Public Member Functions | List of all members
SparseMatrix< _Scalar, _Options, _Index > Class Template Reference

A versatible sparse matrix representation. More...

#include <SparseMatrix.h>

+ Inheritance diagram for SparseMatrix< _Scalar, _Options, _Index >:

Public Member Functions

const CwiseBinaryOp
< CustomBinaryOp, const
SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
binaryExpr (const Eigen::SparseMatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
internal::cast_return_type
< SparseMatrix< _Scalar,
_Options, _Index >, const
CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< SparseMatrix< _Scalar,
_Options, _Index > >::Scalar,
NewType >, const SparseMatrix
< _Scalar, _Options, _Index >
> >::type 
cast () const
Scalar coeff (Index row, Index col) const
Scalar & coeffRef (Index row, Index col)
Index cols () const
ConjugateReturnType conjugate () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseAbs2 () const
const CwiseBinaryOp
< std::equal_to< Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
cwiseEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseInverse () const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
cwiseMax (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const ConstantReturnType > 
cwiseMax (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
cwiseMin (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const ConstantReturnType > 
cwiseMin (const Scalar &other) const
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index >, const
OtherDerived > 
cwiseNotEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index >
, const OtherDerived > 
cwiseQuotient (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const SparseMatrix
< _Scalar, _Options, _Index > > 
cwiseSqrt () const
SparseMatrix< _Scalar,
_Options, _Index > & 
derived ()
const SparseMatrix< _Scalar,
_Options, _Index > & 
derived () const
const Diagonal< const
SparseMatrix
diagonal () const
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (SparseMatrix< _Scalar, _Options, _Index >, OtherDerived) cwiseProduct(const Eigen
const internal::eval
< SparseMatrix< _Scalar,
_Options, _Index > >::type 
eval () const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
const Index * innerIndexPtr () const
Index * innerIndexPtr ()
const Index * innerNonZeroPtr () const
Index * innerNonZeroPtr ()
Index innerSize () const
EIGEN_DONT_INLINE Scalar & insert (Index row, Index col)
bool isCompressed () const
bool isVector () const
void makeCompressed ()
Index nonZeros () const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const SparseMatrix
< _Scalar, _Options, _Index > > 
operator* (const std::complex< Scalar > &scalar) const
const
SparseDenseProductReturnType
< SparseMatrix< _Scalar,
_Options, _Index >
, OtherDerived >::Type 
operator* (const MatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< SparseMatrix< _Scalar,
_Options, _Index > >::Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index > > 
operator- () const
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< SparseMatrix< _Scalar,
_Options, _Index > >::Scalar >
, const SparseMatrix< _Scalar,
_Options, _Index > > 
operator/ (const Scalar &scalar) const
const Index * outerIndexPtr () const
Index * outerIndexPtr ()
Index outerSize () const
void prune (Scalar reference, RealScalar epsilon=NumTraits< RealScalar >::dummy_precision())
template<typename KeepFunc >
void prune (const KeepFunc &keep=KeepFunc())
RealReturnType real () const
NonConstRealReturnType real ()
void reserve (Index reserveSize)
template<class SizesType >
void reserve (const SizesType &reserveSizes)
void resize (Index rows, Index cols)
Index rows () const
template<typename InputIterators >
void setFromTriplets (const InputIterators &begin, const InputIterators &end)
void setZero ()
Index size () const
 SparseMatrix ()
 SparseMatrix (Index rows, Index cols)
template<typename OtherDerived >
 SparseMatrix (const SparseMatrixBase< OtherDerived > &other)
 SparseMatrix (const SparseMatrix &other)
template<typename OtherDerived >
 SparseMatrix (const ReturnByValue< OtherDerived > &other)
 Copy constructor with in-place evaluation.
void swap (SparseMatrix &other)
SparseSymmetricPermutationProduct
< SparseMatrix< _Scalar,
_Options, _Index >, Upper|Lower
twistedBy (const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const
const CwiseUnaryOp
< CustomUnaryOp, const
SparseMatrix< _Scalar,
_Options, _Index > > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
const CwiseUnaryView
< CustomViewOp, const
SparseMatrix< _Scalar,
_Options, _Index > > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
const Scalar * valuePtr () const
Scalar * valuePtr ()
 ~SparseMatrix ()

Detailed Description

template<typename _Scalar, int _Options, typename _Index>
class Eigen::SparseMatrix< _Scalar, _Options, _Index >

A versatible sparse matrix representation.

This class implements a more versatile variants of the common compressed row/column storage format. Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. All the non zeros are stored in a single large buffer. Unlike the compressed format, there might be extra space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero can be done with limited memory reallocation and copies.

A call to the function makeCompressed() turns the matrix into the standard compressed format compatible with many library.

More details on this storage sceheme are given in the manual pages.

Template Parameters
_Scalarthe scalar type, i.e. the type of the coefficients
_OptionsUnion of bit flags controlling the storage scheme. Currently the only possibility is RowMajor. The default is 0 which means column-major.
_Indexthe type of the indices. It has to be a signed type (e.g., short, int, std::ptrdiff_t). Default is int.

This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_SPARSEMATRIX_PLUGIN.

Constructor & Destructor Documentation

SparseMatrix ( )
inline

Default constructor yielding an empty 0 x 0 matrix

SparseMatrix ( Index  rows,
Index  cols 
)
inline

Constructs a rows x cols empty matrix

SparseMatrix ( const SparseMatrixBase< OtherDerived > &  other)
inline

Constructs a sparse matrix from the sparse expression other

SparseMatrix ( const SparseMatrix< _Scalar, _Options, _Index > &  other)
inline

Copy constructor (it performs a deep copy)

~SparseMatrix ( )
inline

Destructor

Member Function Documentation

const CwiseBinaryOp<CustomBinaryOp, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> binaryExpr ( const Eigen::SparseMatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inlineinherited
Returns
an expression of the difference of *this and other
Note
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See Also
class CwiseBinaryOp, operator-=()
Returns
an expression of the sum of *this and other
Note
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See Also
class CwiseBinaryOp, operator+=()
Returns
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See Also
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
internal::cast_return_type<SparseMatrix< _Scalar, _Options, _Index > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<SparseMatrix< _Scalar, _Options, _Index > >::Scalar, NewType>, const SparseMatrix< _Scalar, _Options, _Index > > >::type cast ( ) const
inlineinherited
Returns
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See Also
class CwiseUnaryOp
Scalar coeff ( Index  row,
Index  col 
) const
inline
Returns
the value of the matrix at position i, j This function returns Scalar(0) if the element is an explicit zero
Scalar& coeffRef ( Index  row,
Index  col 
)
inline
Returns
a non-const reference to the value of the matrix at position i, j

If the element does not exist then it is inserted via the insert(Index,Index) function which itself turns the matrix into a non compressed form if that was not the case.

This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) function if the element does not already exist.

Index cols ( void  ) const
inline
Returns
the number of columns of the matrix

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Referenced by SparseMatrix< Scalar, RowMajor >::resize(), and Eigen::viewAsCholmod().

ConjugateReturnType conjugate ( ) const
inlineinherited
Returns
an expression of the complex conjugate of *this.
See Also
adjoint()
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseAbs ( ) const
inlineinherited
Returns
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See Also
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseAbs2 ( ) const
inlineinherited
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See Also
cwiseAbs()
const CwiseBinaryOp<std::equal_to<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See Also
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const SparseMatrix< _Scalar, _Options, _Index > > cwiseEqual ( const Scalar &  s) const
inlineinherited
Returns
an expression of the coefficient-wise == operator of *this and a scalar s
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See Also
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseInverse ( ) const
inlineinherited
Returns
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

0.5 2 1
0.333 4 1
See Also
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseMax ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const ConstantReturnType> cwiseMax ( const Scalar &  other) const
inlineinherited
Returns
an expression of the coefficient-wise max of *this and scalar other
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseMin ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See Also
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const ConstantReturnType> cwiseMin ( const Scalar &  other) const
inlineinherited
Returns
an expression of the coefficient-wise min of *this and scalar other
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseNotEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See Also
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > , const OtherDerived> cwiseQuotient ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

0.5
1.5
1.33
See Also
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > cwiseSqrt ( ) const
inlineinherited
Returns
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

1
1.41
2
See Also
cwisePow(), cwiseSquare()
SparseMatrix< _Scalar, _Options, _Index > & derived ( )
inlineinherited
Returns
a reference to the derived object
const SparseMatrix< _Scalar, _Options, _Index > & derived ( ) const
inlineinherited
Returns
a const reference to the derived object
const Diagonal<const SparseMatrix> diagonal ( ) const
inline
Returns
a const expression of the diagonal coefficients
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( SparseMatrix< _Scalar, _Options, _Index >  ,
OtherDerived   
) const
inlineinherited
Returns
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See Also
class CwiseBinaryOp, cwiseAbs2
const internal::eval<SparseMatrix< _Scalar, _Options, _Index > >::type eval ( ) const
inlineinherited
Returns
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

const ImagReturnType imag ( ) const
inlineinherited
Returns
an read-only expression of the imaginary part of *this.
See Also
real()
NonConstImagReturnType imag ( )
inlineinherited
Returns
a non const expression of the imaginary part of *this.
See Also
real()
const Index* innerIndexPtr ( ) const
inline
Returns
a const pointer to the array of inner indices. This function is aimed at interoperability with other libraries.
See Also
valuePtr(), outerIndexPtr()

Referenced by Eigen::viewAsCholmod().

Index* innerIndexPtr ( )
inline
Returns
a non-const pointer to the array of inner indices. This function is aimed at interoperability with other libraries.
See Also
valuePtr(), outerIndexPtr()
const Index* innerNonZeroPtr ( ) const
inline
Returns
a const pointer to the array of the number of non zeros of the inner vectors. This function is aimed at interoperability with other libraries.
Warning
it returns the null pointer 0 in compressed mode

Referenced by Eigen::viewAsCholmod().

Index* innerNonZeroPtr ( )
inline
Returns
a non-const pointer to the array of the number of non zeros of the inner vectors. This function is aimed at interoperability with other libraries.
Warning
it returns the null pointer 0 in compressed mode
Index innerSize ( ) const
inline
Returns
the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major)

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

EIGEN_DONT_INLINE Scalar& insert ( Index  row,
Index  col 
)
inline
Returns
a reference to a novel non zero coefficient with coordinates row x col. The non zero coefficient must not already exist.

If the matrix *this is in compressed mode, then *this is turned into uncompressed mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first call reserve(const SizesType &) to reserve a more appropriate number of elements per inner vector that better match your scenario.

This function performs a sorted insertion in O(1) if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion.

Referenced by SparseMatrix< Scalar, RowMajor >::coeffRef().

bool isCompressed ( ) const
inline
bool isVector ( ) const
inlineinherited
Returns
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
rows()==1 || cols()==1
See Also
rows(), cols(), IsVectorAtCompileTime.
void makeCompressed ( )
inline

Turns the matrix into the compressed format.

Referenced by SparseMatrix< Scalar, RowMajor >::prune().

Index nonZeros ( ) const
inline
Returns
the number of non zero coefficients

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Referenced by Eigen::viewAsCholmod().

const ScalarMultipleReturnType operator* ( const Scalar &  scalar) const
inlineinherited
Returns
an expression of *this scaled by the scalar factor scalar
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const SparseMatrix< _Scalar, _Options, _Index > > operator* ( const std::complex< Scalar > &  scalar) const
inlineinherited

Overloaded for efficient real matrix times complex scalar value

const SparseDenseProductReturnType<SparseMatrix< _Scalar, _Options, _Index > ,OtherDerived>::Type operator* ( const MatrixBase< OtherDerived > &  other) const
inherited

sparse * dense (returns a dense object unless it is an outer product)

const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<SparseMatrix< _Scalar, _Options, _Index > >::Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > operator- ( ) const
inlineinherited
Returns
an expression of the opposite of *this
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<SparseMatrix< _Scalar, _Options, _Index > >::Scalar>, const SparseMatrix< _Scalar, _Options, _Index > > operator/ ( const Scalar &  scalar) const
inlineinherited
Returns
an expression of *this divided by the scalar value scalar
const Index* outerIndexPtr ( ) const
inline
Returns
a const pointer to the array of the starting positions of the inner vectors. This function is aimed at interoperability with other libraries.
See Also
valuePtr(), innerIndexPtr()

Referenced by Eigen::viewAsCholmod().

Index* outerIndexPtr ( )
inline
Returns
a non-const pointer to the array of the starting positions of the inner vectors. This function is aimed at interoperability with other libraries.
See Also
valuePtr(), innerIndexPtr()
Index outerSize ( ) const
inline
Returns
the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major)

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Referenced by SparseMatrix< Scalar, RowMajor >::insert(), and SparseMatrix< Scalar, RowMajor >::resize().

void prune ( Scalar  reference,
RealScalar  epsilon = NumTraits<RealScalar>::dummy_precision() 
)
inline

Suppresses all nonzeros which are much smaller than reference under the tolerence epsilon

Referenced by SparseMatrix< Scalar, RowMajor >::prune().

void prune ( const KeepFunc &  keep = KeepFunc())
inline

Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate keep. The functor type KeepFunc must implement the following function:

bool operator() (const Index& row, const Index& col, const Scalar& value) const;
See Also
prune(Scalar,RealScalar)
RealReturnType real ( ) const
inlineinherited
Returns
a read-only expression of the real part of *this.
See Also
imag()
NonConstRealReturnType real ( )
inlineinherited
Returns
a non const expression of the real part of *this.
See Also
imag()
void reserve ( Index  reserveSize)
inline

Preallocates reserveSize non zeros.

Precondition: the matrix must be in compressed mode.

Referenced by SparseMatrix< Scalar, RowMajor >::insert().

void reserve ( const SizesType &  reserveSizes)
inline

Preallocates reserveSize[j] non zeros for each column (resp. row) j.

This function turns the matrix in non-compressed mode

void resize ( Index  rows,
Index  cols 
)
inline

Resizes the matrix to a rows x cols matrix and initializes it to zero.

See Also
resizeNonZeros(Index), reserve(), setZero()

Referenced by SparseMatrix< Scalar, RowMajor >::SparseMatrix().

Index rows ( void  ) const
inline
Returns
the number of rows of the matrix

Reimplemented from SparseMatrixBase< SparseMatrix< _Scalar, _Options, _Index > >.

Referenced by SparseMatrix< Scalar, RowMajor >::resize(), and Eigen::viewAsCholmod().

void setFromTriplets ( const InputIterators &  begin,
const InputIterators &  end 
)

Fill the matrix *this with the list of triplets defined by the iterator range begin - .

A triplet is a tuple (i,j,value) defining a non-zero element. The input list of triplets does not have to be sorted, and can contains duplicated elements. In any case, the result is a sorted and compressed sparse matrix where the duplicates have been summed up. This is a O(n) operation, with n the number of triplet elements. The initial contents of *this is destroyed. The matrix *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, or the resize(Index,Index) method. The sizes are not extracted from the triplet list.

The InputIterators value_type must provide the following interface:

Scalar value() const; // the value
Scalar row() const; // the row index i
Scalar col() const; // the column index j

See for instance the Eigen::Triplet template class.

Here is a typical usage example:

typedef Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries);
for(...)
{
// ...
tripletList.push_back(T(i,j,v_ij));
}
SparseMatrixType m(rows,cols);
m.setFromTriplets(tripletList.begin(), tripletList.end());
// m is ready to go!
Warning
The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather be explicitely stored into a std::vector for instance.
void setZero ( )
inline

Removes all non zeros but keep allocated memory

Index size ( ) const
inlineinherited
Returns
the number of coefficients, which is rows()*cols().
See Also
rows(), cols().

Reimplemented from EigenBase< SparseMatrix< _Scalar, _Options, _Index > >.

void swap ( SparseMatrix< _Scalar, _Options, _Index > &  other)
inline

Swaps the content of two sparse matrices of the same type. This is a fast operation that simply swaps the underlying pointers and parameters.

Referenced by SparseMatrix< Scalar, RowMajor >::swap().

SparseSymmetricPermutationProduct<SparseMatrix< _Scalar, _Options, _Index > ,Upper|Lower> twistedBy ( const PermutationMatrix< Dynamic, Dynamic, Index > &  perm) const
inlineinherited
Returns
an expression of P H P^-1 where H is the matrix represented by *this
const CwiseUnaryOp<CustomUnaryOp, const SparseMatrix< _Scalar, _Options, _Index > > unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inlineinherited

Apply a unary operator coefficient-wise.

Parameters
[in]funcFunctor implementing the unary operator
Template Parameters
CustomUnaryOpType of func
Returns
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define function to be applied coefficient-wise
double ramp(double x)
{
if (x > 0)
return x;
else
return 0;
}
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See Also
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const SparseMatrix< _Scalar, _Options, _Index > > unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inlineinherited
Returns
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See Also
class CwiseUnaryOp, class CwiseBinaryOp
const Scalar* valuePtr ( ) const
inline
Returns
a const pointer to the array of values. This function is aimed at interoperability with other libraries.
See Also
innerIndexPtr(), outerIndexPtr()

Referenced by Eigen::viewAsCholmod().

Scalar* valuePtr ( )
inline
Returns
a non-const pointer to the array of values. This function is aimed at interoperability with other libraries.
See Also
innerIndexPtr(), outerIndexPtr()

The documentation for this class was generated from the following file: