slicearg : int, list(int), array(int), array(bool)
Any slicing argument that is compatible with numpy arrays. Depending
on the argument the mapper will perform basic slicing or
advanced indexing (with all consequences on speed and memory
consumption).
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition
to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
auto_train : bool
Flag whether the learner will automatically train itself on the input
dataset when called untrained.
force_train : bool
Flag whether the learner will enforce training on the input dataset
upon every call.
space: str, optional :
Name of the ‘processing space’. The actual meaning of this argument
heavily depends on the sub-class implementation. In general, this is
a trigger that tells the node to compute and store information about
the input data that is “interesting” in the context of the
corresponding processing in the output dataset.
postproc : Node instance, optional
Node to perform post-processing of results. This node is applied
in __call__() to perform a final processing step on the to be
result dataset. If None, nothing is done.
descr : str
Description of the instance
|