h> header file must have been read by the compiler before its mem-

ber functions can be compiled.

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 793

• As usual, it is derived from std::streambuf.

• Like the class IFdStreambuf (section 23.1.2.1), its data members are protected. Since the

buffer’s size is configurable, this size is kept in a dedicated data member, d_bufsize:

class IFdNStreambuf: public std::streambuf

{

protected:

int d_fd;

size_t d_bufsize;

char* d_buffer;

public:

IFdNStreambuf();

IFdNStreambuf(int fd, size_t bufsize = 1);

virtual ~IFdNStreambuf();

void open(int fd, size_t bufsize = 1);

private:

virtual int underflow();

virtual std::streamsize xsgetn(char *dest, std::streamsize n);

};

• The default constructor does not allocate a buffer. It can be used to construct an object before

the file descriptor becomes known. A second constructor simply passes its arguments to open.

Open will then initialize the object so that it can actually be used:

inline IFdNStreambuf::IFdNStreambuf()

:

d_bufsize(0),

d_buffer(0)

{}

inline IFdNStreambuf::IFdNStreambuf(int fd, size_t bufsize)

{

open(fd, bufsize);

}

• Once the object has been initialized by open, its destructor will both delete the object’s buffer

and use the file descriptor to close the device:

IFdNStreambuf::~IFdNStreambuf()

{

if (d_bufsize)

{

close(d_fd);

delete[] d_buffer;

}

}

Even though the device is closed in the above implementation this may not always be desirable.

In cases where the open file descriptor is already available the intention may be to use that

descriptor repeatedly, each time using a newly constructed IFdNStreambuf object. It is left as

an exercise to the reader to change this class in such a way that the device may optionally be

closed. This approach was followed in, e.g., the Bobcat library2.

2http://bobcat.sourceforge.net

794 CHAPTER 23. CONCRETE EXAMPLES

• The open member simply allocates the object’s buffer. It is assumed that the calling program

has already opened the device. Once the buffer has been allocated, the base class member

setg is used to ensure that streambuf::eback streambuf::gptr and streambuf::egptr

return correct values:

void IFdNStreambuf::open(int fd, size_t bufsize)

{

d_fd = fd;

d_bufsize = bufsize;

d_buffer = new char[d_bufsize];

setg(d_buffer, d_buffer + d_bufsize, d_buffer + d_bufsize);

}

• The overridden member underflow is implemented almost identically to IFdStreambuf’s

(section 23.1.2.1) member. The only difference is that the current class supports buffers of

larger sizes. Therefore, more characters (up to d_bufsize) may be read from the device at

once:

int IFdNStreambuf::underflow()

{

if (gptr() < egptr())

return *gptr();

int nread = read(d_fd, d_buffer, d_bufsize);

if (nread <= 0)

return EOF;

setg(d_buffer, d_buffer, d_buffer + nread);

return *gptr();

}

• Finally xsgetn is overridden. In a loop, n is reduced until 0, at which point the function termi-

nates. Alternatively, the member returns if underflow fails to obtain more characters. This

member optimizes the reading of series of characters. Instead of calling streambuf::sbumpc

n times, a block of avail characters is copied to the destination, using streambuf::gbump to

consume avail characters from the buffer using one function call:

std::streamsize IFdNStreambuf::xsgetn(char *dest, std::streamsize n)

{

int nread = 0;

while (n)

{

if (!in_avail())

{

if (underflow() == EOF)

break;

}

int avail = in_avail();

if (avail > n)

avail = n;

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 795

memcpy(dest + nread, gptr(), avail);

gbump(avail);

nread += avail;

n -= avail;

}

return nread;

}

The member function xsgetn is called by streambuf::sgetn, which is a streambuf member.

Here is an example illustrating the use of this member function with an IFdNStreambuf object:

#include <unistd.h>

#include <iostream>

#include <istream>

#include "ifdnbuf.h"

using namespace std;

int main()

{

// internally: 30 char buffer

IFdNStreambuf fds(STDIN_FILENO, 30);

char buf[80]; // main() reads blocks of 80

// chars

while (true)

{

size_t n = fds.sgetn(buf, 80);

if (n == 0)

break;

cout.write(buf, n);

}

}

23.1.2.3 Seeking positions in ‘streambuf’ objects

When devices support seek operations, classes derived from std::streambuf should override the

members streambuf::seekoff and streambuf::seekpos. The class IFdSeek, developed in this

section, can be used to read information from devices supporting seek operations. The class IFdSeek

was derived from IFdStreambuf, so it uses a character buffer of just one character. The facili-

ties to perform seek operations, which are added to our new class IFdSeek, ensure that the input

buffer is reset when a seek operation is requested. The class could also be derived from the class

IFdNStreambuf. In that case the arguments to reset the input buffer must be adapted so that

its second and third parameters point beyond the available input buffer. Let’s have a look at the

characteristics of IFdSeek:

• As mentioned, IFdSeek is derived from IFdStreambuf. Like the latter class, IFdSeek’s mem-

ber functions use facilities declared in unistd.h. So, the header file <unistd.h> must have

been read by the compiler before it can compile the class’s members functions. To reduce the

amount of typing when specifying types and constants from streambuf and std::ios, several

typedefs are defined by the class. These typedefs refer to types that are defined in the header

796 CHAPTER 23. CONCRETE EXAMPLES

file <ios>, which must therefore also be included before the compiler can compile IFdSeek’s

class interface:

class IFdSeek: public IFdStreambuf

{

typedef std::streambuf::pos_type pos_type;

typedef std::streambuf::off_type off_type;

typedef std::ios::seekdir seekdir;

typedef std::ios::openmode openmode;

public:

IFdSeek(int fd);

private:

pos_type seekoff(off_type offset, seekdir dir, openmode);

pos_type seekpos(pos_type offset, openmode mode);

};

• The class has a very basic interface. Its (only) constructor expects the device’s file descriptor.

It has no special tasks to perform and just calls its base class constructor:

inline IFdSeek::IFdSeek(int fd)

:

IFdStreambuf(fd)

{}

• The member seek_off is responsible for performing the actual seek operations. It calls lseek

to seek a new position in a device whose file descriptor is known. If seeking succeeds, setg is

called to define an already empty buffer, so that the base class’s underflow member refills the

buffer at the next input request.

IFdSeek::pos_type IFdSeek::seekoff(off_type off, seekdir dir, openmode)

{

pos_type pos =

lseek

(

d_fd, off,

(dir == std::ios::beg) ? SEEK_SET :

(dir == std::ios::cur) ? SEEK_CUR :

SEEK_END

);

if (pos < 0)

return -1;

setg(d_buffer, d_buffer + 1, d_buffer + 1);

return pos;

}

• Finally, the companion function seekpos is overridden as well: it is actually defined as a call

to seekoff:

inline IFdSeek::pos_type IFdSeek::seekpos(pos_type off, openmode mode)

{

return seekoff(off, std::ios::beg, mode);

}

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 797

Here is an example of a program using the class IFdSeek. If this program is given its own source

file using input redirection then seeking is supported (and with the exception of the first line, every

other line is shown twice):

#include "fdinseek.h"

#include <string>

#include <iostream>

#include <istream>

#include <iomanip>

using namespace std;

int main()

{

IFdSeek fds(0);

istream is(&fds);

string s;

while (true)

{

if (!getline(is, s))

break;

streampos pos = is.tellg();

cout << setw(5) << pos << ": ‘" << s << "’\n";

if (!getline(is, s))

break;

streampos pos2 = is.tellg();

cout << setw(5) << pos2 << ": ‘" << s << "’\n";

if (!is.seekg(pos))

{

cout << "Seek failed\n";

break;

}

}

}

23.1.2.4 Multiple ‘unget’ calls in ‘streambuf’ objects

Streambuf classes and classes derived from streambuf should support at least ungetting the last

read character. Special care must be taken when series of unget calls must be supported. In

this section the construction of a class supporting a configurable number of istream::unget or

istream::putback calls is discussed.

Support for multiple (say ‘n’) unget calls is implemented by reserving an initial section of the input

buffer, which is gradually filled up to contain the last n characters read. The class is implemented

as follows:

• Once again, the class is derived from std::streambuf. It defines several data members,

798 CHAPTER 23. CONCRETE EXAMPLES

allowing the class to perform the bookkeeping required to maintain an unget-buffer of a con-

figurable size:

class FdUnget: public std::streambuf

{

int d_fd;

size_t d_bufsize;

size_t d_reserved;

char *d_buffer;

char *d_base;

public:

FdUnget(int fd, size_t bufsz, size_t unget);

virtual ~FdUnget();

private:

int underflow();

};

• The class’s constructor expects a file descriptor, a buffer size and the number of characters that

can be ungot or pushed back as its arguments. This number determines the size of a reserved

area, defined as the first d_reserved bytes of the class’s input buffer.

– The input buffer will always be at least one byte larger than d_reserved. So, a cer-

tain number of bytes may be read. Once d_reserved bytes have been read at most

d_reserved bytes can be ungot.

– Next, the starting point for reading operations is configured. It is called d_base, pointing

to a location d_reserved bytes beyond the location represented by d_buffer. This is

always the location where buffer refills start.

– Now that the buffer has been constructed, we’re ready to define streambuf’s buffer point-

ers using setg. As no characters have been read yet, all pointers are set to point to

d_base. If unget is called at this point, no characters are available, and unget (cor-

rectly) fails.

– Eventually, the refill buffer’s size is determined as the number of allocated bytes minus

the size of the reserved area.

Here is the class’s constructor:

FdUnget::FdUnget(int fd, size_t bufsz, size_t unget)

:

d_fd(fd),

d_reserved(unget)

{

size_t allocate =

bufsz > d_reserved ?

bufsz

:

d_reserved + 1;

d_buffer = new char[allocate];

d_base = d_buffer + d_reserved;

setg(d_base, d_base, d_base);

d_bufsize = allocate - d_reserved;

}

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 799

• The class’s destructor simply returns the memory allocated for the buffer to the common pool:

inline FdUnget::~FdUnget()

{

delete[] d_buffer;

}

• Finally, underflow is overridden as follows:

– First underflow determines the number of characters that could potentially be ungot. If

that number of characters are ungot, the input buffer is exhausted. So this value may be

any value between 0 (the initial state) or the input buffer’s size (when the reserved area

has been filled up completely, and all current characters in the remaining section of the

buffer have also been read);

– Next the number of bytes to move into the reserved area is computed. This number is at

most d_reserved, but it is set equal to the actual number of characters that can be ungot

if this value is smaller;

– Now that the number of characters to move into the reserved area is known, this number

of characters is moved from the input buffer’s end to the area immediately before d_base;

– Then the buffer is refilled. This all is standard, but notice that reading starts from d_base

and not from d_buffer;

– Finally, streambuf’s read buffer pointers are set up. Eback is set to move locations before

d_base, thus defining the guaranteed unget-area, gptr is set to d_base, since that’s the

location of the first read character after a refill, and egptr is set just beyond the location

of the last character read into the buffer.

Here is underflow’s implementation:

int FdUnget::underflow()

{

size_t ungetsize = gptr() - eback();

size_t move = std::min(ungetsize, d_reserved);

memcpy(d_base - move, egptr() - move, move);

int nread = read(d_fd, d_base, d_bufsize);

if (nread <= 0) // none read -> return EOF

return EOF;

setg(d_base - move, d_base, d_base + nread);

return *gptr();

}

An example using FdUnget

The next example program illustrates the use of the class FdUnget. It reads at most 10 characters

from the standard input, stopping at EOF. A guaranteed unget-buffer of 2 characters is defined in

a buffer holding 3 characters. Just before reading a character, the program tries to unget at most

6 characters. This is, of course, not possible; but the program nicely ungets as many characters as

possible, considering the actual number of characters read:

#include "fdunget.h"

#include <string>

800 CHAPTER 23. CONCRETE EXAMPLES

#include <iostream>

#include <istream>

using namespace std;

int main()

{

FdUnget fds(0, 3, 2);

istream is(&fds);

char c;

for (int idx = 0; idx < 10; ++idx)

{

cout << "after reading " << idx << " characters:\n";

for (int ug = 0; ug <= 6; ++ug)

{

if (!is.unget())

{

cout

<< "\tunget failed at attempt " << (ug + 1) << "\n"

<< "\trereading: ’";

is.clear();

while (ug--)

{

is.get(c);

cout << c;

}

cout << "’\n";

break;

}

}

if (!is.get(c))

{

cout << " reached\n";

break;

}

cout << "Next character: " << c << ’\n’;

}

}

/*
Generated output after ’echo abcde | program’:

after reading 0 characters:

unget failed at attempt 1

rereading: ’’

Next character: a

after reading 1 characters:

unget failed at attempt 2

rereading: ’a’

Next character: b

after reading 2 characters:

unget failed at attempt 3

rereading: ’ab’

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 801

Next character: c

after reading 3 characters:

unget failed at attempt 4

rereading: ’abc’

Next character: d

after reading 4 characters:

unget failed at attempt 4

rereading: ’bcd’

Next character: e

after reading 5 characters:

unget failed at attempt 4

rereading: ’cde’

Next character:

after reading 6 characters:

unget failed at attempt 4

rereading: ’de

’

reached

*/

23.1.3 Fixed-sized field extraction from istream objects

Usually when extracting information from istream objects operator>>, the standard extraction

operator is perfectly suited for the task as in most cases the extracted fields are white-space (or

otherwise clearly) separated from each other. But this does not hold true in all situations. For

example, when a web-form is posted to some processing script or program, the receiving program

may receive the form field’s values as url-encoded characters: letters and digits are sent unaltered,

blanks are sent as + characters, and all other characters start with % followed by the character’s

ascii-value represented by its two digit hexadecimal value.

When decoding url-encoded information, simple hexadecimal extraction won’t work, as that extracts

as many hexadecimal characters as available, instead of just two. Since the letters a-f‘ and 0-9

are legal hexadecimal characters, a text like My name is ‘Ed’, url-encoded as

My+name+is+%60Ed%27

results in the extraction of the hexadecimal values 60ed and 27, instead of 60 and 27. The name

Ed disappears from view, which is clearly not what we want.

In this case, having seen the %, we could extract 2 characters, put them in an istringstream

object, and extract the hexadecimal value from the istringstream object. A bit cumbersome, but

doable. Other approaches are possible as well.

The class Fistream for fixed-sized field istream defines an istream class supporting both fixed-

sized field extractions and blank-delimited extractions (as well as unformatted read calls). The

class may be initialized as a wrapper around an existing istream, or it can be initialized using the

name of an existing file. The class is derived from istream, allowing all extractions and operations

supported by istreams in general. Fistream defines the following data members:

• d_filebuf: a filebuffer used when Fistream reads its information from a named (existing)

file. Since the filebuffer is only needed in that case, and since it must be allocated dynamically,

it is defined as a unique_ptr<filebuf> object.

802 CHAPTER 23. CONCRETE EXAMPLES

• d_streambuf: a pointer to Fistream’s streambuf. It points to d_filebuf when Fistream

opens a file by name. When an existing istream is used to construct an Fistream, it points

to the existing istream’s streambuf.

• d_iss: an istringstream object used for the fixed field extractions.

• d_width: a size_t indicating the width of the field to extract. If 0 no fixed field extractions is

used, but information is extracted from the istream base class object using standard extrac-

tions.

Here is the initial section of Fistream’s class interface:

class Fistream: public std::istream

{

std::unique_ptr<std::filebuf> d_filebuf;

std::streambuf *d_streambuf;

std::istringstream d_iss;

size_t d_width;

As stated, Fistream objects can be constructed from either a filename or an existing istream

object. The class interface therefore declares two constructors:

Fistream(std::istream &stream);

Fistream(char const *name,

std::ios::openmode mode = std::ios::in);

When an Fistream object is constructed using an existing istream object, the Fistream’s istream

part simply uses the stream’s streambuf object:

Fistream::Fistream(istream &stream)

:

istream(stream.rdbuf()),

d_streambuf(rdbuf()),

d_width(0)

{}

When an fstream object is constructed using a filename, the istream base initializer is given a

new filebuf object to be used as its streambuf. Since the class’s data members are not initialized

before the class’s base class has been constructed, d_filebuf can only be initialized thereafter. By

then, the filebuf is only available as rdbuf, returning a streambuf. However, as it is actually a

filebuf, a static_cast is used to cast the streambuf pointer returned by rdbuf to a filebuf

*, so d_filebuf can be initialized:

Fistream::Fistream(char const *name, ios::openmode mode)

:

istream(new filebuf()),

d_filebuf(static_cast<filebuf *>(rdbuf())),

d_streambuf(d_filebuf.get()),

d_width(0)

{

d_filebuf->open(name, mode);

}

23.1. USING FILE DESCRIPTORS WITH ‘STREAMBUF’ CLASSES 803

23.1.3.1 Member functions and example

There is only one additional public member: setField(field const &). This member defines

the size of the next field to extract. Its parameter is a reference to a field class, a manipulator

class defining the width of the next field.

Since a field & is mentioned in Fistream’s interface, field must be declared before Fistream’s

interface starts. The class field itself is simple and declares Fistream as its friend. It has two

data members: d_width specifies the width of the next field, and d_newWidthwhich is set to true if

d_width’s value should actually be used. If d_newWidth is false, Fistream returns to its standard

extraction mode. The class field has two constructors: a default constructor, setting d_newWidth

to false, and a second constructor expecting the width of the next field to extract as its value. Here

is the class field:

class field

{

friend class Fistream;

size_t d_width;

bool d_newWidth;

public:

field(size_t width);

field();

};

inline field::field(size_t width)

:

d_width(width),

d_newWidth(true)

{}

inline field::field()

:

d_newWidth(false)

{}

Since field declares Fistream as its friend, setField may inspect field’s members directly.

Time to return to setField. This function expects a reference to a field object, initialized in one

of three different ways:

• field(): When setField’s argument is a field object constructed by its default constructor

the next extraction will use the same fieldwidth as the previous extraction.

• field(0): When this field object is used as setField’s argument, fixed-sized field extrac-

tion stops, and the Fistream acts like any standard istream object again.

• field(x): When the field object itself is initialized by a non-zero size_t value x, then the

next field width is x characters wide. The preparation of such a field is left to setBuffer,

Fistream’s only private member.

Here is setField’s implementation:

std::istream &Fistream::setField(field const ¶ms)

804 CHAPTER 23. CONCRETE EXAMPLES

{

if (params.d_newWidth) // new field size requested

d_width = params.d_width; // set new width

if (!d_width) // no width?

rdbuf(d_streambuf); // return to the old buffer

else

setBuffer(); // define the extraction buffer

return *this;

}

The private member setBuffer defines a buffer of d_width + 1 characters and uses read to fill

the buffer with d_width characters. The buffer is an NTBS. This buffer is used to initialize the

d_iss member. Fistream’s rdbuf member is used to extract the d_str’s data via the Fistream

object itself:

void Fistream::setBuffer()

{

char *buffer = new char[d_width + 1];

rdbuf(d_streambuf); // use istream’s buffer to

buffer[read(buffer, d_width).gcount()] = 0; // read d_width chars,

// terminated by a 0-byte

d_iss.str(buffer);

delete[] buffer;

rdbuf(d_iss.rdbuf()); // switch buffers

}

Although setField could be used to configure Fistream to use or not to use fixed-sized field extrac-

tion, using manipulators is probably preferable. To allow field objects to be used as manipulators

an overloaded extraction operator was defined. This extraction operator accepts istream & and a

field const & objects. Using this extraction operator, statements like

fis >> field(2) >> x >> field(0);

are possible (assuming fis is a Fistream object). Here is the overloaded operator>>, as well as

its declaration:

istream &std::operator>>(istream &str, field const ¶ms)

{

return static_cast<Fistream *>(&str)->setField(params);

}

Declaration:

namespace std

{

istream &operator>>(istream &str, FBB::field const ¶ms);

}

23.2. THE ‘FORK’ SYSTEM CALL 805

Finally, an example. The following program uses a Fistream object to url-decode url-encoded infor-

mation appearing at its standard input:

int main()

{

Fistream fis(cin);

fis >> hex;

while (true)

{

size_t x;

switch (x = fis.get())

{

case ’\n’:

cout << ’\n’;

break;

case ’+’:

cout << ’ ’;

break;

case ’%’:

fis >> field(2) >> x >> field(0);

// FALLING THROUGH

default:

cout << static_cast<char>(x);

break;

case EOF:

return 0;

}

}

}

/*
Generated output after:

echo My+name+is+%60Ed%27 | a.out

My name is ‘Ed’

*/

23.2 The ‘fork’ system call

From the C programming language the fork system call is well known. When a program needs to

start a new process, system can be used. The function system requires the program to wait for the

child process to terminate. The more general way to spawn subprocesses is to use fork.

In this section we investigate how C++ can be used to wrap classes around a complex system call like

fork. Much of what follows in this section directly applies to the Unix operating system, and the

discussion therefore focuses on that operating system. Other systems usually provide comparable

facilities. What follows is closely related to the Template Design Pattern (cf. Gamma et al. (1995)

Design Patterns, Addison-Wesley)

When fork is called, the current program is duplicated in memory, thus creating a new process. Fol-

lowing this duplication both processes continue their execution just below the fork system call. The

two processes may inspect fork’s return value: the return value in the original process (called the

parent process) differs from the return value in the newly created process (called the child process):

806 CHAPTER 23. CONCRETE EXAMPLES

• In the parent process fork returns the process ID of the (child) process that was created by the

fork system call. This is a positive integer value.

• In the child process fork returns 0.

• If fork fails, -1 is returned.

23.2.1 A basic Fork class

A basic Fork class should hide all bookkeeping details of a system call like fork from its users.

The class Fork developed here does just that. The class itself only ensures the proper execution of

the fork system call. Normally, fork is called to start a child process, usually boiling down to the

execution of a separate process. This child process may expect input at its standard input stream

and/or may generate output to its standard output and/or standard error streams. Fork does not

know all this, and does not have to know what the child process will do. Fork objects should be able

to start their child processes.

Fork’s constructor cannot know what actions its child process should perform. Similarly, it cannot

know what actions the parent process should perform. For these kind of situations, the template

method design pattern was developed. According to Gamma c.s., the template method design pattern

“Define(s) the skeleton of an algorithm in an operation, deferring some steps to sub-

classes. [The] Template Method (design pattern) lets subclasses redefine certain steps

of an algorithm, without changing the algorithm’s structure.”

This design pattern allows us to define an abstract base class already providing the essential steps

related to the fork system call, deferring the implementation of other parts of the fork system call

to subclasses.

The Fork abstract base class has the following characteristics:

• It defines a data member d_pid. In the parent process this data member contains the child’s

process id and in the child process it has the value 0. Its public interface declares only two

members:

– a fork member function, responsible for the actual forking (i.e., it creates the (new) child

process);

– a virtual destructor ~Fork (having an empty body).

Here is Fork’s interface:

class Fork

{

int d_pid;

public:

virtual ~Fork();

void fork();

protected:

int pid() const;

int waitForChild(); // returns the status

private:

23.2. THE ‘FORK’ SYSTEM CALL 807

virtual void childRedirections();

virtual void parentRedirections();

virtual void childProcess() = 0; // pure virtual members

virtual void parentProcess() = 0;

};

• All other non-virtual member functions are declared in the class’s protected section and can

thus only be used by derived classes. They are:

– pid(): The member function pid allows derived classes to access the system fork’s re-

turn value:

inline int Fork::pid() const

{

return d_pid;

}

– waitForChild(): The member int waitForChild can be called by parent processes

to wait for the completion of their child processes (as discussed below). This member is

declared in the class interface. Its implementation is:

#include "fork.ih"

int Fork::waitForChild()

{

int status;

waitpid(d_pid, &status, 0);

return WEXITSTATUS(status);

}

This simple implementation returns the child’s exit status to the parent. The called system

function waitpid blocks until the child terminates.

• When fork system calls are used, parent processes and child processes must always be dis-

tinguished. The main distinction between these processes is that d_pid becomes the child’s

process-id in the parent process, while d_pid becomes 0 in the child process itself. Since these

two processes must always be distinguished (and present), their implementation by classes

derived from Fork is enforced by Fork’s interface: the members childProcess, defining the

child process’ actions and parentProcess, defining the parent process’ actions were defined

as pure virtual functions.

• communication between parent- and child processes may use standard streams or other fa-

cilities, like pipes (cf. section 23.2.5). To facilitate this inter-process communication, derived

classes may implement:

– childRedirections(): this member should be overridden by derived classes if any

standard stream (cin, cout,) or cerrmust be redirected in the child process (cf. section

23.2.3). By default it has an empty implementation;

– parentRedirections(): this member should be overridden by derived classes if any

standard stream (cin, cout,) or cerr must be redirected in the parent process. By

default it has an empty implementation.

Redirection of the standard streams is necessary if parent and child processes must communi-

cate with each other via the standard streams. Here are their default definitions. Since these

808 CHAPTER 23. CONCRETE EXAMPLES

functions are virtual functions they should not be implemented inline, but in their own source

file:

void Fork::childRedirections()

{}

void Fork::parentRedirections()

{}

23.2.2 Parents and Children

The member function fork calls the system function fork (Caution: since the system function fork

is called by a member function having the same name, the :: scope resolution operator must be

used to prevent a recursive call of the member function itself). The function ::fork’s return value

determines whether parentProcess or childProcess is called. Maybe redirection is necessary.

Fork::fork’s implementation calls childRedirections just before calling childProcess, and

parentRedirections just before calling parentProcess:

#include "fork.ih"

void Fork::fork()

{

if ((d_pid = ::fork()) < 0)

throw "Fork::fork() failed";

if (d_pid == 0) // childprocess has pid == 0

{

childRedirections();

childProcess();

exit(1); // we shouldn’t come here:

} // childProcess() should exit

parentRedirections();

parentProcess();

}

In fork.cc the class’s internal header file fork.ih is included. This header file takes care of

the inclusion of the necessary system header files, as well as the inclusion of fork.h itself. Its

implementation is:

#include "fork.h"

#include <cstdlib>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

Child processes should not return: once they have completed their tasks, they should terminate.

This happens automatically when the child process performs a call to a member of the exec...

family, but if the child itself remains active, then it must make sure that it terminates properly. A

child process normally uses exit to terminate itself, but note that exit prevents the activation of

destructors of objects defined at the same or more superficial nesting levels than the level at which

exit is called. Destructors of globally defined objects are activated when exit is used. When using

exit to terminate childProcess, it should either itself call a support member function defining

23.2. THE ‘FORK’ SYSTEM CALL 809

all nested objects it needs, or it should define all its objects in a compound statement (e.g., using a

throw block) calling exit beyond the compound statement.

Parent processes should normally wait for their children to complete. Terminating child processes

inform their parents that they are about to terminate by sending a signal that should be caught

by their parents. If child processes terminate and their parent processes do not catch those signals

then such child processes remain visible as so-called zombie processes.

If parent processes must wait for their children to complete, they may call the member waitForChild.

This member returns the exit status of a child process to its parent.

There exists a situation where the child process continues to live, but the parent dies. This is a fairly

natural event: parents tend to die before their children do. In our context (i.e. C++), this is called

a daemon program. In a daemon the parent process dies and the child program continues to run

as a child of the basic init process. Again, when the child eventually dies a signal is sent to its

‘step-parent’ init. This does not create a zombie as init catches the termination signals of all its

(step-) children. The construction of a daemon process is very simple, given the availability of the

class Fork (cf. section 23.2.4).

23.2.3 Redirection revisited

Earlier, in section 6.6.1 streams were redirected using the ios::rdbufmember function. By assign-

ing the streambuf of a stream to another stream, both stream objects access the same streambuf,

thus implementing redirection at the level of the programming language itself.

This may be fine within the context of a C++ program, but once we leave that context the redirec-

tion terminates. The operating system does not know about streambuf objects. This situation is

encountered, e.g., when a program uses a system call to start a subprogram. The example program

at the end of this section uses C++ redirection to redirect the information inserted into cout to a

file, and then calls

system("echo hello world")

to echo a well-known line of text. Since echo writes its information to the standard output, this

would be the program’s redirected file if the operating system would recognize C++’s redirection.

But redirection doesn’t happen. Instead, hello world still appears at the program’s standard out-

put and the redirected file is left untouched. To write hello world to the redirected file redirection

must be realized at the operating system level. Some operating systems (e.g., Unix and friends)

provide system calls like dup and dup2 to accomplish this. Examples of the use of these system calls

are given in section 23.2.5.

Here is the example of the failing redirection at the system level following C++ redirection using

streambuf redirection:

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main()

{

ofstream of("outfile");

810 CHAPTER 23. CONCRETE EXAMPLES

streambuf *buf = cout.rdbuf(of.rdbuf());

cout << "To the of stream\n";

system("echo hello world");

cout << "To the of stream\n";

cout.rdbuf(buf);

}

/*
Generated output: on the file ‘outfile’

To the of stream

To the of stream

On standard output:

hello world

*/

23.2.4 The ‘Daemon’ program

Applications exist in which the only purpose of fork is to start a child process. The parent process

terminates immediately after spawning the child process. If this happens, the child process contin-

ues to run as a child process of init, the always running first process on Unix systems. Such a

process is often called a daemon, running as a background process.

Although the next example can easily be constructed as a plain C program, it was included in the

C++ Annotations because it is so closely related to the current discussion of the Fork class. I thought

about adding a daemonmember to that class, but eventually decided against it because the construc-

tion of a daemon program is very simple and requires no features other than those currently offered

by the class Fork. Here is an example illustrating the construction of such a daemon program. Its

child process doesn’t do exit but throw 0 which is caught by the catch clause of the child’s main

function. Doing this ensures that any objects defined by the child process are properly destroyed:

#include <iostream>

#include <unistd.h>

#include "fork.h"

class Daemon: public Fork

{

virtual void parentProcess() // the parent does nothing.

{}

virtual void childProcess() // actions by the child

{

sleep(3);

// just a message...

std::cout << "Hello from the child process\n";

throw 0; // The child process ends

}

};

int main()

try

{

Daemon().fork();

23.2. THE ‘FORK’ SYSTEM CALL 811

}

catch(...)

{}

/*
Generated output:

The next command prompt, then after 3 seconds:

Hello from the child process

*/

23.2.5 The class ‘Pipe’

Redirection at the system level requires the use of file descriptors, created by the pipe system call.

When two processes want to communicate using such file descriptors, the following happens:

• The process constructs two associated file descriptors using the pipe system call. One of the

file descriptors is used for writing, the other file descriptor is used for reading.

• Forking takes place (i.e., the system fork function is called), duplicating the file descriptors.

Now we have four file descriptors as the child process and the parent process both have their

own copies of the two file descriptors created by pipe.

• One process (say, the parent process) uses the file descriptors for reading. It should close its

file descriptor intended for writing.

• The other process (say, the child process) uses the file descriptors for writing. It should there-

fore close its file descriptor intended for reading.

• All information written by the child process to the file descriptor intended for writing, can now

be read by the parent process from the corresponding file descriptor intended for reading, thus

establishing a communication channel between the child and the parent process.

Though basically simple, errors may easily creep in. Functions of file descriptors available to the two

processes (child or parent) may easily get mixed up. To prevent bookkeeping errors, the bookkeeping

may be properly set up once, to be hidden thereafter inside a class like the Pipe class developed here.

Let’s have a look at its characteristics (before using functions like pipe and dup the compiler must

have read the <unistd.h> header file):

• The pipe system call expects a pointer to two int values, representing, respectively, the file

descriptor used for reading and the file descriptor used for writing. To avoid confusion, the

class Pipe defines an enum having values associating the indices of the array of 2-ints with

symbolic constants. The two file descriptors themselves are stored in a data member d_fd.

Here is the initial section of the class’s interface:

class Pipe

{

enum RW { READ, WRITE };

int d_fd[2];

• The class only needs a default constructor. This constructor calls pipe to create a set of asso-

ciated file descriptors used for accessing both ends of a pipe:

Pipe::Pipe()

{

812 CHAPTER 23. CONCRETE EXAMPLES

if (pipe(d_fd))

throw "Pipe::Pipe(): pipe() failed";

}

• The members readOnly and readFrom are used to configure the pipe’s reading end. The

latter function is used when using redirection. It is provided with an alternate file descriptor

to be used for reading from the pipe. Usually this alternate file descriptor is STDIN_FILENO,

allowing cin to extract information from the pipe. The former function is merely used to

configure the reading end of the pipe. It closes the matching writing end and returns a file

descriptor that can be used to read from the pipe:

int Pipe::readOnly()

{

close(d_fd[WRITE]);

return d_fd[READ];

}

void Pipe::readFrom(int fd)

{

readOnly();

redirect(d_fd[READ], fd);

close(d_fd[READ]);

}

• writeOnly and two writtenBy members are available to configure the writing end of a pipe.

The former function is only used to configure the writing end of the pipe. It closes the reading

end, and returns a file descriptor that can be used for writing to the pipe:

int Pipe::writeOnly()

{

close(d_fd[READ]);

return d_fd[WRITE];

}

void Pipe::writtenBy(int fd)

{

writtenBy(&fd, 1);

}

void Pipe::writtenBy(int const *fd, size_t n)

{

writeOnly();

for (size_t idx = 0; idx < n; idx++)

redirect(d_fd[WRITE], fd[idx]);

close(d_fd[WRITE]);

}

For the latter member two overloaded versions are available:

– writtenBy(int fd) is used to configure single redirection, so that a specific file descrip-

tor (usually STDOUT_FILENO or STDERR_FILENO) can be used to write to the pipe;

– (writtenBy(int const *fd, size_t n)) may be used to configure multiple redirec-

tion, providing an array argument containing file descriptors. Information written to any

of these file descriptors is actually written to the pipe.

23.2. THE ‘FORK’ SYSTEM CALL 813

• The class has one private data member, redirect, used to set up redirection through the

dup2 system call. This function expects two file descriptors. The first file descriptor represents

a file descriptor that can be used to access the device’s information; the second file descriptor

is an alternate file descriptor that may also be used to access the device’s information. Here is

redirect’s implementation:

void Pipe::redirect(int d_fd, int alternateFd)

{

if (dup2(d_fd, alternateFd) < 0)

throw "Pipe: redirection failed";

}

Now that redirection can be configured easily using one or more Pipe objects, we’ll use Fork and

Pipe in various example programs.

23.2.6 The class ‘ParentSlurp’

The class ParentSlurp, derived from Fork, starts a child process executing a stand-alone program

(like /bin/ls). The (standard) output of the executed program is not shown on the screen but is

read by the parent process.

For demonstration purposes the parent process writes the lines it receives to its standard output

stream, prepending linenumbers to the lines. It is attractive to redirect the parent’s standard input

stream to allow the parent to read the output from the child process using its std::cin input

stream. Therefore, the only pipe in the program is used as an input pipe for the parent, and an

output pipe for the child.

The class ParentSlurp has the following characteristics:

• It is derived from Fork. Before starting ParentSlurp’s class interface, the compiler must

have read fork.h and pipe.h. The class only uses one data member, a Pipe object d_pipe.

• As Pipe’s constructor already defines a pipe, and as d_pipe is automatically initialized by

ParentSlurp’s default constructor, which is implicitly provided, all additional members only

exist for ParentSlurp’s own benefit so they can be defined in the class’s (implicit) private

section. Here is the class’s interface:

class ParentSlurp: public Fork

{

Pipe d_pipe;

virtual void childRedirections();

virtual void parentRedirections();

virtual void childProcess();

virtual void parentProcess();

};

• The childRedirections member configures the writing end of the pipe. So, all information

written to the child’s standard output stream ends up in the pipe. The big advantage of this is

that no additional streams are needed to write to a file descriptor:

inline void ParentSlurp::childRedirections()

{

d_pipe.writtenBy(STDOUT_FILENO);

}

814 CHAPTER 23. CONCRETE EXAMPLES

• The parentRedirections member, configures the reading end of the pipe. It does so by con-

necting the reading end of the pipe to the parent’s standard input file descriptor (STDIN_FILENO).

This allows the parent to perform extractions from cin, not requiring any additional streams

for reading.

inline void ParentSlurp::parentRedirections()

{

d_pipe.readFrom(STDIN_FILENO);

}

• The childProcess member only needs to concentrate on its own actions. As it only needs to

execute a program (writing information to its standard output), the member can consist of one

single statement:

inline void ParentSlurp::childProcess()

{

execl("/bin/ls", "/bin/ls", 0);

}

• The parentProcess member simply ‘slurps’ the information appearing at its standard input.

Doing so, it actually reads the child’s output. It copies the received lines to its standard output

stream prefixing line numbers to them:

void ParentSlurp::parentProcess()

{

std::string line;

size_t nr = 1;

while (getline(std::cin, line))

std::cout << nr++ << ": " << line << ’\n’;

waitForChild();

}

The following program simply constructs a ParentSlurp object, and calls its fork() member. Its

output consists of a numbered list of files in the directory where the program is started. Note that the

program also needs the fork.o, pipe.o and waitforchild.o object files (see earlier sources):

int main()

{

ParentSlurp().fork();

}

/*
Generated Output (example only, actually obtained output may differ):

1: a.out

2: bitand.h

3: bitfunctional

4: bitnot.h

5: daemon.cc

6: fdinseek.cc

7: fdinseek.h

...

*/

23.2. THE ‘FORK’ SYSTEM CALL 815

23.2.7 Communicating with multiple children

The next step up the ladder is the construction of a child-process monitor. Here, the parent process

is responsible for all its child processes, but it also must read their standard output. The user enters

information at the standard input of the parent process. A simple command language is used for

this:

• start: this start a new child process. The parent returns the child’s ID (a number) to the user.

The ID is thereupon be used to identify a particular child process

• <nr> text sends “text” to the child process having ID <nr>;

• stop <nr> terminates the child process having ID <nr>;

• exit terminates the parent as well as all its child processes.

If a child process hasn’t received text for some time it will complain by sending a message to the

parent-process. Those messages are simply transmitted to the user by copying them to the standard

output stream.

A problem with programs like our monitor is that they allow asynchronous input from multiple

sources. Input may appear at the standard input as well as at the input-sides of pipes. Also, multiple

output channels are used. To handle situations like these, the select system call was developed.

23.2.7.1 The class ‘Selector’: interface

The select system call was developed to handle asynchronous I/O multiplexing. The select

system call is used to handle, e.g., input appearing simultaneously at a set of file descriptors.

The select function is rather complex, and its full discussion is beyond the C++ Annotations’ scope.

By encapsulating select in a class Selector, hiding its details and offering an intuitively at-

tractive interface, its use is simplified. The Selector class has these features:

• Efficiency. As most of Select’s members are very small, most members can be implemented

inline. The class requires quite a few data members. Most of these data members belong to

types that require some system headers to be included first:

#include <limits.h>

#include <unistd.h>

#include <sys/time.h>

#include <sys/types.h>

• The class interface can now be defined. The data type fd_set is a type designed to be used

by select and variables of this type contain the set of file descriptors on which select may

sense some activity. Furthermore, select allows us to fire an asynchronous alarm. To set the

alarm time, the class Selector defines a timeval data member. Other members are used for

internal bookkeeping purposes. Here is the class Selector’s interface:

class Selector

{

fd_set d_read;

fd_set d_write;

fd_set d_except;

fd_set d_ret_read;

816 CHAPTER 23. CONCRETE EXAMPLES

fd_set d_ret_write;

fd_set d_ret_except;

timeval d_alarm;

int d_max;

int d_ret;

int d_readidx;

int d_writeidx;

int d_exceptidx;

public:

Selector();

int exceptFd();

int nReady();

int readFd();

int wait();

int writeFd();

void addExceptFd(int fd);

void addReadFd(int fd);

void addWriteFd(int fd);

void noAlarm();

void rmExceptFd(int fd);

void rmReadFd(int fd);

void rmWriteFd(int fd);

void setAlarm(int sec, int usec = 0);

private:

int checkSet(int *index, fd_set &set);

void addFd(fd_set *set, int fd);

};

23.2.7.2 The class ‘Selector’: implementation

Selector’s member functions serve the following tasks:

• Selector(): the (default) constructor. It clears the read, write, and execute fd_set variables,

and switches off the alarm. Except for d_max, the remaining data members do not require

specific initializations:

Selector::Selector()

{

FD_ZERO(&d_read);

FD_ZERO(&d_write);

FD_ZERO(&d_except);

noAlarm();

d_max = 0;

}

• int wait(): this member blocks until the alarm times out or until activity is sensed at any

of the file descriptors monitored by the Selector object. It throws an exception when the

select system call itself fails:

int Selector::wait()

23.2. THE ‘FORK’ SYSTEM CALL 817

{

timeval t = d_alarm;

d_ret_read = d_read;

d_ret_write = d_write;

d_ret_except = d_except;

d_readidx = 0;

d_writeidx = 0;

d_exceptidx = 0;

d_ret = select(d_max, &d_ret_read, &d_ret_write, &d_ret_except,

t.tv_sec == -1 && t.tv_usec == -1 ? 0 : &t);

if (d_ret < 0)

throw "Selector::wait()/select() failed";

return d_ret;

}

• int nReady: this member function’s return value is only defined when wait has returned. In

that case it returns 0 for an alarm-timeout, -1 if select failed, and otherwise the number of

file descriptors on which activity was sensed:

inline int Selector::nReady()

{

return d_ret;

}

• int readFd(): this member function’s return value is also only defined after wait has re-

turned. Its return value is -1 if no (more) input file descriptors are available. Otherwise the

next file descriptor available for reading is returned:

inline int Selector::readFd()

{

return checkSet(&d_readidx, d_ret_read);

}

• int writeFd(): operating analogously to readFd, it returns the next file descriptor to which

output is written. It uses d_writeidx and d_ret_read and is implemented analogously to

readFd;

• int exceptFd(): operating analogously to readFd, it returns the next exception file descrip-

tor on which activity was sensed. It uses d_except_idx and d_ret_except and is imple-

mented analogously to readFd;

• void setAlarm(int sec, int usec = 0): this member activates Select’s alarm facility.

At least the number of seconds to wait for the alarm to go off must be specified. It simply

assigns values to d_alarm’s fields. At the next Select::wait call, the alarm fires (i.e., wait

returns with return value 0) once the configured alarm-interval has passed:

inline void Selector::setAlarm(int sec, int usec)

{

d_alarm.tv_sec = sec;

d_alarm.tv_usec = usec;

}

818 CHAPTER 23. CONCRETE EXAMPLES

• void noAlarm(): this member switches off the alarm, by simply setting the alarm interval

to a very long period:

inline void Selector::noAlarm()

{

setAlarm(-1, -1);

}

• void addReadFd(int fd): this member adds a file descriptor to the set of input file de-

scriptors monitored by the Selector object. The member function wait returns once input is

available at the indicated file descriptor:

inline void Selector::addReadFd(int fd)

{

addFd(&d_read, fd);

}

• void addWriteFd(int fd): this member adds a file descriptor to the set of output file de-

scriptors monitored by the Selector object. The member function wait returns once output

is available at the indicated file descriptor. Using d_write, it is implemented analogously to

addReadFd;

• void addExceptFd(int fd): this member adds a file descriptor to the set of exception file

descriptors to be monitored by the Selector object. The member function wait returns once

activity is sensed at the indicated file descriptor. Using d_except, it is implemented analo-

gously to addReadFd;

• void rmReadFd(int fd): this member removes a file descriptor from the set of input file

descriptors monitored by the Selector object:

inline void Selector::rmReadFd(int fd)

{

FD_CLR(fd, &d_read);

}

• void rmWriteFd(int fd): this member removes a file descriptor from the set of output file

descriptors monitored by the Selector object. Using d_write, it is implemented analogously

to rmReadFd;

• void rmExceptFd(int fd): this member removes a file descriptor from the set of exception

file descriptors to be monitored by the Selector object. Using d_except, it is implemented

analogously to rmReadFd;

The class’s remaining (two) members are support members, and should not be used by non-member

functions. Therefore, they are declared in the class’s private section:

• The member addFd adds a file descriptor to a fd_set:

void Selector::addFd(fd_set *set, int fd)

{

FD_SET(fd, set);

if (fd >= d_max)

d_max = fd + 1;

}

23.2. THE ‘FORK’ SYSTEM CALL 819

• The member checkSet tests whether a file descriptor (*index) is found in a fd_set:

int Selector::checkSet(int *index, fd_set &set)

{

int &idx = *index;

while (idx < d_max && !FD_ISSET(idx, &set))

++idx;

return idx == d_max ? -1 : idx++;

}

23.2.7.3 The class ‘Monitor’: interface

The monitor program uses a Monitor object doing most of the work. The class Monitor’s public

interface only offers a default constructor and one member, run, to perform its tasks. All other

member functions are located in the class’s private section.

Monitor defines the private enum Commands, symbolically listing the various commands its input

language supports, as well as several data members. Among the data members are a Selector

object and a map using child order numbers as its keys and pointer to Child objects (see section

23.2.7.7) as its values. Furthermore, Monitor has a static array member s_handler[], storing

pointers to member functions handling user commands.

A destructor should be implemented as well, but its implementation is left as an exercise to the

reader. Here is Monitor’s interface, including the interface of the nested class Find that is used to

create a function object:

class Monitor

{

enum Commands

{

UNKNOWN,

START,

EXIT,

STOP,

TEXT,

sizeofCommands

};

typedef std::map<int, std::shared_ptr<Child>> MapIntChild;

friend class Find;

class Find

{

int d_nr;

public:

Find(int nr);

bool operator()(MapIntChild::value_type &vt) const;

};

Selector d_selector;

int d_nr;

MapIntChild d_child;

820 CHAPTER 23. CONCRETE EXAMPLES

static void (Monitor::*s_handler[])(int, std::string const &);

static int s_initialize;

public:

enum Done

{};

Monitor();

void run();

private:

static void killChild(MapIntChild::value_type it);

static int initialize();

Commands next(int *value, std::string *line);

void processInput();

void processChild(int fd);

void createNewChild(int, std::string const &);

void exiting(int = 0, std::string const &msg = std::string());

void sendChild(int value, std::string const &line);

void stopChild(int value, std::string const &);

void unknown(int, std::string const &);

};

Since there’s only one non-class type data member, the class’s constructor is a very simple function

which could be implemented inline:

inline Monitor::Monitor()

:

d_nr(0)

{}

23.2.7.4 The class ‘Monitor’: s_handler

The array s_handler, storing pointers to functions needs to be initialized as well. This can be

accomplished in several ways:

• Since the Commands enumeration only specifies a fairly limited set of commands, compile-time

initialization could be considered:

void (Monitor::*Monitor::s_handler[])(int, string const &) =

{

&Monitor::unknown, // order follows enum Command’s

&Monitor::createNewChild, // elements

&Monitor::exiting,

&Monitor::stopChild,

&Monitor::sendChild,

};

The advantage of this is that it’s simple, not requiring any run-time effort. The disadvan-

tage is of course relatively complex maintenance. If for some reason Commands is modified,

23.2. THE ‘FORK’ SYSTEM CALL 821

s_handler must be modified as well. In cases like these, compile-time initialization often is

asking for trouble. There is a simple alternative though.

• Looking at Monitor’s interface we see a static data member s_initialize and a static

member function initialize. The static member function handles the initialization of the

s_handler array. It explicitly assigns the array’s elements and any modification in ordering

of enum Commands’ values is automatically accounted for by recompiling initialize:

void (Monitor::*Monitor::s_handler[sizeofCommands])(int, string const &);

int Monitor::initialize()

{

s_handler[UNKNOWN] = &Monitor::unknown;

s_handler[START] = &Monitor::createNewChild;

s_handler[EXIT] = &Monitor::exiting;

s_handler[STOP] = &Monitor::stopChild;

s_handler[TEXT] = &Monitor::sendChild;

return 0;

}

The member initialize is a static member and so it can be called to initialize s_initialize,

a static int variable. The initialization is enforced by placing the initialization statement

in the source file of a function that is known to be executed. It could be main, but if we’re

Monitor’s maintainers and only have control over the library containing Monitor’s code then

that’s not an option. In those cases the source file containing the destructor is a very good

candidate. If a class has only one constructor and it’s not defined inline then the constructor’s

source file is a good candidate as well. In Monitor’s current implementation the initialization

statement is put in run’s source file, reasoning that s_handler is only needed when run is

used.

23.2.7.5 The class ‘Monitor’: the member ‘run’

Monitor’s core activities are performed by run. It performs the following tasks:

• Initially, the Monitor object only monitors its standard input. The set of input file descriptors

to which d_selector listens is initialized to STDIN_FILENO.

• Then, in a loop d_selector’s wait function is called. If input on cin is available, it is pro-

cessed by processInput. Otherwise, the input has arrived from a child process. Information

sent by children is processed by processChild.

• To prevent zombies, the child processes must catch their children’s termination signals. This is

discussed below.

As noted by Ben Simons (ben at mrxfx dot com) Monitor must not catch the termination

signals. Instead, the process spawning child processes has that responsibility (the underlying

principle being that a parent process is responsible for its child processes; a child process, in

turn, is responsible for its own child processes).

• As stated, run’s source file also defines and initializes s_initialize to ensure the proper

initialization of the s_handler array.

