Eigen  3.2.91
Eigen::SparseVector< _Scalar, _Options, _StorageIndex > Class Template Reference

Detailed Description

template<typename _Scalar, int _Options, typename _StorageIndex>
class Eigen::SparseVector< _Scalar, _Options, _StorageIndex >

a sparse vector class

Template Parameters
_Scalarthe scalar type, i.e. the type of the coefficients

See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.

This class can be extended with the help of the plugin mechanism described on the page Customizing/Extending Eigen by defining the preprocessor symbol EIGEN_SPARSEVECTOR_PLUGIN.

+ Inheritance diagram for Eigen::SparseVector< _Scalar, _Options, _StorageIndex >:

Public Types

typedef Eigen::Index Index
 The interface type of indices. More...
 
typedef Scalar value_type
 

Public Member Functions

const CwiseBinaryOp< CustomBinaryOp, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > binaryExpr (const Eigen::SparseMatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex > > block (Index startRow, Index startCol, Index blockRows, Index blockCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex > > block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols > block (Index startRow, Index startCol)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols > block (Index startRow, Index startCol) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols > block (Index startRow, Index startCol, Index blockRows, Index blockCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, BlockRows, BlockCols > block (Index startRow, Index startCol, Index blockRows, Index blockCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex > > bottomLeftCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex > > bottomLeftCorner (Index cRows, Index cCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomLeftCorner ()
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomLeftCorner () const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomLeftCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomLeftCorner (Index cRows, Index cCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex > > bottomRightCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex > > bottomRightCorner (Index cRows, Index cCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomRightCorner ()
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomRightCorner () const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomRightCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > bottomRightCorner (Index cRows, Index cCols) const
 
RowsBlockXpr bottomRows (Index n)
 
ConstRowsBlockXpr bottomRows (Index n) const
 
NRowsBlockXpr< N >::Type bottomRows (Index n=N)
 
ConstNRowsBlockXpr< N >::Type bottomRows (Index n=N) const
 
CastXpr< NewType >::Type cast () const
 
Scalar & coeffRef (Index i)
 
ColXpr col (Index i)
 
ConstColXpr col (Index i) const
 
ConjugateReturnType conjugate () const
 
const CwiseAbsReturnType cwiseAbs () const
 
const CwiseAbs2ReturnType cwiseAbs2 () const
 
const CwiseBinaryOp< std::equal_to< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > cwiseEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseScalarEqualReturnType cwiseEqual (const Scalar &s) const
 
const CwiseInverseReturnType cwiseInverse () const
 
const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > cwiseMax (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_max_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const ConstantReturnType > cwiseMax (const Scalar &other) const
 
const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > cwiseMin (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_min_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const ConstantReturnType > cwiseMin (const Scalar &other) const
 
const CwiseBinaryOp< std::not_equal_to< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > cwiseNotEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_product_op< typename SparseVector< _Scalar, _Options, _StorageIndex >::Scalar, typename OtherDerived::Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > cwiseProduct (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_quotient_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > cwiseQuotient (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseSqrtReturnType cwiseSqrt () const
 
Derived & derived ()
 
const Derived & derived () const
 
const internal::eval< SparseVector< _Scalar, _Options, _StorageIndex > >::type eval () const
 
SegmentReturnType head (Index n)
 
ConstSegmentReturnType head (Index n) const
 
FixedSegmentReturnType< N >::Type head (Index n=N)
 
ConstFixedSegmentReturnType< N >::Type head (Index n=N) const
 
const ImagReturnType imag () const
 
NonConstImagReturnType imag ()
 
bool isVector () const
 
ColsBlockXpr leftCols (Index n)
 
ConstColsBlockXpr leftCols (Index n) const
 
NColsBlockXpr< N >::Type leftCols (Index n=N)
 
ConstNColsBlockXpr< N >::Type leftCols (Index n=N) const
 
ColsBlockXpr middleCols (Index startCol, Index numCols)
 
ConstColsBlockXpr middleCols (Index startCol, Index numCols) const
 
NColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N)
 
ConstNColsBlockXpr< N >::Type middleCols (Index startCol, Index n=N) const
 
RowsBlockXpr middleRows (Index startRow, Index n)
 
ConstRowsBlockXpr middleRows (Index startRow, Index n) const
 
NRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N)
 
