LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zlasr.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zlasr (SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA)
 ZLASR applies a sequence of plane rotations to a general rectangular matrix.

Function/Subroutine Documentation

subroutine zlasr ( character  SIDE,
character  PIVOT,
character  DIRECT,
integer  M,
integer  N,
double precision, dimension( * )  C,
double precision, dimension( * )  S,
complex*16, dimension( lda, * )  A,
integer  LDA 
)

ZLASR applies a sequence of plane rotations to a general rectangular matrix.

Download ZLASR + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZLASR applies a sequence of real plane rotations to a complex matrix
 A, from either the left or the right.

 When SIDE = 'L', the transformation takes the form

    A := P*A

 and when SIDE = 'R', the transformation takes the form

    A := A*P**T

 where P is an orthogonal matrix consisting of a sequence of z plane
 rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
 and P**T is the transpose of P.
 
 When DIRECT = 'F' (Forward sequence), then
 
    P = P(z-1) * ... * P(2) * P(1)
 
 and when DIRECT = 'B' (Backward sequence), then
 
    P = P(1) * P(2) * ... * P(z-1)
 
 where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
 
    R(k) = (  c(k)  s(k) )
         = ( -s(k)  c(k) ).
 
 When PIVOT = 'V' (Variable pivot), the rotation is performed
 for the plane (k,k+1), i.e., P(k) has the form
 
    P(k) = (  1                                            )
           (       ...                                     )
           (              1                                )
           (                   c(k)  s(k)                  )
           (                  -s(k)  c(k)                  )
           (                                1              )
           (                                     ...       )
           (                                            1  )
 
 where R(k) appears as a rank-2 modification to the identity matrix in
 rows and columns k and k+1.
 
 When PIVOT = 'T' (Top pivot), the rotation is performed for the
 plane (1,k+1), so P(k) has the form
 
    P(k) = (  c(k)                    s(k)                 )
           (         1                                     )
           (              ...                              )
           (                     1                         )
           ( -s(k)                    c(k)                 )
           (                                 1             )
           (                                      ...      )
           (                                             1 )
 
 where R(k) appears in rows and columns 1 and k+1.
 
 Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
 performed for the plane (k,z), giving P(k) the form
 
    P(k) = ( 1                                             )
           (      ...                                      )
           (             1                                 )
           (                  c(k)                    s(k) )
           (                         1                     )
           (                              ...              )
           (                                     1         )
           (                 -s(k)                    c(k) )
 
 where R(k) appears in rows and columns k and z.  The rotations are
 performed without ever forming P(k) explicitly.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          Specifies whether the plane rotation matrix P is applied to
          A on the left or the right.
          = 'L':  Left, compute A := P*A
          = 'R':  Right, compute A:= A*P**T
[in]PIVOT
          PIVOT is CHARACTER*1
          Specifies the plane for which P(k) is a plane rotation
          matrix.
          = 'V':  Variable pivot, the plane (k,k+1)
          = 'T':  Top pivot, the plane (1,k+1)
          = 'B':  Bottom pivot, the plane (k,z)
[in]DIRECT
          DIRECT is CHARACTER*1
          Specifies whether P is a forward or backward sequence of
          plane rotations.
          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
[in]M
          M is INTEGER
          The number of rows of the matrix A.  If m <= 1, an immediate
          return is effected.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  If n <= 1, an
          immediate return is effected.
[in]C
          C is DOUBLE PRECISION array, dimension
                  (M-1) if SIDE = 'L'
                  (N-1) if SIDE = 'R'
          The cosines c(k) of the plane rotations.
[in]S
          S is DOUBLE PRECISION array, dimension
                  (M-1) if SIDE = 'L'
                  (N-1) if SIDE = 'R'
          The sines s(k) of the plane rotations.  The 2-by-2 plane
          rotation part of the matrix P(k), R(k), has the form
          R(k) = (  c(k)  s(k) )
                 ( -s(k)  c(k) ).
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The M-by-N matrix A.  On exit, A is overwritten by P*A if
          SIDE = 'R' or by A*P**T if SIDE = 'L'.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 201 of file zlasr.f.

Here is the call graph for this function:

Here is the caller graph for this function: