# This module implements subspaces for motion analysis etc.
#
# Written by Konrad Hinsen
#
"""
Linear subspaces for infinitesimal motions
This module implements subspaces for infinitesimal (or finite
small-amplitude) atomic motions. They can be used in normal mode
calculations or for analyzing complex motions. For an explanation, see:
| K. Hinsen and G.R. Kneller
| Projection methods for the analysis of complex motions in macromolecules
| Mol. Sim. 23:275-292 (2000)
"""
__docformat__ = 'restructuredtext'
from MMTK import Utility, ParticleProperties
from Scientific.Geometry import Vector, ex, ey, ez
from Scientific import N
import copy
#
# Import LAPACK routines
#
try:
array_package = N.package
except AttributeError:
array_package = "Numeric"
dgesdd = None
try:
if array_package == "Numeric":
from lapack_lite import dgesdd, LapackError
else:
from numpy.linalg.lapack_lite import dgesdd, LapackError
except ImportError: pass
if dgesdd is None:
try:
# PyLAPACK
from lapack_dge import dgesdd
except ImportError: pass
if dgesdd:
n = 1
array = N.zeros((n, n), N.Float)
sv = N.zeros((n,), N.Float)
u = N.zeros((n, n), N.Float)
vt = N.zeros((n, n), N.Float)
work = N.zeros((1,), N.Float)
int_types = [N.Int, N.Int8, N.Int16, N.Int32]
try:
int_types.append(N.Int64)
int_types.append(N.Int128)
except AttributeError:
pass
for int_type in int_types:
iwork = N.zeros((1,), int_type)
try:
dgesdd('S', n, n, array, n, sv, u, n, vt, n, work, -1, iwork, 0)
break
except LapackError:
pass
del n, array, sv, u, vt, work, iwork, int_types
del array_package
#
# A set of particle vectors that define a subspace
#
class ParticleVectorSet(object):
def __init__(self, universe, data):
self.universe = universe
if type(data) == N.arraytype:
self.n = data.shape[0]
self.array = data
else:
self.n = data
self.array = N.zeros((self.n, universe.numberOfAtoms(), 3),
N.Float)
def __len__(self):
return self.n
def __getitem__(self, i):
if i >= self.n:
raise IndexError
return ParticleProperties.ParticleVector(self.universe, self.array[i])
[docs]class Subspace(object):
"""
Subspace of infinitesimal atomic motions
"""
def __init__(self, universe, vectors):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param vectors: a list of :class:`~MMTK.ParticleProperties.ParticleVector`
objects that define the subspace. They need not be
orthogonal or linearly independent.
:type vectors: list
"""
self.universe = universe
self.vectors = vectors
self._basis = None
def __add__(self, other):
return Subspace(self.vectors+other.vectors)
def __len__(self):
return len(self.vectors)
def __getitem__(self, item):
return self.vectors[item]
[docs] def getBasis(self):
"""
Construct a basis for the subspace by orthonormalization of
the input vectors using Singular Value Decomposition. The
basis consists of a sequence of
:class:`~MMTK.ParticleProperties.ParticleVector`
objects that are orthonormal in configuration space.
:returns: the basis
"""
if self._basis is None:
basis = N.array([v.array for v in self.vectors], N.Float)
shape = basis.shape
nvectors = shape[0]
natoms = shape[1]
basis.shape = (nvectors, 3*natoms)
sv = N.zeros((min(nvectors, 3*natoms),), N.Float)
min_n_m = min(3*natoms, nvectors)
vt = N.zeros((nvectors, min_n_m), N.Float)
work = N.zeros((1,), N.Float)
iwork = N.zeros((8*min_n_m,), int_type)
if 3*natoms >= nvectors:
result = dgesdd('O', 3*natoms, nvectors, basis, 3*natoms,
sv, basis, 3*natoms, vt, min_n_m,
work, -1, iwork, 0)
work = N.zeros((int(work[0]),), N.Float)
result = dgesdd('O', 3*natoms, nvectors, basis, 3*natoms,
sv, basis, 3*natoms, vt, min_n_m,
work, work.shape[0], iwork, 0)
u = basis
else:
u = N.zeros((min_n_m, 3*natoms), N.Float)
result = dgesdd('S', 3*natoms, nvectors, basis, 3*natoms,
sv, u, 3*natoms, vt, min_n_m,
work, -1, iwork, 0)
work = N.zeros((int(work[0]),), N.Float)
result = dgesdd('S', 3*natoms, nvectors, basis, 3*natoms,
sv, u, 3*natoms, vt, min_n_m,
work, work.shape[0], iwork, 0)
if result['info'] != 0:
raise ValueError('Lapack SVD: ' + `result['info']`)
svmax = N.maximum.reduce(sv)
nvectors = N.add.reduce(N.greater(sv, 1.e-10*svmax))
u = u[:nvectors]
u.shape = (nvectors, natoms, 3)
self._basis = ParticleVectorSet(self.universe, u)
return self._basis
[docs] def projectionOf(self, vector):
"""
:param vector: a particle vector
:type vector: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the projection of the vector onto the subspace.
"""
vector = vector.array
basis = self.getBasis().array
p = N.zeros(vector.shape, N.Float)
for bv in basis:
N.add(N.add.reduce(N.ravel(bv*vector))*bv, p, p)
return ParticleProperties.ParticleVector(self.universe, p)
[docs] def projectionComplementOf(self, vector):
"""
:param vector: a particle vector
:type vector: :class:`~MMTK.ParticleProperties.ParticleVector`
:returns: the projection of the vector onto the orthogonal complement
of the subspace.
"""
return vector - self.projectionOf(vector)
[docs] def complement(self):
"""
:returns: the orthogonal complement subspace
:rtype: :class:`~MMTK.Subspace.Subspace`
"""
basis = []
for i in range(self.universe.numberOfAtoms()):
for e in [ex, ey, ez]:
p = ParticleProperties.ParticleVector(self.universe)
p[i] = e
basis.append(self.projectionComplementOf(p))
return Subspace(self.universe, basis)
[docs]class LinkedRigidBodyMotionSubspace(Subspace):
"""
Subspace for the motion of linked rigid bodies
This class describes the same subspace as RigidBodyMotionSubspace,
and is used by the latter. For collections of several chains of
linked rigid bodies, RigidBodyMotionSubspace is more efficient.
"""
def __init__(self, universe, rigid_bodies):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param rigid_bodies: a list or set of rigid bodies
with some common atoms
"""
ex_ey_ez = [Vector(1.,0.,0.), Vector(0.,1.,0.), Vector(0.,0.,1.)]
# Constructs
# 1) a list of vectors describing the rigid-body motions of each
# rigid body as if it were independent.
# 2) a list of pair-distance constraint vectors for all pairs of
# atoms inside a rigid body.
# The LRB subspace is constructed from the projections of the
# first set of vectors onto the orthogonal complement of the
# subspace generated by the second set of vectors.
vectors = []
c_vectors = []
for rb in rigid_bodies:
atoms = rb.atomList()
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in atoms:
v[a] = d
vectors.append(v)
if len(atoms) > 1:
center = rb.centerOfMass()
iv = len(vectors)-3
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in atoms:
v[a] = d.cross(a.position()-center)
for vt in vectors[iv:]:
v -= v.dotProduct(vt)*vt
if v.dotProduct(v) > 0.:
vectors.append(v)
for a1, a2 in Utility.pairs(atoms):
distance = universe.distanceVector(a1.position(),
a2.position())
v = ParticleProperties.ParticleVector(universe)
v[a1] = distance
v[a2] = -distance
c_vectors.append(v)
if c_vectors:
constraints = Subspace(universe, c_vectors)
vectors = [constraints.projectionComplementOf(v)
for v in vectors]
Subspace.__init__(self, universe, vectors)
[docs]class RigidMotionSubspace(Subspace):
"""
Subspace of rigid-body motions
A rigid-body motion subspace is the subspace which contains
the rigid-body motions of any number of chemical objects.
"""
def __init__(self, universe, objects):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param objects: a sequence of objects whose rigid-body motion is
included in the subspace
"""
if not Utility.isSequenceObject(objects):
objects = [objects]
else:
objects = copy.copy(objects)
# Identify connected sets of linked rigid bodies and remove
# them from the plain rigid body list.
atom_map = {}
for o in objects:
for a in o.atomIterator():
am = atom_map.get(a, [])
am.append(o)
atom_map[a] = am
rb_map = {}
for rbs in atom_map.values():
if len(rbs) > 1:
for rb in rbs:
rb_map[rb] = rb_map.get(rb, frozenset()) \
.union(frozenset(rbs))
for rb in rb_map.keys():
objects.remove(rb)
while True:
changed = False
for rbs in rb_map.values():
for rb in rbs:
s = rb_map[rb]
rb_map[rb] = s.union(rbs)
if s != rb_map[rb]:
changed = True
if not changed:
break
lrbs = frozenset(rb_map.values())
# Generate the subspace vectors for the isolated rigid bodies.
ex_ey_ez = [Vector(1.,0.,0.), Vector(0.,1.,0.), Vector(0.,0.,1.)]
vectors = []
for o in objects:
rb_atoms = o.atomList()
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in rb_atoms:
v[a] = d
vectors.append(v/N.sqrt(len(rb_atoms)))
if len(rb_atoms) > 1:
center = o.centerOfMass()
iv = len(vectors)-3
for d in ex_ey_ez:
v = ParticleProperties.ParticleVector(universe)
for a in rb_atoms:
v[a] = d.cross(a.position()-center)
for vt in vectors[iv:]:
v -= v.dotProduct(vt)*vt
norm_sq = N.sqrt(v.dotProduct(v))
if norm_sq > 0.:
vectors.append(v/norm_sq)
# Generate the subspace vectors for the linked rigid bodies.
for lrb in lrbs:
lrb_ss = LinkedRigidBodyMotionSubspace(universe, lrb)
for v in lrb_ss.getBasis():
vectors.append(v)
Subspace.__init__(self, universe, vectors)
# The vector set is already orthonormal by construction,
# so we can skip the lengthy SVD procedure.
self._basis = ParticleVectorSet(universe, len(vectors))
for i in range(len(vectors)):
self._basis.array[i] = vectors[i].array
[docs]class PairDistanceSubspace(Subspace):
"""
Subspace of pair-distance motions
A pair-distance motion subspace is the subspace which contains
the relative motions of any number of atom pairs along
their distance vector, e.g. bond elongation between two
bonded atoms.
"""
def __init__(self, universe, atom_pairs):
"""
:param universe: the universe for which the subspace is created
:type universe: :class:`~MMTK.Universe.Universe`
:param atom_pairs: a sequence of atom pairs whose distance-vector
motion is included in the subspace
"""
vectors = []
for atom1, atom2 in atom_pairs:
v = ParticleProperties.ParticleVector(universe)
distance = atom1.position()-atom2.position()
v[atom1] = distance
v[atom2] = -distance
vectors.append(v)
Subspace.__init__(self, universe, vectors)