Here is run’s implementation and s_initialize’s definition:

#include "monitor.ih"

822 CHAPTER 23. CONCRETE EXAMPLES

int Monitor::s_initialize = Monitor::initialize();

void Monitor::run()

{

d_selector.addReadFd(STDIN_FILENO);

while (true)

{

cout << "? " << flush;

try

{

d_selector.wait();

int fd;

while ((fd = d_selector.readFd()) != -1)

{

if (fd == STDIN_FILENO)

processInput();

else

processChild(fd);

}

cout << "NEXT ...\n";

}

catch (char const *msg)

{

exiting(1, msg);

}

}

}

The member function processInput reads the commands entered by the user using the program’s

standard input stream. The member itself is rather simple. It calls next to obtain the next command

entered by the user, and then calls the corresponding function using the matching element of the

s_handler[] array. Here are the members processInput and next:

void Monitor::processInput()

{

string line;

int value;

Commands cmd = next(&value, &line);

(this->*s_handler[cmd])(value, line);

}

Monitor::Commands Monitor::next(int *value, string *line)

{

if (!getline(cin, *line))

exiting(1, "Monitor::next(): reading cin failed");

if (*line == "start")

return START;

if (*line == "exit" || *line == "quit")

{

23.2. THE ‘FORK’ SYSTEM CALL 823

*value = 0;

return EXIT;

}

if (line->find("stop") == 0)

{

istringstream istr(line->substr(4));

istr >> *value;

return !istr ? UNKNOWN : STOP;

}

istringstream istr(line->c_str());

istr >> *value;

if (istr)

{

getline(istr, *line);

return TEXT;

}

return UNKNOWN;

}

All other input sensed by d_select is created by child processes. Because d_select’s readFd

member returns the corresponding input file descriptor, this descriptor can be passed to processChild.

Using a IFdStreambuf (see section 23.1.2.1), its information is read from an input stream. The

communication protocol used here is rather basic. For every line of input sent to a child, the child

replies by sending back exactly one line of text. This line is then read by processChild:

void Monitor::processChild(int fd)

{

IFdStreambuf ifdbuf(fd);

istream istr(&ifdbuf);

string line;

getline(istr, line);

cout << d_child[fd]->pid() << ": " << line << ’\n’;

}

The construction d_child[fd]->pid() used in the above source deserves some special attention.

Monitor defines the data member map<int, shared_ptr<Child» d_child. This map contains

the child’s order number as its key, and a (shared) pointer to the Child object as its value. A shared

pointer is used here, rather than a Child object, since we want to use the facilities offered by the

map, but don’t want to copy a Child object time and again.

23.2.7.6 The class ‘Monitor’: example

Now that run’s implementation has been covered, we’ll concentrate on the various commands users

might enter:

• When the start command is issued, a new child process is started. A new element is added to

d_child by the member createNewChild. Next, the Child object should start its activities,

but the Monitor object can not wait for the child process to complete its activities, as there is

824 CHAPTER 23. CONCRETE EXAMPLES

no well-defined endpoint in the near future, and the user probably wants to be able to enter

more commands. Therefore, the Child process must run as a daemon. So the forked process

terminates immediately, but its own child process continues to run (in the background). Con-

sequently, createNewChild calls the child’s fork member. Although it is the child’s fork

function that is called, it is still the monitor program wherein that fork function is called. So,

the monitor program is duplicated by fork. Execution then continues:

– At the Child’s parentProcess in its parent process;

– At the Child’s childProcess in its child process

As the Child’s parentProcess is an empty function, returning immediately, the Child’s par-

ent process effectively continues immediately below createNewChild’s cp->fork() state-

ment. As the child process never returns (see section 23.2.7.7), the code below cp->fork() is

never executed by the Child’s child process. This is exactly as it should be.

In the parent process, createNewChild’s remaining code simply adds the file descriptor that’s

available for reading information from the child to the set of input file descriptors monitored

by d_select, and uses d_child to establish the association between that file descriptor and

the Child object’s address:

void Monitor::createNewChild(int, string const &)

{

Child *cp = new Child(++d_nr);

cp->fork();

int fd = cp->readFd();

d_selector.addReadFd(fd);

d_child[fd].reset(cp);

cerr << "Child " << d_nr << " started\n";

}

• Direct communication with the child is required for the stop <nr> and <nr> text com-

mands. The former command terminates child process <nr>, by calling stopChild. This

function locates the child process having the order number using an anonymous object of the

class Find, nested inside Monitor. The class Find simply compares the provided nr with the

children’s order number returned by their nr members:

inline Monitor::Find::Find(int nr)

:

d_nr(nr)

{}

inline bool Monitor::Find::operator()(MapIntChild::value_type &vt) const

{

return d_nr == vt.second->nr();

}

If the child process having order number nr was found, its file descriptor is removed from

d_selector’s set of input file descriptors. Then the child process itself is terminated by the

static member killChild. The member killChild is declared as a static member function,

as it is used as function argument of the for_each generic algorithm by exiting (see below).

Here is killChild’s implementation:

void Monitor::killChild(MapIntChild::value_type it)

23.2. THE ‘FORK’ SYSTEM CALL 825

{

if (kill(it.second->pid(), SIGTERM))

cerr << "Couldn’t kill process " << it.second->pid() << ’\n’;

// reap defunct child process

int status = 0;

while(waitpid(it.second->pid(), &status, WNOHANG) > -1)

;

}

Having terminated the specified child process, the corresponding Child object is destroyed and

its pointer is removed from d_child:

void Monitor::stopChild(int nr, string const &)

{

auto it = find_if(d_child.begin(), d_child.end(), Find(nr));

if (it == d_child.end())

cerr << "No child number " << nr << ’\n’;

else

{

d_selector.rmReadFd(it->second->readFd());

d_child.erase(it);

}

}

• The command <nr> text sends text to child process nr using the member function sendChild.

This function also uses a Find object to locate the child-process having order number nr, and

simply inserts the text into the writing end of a pipe connected to that child process:

void Monitor::sendChild(int nr, string const &line)

{

auto it = find_if(d_child.begin(), d_child.end(), Find(nr));

if (it == d_child.end())

cerr << "No child number " << nr << ’\n’;

else

{

OFdnStreambuf ofdn(it->second->writeFd());

ostream out(&ofdn);

out << line << ’\n’;

}

}

• When users enter exit or quit the member exiting is called. It terminates all child pro-

cesses using the for_each generic algorithm (see section 19.1.17) to visit all elements of

d_child. Then the program itself ends:

void Monitor::exiting(int value, string const &msg)

{

for_each(d_child.begin(), d_child.end(), killChild);

if (msg.length())

cerr << msg << ’\n’;

throw value;

}

826 CHAPTER 23. CONCRETE EXAMPLES

The program’s main function is simple and needs no further comment:

int main()

try

{

Monitor().run();

}

catch (int exitValue)

{

return exitValue;

}

23.2.7.7 The class ‘Child’

When the Monitor object starts a child process, it creates an object of the class Child. The Child

class is derived from the class Fork, allowing it to operate as a daemon (as discussed in the pre-

vious section). Since Child is a daemon class, we know that its parent process must be defined

as an empty function. Its childProcess member has a non-empty implementation. Here are the

characteristics of the class Child:

• The Child class has two Pipe data members, to handle communications between its own

child- and parent processes. As these pipes are used by the Child’s child process, their names

refer to the child process. The child process reads from d_in, and writes to d_out. Here is the

interface of the class Child:

class Child: public Fork

{

Pipe d_in;

Pipe d_out;

int d_parentReadFd;

int d_parentWriteFd;

int d_nr;

public:

Child(int nr);

virtual ~Child();

int readFd() const;

int writeFd() const;

int pid() const;

int nr() const;

private:

virtual void childRedirections();

virtual void parentRedirections();

virtual void childProcess();

virtual void parentProcess();

};

• The Child’s constructor simply stores its argument, a child-process order number, in its own

d_nr data member:

inline Child::Child(int nr)

:

23.2. THE ‘FORK’ SYSTEM CALL 827

d_nr(nr)

{}

• The Child’s child process obtains commands from its standard input stream and writes its

output to its standard output stream. Since the actual communication channels are pipes,

redirections must be used. The childRedirections member looks like this:

void Child::childRedirections()

{

d_in.readFrom(STDIN_FILENO);

d_out.writtenBy(STDOUT_FILENO);

}

• Although the parent process performs no actions, it must configure some redirections. Real-

izing that the names of the pipes indicate their functions in the child process. So the parent

writes to d_in and reads from d_out. Here is parentRedirections:

void Child::parentRedirections()

{

d_parentReadFd = d_out.readOnly();

d_parentWriteFd = d_in.writeOnly();

}

• The Child object exists until it is destroyed by the Monitor’s stopChild member. By allow-

ing its creator, the Monitor object, to access the parent-side ends of the pipes, the Monitor

object can communicate with the Child’s child process via those pipe-ends. The members

readFd and writeFd allow the Monitor object to access these pipe-ends:

inline int Child::readFd() const

{

return d_parentReadFd;

}

inline int Child::writeFd() const

{

return d_parentWriteFd;

}

• The Child object’s child process performs two tasks:

– It must reply to information appearing at its standard input stream;

– If no information has appeared within a certain time frame (the implementations uses an

interval of five seconds), then a message is written to its standard output stream.

To implement this behavior, childProcess defines a local Selector object, adding STDIN_FILENO

to its set of monitored input file descriptors.

Then, in an endless loop, childProcess waits for selector.wait() to return. When the

alarm goes off it sends a message to its standard output (hence, into the writing pipe). Oth-

erwise, it echoes the messages appearing at its standard input to its standard output. Here is

the childProcess member:

void Child::childProcess()

{

Selector selector;

size_t message = 0;

828 CHAPTER 23. CONCRETE EXAMPLES

selector.addReadFd(STDIN_FILENO);

selector.setAlarm(5);

while (true)

{

try

{

if (!selector.wait()) // timeout

cout << "Child " << d_nr << ": standing by\n";

else

{

string line;

getline(cin, line);

cout << "Child " << d_nr << ":" << ++message << ": " <<

line << ’\n’;

}

}

catch (...)

{

cout << "Child " << d_nr << ":" << ++message << ": " <<

"select() failed" << ’\n’;

}

}

exit(0);

}

• Two accessors are defined allowing the Monitor object to obtain the Child’s process ID and

its order number:

inline int Child::pid() const

{

return Fork::pid();

}

inline int Child::nr() const

{

return d_nr;

}

• A Child process terminates when the user enters a stop command. When an existing child

process number was entered, the corresponding Child object is removed from Monitor’s

d_child map. As a result, its destructor is called. Child’s destructor calls kill to terminate

its child, and then waits for the child to terminate. Once its child has terminated, the de-

structor has completed its work and returns, thus completing the erasure from d_child. The

current implementation fails if the child process doesn’t react to the SIGTERM signal. In this

demonstration program this does not happen. In ‘real life’ more elaborate killing-procedures

may be required (e.g., using SIGKILL in addition to SIGTERM). As discussed in section 10.12 it

is important to ensure the proper destruction. Here is the Child’s destructor:

Child::~Child()

{

if (pid())

{

cout << "Killing process " << pid() << "\n";

kill(pid(), SIGTERM);

int status;

23.3. FUNCTION OBJECTS PERFORMING BITWISE OPERATIONS 829

wait(&status);

}

}

23.3 Function objects performing bitwise operations

In section 18.1 several predefined function objects were introduced. Predefined function objects

performing arithmetic operations, relational operations, and logical operations exist, corresponding

to a multitude of binary- and unary operators.

Some operators appear to be missing: there appear to be no predefined function objects correspond-

ing to bitwise operations. However, their construction is, given the available predefined function

objects, not difficult. The following examples show a class template implementing a function object

calling the bitwise and (operator&), and a template class implementing a function object calling

the unary not (operator~). It is left to the reader to construct similar function objects for other

operators.

Here is the implementation of a function object calling the bitwise operator&:

#include <functional>

template <typename _Tp>

struct bitAnd: public std::binary_function<_Tp, _Tp, _Tp>

{

_Tp operator()(_Tp const &__x, _Tp const &__y) const

{

return __x & __y;

}

};

Here is the implementation of a function object calling operator~():

#include <functional>

template <typename _Tp>

struct bit_not: public std::unary_function<_Tp, _Tp>

{

_Tp operator()(_Tp const &__x) const

{

return ~__x;

}

};

These and other missing predefined function objects are also implemented in the file bitfunctional,

which is found in the cplusplus.yo.zip archive. These classes are derived from existing class

templates (e.g., std::binary_function and std::unary_function). These base classes define

several types which are expected (used) by various generic algorithms as defined in the STL (cf.

chapter 19), thus following the advice offered in, e.g., the C++ header file bits/stl_function.h:

* The standard functors are derived from structs named unary_function

* and binary_function. These two classes contain nothing but typedefs,

830 CHAPTER 23. CONCRETE EXAMPLES

* to aid in generic (template) programming. If you write your own

* functors, you might consider doing the same.

Here is an example using bit_and, removing all odd numbers from a vector of int values:

#include <iostream>

#include <algorithm>

#include <vector>

#include <iterator>

#include "bitand.h"

using namespace std;

int main()

{

vector<int> vi;

for (int idx = 0; idx < 10; ++idx)

vi.push_back(idx);

copy

(

vi.begin(),

remove_if(vi.begin(), vi.end(), bind2nd(bitAnd<int>(), 1)),

ostream_iterator<int>(cout, " ")

);

cout << ’\n’;

}

/*
Generated output:

0 2 4 6 8

*/

23.4 A text to anything converter

The standard C library offers conversion functions like atoi, atol, and other functions that can

be used to convert NTB strings to numeric values. In C++, these functions are still available, but a

more type safe way to convert text to other types uses objects of the class std::istringsteam.

Using the class istringstream instead of the C standard conversion functions may have the ad-

vantage of type-safety, but it also appears to be a rather cumbersome alternative. After all, we first

have to construct and initialize a std::istringstream object before we’re able to extract a value

of some type from it. This requires us to use a variable. Then, in cases where the extracted value

is only needed to initialize some function-parameter, one might wonder whether the added variable

and the istringstream construction can somehow be avoided.

In this section we’ll develop a class (A2x) preventing all the disadvantages of the standard C library

functions, without requiring the cumbersome definitions of istringstream objects over and over

again. The class is called A2x, meaning ‘ascii to anything’.

A2x objects can be used to extract values of any type extractable from std::istream objects. Since

A2x represents the object-variant of the C functions, it is not only type-safe but also extensible. So

its use is greatly preferred over using the standard C functions. Here are its characteristics:

23.4. A TEXT TO ANYTHING CONVERTER 831

• A2x is derived from std::istringstream, and so all members of the class istringstream

are available for A2x objects. Extractions of values of variables can always effortlessly be

performed. Here’s the class’s interface:

class A2x: public std::istringstream

{

public:

A2x() = default;

A2x(char const *txt);

A2x(std::string const &str);

template <typename Type>

operator Type();

template <typename Type>

Type to();

A2x &operator=(char const *txt);

A2x &operator=(std::string const &str);

A2x &operator=(A2x const &other);

};

• A2x has a default constructor and a constructor expecting a std::string argument. The

latter constructor may be used to initialize A2x objects with text to be converted (e.g., a line of

text obtained from reading a configuration file):

inline A2x::A2x(char const *txt) // initialize from text

:

std::istringstream(txt)

{}

inline A2x::A2x(std::string const &str)

:

std::istringstream(str.c_str())

{}

• A2x’s real strength comes from its operator Type() conversion member template. As it is

a member template, it automatically adapts itself to the type of the variable that should be

given a value, obtained by converting the text stored inside the A2x object to the variable’s

type. When the extraction fails, A2x’s inherited good member returns false.

• Occasionally the compiler may not be able to determine which type to convert to. In that case,

an explicit template type could be used:

A2x.operator int<int>();

// or just:

A2x.operator int();

As neither syntax looks attractive, the member template to is provided too, allowing construc-

tions like:

A2x.to<int>();

832 CHAPTER 23. CONCRETE EXAMPLES

Here is its implementation:

template <typename Type>

inline Type A2x::to()

{

Type t;

return (*this >> t) ? t : Type();

}

• The to member makes it easy to implement operator Type():

template <typename Type>

inline A2x::operator Type()

{

return to<Type>();

}

• Once an A2x object is available, it may be reinitialized using operator=:

#include "a2x.h"

A2x &A2x::operator=(char const *txt)

{

clear(); // very important!!! If a conversion failed, the object

// remains useless until executing this statement

str(txt);

return *this;

}

Here are some examples showing A2x being used:

int x = A2x("12"); // initialize int x from a string "12"

A2x a2x("12.50"); // explicitly create an A2x object

double d;

d = a2x; // assign a variable using an A2x object

cout << d << ’\n’;

a2x = "err";

d = a2x; // d is 0: the conversion failed,

cout << d << ’\n’; // and a2x.good() == false

a2x = " a"; // reassign a2x to new text

char c = a2x; // c now ’a’: internally operator>>() is used

cout << c << ’\n’; // so initial blanks are skipped.

int expectsInt(int x); // initialize a parameter using an

expectsInt(A2x("1200")); // anonymous A2x object

d = A2x("12.45").to<int>(); // d is 12, not 12.45

cout << d << ’\n’;

A complementary class (X2a), converting values to text, can be constructed as well. Its construction

is left as an exercise to the reader.

23.5. ADDING BINARY OPERATORS TO CLASSES 833

23.5 Adding binary operators to classes

As we’ve seen in section 11.6 binary operators expecting const & arguments can be implemented

in move-aware classes using a move-aware binary operator, using a rvalue reference for its first

argument. This latter function can in turn be implemented using the binary assignment member.

The following examples illustrated this approach for a fictitious class Binary:

class Binary

{

public:

Binary();

Binary(int value);

Binary(Binary &&tmp) = default; // or roll your own

Binary &operator+=(Binary const &other); // see the text

};

Binary operator+(Binary const &lhs, Binary const &rhs)

{

Binary tmp(lhs);

return operator+(std::move(tmp), rhs);

}

Binary operator+(Binary &&lhs, Binary const &rhs)

{

return lhs += rhs;

}

Therefore, the implementations of the binary operators eventually depend on the availability of the

binary assignment operator.

Since template functions are not instantiated before their actually used we can mention a non-

existing function in a template that is never instantiated. If such a function would actually be called

then the compiler would generated an error message, complaining about the missing function.

This allows us to implement all binary operators, movable and non-movable, as templates. It is

then only possible to call the binary operators for which a matching binary assignment exists. The

template functions implementing the above addition binary operators look like this:

#ifndef INCLUDED_BINOPS_H_

#define INCLUDED_BINOPS_H_

#include <utility>

template <typename Type>

Type operator+(Type &&lhs, Type const &rhs)

{

return lhs += rhs;

}

template <typename Type>

Type operator+(Type const &lhs, Type const &rhs)

{

Type tmp(lhs);

834 CHAPTER 23. CONCRETE EXAMPLES

return operator+(std::move(tmp), rhs);

}

#endif

Caveat: when defining these function templates ensure that the binary operator specifying an rvalue

reference as its first parameter is defined before the binary operator specifying a const lrvalue ref-

erence as its first parameter, or programs using these templates fail due to infinite recursion.

The function templates for the other binary operators can easily be added to these addition opera-

tors. After collecting them in a file binops.h include this file in, e.g., your class header file to add

the binary operators to your class.

Interestingly, classes not implementing move constructors can still use these templates, as the move

constructor itself is never called by the implementations of the binary operator (and its call is usu-

ally optimized away by copy elision). The following program (using modified function templates

containing output statements) behaves identically whether or not the move constructor is defined:

#include <iostream>

using namespace std;

template <typename Class>

Class operator+(Class &&lhs, Class const &rhs)

{

cout << "operator+(Class &&lhs, Class const &rhs)\n";

return lhs += rhs;

}

template <typename Class>

Class operator+(Class const &lhs, Class const &rhs)

{

cout << "operator+(Class const &, Class const &)\n";

Class tmp(lhs);

return operator+(std::move(tmp), rhs);

}

template <typename Class>

Class operator-(Class &&lhs, Class const &rhs)

{

return lhs -= rhs;

}

template <typename Class>

Class operator-(Class const &lhs, Class const &rhs)

{

Class tmp(lhs);

return operator-(std::move(tmp), rhs);

}

class Class

{

public:

Class() = default;

23.5. ADDING BINARY OPERATORS TO CLASSES 835

Class(Class const &other) = default;

Class(int)

{}

Class(Class &&tmp)

{

cout << "Move constructor\n";

}

Class &operator+=(Class const &rhs)

{

cout << "operator+=\n";

}

};

Class factory()

{

return Class();

}

int main()

{

Class lhs;

Class rhs;

Class result;

result = lhs + rhs;

result = factory() + rhs;

// result = lhs - rhs; // this won’t compile as operator-= hasn’t been

// defined

}

23.5.1 Binary operators allowing promotions

The function templates introduced in the previous section do not support promotions. E.g., a state-

ment like

result = rhs + 2;

generates a compilation error as promotions are not recognized by the template argument deduction

algoritm. Currently, the above statement needs to be rewritten to have it accepted by the compiler:

result = rhs + Class(2);

If promotions are welcome, how can we change the arithmetic operator function templates so that

promotions are performed? With promotions the arguments of the operator functions may be of any

type, at least one of them must be of the class type offering the matching arithmetic assignment

operator. But when designing the function template we can’t say which of the two operands has

that class type. So we have to specify two template types parameters for the two parameters of the

operator functions. The function template must therefore start with something like this:

template <typename LHS, typename RHS>

ReturnType operator+(LHS const &lhs, RHS const &rhs)

836 CHAPTER 23. CONCRETE EXAMPLES

At this point we can’t yet specify ReturnType. It is LHS if RHS can be promoted to or is equal to LHS,

it is be RHS if LHS is promoted to RHS.

To determine whether RHS can be promoted to LHS we now design a simple template meta pro-

gramming class LpromotesR using two template type parameters, defining the value true (1) if the

second (right hand) type can be promoted to the first (left-hand) type, and defining the value false

(0) if not. Here we use the same principle seen before in section 22.8.3, type convertibility:

template <typename L, typename R>

class LpromotesR

{

struct Char2

{

char array[2];

};

static R const &makeR();

static char test(L const &);

static Char2 test(...);

public:

LpromotesR() = delete;

enum { yes = sizeof(test(makeR())) == sizeof(char) };

};

In class LpromotesR the function test(L const &) is selected if R can be promoted to L, and

test(...) is selected if not. The different sizes of the return types of these two test functions

allows the compiler to assign 1 or 0 to the class’s enum value yes. The value yes (correctly) is 0 for

R types mentioned in constructors declared with the explicit keyword, and it (correctly) is 1 if L

and R happen to be the same types.

Now that we can determine whether a type can be promoted to another type, it is possible to select

either LHS or RHS as the function template’s return type. If RHS can be promoted to LHS use LHS as

the function template’s return type, otherwise use RHS.

Of course there is a third possibility: the LHS and RHS types cannot be used by each other’s con-

structors. In that case, unless there is another constructor lying around somewhere handling that

situation, the compiler generates an error like:

no match for ’operator+’ in ’...’

Back to promotable types. We are now able to determine which type can be promoted, using

LpromotesR. This yields a value that can be used as selector in the IfElse template meta pro-

gramming class template, introduced earlier (cf. section 22.2.2.2).

Now that we can select either LHS or RHS as the operator template function’s return type, we’re able

to construct our arithmetic operator function template supporting promotions:

template <typename LHS, typename RHS>

typename FBB::IfElse<FBB::LpromotesR<LHS, RHS>::yes, LHS, RHS>::type

operator<<(LHS const &lhs, RHS const &rhs)

{

typedef typename FBB::IfElse<

FBB::LpromotesR< LHS, RHS >::yes, LHS, RHS

>::type Type;

23.6. RANGE-BASED FOR-LOOPS AND POINTER-RANGES (C++11) 837

Type tmp(lhs);

return std::move(tmp) << type(rhs);

}

The function’s return type is IfElse’s type, selected as either LHS (if RHS can be promoted to LHS)

or RHS. The same trick is used in the function’s body to determine tmp’s type.

Now promotions are possible. The function template defining an rvalue reference parameter remains

as-is. Together they allow the compiler to make the following decisions (using Class as the intended

class name, Type as a type that is promotable to Class, and @ as the generic indication of the used

operator). Unless otherwise specified the function template defining the parameter list (LHS const

&lhs, RHS const &rhs) is used:

Class obj;

Type value;

obj @ obj // no promotions

obj @ Class() // same

obj @ value; // value is promoted to Class

Class() @ value; // same

value @ obj; // same

value @ Class(); // same

Class() @ obj; // calls operator@(Class &&, Class const &)

Class() @ Class(); // same

23.6 Range-based for-loops and pointer-ranges (C++11)

The standard range-based for-loop requires for its range-specificiation an array, an initializer list, or

an iterator range as offered by, e.g., containers (through their begin and end members).

Ranges defined by a pointer pair or by a subrange defined by iterator expressions cannot currently

be used in combination with range-based for-loops.

The Ranger class template developed in this section defines ranges that can be used with range-

based for-loops. Ranger extends the applicability of range-based for-loops by turning pointer pairs„

an initial pointer or iterator and a pointer count, or a pair of iterators into a range that can be used

by range-based for-loops. The Ranger class template can also be used to process a pair of reverse

iterators, normally not supported by range-based for-loops.

The Ranger class template requires but one template type parameter: Iterator, representing

an iterator or pointer type reaching the data when dereferenced. In practical applications users

don’t have to specify Ranger’s template type. The function template ranger deduces the required

Iterator type and returns the appropriate Ranger object.

The ranger function template can be used in various ways:

• Ranger<Iterator> ranger(Iterator const &begin, Iterator const &end) this func-

tion template returns a Ranger object for the (sub)range defined by two (reverse) iterators. Its

definition is:

template <typename Iter>

838 CHAPTER 23. CONCRETE EXAMPLES

Ranger<Iter> ranger(Iter &&begin, Iter &&end)

{

return Ranger<Iter>(begin, end);

}

• Ranger<Iterator> ranger(Iterator const &begin, size_t count) this function tem-

plate returns a Ranger object for the (sub)range defined by the (reverse) iterator range begin

and begin + count. Its definition is:

template <typename Data>

Ranger<Data *> ranger(Data *begin, Data *end)

{

return Ranger<Data *>(begin, end);

}

• Ranger<Data> ranger(Data *begin, Data *end) this function template returns a Ranger

object for the (sub)range defined by the two pointers begin and end. Its definition is:

template <typename Iter>

Ranger<Iter> ranger(Iter &&begin, size_t count)

{

return Ranger<Iter>(begin, begin + count);

}

• Ranger<Data> ranger(Data *begin, size_t count) this function template returns a

Ranger object for the (sub)range defined by the two pointers begin and begin + count. Its

definition is:

template <typename Data>

Ranger<Data *> ranger(Data *begin, size_t count)

{

return Ranger<Data *>(begin, begin + count);

}

The Ranger class template itself offers a constructor expecting two Iterator const & parame-

ters, where Iterator is Ranger’s template type parameter. Although named ’Iterator’ it can also

be a pointer to some data type (e.g., std::string *).

The class only needs two members, begin and end, since these are the only members called by

range-based for-loops. These members can be const members, returning Iterator const refer-

ences. This also is the required return type if Iterator itself was a pointer type (like int *). Since

a ‘Iterator const &’ does not imply that the dereferenced Iterator is immutable, the data to

which the iterator returned by begin() can actually be modified, if Iterator unless Iterator is

a Type const * or a const_iterator type.

If reverse iterators are passed to Ranger’s constructor (the reversed begin iterator should be passed

as Ranger constructor’s first argument, the reversed end iterator as its second argument), then

Ranger’s begin and end members return reverse iterators. Since the intended use of Ranger objects

is to define a range for range-base for-loops, members like rbegin and rend were omitted from

Ranger’s interface.

Here is Ranger’s implementation (using in-class implementations for brevity):

template <typename Iter>

class Ranger

23.7. DISTINGUISHING LVALUES FROM RVALUES WITH OPERATOR[]() 839

{

Iter d_begin;

Iter d_end;

public:

Ranger(Iter const &begin, Iter const &end)

:

d_begin(begin),

d_end(end)

{}

Iter const &begin() const

{

return d_begin;

}

Iter const &end() const

{

return d_end;

}

};

Using ranger is easy. Here is an example of a program displaying a program’s command-line argu-

ments using a range-based for-loop:

// insert all required declarations here

int main(int argc, char **argv)

{

for (auto ptr: ranger(argv, argc))

cout << ptr << ’\n’;

}

23.7 Distinguishing lvalues from rvalues with operator[]()

A problem with operator[] is that it can’t distinguish between its use as an lvalue and as an

rvalue. It is a familiar misconception to think that

Type const &operator[](size_t index) const

is used as rvalue (as the object isn’t modified), and that

Type &operator[](size_t index)

is used as lvalue (as the returned value can be modified).

The compiler, however, distinguishes between the two operators only by the const-status of the

object for which operator[] is called. With const objects the former operator is called, with non-

const objects the latter is always used. It is always used, irrespective of it being used as lvalue or

rvalue.

840 CHAPTER 23. CONCRETE EXAMPLES

Being able to distinguish between lvalues and rvalues can be very useful. Consider the situation

where a class supporting operator[] stores data of a type that is very hard to copy. With data like

that reference counting (e.g., using shared_ptrs) is probably used to prevent needless copying.

As long as operator[] is used as rvalue there’s no need to copy the data, but the information must

be copied if it is used as lvalue.

The Proxy Design Pattern (cf. Gamma et al. (1995)) can be used to distinguish between lvalues and

rvalues. With the Proxy Design Pattern an object of another class (the Proxy class) is used to act

as a stand in for the ‘real thing’. The proxy class offers functionality that cannot be offered by the

data themselves, like distinguishing between its use as lvalue or rvalue. A proxy class can be used

in many situations where access to the real data cannot or should not be directly provided. In this

regard iterator types are examples of proxy classes as they create a layer between the real data and

the software using the data. Proxy classes could also dereference pointers in a class storing its data

by pointers.

In this section we concentrate on the distinction between using operator[] as lvalue and rvalue.

Let’s assume we have a class Lines storing lines from a file. Its constructor expects the name of

a stream from which the lines are read and it offers a non-const operator[] that can be used as

lvalue or rvalue (the const version of operator[] is omitted as it causes no confusion because it is

always used as rvalue):

class Lines

{

std::vector<std::string> d_line;

public:

Lines(std::istream &in);

std::string &operator[](size_t idx);

};

To distinguish between lvalues and rvalues we must find distinguishing characteristics of lvalues

and rvalues that we can exploit. Such distinguishing characteristics are operator= (which is al-

ways used as lvalue) and the conversion operator (which is always used as rvalue). Rather than

having operator[] return a string & we can let it return a Proxy object that is able to distin-

guish between its use as lvalue and rvalue.

The class Proxy thus needs operator=(string const &other) (acting as lvalue) and operator

std::string const &() const (acting as rvalue). Do we need more operators? The std::string

class also offers operator+=, so we should probably implement that operator as well. Plain char-

acters can also be assigned to string objects (even using their numeric values). As string objects

cannot be constructed from plain characters promotion cannot be used with operator=(string

const &other) if the right-hand side argument is a character. Implementing operator=(char

value) could therefore also be considered. These additional operators are left out of the current

implementation but ‘real life’ proxy classes should consider implementing these additional opera-

tors as well. Another subtlety is that Proxy’s operator std::string const &() const is not

used when using ostream’s insertion operator or istream’s extraction operator as these operators

are implemented as templates not recognizing our Proxy class type. So when stream insertion and

extraction is required (it probably is) then Proxy must be given its own overloaded insertion and

extraction operator. Here is an implementation of the overloaded insertion operator inserting the

object for which Proxy is a stand-in:

inline std::ostream &operator<<(std::ostream &out, Lines::Proxy const &proxy)

{

return out << static_cast<std::string const &>(proxy);

23.7. DISTINGUISHING LVALUES FROM RVALUES WITH OPERATOR[]() 841

}

There’s no need for any code (except Lines) to create or copy Proxy objects. Proxy’s constructor

should therefore be made private, and Proxy can declare Lines to be its friend. In fact, Proxy

is intimately related to Lines and can be defined as a nested class. In the revised Lines class

operator[] no longer returns a string but instead a Proxy is returned. Here is the revised

Lines class, including its nested Proxy class:

class Lines

{

std::vector<std::string> d_line;

public:

class Proxy;

Proxy operator[](size_t idx);

class Proxy

{

friend Proxy Lines::operator[](size_t idx);

std::string &d_str;

Proxy(std::string &str);

public:

std::string &operator=(std::string const &rhs);

operator std::string const &() const;

};

Lines(std::istream &in);

};

Proxy’s members are very lightweight and can usually be implemented inline:

inline Lines::Proxy::Proxy(std::string &str)

:

d_str(str)

{}

inline std::string &Lines::Proxy::operator=(std::string const &rhs)

{

return d_str = rhs;

}

inline Lines::Proxy::operator std::string const &() const

{

return d_str;

}

The member Lines::operator[] can also be implemented inline: it merely returns a Proxy object

initialized with the string associated with index idx.

Now that the class Proxy has been developed it can be used in a program. Here is an example using

the Proxy object as lvalue or rvalue. On the surface Lines objects won’t behave differently from

Lines objects using the original implementation, but by adding an identifying cout statement to

Proxy’s members it can be shown that operator[] behaves differently when used as lvalue or as

rvalue:

int main()

{

842 CHAPTER 23. CONCRETE EXAMPLES

ifstream in("lines.cc");

Lines lines(in);

string s = lines[0]; // rvalue use

lines[0] = s; // lvalue use

cout << lines[0] << ’\n’; // rvalue use

lines[0] = "hello world"; // lvalue use

cout << lines[0] << ’\n’; // rvalue use

}

23.8 Implementing a ‘reverse_iterator’

In section 21.13.1 the construction of iterators and reverse iteraters was discussed. In that section

the iterator was constructed as an inner class in a class derived from a vector of pointers to strings.

An object of this nested iterator class handles the dereferencing of the pointers stored in the vector.

This allowed us to sort the strings pointed to by the vector’s elements rather than the pointers.

A drawback of this is that the class implementing the iterator is closely tied to the derived class as

the iterator class was implemented as a nested class. What if we would like to provide any class

derived from a container class storing pointers with an iterator handling pointer-dereferencing?

In this section a variant of the earlier (nested class) approach is discussed. Here the iterator class

is defined as a class template, not only parameterizing the data type to which the container’s ele-

ments point but also the container’s iterator type itself. Once again, we concentrate on developing a

RandomIterator as it is the most complex iterator type.

Our class is named RandomPtrIterator, indicating that it is a random iterator operating on

pointer values. The class template defines three template type parameters:

• The first parameter specifies the derived class type (Class). Like before, RandomPtrIterator’s

constructor is private. Therefore friend declarations are needed to allow client classes to con-

struct RandomPtrIterators. However, a friend class Class cannot be used as template

parameter types cannot be used in friend class ... declarations. But this is a minor prob-

lem as not every member of the client class needs to construct iterators. In fact, only Class’s

begin and end members must construct iterators. Using the template’s first parameter, friend

declarations can be specified for the client’s begin and end members.

• The second template parameter parameterizes the container’s iterator type (BaseIterator);

• The third template parameter indicates the data type to which the pointers point (Type).

RandomPtrIterator has one private data member, a BaseIterator. Here is the class interface

and the constructor’s implementation:

#include <iterator>

template <typename Class, typename BaseIterator, typename Type>

class RandomPtrIterator:

public std::iterator<std::random_access_iterator_tag, Type>

{

friend RandomPtrIterator<Class, BaseIterator, Type> Class::begin();

friend RandomPtrIterator<Class, BaseIterator, Type> Class::end();

23.8. IMPLEMENTING A ‘REVERSE_ITERATOR’ 843

BaseIterator d_current;

RandomPtrIterator(BaseIterator const ¤t);

public:

bool operator!=(RandomPtrIterator const &other) const;

int operator-(RandomPtrIterator const &rhs) const;

RandomPtrIterator operator+(int step) const;

Type &operator*() const;

bool operator<(RandomPtrIterator const &other) const;

RandomPtrIterator &operator--();

RandomPtrIterator operator--(int);

RandomPtrIterator &operator++();

RandomPtrIterator operator++(int);

bool operator==(RandomPtrIterator const &other) const;

RandomPtrIterator operator-(int step) const;

RandomPtrIterator &operator-=(int step);

RandomPtrIterator &operator+=(int step);

Type *operator->() const;

};

template <typename Class, typename BaseIterator, typename Type>

RandomPtrIterator<Class, BaseIterator, Type>::RandomPtrIterator(

BaseIterator const ¤t)

:

d_current(current)

{}

Looking at its friend declarations, we see that the members begin and end of a class Class, re-

turning a RandomPtrIterator object for the types Class, BaseIterator and Type are granted

access to RandomPtrIterator’s private constructor. That is exactly what we want. The Class’s

begin and end members are declared as bound friends.

All RandomPtrIterator’s remaining members are public. Since RandomPtrIterator is just a

generalization of the nested class iterator developed in section 21.13.1, re-implementing the re-

quired member functions is easy and only requires us to change iterator into RandomPtrIterator

and to change std::string into Type. For example, operator<, defined in the class iterator as

inline bool StringPtr::iterator::operator<(iterator const &other) const

{

return d_current < other.d_current;

}

is now implemented as:

template <typename Class, typename BaseIterator, typename Type>

bool RandomPtrIterator<Class, BaseIterator, Type>::operator<(

RandomPtrIterator const &other) const

{

return **d_current < **other.d_current;

}

Some additional examples: operator*, defined in the class iterator as

844 CHAPTER 23. CONCRETE EXAMPLES

inline std::string &StringPtr::iterator::operator*() const

{

return **d_current;

}

is now implemented as:

template <typename Class, typename BaseIterator, typename Type>

Type &RandomPtrIterator<Class, BaseIterator, Type>::operator*() const

{

return **d_current;

}

The pre- and postfix increment operators are now implemented as:

template <typename Class, typename BaseIterator, typename Type>

RandomPtrIterator<Class, BaseIterator, Type>

&RandomPtrIterator<Class, BaseIterator, Type>::operator++()

{

++d_current;

return *this;

}

template <typename Class, typename BaseIterator, typename Type>

RandomPtrIterator<Class, BaseIterator, Type>

RandomPtrIterator<Class, BaseIterator, Type>::operator++(int)

{

return RandomPtrIterator(d_current++);

}

Remaining members can be implemented accordingly, their actual implementations are left as exer-

cises to the reader (or can be obtained from the cplusplus.yo.zip archive, of course).

Re-implementing the class StringPtr developed in section 21.13.1 is not difficult either. Apart from

including the header file defining the class template RandomPtrIterator, it only requires a single

modification. Its iterator typedef must now be associated with a RandomPtrIterator. Here is

the full class interface and the class’s inline member definitions:

#ifndef INCLUDED_STRINGPTR_H_

#define INCLUDED_STRINGPTR_H_

#include <vector>

#include <string>

#include "iterator.h"

class StringPtr: public std::vector<std::string *>

{

public:

typedef RandomPtrIterator

<

StringPtr,

std::vector<std::string *>::iterator,

std::string

>

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 845

iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;

iterator begin();

iterator end();

reverse_iterator rbegin();

reverse_iterator rend();

};

inline StringPtr::iterator StringPtr::begin()

{

return iterator(this->std::vector<std::string *>::begin());

}

inline StringPtr::iterator StringPtr::end()

{

return iterator(this->std::vector<std::string *>::end());

}

inline StringPtr::reverse_iterator StringPtr::rbegin()

{

return reverse_iterator(end());

}

inline StringPtr::reverse_iterator StringPtr::rend()

{

return reverse_iterator(begin());

}

#endif

Including StringPtr’s modified header file into the program given in section 21.13.2 results in a

program behaving identically to its earlier version. In this case StringPtr::begin and StringPtr::end

return iterator objects constructed from a template definition.

23.9 Using ‘bisonc++’ and ‘flexc++’

The example discussed below digs into the peculiarities of using parser- and scanner generators

generating C++ sources. Once the input for a program exceeds a certain level of complexity, it

becomes attractive to use scanner- and parser-generators generating the code which does the actual

input recognition.

The examples in this and subsequent sections assume that the reader knows how to use the scanner

generator flex and the parser generator bison. Both bison and flex are well documented else-

where. The original predecessors of bison and flex, called yacc and lex are described in several

books, e.g. in O’Reilly’s book ‘lex & yacc’3.

Scanner- and parser generators are also available as free software. Both bison and flex are usually

part of software distributions or they can be obtained from ftp://prep.ai.mit.edu/pub/non-gnu.

Flex creates a C++ class when %option c++ is specified.

For parser generators the program bison is available. In the early 90’s Alain Coetmeur (coetmeur@icdc.fr4)

created a C++ variant (bison++) creating a parser class. Although the bison++ program produces

code that can be used in C++ programs it also shows many characteristics that are more suggestive

3http://www.oreilly.com/catalog/lex
4mailto:coetmeur@icdc.fr

846 CHAPTER 23. CONCRETE EXAMPLES

of a C context than a C++ context. In January 2005 I rewrote parts of Alain’s bison++ program, re-

sulting in the original version of the program bisonc++. Then, in May 2005 a complete rewrite of the

bisonc++ parser generator was completed (version number 0.98). Current versions of bisonc++

can be downloaded from http://bisoncpp.sourceforge.net/, where it is available as source

archive and as binary (i386) Debian5 package (including bisonc++’s documentation).

Bisonc++ creates a cleaner parser class than bison++. In particular, it derives the parser class

from a base-class, containing the parser’s token- and type-definitions as well as all member func-

tions which should not be (re)defined by the programmer. As a result of this approach, the generated

parser class is very small, declaring only members that are actually defined by the programmer (as

well as some other members, generated by bisonc++ itself, implementing the parser’s parse()

member). One member that is not implemented by default is lex, producing the next lexical to-

ken. When the directive %scanner (see section 23.9.2.1) is used, bisonc++ produces a standard

implementation for this member; otherwise it must be implemented by the programmer.

In early 2012 the program flexc++ http://flexcpp.org/ reached its initial release. Like bisonc++

it is part of the Debian linux distribution6.

Jean-Paul van Oosten (j.p.van.oosten@rug.nl<j.p.van.oosten@rug.nl>) and Richard Berend-

sen (richardberendsen@xs4all.nl<richardberendsen@xs4all.nl>) started the flexc++ project

in 2008 and the final program was completed by Jean-Paul and me between 2010 and 2012.

These sections of the C++ Annotations focus on bisonc++ as our parser generator and flexc++ as

our lexical scanner generator. Previous releases of the C++ Annotations were using flex as the

scanner generator.

Using flex++ and bisonc++ class-based scanners and parsers are generated. The advantage

of this approach is that the interface to the scanner and the parser tends to become cleaner than

without using class interfaces. Furthermore, classes allow us to get rid of most if not all global

variables, making it easy to use multiple parsers in one program.

Below two example programs are developed. The first example only uses flexc++. The generated

scanner monitors the production of a file from several parts. That example focuses on the lexical

scanner and on switching files while churning through the information. The second example uses

both flexc++ and bisonc++ to generate a scanner and a parser transforming standard arithmetic

expressions to their postfix notations, commonly used in code generated by compilers and in HP-

calculators. In the second example the emphasis is mainly on bisonc++ and on composing a scanner

object inside a generated parser.

23.9.1 Using ‘flexc++’ to create a scanner

The lexical scanner developed in this section is used to monitor the production of a file from several

subfiles. The setup is as follows: the input-language defines #include directives, followed by a text

string specifying the file (path) which should be included at the location of the #include.

In order to avoid complexities irrelevant to the current example, the format of the #include state-

ment is restricted to the form #include <filepath>. The file specified between the pointed brack-

ets should be available at the location indicated by filepath. If the file is not available, the program

terminates after issuing an error message.

The program is started with one or two filename arguments. If the program is started with just

one filename argument, the output is written to the standard output stream cout. Otherwise, the

output is written to the stream whose name is given as the program’s second argument.

5http://www.debian.org
6http://www.debian.org

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 847

The program defines a maximum nesting depth. Once this maximum is exceeded, the program

terminates after issuing an error message. In that case, the filename stack indicating where which

file was included is printed.

An additional feature of the program is that (standard C++) comment-lines are ignored. Include-

directives in comment-lines are also ignored.

The program is created in five major steps:

• First, the file lexer is constructed, containing the input-language specifications.

• From the specifications in lexer the requirements for the class Scanner evolve. The Scanner

class derives from the base class ScannerBase generated by flexc++.

• Next, main is constructed. A Scanner object is created inspecting the command-line argu-

ments. If successful, the scanner’s member lex is called to produce the program’s output.

• Now that the global setup of the program has been specified, the member functions of the

various classes are implemented.

• Finally, the program is compiled and linked.

23.9.1.1 The derived class ‘Scanner’

The function matching the regular expression rules (lex) is a member of the class Scanner. Since

Scanner is derived from ScannerBase, it has access to all of ScannerBase’s protected members

that execute the lexical scanner’s regular expression matching algorithm.

Looking at the regular expressions themselves, notice that we need rules to recognize comment,

#include directives, and all remaining characters. This all is fairly standard practice. When an

#include directive is sensed, the directive is parsed by the scanner. This too is common practice.

Our lexical scanner performs the following tasks:

• As usual, preprocessor directives are not analyzed by a parser, but by the lexical scanner;

• The scanner uses a mini scanner to extract the filename from the directive, throwing a excep-

tion if this fails;

• If the filename could be extracted, processing switches to the next stream, controlling for a

maximum nesting depth.

• Once the end of the current file has been reached processing automatically returns to the

previous file, restoring the previous file name an line number. The scanner returns 0 if all files

have been processed.

23.9.1.2 The lexical scanner specification file

The lexical scanner specification file is organized comparably to the one used for flex in C contexts.

However, in C++ contexts, flexc++ creates a class Scanner, rather than just a scanner function.

Flexc++’s specification file consists of two sections:

• The specification file’s first section is flexc++’s symbol area, used to define symbols, like a

mini scanner, or options. The following options are suggested:

848 CHAPTER 23. CONCRETE EXAMPLES

– %debug: includes debugging code into the code generated by flexc++. Calling the mem-

ber function setDebug(true) activates this debugging code at run-time. When acti-

vated, information about the matching process is written to the standard output stream.

The execution of debug code is suppressed after calling the member function setDebug(false).

– %filenames: defines the base-name of the class header files generated by flexc++. By

default the class name (itself using the default Scanner) is used.

Here is the specification files’ symbol area:

%filenames scanner

%debug

%max-depth 3

%x comment

%x include

• The specification file’s second section is a rules section in which the regular expressions and

their associated actions are defined. In the example developed here, the lexer should copy infor-

mation from the standard input stream (std::cin) to the standard output stream (std::cout).

For this the predefined macro ECHO can be used. Here are the rules:

%%

// The comment-rules: comment is ignored.

//.* // ignore eoln comment

"/*" begin(StartCondition__::comment);

<comment>{

.|\n // ignore all characters in std C comment

"*/" begin(StartCondition__::INITIAL);

}

// File switching: #include <filepath>

#include[\t]+"<" begin(StartCondition__::include);

<include>{

[^ \t>]+ d_nextSource = matched();

">"[\t]*\n switchSource();

.|\n throw runtime_error("Invalid include statement");

}

// The default rule: echo anything else to std::cout

.|\n echo();

23.9.1.3 Implementing ‘Scanner’

The class Scanner is generated once by flexc++. This class has access to several members defined

by its base class ScannerBase. Some of these members have public access rights and can be used by

code external to the class Scanner. These members are extensively documented in the flexc++(1)

man-page, and the reader is referred to this man-page for further information.

Our scanner performs the following tasks:

• it matches regular expressions, ignoring comment, and writing the matched text to the stan-

dard output stream;

• it switches to other files, and returns to the previous file once a file has completely been pro-

cessed, ending the lexical scan once the end of the first input file has been reached.

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 849

The #include statements in the input allow the scanner to distill the name of the file where the

scanning process must continue. This file name is stored in a local variable d_nextSource and a

member stackSource handles the switch to the next source. Nothing else is required. Pushing

and popping input files is handled by the scanner’s members pushStream and popStream, pro-

vided by flexc++. Scanner’s interface, therefore, only needs one additional function declaration:

switchSource.

Switching streams is handled as follows: once the scanner has extracted a filename from an #include

directive, a switch to another file is realized by switchSource. This member calls pushStream,

defined by flexc++, to stack the current input stream and to switch to the stream whose name is

stored in d_nextSource. This also ends the include mini-scanner, so to return the scanner to its

default scanning mode begin(StartCondition__::INITIAL) is called. Here is its source:

#include "scanner.ih"

void Scanner::switchSource()

{

pushStream(d_nextSource);

begin(StartCondition__::INITIAL);

}

The member pushStream, defined by flexc++, handles all necessary checks, throwing an exception

if the file could not be opened or if too many files are stacked.

The member performing the lexical scan is defined by flexc++ in Scanner::lex, and this member

can be called by code to process the tokens returned by the scanner.

23.9.1.4 Using a ‘Scanner’ object

The program using our Scanner is very simple. It expects a filename indicating where to start the

scanning process.

The program first checks the number of arguments. If at least one argument was given, then that

argument is passed to Scanner’s constructor, together with a second argument "-", indicating that

the output should go to the standard output stream.

If the program receives more than one argument debug output, extensively documenting the lexical

scanner’s actions, is written to the standard output stream as well.

Next the Scanner’s lex member is called. If anything fails, a std::exception is thrown, which

is caught by main’s try-block’s catch clause. Here is the program’s source:

#include "lexer.ih"

int main(int argc, char **argv)

try

{

if (argc == 1)

{

cerr << "Filename argument required\n";

return 1;

}

Scanner scanner(argv[1], "-");

850 CHAPTER 23. CONCRETE EXAMPLES

scanner.setDebug(argc > 2);

return scanner.lex();

}

catch (exception const &exc)

{

cerr << exc.what() << ’\n’;

return 1;

}

23.9.1.5 Building the program

The final program is constructed in two steps. These steps are given for a Unix system, on which

flexc++ and the Gnu C++ compiler g++ have been installed:

• First, the lexical scanner’s source is created using flexc++. For this the following command

can be given:

flexc++ lexer

• Next, all sources are compiled and linked:

g++ --std=c++0x -Wall *.cc

Flexc++ can be downloaded from http://flexcpp.org/, and requires the bobcat library, which

can be downloaded from http://bobcat.sf.net/.

23.9.2 Using ‘bisonc++’ and ‘flexc++’

Once an input language exceeds a certain level of complexity, a parser is often used to control the

complexity of the language. In this case, a parser generator can be used to generate the code verify-

ing the input’s grammatical correctness. The lexical scanner (preferably composed into the parser)

provides chunks of the input, called tokens. The parser then processes the series of tokens generated

by the lexical scanner.

Starting point when developing programs that use both parsers and scanners is the grammar. The

grammar defines a set of tokens that can be returned by the lexical scanner (called the scanner

below).

Finally, auxiliary code is provided to ‘fill in the blanks’: the actions performed by the parser and

by the scanner are not normally specified literally in the grammar rules or lexical regular expres-

sions, but should be implemented in member functions, called from the parser’s rules or which are

associated with the scanner’s regular expressions.

In the previous section we’ve seen an example of a C++ class generated by flexc++. In the current

section we concentrate on the parser. The parser can be generated from a grammar specification

file, processed by the program bisonc++. The grammar specification file required by bisonc++ is

similar to the file processed by bison (or bison++, bisonc++’s predecessor, written in the early

nineties by Alain Coetmeur).

In this section a program is developed converting infix expressions, where binary operators are

written between their operands, to postfix expressions, where operators are written behind their

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 851

operands. Also, the unary operator - is converted from its prefix notation to a postfix form. The

unary + operator is ignored as it requires no further actions. In essence our little calculator is a

micro compiler, transforming numeric expressions into assembly-like instructions.

Our calculator recognizes a rather basic set of operators: multiplication, addition, parentheses, and

the unary minus. We’ll distinguish real numbers from integers, to illustrate a subtlety in bison-

like grammar specifications. That’s all. The purpose of this section is, after all, to illustrate the

construction of a C++ program that uses both a parser and a lexical scanner, rather than to construct

a full-fledged calculator.

In the coming sections we’ll develop the grammar specification for bisonc++. Then, the regular

expressions for the scanner are specified. Following that, the final program is constructed.

23.9.2.1 The ‘bisonc++’ specification file

The grammar specification file required by bisonc++ is comparable to the specification file required

by bison. Differences are related to the class nature of the resulting parser. Our calculator distin-

guishes real numbers from integers, and supports a basic set of arithmetic operators.

Bisonc++ should be used as follows:

• As usual, a grammar is defined. With bisonc++ this is no different, and bisonc++ grammar

definitions are for all practical purposes identical to bison’s grammar definitions.

• Having specified the grammar and (usually) some declarations bisonc++ can generate files

defining the parser class and the implementation of the member function parse.

• All class members (except those that are required for the proper functioning of the member

parse) must be separately implemented. Of course, they should also be declared in the parser

class’s header. At the very least the member lex must be implemented. This member is called

by parse to obtain the next available token. However, bisonc++ offers a facility providing

a standard implementation of the function lex. The member function error(char const

*msg) is given a simple default implementation that may be modified by the programmer. The

member function error is called when parse detects (syntactic) errors.

• The parser can now be used in a program. A very simple example would be:

int main()

{

Parser parser;

return parser.parse();

}

The bisonc++ specification file has two sections:

• The declaration section. In this section bison’s tokens, and the priority rules for the operators

are declared. However, bisonc++ also supports several new declarations. These new declara-

tions are important and are discussed below.

• The rules section. The grammatical rules define the grammar. This section is identical to the

one required by bison, albeit that some members that were available in bison and bison++

are obsolete in bisonc++, while other members can be used in a wider context. For example,

ACCEPT and ABORT can be called from any member called from the parser’s action blocks

to terminate the parsing process.

852 CHAPTER 23. CONCRETE EXAMPLES

Readers familiar with bison may note that there is no header section anymore. Header sections

are used by bison to provide for the necessary declarations allowing the compiler to compile the C

function generated by bison. In C++ declarations are part of or already used by class definitions.

Therefore, a parser generator generating a C++ class and some of its member functions does not

require a header section anymore.

The declaration section The declaration section contains several sets of declarations, among

which definitions of all the tokens used in the grammar and the priorities and associativities of the

mathematical operators. Moreover, several new and important specifications can be used here as

well. Those relevant to our current example and only available in bisonc++ are discussed here.

The reader is referred to bisonc++’s man-page for a full description.

• %baseclass-preinclude header

Use header as the pathname to the file pre-included in the parser’s base-class header. This

declaration is useful in situations where the base class header file refers to types which might

not yet be known. E.g., with %union a std::string * field might be used. Since the class

std::string might not yet be known to the compiler once it processes the base class header

file we need a way to inform the compiler about these classes and types. The suggested pro-

cedure is to use a pre-include header file declaring the required types. By default header is

surrounded by double quotes (using, e.g., #include "header"). When the argument is sur-

rounded by angle brackets #include <header> is included. In the latter case, quotes might

be required to escape interpretation by the shell (e.g., using -H ’<header>’).

• %filenames header

Defines the generic name of all generated files, unless overridden by specific names. By default

the generated files use the class-name as the generic file name.

• %scanner header

Use header as the pathname to the file pre-included in the parser’s class header. This file

should define a class Scanner, offering a member int lex() producing the next token from

the input stream to be analyzed by the parser generated by bisonc++. When this option is

used the parser’s member int lex() is predefined as (assuming the default parser class name

Parser is used):

inline int Parser::lex()

{

return d_scanner.lex();

}

and an object Scanner d_scanner is composed into the parser. The d_scanner object is

constructed by its default constructor. If another constructor is required, the parser class

may be provided with an appropriate (overloaded) parser constructor after having constructed

the default parser class header file using bisonc++. By default header is surrounded by

double quotes (using, e.g., #include "header"). When the argument is surrounded by angle

brackets #include <header> is included.

• %stype typename

The type of the semantic value of tokens. The specification typename should be the name of

an unstructured type (e.g., size_t). By default it is int. See YYSTYPE in bison. It should

not be used if a %union specification is used. Within the parser class, this type may be used as

STYPE.

• %union union-definition

Acts identically to the bison declaration. As with bison this generates a union for the parser’s

semantic type. The union type is named STYPE. If no %union is declared, a simple stack-type

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 853

may be defined using the %stype declaration. If no %stype declaration is used, the default

stacktype (int) is used.

An example of a %union declaration is:

%union

{

int i;

double d;

};

In pre-C++11 code a union cannot contain objects as its fields, as constructors cannot be called when

a union is created. This means that a string cannot be a member of the union. A string *,

however, is a possible union member. It might also be possible to use unrestricted unions (cf. section

12.6), having class type objects as fields.

As an aside: the scanner does not have to know about such a union. It can simply pass its scanned

text to the parser through its matched member function. For example using a statement like

$$.i = A2x(d_scanner.matched());

matched text is converted to a value of an appropriate type.

Tokens and non-terminals can be associated with union fields. This is strongly advised, as it pre-

vents type mismatches, since the compiler may then check for type correctness. At the same time,

the bison specific variables $$, $1, $2, etc. may be used, rather than the full field specification (like

$$.i). A non-terminal or a token may be associated with a union field using the <fieldname>

specification. E.g.,

%token <i> INT // token association (deprecated, see below)

<d> DOUBLE

%type <i> intExpr // non-terminal association

In the example developed here, both the tokens and the non-terminals can be associated with a

union field. However, as noted before, the scanner does not have to know about all this. In our

opinion, it is cleaner to let the scanner do just one thing: scan texts. The parser, knowing what

the input is all about, may then convert strings like "123" to an integer value. Consequently, the

association of a union field and a token is discouraged. Below, while describing the grammar’s rules,

this is further illustrated.

In the %union discussion the %token and %type specifications should be noted. They are used to

specify the tokens (terminal symbols) that can be returned by the scanner, and to specify the return

types of non-terminals. Apart from %token the token declarators %left, %right, and %nonassoc

can be used to specify the associativity of operators. The tokens mentioned at these indicators are

interpreted as tokens indicating operators, associating in the indicated direction. The precedence

of operators is defined by their order: the first specification has the lowest priority. To overrule

a certain precedence in a certain context %prec can be used. As all this is standard bisonc++

practice, it isn’t further elaborated here. The documentation provided with bisonc++’s distribution

should be consulted for further reference.

Here is the specification of the calculator’s declaration section:

%filenames parser

854 CHAPTER 23. CONCRETE EXAMPLES

%scanner ../scanner/scanner.h

%union {

int i;

double d;

};

%token INT DOUBLE

%type <i> intExpr

%type <d> doubleExpr

%left ’+’

%left ’*’

%right UnaryMinus

In the declaration section %type specifiers are used, associating the intExpr rule’s value (see the

next section) to the i-field of the semantic-value union, and associating doubleExpr’s value to the

d-field. This approach, admittedly, is rather complex, as expression rules must be included for each

of the supported union types. Alternatives are definitely possible, and are illustrated in subsequent

sections (e.g., section 23.9.3).

The grammar rules The rules and actions of the grammar are specified as usual. The grammar

for our little calculator is given below. There are quite a few rules, but they illustrate various fea-

tures offered by bisonc++. In particular, note that no action block requires more than a single line

of code. This keeps the grammar simple, and therefore enhances its readability and understandabil-

ity. Even the rule defining the parser’s proper termination (the empty line in the line rule) uses a

single member function called done. The implementation of that function is simple, but it is worth

while noting that it calls Parser::ACCEPT, showing that ACCEPT can be called indirectly from a

production rule’s action block. Here are the grammar’s production rules:

lines:

lines

line

|

line

;

line:

intExpr

’\n’

{

display($1);

}

|

doubleExpr

’\n’

{

display($1);

}

|

’\n’

{

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 855

done();

}

|

error

’\n’

{

reset();

}

;

intExpr:

intExpr ’*’ intExpr

{

$$ = exec(’*’, $1, $3);

}

|

intExpr ’+’ intExpr

{

$$ = exec(’+’, $1, $3);

}

|

’(’ intExpr ’)’

{

$$ = $2;

}

|

’-’ intExpr %prec UnaryMinus

{

$$ = neg($2);

}

|

INT

{

$$ = convert<int>();

}

;

doubleExpr:

doubleExpr ’*’ doubleExpr

{

$$ = exec(’*’, $1, $3);

}

|

doubleExpr ’*’ intExpr

{

$$ = exec(’*’, $1, d($3));

}

|

intExpr ’*’ doubleExpr

{

$$ = exec(’*’, d($1), $3);

}

|

856 CHAPTER 23. CONCRETE EXAMPLES

doubleExpr ’+’ doubleExpr

{

$$ = exec(’+’, $1, $3);

}

|

doubleExpr ’+’ intExpr

{

$$ = exec(’+’, $1, d($3));

}

|

intExpr ’+’ doubleExpr

{

$$ = exec(’+’, d($1), $3);

}

|

’(’ doubleExpr ’)’

{

$$ = $2;

}

|

’-’ doubleExpr %prec UnaryMinus

{

$$ = neg($2);

}

|

DOUBLE

{

$$ = convert<double>();

}

;

This grammar is used to implement a simple calculator in which integer and real values can be

negated, added, and multiplied and in which standard priority rules can be overruled by paren-

theses. The grammar shows the use of typed nonterminal symbols: doubleExpr is linked to real

(double) values, intExpr is linked to integer values. Precedence and type association is defined in

the parser’s definition section.

The Parser’s header file Several class members called from the grammar are defined as mem-

ber templates. Bisonc++ generates multiple files, among which the file defining the parser’s class.

Functions called from the production rule’s action blocks are usually member functions of the parser.

These member functions must be declared and defined. Once bisonc++ has generated the header

file defining the parser’s class, that header file isn’t automatically rewritten, allowing the program-

mer to add new members to the parser class whenever required. Here is ‘parser.h’ as used in our

little calculator:

#ifndef Parser_h_included

#define Parser_h_included

#include <iostream>

#include <sstream>

#include <bobcat/a2x>

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 857

#include "parserbase.h"

#include "../scanner/scanner.h"

#undef Parser

class Parser: public ParserBase

{

std::ostringstream d_rpn;

// $insert scannerobject

Scanner d_scanner;

public:

int parse();

private:

template <typename Type>

Type exec(char c, Type left, Type right);

template <typename Type>

Type neg(Type op);

template <typename Type>

Type convert();

void display(int x);

void display(double x);

void done() const;

void reset();

void error(char const *msg);

int lex();

void print();

static double d(int i);

// support functions for parse():

void executeAction(int d_ruleNr);

void errorRecovery();

int lookup(bool recovery);

void nextToken();

void print__();

};

inline double Parser::d(int i)

{

return i;

}

template <typename Type>

Type Parser::exec(char c, Type left, Type right)

{

d_rpn << " " << c << " ";

return c == ’*’ ? left * right : left + right;

}

858 CHAPTER 23. CONCRETE EXAMPLES

template <typename Type>

Type Parser::neg(Type op)

{

d_rpn << " n ";

return -op;

}

template <typename Type>

Type Parser::convert()

{

Type ret = FBB::A2x(d_scanner.matched());

d_rpn << " " << ret << " ";

return ret;

}

inline void Parser::error(char const *msg)

{

std::cerr << msg << ’\n’;

}

inline int Parser::lex()

{

return d_scanner.lex();

}

inline void Parser::print()

{}

#endif

23.9.2.2 The ‘flexc++’ specification file

The flex-specification file used by the calculator is simple: blanks are ignored, single characters are

returned, and numeric values are returned as either Parser::INT or Parser::DOUBLE tokens.

The flexc++ directive %interactive is provided since the calculator is a program actively inter-

acting with its human user.

Here is the complete flexc++ specification file:

%interactive

%filenames scanner

%%

[\t] // ignored

[0-9]+ return Parser::INT;

"."[0-9]* |

[0-9]+("."[0-9]*)? return Parser::DOUBLE;

.|\n return matched()[0];

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 859

23.9.2.3 Building the program

The calculator is built using bisonc++ and flexc++. Here is the implentation of the calculator’s

main function:

#include "parser/parser.h"

using namespace std;

int main()

{

Parser parser;

cout << "Enter (nested) expressions containing ints, doubles, *, + and "

"unary -\n"

"operators. Enter an empty line to stop.\n";

return parser.parse();

}

The parser’s files parse.cc and parserbase.h are generated by the command:

bisonc++ grammar

The file parser.h is created only once, to allow the developer to add members to the Parser class

occe the need for them arises.

The program flexc++ is used to create a lexical scanner:

flexc++ lexer

On Unix systems a command like

g++ --std=c++0x -Wall -o calc *.cc -lbobcat -s

can be used to compile and link the source of the main program and the sources produced by the

scanner and parser generators. The example uses the A2x class, discussed in section 23.4, but which

is also part of the bobcat library (cf. section 23.9.1.5). The bobcat library is available on systems

offering either bisonc++ or flexc++. Bisonc++ can be downloaded from

http://bisoncpp.sourceforge.net/.

23.9.3 Bisonc++: using polymorphic semantic values

Instead of using unions to store various semantic values bisonc++ could also use a polymorphic

base class to handle semantic values of various types. Using a polymorphic base class is covered

in this section. The described method is a direct result of a suggestion initially brought forward by

Dallas A. Clement in September 2007.

One may wonder why unions are still used by Bisonc++, as C++ offers inherently superior ways to

handle multiple semantic types: a poymorphic base class and a series of derived classes implement-

ing the alternative data types.

860 CHAPTER 23. CONCRETE EXAMPLES

On the other hand, a polymorphic base class also seems to imply a lot of additional work: classes

must be derived from a base class, virtual members must be declared and overridden in derived

classes, and the base class must be aware of the relevant interfaces of all derived classes. All this

does more to hinder than to promote the construction of reusable software. So, how to proceed? It

turns out that the required effort to implement and use polymorphic semantic values is fairly small.

In fact, only a very basic polymorphic semantic base class needs to be implemented. Having defined

the polymorphic base class template meta programming techniques can be used to let the compiler

create all derived classes we might need. The amount of works turns out to be astonishingly small.

What about the ‘free lunch’? Well, the approach works fine in situations where we either can deduct

the actual semantic value from the grammar (i.e., the syntax) itself, or where we occasionally are

willing to use a switch to select the actual semantic value. This rather weak assumption holds true

for the grammar used by the program developed in this section, so let’s get on with it!

The program developed in this section recognizes input consisting of lines suggesting assignment

statements or function calls:

value:

int

ident

;

arglist:

arglist ’,’ value

|

value

;

rule:

ident ’(’ arglist ’)’ ’;’

|

ident ’=’ int ’;’

;

An essential characteristic of these simple rules is that three different semantic value types are

used: int-values, names, and vectors of arguments. Other types could easily have been used as well:

doubles, complex numbers, sets; you name it.

Our semantic value must accomodate all these different types, and must also allow us to determine

the actual type that’s stored in a semantic value in cases where we cannot deduct the actual type

merely from the syntax (which happens, e.g., for the different semantic values types contained in an

arglist).

In the following sections we’ll develop the parser using a polymorphic base class to handle its seman-

tic values. To prevent excessive copying of semantic values the parser’s actual semantic value is not

the semantic value itself but a spSemBase, which is a wrapper around a std::shared_ptr<SemBase>,

where SemBase is our polymorphic base class (cf. section 23.9.3.9).

We’ll develop the generic Semantic class template in steps:

• In the next section we’ll start by defining tags for the various semantic data types;

• Next, support structs are developed allowing us to indicate whether semantic data can be

modified by the parser or not;

• Following this, a trait class is developed allowing us to obtain data types from tags;

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 861

• Another trait class is needed to determine the data type that is returned by the conversion

operators of the different semantic data types;

• Hereafter the polymorphic base class SemBase is developed;

• Finally, de class template Semantic is defined, allowing us to define various semantic value

classes, all derived from SemBase

The complete demo program is available in the annotation()’s source archive under the directory

yo/concrete/poly2.

23.9.3.1 The parser using a polymorphic semantic value type

In Bisonc++’s grammar specification %stype is of course Semantic. A simple grammar is defined

for this illustrative example. The grammar expects input according to the following rule:

rule:

IDENTIFIER ’(’ IDENTIFIER ’)’ ’;’

|

IDENTIFIER ’=’ INT ’;’

;

The rule’s actions simply echo the received identifiers and int values to cout. Here is an example

of a decorated production rule, where due to Semantic’s overloaded insertion operator the insertion

of the object controlled by Semantic is automatically performed:

IDENTIFIER ’=’ INT ’;’

{

cout << $1 << " " << $3 << ’\n’;

}

Bisonc++’s parser stores all semantic values on its semantic values stack (irrespective of the num-

ber of tokens that were defined in a particular production rule). At any time all semantic values

associated with previously recognized tokens are available in an action block. Once the semantic

value stack is reduced, the Semantic class’s destructor takes care of the proper destruction of the

objects controlled by its shared_ptr base class.

The scanner must of course be allowed to access the parser’s data member representing the most

recent semantic value. This data member is available as the parser’s data member d_val__, whose

address or reference can be passed to the scanner when it is constructed. E.g., with a scanner

expecting an STYPE__ & the parser’s constructor could simply be implemented as:

inline Parser::Parser()

:

d_scanner(d_val__)

{}

23.9.3.2 Tagging the actual semantic type: the ‘enum class Tag’

Our program handles three types of semantic values: numbers, text, and vectors of semantic values,

which are either numbers or text. These distinct types are indicated by tag enumeration values:

862 CHAPTER 23. CONCRETE EXAMPLES

enum class Tag // defines the various semantic values

{ // Tags are used to instantiate the proper

INT, // Semantic type, deriving from a polymorphic base

TEXT, // class

VECTOR,

};

23.9.3.3 (Im)mutable semantic data: two base-structs

In cases where the data stored in the classes derived from the polymorphic base class may either or

not be mutable by the parser, there must be a way to indicate so when the derived class is created.

Two small support structs define isMutable enum values indicating whether the data should be

considered mutable or not. To make matters concrete, let’s assume that we’ll need INT and TEXT

semantic values to be immutable, while VECTOR semantic values need to be mutable. Here are these

structs, defined in the anonymous namespace within sembase.h:

struct Mutable // Semantic values may or may

{ // not be mutable. By deriving

enum: bool { isMutable = true }; // BasicTrait, below, from

}; // either Mutable or Immutable

// this trait is associated with

struct Immutable // a semantic value BasicTrait.

{

enum: bool { isMutable = false };

};

23.9.3.4 Traits of semantic type tags: the ‘TagTrait’ trait class

The TagTrait trait class defines, for each of the distinct semantic values, what the actual data

type (DataType) is that is associated with the tag and whether the data are mutable or immutable.

Mutable data on the parser’s semantic stack may be modified, immutable data may not.

Here is the TagTrait meta template struct template and its specializations for the three data types

used by our parser.

template <Tag tag>

struct TagTrait;

template <>

struct TagTrait<Tag::INT>: public Immutable

{

typedef int DataType;

};

template <>

struct TagTrait<Tag::TEXT>: public Immutable

{

typedef std::string DataType;

};

template <>

struct TagTrait<Tag::VECTOR>: public Mutable

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 863

{

typedef std::vector<std::shared_ptr<SemBase const>> DataType;

};

23.9.3.5 Accessing data from derived classes

How to access the data that are actually stored inside a semantic value class that is derived from

the semantic values polymorphic base class?

Depending on the status (mutable or immutable) and type (basic or class type) of the actual semantic

data we recognize three situations:

• If the data within the semantic value class are mutable, then an accessor should return a

reference to the data stored within the semantic value class;

• Immutable non-class type values should be made available by value;

• Immutable class type values should be made available as const references.

Next, a trait class template Trait is defined, requiring a Tag template non-type parameter. This

trait class uses the Tag to determine the data type that is associated with the Tag, making its local

type DataType as synonym of that data type.

Next, to determine whether an actual data type is a class type or a basic type template meta pro-

gramming, as outlined in section 22.6.1, is used.

Using template meta programming a value isBasicType of an enum: bool anonymous enum is

set to true if DataType represents a basic data type. This enum also defines a value isMutable

indicating whether or not the actual data stored in a semantic value class is mutable or not.

Next, conditional to the combinations of isMutable and isBasicType the Trait trait class defines

the type ReturnType. For this the available std::conditional trait class is used (cf. section

22.6.2).

Now we’re able, e.g., to state Trait<Tag::INT>::DataType to obtain the int data type, or to state

Trait<Tag::VECTOR>::ReturnType to obtain the ‘std::vector<std::shared_ptr<SemBase»

&’ return type.

Here is the implementation of the trait class template Trait:

struct C2

{

char _[2];

};

struct C1

{

char _;

};

template <typename T>

C1 test(...);

template <typename T>

C2 test(void (T::*)());

864 CHAPTER 23. CONCRETE EXAMPLES

template <Tag tg_>

struct Trait: public TagTrait<tg_>

{

typedef typename Trait<tg_>::DataType DataType;

enum: bool

{

isMutable = Trait<tg_>::isMutable,

isBasicType = sizeof(test<DataType>(0)) == sizeof(C1)

};

typedef typename

std::conditional<

isMutable,

DataType &,

typename std::conditional<

isBasicType,

DataType,

DataType const &

>::type

>::type ReturnType;

};

23.9.3.6 The polymorphic base class ‘SemBase’

The implementation of the polymorphic semantic value in fact implements a type-safe polymorphic

semantic union. In C++ this data type does not exist, but the parser may handle semantic values

as unions. It always knows the actual type of semantic value that’s used at a particular point in the

grammar. If not, it can inspect SemBase’s tag fields.

The parser, knowing what the actual semantic type is, can always perform a downcast, resulting in

a very lightweight SemBase base class.

The SemBase class only requires one virtual member: an empty virtual destructor. Downcasting is

encapsulated in SemBase’s ’as’ member. Consequently, the parser, defining its semantic value as a

spSembase (cf. section 23.9.3), can use constructions like

$1->as<Tag::STRING>()

to access the std::string that is stored in the actual semantic value to which $1 points. Here is

SemBase’s class interface (the implementation of its ‘as’ member template follows, implementations

of its remaining members are trivial):

class SemBase

{

Tag d_tag;

public:

SemBase(SemBase const &other) = delete;

virtual ~SemBase();

Tag tag() const;

template <Tag tg_>

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 865

typename Trait<tg_>::ReturnType as() const;

protected:

SemBase(Tag tag);

};

23.9.3.7 The class template ‘Semantic’, derived from ‘SemBase’

Finally we reach the class template Semantic, publicly derived from SemBase. This class template

only requires one Tag non-type parameter, defining the kind of data that must be handled by objects

of the class.

Like SemBase the class Semantic is extremely light-weight. Only initialization and conversion to

the encapsulated data member need to be supported.

It always defines its data member as mutable, which is fine since the class itself doesn’t manipu-

late the data and proper access to the data is guaranteed by its operator ReturnType() const

conversion operator. ReturnType, of course, is obtained through the Trait trait class template.

Here is the class’s interface and member definitions:

template <Tag tg_>

class Semantic: public SemBase

{

typedef typename Trait<tg_>::DataType DataType;

enum: bool { isMutable = Trait<tg_>::isMutable };

mutable DataType d_data;

public:

typedef typename Trait<tg_>::ReturnType ReturnType;

Semantic(DataType const &data);

operator ReturnType() const;

};

template <Tag tg_>

Semantic<tg_>::Semantic(DataType const &data)

:

SemBase(tg_),

d_data(data)

{}

template <Tag tg_>

Semantic<tg_>::operator ReturnType() const

{

return d_data;

}

To access the information stored in a semantic value class the SemBase::as member template is

used. This member template is provided with a tag value and returns the value stored inside the

actual Semantic object. It’s use was shown in the previous section. Here is its implementation:

template <Tag tg_>

866 CHAPTER 23. CONCRETE EXAMPLES

inline typename Trait<tg_>::ReturnType SemBase::as() const

{

return dynamic_cast<Semantic<tg_> const &>(*this);

}

23.9.3.8 Adding new semantic data types

These are the steps to take when another semantic data type must be added to an existing set:

• Add a tag name representing the new semantic value type to the enum class Tag (section

23.9.3.2);

• Add a specialization to the TagTrait trait class (section 23.9.3.4) defining the added seman-

tic value’s data type, and whether or not the data on the parser’s semantic stack should be

considered (im)mutable.

23.9.3.9 The parser’s semantic value: ‘spSemBase’

The parser uses spSemBase as its semantic value. The class spSemBase is a wrapper around

std::shared_ptr<SemBase>, offering a constructor member template which must be given a

pointer to a dynamically allocated Semantic object. Its interface is all that is required:

#ifndef INCLUDED_SPSEMBASE_

#define INCLUDED_SPSEMBASE_

#include "../sembase/sembase.h"

class spSemBase: public std::shared_ptr<SemBase>

{

public:

spSemBase() = default;

template <typename Type>

spSemBase(Type *obj);

};

template <typename Type>

inline spSemBase::spSemBase(Type *obj)

:

std::shared_ptr<SemBase>(obj)

{}

#endif

23.9.3.10 The parser specification file

Now that the Semantic class template has been developed it’s time to put it to use in the Parser

class. The parser’s semantic value is spSemBase. The parser’s base class must be informed about

this, for which the %baseclass-preinclude directive should be used. All other directives are

standard and do not require further explanations:

23.9. USING ‘BISONC++’ AND ‘FLEXC++’ 867

%filenames parser

%scanner ../scanner/scanner.h

%baseclass-preinclude ../spsembase/spsembase.h

%stype spSemBase

%token INT IDENT

The grammar’s rules simply consist of a series of rule nonterminals:

rules:

rules rule

|

rule

;

Int values are stored in Semantic<Tag::INT> objects, text is stored in Semantic<Tag:::TEXT>

values:

int:

INT

{

$$ = new Semantic<Tag::INT>(A2x(d_scanner.matched()).to<int>());

}

;

ident:

IDENT

{

$$ = new Semantic<Tag::TEXT>(d_scanner.matched());

}

;

Comma separated lists of arguments are processed as follows: the first argument is stored in a

Semantic<Tag::VECTOR>; additional values are added to the vector using vector::push_back.

Note that we’ve defined the vector as mutable: addition of values to the vector is OK, but the values

themselves remain as-is, and so the vector stores shared pointers to SemBase const values:

value:

int

|

ident

;

arglist:

arglist ’,’ value

{

$1->as<Tag::VECTOR>().push_back($3);

}

|

value

{

$$ = new Semantic<Tag::VECTOR>(

vector<shared_ptr<SemBase const>> {$1});

868 CHAPTER 23. CONCRETE EXAMPLES

}

;

The definition of the rule production rule completes our little grammar: an alternative suggesting

an assignment echoes the received names and values, and an alternative suggesting a function call

uses a support member display to display the received name and arguments:

rule:

ident ’(’ arglist ’)’ ’;’

{

display($1, $3);

}

|

ident ’=’ int ’;’

{

cout << $1->as<Tag::TEXT>() << " = " << $3->as<Tag::INT>() << ";\n";

}

;

23.9.3.11 The scanner using a polymorphic semantic value type

The scanner for the polymorphic parser is simple and only needs to recognize numbers, identifiers

and some simple characters, returned as character tokens. Here is the scanner’s complete specifica-

tion file, as used by flexc++:

%filenames scanner

%%

[[:space:]]+ // skip white space

[[:digit:]]+ return Parser::INT;

[[:alpha:]_][[:alnum:]_]* return Parser::IDENT;

. return matched()[0];

Index

!=, 290

–std=c++0x, 8, 9

–std=c++11, 8

->, 428

->*, 428

-O0, 162

.*, 428

..., 681

.h, 19

.ih extension, 156

.template, 735

//, 13

::, 23, 272

::template, 735

<, 290

<=, 290

= 0, 382

= default, 141, 208

= delete, 141

==, 290

>, 290

>=, 290

>>, 257

>>: with templates, 315

[begin, end), 296

[first, beyond), 298, 302, 313, 326

[first, last), 524

[left, right), 458

#define __cplusplus, 17

#error, 636

#ifdef, 18

#ifndef, 18

#include, 847

%baseclass-preinclude, 852

%debug, 847

%filenames, 848, 852

%left, 853

%nonassoc, 853

%option c++, 845

%prec, 853

%right, 853

%scanner, 852

%stype, 852

%token, 853

%type, 853

%union, 852

&, 36

__cplusplus, 17, 18

\u, 48

0-pointer, 172

A2x, 830

abort exception, 244

abs, 344

absolute position, 403

abstract base class, 416, 806

abstract classes, 382

access, 47

access files, 101, 108

access promotion, 358

access rights, 122

accessor, 122, 125

accessor member function, 258

accumulate, 525

actions, 850

adaptor: inserter, 460

adaptor: object to iterator, 457

adaptor: required typedefs, 461

add_lvalue_reference, 762

add_rvalue_reference, 762

addExceptFd, 818

addReadFd, 818

address, 293

address of objects, 190

address-of operator, 36

addWriteFd, 818

adjacent_difference, 525

adjacent_find, 526

adjustfield, 94

adopt_lock, 490

adopt_lock_t, 490

Aho, A.V., 300

Alexandrescu, A., 649, 729, 736, 770, 779, 780

Alexandrescu, H., 767

algorithm: header file, 523

allocate, 293

allocate arrays, 173

allocate memory, 273

allocate objects, 172

allocate primitive types, 172

allocator, 293, 748

869

870 INDEX

allocator class, 447

ambiguity, 131, 386, 387

amd, 49

and, 286

and_eq, 286

angle bracket notation, 291, 292, 447

angle brackets, 635

angle brackets: consecutive, 315

anonymize, 203

anonymous, 451, 462

anonymous function object, 502

anonymous object, 145, 282

anonymous object: lifetime, 145

anonymous pair, 292

anonymous type, 616

anonymous variable, 37

anonymous variable: generic form, 292

ANSI/ISO, 7, 13, 17, 46, 55, 84, 87, 91

app, 102, 114

append, 73

arg, 344

argument_type, 603, 756

arithmetic function object, 449

arithmetic operations, 449, 829

array, 294

array bounds, 295, 296

array bounds overflow, 253

array constructors, 294

array-to-pointer transformation, 618

array: 0-sized, 174

array: dynamic, 173

array: enlarge, 174

array: expandable, 296

array: fixed size, 174, 175

array: fixed-size, 294

array: header file, 294

array: local, 174

array: member functions, 295

as (SemBase::as), 865

ASCII, 99, 105, 106, 309

ascii to anything, 830

ascii-value, 801

assembly language, 10

assign, 73, 297, 301, 311

assignment, 370

assignment: pointer to members, 427

assignment: refused, 370

assignment: sequential, 190

associative array, 313, 322, 331

asynchronous alarm, 815

asynchronous input, 815

at, 73, 295, 297, 311, 335

ate, 102, 115

atoi, 109, 830

atol, 830

atto, 481

Austin, T., 501

auto, 41

auto_ptr, 470

auto_ptr: deprecated, 465

automatic expansion, 296

available member functions, 371

avoid global variables, 20

b, 46

back, 73, 295, 297, 302, 307, 311

back_inserter, 460

backdoors, 125

background process, 810

bad, 89

bad_alloc, 184, 232, 239, 276

bad_cast, 232, 395

bad_exception, 230, 232

bad_function_call, 640

bad_typeid, 232, 398

badbit, 88

base class, 351, 371, 796, 806

base class destructor, 362

base class initializer, 359

base class initializers: calling order, 368

base class: converting to derived class, 393

base class: hiding members, 363

base class: prototype, 400

base class: virtual, 387

bash, 112

BASIC, 10

basic guarantee, 238

basic operators of containers, 290

basic_, 83

basic_ios.h, 87

beg, 100, 108, 407

begin, 73, 141, 295, 297, 302, 312, 317, 325, 335,

458

bernoulli_distribution, 509

bidirectional_iterator_tag, 721

BidirectionalIterator, 460, 721

bigraphs, 3

binary, 102, 115

binary constant, 46

binary file, 99, 106, 115, 116

binary function object, 454

binary input, 105

binary operator, 829

binary output, 94, 99

binary predicate, 456

binary tree, 598

binary_function, 829

binary_search, 528

bind1st, 454

INDEX 871

bind2nd, 454

bind2nd: perfect forwarding, 688

binder, 454

binders.h, 687

binomial_distribution<IntType = int>, 510

bison, 845, 850, 851

bison++, 845, 850

bisonc++, 846, 850, 851

bisonc++: grammar file, 851

bitand, 286

bitfunctional, 829

bitor, 286

bits/stl_function.h, 829

bitwise, 829

bitwise and, 91, 829

bitwise operations, 829

bobcat, 850, 859

Bobcat library, 234, 341, 789, 793

bool, 46, 318, 326

boolalpha, 95

bound friend, 698, 700, 718

bridge design pattern, 399

bucket, 335

bucket number, 331

bucket_count, 335

bucket_size, 335

buffer, 403

buffer overflow, 31

built-in, 46

C++0x standard, 8

C++11, 139, 315, 331, 341, 613

C++11 standard, 8

C++: function prevalence rule, 612

c_str, 75

call back, 168

call_once, 495

calling order of base class initializers, 368

calloc, 171

candidate functions, 643

capacity, 74, 297

case-insensitive, 68

catch, 214, 225

catch: empty enum, 444

cauchy_distribution<RealType = double>, 511

cbegin, 74, 295, 297, 312, 335

ccbuild, 9

cend, 74, 295, 297, 312, 335

centi, 481

cerr, 27, 98, 111

chain of command, 401

char, 83

char *, 258

chi_squared_distribution<RealType = double>, 511

child process, 805, 807

chrono: header file, 480–482

cin, 27, 87, 105, 111

circular queue, 650

class, 12, 28, 55, 444, 609, 750

class hierarchy, 351, 380

class interface, 698

class name, 397

class scope, 426

class template, 620, 649, 650, 829

class template: adding functionality, 708

class template: as base class, 752

class template: conditional data organization, 740

class template: declaration, 663, 695

class template: deducing parameters, 695

class template: default argument, 663

class template: default arguments, 662

class template: defining a type, 737

class template: derivation, 707

class template: derived from ordinary class, 712

class template: friend function template, 647

class template: generate types, 650

class template: identifying subtypes, 667

class template: instantiation, 695

class template: member instantiation, 695

class template: member template, 654

class template: nested, 717

class template: non-type parameter, 652

class template: partial specialization, 673, 676

class template: partially compiled, 707

class template: pointer to, 695

class template: reference to, 695

class template: shadowing parameters, 656

class template: static members, 665

class template: subtype vs. static members, 731

class template: transformation to a base class,

620

class template: using friend, 697

class template: values without objects, 738

class template: wrapped in simpler template, 780

class vs. typename, 609

Class(T&) cannot be overloaded with Class(T const&),

687

class-type parameters, 155

class-type return values, 155

class: abstract, 382

class: concept defined, 421

class: enforcing constraints, 747

class: externally declared functions, 421

class: having pointers, 477

class: move-aware, 198

class: ordinary, 620

class: policy, 747

class: trait, 755

classes: local, 150, 373

872 INDEX

classes: without data members, 382

clear, 91, 297, 302, 312, 317, 325, 335

climits: header file, 637

Cline, 26

clock, 482

clog, 98

close, 101, 109, 409

closure object, 502

closure type, 502

cmatch, 342

code bloat, 753

Coetmeur, A., 850

collating order, 398

collision, 331

command language, 815

common data fields, 159

common pool, 172

compare, 74

compile-time, 15, 377, 379, 391, 607, 636

compiler, 6, 8

compiler firewal, 399

compiler flag, 8

compiler flag: -pthread, 480

compiler option, 9

compl, 286

complex, 342

complex numbers, 342

complex: header file, 342

composition, 134, 155, 351, 366

condition flags, 88

condition member functions, 89

condition state, 88

condition_variable, 496, 497, 501

condition_variable: header file, 496, 497, 499

condition_variable_any, 497, 499

conditional, 762

conj, 344

consecutive closing angle brackets, 315

const, 24, 619

const data and containers, 291

const function attribute, 14

const functions, 25

const member, 125

const member functions, 142, 382

const-qualification, 143

const: generalized expression, 163

const_cast<type>(expression), 51

const_iterator, 295, 297, 312, 335, 458

const_pointer_cast, 475

const_reverse_iterator, 295, 297, 312

constant expression, 611

constant-expression constructor, 165

constant-expression function, 163

constexpr, 163, 494

construct, 293

construction: delegate to base classes, 361

constructor, 282, 368, 448

constructor notation, 49

constructor: and exceptions, 245

constructor: calling order, 362

constructor: default, 123, 124

constructor: delegation, 139

constructor: of derived classes, 359

constructor: primitive type, 612

container, 289

container without angle brackets, 291

container: nested, 314

container: storing pointers, 291

containers: basic operators, 290

containers: data type requirements, 290

containers: equality tests, 290

containers: initialization, 294

containers: ordering, 290

containter: storing const data, 291

context switch, 488

conversion operator, 259

conversion operator: explicit, 263

conversion rules, 47

conversions, 653

conversions: binary to text, 104

conversions: text to binary, 109

copy, 74, 529, 711

copy construction, 141

copy constructor, 146, 192, 310, 360

copy constructor: suppressed, 201

copy elision, 209

copy non-involved data, 300

copy_backward, 530

copyfmt, 92

cos, 344

cosh, 344

count, 317, 322, 325, 327, 335, 338, 340, 482, 530

count_if, 454, 531

coupling, 11

cout, 27, 87, 98, 111, 809

crbegin, 74, 295, 297, 312

create files, 101

cref(arg), 615

crend, 75, 295, 297, 312

cstddef, 49

cstdint, 49

cstdio, 13

cstdlib: header file, 697

cumulative distribution function, 507

cur, 100, 108, 407

cv_status, 497

Cygnus, 8

Cygwin, 8

INDEX 873

daemon, 809, 810, 824, 826

data, 75, 295, 297

data hiding, 9, 12, 30, 122, 124, 162, 354, 357,

403, 421

data integrity, 421

data member initializers, 137

data member: initialization, 139

data members, 122, 403, 747

Data Structures and Algorithms, 300

data.cc, 160

database applications, 107

deadlock, 493

deallocate, 293

deallocate memory, 273

Debian, 8

dec, 94

deca, 481

deci, 481

declaration section, 852

declarative region, 55

declare iostream classes, 84

decltype, 42, 613

decrement operator, 263

default, 141

default arguments, 15

default constructor, 173, 192, 290, 359

default implementation, 406

default value, 299, 304, 313

default: =, 208

default_error_condition, 236

defer_lock, 490

defer_lock_t, 490

define members of namespaces, 64

delegating constructors, 139

delete, 141, 171, 172, 272

deleter, 466, 467, 471, 472

delete[], 174, 181

deletions, 300

delimiter, 463

den, 480

denorm_min, 637

denorm_style, 638

deque, 311, 457

deque constructors, 311

deque: header file, 311

derivation, 351

derived class, 351, 371, 393

derived class destructor, 362

derived class vs. base class size, 372

derived class: using declaration, 364

design pattern, 382

design pattern: Prototype, 416

design pattern: template method, 806

Design Patterns, 235, 805

design patterns, 11, 235, 805

destroy, 293

destructor, 123, 179, 381

destructor: and exceptions, 251

destructor: called at exit, 808

destructor: calling order, 362

destructor: derived class, 362

destructor: empty, 381

destructor: explicit call, 178, 180

destructor: for policy classes, 753

destructor: inline, 381

destructor: main task, 179

destructor: virtual, 381

detach, 486

device, 86, 787

digits, 638

digits10, 638

direct base class, 354

display field width, 93

display floating point numbers, 93, 96

divides, 452

domain_error, 232

DOS, 115

double free, 474

double initialization, 372

double pointers, 168

doubly ended queue, 311

down-casting, 393

downcast, 864

dup, 809

dup2, 809, 813

duration, 481

dynamic arrays, 173

dynamic binding, 379

dynamic cast, 393

dynamic growth, 300

dynamic polymorphism, 649, 753

dynamic_cast, 396

dynamic_cast<>, 393

dynamic_pointer_cast, 475

dynamically allocated variables, 653

E, 46

early binding, 377, 379

eback, 403, 791, 794, 799

ECHO, 848

efficiency, 332

egptr, 403, 791, 792, 794, 799

ellipsis, 260, 681, 759, 767

emplace, 297, 312, 335, 338, 340, 341

emplace_back, 297, 312

emplace_front, 312

emplace_hint, 335, 338, 340, 341

empty, 75, 295, 298, 302, 307, 310, 312, 317, 325,

330, 336

874 INDEX

empty deque, 313

empty destructor, 381

empty enum, 444

empty function throw list, 228

empty list, 303

empty parameter list, 17

empty struct, 766

empty vector, 298

enable_if, 762

encapsulation, 12, 31, 125, 354, 421

end, 75, 100, 108, 141, 295, 298, 302, 312, 317,

325, 336, 407, 458

end of line comment, 13

end-of-stream, 462, 463

endian, 100

endl, 28, 97

ends, 97

enum, 21

enum class, 40

enum class errc, 233

enum values: and arithmetic operators, 284

enum values: evaluated at compile-time, 760

enumeration: nested, 442, 719

environ, 12

eof, 89

eofbit, 88

epoch, 483

epptr, 789

epsilon, 638

equal, 532

equal_range, 317, 323, 326, 327, 336, 338, 341,

533

equal_to, 452

equality operator, 290

equivalent, 236

erase, 75, 298, 302, 312, 317, 322, 326, 327, 336,

340

errc, 233

errno, 235

error, 851

error code, 213

error_category, 233, 235

error_code, 233, 234

escape sequence, 45

exa, 481

exceptFd, 817

exception, 91, 394

Exception (Bobcat), 234

exception class, 231, 232

exception guarantees, 238

exception handler: order, 225

exception neutral, 240

exception safe, 237

exception specification list, 228

exception: and constructors, 245

exception: and destructors, 251

exception: and new, 239

exception: and new[], 276

exception: and streambuf, 401

exception: bad_alloc, 184

exception: header file, 232

exception: replace, 245

exception: standard, 232

Exceptional C++, 239

exceptions, 213

exceptions (function), 231

exec..., 808

exit, 213, 219, 808, 810

exit status, 807

exit: avoid, 179

exit: calling destructors, 808

exp, 344

expandable array, 296

expected constructor, destructor, or type conver-

sion, 731

explicit, 262

explicit instantiation declaration, 624

explicit template type arguments, 627

explicit type specification, 617

explicit: conversion operator, 263

exponential_distribution<RealType = double>, 513

exponentiation, 46

export, 53

expression: actual type, 393

expression: type of, 397

extended friend, 423, 706

extensible literals, 285

extern, 8, 695

extern C|hyperpage, 17, 18

extern template, 663–665

extracting strings, 105

extraction operator, 27, 28, 86, 104, 105

extreme_value_distribution<RealType = double>,

512

F, 46

factory function, 131

factory functions, 206

fail, 89, 100

failbit, 88, 108

failure class, 231

false, 47, 550, 560

femto, 481

field ‘...’ has incomplete type, 700

field selector, 428

field width, 280

FIFO, 289, 307

FILE, 83

file descriptor, 101, 112, 796, 798

INDEX 875

file descriptors, 86, 787, 811

file flags, 102

file is rewritten, 103

file modes, 102

file rewriting: preventing, 102

file: binary mode, 102

file: copying, 110

filebuf, 86, 408

fill, 92, 295, 535

fill characters, 94

fill_n, 535

FILO, 289, 329

final, 384

find, 75, 317, 323, 326, 327, 336, 338, 341, 536

find_end, 537

find_first_of, 75, 538

find_if, 540

find_last_not_of, 76

find_last_of, 76

first, 292

first in, first out, 289, 307

first in, last out, 289, 329

first_argument_type, 603, 756

fisher_f_distribution<RealType = double>, 514

Fistream, 801

fixed, 96

fixed-size array, 294

flags, 92

flags: of ios objects, 91

flex, 845

flexc++, 846–848, 850, 859, 868

flexc++: debugging code, 848

flexc++: setDebug, 848

float_denorm_style, 638

float_round_style, 639

floatfield, 96

flow-breaking methods, 213

flush, 97, 100

fopen, 98, 105

for range declaration, 45

for-statement, 44

for_each, 541, 825

for_each: vs. transform, 594

fork, 805, 806, 810

formal type, 609, 651

formal types, 607

formatted input, 105

formatted output, 94, 99

formatting, 88, 92

formatting commands, 86

formatting flags, 91, 94

forward, 684

forward class reference, 154

forward declaration, 441

forward declaration: enum class, 40

forward declarations, 83, 155

forward iterators, 71

forward: parameters, 686

forward_iterator_tag, 721

ForwardIterator, 460, 721

fprintf, 84

free, 171, 176, 181

free compiler, 8

free function, 256

Free Software Foundation, 8

Friedl, J.E.F, 341

friend, 421, 697, 698

friend: as forward declaration, 441

friend: bound, 698, 700

friend: extended declaration, 423

friend: function declaration, 422

friend: in class templates, 697

friend: nested classes, 438

friend: unbound, 703

friend: using a template parameter, 842

friendship among classes, 421

from_time_t, 482

front, 76, 295, 298, 302, 307, 312

front_inserter, 461

FSF, 8

fstream, 101, 108, 114

fstream: header file, 87, 408

ftp::/prep.ai.mit.edu/pub/non-gnu, 845

fully qualified name, 612

fully qualified name: nested class members, 437

fully qualified names, 62

function (std::), 640

function adaptor, 454

function adaptors, 449

function call operator, 278

function object, 278, 333

function object: anonymous, 502

function object: arithmetic, 449

function object: logical, 453

function object: relational, 452

function overloading, 14, 143

function pointer: polymorphic, 640

function prevalence rule, 612

function selection, 642

function template, 607

function template: overloading, 628

function template: specialization vs. overload-

ing, 635

function templates: multiply included, 622

function templates: specialized type parameters,

631

function throw list, 228, 232

function try block, 243

876 INDEX

function-to-pointer transformation, 619

function: constant-expression, 163

function: free, 267

function: returning rvalue reference, 200

functional: header file, 447, 601, 614, 640, 693

functionality, 292

functions as members of structs, 22

functions having identical names, 14, 22

functions: candidate, 643

functions: viable, 643

functor, 278

g++, 6, 8, 850

Gamma, E., 235, 382, 416, 805, 840

gamma_distribution<RealType = double>, 514

gbump, 405, 794

gcount, 106

generalized const expression, 163

generalized pair, 292, 691

generate, 543

generate_n, 544

generator: random number, 507

generic algorithm: categories, 524

generic algorithms, 291, 523

generic algorithms: required types, 756

generic data type, 524

generic software, 83

generic type, 291

generic_category, 236

geometric_distribution<IntType = int>, 515

get, 106, 466, 469, 472, 473, 691

get_allocator, 76, 298, 302, 312, 318, 326, 336

get_deleter, 469, 474

get_id, 484, 486

getline, 76, 89, 106

giga, 481

global try block, 214

global function, 167

global namespace, 53

global scope, 426

global variable, 653

global variables, 160

global variables: avoid, 20

Gnu, 6, 8, 184, 442, 850

good, 89

goodbit, 89

goto, 213

gptr, 405, 791, 792, 794, 799

grammar, 787, 850

grammar specification file, 851

grammatical rules, 851

Graphical User Interface Toolkit, 123

greater, 452

greater_equal, 452

has_denorm, 638

has_denorm_loss, 638

has_infinity, 638

has_nothrow_assign, 762

has_nothrow_copy_constructor, 762

has_nothrow_default_constructor, 762

has_nothrow_destructor, 762

has_quiet_NaN, 638

has_signaling_NaN, 638

has_trivial_assign, 761

has_trivial_copy_constructor, 761

has_trivial_default_constructor, 761

has_trivial_destructor, 761

hash function, 331

hash value, 331

hash_function, 336

hashing, 331

header file, 55, 86, 152, 157

header section, 852

heap, 598

hecto, 481

hex, 95

hidden data member, 412

hiding: base class members, 363

hierarchic sort, 710

hierarchy of code, 351

high_resolution_clock, 482

Hopcroft J.E., 300

hours, 481

http://bisoncpp.sourceforge.net/, 859

http://bobcat.sf.net/, 850

http://bobcat.sourceforge.net, 234, 341, 789, 793

http://en.wikipedia.org/wiki/C++11, 6

http://flexcpp.org/, 850

http://gcc.gnu.org, 9

http://oreilly.com/catalog/, 479

http://publications.gbdirect.co.uk/c_book/, 3

http://sourceforge.net/projects/cppannotations/, i

http://sources.redhat.com, 8

http://www.cplusplus.com/ref, 7

http://www.csci.csusb.edu/dick/c++std, 7

http://www.debian.org, 8

http://www.gnu.org, 8

http://www.gnu.org/licenses/, 3

http://www.linux.org, 8

http://www.oreilly.com/catalog/lex, 845

http://www.research.att.com/..., 25

http://www.sgi.com/.../STL, 291

http://www.trolltech.com, 123

http://www/parashift.com/c++-faq-lite/, 26

http://yodl.sourceforge.net, 3

human-readable, 94

hyperlinks, 7

I/O, 83

INDEX 877

I/O library, 83

I/O multiplexing, 815

icmake, 9

identically named member functions, 368

identifier: initial underscore, 285

identifiers starting with an underscore, 53

IEC-559, 638

IEEE-754, 638

IFdNStreambuf, 792

IFdSeek, 795

IFdStreambuf, 791, 823

ifstream, 105, 108, 120

ifstream constructors, 108

ignore, 106

imag, 344

imaginary part, 342, 344

implementation, 121

implementation dependent, 421

implemented-in-terms-of, 377

implicit conversion, 371

in, 102, 103, 114

in_avail, 401

INCLUDE, 153, 156

include guard, 18

includes, 545

increment operator, 263

index operator, 253, 294, 296, 311, 316, 322

indirect base class, 354

inequality operator, 290

infinity, 638

inheritance, 151, 351, 353

inheritance: access to base class member, 358

inheritance: multiple, 366

inheritance: no derived class constructors, 361

inheritance: private derivation, 709

init, 366, 809, 810

initialization, 139, 172, 191, 294

initialization: static data member, 160

initializer list, 40, 139

initializer_list, 141

initializer_list: header file, 41, 141

initializer_list<Type>, 41

inline, 147–149, 280, 381, 448

inline function, 149

inline member functions, 437

inline: avoid!, 150

inline: disadvantage, 150

inline: static members, 167

inner types, 747

inner_product, 546

inplace_merge, 548

input, 104, 111

input language, 850

input_iterator_tag, 720

InputIterator, 459, 720

InputIterator1, 459

InputIterator2, 459

insert, 77, 298, 302, 312, 318, 323, 326, 328, 336,

338, 341, 461

inserter, 460, 461

inserter: and non-STL classes, 461

inserter: required typedefs, 461

inserting streambuf *, 111

insertion operator, 27, 84, 98, 99, 256

insertions, 300

instantiation, 607, 609

instantiation declaration, 624, 665

instantiation function, 664

instantiation source, 664

int32_t, 49

INT_MAX, 637

integer division, 50

integral conversions, 653

interface, 121, 382

interface functions, 124

internal, 94

internal buffer, 100

internal header, 156

internal header file, 808

Internet, 7

invalid_argument, 232

iomanip, 92

iomanip: header file, 87

ios, 84, 87, 111, 442, 623, 795

ios object: as bool value, 90

ios: header file, 86, 796

ios::exceptions, 231

ios::fail, 101, 109

ios_base, 84, 87

ios_base.h, 87

iosfwd, 68, 84, 86

iostate, 231

iostream, 19, 28, 99, 101, 105, 108

iostream.h, 19

iostream: header file, 87

is-a, 377, 399, 400

is-implemented-in-terms-of, 399

is_base_of, 762

is_bounded, 638

is_convertible, 762

is_exact, 638

is_iec559, 638

is_integer, 639

is_lvalue_reference, 761

is_modulo, 639

is_nothrow_assignable, 764

is_nothrow_constructible, 764

is_nothrow_copy_assignable, 764

878 INDEX

is_nothrow_copy_constructible, 764

is_nothrow_default_constructible, 764

is_nothrow_destructible, 764

is_nothrow_move_assignable, 764

is_nothrow_move_constructible, 764

is_open, 102, 109, 408

is_pod, 761

is_reference, 761

is_rvalue_reference, 761

is_signed, 639, 761

is_specialized, 639

is_unsigned, 761

istream, 86, 104, 105, 120

istream constructor, 105

istream: header file, 86

istream: iterator, 462

istream_iterator, 462

istreambuf_iterator, 462, 464

istringstream, 86, 105, 109, 801, 830

iter_swap, 549

iterator, 42, 295, 297, 302, 312, 325, 335, 435,

457, 458, 720

iterator range, 298, 302, 313, 326

iterator: and generic algorithms, 720

iterator: as class template, 842

iterator: class type, 720

iterator: common characteristics, 720

iterator: data type, 720

iterator: header file, 457, 720

iterator: range, 458

iterator: requirements, 459, 720

iterator: to const elements, 458

iterator: types, 459

iterator_tag, 720

iterators, 291, 296

Java, 393

Java interface, 382

jmp_buf, 216

join, 487

joinable, 487

Josutis, N., 729

Kendall’s Advanced Theory of Statistics, 507

key, 314

key/value, 313

key_comp, 319, 326

key_equal, 337

KeyType, 332, 339

keywords, 53

kilo, 481

kludge, 264

Koenig lookup, 58

L, 46

Lakos, J., 122, 156

lambda expression, 502

lambda function, 543

lambda-capture, 503

lambda-declarator, 503

lambda-introducer, 503

late binding, 377

late bining, 379

late-specified return type, 43, 503, 613

left, 94

left-hand, 290

leftover, 570, 594

length, 77

length_error, 78, 232

less, 452

less-than operator, 290

less_equal, 452

letters in literal constants, 46

Lewis, P.A.W., 508

lex, 845, 851

lexical scanner specification file, 847

lexicographical_compare, 550

library, 157

lifetime: anonymous objects, 145

LIFO, 289, 329

limits: header file, 637

lineair search, 278

linear chaining, 331

linear search, 280

linear_congruential_engine, 507

linker: removing identical template instantiations,

626

Linux, 8

Liskov Substitution Principle, 377, 399

Lisp, 10

list, 299

list constructors, 301

list container, 299

list: circular, 300

list: header file, 299

list: traversal, 299

literal constants, 46

literal float using F, 46

literal floating point value using E, 46

literal long int using L, 46

literal operator, 285

literal unsigned using U, 47

literal wchar_t string L, 46

load_factor, 337

local arrays, 174

local class, 150, 372

local context, 487, 503

local type, 616

local variables, 19, 653

INDEX 879

Lock, 499

lock, 489, 492, 493

lock count, 489, 490

lock_guard, 490, 491

log, 344

logic_error, 232

logical function object, 453

logical operations, 829

logical operators, 453

logical_and, 453

logical_not, 453

logical_or, 453

lognormal_distribution<RealType = double>, 516

long double, 46

long long, 46

long long int, 48

longjmp, 213, 216

lower_bound, 319, 326, 552

lsearch, 278

lseek, 796

LSP, 377, 399

Ludlum, 58

lvalue, 37, 253, 263, 460, 469

lvalue reference, 37

lvalue transformations, 618, 653

lvalue-to-rvalue transformation, 618

lvalue: distinguish from rvalue, 839

macro, 16, 162, 282

main, 12, 13

make, 9

make_heap, 599

make_shared, 476

make_signed, 762

make_unsigned, 762

malloc, 171, 172, 176, 181, 185

manipulator, 280

manipulator: as objects, 282

manipulators, 86, 123

map, 313

map constructors, 314

map: header file, 313, 322

Marshall Cline, 26

matched, 853

mathematical functions, 344

max, 508, 553, 639

max-heap, 524, 599

max_bucket_count, 337

max_element, 554

max_exponent, 639

max_exponent10, 639

max_load_factor, 337

max_size, 77, 290, 293, 298, 302, 313, 319, 326,

337

mega, 481

member function, 67, 121, 469, 473

member function: called explicitly, 364

member function: pure virtual implementation,

383

member functions, 29, 301, 307, 310, 403, 747

member functions: available, 371

member functions: identically named, 368

member functions: overloading, 15

member initializer, 134

member template, 654

member: class as member, 435

member: const, 125

members: in-class, 148

members: overriding, 380

memcpy, 197, 242

memory allocation, 171

memory buffers, 84

memory consumption, 412

memory leak, 172, 174, 182, 222, 225, 291, 381,

464, 477

memory leaks, 171

memory: header file, 176, 464, 471, 477, 748

memory: initialization, 173

merge, 302, 555

merging, 524

message, 236

micro, 481

microseconds, 481

milli, 481

milliseconds, 481

min, 508, 557, 639

min_element, 558

min_exponent, 639

min_exponent10, 639

mini scanner, 847

minus, 451

minutes, 481

mixing C and C++ I/O, 86

modifier, 257

modulus, 452

move, 469

move assignment, 203

move constructible, 485

move constructor, 201, 360

move semantics, 38, 198, 470

move-aware, 39, 205

move: design principle, 208

MS-WINDOWS, 115

MS-Windows, 8, 102

mt19937, 508

Multi, 779

multi threading, 479

multi threading: -pthread, 480

multi threading: using g++, 480

880 INDEX

multimap, 322

multimap: no operator[], 322

multiple inheritance, 366

multiple inheritance: vtable, 413

multiplexing, 815

multiplies, 451

multiset, 327

multiset::iterator, 328

mutable, 152

mutex, 374, 488, 493

mutex: header file, 488

name, 236

name conflicts, 23

name lookup, 19

name mangling, 14

name: fully qualified, 612

named constant expression, 163

namespace, 23, 55, 157

namespace alias, 63

namespace declarations, 56

namespace this_thread, 484

namespace: anonymous, 56

namespace: closed, 56

namespace: import all names, 58

namespace: off limits, 590

NaN, 638

nano, 481

nanoseconds, 481

negate, 452

negative_binomial_distribution<IntType = int>,

518

negator function, 456

negators, 456

nested blocks, 20

nested class, 435

nested class: declaration, 438

nested class: member access, 440

nested class: static members, 437

nested container, 314

nested derivation, 354

nested enumerations, 442

nested functions, 150

nested inheritance, 386

nested trait class, 756

nesting depth, 847

new, 171, 172, 270

new Type[0], 174

new-style casts, 49

new: and exceptions, 239

new: header file, 232

new: placement, 176, 271

new[], 173–175, 270

new[]: and exceptions, 276

new[]: and non-default constructors, 371

next_permutation, 560

Nichols, B, 479

nm, 695

no arguments depending on a template parame-

ter, 732

no buffering, 407

noAlarm, 818

noboolalpha, 95

noexcept, 763

non-constant member functions, 382

non-local return, 213

noopt, 162

norm, 344

normal_distribution<RealType = double>, 517

noshowbase, 95

noshowpoint, 96

noshowpos, 95

not, 286

Not-a-Number, 638

not1, 456

not2, 456

not_eq, 286

not_equal_to, 452

notation, 296

nothrow guarantee, 241

notify_all, 498, 500, 501

notify_all_at_thread_exit, 497

notify_one, 498, 500

nounitbuf, 98

nouppercase, 96

now, 482

npos, 68

nReady, 817

NTB string, 67

NTBS, 67

nth_element, 561

NULL, 16, 163, 171

null-bytes, 100

nullptr, 17

NullType, 766

num, 480

numeric: header file, 523

numeric_limits, 637

Numerical Recipes in C, 568

O0, 162

object, 22

object hierarchy, 351

object oriented approach, 11

object: address, 190

object: allocation, 172

object: anonymous, 145

object: assign, 186

object: parameter, 193

object: static/global, 124

INDEX 881

obsolete binding, 19

oct, 95

off_type, 100, 107

ofstream, 98, 101, 120

ofstream constructors, 101

once_flag, 495

one definition rule, 121, 623

open, 101, 108, 409, 789

openmode, 102, 409

operator, 189

operator &, 33, 36

operator and, 286

operator and_eq, 286

operator bitand, 286

operator bitor, 286

operator bool, 469, 473

operator compl, 286

operator delete, 176, 272

operator delete[], 274

operator keywords, 53

operator new, 176, 232, 270

operator new(sizeInBytes), 173

operator new[], 273

operator not, 286

operator not_eq, 286

operator or, 286

operator or_eq, 286

operator overloading, 188, 253

operator overloading: within classes only, 287

operator xor, 286

operator xor_eq, 286

operator!=, 278, 452, 459

operator(), 278, 280, 568

operator*, 343, 451, 459, 469, 473

operator*=, 343

operator+, 265, 343, 450, 451, 525

operator++, 263, 459

operator+=, 343

operator-, 343, 451

operator–, 263

operator-=, 343

operator->, 469, 473

operator/, 343, 452

operator/=, 343

operator: free, 267

operator<, 314, 331, 452, 555, 560, 563, 564, 567,

582–584, 586, 587, 589, 597, 599, 600

operator<<, 344

operator<=, 452

operator=, 469, 473

operator==, 333, 452, 459, 580, 581, 594, 595

operator>, 452

operator>=, 452

operator>>, 105, 257, 344

operator%, 452

operator&, 829

operator&&, 453

operator~, 829

operator||, 453

operators: of containers, 290

operators: textual alternatives, 286

operator[], 253, 258, 747, 839

options, 847

or, 286

or_eq, 286

ordered pair, 344

ordinary class, 607, 620

ordinary function, 607

ostream, 84, 87, 88, 98, 99, 120, 281, 282, 382

ostream constructor, 98

ostream coupling, 111

ostream: define using 0-pointer, 98, 105

ostream: header file, 87

ostream: iterator, 463

ostream_iterator, 463

ostreambuf_iterator, 464

ostringstream, 84, 98, 103

out, 103, 114

out of memory, 185

out-of-line functions, 150

out_of_range, 232

output, 111

output formatting, 84, 87

output_iterator_tag, 720

OutputIterator, 460, 720

overflow, 402, 406, 787, 790

overflow_error, 232

overloadable operators, 286

overloaded assignment, 290

overloading: by const attribute, 15

overloading: function template, 628

override, 384

overriding members, 380

overview of generic algorithms, 291

owns_lock, 492

p, 47

padding, 92

pair, 292, 315

pair container, 289, 292

pair<map::iterator, bool>, 318

pair<set::iterator, bool>, 326

pair<type1, type2>, 292

parameter list, 14

parameter pack, 681

parameter pack: rvalue reference, 684

parameter packs not expanded, 690

parameter packs not expanded with ‘...’, 690

parameter: ellipsis, 759

882 INDEX

parent process, 805, 807

ParentSlurp, 813

parse(), 846

parse-tree, 787

parser, 787, 845, 850

parser generator, 845, 846, 850

partial class template specialization, 669

partial specialization, 673

partial_sort, 562

partial_sort_copy, 563

partial_sum, 565

partition, 565

Pascal, 150

Pattern, 341

pbackfail, 405

pbase, 407, 789

pbump, 407, 790

pdf, i

peculiar syntax, 280

peek, 107

penalty, 380

perfect forwarding, 38, 622, 684

perfect forwarding: inheritance, 689

perfect forwarding: to data members, 692

period, 482

permuting, 524

peta, 481

pico, 481

pimpl, 399

pipe, 787, 811

placement new, 176, 271, 274, 749

plain old data, 210, 761

plus, 449, 451

pod, 210

point of instantiation, 625, 642, 697

pointer in disguise, 371

pointer juggling, 753

pointer protection, 43

pointer to a function, 281

pointer to an object, 371

pointer to function, 168

pointer to member field selector, 428

pointer to members, 425, 758

pointer to members: assignment, 427

pointer to members: defining, 426

pointer to members: size of, 432

pointer to members: virtual members, 428

pointer to objects, 666

pointer: to a data member, 427

pointer: to class template, 695

pointer: to function, 278

pointer: to policy base class, 752

pointer: wild, 465, 477

pointer_to_binary_function, 603

pointer_to_unary_function, 603

pointers to deleted memory, 186

pointers to objects, 273

pointers: as iterators, 459

poisson_distribution<IntType = int>, 519

polar, 344

policy, 747, 750

policy class: defining structure, 753

polymorphic semantic union, 864

polymorphism, 377, 409

polymorphism: bypassing, 733

polymorphism: dynamic, 649

polymorphism: how, 411

polymorphism: static, 649

polymorphous wrapper, 640

pop, 307, 310, 331

pop_back, 77, 298, 303, 313

pop_front, 77, 303, 313

pop_heap, 599

pos_type, 107

POSIX, 49

postponing decisions, 213

pow, 344

power specification using p, 47

pptr, 407, 789

precision, 92

precompiled header, 623

predefined function object, 449, 829

predicate, 278

predicate function, 455

preprocessor, 162, 282

preprocessor directive, 17, 847

preprocessor directive: error vs. static_assert,

636

Press, W.H., 568

prev_permutation, 566

primitive types, 46

printf, 29, 99, 681

printf(), 13

priority queue data structure, 308

priority rules, 308

priority_queue, 308, 310

private, 30, 718

private backdoor, 256

private derivation, 368

private derivation: too restrictive, 358

private inheritance, 399

private members, 698

probability density function, 507

problem analysis, 351

procedural approach, 11

process ID, 806

process id, 806

profiler, 149, 300

INDEX 883

Prolog, 10

promotion, 262

promotions, 653

protected, 30, 356, 791

protected derivation: too restrictive, 358

protocol, 382

Prototype design pattern, 416

prototyping, 8

Proxy Design Pattern, 840

Proxy: stream insertion and extraction, 840

Pthreads Programming, 479

ptr_fun, 604

public, 30, 162, 368

pubseekoff, 403, 408

pubseekpos, 403

pubsetbuf, 403

pubsync, 402

pure virtual functions, 382

pure virtual member: implementation, 383

push, 308, 310, 331

push_back, 77, 298, 303, 313, 460

push_front, 77, 303, 313, 461

push_heap, 599

put, 99

putback, 107, 797

qsort, 697

qsort(), 168

Qt, 123

qualification conversions, 653

qualification transformation, 619

queue, 307

queue data structure, 307

queue: header file, 307, 308

quiet_NaN, 639

radix, 91, 639

rand, 507

random, 300

random access, 460

random number generator, 568

random: header file, 506, 508

random_access_iterator_tag, 721

random_shuffle, 568

RandomAccessIterator, 460, 721, 723

RandomIterator, 842

range, 44

range based for, 44

range of values, 296

range-based for-loop, 837

range_error, 232

Ranger, 837

ratio, 480

ratio: header file, 480

raw memory, 173, 176

raw string literal, 45

rbegin, 77, 295, 298, 303, 313, 320, 326, 458, 727

rdbuf, 88, 112, 809

rdstate, 91

read, 107

read first, test later, 111

readFd, 817

reading and writing, 86

readsome, 107

real, 343

real part, 342, 343

realloc, 185

recompilation, 354

recursive_mutex, 489

recursive_timed_mutex, 489

redirection, 112, 809

ref(arg), 615

reference, 281, 371

reference operator, 33

reference parameter, 136

reference wrapper, 615

reference: to class template, 695

references, 33

regcomp, 341

regex, 342

regex: header file, 341

regex_replace, 342

regex_search, 342

regexec, 341

regular expression, 847

regular expressions, 341

rehash, 337

reinterpret_cast, 736

reinterpret_to_smaller_cast, 736

relational function object, 452

relational operations, 829

relationship between code and data, 351

relative address, 427

release, 469, 492

remove, 304, 570

remove_copy, 570

remove_copy_if, 571

remove_if, 304, 572

remove_reference, 762

rend, 78, 295, 298, 304, 313, 320, 326, 458, 727

renew, 174, 175

replace, 78, 573

replace_copy, 574

replace_copy_if, 575

replace_if, 576

repositioning, 100, 107

reserve, 78, 298, 337

reserved identifiers, 53

reset, 470, 474

884 INDEX

resetiosflags, 93

resize, 78, 298, 304, 313

resource: stealing, 201

responsibility of the programmer, 295, 297, 302,

307, 311, 331, 469

restrictions, 10

result_of, 693

result_type, 603, 756

return, 213

return by argument, 34

return type: implicit, 503

return type: late-specified, 503

return value, 13, 281

return value optimization, 209

reusable software, 382, 401

reverse, 304, 577

reverse iterator, 727

Reverse Polish Notation, 329

reverse_copy, 577

reverse_iterator, 295, 298, 303, 313, 320, 326,

727

reverse_iterator: initialized by iterator, 727

reversed_iterator, 457

rfind, 79

right, 94

right-hand, 290, 292

rmExceptFd, 818

rmReadFd, 818

rmWriteFd, 818

RNG, 508

rotate, 578

rotate_copy, 579

round_error, 639

round_style, 639

RPN, 329

rule of thumb, 13, 19, 25, 52, 61, 135, 149, 152,

157, 175, 239, 241, 259, 263, 273, 300,

353, 354, 381, 427, 479, 611, 631, 642,

663, 677, 764

run-time, 377, 393, 636

run-time error, 229

run-time sypport system, 185

run-time vs. compile-time, 737

runtime_error, 232

rvalue, 37, 253, 263, 459, 469

rvalue reference, 37

rvalue reference return type, 200

rvalue: distinguish from lvalue, 839

sbumpc, 402, 794

scalar type, 343

scanf, 106

Scanner, 847

scanner, 787, 845, 850

scanner generator, 845

ScannerBase, 847

scientific, 96

scientific notation, 96

scope resolution operator, 23, 57, 272, 364, 368,

386

scope: class, 426

scope: global, 426

search, 579

search_n, 581

second, 292

second_argument_type, 603, 756

seconds, 481

seek beyond file boundaries, 100, 108

seek_dir, 442

seek_off, 796

seekdir, 100, 108, 403

seekg, 107

seekoff, 407, 795

seekp, 100

seekpos, 408, 795, 796

segmentation fault, 467

select, 815

Selector, 816

semaphore, 501

set, 324

set: header file, 324, 327

set_difference, 582

set_intersection, 583

set_new_handler, 184

set_symmetric_difference, 584

set_union, 585

setAlarm, 817

setbase, 95

setbuf, 407

setDebug, 848

setf, 93

setfill, 92

setg, 405, 791, 792, 794, 796

setiosflags, 93

setjmp, 213, 216

setp, 407, 789

setprecision, 93

setstate, 91

setup.exe, 8

setw, 93

SFINAE, 647

sgetc, 402

sgetn, 402, 795

shadow member, 358

shared_ptr, 52, 471, 722

shared_ptr: 0-pointer, 472

shared_ptr: default, 472

shared_ptr: defining, 471

shared_ptr: initialization, 472

INDEX 885

shared_ptr: operators, 473

shared_ptr: used type, 472

showbase, 95

showmanyc, 405

showpoint, 96

showpos, 95

shrink_to_fit, 79, 299, 313

shuffling, 524

signal, 809

signaling_NaN, 640

sin, 344

single inheritance, 366

Singleton, 235

sinh, 344

size, 79, 141, 295, 299, 304, 308, 310, 313, 320,

327, 331, 337

size specification, 161

size: of pointers to members, 432

size_t, 49, 270

size_type, 68

sizeof, 7, 158, 171, 177, 681, 760

sizeof derived vs base classes, 372

skipping leading blanks, 28

skipws, 97, 463

sleep_for, 484

sleep_until, 484

slicing, 370

snextc, 402

socket, 787

sockets, 86

sort, 304, 452, 586

sort criteria: hierarchic sorting, 710

sort: multiple hierarchal criteria, 590

sort_heap, 600

sorted collection of value, 327

sorted collection of values, 324

sorting, 524

splice, 305

split buffer, 406

sprintf, 98

sputback, 402

sputc, 402

sputn, 402

sqrt, 344

sscanf, 105

sstream, 103, 109

sstream: header file, 87

stable_partition, 587

stable_sort, 588, 710

stack, 329

stack constructors, 330

stack data structure, 329

stack operations, 280

stack: header file, 329

standard exceptions, 232

standard layout, 211

standard namespace, 23

standard namespace: and STL, 447

standard normal distribution, 518

Standard Template Library, 447

standard-layout, 211

stat, 47, 138

state flags, 231

state of I/O streams, 84, 87

static, 10, 56, 159

static binding, 377, 379

static data members: initialization, 160

static data: const, 162

static inline member functions, 167

static member functions, 166

static members, 159, 665

static object, 124

static polymorphism, 649, 753

static type checking, 393

static type identification, 393

static variable: initialization, 495

static: data members, 159

static: members, 431

static_assert, 636

static_cast, 371, 625

static_cast<type>(expression), 49

static_pointer_cast, 475

std, 83

std namespace: off limits, 590

std::move, 203

std::streambuf, 791

std::system_error, 233

std::u16string, 68

std::u32string, 68

std::wstring, 68, 81

stderr, 27

STDERR_FILENO, 812

stdexcept, 78

stdexcept: header file, 232

stdin, 27

STDIN_FILENO, 812

stdio.h, 13, 18

stdout, 27

STDOUT_FILENO, 790, 812

steady_clock, 482

STL, 447

STL: required types, 829

stod, 80

stof, 79

stoi, 80

stol, 80

stold, 80

stoll, 80

886 INDEX

storing data, 300

stoul, 80

stoull, 81

str, 103, 109

str..., 171

strcasecmp, 68, 448, 604

strdup, 171, 185

strdupnew, 185

stream, 408

stream state flags, 91

stream: as bool value, 90

stream: processing, 110

stream: read and write, 114

streambuf, 84, 87, 111, 401, 462, 463, 787, 791,

793, 795, 797

streambuf: and exceptions, 401

streambuf: header file, 86

streams: associating, 119

streams: reading to memory, 109

streams: writing to memory, 103

streamsize, 401

string, 67

string constructors, 70

string extraction, 105

string: as union member, 853

string: declaring, 68

string: header file, 68, 79

string: iterator types, 71

string::iterator, 435

string::size_type, 68

strong guarantee, 239

Stroustrup, 25

struct, 21

struct: empty, 766

Structured Computer Organization, 501

Stuart, A. & Ord, K, 507

student_t_distribution<RealType = double>, 519

substitution failure, 647

substr, 79

subtract_with_carry_engine, 507

sungetc, 402

Sutter, H., 239, 649

swap, 79, 194, 242, 295, 299, 305, 313, 320, 327,

337, 470, 474, 487, 492, 591

swap area, 184

swap_ranges, 592

swapping, 524

Swiss army knife, 366

symbol area, 847

symbolic constants, 28

sync, 408, 788, 790

syntactic elements, 214

system, 805, 809

system_category, 237

system_clock, 482

system_error: header file, 233–235

tag, 345

tag type, 490

TagTrait, 862

Tanenbaum, A.S., 501

TCP/IP stack, 401

tellg, 107

tellp, 100

template, 83, 447, 609, 651

template alias, 754

template declaration, 623

template explicit specialization, 632

template explicit type specification: omitting, 635

template header, 609

template header: for member templates, 655

template instantiation declaration, 635

template mechanism, 607, 608

template members: without template type pa-

rameters, 732

template meta programming, 623, 729

Template Method, 382

template method design pattern, 806

template non-type parameter, 611

template pack: and template template parame-

ters, 780

template parameter deduction, 617

template parameter list, 609, 611, 650, 651

template parameter: default value, 653

template parameters: identical types, 621

template programming, 736

template template parameter, 729, 750

template template parameter: and template packs,

780

template type deduction, 621

template type parameter, 609

template type: initialization, 612

template: and the < token, 735

template: class, 650

template: embedded in typedefs, 669

template: embedding integral values, 737

template: explicit specialization, 634

template: id-declaration mismatch, 634

template: identifying subtypes, 667

template: IfElse, 740

template: parameter type transformation, 617

template: point of instantiation, 625, 642

template: preventing instantiation, 663

template: select type given bool, 740

template: specialization, 669

template: specified within template, 735

template: statements depending on type param-

eters, 641

template: subtypes inside templates, 731

INDEX 887

template: variadic, 680

template: when instantiated, 663

templates vs. using, 612

templates: iteration by recursion, 742

templates: overloading type parameter list, 629

tera, 481

terminate, 410

text files, 115

textMsg, 223

this, 159, 167, 168, 190, 271

this_thread, 484

thread, 484

thread: detached, 484

thread: header file, 484

throw, 214, 219

throw list, 228, 232

throw: empty, 223

throw: pointer, 222

tie, 88, 111

time unit, 480

time_point, 482

timed_mutex, 489

timeval, 815

tinyness_before, 640

to_string, 81

to_time_t, 482

to_wstring, 81

token, 330, 850

top, 310, 330, 331

trait class, 755

trait class: class detection, 758

trait class: nested, 756

transform, 452, 453, 593

transform: vs. for_each, 594

transformation to a base class, 620

traps, 640

trigraphs, 3

trivial copy constructor, 192, 210

trivial default constructor, 141, 210, 761

trivial destructor, 182, 211

trivial member, 210

trivial member function, 761

trivial overloaded assignment operator, 211

true, 47, 102, 109, 455, 550, 560

trunc, 103, 115

try, 224

try_lock, 489, 492

try_lock_for, 490, 493

try_lock_until, 490, 493

try_to_lock, 490

try_to_lock_t, 490

tuple, 691

tuple: header file, 691

tuple_element, 692

tuple_size, 692

Type, 291

type checking, 13

type conversions, 643

type identification: run-time, 393

type of the pointer, 371

type safe, 28, 105, 171, 172

type safety, 84

type specification: explicit, 617

type-safe, 28

type: anonymous, local, 616

type: primitive, 46

type: without values, 444

type_traits: header file, 761, 764

typedef, 21, 83, 292, 314

typedefs: nested, 719

typeid, 393, 396

typeid: argument, 397

typeinfo: header file, 232, 396

typename, 730

typename ...Params, 680

typename &&, 37

typename vs. class, 750

typename: and template subtypes, 667

typename: disambiguating code, 666

types: required by STL, 829

U, 47

uflow, 402, 405

uint32_t, 49

Ullman, J.D., 300

unary function object, 454

unary not, 829

unary operator, 829

unary predicate, 531

unary_function, 829

unbound friend, 698, 703

undefined reference to vtable, 415

underflow, 405, 791

underflow_error, 232

unget, 107, 797

Unicode, 48

uniform initialization, 140

uniform_int_distribution<IntType = int>, 520

uniform_real_distribution<RealType = double>,

521

unimplemented: mangling dotstar_expr, 614

union, 21, 853

union: polymorphic, 864

unique, 305, 474, 594

unique_copy, 595

unique_lock, 490, 491

unique_ptr, 464, 722

unique_ptr: 0-pointer, 466

unique_ptr: assignment, 467

888 INDEX

unique_ptr: default, 466

unique_ptr: defining, 465

unique_ptr: initialization, 467

unique_ptr: move constructor, 466

unique_ptr: operators, 469

unique_ptr: reaching members, 468

unique_ptr: used type, 468

unistd.h: header file, 788, 791, 792, 795, 811

unitbuf, 97

Unix, 112, 115, 809, 810, 850, 859

unlock, 489, 493

unnamed type, 616

unordered_map, 331, 332

unordered_map: header file, 331

unordered_map: member functions, 335

unordered_map::hasher, 332

unordered_map::key_equal, 332

unordered_map::key_type, 332

unordered_map::mapped_type, 332

unordered_multimap, 337

unordered_multiset, 340

unordered_set, 339

unordered_set: header file, 339

unordered_set::hasher, 339

unordered_set::key_equal, 339

unordered_set::key_type, 339

unpack operator, 681, 689

unrestricted unions, 344

unsetf, 93

unsigned int, 49

upper_bound, 320, 327, 596

uppercase, 96

URNG, 508

use_count, 474

user-defined literal, 166

user-defined literals, 285

using, 44, 157

using declaration, 57

using directive, 58

using namespace std, 23

using vs. templates, 612

using: in derived classes, 364

using: restrictions, 62

UTF-16, 48

UTF-32, 48

UTF-8, 48

utility, 203

utility: header file, 292, 684

vague linkage, 150

valid state, 68

value, 314

value_comp, 321, 327

value_type, 314, 324

ValueType, 332

Vandevoorde, D., 729

variadic functions, 680

variadic non-type parameters, 690

variadic template: number of arguments, 681

variadic templates, 680

vector, 296, 457

vector constructors, 296

vector: header file, 296

vector: member functions, 297

viable functions, 643

virtual, 379

virtual base class, 387

virtual constructor, 416

virtual derivation, 388

virtual destructor, 381, 382

virtual member function, 379

virtual: vs static, 159

visibility: nested classes, 435

void, 17

void *, 225, 270, 272, 274

volatile, 619

vpointer, 412

vprintf, 99

vscanf, 106

vtable, 412, 753

vtable: and multiple inheritance, 413

vtable: undefined reference, 415

wait, 498, 500, 816

wait_for, 498, 500

wait_until, 499, 500

waitpid, 807

wchar_t, 46, 48, 83

weibull_distribution<RealType = double>, 521

what, 231, 232

white space, 28, 97, 98

width, 93

wild pointer, 186, 222

wrapper, 183, 590, 801

wrapper class, 86, 264, 369

wrapper functions, 168

write, 99

write beyond end of file, 100

writeFd, 817

ws, 98

X-windows, 49

X2a, 832

xor, 286

xor_eq, 286

XQueryPointer, 49

xsgetn, 402, 406, 792, 794, 795

xsputn, 402, 407

yacc, 845

INDEX 889

yield, 484

yocto, 481

Yodl, 3

yotta, 481

zepto, 481

zetta, 481

zombie, 809, 821

	Overview Of The Chapters
	Introduction
	What's new in the C++ Annotations
	C++'s history
	History of the C++ Annotations
	Compiling a C program using a C++ compiler
	Compiling a C++ program

	C++: advantages and claims
	What is Object-Oriented Programming?
	Differences between C and C++
	The function `main'
	End-of-line comment
	Strict type checking
	Function Overloading
	Default function arguments
	NULL-pointers vs. 0-pointers and nullptr (C++11)
	The `void' parameter list
	The `#define __cplusplus'
	Using standard C functions
	Header files for both C and C++
	Defining local variables
	The keyword `typedef'
	Functions as part of a struct

	A First Impression Of C++
	Extensions to C
	Namespaces
	The scope resolution operator ::
	Using the keyword `const'
	`cout', `cin', and `cerr'

	Functions as part of structs
	Data hiding: public, private and class
	Structs in C vs. structs in C++

	More extensions to C
	References
	Rvalue References (C++11)
	Strongly typed enumerations (C++11)
	Initializer lists (C++11)
	Type inference using `auto' (C++11)
	Defining types and 'using' declarations (C++11)
	Range-based for-loops (C++11)
	Raw String Literals (C++11)

	New language-defined data types
	The data type `bool'
	The data type `wchar_t'
	Unicode encoding (C++11)
	The data type `long long int' (C++11)
	The data type `size_t'

	A new syntax for casts
	The `static_cast'-operator
	The `const_cast'-operator
	The `reinterpret_cast'-operator
	The `dynamic_cast'-operator
	Casting 'shared_ptr' objects

	Keywords and reserved names in C++

	Name Spaces
	Namespaces
	Defining namespaces
	Referring to entities
	The standard namespace
	Nesting namespaces and namespace aliasing

	The `string' Data Type
	Operations on strings
	A std::string reference
	Initializers
	Iterators
	Operators
	Member functions
	Conversion functions

	The IO-stream Library
	Special header files
	The foundation: the class `ios_base'
	Interfacing `streambuf' objects: the class `ios'
	Condition states
	Formatting output and input

	Output
	Basic output: the class `ostream'
	Output to files: the class `ofstream'
	Output to memory: the class `ostringstream'

	Input
	Basic input: the class `istream'
	Input from files: the class `ifstream'
	Input from memory: the class `istringstream'
	Copying streams
	Coupling streams

	Advanced topics
	Redirecting streams
	Reading AND Writing streams

	Classes
	The constructor
	A first application
	Constructors: with and without arguments

	Ambiguity resolution
	Types `Data' vs. `Data()'
	Superfluous parentheses
	Existing types

	Objects inside objects: composition
	Composition and const objects: const member initializers
	Composition and reference objects: reference member initializers

	Data member initializers (C++11)
	Delegating constructors (C++11)

	Uniform initialization (C++11)
	Defaulted and deleted class members (C++11)
	Const member functions and const objects
	Anonymous objects

	The keyword `inline'
	Defining members inline
	When to use inline functions

	Local classes: classes inside functions
	The keyword `mutable'
	Header file organization
	Using namespaces in header files

	Sizeof applied to class data members (C++11)

	Static Data And Functions
	Static data
	Private static data
	Public static data
	Initializing static const data
	Generalized constant expressions (constexpr, C++11)

	Static member functions
	Calling conventions

	Classes And Memory Allocation
	Operators `new' and `delete'
	Allocating arrays
	Deleting arrays
	Enlarging arrays
	Managing `raw' memory
	The `placement new' operator

	The destructor
	Object pointers revisited
	The function set_new_handler()

	The assignment operator
	Overloading the assignment operator

	The `this' pointer
	Sequential assignments and this

	The copy constructor: initialization vs. assignment
	Revising the assignment operator
	Swapping

	Moving data (C++11)
	The move constructor (dynamic data) (C++11)
	The move constructor (composition) (C++11)
	Move-assignment (C++11)
	Revising the assignment operator (part II)
	Moving and the destructor (C++11)
	Move-only classes (C++11)
	Default move constructors and assignment operators (C++11)
	Moving: implications for class design (C++11)

	Copy Elision and Return Value Optimization
	Plain Old Data (C++11)
	Conclusion

	Exceptions
	Exception syntax
	An example using exceptions
	Anachronisms: `setjmp' and `longjmp'
	Exceptions: the preferred alternative

	Throwing exceptions
	The empty `throw' statement

	The try block
	Catching exceptions
	The default catcher

	Declaring exception throwers (deprecated)
	Iostreams and exceptions
	Standard Exceptions
	System error, error code and error category (C++11)
	The class `error_code' (C++11)
	The class `error_category' (C++11)

	Exception guarantees
	The basic guarantee
	The strong guarantee
	The nothrow guarantee

	Function try blocks
	Exceptions in constructors and destructors

	More Operator Overloading
	Overloading `operator[]()'
	Overloading the insertion and extraction operators
	Conversion operators
	The keyword `explicit'
	Explicit conversion operators (C++11)

	Overloading the increment and decrement operators
	Overloading binary operators
	Overloading `operator new(size_t)'
	Overloading `operator delete(void *)'
	Operators `new[]' and `delete[]'
	Overloading `new[]'
	Overloading `delete[]'
	`new[]', `delete[]' and exceptions

	Function Objects
	Constructing manipulators

	The case of [io]fstream::open()
	User-defined literals (C++11)
	Overloadable operators

	Abstract Containers
	Notations used in this chapter
	The `pair' container
	Allocators
	Sequential Containers
	ARRAY
	The `vector' container
	The `list' container
	The `queue' container
	The `priority_queue' container
	The `deque' container
	The `map' container
	The `multimap' container
	The `set' container
	The `multiset' container
	The `stack' container
	The `unordered_map' container (`hash table') (C++11)
	The `unordered_set' container (C++11)
	Regular Expressions (C++11, ?)

	The `complex' container
	Unrestricted Unions (C++11)
	Implementing the destructor
	Embedding an unrestricted union in a surrounding class
	Destroying an embedded unrestricted union
	Copy and move constructors
	Assignment

	Inheritance
	Related types
	Inheritance depth: desirable?

	Access rights: public, private, protected
	Public, protected and private derivation
	Promoting access rights

	The constructor of a derived class
	Move construction (C++11)
	Move assignment (C++11)
	Inheriting constructors (C++11, ?)

	The destructor of a derived class
	Redefining member functions
	i/ostream::init
	Multiple inheritance
	Conversions between base classes and derived classes
	Conversions with object assignments
	Conversions with pointer assignments

	Using non-default constructors with new[]

	Polymorphism
	Virtual functions
	Virtual destructors
	Pure virtual functions
	Implementing pure virtual functions

	Explicit virtual overrides (C++11)
	Virtual functions and multiple inheritance
	Ambiguity in multiple inheritance
	Virtual base classes
	When virtual derivation is not appropriate

	Run-time type identification
	The dynamic_cast operator
	The `typeid' operator

	Inheritance: when to use to achieve what?
	The `streambuf' class
	Protected `streambuf' members
	The class `filebuf'

	A polymorphic exception class
	How polymorphism is implemented
	Undefined reference to vtable ...
	Virtual constructors

	Friends
	Friend functions
	Extended friend declarations (C++11)

	Classes Having Pointers To Members
	Pointers to members: an example
	Defining pointers to members
	Using pointers to members
	Pointers to static members
	Pointer sizes

	Nested Classes
	Defining nested class members
	Declaring nested classes
	Accessing private members in nested classes
	Nesting enumerations
	Empty enumerations

	Revisiting virtual constructors

	The Standard Template Library
	Predefined function objects
	Arithmetic function objects
	Relational function objects
	Logical function objects
	Function adaptors

	Iterators
	Insert iterators
	Iterators for `istream' objects
	Iterators for `ostream' objects

	The class 'unique_ptr' (C++11)
	Defining `unique_ptr' objects (C++11)
	Creating a plain `unique_ptr' (C++11)
	Moving another `unique_ptr' (C++11)
	Pointing to a newly allocated object (C++11)
	Operators and members (C++11)
	Using `unique_ptr' objects for arrays (C++11)
	The legacy class 'auto_ptr' (deprecated)

	The class 'shared_ptr' (C++11)
	Defining `shared_ptr' objects (C++11)
	Creating a plain `shared_ptr' (C++11)
	Pointing to a newly allocated object (C++11)
	Operators and members (C++11)
	Casting shared pointers (C++11)
	Using `shared_ptr' objects for arrays (C++11)

	Using `make_shared' to combine `shared_ptr' and `new' (C++11)
	Classes having pointer data members (C++11)
	Multi Threading (C++11)
	Specifying absolute and relative time (C++11)
	The namespace `std::this_thread' (C++11)
	The class `std::thread' (C++11)
	Synchronization (mutexes) (C++11)
	Locks and lock handling (C++11)
	Event handling (condition variables) (C++11)

	Lambda expressions (C++11)
	Randomization and Statistical Distributions (C++11)
	Random Number Generators (C++11)
	Statistical distributions (C++11)

	The STL Generic Algorithms
	The Generic Algorithms
	accumulate
	adjacent_difference
	adjacent_find
	binary_search
	copy
	copy_backward
	count
	count_if
	equal
	equal_range
	fill
	fill_n
	find
	find_end
	find_first_of
	find_if
	for_each
	generate
	generate_n
	includes
	inner_product
	inplace_merge
	iter_swap
	lexicographical_compare
	lower_bound
	max
	max_element
	merge
	min
	min_element
	mismatch
	next_permutation
	nth_element
	partial_sort
	partial_sort_copy
	partial_sum
	partition
	prev_permutation
	random_shuffle
	remove
	remove_copy
	remove_copy_if
	remove_if
	replace
	replace_copy
	replace_copy_if
	replace_if
	reverse
	reverse_copy
	rotate
	rotate_copy
	search
	search_n
	set_difference
	set_intersection
	set_symmetric_difference
	set_union
	sort
	stable_partition
	stable_sort
	swap
	swap_ranges
	transform
	unique
	unique_copy
	upper_bound
	Heap algorithms

	STL: More function adaptors
	Member function adaptors
	Adaptable functions

	Function Templates
	Defining function templates
	Considerations regarding template parameters
	Late-specified return type (C++11)

	Passing arguments by reference (reference wrappers) (C++11)
	Using Local and unnamed types as template arguments (C++11)
	Template parameter deduction
	Lvalue transformations
	Qualification transformations
	Transformation to a base class
	The template parameter deduction algorithm
	Template type contractions

	Declaring function templates
	Instantiation declarations

	Instantiating function templates
	Instantiations: no `code bloat'

	Using explicit template types
	Overloading function templates
	An example using overloaded function templates
	Ambiguities when overloading function templates
	Declaring overloaded function templates

	Specializing templates for deviating types
	Avoiding too many specializations
	Declaring specializations
	Complications when using the insertion operator

	Static assertions (C++11)
	Numeric limits
	Polymorphous wrappers for function objects (C++11)
	Compiling template definitions and instantiations
	The function selection mechanism
	Determining the template type parameters
	SFINAE: Substitution Failure Is Not An Error
	Summary of the template declaration syntax

	Class Templates
	Defining class templates
	Constructing the circular queue: CirQue
	Non-type parameters
	Member templates
	CirQue's constructors and member functions
	Using CirQue objects
	Default class template parameters
	Declaring class templates
	Preventing template instantiations (C++11)

	Static data members
	Extended use of the keyword `typename'

	Specializing class templates for deviating types
	Example of a class specialization

	Partial specializations
	Intermezzo: some simple matrix algebraic concepts
	The Matrix class template
	The MatrixRow partial specialization
	The MatrixColumn partial specialization
	The 1x1 matrix: avoid ambiguity

	Variadic templates (C++11)
	Defining and using variadic templates (C++11)
	Perfect forwarding (C++11)
	The unpack operator (C++11)
	Non-type variadic templates (C++11)

	Tuples (C++11)
	Computing the return type of function objects (C++11)
	Instantiating class templates
	Processing class templates and instantiations
	Declaring friends
	Non-templates used as friends in templates
	Templates instantiated for specific types as friends
	Unbound templates as friends
	Extended friend declarations (C++11)

	Class template derivation
	Deriving ordinary classes from class templates
	Deriving class templates from class templates
	Deriving class templates from ordinary classes

	Class templates and nesting
	Constructing iterators
	Implementing a `RandomAccessIterator'
	Implementing a `reverse_iterator'

	Advanced Template Use
	Subtleties
	Returning types nested under class templates
	Type resolution for base class members
	::template, .template and ->template

	Template Meta Programming
	Values according to templates
	Selecting alternatives using templates
	Templates: Iterations by Recursion

	User-defined literals (C++11)
	Template template parameters
	Policy classes - I
	Policy classes - II: template template parameters
	Structure by Policy

	Template aliases (C++11)
	Trait classes
	Distinguishing class from non-class types
	Available type traits (C++11)

	Using `noexcept' when offering the `strong guarantee' (C++11)
	More conversions to class types
	Types to types
	An empty type
	Type convertibility

	Template TypeList processing
	The length of a TypeList
	Searching a TypeList
	Selecting from a TypeList
	Prefixing/Appending to a TypeList
	Erasing from a TypeList

	Using a TypeList
	The Wrap and Multi class templates
	The MultiBase class template
	Support templates
	Using Multi

	Concrete Examples
	Using file descriptors with `streambuf' classes
	Classes for output operations
	Classes for input operations
	Fixed-sized field extraction from istream objects

	The `fork' system call
	A basic Fork class
	Parents and Children
	Redirection revisited
	The `Daemon' program
	The class `Pipe'
	The class `ParentSlurp'
	Communicating with multiple children

	Function objects performing bitwise operations
	A text to anything converter
	Adding binary operators to classes
	Binary operators allowing promotions

	Range-based for-loops and pointer-ranges (C++11)
	Distinguishing lvalues from rvalues with operator[]()
	Implementing a `reverse_iterator'
	Using `bisonc++' and `flexc++'
	Using `flexc++' to create a scanner
	Using `bisonc++' and `flexc++'
	Bisonc++: using polymorphic semantic values

