proresdec.c
Go to the documentation of this file.
1 /*
2  * Apple ProRes compatible decoder
3  *
4  * Copyright (c) 2010-2011 Maxim Poliakovski
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
31 #define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once
32 
33 #include <stdint.h>
34 
35 #include "libavutil/intmath.h"
36 #include "avcodec.h"
37 #include "proresdsp.h"
38 #include "get_bits.h"
39 
40 typedef struct {
41  const uint8_t *index;
42  int slice_num;
43  int x_pos, y_pos;
45  DECLARE_ALIGNED(16, DCTELEM, blocks[8 * 4 * 64]);
47 
48 typedef struct {
53 
54  int frame_type;
55  int pic_format;
56  uint8_t qmat_luma[64];
57  uint8_t qmat_chroma[64];
60  DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled[64]);
61  DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled[64]);
64  int pic_num;
72  int num_x_mbs;
73  int num_y_mbs;
76 
77 
78 static const uint8_t progressive_scan[64] = {
79  0, 1, 8, 9, 2, 3, 10, 11,
80  16, 17, 24, 25, 18, 19, 26, 27,
81  4, 5, 12, 20, 13, 6, 7, 14,
82  21, 28, 29, 22, 15, 23, 30, 31,
83  32, 33, 40, 48, 41, 34, 35, 42,
84  49, 56, 57, 50, 43, 36, 37, 44,
85  51, 58, 59, 52, 45, 38, 39, 46,
86  53, 60, 61, 54, 47, 55, 62, 63
87 };
88 
89 static const uint8_t interlaced_scan[64] = {
90  0, 8, 1, 9, 16, 24, 17, 25,
91  2, 10, 3, 11, 18, 26, 19, 27,
92  32, 40, 33, 34, 41, 48, 56, 49,
93  42, 35, 43, 50, 57, 58, 51, 59,
94  4, 12, 5, 6, 13, 20, 28, 21,
95  14, 7, 15, 22, 29, 36, 44, 37,
96  30, 23, 31, 38, 45, 52, 60, 53,
97  46, 39, 47, 54, 61, 62, 55, 63
98 };
99 
100 
102 {
103  ProresContext *ctx = avctx->priv_data;
104 
105  ctx->total_slices = 0;
106  ctx->slice_data = NULL;
107 
109  ff_proresdsp_init(&ctx->dsp);
110 
111  avctx->coded_frame = &ctx->picture;
114  ctx->picture.key_frame = 1;
115 
116  ctx->scantable_type = -1; // set scantable type to uninitialized
117  memset(ctx->qmat_luma, 4, 64);
118  memset(ctx->qmat_chroma, 4, 64);
119  ctx->prev_slice_sf = 0;
120 
121  return 0;
122 }
123 
124 
125 static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
126  const int data_size, AVCodecContext *avctx)
127 {
128  int hdr_size, version, width, height, flags;
129  const uint8_t *ptr;
130 
131  hdr_size = AV_RB16(buf);
132  if (hdr_size > data_size) {
133  av_log(avctx, AV_LOG_ERROR, "frame data too small\n");
134  return AVERROR_INVALIDDATA;
135  }
136 
137  version = AV_RB16(buf + 2);
138  if (version >= 2) {
139  av_log(avctx, AV_LOG_ERROR,
140  "unsupported header version: %d\n", version);
141  return AVERROR_INVALIDDATA;
142  }
143 
144  width = AV_RB16(buf + 8);
145  height = AV_RB16(buf + 10);
146  if (width != avctx->width || height != avctx->height) {
147  av_log(avctx, AV_LOG_ERROR,
148  "picture dimension changed: old: %d x %d, new: %d x %d\n",
149  avctx->width, avctx->height, width, height);
150  return AVERROR_INVALIDDATA;
151  }
152 
153  ctx->frame_type = (buf[12] >> 2) & 3;
154  if (ctx->frame_type > 2) {
155  av_log(avctx, AV_LOG_ERROR,
156  "unsupported frame type: %d\n", ctx->frame_type);
157  return AVERROR_INVALIDDATA;
158  }
159 
160  ctx->chroma_factor = (buf[12] >> 6) & 3;
161  ctx->mb_chroma_factor = ctx->chroma_factor + 2;
162  ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1;
163  switch (ctx->chroma_factor) {
164  case 2:
165  avctx->pix_fmt = PIX_FMT_YUV422P10;
166  break;
167  case 3:
168  avctx->pix_fmt = PIX_FMT_YUV444P10;
169  break;
170  default:
171  av_log(avctx, AV_LOG_ERROR,
172  "unsupported picture format: %d\n", ctx->pic_format);
173  return AVERROR_INVALIDDATA;
174  }
175 
176  if (ctx->scantable_type != ctx->frame_type) {
177  if (!ctx->frame_type)
180  else
183  ctx->scantable_type = ctx->frame_type;
184  }
185 
186  if (ctx->frame_type) { /* if interlaced */
187  ctx->picture.interlaced_frame = 1;
188  ctx->picture.top_field_first = ctx->frame_type & 1;
189  }
190 
191  ctx->alpha_info = buf[17] & 0xf;
192  if (ctx->alpha_info)
193  av_log_missing_feature(avctx, "alpha channel", 0);
194 
195  ctx->qmat_changed = 0;
196  ptr = buf + 20;
197  flags = buf[19];
198  if (flags & 2) {
199  if (ptr - buf > hdr_size - 64) {
200  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
201  return AVERROR_INVALIDDATA;
202  }
203  if (memcmp(ctx->qmat_luma, ptr, 64)) {
204  memcpy(ctx->qmat_luma, ptr, 64);
205  ctx->qmat_changed = 1;
206  }
207  ptr += 64;
208  } else {
209  memset(ctx->qmat_luma, 4, 64);
210  ctx->qmat_changed = 1;
211  }
212 
213  if (flags & 1) {
214  if (ptr - buf > hdr_size - 64) {
215  av_log(avctx, AV_LOG_ERROR, "header data too small\n");
216  return -1;
217  }
218  if (memcmp(ctx->qmat_chroma, ptr, 64)) {
219  memcpy(ctx->qmat_chroma, ptr, 64);
220  ctx->qmat_changed = 1;
221  }
222  } else {
223  memset(ctx->qmat_chroma, 4, 64);
224  ctx->qmat_changed = 1;
225  }
226 
227  return hdr_size;
228 }
229 
230 
231 static int decode_picture_header(ProresContext *ctx, const uint8_t *buf,
232  const int data_size, AVCodecContext *avctx)
233 {
234  int i, hdr_size, pic_data_size, num_slices;
235  int slice_width_factor, slice_height_factor;
236  int remainder, num_x_slices;
237  const uint8_t *data_ptr, *index_ptr;
238 
239  hdr_size = data_size > 0 ? buf[0] >> 3 : 0;
240  if (hdr_size < 8 || hdr_size > data_size) {
241  av_log(avctx, AV_LOG_ERROR, "picture header too small\n");
242  return AVERROR_INVALIDDATA;
243  }
244 
245  pic_data_size = AV_RB32(buf + 1);
246  if (pic_data_size > data_size) {
247  av_log(avctx, AV_LOG_ERROR, "picture data too small\n");
248  return AVERROR_INVALIDDATA;
249  }
250 
251  slice_width_factor = buf[7] >> 4;
252  slice_height_factor = buf[7] & 0xF;
253  if (slice_width_factor > 3 || slice_height_factor) {
254  av_log(avctx, AV_LOG_ERROR,
255  "unsupported slice dimension: %d x %d\n",
256  1 << slice_width_factor, 1 << slice_height_factor);
257  return AVERROR_INVALIDDATA;
258  }
259 
260  ctx->slice_width_factor = slice_width_factor;
261  ctx->slice_height_factor = slice_height_factor;
262 
263  ctx->num_x_mbs = (avctx->width + 15) >> 4;
264  ctx->num_y_mbs = (avctx->height +
265  (1 << (4 + ctx->picture.interlaced_frame)) - 1) >>
266  (4 + ctx->picture.interlaced_frame);
267 
268  remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1);
269  num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) +
270  ((remainder >> 1) & 1) + ((remainder >> 2) & 1);
271 
272  num_slices = num_x_slices * ctx->num_y_mbs;
273  if (num_slices != AV_RB16(buf + 5)) {
274  av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n");
275  return AVERROR_INVALIDDATA;
276  }
277 
278  if (ctx->total_slices != num_slices) {
279  av_freep(&ctx->slice_data);
280  ctx->slice_data = av_malloc((num_slices + 1) * sizeof(ctx->slice_data[0]));
281  if (!ctx->slice_data)
282  return AVERROR(ENOMEM);
283  ctx->total_slices = num_slices;
284  }
285 
286  if (hdr_size + num_slices * 2 > data_size) {
287  av_log(avctx, AV_LOG_ERROR, "slice table too small\n");
288  return AVERROR_INVALIDDATA;
289  }
290 
291  /* parse slice table allowing quick access to the slice data */
292  index_ptr = buf + hdr_size;
293  data_ptr = index_ptr + num_slices * 2;
294 
295  for (i = 0; i < num_slices; i++) {
296  ctx->slice_data[i].index = data_ptr;
297  data_ptr += AV_RB16(index_ptr + i * 2);
298  }
299  ctx->slice_data[i].index = data_ptr;
300 
301  if (data_ptr > buf + data_size) {
302  av_log(avctx, AV_LOG_ERROR, "out of slice data\n");
303  return -1;
304  }
305 
306  return pic_data_size;
307 }
308 
309 
313 static inline int decode_vlc_codeword(GetBitContext *gb, uint8_t codebook)
314 {
315  unsigned int rice_order, exp_order, switch_bits;
316  unsigned int buf, code;
317  int log, prefix_len, len;
318 
319  OPEN_READER(re, gb);
320  UPDATE_CACHE(re, gb);
321  buf = GET_CACHE(re, gb);
322 
323  /* number of prefix bits to switch between Rice and expGolomb */
324  switch_bits = (codebook & 3) + 1;
325  rice_order = codebook >> 5; /* rice code order */
326  exp_order = (codebook >> 2) & 7; /* exp golomb code order */
327 
328  log = 31 - av_log2(buf); /* count prefix bits (zeroes) */
329 
330  if (log < switch_bits) { /* ok, we got a rice code */
331  if (!rice_order) {
332  /* shortcut for faster decoding of rice codes without remainder */
333  code = log;
334  LAST_SKIP_BITS(re, gb, log + 1);
335  } else {
336  prefix_len = log + 1;
337  code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order);
338  LAST_SKIP_BITS(re, gb, prefix_len + rice_order);
339  }
340  } else { /* otherwise we got a exp golomb code */
341  len = (log << 1) - switch_bits + exp_order + 1;
342  code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order);
343  LAST_SKIP_BITS(re, gb, len);
344  }
345 
346  CLOSE_READER(re, gb);
347 
348  return code;
349 }
350 
351 #define LSB2SIGN(x) (-((x) & 1))
352 #define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x))
353 
354 #define FIRST_DC_CB 0xB8 // rice_order = 5, exp_golomb_order = 6, switch_bits = 0
355 
356 static uint8_t dc_codebook[4] = {
357  0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
358  0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
359  0x4D, // rice_order = 2, exp_golomb_order = 3, switch_bits = 1
360  0x70 // rice_order = 3, exp_golomb_order = 4, switch_bits = 0
361 };
362 
363 
367 static inline void decode_dc_coeffs(GetBitContext *gb, DCTELEM *out,
368  int nblocks)
369 {
370  DCTELEM prev_dc;
371  int i, sign;
372  int16_t delta;
373  unsigned int code;
374 
375  code = decode_vlc_codeword(gb, FIRST_DC_CB);
376  out[0] = prev_dc = TOSIGNED(code);
377 
378  out += 64; /* move to the DC coeff of the next block */
379  delta = 3;
380 
381  for (i = 1; i < nblocks; i++, out += 64) {
382  code = decode_vlc_codeword(gb, dc_codebook[FFMIN(FFABS(delta), 3)]);
383 
384  sign = -(((delta >> 15) & 1) ^ (code & 1));
385  delta = (((code + 1) >> 1) ^ sign) - sign;
386  prev_dc += delta;
387  out[0] = prev_dc;
388  }
389 }
390 
391 
392 static uint8_t ac_codebook[7] = {
393  0x04, // rice_order = 0, exp_golomb_order = 1, switch_bits = 0
394  0x28, // rice_order = 1, exp_golomb_order = 2, switch_bits = 0
395  0x4C, // rice_order = 2, exp_golomb_order = 3, switch_bits = 0
396  0x05, // rice_order = 0, exp_golomb_order = 1, switch_bits = 1
397  0x29, // rice_order = 1, exp_golomb_order = 2, switch_bits = 1
398  0x06, // rice_order = 0, exp_golomb_order = 1, switch_bits = 2
399  0x0A, // rice_order = 0, exp_golomb_order = 2, switch_bits = 2
400 };
401 
406 static uint8_t run_to_cb_index[16] =
407  { 5, 5, 3, 3, 0, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2 };
408 
409 static uint8_t lev_to_cb_index[10] = { 0, 6, 3, 5, 0, 1, 1, 1, 1, 2 };
410 
411 
415 static inline void decode_ac_coeffs(GetBitContext *gb, DCTELEM *out,
416  int blocks_per_slice,
417  int plane_size_factor,
418  const uint8_t *scan)
419 {
420  int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index;
421  int max_coeffs, bits_left;
422 
423  /* set initial prediction values */
424  run = 4;
425  level = 2;
426 
427  max_coeffs = blocks_per_slice << 6;
428  block_mask = blocks_per_slice - 1;
429 
430  for (pos = blocks_per_slice - 1; pos < max_coeffs;) {
431  run_cb_index = run_to_cb_index[FFMIN(run, 15)];
432  lev_cb_index = lev_to_cb_index[FFMIN(level, 9)];
433 
434  bits_left = get_bits_left(gb);
435  if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
436  return;
437 
438  run = decode_vlc_codeword(gb, ac_codebook[run_cb_index]);
439 
440  bits_left = get_bits_left(gb);
441  if (bits_left <= 0 || (bits_left <= 8 && !show_bits(gb, bits_left)))
442  return;
443 
444  level = decode_vlc_codeword(gb, ac_codebook[lev_cb_index]) + 1;
445 
446  pos += run + 1;
447  if (pos >= max_coeffs)
448  break;
449 
450  sign = get_sbits(gb, 1);
451  out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] =
452  (level ^ sign) - sign;
453  }
454 }
455 
456 
461  const uint8_t *buf,
462  int data_size, uint16_t *out_ptr,
463  int linesize, int mbs_per_slice,
464  int blocks_per_mb, int plane_size_factor,
465  const int16_t *qmat)
466 {
467  GetBitContext gb;
468  DCTELEM *block_ptr;
469  int mb_num, blocks_per_slice;
470 
471  blocks_per_slice = mbs_per_slice * blocks_per_mb;
472 
473  memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks));
474 
475  init_get_bits(&gb, buf, data_size << 3);
476 
477  decode_dc_coeffs(&gb, td->blocks, blocks_per_slice);
478 
479  decode_ac_coeffs(&gb, td->blocks, blocks_per_slice,
480  plane_size_factor, ctx->scantable.permutated);
481 
482  /* inverse quantization, inverse transform and output */
483  block_ptr = td->blocks;
484 
485  for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) {
486  ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat);
487  block_ptr += 64;
488  if (blocks_per_mb > 2) {
489  ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat);
490  block_ptr += 64;
491  }
492  ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat);
493  block_ptr += 64;
494  if (blocks_per_mb > 2) {
495  ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat);
496  block_ptr += 64;
497  }
498  }
499 }
500 
501 
502 static int decode_slice(AVCodecContext *avctx, void *tdata)
503 {
504  ProresThreadData *td = tdata;
505  ProresContext *ctx = avctx->priv_data;
506  int mb_x_pos = td->x_pos;
507  int mb_y_pos = td->y_pos;
508  int pic_num = ctx->pic_num;
509  int slice_num = td->slice_num;
510  int mbs_per_slice = td->slice_width;
511  const uint8_t *buf;
512  uint8_t *y_data, *u_data, *v_data;
513  AVFrame *pic = avctx->coded_frame;
514  int i, sf, slice_width_factor;
515  int slice_data_size, hdr_size, y_data_size, u_data_size, v_data_size;
516  int y_linesize, u_linesize, v_linesize;
517 
518  buf = ctx->slice_data[slice_num].index;
519  slice_data_size = ctx->slice_data[slice_num + 1].index - buf;
520 
521  slice_width_factor = av_log2(mbs_per_slice);
522 
523  y_data = pic->data[0];
524  u_data = pic->data[1];
525  v_data = pic->data[2];
526  y_linesize = pic->linesize[0];
527  u_linesize = pic->linesize[1];
528  v_linesize = pic->linesize[2];
529 
530  if (pic->interlaced_frame) {
531  if (!(pic_num ^ pic->top_field_first)) {
532  y_data += y_linesize;
533  u_data += u_linesize;
534  v_data += v_linesize;
535  }
536  y_linesize <<= 1;
537  u_linesize <<= 1;
538  v_linesize <<= 1;
539  }
540 
541  if (slice_data_size < 6) {
542  av_log(avctx, AV_LOG_ERROR, "slice data too small\n");
543  return AVERROR_INVALIDDATA;
544  }
545 
546  /* parse slice header */
547  hdr_size = buf[0] >> 3;
548  y_data_size = AV_RB16(buf + 2);
549  u_data_size = AV_RB16(buf + 4);
550  v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) :
551  slice_data_size - y_data_size - u_data_size - hdr_size;
552 
553  if (hdr_size + y_data_size + u_data_size + v_data_size > slice_data_size ||
554  v_data_size < 0 || hdr_size < 6) {
555  av_log(avctx, AV_LOG_ERROR, "invalid data size\n");
556  return AVERROR_INVALIDDATA;
557  }
558 
559  sf = av_clip(buf[1], 1, 224);
560  sf = sf > 128 ? (sf - 96) << 2 : sf;
561 
562  /* scale quantization matrixes according with slice's scale factor */
563  /* TODO: this can be SIMD-optimized a lot */
564  if (ctx->qmat_changed || sf != ctx->prev_slice_sf) {
565  ctx->prev_slice_sf = sf;
566  for (i = 0; i < 64; i++) {
567  ctx->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf;
568  ctx->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf;
569  }
570  }
571 
572  /* decode luma plane */
573  decode_slice_plane(ctx, td, buf + hdr_size, y_data_size,
574  (uint16_t*) (y_data + (mb_y_pos << 4) * y_linesize +
575  (mb_x_pos << 5)), y_linesize,
576  mbs_per_slice, 4, slice_width_factor + 2,
577  ctx->qmat_luma_scaled);
578 
579  /* decode U chroma plane */
580  decode_slice_plane(ctx, td, buf + hdr_size + y_data_size, u_data_size,
581  (uint16_t*) (u_data + (mb_y_pos << 4) * u_linesize +
582  (mb_x_pos << ctx->mb_chroma_factor)),
583  u_linesize, mbs_per_slice, ctx->num_chroma_blocks,
584  slice_width_factor + ctx->chroma_factor - 1,
585  ctx->qmat_chroma_scaled);
586 
587  /* decode V chroma plane */
588  decode_slice_plane(ctx, td, buf + hdr_size + y_data_size + u_data_size,
589  v_data_size,
590  (uint16_t*) (v_data + (mb_y_pos << 4) * v_linesize +
591  (mb_x_pos << ctx->mb_chroma_factor)),
592  v_linesize, mbs_per_slice, ctx->num_chroma_blocks,
593  slice_width_factor + ctx->chroma_factor - 1,
594  ctx->qmat_chroma_scaled);
595 
596  return 0;
597 }
598 
599 
600 static int decode_picture(ProresContext *ctx, int pic_num,
601  AVCodecContext *avctx)
602 {
603  int slice_num, slice_width, x_pos, y_pos;
604 
605  slice_num = 0;
606 
607  ctx->pic_num = pic_num;
608  for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) {
609  slice_width = 1 << ctx->slice_width_factor;
610 
611  for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width;
612  x_pos += slice_width) {
613  while (ctx->num_x_mbs - x_pos < slice_width)
614  slice_width >>= 1;
615 
616  ctx->slice_data[slice_num].slice_num = slice_num;
617  ctx->slice_data[slice_num].x_pos = x_pos;
618  ctx->slice_data[slice_num].y_pos = y_pos;
619  ctx->slice_data[slice_num].slice_width = slice_width;
620 
621  slice_num++;
622  }
623  }
624 
625  return avctx->execute(avctx, decode_slice,
626  ctx->slice_data, NULL, slice_num,
627  sizeof(ctx->slice_data[0]));
628 }
629 
630 
631 #define FRAME_ID MKBETAG('i', 'c', 'p', 'f')
632 #define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes)
633 
634 static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
635  AVPacket *avpkt)
636 {
637  ProresContext *ctx = avctx->priv_data;
638  AVFrame *picture = avctx->coded_frame;
639  const uint8_t *buf = avpkt->data;
640  int buf_size = avpkt->size;
641  int frame_hdr_size, pic_num, pic_data_size;
642 
643  /* check frame atom container */
644  if (buf_size < 28 || buf_size < AV_RB32(buf) ||
645  AV_RB32(buf + 4) != FRAME_ID) {
646  av_log(avctx, AV_LOG_ERROR, "invalid frame\n");
647  return AVERROR_INVALIDDATA;
648  }
649 
650  MOVE_DATA_PTR(8);
651 
652  frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
653  if (frame_hdr_size < 0)
654  return AVERROR_INVALIDDATA;
655 
656  MOVE_DATA_PTR(frame_hdr_size);
657 
658  if (picture->data[0])
659  avctx->release_buffer(avctx, picture);
660 
661  picture->reference = 0;
662  if (avctx->get_buffer(avctx, picture) < 0)
663  return -1;
664 
665  for (pic_num = 0; ctx->picture.interlaced_frame - pic_num + 1; pic_num++) {
666  pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx);
667  if (pic_data_size < 0)
668  return AVERROR_INVALIDDATA;
669 
670  if (decode_picture(ctx, pic_num, avctx))
671  return -1;
672 
673  MOVE_DATA_PTR(pic_data_size);
674  }
675 
676  *data_size = sizeof(AVPicture);
677  *(AVFrame*) data = *avctx->coded_frame;
678 
679  return avpkt->size;
680 }
681 
682 
684 {
685  ProresContext *ctx = avctx->priv_data;
686 
687  if (ctx->picture.data[0])
688  avctx->release_buffer(avctx, &ctx->picture);
689 
690  av_freep(&ctx->slice_data);
691 
692  return 0;
693 }
694 
695 
697  .name = "prores",
698  .type = AVMEDIA_TYPE_VIDEO,
699  .id = CODEC_ID_PRORES,
700  .priv_data_size = sizeof(ProresContext),
701  .init = decode_init,
702  .close = decode_close,
703  .decode = decode_frame,
704  .capabilities = CODEC_CAP_DR1 | CODEC_CAP_SLICE_THREADS,
705  .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)")
706 };