Public Types | Public Member Functions | Friends | List of all members
SparseMatrixBase< Derived > Class Template Reference

Base class of any sparse matrices or sparse expressions. More...

#include <SparseMatrixBase.h>

+ Inheritance diagram for SparseMatrixBase< Derived >:

Public Types

enum  {
  RowsAtCompileTime,
  ColsAtCompileTime,
  SizeAtCompileTime ,
  IsVectorAtCompileTime,
  Flags,
  CoeffReadCost
}

Public Member Functions

template<typename CustomBinaryOp , typename OtherDerived >
const CwiseBinaryOp
< CustomBinaryOp, const
Derived, const OtherDerived > 
binaryExpr (const Eigen::SparseMatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
template<typename NewType >
internal::cast_return_type
< Derived, const CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< Derived >::Scalar, NewType >
, const Derived > >::type 
cast () const
SparseInnerVectorSet< Derived, 1 > col (Index j)
const SparseInnerVectorSet
< Derived, 1 > 
col (Index j) const
Index cols () const
ConjugateReturnType conjugate () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const Derived > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const Derived > 
cwiseAbs2 () const
template<typename OtherDerived >
const CwiseBinaryOp
< std::equal_to< Scalar >
, const Derived, const
OtherDerived > 
cwiseEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const Derived > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const Derived > 
cwiseInverse () const
template<typename OtherDerived >
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseMax (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Derived,
const ConstantReturnType > 
cwiseMax (const Scalar &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseMin (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Derived,
const ConstantReturnType > 
cwiseMin (const Scalar &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const Derived, const
OtherDerived > 
cwiseNotEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const Derived,
const OtherDerived > 
cwiseQuotient (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const Derived > 
cwiseSqrt () const
Derived & derived ()
const Derived & derived () const
template<typename OtherDerived >
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (Derived, OtherDerived) cwiseProduct(const Eigen
const internal::eval< Derived >
::type 
eval () const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
Index innerSize () const
SparseInnerVectorSet< Derived, 1 > innerVector (Index outer)
const SparseInnerVectorSet
< Derived, 1 > 
innerVector (Index outer) const
SparseInnerVectorSet< Derived,
Dynamic
innerVectors (Index outerStart, Index outerSize)
const SparseInnerVectorSet
< Derived, Dynamic
innerVectors (Index outerStart, Index outerSize) const
bool isVector () const
SparseInnerVectorSet< Derived,
Dynamic
middleCols (Index start, Index size)
const SparseInnerVectorSet
< Derived, Dynamic
middleCols (Index start, Index size) const
SparseInnerVectorSet< Derived,
Dynamic
middleRows (Index start, Index size)
const SparseInnerVectorSet
< Derived, Dynamic
middleRows (Index start, Index size) const
Index nonZeros () const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Derived > 
operator* (const std::complex< Scalar > &scalar) const
template<typename OtherDerived >
const
SparseSparseProductReturnType
< Derived, OtherDerived >
::Type 
operator* (const SparseMatrixBase< OtherDerived > &other) const
template<typename OtherDerived >
const
SparseDenseProductReturnType
< Derived, OtherDerived >
::Type 
operator* (const MatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< Derived >::Scalar >, const
Derived > 
operator- () const
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< Derived >::Scalar >, const
Derived > 
operator/ (const Scalar &scalar) const
Index outerSize () const
RealReturnType real () const
NonConstRealReturnType real ()
SparseInnerVectorSet< Derived, 1 > row (Index i)
const SparseInnerVectorSet
< Derived, 1 > 
row (Index i) const
Index rows () const
Index size () const
SparseSymmetricPermutationProduct
< Derived, Upper|Lower
twistedBy (const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const
template<typename CustomUnaryOp >
const CwiseUnaryOp
< CustomUnaryOp, const Derived > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
template<typename CustomViewOp >
const CwiseUnaryView
< CustomViewOp, const Derived > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const

Friends

template<typename OtherDerived >
const
DenseSparseProductReturnType
< OtherDerived, Derived >
::Type 
operator* (const MatrixBase< OtherDerived > &lhs, const Derived &rhs)

Detailed Description

template<typename Derived>
class Eigen::SparseMatrixBase< Derived >

Base class of any sparse matrices or sparse expressions.

Template Parameters
DerivedThis class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_SPARSEMATRIXBASE_PLUGIN.

Member Enumeration Documentation

anonymous enum
Enumerator:
RowsAtCompileTime 

The number of rows at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

See Also
MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime
ColsAtCompileTime 

The number of columns at compile-time. This is just a copy of the value provided by the Derived type. If a value is not known at compile-time, it is set to the Dynamic constant.

See Also
MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime
SizeAtCompileTime 

This is equal to the number of coefficients, i.e. the number of rows times the number of columns, or to Dynamic if this is not known at compile-time.

See Also
RowsAtCompileTime, ColsAtCompileTime
IsVectorAtCompileTime 

This is set to true if either the number of rows or the number of columns is known at compile-time to be equal to 1. Indeed, in that case, we are dealing with a column-vector (if there is only one column) or with a row-vector (if there is only one row).

Flags 

This stores expression Flags flags which may or may not be inherited by new expressions constructed from this one. See the list of flags.

CoeffReadCost 

This is a rough measure of how expensive it is to read one coefficient from this expression.

Member Function Documentation

const CwiseBinaryOp<CustomBinaryOp, const Derived, const OtherDerived> binaryExpr ( const Eigen::SparseMatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inline
Returns
an expression of the difference of *this and other
Note
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See Also
class CwiseBinaryOp, operator-=()
Returns
an expression of the sum of *this and other
Note
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See Also
class CwiseBinaryOp, operator+=()
Returns
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};
int main(int, char**)
{
cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See Also
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
internal::cast_return_type<Derived,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Derived>::Scalar, NewType>, const Derived> >::type cast ( ) const
inline
Returns
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See Also
class CwiseUnaryOp
SparseInnerVectorSet< Derived, 1 > col ( Index  i)
Returns
the i-th column of the matrix *this. For column-major matrix only.
const SparseInnerVectorSet< Derived, 1 > col ( Index  i) const
Returns
the i-th column of the matrix *this. For column-major matrix only. (read-only version)
Index cols ( void  ) const
inline
ConjugateReturnType conjugate ( ) const
inline
Returns
an expression of the complex conjugate of *this.
See Also
adjoint()
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Derived> cwiseAbs ( ) const
inline
Returns
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See Also
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Derived> cwiseAbs2 ( ) const
inline
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See Also
cwiseAbs()
const CwiseBinaryOp<std::equal_to<Scalar>, const Derived, const OtherDerived> cwiseEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See Also
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Derived> cwiseEqual ( const Scalar &  s) const
inline
Returns
an expression of the coefficient-wise == operator of *this and a scalar s
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See Also
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Derived> cwiseInverse ( ) const
inline
Returns
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

0.5 2 1
0.333 4 1
See Also
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const OtherDerived> cwiseMax ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Derived, const ConstantReturnType> cwiseMax ( const Scalar &  other) const
inline
Returns
an expression of the coefficient-wise max of *this and scalar other
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const OtherDerived> cwiseMin ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See Also
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Derived, const ConstantReturnType> cwiseMin ( const Scalar &  other) const
inline
Returns
an expression of the coefficient-wise min of *this and scalar other
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Derived, const OtherDerived> cwiseNotEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See Also
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Derived, const OtherDerived> cwiseQuotient ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inline
Returns
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

0.5
1.5
1.33
See Also
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Derived> cwiseSqrt ( ) const
inline
Returns
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

1
1.41
2
See Also
cwisePow(), cwiseSquare()
Derived& derived ( )
inlineinherited
Returns
a reference to the derived object

Referenced by MatrixBase< Derived >::applyOnTheLeft(), MatrixBase< Derived >::applyOnTheRight(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::applyTranspositionOnTheLeft(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::applyTranspositionOnTheRight(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::binaryExpr(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::cols(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::cols(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::eval(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::imag(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::indices(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::inverse(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::nonZeros(), RotationBase< Derived, 3 >::operator*(), Translation< _Scalar, _Dim >::operator*(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::operator*(), SparseMatrixBase< Derived >::operator*(), Transform< _Scalar, _Dim, _Mode, _Options >::operator*(), Eigen::operator*(), MatrixBase< Derived >::operator*=(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::operator=(), MatrixBase< Derived >::operator=(), DenseBase< Derived >::operator=(), Transform< _Scalar, _Dim, _Mode, _Options >::operator=(), PlainObjectBase< Matrix< int, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::operator=(), PlainObjectBase< Matrix< int, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::PlainObjectBase(), PlainObjectBase< Matrix< int, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::resizeLike(), EigenBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::rows(), SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::rows(), SimplicialCholeskyBase< SimplicialLDLT< _MatrixType, _UpLo > >::solve(), IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::solve(), CholmodBase< _MatrixType, _UpLo, CholmodSimplicialLLT< _MatrixType, _UpLo > >::solve(), SparseMatrix< Scalar, RowMajor >::SparseMatrix(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::toDenseMatrix(), Transform< _Scalar, _Dim, _Mode, _Options >::Transform(), PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, Index > >::transpose(), and SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::twistedBy().

const Derived& derived ( ) const
inlineinherited
Returns
a const reference to the derived object
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( Derived  ,
OtherDerived   
) const
inline
Returns
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See Also
class CwiseBinaryOp, cwiseAbs2
const internal::eval<Derived>::type eval ( ) const
inline
Returns
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

const ImagReturnType imag ( ) const
inline
Returns
an read-only expression of the imaginary part of *this.
See Also
real()
NonConstImagReturnType imag ( )
inline
Returns
a non const expression of the imaginary part of *this.
See Also
real()
Index innerSize ( ) const
inline
SparseInnerVectorSet< Derived, 1 > innerVector ( Index  outer)
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const SparseInnerVectorSet< Derived, 1 > innerVector ( Index  outer) const
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
SparseInnerVectorSet< Derived, Dynamic > innerVectors ( Index  outerStart,
Index  outerSize 
)
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const SparseInnerVectorSet< Derived, Dynamic > innerVectors ( Index  outerStart,
Index  outerSize 
) const
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
bool isVector ( ) const
inline
Returns
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
rows()==1 || cols()==1
See Also
rows(), cols(), IsVectorAtCompileTime.
SparseInnerVectorSet< Derived, Dynamic > middleCols ( Index  start,
Index  size 
)
Returns
the i-th column of the matrix *this. For column-major matrix only.
const SparseInnerVectorSet< Derived, Dynamic > middleCols ( Index  start,
Index  size 
) const
Returns
the i-th column of the matrix *this. For column-major matrix only. (read-only version)
SparseInnerVectorSet< Derived, Dynamic > middleRows ( Index  start,
Index  size 
)
Returns
the i-th row of the matrix *this. For row-major matrix only.
const SparseInnerVectorSet< Derived, Dynamic > middleRows ( Index  start,
Index  size 
) const
Returns
the i-th row of the matrix *this. For row-major matrix only. (read-only version)
Index nonZeros ( ) const
inline
const ScalarMultipleReturnType operator* ( const Scalar &  scalar) const
inline
Returns
an expression of *this scaled by the scalar factor scalar
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Derived> operator* ( const std::complex< Scalar > &  scalar) const
inline

Overloaded for efficient real matrix times complex scalar value

const SparseSparseProductReturnType< Derived, OtherDerived >::Type operator* ( const SparseMatrixBase< OtherDerived > &  other) const
inline
Returns
an expression of the product of two sparse matrices. By default a conservative product preserving the symbolic non zeros is performed. The automatic pruning of the small values can be achieved by calling the pruned() function in which case a totally different product algorithm is employed:
C = (A*B).pruned(); // supress numerical zeros (exact)
C = (A*B).pruned(ref);
C = (A*B).pruned(ref,epsilon);
where ref is a meaningful non zero reference value.

References EigenBase< Derived >::derived().

const SparseDenseProductReturnType< Derived, OtherDerived >::Type operator* ( const MatrixBase< OtherDerived > &  other) const
inline

sparse * dense (returns a dense object unless it is an outer product)

const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Derived>::Scalar>, const Derived> operator- ( ) const
inline
Returns
an expression of the opposite of *this
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>, const Derived> operator/ ( const Scalar &  scalar) const
inline
Returns
an expression of *this divided by the scalar value scalar
Index outerSize ( ) const
inline
RealReturnType real ( ) const
inline
Returns
a read-only expression of the real part of *this.
See Also
imag()
NonConstRealReturnType real ( )
inline
Returns
a non const expression of the real part of *this.
See Also
imag()
SparseInnerVectorSet< Derived, 1 > row ( Index  i)
Returns
the i-th row of the matrix *this. For row-major matrix only.
const SparseInnerVectorSet< Derived, 1 > row ( Index  i) const
Returns
the i-th row of the matrix *this. For row-major matrix only. (read-only version)
Index rows ( void  ) const
inline
Index size ( ) const
inline
Returns
the number of coefficients, which is rows()*cols().
See Also
rows(), cols().

Reimplemented from EigenBase< Derived >.

SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy ( const PermutationMatrix< Dynamic, Dynamic, Index > &  perm) const
inline
Returns
an expression of P H P^-1 where H is the matrix represented by *this
const CwiseUnaryOp<CustomUnaryOp, const Derived> unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inline

Apply a unary operator coefficient-wise.

Parameters
[in]funcFunctor implementing the unary operator
Template Parameters
CustomUnaryOpType of func
Returns
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define function to be applied coefficient-wise
double ramp(double x)
{
if (x > 0)
return x;
else
return 0;
}
int main(int, char**)
{
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See Also
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const Derived> unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inline
Returns
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See Also
class CwiseUnaryOp, class CwiseBinaryOp

Friends And Related Function Documentation

const DenseSparseProductReturnType<OtherDerived,Derived>::Type operator* ( const MatrixBase< OtherDerived > &  lhs,
const Derived &  rhs 
)
friend

dense * sparse (return a dense object unless it is an outer product)


The documentation for this class was generated from the following files: