GVPR(1) GeneraCommands Manual GVPR(1)

NAME
gvpr — graph pattern scanning and processing language
(previously known agpr)

SYNOPSIS
gvpr [-icqV?] [—ooutfile] [—aargs] ['prog | —f prodfile][files]

DESCRIPTION
gvpr is a graph stream editor inspired k. It copies input graphs to its output, possibly transforming
their structure and attuiltes, creating we graphs, or printing arbitrary information. The graph model is
that provided byibcgraph(3). Inparticular,gvpr reads and writes graphs using the dot language.

Basically,gvpr traverses each input graph, denoteddy, visiting each node and edge, matching it with
the predicate-action rules supplied in the input progratre rules arevaluated in order For each predi-
cate @auating to true, the corresponding action is performed. During thersed, the current node or
edge being visited is denoted &y

For each input graph, there is a target subgraph, denot&d pitially empty and used to accumulate cho-
sen entities, and an output graph), used for final processing and then written to output. By default, the
output graph is the target graplhe output graph can be set in the prograninoa limited sense, on the
command line.

OPTIONS
The following options are supported:

—aargs The stringargsis split into whitespace-separated e¢ak, with the individual tokenssalable as
strings in thegvpr program asARGV[0],...,ARGV[ARGC-1]. Whitespace characters within
single or double quoted substrings, or preceded by a backslash, are ignored as separators. In gen-
eral, a backslash character turnsanly gpecial meaning of the foleing character Note that the
tokens deried from multiple—a flags are concatenated.

—-C Use the source graph as the output graph.
=i Derive the node-induced subgraph extension of the output graph in the context of its root graph.

—o outfile
Causes the output stream to be written to the specified file; by default, output is wittiuto

—f progfile
Use the contents of the specified file as the prograrretute on the input. Iprogfile contains a
slash charactethe name is taken as the pathname of the file. Othergvipewill use the directo-
ries specified in the environmerdanable GPRPATH to look for the file. If-f is not gven, gvpr
will use the first non-option argument as the program.

-q Turns of warning messages.

-V Causes the program to print version information and exit.

-? Causes the program to print usage information and exit.
OPERANDS

The following operand is supported:

files Names of files containing 1 or more graphs in the dot language.—if oyation is gven, the first
name is remeed from the list and used as the input program. If the list of files is estgin
will be used.

PROGRAMS
A gvpr program consists of a list of predicate-action clauses, having one of the forms:

BEGIN { action}
BEG_G { action}
N [predicate] { action}

3 duly 2009 1

GVPR(1) GeneraCommands Manual GVPR(1)

E [predicate] { action}
END_G { action}
END { action}

A program can contain at most one of each ofBE&IN, END_G andEND clauses. Therean be ap
number o BEG_G, N andE statements, the first applied to graphs, the second to nodes, the third to edges.
These are separated into blocks, a block consisting of an ofiB@alG statement and all andE state-

ments up to the neBEG_G statement, if an The top-leel semantics of gvpr program are:

Evaluate thaBEGIN clause, if ap.
For each input grapi® {
For each block {
SetG as the current graph and current object.
Evaluate thaBEG_G clause, if aw.
For each node and edge @& {
Set the node or edge as the current object.
Evaluate theN or E clauses, as appropriate.
}
}

SetG as the current object.
Evaluate th&eND_ G clause, if aw.

}
Evaluate th&END clause, if ap.

The actions of th8EGIN, BEG_G, END_G andEND clauses are performed when the clauses\ata-e

ated. er N or E clauses, either the predicate or action may be omitted. If there is no predicate with an
action, the action is performed ovegy node or edge, as appropriate. If there is no action and the predicate
evduates to true, the associated node or edge is added to the target graph.

The blocks arevaluated in the order in which th@ccur Within a block, theN clausesf clauses, respec-
tively) are evaluated in the order in which the occiilote, though, that within a block| or E clauses may
be interlaced, depending on theveigal order.

Predicates and actions are sequences of statements in the C dialect supportédexpitf library The
only difference between predicates and actions is that the former masa lype that may interpreted as
either true ordlse. Herahe usual C carention is followed, in which a non-zer@bue is considered true.
This would include non-empty strings and non-empty references to nodes, edgesyeter,Hfoa sring
can be coverted to an integethis value is used.

In addition to the usual C base typesid, int, char, float, long, unsignedanddouble), gvpr provides

string as a synoym for char*, and the graph-based typeede_t edge t graph_t andobj _t. Theobj_t

type can be viged as a supertype of the other 3 concrete types; the correct base type is maintained dynami-
cally. Besides these base types, the only other supported type expressions are asaoeigsi

Constants foller C syntax, but strings may be quoted with eithel or’...’. In certain contexts, stringal
ues are interpreted as patterns for the purpose of regular expression maRatiegs useksh(l) file
match pattern syntaxgvpr accepts C++ comments as well as cpp-type comméuatsthe lattey if a line
begins with a '#' charactethe rest of the line is ignored.

A statement can be a declaration of a function, a variable or an ariay executable statement. For decla-
rations, there is a single scope. Array declarations te form:

type array[type0]

where type0 is optional. If it is supplied, the parser will enforce that all array subscriptstiea specified

type. If it is not supplied, objects of all types can be used as subscripts. As in C, variables and arrays must
be declared. In particulaan windeclared variable will be interpreted as the name of anudérdf a node,

edge or graph, depending on the context.

Executable statements can be one of the following:

3 duly 2009 2

GVPR(1) GeneraCommands Manual GVPR(1)

{[statement .] }
expression /I commonlyvar = expression
if(expression) statemenf elsestatement
for(expression; expression; expression) statement
for(array [var]) statement
forr(array [var]) statement
while(expression) statement
switch(expression) case statements
break [expression|
continue [expression]
retur n [expression]
Iltems in brackets are optional.

In the second form of thier statement and thferr statement, theariablevar is set to eachalue used as
an ind« in the specified array and then the associatetementis evaluated. For numeric and string
indices, the indices are returned in increasing (decreasing) numeric or lexicographic ofder(ftor ,
respectiely). This can be used for sorting.

Function definitions can only appear in BIEGIN clause.

Expressions include the usual Kpeessions. Stringomparisons using= and!= treat the right hand oper
and as a patterrgvpr will attempt to use an expression as a string or numeric value as appropriate.

Expressions of graphical type (i.graph_t, node _t, edge_t, obj)tmay be followed by a field reference in

the form of.name The resulting value is the value of the attribute nansdeof the gien object. Inaddi-

tion, in certain contexts an undeclared, unmodified identifier is taken to be an attribute name. Specifically
such identifiers denote attutes of the current node or edge, respelstiin N andE clauses, and the cur

rent graph irBEG_G andEND_G clauses.

As usual in thdibcgraph(3) model, attribtes are stringalued. Inaddition,gvpr supports certain pseudo-
attributes of graph objects, not necessarily string-valued. These reflect intrinsic properties of the graph
objects and cannot be set by the user.

head: node_t
the head of an edge.

tail : node_t
the tail of an edge.

name: string
the name of an edge, node or graph. The name of an edge has thet&ilmame><edge-
op><head-namef<key>]", where<edge-op>is "->" or "——" depending on whether the graph is

directed or not. The bracket pfrkey>] only appears if the edge has a non-triviey k

indegree: int
the indegree of a node.

outdegree: int
the outdegree of a node.

degree: int
the degree of a node.

root: graph_t
the root graph of an object. The root of a root graph is itself.

parent : graph_t
the parent graph of a subgraph. The parent of a root grajibLis

n_edges int
the number of edges in the graph

3 duly 2009 3

GVPR(1) GeneraCommands Manual GVPR(1)

n_nodes: int
the number of nodes in the graph

directed : int
true (non-zero) if the graph is directed

strict : int
true (non-zero) if the graph is strict

BUILT-IN FUNCTIONS
The following functions are built intgvpr. Those functions returning references to graph objects return
NULL in case of failure.

Graphs and subgraph
graph(s: string, t : string) : graph_t
creates a graph whose namesiand whose type is specified by the stringgnoring case, the
characterdJ, D, S, N have the interpretation undirected, directed, strict, and non-strict, respec-
tively. If tis empty a drected, non-strict graph is generated.

subg(g: graph_t, s: string) : graph_t
creates a subgraph in gragiwith names. If the subgraph already exists, it is returned.
isSubgg : graph_t, s: string) : graph_t
returns the subgraph in graghvith names, if it exists, orNULL otherwise.
fstsubg(g : graph_t) : graph_t
returns the first subgraph in graghor NULL if none exists.
nxtsubg(sg: graph_t) : graph_t
returns the next subgraph aftgy or NULL .
isDirect(g : graph_t) : int
returns true if and only i is directed.
isStrict(g : graph_t) : int
returns true if and only i is strict.
nNodegg : graph_t) : int
returns the number of nodesgn
nEdgedqg: graph_t) : int
returns the number of edgesgn
Nodes
node(sg: graph_t, s: string) : node_t
creates a node in graghof names. If such a node already exists, it is returned.
subnoddsg: graph_t, n: node_{ : node_t
inserts the node into the subgraph. Returns the node.
fstnodg(g : graph_t) : node _t
returns the first node in graghor NULL if none exists.
nxtnode(n : node_9 : node _t
returns the next node aftein the root graph, akULL .
nxtnode_sdsg: graph_t, n: node_9 : node_t
returns the next node aftein sg or NULL .
isNodg(sg: graph_t, s: string) : node_t
looks for a node in (sub)grapiyof names. If such a node exists, it is returned. Otherwisg] L
is returned.
isSubnodésg: graph_t, n: node_9J : int
returns non-zero if nodeis in (sub)graplsg, or zero otherwise.

3 duly 2009 4

GVPR(1) GeneraCommands Manual GVPR(1)

indegreeOfsg: graph_t, n: node_9{ : int
returns the indegree of nodén (sub)graptsg

outdegreeOfsg: graph_t, n: node_9 : int
returns the outdegree of nodé (sub)graplsg

degreeOfsg: graph_t, n: node_9 :int
returns the degree of nodén (sub)graptsg

Edges
edgdt: node_t h:node_t s: string) : edge_t
creates an edge with tail notjehead nodeh and names in the root graph. If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge zistady e
it is returned.

edge_s(sg: graph_t,t: node_t h:node_t s: string) : edge_t
creates an edge with tail nofjéhead nodéh and names in (sub)graptsg (and all parent graphs).
If the graph is undirected, the distinction between head and tail nodes is unimpifrsaich an
edge already exists, it is returned.

subedgdg : graph_t, e: edge) : edge t
inserts the edgeinto the subgraph. Returns the edge.

isEdgdt: node_t h:node_t s: string) : edge _t
looks for an edge with tail nodghead nodéh and names. If the graph is undirected, the distinc-
tion between head and tail nodes is unimportant. If such an edge exists, it is returned. Otherwise,
NULL is returned.

isEdge_s¢sg: graph_t,t: node_t h:node_t s: string) : edge_t
looks for an edge with tail nodehead nodér and names in (sub)graphsg If the graph is undi-
rected, the distinction between head and tail nodes is unimportant. If such an edge exists, it is
returned. OtherwiséJULL is returned.
isSubedgég : graph_t, e: edge }:int
returns non-zero if edgeis in (sub)graplsg or zero otherwise.
fstout(n: node_ 9§ : edge_t
returns the first outedge of nodén the root graph.
fstout_sgsg: graph_t, n: node_ 9 : edge t
returns the first outedge of nodén (sub)graptsg
nxtout(e: edge_} : edge t
returns the next outedge af&in the root graph.
nxtout_sg(sg: graph_t, e: edge }: edge_t
returns the next outedge aftein graphsg
fstin(n: node_ 1 : edge_t
returns the first inedge of nodén the root graph.
fstin_sg(sg: graph_t, n: node_{ : edge _t
returns the first inedge of nodén graphsg
nxtin(e: edge_J : edge_t
returns the next inedge aftein the root graph.
nxtin_sg(sg: graph_t, e: edge_} : edge_t
returns the next inedge afiem graphsg
fstedgdn : node_{ : edge_t
returns the first edge of nodén the root graph.

3 duly 2009 5

GVPR(1) GeneraCommands Manual GVPR(1)

fstedge sésg: graph_t, n: node J: edge t
returns the first edge of nodén graphsg

nxtedgge: edge_tnode 9§ : edge_t
returns the next edge aftem the root graph.

nxtedge_sdsg: graph_t, e: edge_tnode 9 : edge_t
returns the next edge afem the graprsg

Graph I/O
write (g : graph_t) : void
printsg in dot format onto the output stream.

writeG (g : graph_t, fname: string) : void
printsg in dot format into the filéname

fwriteG (g : graph_t, fd: int) : void
printsg in dot format onto the open stream denoted by the infdger

readG(fname: string) : graph_t
returns a graph read from the filemame The graph should be in dot format. If no graph can be
read,NULL is returned.

freadG(fd : int) : graph_t
returns the next graph read from the open stifglarReturnsNULL at end of file.

Graph miscellany
deletgg: graph_t, x: obj_t) : void
deletes object from graphg. If gis NULL , the function uses the root graphxofIf x is a graph
or subgraph, it is closed unlests locked.

isin(g: graph_t, x: obj_t) : int
returns true ik is in subgraply.

clong(g: graph_t, x: obj_t): obj t
creates a clone of objegtin graphg. In particular the nev object has the same namalive
attributes and structure as the original objd€tan object with the sameel & x already exists, its
attributes are werlaid by those ok and the object is returned. If an edge is cloned, both endpoints
are implicitly cloned. If a graph is cloned, all nodes, edges and subgraphs are implicitly ¢foned.
x is a graphg may beNULL , in which case the cloned object will be avm®ot graph.

copy(g : graph_t, x: obj_t): obj_t
creates a copof objectx in graphg, where the n& object has the same namallye attributes as
the original object. If an object with the sameyks x already exists, its attributes areedaid by
those ofx and the object is returned. Note that this is a sadtmpy. If x is a graph, none of its
nodes, edges or subgraphs are copied into tlvegraph. Ifx is an edge, the endpoints are created
if necessarybut they are not cloned.If x is a graphg may beNULL , in which case the cloned
object will be a ne& root graph.

copyA(src: obj_t, tgt: obj_t) :int
copies the attributes of objestc to objecttgt, overwriting ary attribute \aluestgt may initially
have.

induce(g : graph_t) : void
extendsg to its node-induced subgraph extension in its root graph.

hasAttr(src: obj_t, name: string) : int
returns non-zero if objestc has an attribute whose nama@ne It returns 0 otherwise.

isAttr (g : graph_t, kind: string, name: string) : int
returns non-zero if an attibe namehas been defined gfor objects of the gien kind. For nodes,
edges, and graphsind should be "N", "E", and "G", respeatly. It returns O otherwise.

3 duly 2009 6

GVPR(1) GeneraCommands Manual GVPR(1)

agef(src: obj_t, name: string) : string
returns the value of attiibe namein objectsrc. This is useful for those cases wheameconflicts
with one of the kywords such as "head" or "root". If the attribute has not been declared in the
graph, the function will initialize it with a default value of "0 &void this, one should use the
hasAttr orisAttr function to check that the attribute exists.

ase{src: obj_t, name: string, value: string) : int
sets the value of attiilbe namein objectsrc to value Returns 0 on success, hon-zero aiufe.
Seeagetabove.

getDflt(g : graph_t, kind: string, name: string) : string
returns the default value of attuite namein objects ing of the given kind. For nodes, edges, and
graphskind should be "N", "E", and "G", respeadly. If the attribute has not been declared in the
graph, the function will initialize it with a default value of "0 &void this, one should use the
isAttr function to check that the attribute exists.

setDflt(g : graph_t, kind: string, name: string, value: string) : int
sets the default value of attuite nameto valuein objects ing of the given kind. For nodes, edges,
and graphskind should be "N", "E", and "G", respeatly. Returns 0 on success, non-zero on
failure. SegyetDflt abore.

fstAttr (g : graph_t, kind: string) : string
returns the name of the first attrtb of objects ing of the gven kind. For nodes, edges, and
graphskind should be "N", "E", and "G", respeatly. If there are no attributes, the string "™ is
returned.

nxtAttr (g: graph_t, kind: string, name: string) : string
returns the name of the next attrié of objects iry of the gven kind after the attrintename The
argumennamemust be the name of aristing attribute; it will typically be the return value of an
previous call tofstAttr or nxtAttr . For nodes, edges, and grapkisd should be "N", "E", and
"G", respectiely. If there are no attributes left, the string "™ is returned.

compOf(g: graph_t, n: node_9 : graph_t
returns the connected component of the g@pbntaining noden, as a sbgraph ofg. The sub-
graph only contains the nodes. One caningdeceto add the edges. The function fails and returns
NULL if nis not ing. Connectivity is based on the underlying undirected gragh of

kindOf (obj : obj_t) : string
returns an indication of what kind of graph object is tlgisrent. Br nodes, edges, and graphs,
it returns should be "N", "E", and "G", resp&ely.

lock(g: graph_t, v:int) :int
implements graph locking on root graphs. If thegete is positve, the graph is set so that future
calls todeletehave o immediate déct. If vis zero, the graph is unlocked. If there has been a call
to delete the graph while it was locked, the graph is clodedis negaive, nothing is done. In all
cases, the previous lock value is returned.

Strings

sprintf (fmt: string, ...) : string
returns the string resulting from formatting the values of the expressions occurrindmsfter
according to therintf (3) format fmt

gsub(str : string, pat: string) : string

gsub(str : string, pat: string, repl : string) : string
returnsstr with all substrings matchingat deleted or replaced brgpl, respectiely.

sub(str : string, pat: string) : string

sub(str : string, pat: string, repl : string) : string
returnsstr with the leftmost substring matchimmat deleted or replaced lrgpl, respectiely. The
characters ™ and '$’ may be used at thgjibeing and end, respeatly, of patto anchor the

3 duly 2009 7

GVPR(1) GeneraCommands Manual GVPR(1)

pattern to the beginning or endsif.
substr(str : string, idx : int) : string

substr(str: string, idx : int, len: int) : string
returns the substring afr starting at positiondx to the end of the string or of lengm, respec-
tively. Indexing starts at 0. Ifdx is negative a idx is greater than the length sff, a fatal error
occurs. Similarlyin the second case,lénis negative a idx + lenis greater than the length sff,
a fatal error occurs.

length(s: string) : int
returns the length of the strisg

index(s: string, t : string) : int

rindex(s: string, t : string) : int
returns the indeof the character in stringwhere the leftmost (rightmost) cppf string t can be
found, or -1 ift is not a substring .

match(s: string, p : string) : int
returns the indeof the character in stringwhere the leftmost match of pattgrcan be found, or
-1 if no substring of matches.

toupper(s: string) : string
returns a version afwith the alphabetic characters werted to upper-case.

tolower(s: string) : string
returns a version afwith the alphabetic characters werted to lower-case.

canon(s: string) : string
returns a version afappropriate to be used as an identifier in a dot file.

xOf(s: string) : string
returns the stringX" if shas the formXy", where bothx andy are numeric.

yOf(s: string) : string
returns the stringy” if shas the formXy", where bothx andy are numeric.

[IOf (s: string) : string
returns the stringlik lly" if s has the form Ifx,lly,urx,ury", where all ofllx, lly, urx, and ury are
numeric.

urOf(s)
urOf (s: string) : string returns the stringurx,ury" if s has the formlix,lly,urx,ury”, where all of
I, lly, urx, and ury are numeric.

sscanfs: string, fmt: string, ...) : int
scans the string, extracting values according to tisscan{3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. Returns the number of items successfully scanned.

split(s: string, arr : array, seps. string) : int

split(s: string, arr : array) : int

tokeng(s: string, arr : array, seps. string) : int

tokeng(s: string, arr : array) : int
The split function breaks the stringinto fields, while thaokens function breaks the string into
tokens. Afield consists of all non-separator characters betweersdparator characters or the
beginning or end of the string. Thus, a field may be the empty string. ek tiska maximal, non-
empty substring not containing a separator charadiee separator characters are thosergin

the sepsargument. Ifsepsis not provided, the default value is " \t\n". The functions return the
number of fields or tokens.

3 duly 2009 8

GVPR(1) GeneraCommands Manual GVPR(1)

The fields and tokens are stored in the argument.arhayarray must bstring-valued and, if an
index type is specified, it must bet. The entries are inded by consecutre integers, starting at
0. Arny values already stored in the array will be eithegrwritten, or still be present after the
function returns.

I/O
print (...) : void
print(expr, ...) prints a string representation of eachwment in turn ontstdout, followed by a
newline.

printf (fmt: string, ...) : int

printf (fd : int, fmt: string, ..)) : int
prints the string resulting from formatting the values of tt@ressions follwing fmtaccording to
the printf (3) formatfmt. Returns 0 on succes®8y default, it prints orstdout. If the optional
integerfd is given, output is written on the open stream associatedfaith

scanffmt: string, ...) : int

scanffd: int, fmt: string, ...) : int
scans in &lues from an input stream according to shanf(3) formatfmt. The values are stored
in the addresses folldng fmt, addresses having the for&w, wherev is some declared variable of
the correct type. By default, it reads fratdin. If the optional intgerfd is given, input is read
from the open stream associated viith Returns the number of items successfully scanned.

openHs: string, t : string) : int
opens the filss as an I/O stream. The stringgamentt specifies ha the file is opened. Thegu-
ments are the same as for the C functagren(3). It returns an integer denoting the stream, or -1
on error.

As usual, streams 0, 1 and 2 are already opestdas, stdout, and stderr, respectiely. Since
gvpr may usestdin to read the input graphs, the user shoutiidausing this stream.

closeRfd : int) : int
closes the open stream denoted by thegertiel. Streams 0,1 and 2 cannot be closedReturns 0
on success.

readL(fd : int) : string
returns the next line read from the input strfdmit returns the empty string
Note that the newline character is left in the returned string.

on end of file.

Math
exp(d : double) : double
returns e to thdth power.

log(d : double) : double
returns the natural log of

sqrt(d : double) : double
returns the square root of the douthle

pow(d : double, x : double) : double
returnsd raised to theth power.

cogd : double) : double
returns the cosine af

sin(d : double) : double
returns the sine daf.

atan2(y : double, x : double) : double
returns the arctangent wiin the range —pi to pi.

3 duly 2009 9

GVPR(1) GeneraCommands Manual GVPR(1)

MIN (y : double, x : double) : double
returns the minimum of andx.

MAX (y : double, x : double) : double
returns the maximum gfandx.

Associative Arrays
#arr :int
returns the number of elements in the aaay
idx in arr : int
returns 1 if a value has been set for indkxin the arrayarr. It returns 0 otherwise.

unsefv: array, lidxP) :int
removes the item indged by idx. It returns 1 if the item existed, O otherwise.

unsefv: array) : void
re-initializes the array.

Miscellaneous
exit(v : int) : void
causegvpr to exit with the exit codg.
systen{cmd: string) : int
provides the standard C functi@ysteni3). It executescmdif the users shell environment, and
returns the exit status of the shell.

rand() : double
returns a pseudo-random double between 0 and 1.

srand() : int
srand(v: int) : int
sets a seed for the random number generteroptional argumentgs the seed; if it is omitted,

the current time is used. The previous seed value is retwsraad] should be called before yan
calls torand.

colorx(color : string, fmt: string) : string
translates a color from one format to anatfigie color agument should be a color in one of the
recognized string representations. T value should be one of "RGB", "RGBA", "HSV",
"HSVA", or "CMYK". An empty string is returned on error.

BUILT-IN VARIABLES
gvpr provides certain special, built-in variables, whose values are set automaticgiypbglepending on
the context. Except as noted, the user cannot modify their values.
$:obj_t
denotes the current object (node, edge, graph) depending on thet.cdhte not aailable in
BEGIN or END clauses.

$F : string
is the name of the current input file.
$G : graph_t
denotes the current graph being processed. It isvaitdilsle inBEGIN or END clauses.
$0O : graph_t
denotes the output graph. Before grapkhensal, it is initialized to the tget graph. After tneersal
and ay END_G actions, if it refers to a non-empty graph, that graph is printed onto the output
stream. ltis only valid inN, E andEND_G clauses. Theutput graph may be set by the user.
$T : graph_t
denotes the current target graph. It is a subgrafiGand is aailable only inN, E andEND_G
clauses.

3 duly 2009 10

GVPR(1) GeneraCommands Manual GVPR(1)

$tgtname: string
denotes the name of the target grafy. default, it is set tdgvpr_result" . If used multiple
times during thexecution ofgvpr, the name will be appended with an gde This variable may
be set by the user.

$tvroot : node_t
indicates the starting node for a (directed or undirected) depth-fivstsh of the graph (cf.
$tvtype below). Thedefault value isNULL for each input graph.

$tvedge: edge_t
For BFS and DFS trarsals, this is set to the edge used tovard the current node or edge. At
the beginning of a txersal, or for other tneersal types, the value SULL .

$tvtype : tvtype_t
indicates hw gvpr traverses a graph. It can only takne of the constant values with the\pxre
"TV_" described bel. TV _flat is the default.

In the underlying graph librarggraph(3), edges in undirected graphs aneegian abitrary direc-
tion. This is used for tkarsals, such asV_fwd, requiring directed edges.

ARGC :int
denotes the number of arguments specified by&sgscommand-line argument.

ARGV : string array
denotes the array of arguments specified by-th@&gscommand-line argument. Thign agument
is given by ARGV[i].
BUILT-IN CONSTANTS
There are s&ral symbolic constants defined gypr.

NULL : obj_t
a rull object reference, equalent to 0.

TV _flat : tvtype_t
a smple, flat trarersal, with graph objects visited in seemingly arbitrary order.

TV_ne: tvtype_t
a traversal which first visits all of the nodes, then all of the edges.

TV_en: tvtype_t
a traversal which first visits all of the edges, then all of the nodes.

TV_dfs : tvtype_t

TV_postdfs: tvtype_t

TV_prepostdfs: tvtype_t
a traversal of the graph using a depth-first search on the underlying undirected goapb.the
traversal, gvpr will check the value o$tvroot. If this has the samelue that it had previously (at
the start, the previous value is initializedN@LL .), gvpr will simply look for some uwisited
node and tneerse its connected component. On the other harityibot has changed, its con-
nected component will be toured, assuming it has not beetopsty visited oy if $tvroot is
NULL , the traversal will stop. Note that usingV_dfs and$tvroot, it is possible to create an infi-
nite loop.

By default, the treersal is done in pre-ordefhat is, a node is visited before all of itsvisited
edges. Br TV_postdfs, dl of a nodes wnvisited edges are visited before the nodw. BV _pre-
postdfs a rode is visited twice, before and after all of its unvisited edges.

TV_fwd : tvtype_t

TV_postfwd : tvtype t

TV_prepostfwd : tvtype_t
A traversal of the graph using a depth-first search on the graph following only forwardTéaes.
choice of roots for the tvarsal is the same as described Tot_dfs above. The different order of
visitation specified by'V_fwd, TV_postfwd andTV_prepostfwd are the same as those specified

3 duly 2009 11

GVPR(1) GeneraCommands Manual GVPR(1)

by the analogous tvarsalsTV_dfs, TV_postdfsandTV_prepostdfs.

TV _rev: tvtype_t

TV_postrev: tvtype_t

TV_prepostrev : tvtype_t
A traversal of the graph using a depth-first search on the graph following aehgeearcs.The
choice of roots for the tvarsal is the same as described Tot_dfs above. The different order of
visitation specified byfV_rev, TV_postrev and TV_prepostrev are the same as those specified
by the analogous tvarsalsTV_dfs, TV_postdfsandTV_prepostdfs.

TV _bfs : tvtype_t

A traversal of the graph using a bread-first search on the graph ignoring edge directions. See the
item onTV_dfs above for the role offtvroot.

EXAMPLES
gvpr —i 'N[color=="blue"] file.dot

Generate the node-induced subgraph of all nodes with color blue.
gvpr —c 'N[color=="blue"[{color = "red"} file.dot
Make dl blue nodes red.

BEGIN {intn, e; inttot n=0; inttot e =0;}
BEG_G {
n = nNodes($G);
e = nEdges($G);
printf ("%d nodes %d edges %s0, n, e, $G.name);
tot_n +=n;
tot_e +=€;
}
END { printf ("%d nodes %d edges totalO, tot_n, tot_e) }

Version of the programngc.
gvpr —c ™
Equivaent tonop.

BEG_G { graph_t g = graph ("merge", "S"); }
E{
node_t h = clone(g,$.head);
node_t t = clone(g,$.tail);
edge_t e = edge(t,h,";
e.weight = e.weight + 1;
}
END G{$0=g;}

Produces a strict version of the input graph, where the weightugatrii an edge indicates wamany
edges from the input graph the edge represents.

BEGIN {node_t n; int deg[]}
E{deg[head]++; degl[tail]++; }
END_G {
for (deg[n]) {
printf ("deg[%s] = %d0, n.name, deg[n]);
}
}

Computes the degrees of nodes with edges.

3 duly 2009 12

GVPR(1) GeneraCommands Manual GVPR(1)

ENVIRONMENT
GPRPATH
Colon-separated list of directories to be searched to find the file specified by the —f option.

BUGS AND WARNINGS
When the program is ggn as a ommand line ayjument, the usual shell interpretation takes place, which
may affect some of the special namegypr. To avoid this, it is best to wrap the program in single quotes.

As of 24 April 2008 gvpr switched to using a me underlying graph librarywhich uses the simpler model
that there is only one cgpf a node, not one copfor each subgraph logically containing it. This means
that iterators such as InxtnodeP cannatense a subgraph using just a node argument. For this reason, sub-
graph traersal requires ne functions ending in "_sg", which also && sibgraph argument. Theksions
without that suffix will alvays traverse the root graph.

There is a single global scope, except for formal function parametersyemth@se can interfere with the
type system. Also, thextent of all variables is the entire life of the program. It might be preferable for
scope to reflect the natural nesting of the clauses, or for the program to at least reset locally deelared v
ables. Br now, it is advisable to use distinct names for all variables.

If a function ends with a completatement, such as an IF statement, with each branch doing a return, type
checking maydil. Functionsshould use a return at the end.

The expr library does not support string values of (char*)0. This means wedisdinguish between ™
and (char*)0 edgedys. For the purposes of looking up and creating edges, we translate " to be (char*)0,
since this latter value is necessary in order to look ypedge with a matching head and tail.

Related to this, strings cearted to integers act lék char pointers, getting the value 0 or 1 depending on
whether the string consists solely of zeroes or not. Thus, the ((inty&tpees to 1.

The language inherits the usual C problems such as dangling references and the confusion between '=" and

AUTHOR
Emden R. Gansner <erg@research.att.com>

SEE ALSO
awk(1), gc(1), dot(1), nop(1), libexpr(3), libcgraph(3)

3 duly 2009 13