ConstNRowsBlockXpr< N >::Type middleRows (Index startRow, Index n=N) const
 
Index nonZeros () const
 
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
 
const ScalarComplexMultipleReturnType operator* (const std::complex< Scalar > &scalar) const
 
const CwiseBinaryOp< internal::scalar_sum_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > operator+ (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const CwiseBinaryOp< internal::scalar_difference_op< Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex >, const OtherDerived > operator- (const Eigen::SparseMatrixBase< OtherDerived > &other) const
 
const NegativeReturnType operator- () const
 
const ScalarQuotient1ReturnType operator/ (const Scalar &scalar) const
 
RealReturnType real () const
 
NonConstRealReturnType real ()
 
ColsBlockXpr rightCols (Index n)
 
ConstColsBlockXpr rightCols (Index n) const
 
NColsBlockXpr< N >::Type rightCols (Index n=N)
 
ConstNColsBlockXpr< N >::Type rightCols (Index n=N) const
 
RowXpr row (Index i)
 
ConstRowXpr row (Index i) const
 
SegmentReturnType segment (Index start, Index n)
 
ConstSegmentReturnType segment (Index start, Index n) const
 
FixedSegmentReturnType< N >::Type segment (Index start, Index n=N)
 
ConstFixedSegmentReturnType< N >::Type segment (Index start, Index n=N) const
 
Index size () const
 
Scalar sum () const
 
void swap (SparseVector &other)
 
SegmentReturnType tail (Index n)
 
ConstSegmentReturnType tail (Index n) const
 
FixedSegmentReturnType< N >::Type tail (Index n=N)
 
ConstFixedSegmentReturnType< N >::Type tail (Index n=N) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex > > topLeftCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex > > topLeftCorner (Index cRows, Index cCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topLeftCorner ()
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topLeftCorner () const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topLeftCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topLeftCorner (Index cRows, Index cCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex > > topRightCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex > > topRightCorner (Index cRows, Index cCols) const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topRightCorner ()
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topRightCorner () const
 
Block< SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topRightCorner (Index cRows, Index cCols)
 
const Block< const SparseVector< _Scalar, _Options, _StorageIndex >, CRows, CCols > topRightCorner (Index cRows, Index cCols) const
 
RowsBlockXpr topRows (Index n)
 
ConstRowsBlockXpr topRows (Index n) const
 
NRowsBlockXpr< N >::Type topRows (Index n=N)
 
ConstNRowsBlockXpr< N >::Type topRows (Index n=N) const
 
SparseSymmetricPermutationProduct< SparseVector< _Scalar, _Options, _StorageIndex >, Upper|Lower > twistedBy (const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &perm) const
 
const CwiseUnaryOp< CustomUnaryOp, const SparseVector< _Scalar, _Options, _StorageIndex > > unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise. More...
 
const CwiseUnaryView< CustomViewOp, const SparseVector< _Scalar, _Options, _StorageIndex > > unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const
 
 ~SparseVector ()
 

Member Typedef Documentation

template<typename Derived>
typedef Eigen::Index Eigen::EigenBase< Derived >::Index
inherited

The interface type of indices.

To change this, #define the preprocessor symbol EIGEN_DEFAULT_DENSE_INDEX_TYPE.

Deprecated:
Since Eigen 3.3, its usage is deprecated. Use Eigen::Index instead.
See also
StorageIndex, Preprocessor directives.
typedef Scalar Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::value_type
inherited

The numeric type of the expression' coefficients, e.g. float, double, int or std::complex<float>, etc.

It is an alias for the Scalar type

Constructor & Destructor Documentation

template<typename _Scalar , int _Options, typename _StorageIndex >
Eigen::SparseVector< _Scalar, _Options, _StorageIndex >::~SparseVector ( )
inline

Destructor

Member Function Documentation

const CwiseBinaryOp<CustomBinaryOp, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::binaryExpr ( const Eigen::SparseMatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inlineinherited
Returns
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
Block<SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
)
inlineinherited
Returns
a dynamic-size expression of a block in *this.
Parameters
startRowthe first row in the block
startColthe first column in the block
blockRowsthe number of rows in the block
blockColsthe number of columns in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block(1, 1, 2, 2):" << endl << m.block(1, 1, 2, 2) << endl;
m.block(1, 1, 2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block(1, 1, 2, 2):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size matrix, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, block(Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const
inlineinherited

This is the const version of block(Index,Index,Index,Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > , BlockRows, BlockCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::block ( Index  startRow,
Index  startCol 
)
inlineinherited
Returns
a fixed-size expression of a block in *this.

The template parameters BlockRows and BlockCols are the number of rows and columns in the block.

Parameters
startRowthe first row in the block
startColthe first column in the block

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.block<2,2>(1,1):" << endl << m.block<2,2>(1,1) << endl;
m.block<2,2>(1,1).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.block<2,2>(1,1):
-6  1
-3  0
Now the matrix m is:
 7  9 -5 -3
-2  0  0  0
 6  0  0  9
 6  6  3  9
Note
since block is a templated member, the keyword template has to be used if the matrix type is also a template parameter:
m.template block<3,3>(1,1);
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , BlockRows, BlockCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::block ( Index  startRow,
Index  startCol 
) const
inlineinherited

This is the const version of block<>(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > , BlockRows, BlockCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
)
inlineinherited
Returns
an expression of a block in *this.
Template Parameters
BlockRowsnumber of rows in block as specified at compile-time
BlockColsnumber of columns in block as specified at compile-time
Parameters
startRowthe first row in the block
startColthe first column in the block
blockRowsnumber of rows in block as specified at run-time
blockColsnumber of columns in block as specified at run-time

This function is mainly useful for blocks where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, blockRows should equal BlockRows unless BlockRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is the block:" << endl << m.block<2, Dynamic>(1, 1, 2, 3) << endl;
m.block<2, Dynamic>(1, 1, 2, 3).setZero();
cout << "Now the matrix m is:" << endl << m << endl;
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , BlockRows, BlockCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::block ( Index  startRow,
Index  startCol,
Index  blockRows,
Index  blockCols 
) const
inlineinherited

This is the const version of block<>(Index, Index, Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a bottom-left corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner(2, 2):" << endl;
cout << m.bottomLeftCorner(2, 2) << endl;
m.bottomLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner(2, 2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomLeftCorner(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomLeftCorner ( )
inlineinherited
Returns
an expression of a fixed-size bottom-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,2>():" << endl;
cout << m.bottomLeftCorner<2,2>() << endl;
m.bottomLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,2>():
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomLeftCorner ( ) const
inlineinherited

This is the const version of bottomLeftCorner<int, int>().

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a bottom-left corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomLeftCorner<2,Dynamic>(2,2) << endl;
m.bottomLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomLeftCorner<2,Dynamic>(2,2):
 6 -3
 6  6
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  9
 0  0  3  9
See also
class Block
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomLeftCorner<int, int>(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a bottom-right corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner(2, 2):" << endl;
cout << m.bottomRightCorner(2, 2) << endl;
m.bottomRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner(2, 2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomRightCorner(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRightCorner ( )
inlineinherited
Returns
an expression of a fixed-size bottom-right corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,2>():" << endl;
cout << m.bottomRightCorner<2,2>() << endl;
m.bottomRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,2>():
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRightCorner ( ) const
inlineinherited

This is the const version of bottomRightCorner<int, int>().

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a bottom-right corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.bottomRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.bottomRightCorner<2,Dynamic>(2,2) << endl;
m.bottomRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.bottomRightCorner<2,Dynamic>(2,2):
0 9
3 9
Now the matrix m is:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  0
 6  6  0  0
See also
class Block
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of bottomRightCorner<int, int>(Index, Index).

RowsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRows ( Index  n)
inlineinherited
Returns
a block consisting of the bottom rows of *this.
Parameters
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows(2):" << endl;
cout << a.bottomRows(2) << endl;
a.bottomRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows(2):
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRows ( Index  n) const
inlineinherited

This is the const version of bottomRows(Index).

NRowsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRows ( Index  n = N)
inlineinherited
Returns
a block consisting of the bottom rows of *this.
Template Parameters
Nthe number of rows in the block as specified at compile-time
Parameters
nthe number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.bottomRows<2>():" << endl;
cout << a.bottomRows<2>() << endl;
a.bottomRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.bottomRows<2>():
 6 -3  0  9
 6  6  3  9
Now the array a is:
 7  9 -5 -3
-2 -6  1  0
 0  0  0  0
 0  0  0  0
See also
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::bottomRows ( Index  n = N) const
inlineinherited

This is the const version of bottomRows<int>().

CastXpr<NewType>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cast ( ) const
inlineinherited
Returns
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also
class CwiseUnaryOp
template<typename _Scalar , int _Options, typename _StorageIndex >
Scalar& Eigen::SparseVector< _Scalar, _Options, _StorageIndex >::coeffRef ( Index  i)
inline
Returns
a reference to the coefficient value at given index i This operation involes a log(rho*size) binary search. If the coefficient does not exist yet, then a sorted insertion into a sequential buffer is performed.

This insertion might be very costly if the number of nonzeros above i is large.

ColXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::col ( Index  i)
inlineinherited
Returns
an expression of the i-th column of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.col(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 4 0
0 5 0
0 6 1
See also
row(), class Block
ConstColXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::col ( Index  i) const
inlineinherited

This is the const version of col().

ConjugateReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::conjugate ( ) const
inlineinherited
Returns
an expression of the complex conjugate of *this.
See also
adjoint()
const CwiseAbsReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseAbs ( ) const
inlineinherited
Returns
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also
cwiseAbs2()
const CwiseAbs2ReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseAbs2 ( ) const
inlineinherited
Returns
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also
cwiseAbs()
const CwiseBinaryOp<std::equal_to<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise == operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseScalarEqualReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseEqual ( const Scalar &  s) const
inlineinherited
Returns
an expression of the coefficient-wise == operator of *this and a scalar s
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseInverseReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseInverse ( ) const
inlineinherited
Returns
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

  0.5     2     1
0.333     4     1
See also
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseMax ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const ConstantReturnType> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseMax ( const Scalar &  other) const
inlineinherited
Returns
an expression of the coefficient-wise max of *this and scalar other
See also
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseMin ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const ConstantReturnType> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseMin ( const Scalar &  other) const
inlineinherited
Returns
an expression of the coefficient-wise min of *this and scalar other
See also
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseNotEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise != operator of *this and other
Warning
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also
cwiseEqual(), isApprox(), isMuchSmallerThan()
const CwiseBinaryOp<internal::scalar_product_op<typename SparseVector< _Scalar, _Options, _StorageIndex > ::Scalar, typename OtherDerived ::Scalar >, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseProduct ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also
class CwiseBinaryOp, cwiseAbs2
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseQuotient ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

 0.5
 1.5
1.33
See also
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseSqrtReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::cwiseSqrt ( ) const
inlineinherited
Returns
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

   1
1.41
   2
See also
cwisePow(), cwiseSquare()
template<typename Derived>
Derived& Eigen::EigenBase< Derived >::derived ( )
inlineinherited
Returns
a reference to the derived object

Referenced by Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::analyzePattern(), Eigen::MatrixBase< Derived >::applyOnTheLeft(), Eigen::MatrixBase< Derived >::applyOnTheRight(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::applyTranspositionOnTheLeft(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::applyTranspositionOnTheRight(), Eigen::SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::bottomRightCorner(), Eigen::EigenBase< BandMatrixWrapper< _CoefficientsType, _Rows, _Cols, _Supers, _Subs, _Options > >::cols(), Eigen::SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::cols(), Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::compute(), Eigen::TriangularBase< SelfAdjointView< _MatrixType, UpLo > >::copyCoeff(), Eigen::SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::eval(), Eigen::IterativeSolverBase< ConjugateGradient< _MatrixType, _UpLo, _Preconditioner > >::factorize(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::indices(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::inverse(), Eigen::RotationBase< Derived, 3 >::operator*(), Eigen::SparseSelfAdjointView< MatrixType, _Mode >::operator*(), Eigen::Translation< _Scalar, _Dim >::operator*(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::operator*(), Eigen::SparseMatrixBase< Derived >::operator*(), Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator*(), Eigen::MatrixBase< Derived >::operator*=(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::operator=(), Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::operator=(), Eigen::DenseBase< Derived >::operator=(), Eigen::PlainObjectBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::operator=(), Eigen::PlainObjectBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::PlainObjectBase(), Eigen::PlainObjectBase< Matrix< _Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols > >::resizeLike(), Eigen::EigenBase< BandMatrixWrapper< _CoefficientsType, _Rows, _Cols, _Supers, _Subs, _Options > >::rows(), Eigen::SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::rows(), Eigen::SparseSolverBase< SimplicialLDLT< _MatrixType, _UpLo, _Ordering > >::solve(), Eigen::SparseMatrix< Scalar, RowMajor, StorageIndex >::SparseMatrix(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::toDenseMatrix(), Eigen::SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::topLeftCorner(), Eigen::Transform< _Scalar, _Dim, _Mode, _Options >::Transform(), Eigen::PermutationBase< PermutationMatrix< SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex > >::transpose(), and Eigen::SparseMatrixBase< CwiseBinaryOp< BinaryOp, Lhs, Rhs > >::twistedBy().

template<typename Derived>
const Derived& Eigen::EigenBase< Derived >::derived ( ) const
inlineinherited
Returns
a const reference to the derived object
const internal::eval<SparseVector< _Scalar, _Options, _StorageIndex > >::type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::eval ( ) const
inlineinherited
Returns
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

SegmentReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::head ( Index  n)
inlineinherited
Returns
a dynamic-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters
nthe number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head(2) << endl;
v.head(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, block(Index,Index)
ConstSegmentReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::head ( Index  n) const
inlineinherited

This is the const version of head(Index).

FixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::head ( Index  n = N)
inlineinherited
Returns
a fixed-size expression of the first coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters
Nthe number of coefficients in the segment as specified at compile-time
Parameters
nthe number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.head(2):" << endl << v.head<2>() << endl;
v.head<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.head(2):
 7 -2
Now the vector v is:
0 0 6 6
See also
class Block
ConstFixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::head ( Index  n = N) const
inlineinherited

This is the const version of head<int>().

const ImagReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::imag ( ) const
inlineinherited
Returns
an read-only expression of the imaginary part of *this.
See also
real()
NonConstImagReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::imag ( )
inlineinherited
Returns
a non const expression of the imaginary part of *this.
See also
real()
InnerVectorReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::innerVector ( Index  outer)
inherited
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const ConstInnerVectorReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::innerVector ( Index  outer) const
inherited
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
InnerVectorsReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::innerVectors ( Index  outerStart,
Index  outerSize 
)
inherited
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const ConstInnerVectorsReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::innerVectors ( Index  outerStart,
Index  outerSize 
) const
inherited
Returns
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
bool Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::isVector ( ) const
inlineinherited
Returns
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
rows()==1 || cols()==1
See also
rows(), cols(), IsVectorAtCompileTime.
ColsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::leftCols ( Index  n)
inlineinherited
Returns
a block consisting of the left columns of *this.
Parameters
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols(2):" << endl;
cout << a.leftCols(2) << endl;
a.leftCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols(2):
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::leftCols ( Index  n) const
inlineinherited

This is the const version of leftCols(Index).

NColsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::leftCols ( Index  n = N)
inlineinherited
Returns
a block consisting of the left columns of *this.
Template Parameters
Nthe number of columns in the block as specified at compile-time
Parameters
nthe number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.leftCols<2>():" << endl;
cout << a.leftCols<2>() << endl;
a.leftCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.leftCols<2>():
 7  9
-2 -6
 6 -3
 6  6
Now the array a is:
 0  0 -5 -3
 0  0  1  0
 0  0  0  9
 0  0  3  9
See also
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::leftCols ( Index  n = N) const
inlineinherited

This is the const version of leftCols<int>().

ColsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleCols ( Index  startCol,
Index  numCols 
)
inlineinherited
Returns
a block consisting of a range of columns of *this.
Parameters
startColthe index of the first column in the block
numColsthe number of columns in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(1..3,:) =\n" << A.middleCols(1,3) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleCols ( Index  startCol,
Index  numCols 
) const
inlineinherited

This is the const version of middleCols(Index,Index).

NColsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleCols ( Index  startCol,
Index  n = N 
)
inlineinherited
Returns
a block consisting of a range of columns of *this.
Template Parameters
Nthe number of columns in the block as specified at compile-time
Parameters
startColthe index of the first column in the block
nthe number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(:,1..3) =\n" << A.middleCols<3>(1) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(:,1..3) =
-6  0  9
-3  3  3
 6 -3  5
-5  0 -8
 1  9  2
See also
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleCols ( Index  startCol,
Index  n = N 
) const
inlineinherited

This is the const version of middleCols<int>().

RowsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleRows ( Index  startRow,
Index  n 
)
inlineinherited
Returns
a block consisting of a range of rows of *this.
Parameters
startRowthe index of the first row in the block
nthe number of rows in the block

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(2..3,:) =\n" << A.middleRows(2,2) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(2..3,:) =
 6  6 -3  5 -8
 6 -5  0 -8  6
See also
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleRows ( Index  startRow,
Index  n 
) const
inlineinherited

This is the const version of middleRows(Index,Index).

NRowsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleRows ( Index  startRow,
Index  n = N 
)
inlineinherited
Returns
a block consisting of a range of rows of *this.
Template Parameters
Nthe number of rows in the block as specified at compile-time
Parameters
startRowthe index of the first row in the block
nthe number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
int main(void)
{
int const N = 5;
MatrixXi A(N,N);
A.setRandom();
cout << "A =\n" << A << '\n' << endl;
cout << "A(1..3,:) =\n" << A.middleRows<3>(1) << endl;
return 0;
}

Output:

A =
  7  -6   0   9 -10
 -2  -3   3   3  -5
  6   6  -3   5  -8
  6  -5   0  -8   6
  9   1   9   2  -7

A(1..3,:) =
-2 -3  3  3 -5
 6  6 -3  5 -8
 6 -5  0 -8  6
See also
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::middleRows ( Index  startRow,
Index  n = N 
) const
inlineinherited

This is the const version of middleRows<int>().

template<typename _Scalar , int _Options, typename _StorageIndex >
Index Eigen::SparseVector< _Scalar, _Options, _StorageIndex >::nonZeros ( ) const
inline
Returns
the number of non zero coefficients
const ScalarMultipleReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator* ( const Scalar &  scalar) const
inlineinherited
Returns
an expression of *this scaled by the scalar factor scalar
const ScalarComplexMultipleReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator* ( const std::complex< Scalar > &  scalar) const
inlineinherited

Overloaded for efficient real matrix times complex scalar value

const Product<SparseVector< _Scalar, _Options, _StorageIndex > ,OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator* ( const SparseMatrixBase< OtherDerived > &  other) const
inherited
Returns
an expression of the product of two sparse matrices. By default a conservative product preserving the symbolic non zeros is performed. The automatic pruning of the small values can be achieved by calling the pruned() function in which case a totally different product algorithm is employed:
C = (A*B).pruned(); // supress numerical zeros (exact)
C = (A*B).pruned(ref);
C = (A*B).pruned(ref,epsilon);
where ref is a meaningful non zero reference value.
const CwiseBinaryOp< internal::scalar_sum_op <Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator+ ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inherited
Returns
an expression of the sum of *this and other
Note
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also
class CwiseBinaryOp, operator+=()
const CwiseBinaryOp< internal::scalar_difference_op <Scalar>, const SparseVector< _Scalar, _Options, _StorageIndex > , const OtherDerived> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator- ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inherited
Returns
an expression of the difference of *this and other
Note
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also
class CwiseBinaryOp, operator-=()
const NegativeReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator- ( ) const
inlineinherited
Returns
an expression of the opposite of *this
const ScalarQuotient1ReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::operator/ ( const Scalar &  scalar) const
inlineinherited
Returns
an expression of *this divided by the scalar value scalar
const SparseView<SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::pruned ( const Scalar &  reference = Scalar(0),
const RealScalar &  epsilon = NumTraits<Scalar>::dummy_precision() 
) const
inlineinherited
Returns
an expression of *this with values smaller than reference * epsilon are removed.

This method is typically used in conjunction with the product of two sparse matrices to automatically prune the smallest values as follows:

C = (A*B).pruned(); // suppress numerical zeros (exact)
C = (A*B).pruned(ref);
C = (A*B).pruned(ref,epsilon);

where ref is a meaningful non zero reference value.

RealReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::real ( ) const
inlineinherited
Returns
a read-only expression of the real part of *this.
See also
imag()
NonConstRealReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::real ( )
inlineinherited
Returns
a non const expression of the real part of *this.
See also
imag()
ColsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::rightCols ( Index  n)
inlineinherited
Returns
a block consisting of the right columns of *this.
Parameters
nthe number of columns in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols(2):" << endl;
cout << a.rightCols(2) << endl;
a.rightCols(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols(2):
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
ConstColsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::rightCols ( Index  n) const
inlineinherited

This is the const version of rightCols(Index).

NColsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::rightCols ( Index  n = N)
inlineinherited
Returns
a block consisting of the right columns of *this.
Template Parameters
Nthe number of columns in the block as specified at compile-time
Parameters
nthe number of columns in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.rightCols<2>():" << endl;
cout << a.rightCols<2>() << endl;
a.rightCols<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.rightCols<2>():
-5 -3
 1  0
 0  9
 3  9
Now the array a is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  0
 6  6  0  0
See also
class Block, block(Index,Index,Index,Index)
ConstNColsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::rightCols ( Index  n = N) const
inlineinherited

This is the const version of rightCols<int>().

RowXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::row ( Index  i)
inlineinherited
Returns
an expression of the i-th row of *this. Note that the numbering starts at 0.

Example:

Matrix3d m = Matrix3d::Identity();
m.row(1) = Vector3d(4,5,6);
cout << m << endl;

Output:

1 0 0
4 5 6
0 0 1
See also
col(), class Block
ConstRowXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::row ( Index  i) const
inlineinherited

This is the const version of row().

SegmentReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::segment ( Index  start,
Index  n 
)
inlineinherited
Returns
a dynamic-size expression of a segment (i.e. a vector block) in *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters
startthe first coefficient in the segment
nthe number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment(1, 2):" << endl << v.segment(1, 2) << endl;
v.segment(1, 2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment(1, 2):
-2  6
Now the vector v is:
7 0 0 6
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, segment(Index)
ConstSegmentReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::segment ( Index  start,
Index  n 
) const
inlineinherited

This is the const version of segment(Index,Index).

FixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::segment ( Index  start,
Index  n = N 
)
inlineinherited
Returns
a fixed-size expression of a segment (i.e. a vector block) in *this

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters
Nthe number of coefficients in the segment as specified at compile-time
Parameters
startthe index of the first element in the segment
nthe number of coefficients in the segment as specified at compile-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.segment<2>(1):" << endl << v.segment<2>(1) << endl;
v.segment<2>(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.segment<2>(1):
-2  6
Now the vector v is:
 7 -2  0  0
See also
class Block
ConstFixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::segment ( Index  start,
Index  n = N 
) const
inlineinherited

This is the const version of segment<int>(Index).

Index Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::size ( ) const
inlineinherited
Returns
the number of coefficients, which is rows()*cols().
See also
rows(), cols().
template<typename _Scalar , int _Options, typename _Index >
internal::traits< SparseVector< _Scalar, _Options, _Index > >::Scalar Eigen::SparseVector< _Scalar, _Options, _Index >::sum ( ) const

Overloaded for performance

template<typename _Scalar , int _Options, typename _StorageIndex >
void Eigen::SparseVector< _Scalar, _Options, _StorageIndex >::swap ( SparseVector< _Scalar, _Options, _StorageIndex > &  other)
inline

Swaps the values of *this and other. Overloaded for performance: this version performs a shallow swap by swaping pointers and attributes only.

See also
SparseMatrixBase::swap()
SegmentReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::tail ( Index  n)
inlineinherited
Returns
a dynamic-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Parameters
nthe number of coefficients in the segment

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail(2) << endl;
v.tail(2).setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
Note
Even though the returned expression has dynamic size, in the case when it is applied to a fixed-size vector, it inherits a fixed maximal size, which means that evaluating it does not cause a dynamic memory allocation.
See also
class Block, block(Index,Index)
ConstSegmentReturnType Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::tail ( Index  n) const
inlineinherited

This is the const version of tail(Index).

FixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::tail ( Index  n = N)
inlineinherited
Returns
a fixed-size expression of the last coefficients of *this.

This is only for vectors (either row-vectors or column-vectors), i.e. matrices which are known at compile-time to have either one row or one column.

Template Parameters
Nthe number of coefficients in the segment as specified at compile-time
Parameters
nthe number of coefficients in the segment as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

RowVector4i v = RowVector4i::Random();
cout << "Here is the vector v:" << endl << v << endl;
cout << "Here is v.tail(2):" << endl << v.tail<2>() << endl;
v.tail<2>().setZero();
cout << "Now the vector v is:" << endl << v << endl;

Output:

Here is the vector v:
 7 -2  6  6
Here is v.tail(2):
6 6
Now the vector v is:
 7 -2  0  0
See also
class Block
ConstFixedSegmentReturnType<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::tail ( Index  n = N) const
inlineinherited

This is the const version of tail<int>.

Block<SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a top-left corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner(2, 2):" << endl;
cout << m.topLeftCorner(2, 2) << endl;
m.topLeftCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner(2, 2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topLeftCorner(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topLeftCorner ( )
inlineinherited
Returns
an expression of a fixed-size top-left corner of *this.

The template parameters CRows and CCols are the number of rows and columns in the corner.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,2>():" << endl;
cout << m.topLeftCorner<2,2>() << endl;
m.topLeftCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,2>():
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topLeftCorner ( ) const
inlineinherited

This is the const version of topLeftCorner<int, int>().

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topLeftCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a top-left corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topLeftCorner<2,Dynamic>(2,2):" << endl;
cout << m.topLeftCorner<2,Dynamic>(2,2) << endl;
m.topLeftCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topLeftCorner<2,Dynamic>(2,2):
 7  9
-2 -6
Now the matrix m is:
 0  0 -5 -3
 0  0  1  0
 6 -3  0  9
 6  6  3  9
See also
class Block
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topLeftCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topLeftCorner<int, int>(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
a dynamic-size expression of a top-right corner of *this.
Parameters
cRowsthe number of rows in the corner
cColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner(2, 2):" << endl;
cout << m.topRightCorner(2, 2) << endl;
m.topRightCorner(2, 2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner(2, 2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topRightCorner(Index, Index).

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRightCorner ( )
inlineinherited
Returns
an expression of a fixed-size top-right corner of *this.
Template Parameters
CRowsthe number of rows in the corner
CColsthe number of columns in the corner

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,2>():" << endl;
cout << m.topRightCorner<2,2>() << endl;
m.topRightCorner<2,2>().setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,2>():
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block<int,int>(Index,Index)
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRightCorner ( ) const
inlineinherited

This is the const version of topRightCorner<int, int>().

Block<SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRightCorner ( Index  cRows,
Index  cCols 
)
inlineinherited
Returns
an expression of a top-right corner of *this.
Template Parameters
CRowsnumber of rows in corner as specified at compile-time
CColsnumber of columns in corner as specified at compile-time
Parameters
cRowsnumber of rows in corner as specified at run-time
cColsnumber of columns in corner as specified at run-time

This function is mainly useful for corners where the number of rows is specified at compile-time and the number of columns is specified at run-time, or vice versa. The compile-time and run-time information should not contradict. In other words, cRows should equal CRows unless CRows is Dynamic, and the same for the number of columns.

Example:

Matrix4i m = Matrix4i::Random();
cout << "Here is the matrix m:" << endl << m << endl;
cout << "Here is m.topRightCorner<2,Dynamic>(2,2):" << endl;
cout << m.topRightCorner<2,Dynamic>(2,2) << endl;
m.topRightCorner<2,Dynamic>(2,2).setZero();
cout << "Now the matrix m is:" << endl << m << endl;

Output:

Here is the matrix m:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is m.topRightCorner<2,Dynamic>(2,2):
-5 -3
 1  0
Now the matrix m is:
 7  9  0  0
-2 -6  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block
const Block<const SparseVector< _Scalar, _Options, _StorageIndex > , CRows, CCols> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRightCorner ( Index  cRows,
Index  cCols 
) const
inlineinherited

This is the const version of topRightCorner<int, int>(Index, Index).

RowsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRows ( Index  n)
inlineinherited
Returns
a block consisting of the top rows of *this.
Parameters
nthe number of rows in the block

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows(2):" << endl;
cout << a.topRows(2) << endl;
a.topRows(2).setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows(2):
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
ConstRowsBlockXpr Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRows ( Index  n) const
inlineinherited

This is the const version of topRows(Index).

NRowsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRows ( Index  n = N)
inlineinherited
Returns
a block consisting of the top rows of *this.
Template Parameters
Nthe number of rows in the block as specified at compile-time
Parameters
nthe number of rows in the block as specified at run-time

The compile-time and run-time information should not contradict. In other words, n should equal N unless N is Dynamic.

Example:

Array44i a = Array44i::Random();
cout << "Here is the array a:" << endl << a << endl;
cout << "Here is a.topRows<2>():" << endl;
cout << a.topRows<2>() << endl;
a.topRows<2>().setZero();
cout << "Now the array a is:" << endl << a << endl;

Output:

Here is the array a:
 7  9 -5 -3
-2 -6  1  0
 6 -3  0  9
 6  6  3  9
Here is a.topRows<2>():
 7  9 -5 -3
-2 -6  1  0
Now the array a is:
 0  0  0  0
 0  0  0  0
 6 -3  0  9
 6  6  3  9
See also
class Block, block(Index,Index,Index,Index)
ConstNRowsBlockXpr<N>::Type Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::topRows ( Index  n = N) const
inlineinherited

This is the const version of topRows<int>().

SparseSymmetricPermutationProduct<SparseVector< _Scalar, _Options, _StorageIndex > ,Upper|Lower> Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::twistedBy ( const PermutationMatrix< Dynamic, Dynamic, StorageIndex > &  perm) const
inlineinherited
Returns
an expression of P H P^-1 where H is the matrix represented by *this
const CwiseUnaryOp<CustomUnaryOp, const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inlineinherited

Apply a unary operator coefficient-wise.

Parameters
[in]funcFunctor implementing the unary operator
Template Parameters
CustomUnaryOpType of func
Returns
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define function to be applied coefficient-wise
double ramp(double x)
{
if (x > 0)
return x;
else
return 0;
}
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const SparseVector< _Scalar, _Options, _StorageIndex > > Eigen::SparseMatrixBase< SparseVector< _Scalar, _Options, _StorageIndex > >::unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inlineinherited
Returns
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also
class CwiseUnaryOp, class CwiseBinaryOp

The documentation for this class was generated from the following files: