LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
zlahef.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zlahef (UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO)
 ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix, using the diagonal pivoting method.

Function/Subroutine Documentation

subroutine zlahef ( character  UPLO,
integer  N,
integer  NB,
integer  KB,
complex*16, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
complex*16, dimension( ldw, * )  W,
integer  LDW,
integer  INFO 
)

ZLAHEF computes a partial factorization of a complex Hermitian indefinite matrix, using the diagonal pivoting method.

Download ZLAHEF + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 ZLAHEF computes a partial factorization of a complex Hermitian
 matrix A using the Bunch-Kaufman diagonal pivoting method. The
 partial factorization has the form:

 A  =  ( I  U12 ) ( A11  0  ) (  I      0     )  if UPLO = 'U', or:
       ( 0  U22 ) (  0   D  ) ( U12**H U22**H )

 A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L'
       ( L21  I ) (  0  A22 ) (  0      I     )

 where the order of D is at most NB. The actual order is returned in
 the argument KB, and is either NB or NB-1, or N if N <= NB.
 Note that U**H denotes the conjugate transpose of U.

 ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code
 (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
 A22 (if UPLO = 'L').
Parameters
[in]UPLO
          UPLO is CHARACTER*1
          Specifies whether the upper or lower triangular part of the
          Hermitian matrix A is stored:
          = 'U':  Upper triangular
          = 'L':  Lower triangular
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]NB
          NB is INTEGER
          The maximum number of columns of the matrix A that should be
          factored.  NB should be at least 2 to allow for 2-by-2 pivot
          blocks.
[out]KB
          KB is INTEGER
          The number of columns of A that were actually factored.
          KB is either NB-1 or NB, or N if N <= NB.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
          n-by-n upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading n-by-n lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.
          On exit, A contains details of the partial factorization.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]IPIV
          IPIV is INTEGER array, dimension (N)
          Details of the interchanges and the block structure of D.
          If UPLO = 'U', only the last KB elements of IPIV are set;
          if UPLO = 'L', only the first KB elements are set.

          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
          interchanged and D(k,k) is a 1-by-1 diagonal block.
          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
[out]W
          W is COMPLEX*16 array, dimension (LDW,NB)
[in]LDW
          LDW is INTEGER
          The leading dimension of the array W.  LDW >= max(1,N).
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
               has been completed, but the block diagonal matrix D is
               exactly singular.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 158 of file zlahef.f.

Here is the call graph for this function:

Here is the caller graph for this function: