Eigen  3.2.91
Eigen::PastixLLT< _MatrixType, _UpLo > Class Template Reference

Detailed Description

template<typename _MatrixType, int _UpLo>
class Eigen::PastixLLT< _MatrixType, _UpLo >

A sparse direct supernodal Cholesky (LLT) factorization and solver based on the PaStiX library.

This class is used to solve the linear systems A.X = B via a LL^T supernodal Cholesky factorization available in the PaStiX library. The matrix A should be symmetric and positive definite WARNING Selfadjoint complex matrices are not supported in the current version of PaStiX The vectors or matrices X and B can be either dense or sparse

Template Parameters
MatrixTypethe type of the sparse matrix A, it must be a SparseMatrix<>
UpLoThe part of the matrix to use : Lower or Upper. The default is Lower as required by PaStiX
See also
Sparse solvers

Inherits Eigen::PastixBase< Derived >.

Public Member Functions

void analyzePattern (const MatrixType &matrix)
 
void compute (const MatrixType &matrix)
 
Array< RealScalar, IPARM_SIZE, 1 > & dparm ()
 
double & dparm (int idxparam)
 
void factorize (const MatrixType &matrix)
 
ComputationInfo info () const
 Reports whether previous computation was successful. More...
 
Array< StorageIndex, IPARM_SIZE, 1 > & iparm ()
 
int & iparm (int idxparam)
 
template<typename Rhs >
const Solve< Derived, Rhs > solve (const MatrixBase< Rhs > &b) const
 
template<typename Rhs >
const Solve< Derived, Rhs > solve (const SparseMatrixBase< Rhs > &b) const
 

Member Function Documentation

template<typename _MatrixType , int _UpLo>
void Eigen::PastixLLT< _MatrixType, _UpLo >::analyzePattern ( const MatrixType &  matrix)
inline

Compute the LL^T symbolic factorization of matrix using its sparsity pattern The result of this operation can be used with successive matrices having the same pattern as matrix

See also
factorize()
template<typename _MatrixType , int _UpLo>
void Eigen::PastixLLT< _MatrixType, _UpLo >::compute ( const MatrixType &  matrix)
inline

Compute the L factor of the LL^T supernodal factorization of matrix

See also
analyzePattern() factorize()
template<class Derived>
Array<RealScalar,IPARM_SIZE,1>& Eigen::PastixBase< Derived >::dparm ( )
inlineinherited

Returns a reference to the double vector DPARM of PaStiX parameters The statistics related to the different phases of factorization and solve are saved here as well

See also
analyzePattern() factorize()
template<class Derived>
double& Eigen::PastixBase< Derived >::dparm ( int  idxparam)
inlineinherited

Return a reference to a particular index parameter of the DPARM vector

See also
dparm()
template<typename _MatrixType , int _UpLo>
void Eigen::PastixLLT< _MatrixType, _UpLo >::factorize ( const MatrixType &  matrix)
inline

Compute the LL^T supernodal numerical factorization of matrix

See also
analyzePattern()
template<class Derived>
ComputationInfo Eigen::PastixBase< Derived >::info ( ) const
inlineinherited

Reports whether previous computation was successful.

Returns
Success if computation was succesful, NumericalIssue if the PaStiX reports a problem InvalidInput if the input matrix is invalid
See also
iparm()
template<class Derived>
Array<StorageIndex,IPARM_SIZE,1>& Eigen::PastixBase< Derived >::iparm ( )
inlineinherited

Returns a reference to the integer vector IPARM of PaStiX parameters to modify the default parameters. The statistics related to the different phases of factorization and solve are saved here as well

See also
analyzePattern() factorize()
template<class Derived>
int& Eigen::PastixBase< Derived >::iparm ( int  idxparam)
inlineinherited

Return a reference to a particular index parameter of the IPARM vector

See also
iparm()
template<typename Derived>
template<typename Rhs >
const Solve<Derived, Rhs> Eigen::SparseSolverBase< Derived >::solve ( const MatrixBase< Rhs > &  b) const
inlineinherited
Returns
an expression of the solution x of $ A x = b $ using the current decomposition of A.
See also
compute()
template<typename Derived>
template<typename Rhs >
const Solve<Derived, Rhs> Eigen::SparseSolverBase< Derived >::solve ( const SparseMatrixBase< Rhs > &  b) const
inlineinherited
Returns
an expression of the solution x of $ A x = b $ using the current decomposition of A.
See also
compute()

The documentation for this class was generated from the following file: