Public Types | Public Member Functions | List of all members
Homogeneous< MatrixType, _Direction > Class Template Reference

Expression of one (or a set of) homogeneous vector(s) More...

#include <Homogeneous.h>

+ Inheritance diagram for Homogeneous< MatrixType, _Direction >:

Public Types

typedef internal::traits
< Homogeneous< MatrixType,
_Direction > >::Index 
Index
 The type of indices.
typedef Matrix< typename
internal::traits< Homogeneous
< MatrixType, _Direction >
>::Scalar, internal::traits
< Homogeneous< MatrixType,
_Direction >
>::RowsAtCompileTime,
internal::traits< Homogeneous
< MatrixType, _Direction >
>::ColsAtCompileTime,
AutoAlign|(internal::traits
< Homogeneous< MatrixType,
_Direction > >::Flags
&RowMajorBit?RowMajor:ColMajor),
internal::traits< Homogeneous
< MatrixType, _Direction >
>::MaxRowsAtCompileTime,
internal::traits< Homogeneous
< MatrixType, _Direction >
>::MaxColsAtCompileTime
PlainObject
 The plain matrix type corresponding to this expression.

Public Member Functions

ArrayWrapper< Homogeneous
< MatrixType, _Direction > > 
array ()
const CwiseBinaryOp
< CustomBinaryOp, const
Homogeneous< MatrixType,
_Direction >, const
OtherDerived > 
binaryExpr (const Eigen::MatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
Block< Homogeneous< MatrixType,
_Direction > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols)
const Block< const Homogeneous
< MatrixType, _Direction > > 
block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
Block< Homogeneous< MatrixType,
_Direction >, BlockRows,
BlockCols > 
block (Index startRow, Index startCol)
const Block< const Homogeneous
< MatrixType, _Direction >
, BlockRows, BlockCols > 
block (Index startRow, Index startCol) const
Block< Homogeneous< MatrixType,
_Direction > > 
bottomLeftCorner (Index cRows, Index cCols)
const Block< const Homogeneous
< MatrixType, _Direction > > 
bottomLeftCorner (Index cRows, Index cCols) const
Block< Homogeneous< MatrixType,
_Direction >, CRows, CCols > 
bottomLeftCorner ()
const Block< const Homogeneous
< MatrixType, _Direction >
, CRows, CCols > 
bottomLeftCorner () const
Block< Homogeneous< MatrixType,
_Direction > > 
bottomRightCorner (Index cRows, Index cCols)
const Block< const Homogeneous
< MatrixType, _Direction > > 
bottomRightCorner (Index cRows, Index cCols) const
Block< Homogeneous< MatrixType,
_Direction >, CRows, CCols > 
bottomRightCorner ()
const Block< const Homogeneous
< MatrixType, _Direction >
, CRows, CCols > 
bottomRightCorner () const
RowsBlockXpr bottomRows (Index n)
ConstRowsBlockXpr bottomRows (Index n) const
NRowsBlockXpr< N >::Type bottomRows ()
ConstNRowsBlockXpr< N >::Type bottomRows () const
internal::cast_return_type
< Homogeneous< MatrixType,
_Direction >, const
CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< Homogeneous< MatrixType,
_Direction > >::Scalar,
NewType >, const Homogeneous
< MatrixType, _Direction >
> >::type 
cast () const
ColXpr col (Index i)
ConstColXpr col (Index i) const
ConjugateReturnType conjugate () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const Homogeneous
< MatrixType, _Direction > > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const Homogeneous
< MatrixType, _Direction > > 
cwiseAbs2 () const
const CwiseBinaryOp
< std::equal_to< Scalar >
, const Homogeneous
< MatrixType, _Direction >
, const OtherDerived > 
cwiseEqual (const Eigen::MatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const Homogeneous
< MatrixType, _Direction > > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const Homogeneous
< MatrixType, _Direction > > 
cwiseInverse () const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Homogeneous
< MatrixType, _Direction >
, const OtherDerived > 
cwiseMax (const Eigen::MatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Homogeneous
< MatrixType, _Direction >
, const ConstantReturnType > 
cwiseMax (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Homogeneous
< MatrixType, _Direction >
, const OtherDerived > 
cwiseMin (const Eigen::MatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Homogeneous
< MatrixType, _Direction >
, const ConstantReturnType > 
cwiseMin (const Scalar &other) const
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const Homogeneous
< MatrixType, _Direction >
, const OtherDerived > 
cwiseNotEqual (const Eigen::MatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const Homogeneous
< MatrixType, _Direction >
, const OtherDerived > 
cwiseQuotient (const Eigen::MatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const Homogeneous
< MatrixType, _Direction > > 
cwiseSqrt () const
Index diagonalSize () const
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (Homogeneous< MatrixType, _Direction >, OtherDerived) cwiseProduct(const Eigen
EvalReturnType eval () const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
Index innerSize () const
ColsBlockXpr leftCols (Index n)
ConstColsBlockXpr leftCols (Index n) const
NColsBlockXpr< N >::Type leftCols ()
ConstNColsBlockXpr< N >::Type leftCols () const
ColsBlockXpr middleCols (Index startCol, Index numCols)
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
NColsBlockXpr< N >::Type middleCols (Index startCol)
ConstNColsBlockXpr< N >::Type middleCols (Index startCol) const
RowsBlockXpr middleRows (Index startRow, Index numRows)
ConstRowsBlockXpr middleRows (Index startRow, Index numRows) const
NRowsBlockXpr< N >::Type middleRows (Index startRow)
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow) const
Index nonZeros () const
bool operator!= (const MatrixBase< OtherDerived > &other) const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Homogeneous
< MatrixType, _Direction > > 
operator* (const std::complex< Scalar > &scalar) const
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< Homogeneous< MatrixType,
_Direction > >::Scalar >
, const Homogeneous
< MatrixType, _Direction > > 
operator- () const
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< Homogeneous< MatrixType,
_Direction > >::Scalar >
, const Homogeneous
< MatrixType, _Direction > > 
operator/ (const Scalar &scalar) const
bool operator== (const MatrixBase< OtherDerived > &other) const
Index outerSize () const
RealReturnType real () const
NonConstRealReturnType real ()
void resize (Index size)
void resize (Index rows, Index cols)
ColsBlockXpr rightCols (Index n)
ConstColsBlockXpr rightCols (Index n) const
NColsBlockXpr< N >::Type rightCols ()
ConstNColsBlockXpr< N >::Type rightCols () const
RowXpr row (Index i)
ConstRowXpr row (Index i) const
void swap (const DenseBase< OtherDerived > &other, int=OtherDerived::ThisConstantIsPrivateInPlainObjectBase)
void swap (PlainObjectBase< OtherDerived > &other)
Block< Homogeneous< MatrixType,
_Direction > > 
topLeftCorner (Index cRows, Index cCols)
const Block< const Homogeneous
< MatrixType, _Direction > > 
topLeftCorner (Index cRows, Index cCols) const
Block< Homogeneous< MatrixType,
_Direction >, CRows, CCols > 
topLeftCorner ()
const Block< const Homogeneous
< MatrixType, _Direction >
, CRows, CCols > 
topLeftCorner () const
Block< Homogeneous< MatrixType,
_Direction > > 
topRightCorner (Index cRows, Index cCols)
const Block< const Homogeneous
< MatrixType, _Direction > > 
topRightCorner (Index cRows, Index cCols) const
Block< Homogeneous< MatrixType,
_Direction >, CRows, CCols > 
topRightCorner ()
const Block< const Homogeneous
< MatrixType, _Direction >
, CRows, CCols > 
topRightCorner () const
RowsBlockXpr topRows (Index n)
ConstRowsBlockXpr topRows (Index n) const
NRowsBlockXpr< N >::Type topRows ()
ConstNRowsBlockXpr< N >::Type topRows () const
const CwiseUnaryOp
< CustomUnaryOp, const
Homogeneous< MatrixType,
_Direction > > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
const CwiseUnaryView
< CustomViewOp, const
Homogeneous< MatrixType,
_Direction > > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
CoeffReturnType value () const

Detailed Description

template<typename MatrixType, int _Direction>
class Eigen::Homogeneous< MatrixType, _Direction >

Expression of one (or a set of) homogeneous vector(s)

This is defined in the Geometry module.

#include <Eigen/Geometry>
Parameters
MatrixTypethe type of the object in which we are making homogeneous

This class represents an expression of one (or a set of) homogeneous vector(s). It is the return type of MatrixBase::homogeneous() and most of the time this is the only way it is used.

See Also
MatrixBase::homogeneous()

Member Typedef Documentation

typedef internal::traits<Homogeneous< MatrixType, _Direction > >::Index Index
inherited

The type of indices.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

See Also
Preprocessor directives.
typedef Matrix<typename internal::traits<Homogeneous< MatrixType, _Direction > >::Scalar, internal::traits<Homogeneous< MatrixType, _Direction > >::RowsAtCompileTime, internal::traits<Homogeneous< MatrixType, _Direction > >::ColsAtCompileTime, AutoAlign | (internal::traits<Homogeneous< MatrixType, _Direction > >::Flags&RowMajorBit ? RowMajor : ColMajor), internal::traits<Homogeneous< MatrixType, _Direction > >::MaxRowsAtCompileTime, internal::traits<Homogeneous< MatrixType, _Direction > >::MaxColsAtCompileTime > PlainObject
inherited

The plain matrix type corresponding to this expression.

This is not necessarily exactly the return type of eval(). In the case of plain matrices, the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed that the return type of eval() is either PlainObject or const PlainObject&.

Member Function Documentation

ArrayWrapper<Homogeneous< MatrixType, _Direction > > array ( )
inlineinherited
Returns
an Array expression of this matrix
See Also
ArrayBase::matrix()
const CwiseBinaryOp<CustomBinaryOp, const Homogeneous< MatrixType, _Direction > , const OtherDerived> binaryExpr ( const Eigen::MatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inlineinherited
Returns
an expression of the difference of *this and other
Note
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See Also
class CwiseBinaryOp, operator-=()
Returns
an expression of the sum of *this and other
Note
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See Also
class CwiseBinaryOp, operator+=()
Returns
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See Also
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
Block<Homogeneous< MatrixType, _Direction > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
)
inlineinherited
Returns
a dynamic-size expression of a block in *this.
Parameters
startRowthe first row in the block
startColthe first column in the block
blockRowsthe number of rows in the block
blockColsthe number of columns in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6 1
-3 0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size matrix, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See Also
class Block, block(Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > > block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const
inlineinherited

This is the const version of block(Index,Index,Index,Index).

Block<Homogeneous< MatrixType, _Direction > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
)
inlineinherited
Returns
a fixed-size expression of a block in *this.

The template parameters BlockRows and BlockCols are the number of rows and columns in the block.

Parameters
startRowthe first row in the block
startColthe first column in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6 1
-3 0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note
since block is a templated member, the keyword template has to be used if the matrix type is also a template parameter:
m.template block<3,3>(1,1);
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > , BlockRows, BlockCols> block ( Index  startRow,
Index  startCol 
) const
inlineinherited

This is the const version of block<>(Index, Index).

Block<Homogeneous< MatrixType, _Direction > > bottomLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a bottom-left corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > > bottomLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomLeftCorner(Index, Index).

Block<Homogeneous< MatrixType, _Direction > , CRows, CCols> bottomLeftCorner ( )
inlineinherited
Returns
an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > , CRows, CCols> bottomLeftCorner ( ) const
inlineinherited

This is the const version of bottomLeftCorner<int, int>().

Block<Homogeneous< MatrixType, _Direction > > bottomRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a bottom-right corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > > bottomRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomRightCorner(Index, Index).

Block<Homogeneous< MatrixType, _Direction > , CRows, CCols> bottomRightCorner ( )
inlineinherited
Returns
an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > , CRows, CCols> bottomRightCorner ( ) const
inlineinherited

This is the const version of bottomRightCorner<int, int>().

RowsBlockXpr bottomRows ( Index  n)
inlineinherited
Returns
a block consisting of the bottom rows of *this.
Parameters
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See Also
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr bottomRows ( Index  n) const
inlineinherited

This is the const version of bottomRows(Index).

NRowsBlockXpr<N>::Type bottomRows ( )
inlineinherited
Returns
a block consisting of the bottom rows of *this.
Template Parameters
Nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See Also
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type bottomRows ( ) const
inlineinherited

This is the const version of bottomRows<int>().

internal::cast_return_type<Homogeneous< MatrixType, _Direction > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Homogeneous< MatrixType, _Direction > >::Scalar, NewType>, const Homogeneous< MatrixType, _Direction > > >::type cast ( ) const
inlineinherited
Returns
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See Also
class CwiseUnaryOp
ColXpr col ( Index  i)
inlineinherited
Returns
an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1
See Also
row(), class Block
ConstColXpr col ( Index  i) const
inlineinherited

This is the const version of col().

ConjugateReturnType conjugate ( ) const
inlineinherited
Returns
an expression of the complex conjugate of *this.
See Also
adjoint()
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Homogeneous< MatrixType, _Direction > > cwiseAbs ( ) const
inlineinherited
Returns
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See Also
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Homogeneous< MatrixType, _Direction > > cwiseAbs2 ( ) const
inlineinherited
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See Also
cwiseAbs()
const CwiseBinaryOp<std::equal_to<Scalar>, const Homogeneous< MatrixType, _Direction > , const OtherDerived> cwiseEqual ( const Eigen::MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See Also
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Homogeneous< MatrixType, _Direction > > cwiseEqual ( const Scalar &  s) const
inlineinherited
Returns
an expression of the coefficient-wise == operator of *this and a scalar s
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See Also
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Homogeneous< MatrixType, _Direction > > cwiseInverse ( ) const
inlineinherited
Returns
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

0.5 2 1
0.333 4 1
See Also
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Homogeneous< MatrixType, _Direction > , const OtherDerived> cwiseMax ( const Eigen::MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Homogeneous< MatrixType, _Direction > , const ConstantReturnType> cwiseMax ( const Scalar &  other) const
inlineinherited
Returns
an expression of the coefficient-wise max of *this and scalar other
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Homogeneous< MatrixType, _Direction > , const OtherDerived> cwiseMin ( const Eigen::MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See Also
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Homogeneous< MatrixType, _Direction > , const ConstantReturnType> cwiseMin ( const Scalar &  other) const
inlineinherited
Returns
an expression of the coefficient-wise min of *this and scalar other
See Also
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Homogeneous< MatrixType, _Direction > , const OtherDerived> cwiseNotEqual ( const Eigen::MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See Also
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Homogeneous< MatrixType, _Direction > , const OtherDerived> cwiseQuotient ( const Eigen::MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

0.5
1.5
1.33
See Also
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Homogeneous< MatrixType, _Direction > > cwiseSqrt ( ) const
inlineinherited
Returns
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

1
1.41
2
See Also
cwisePow(), cwiseSquare()
Index diagonalSize ( ) const
inlineinherited
Returns
the size of the main diagonal, which is min(rows(),cols()).
See Also
rows(), cols(), SizeAtCompileTime.
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( Homogeneous< MatrixType, _Direction >  ,
OtherDerived   
) const
inlineinherited
Returns
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See Also
class CwiseBinaryOp, cwiseAbs2
EvalReturnType eval ( ) const
inlineinherited
Returns
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

const ImagReturnType imag ( ) const
inlineinherited
Returns
an read-only expression of the imaginary part of *this.
See Also
real()
NonConstImagReturnType imag ( )
inlineinherited
Returns
a non const expression of the imaginary part of *this.
See Also
real()
Index innerSize ( ) const
inlineinherited
Returns
the inner size.
Note
For a vector, this is just the size. For a matrix (non-vector), this is the minor dimension with respect to the storage order, i.e., the number of rows for a column-major matrix, and the number of columns for a row-major matrix.
ColsBlockXpr leftCols ( Index  n)
inlineinherited
Returns
a block consisting of the left columns of *this.
Parameters
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See Also
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr leftCols ( Index  n) const
inlineinherited

This is the const version of leftCols(Index).

NColsBlockXpr<N>::Type leftCols ( )
inlineinherited
Returns
a block consisting of the left columns of *this.
Template Parameters
Nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See Also
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type leftCols ( ) const
inlineinherited

This is the const version of leftCols<int>().

ColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
)
inlineinherited
Returns
a block consisting of a range of columns of *this.
Parameters
startColthe index of the first column in the block
numColsthe number of columns in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See Also
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr middleCols ( Index  startCol,
Index  numCols 
) const
inlineinherited

This is the const version of middleCols(Index,Index).

NColsBlockXpr<N>::Type middleCols ( Index  startCol)
inlineinherited
Returns
a block consisting of a range of columns of *this.
Template Parameters
Nthe number of columns in the block
Parameters
startColthe index of the first column in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See Also
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type middleCols ( Index  startCol) const
inlineinherited

This is the const version of middleCols<int>().

RowsBlockXpr middleRows ( Index  startRow,
Index  numRows 
)
inlineinherited
Returns
a block consisting of a range of rows of *this.
Parameters
startRowthe index of the first row in the block
numRowsthe number of rows in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6
See Also
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr middleRows ( Index  startRow,
Index  numRows 
) const
inlineinherited

This is the const version of middleRows(Index,Index).

NRowsBlockXpr<N>::Type middleRows ( Index  startRow)
inlineinherited
Returns
a block consisting of a range of rows of *this.
Template Parameters
Nthe number of rows in the block
Parameters
startRowthe index of the first row in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6
See Also
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type middleRows ( Index  startRow) const
inlineinherited

This is the const version of middleRows<int>().

Index nonZeros ( ) const
inlineinherited
Returns
the number of nonzero coefficients which is in practice the number of stored coefficients.
bool operator!= ( const MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
true if at least one pair of coefficients of *this and other are not exactly equal to each other.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See Also
isApprox(), operator==
const ScalarMultipleReturnType operator* ( const Scalar &  scalar) const
inlineinherited
Returns
an expression of *this scaled by the scalar factor scalar
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Homogeneous< MatrixType, _Direction > > operator* ( const std::complex< Scalar > &  scalar) const
inlineinherited

Overloaded for efficient real matrix times complex scalar value

const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Homogeneous< MatrixType, _Direction > >::Scalar>, const Homogeneous< MatrixType, _Direction > > operator- ( ) const
inlineinherited
Returns
an expression of the opposite of *this
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Homogeneous< MatrixType, _Direction > >::Scalar>, const Homogeneous< MatrixType, _Direction > > operator/ ( const Scalar &  scalar) const
inlineinherited
Returns
an expression of *this divided by the scalar value scalar
bool operator== ( const MatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
true if each coefficients of *this and other are all exactly equal.
Warning
When using floating point scalar values you probably should rather use a fuzzy comparison such as isApprox()
See Also
isApprox(), operator!=
Index outerSize ( ) const
inlineinherited
Returns
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
rows()==1 || cols()==1
See Also
rows(), cols(), IsVectorAtCompileTime.
Returns
the outer size.
Note
For a vector, this returns just 1. For a matrix (non-vector), this is the major dimension with respect to the storage order, i.e., the number of columns for a column-major matrix, and the number of rows for a row-major matrix.
RealReturnType real ( ) const
inlineinherited
Returns
a read-only expression of the real part of *this.
See Also
imag()
NonConstRealReturnType real ( )
inlineinherited
Returns
a non const expression of the real part of *this.
See Also
imag()
void resize ( Index  size)
inlineinherited

Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does nothing else.

void resize ( Index  rows,
Index  cols 
)
inlineinherited

Only plain matrices/arrays, not expressions, may be resized; therefore the only useful resize methods are Matrix::resize() and Array::resize(). The present method only asserts that the new size equals the old size, and does nothing else.

ColsBlockXpr rightCols ( Index  n)
inlineinherited
Returns
a block consisting of the right columns of *this.
Parameters
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See Also
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr rightCols ( Index  n) const
inlineinherited

This is the const version of rightCols(Index).

NColsBlockXpr<N>::Type rightCols ( )
inlineinherited
Returns
a block consisting of the right columns of *this.
Template Parameters
Nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See Also
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type rightCols ( ) const
inlineinherited

This is the const version of rightCols<int>().

RowXpr row ( Index  i)
inlineinherited
Returns
an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1
See Also
col(), class Block
ConstRowXpr row ( Index  i) const
inlineinherited

This is the const version of row().

void swap ( const DenseBase< OtherDerived > &  other,
int  = OtherDerived::ThisConstantIsPrivateInPlainObjectBase 
)
inlineinherited

swaps *this with the expression other.

void swap ( PlainObjectBase< OtherDerived > &  other)
inlineinherited

swaps *this with the matrix or array other.

Block<Homogeneous< MatrixType, _Direction > > topLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a top-left corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > > topLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topLeftCorner(Index, Index).

Block<Homogeneous< MatrixType, _Direction > , CRows, CCols> topLeftCorner ( )
inlineinherited
Returns
an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > , CRows, CCols> topLeftCorner ( ) const
inlineinherited

This is the const version of topLeftCorner<int, int>().

Block<Homogeneous< MatrixType, _Direction > > topRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a top-right corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > > topRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topRightCorner(Index, Index).

Block<Homogeneous< MatrixType, _Direction > , CRows, CCols> topRightCorner ( )
inlineinherited
Returns
an expression of a fixed-size top-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See Also
class Block, block(Index,Index,Index,Index)
const Block<const Homogeneous< MatrixType, _Direction > , CRows, CCols> topRightCorner ( ) const
inlineinherited

This is the const version of topRightCorner<int, int>().

RowsBlockXpr topRows ( Index  n)
inlineinherited
Returns
a block consisting of the top rows of *this.
Parameters
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See Also
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr topRows ( Index  n) const
inlineinherited

This is the const version of topRows(Index).

NRowsBlockXpr<N>::Type topRows ( )
inlineinherited
Returns
a block consisting of the top rows of *this.
Template Parameters
Nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See Also
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type topRows ( ) const
inlineinherited

This is the const version of topRows<int>().

const CwiseUnaryOp<CustomUnaryOp, const Homogeneous< MatrixType, _Direction > > unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inlineinherited

Apply a unary operator coefficient-wise.

Parameters
[in]funcFunctor implementing the unary operator
Template Parameters
CustomUnaryOpType of func
Returns
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define function to be applied coefficient-wise
double ramp(double x)
{
if (x > 0)
return x;
else
return 0;
}
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See Also
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const Homogeneous< MatrixType, _Direction > > unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inlineinherited
Returns
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See Also
class CwiseUnaryOp, class CwiseBinaryOp
CoeffReturnType value ( ) const
inlineinherited
Returns
the unique coefficient of a 1x1 expression

The documentation for this class was generated from the following file: