LAPACK  3.4.2
LAPACK: Linear Algebra PACKage
 All Files Functions Groups
slangt.f File Reference

Go to the source code of this file.

Functions/Subroutines

REAL function slangt (NORM, N, DL, D, DU)
 SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Function/Subroutine Documentation

REAL function slangt ( character  NORM,
integer  N,
real, dimension( * )  DL,
real, dimension( * )  D,
real, dimension( * )  DU 
)

SLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.

Download SLANGT + dependencies [TGZ] [ZIP] [TXT]
Purpose:
 SLANGT  returns the value of the one norm,  or the Frobenius norm, or
 the  infinity norm,  or the  element of  largest absolute value  of a
 real tridiagonal matrix A.
Returns
SLANGT
    SLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
             (
             ( norm1(A),         NORM = '1', 'O' or 'o'
             (
             ( normI(A),         NORM = 'I' or 'i'
             (
             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

 where  norm1  denotes the  one norm of a matrix (maximum column sum),
 normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 normF  denotes the  Frobenius norm of a matrix (square root of sum of
 squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
Parameters
[in]NORM
          NORM is CHARACTER*1
          Specifies the value to be returned in SLANGT as described
          above.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.  When N = 0, SLANGT is
          set to zero.
[in]DL
          DL is REAL array, dimension (N-1)
          The (n-1) sub-diagonal elements of A.
[in]D
          D is REAL array, dimension (N)
          The diagonal elements of A.
[in]DU
          DU is REAL array, dimension (N-1)
          The (n-1) super-diagonal elements of A.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 107 of file slangt.f.

Here is the call graph for this function:

Here is the caller graph for this function: