1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! # Type Coercion
//!
//! Under certain circumstances we will coerce from one type to another,
//! for example by auto-borrowing.  This occurs in situations where the
//! compiler has a firm 'expected type' that was supplied from the user,
//! and where the actual type is similar to that expected type in purpose
//! but not in representation (so actual subtyping is inappropriate).
//!
//! ## Reborrowing
//!
//! Note that if we are expecting a reference, we will *reborrow*
//! even if the argument provided was already a reference.  This is
//! useful for freezing mut/const things (that is, when the expected is &T
//! but you have &const T or &mut T) and also for avoiding the linearity
//! of mut things (when the expected is &mut T and you have &mut T).  See
//! the various `src/test/run-pass/coerce-reborrow-*.rs` tests for
//! examples of where this is useful.
//!
//! ## Subtle note
//!
//! When deciding what type coercions to consider, we do not attempt to
//! resolve any type variables we may encounter.  This is because `b`
//! represents the expected type "as the user wrote it", meaning that if
//! the user defined a generic function like
//!
//!    fn foo<A>(a: A, b: A) { ... }
//!
//! and then we wrote `foo(&1, @2)`, we will not auto-borrow
//! either argument.  In older code we went to some lengths to
//! resolve the `b` variable, which could mean that we'd
//! auto-borrow later arguments but not earlier ones, which
//! seems very confusing.
//!
//! ## Subtler note
//!
//! However, right now, if the user manually specifies the
//! values for the type variables, as so:
//!
//!    foo::<&int>(@1, @2)
//!
//! then we *will* auto-borrow, because we can't distinguish this from a
//! function that declared `&int`.  This is inconsistent but it's easiest
//! at the moment. The right thing to do, I think, is to consider the
//! *unsubstituted* type when deciding whether to auto-borrow, but the
//! *substituted* type when considering the bounds and so forth. But most
//! of our methods don't give access to the unsubstituted type, and
//! rightly so because they'd be error-prone.  So maybe the thing to do is
//! to actually determine the kind of coercions that should occur
//! separately and pass them in.  Or maybe it's ok as is.  Anyway, it's
//! sort of a minor point so I've opted to leave it for later---after all
//! we may want to adjust precisely when coercions occur.

use check::{autoderef, FnCtxt, NoPreference, PreferMutLvalue, UnresolvedTypeAction};
use check::vtable;

use middle::infer::{self, Coercion};
use middle::subst;
use middle::traits;
use middle::ty::{AutoDerefRef, AdjustDerefRef};
use middle::ty::{self, mt, Ty};
use middle::ty_relate::RelateResult;
use util::common::indent;
use util::ppaux;
use util::ppaux::Repr;

use std::cell::Cell;
use syntax::ast;

struct Coerce<'a, 'tcx: 'a> {
    fcx: &'a FnCtxt<'a, 'tcx>,
    origin: infer::TypeOrigin,
    unsizing_obligation: Cell<Option<Ty<'tcx>>>
}

type CoerceResult<'tcx> = RelateResult<'tcx, Option<ty::AutoAdjustment<'tcx>>>;

impl<'f, 'tcx> Coerce<'f, 'tcx> {
    fn tcx(&self) -> &ty::ctxt<'tcx> {
        self.fcx.tcx()
    }

    fn subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
        try!(self.fcx.infcx().sub_types(false, self.origin.clone(), a, b));
        Ok(None) // No coercion required.
    }

    fn outlives(&self,
                origin: infer::SubregionOrigin<'tcx>,
                a: ty::Region,
                b: ty::Region)
                -> RelateResult<'tcx, ()> {
        infer::mk_subr(self.fcx.infcx(), origin, b, a);
        Ok(())
    }

    fn unpack_actual_value<T, F>(&self, a: Ty<'tcx>, f: F) -> T where
        F: FnOnce(Ty<'tcx>) -> T,
    {
        f(self.fcx.infcx().shallow_resolve(a))
    }

    fn coerce(&self,
              expr_a: &ast::Expr,
              a: Ty<'tcx>,
              b: Ty<'tcx>)
              -> CoerceResult<'tcx> {
        debug!("Coerce.tys({} => {})",
               a.repr(self.tcx()),
               b.repr(self.tcx()));

        // Consider coercing the subtype to a DST
        let unsize = self.unpack_actual_value(a, |a| {
            self.coerce_unsized(a, b)
        });
        if unsize.is_ok() {
            return unsize;
        }

        // Examine the supertype and consider auto-borrowing.
        //
        // Note: does not attempt to resolve type variables we encounter.
        // See above for details.
        match b.sty {
            ty::ty_ptr(mt_b) => {
                return self.unpack_actual_value(a, |a| {
                    self.coerce_unsafe_ptr(a, b, mt_b.mutbl)
                });
            }

            ty::ty_rptr(_, mt_b) => {
                return self.unpack_actual_value(a, |a| {
                    self.coerce_borrowed_pointer(expr_a, a, b, mt_b.mutbl)
                });
            }

            _ => {}
        }

        self.unpack_actual_value(a, |a| {
            match a.sty {
                ty::ty_bare_fn(Some(_), a_f) => {
                    // Function items are coercible to any closure
                    // type; function pointers are not (that would
                    // require double indirection).
                    self.coerce_from_fn_item(a, a_f, b)
                }
                ty::ty_bare_fn(None, a_f) => {
                    // We permit coercion of fn pointers to drop the
                    // unsafe qualifier.
                    self.coerce_from_fn_pointer(a, a_f, b)
                }
                _ => {
                    // Otherwise, just use subtyping rules.
                    self.subtype(a, b)
                }
            }
        })
    }

    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
    /// To match `A` with `B`, autoderef will be performed,
    /// calling `deref`/`deref_mut` where necessary.
    fn coerce_borrowed_pointer(&self,
                               expr_a: &ast::Expr,
                               a: Ty<'tcx>,
                               b: Ty<'tcx>,
                               mutbl_b: ast::Mutability)
                               -> CoerceResult<'tcx> {
        debug!("coerce_borrowed_pointer(a={}, b={})",
               a.repr(self.tcx()),
               b.repr(self.tcx()));

        // If we have a parameter of type `&M T_a` and the value
        // provided is `expr`, we will be adding an implicit borrow,
        // meaning that we convert `f(expr)` to `f(&M *expr)`.  Therefore,
        // to type check, we will construct the type that `&M*expr` would
        // yield.

        match a.sty {
            ty::ty_rptr(_, mt_a) => {
                try!(coerce_mutbls(mt_a.mutbl, mutbl_b));
            }
            _ => return self.subtype(a, b)
        }

        let coercion = Coercion(self.origin.span());
        let r_borrow = self.fcx.infcx().next_region_var(coercion);
        let r_borrow = self.tcx().mk_region(r_borrow);
        let autoref = Some(ty::AutoPtr(r_borrow, mutbl_b));

        let lvalue_pref = match mutbl_b {
            ast::MutMutable => PreferMutLvalue,
            ast::MutImmutable => NoPreference
        };
        let mut first_error = None;
        let (_, autoderefs, success) = autoderef(self.fcx,
                                                 expr_a.span,
                                                 a,
                                                 Some(expr_a),
                                                 UnresolvedTypeAction::Ignore,
                                                 lvalue_pref,
                                                 |inner_ty, autoderef| {
            if autoderef == 0 {
                // Don't let this pass, otherwise it would cause
                // &T to autoref to &&T.
                return None;
            }
            let ty = ty::mk_rptr(self.tcx(), r_borrow,
                                 mt {ty: inner_ty, mutbl: mutbl_b});
            if let Err(err) = self.subtype(ty, b) {
                if first_error.is_none() {
                    first_error = Some(err);
                }
                None
            } else {
                Some(())
            }
        });

        match success {
            Some(_) => {
                Ok(Some(AdjustDerefRef(AutoDerefRef {
                    autoderefs: autoderefs,
                    autoref: autoref,
                    unsize: None
                })))
            }
            None => {
                // Return original error as if overloaded deref was never
                // attempted, to avoid irrelevant/confusing error messages.
                Err(first_error.expect("coerce_borrowed_pointer failed with no error?"))
            }
        }
    }


    // &[T, ..n] or &mut [T, ..n] -> &[T]
    // or &mut [T, ..n] -> &mut [T]
    // or &Concrete -> &Trait, etc.
    fn coerce_unsized(&self,
                      a: Ty<'tcx>,
                      b: Ty<'tcx>)
                      -> CoerceResult<'tcx> {
        debug!("coerce_unsized(a={}, b={})",
               a.repr(self.tcx()),
               b.repr(self.tcx()));

        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
        // a DST unless we have to. This currently comes out in the wash since
        // we can't unify [T] with U. But to properly support DST, we need to allow
        // that, at which point we will need extra checks on b here.

        let (reborrow, target) = match (&a.sty, &b.sty) {
            (&ty::ty_rptr(_, mt_a), &ty::ty_rptr(_, mt_b)) => {
                if let Some(target) = self.unsize_ty(mt_a.ty, mt_b.ty) {
                    try!(coerce_mutbls(mt_a.mutbl, mt_b.mutbl));

                    let coercion = Coercion(self.origin.span());
                    let r_borrow = self.fcx.infcx().next_region_var(coercion);
                    let region = self.tcx().mk_region(r_borrow);
                    (Some(ty::AutoPtr(region, mt_b.mutbl)), target)
                } else {
                    return Err(ty::terr_mismatch);
                }
            }
            (&ty::ty_rptr(_, mt_a), &ty::ty_ptr(mt_b)) => {
                if let Some(target) = self.unsize_ty(mt_a.ty, mt_b.ty) {
                    try!(coerce_mutbls(mt_a.mutbl, mt_b.mutbl));
                    (Some(ty::AutoUnsafe(mt_b.mutbl)), target)
                } else {
                    return Err(ty::terr_mismatch);
                }
            }
            (&ty::ty_uniq(t_a), &ty::ty_uniq(t_b)) => {
                if let Some(target) = self.unsize_ty(t_a, t_b) {
                    (None, ty::mk_uniq(self.tcx(), target))
                } else {
                    return Err(ty::terr_mismatch);
                }
            }
            _ => return Err(ty::terr_mismatch)
        };

        let target = ty::adjust_ty_for_autoref(self.tcx(), target, reborrow);
        try!(self.subtype(target, b));
        let adjustment = AutoDerefRef {
            autoderefs: if reborrow.is_some() { 1 } else { 0 },
            autoref: reborrow,
            unsize: Some(target)
        };
        debug!("Success, coerced with {}", adjustment.repr(self.tcx()));
        Ok(Some(AdjustDerefRef(adjustment)))
    }

    // Takes a type and returns an unsized version.
    // E.g., `[T, ..n]` -> `[T]`.
    fn unsize_ty(&self,
                 ty_a: Ty<'tcx>,
                 ty_b: Ty<'tcx>)
                 -> Option<Ty<'tcx>> {
        let tcx = self.tcx();

        self.unpack_actual_value(ty_a, |a| self.unpack_actual_value(ty_b, |b| {
            debug!("unsize_ty(a={}, b={})", a.repr(self.tcx()), b.repr(self.tcx()));
            match (&a.sty, &b.sty) {
                (&ty::ty_vec(t_a, Some(_)), &ty::ty_vec(_, None)) => {
                    Some(ty::mk_vec(tcx, t_a, None))
                }
                (&ty::ty_trait(ref data_a), &ty::ty_trait(ref data_b)) => {
                    // Upcasts permit two things:
                    //
                    // 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
                    // 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
                    //
                    // Note that neither of these changes requires any
                    // change at runtime.  Eventually this will be
                    // generalized.
                    //
                    // We always upcast when we can because of reason
                    // #2 (region bounds).
                    if data_a.bounds.builtin_bounds.is_superset(&data_b.bounds.builtin_bounds) {
                        // construct a type `a1` which is a version of
                        // `a` using the upcast bounds from `b`
                        let bounds_a1 = ty::ExistentialBounds {
                            // From type b
                            region_bound: data_b.bounds.region_bound,
                            builtin_bounds: data_b.bounds.builtin_bounds,

                            // From type a
                            projection_bounds: data_a.bounds.projection_bounds.clone(),
                        };
                        let ty_a1 = ty::mk_trait(tcx, data_a.principal.clone(), bounds_a1);

                        // relate `a1` to `b`
                        let result = self.fcx.infcx().commit_if_ok(|_| {
                            // it's ok to upcast from Foo+'a to Foo+'b so long as 'a : 'b
                            try!(self.outlives(infer::RelateObjectBound(self.origin.span()),
                                               data_a.bounds.region_bound,
                                               data_b.bounds.region_bound));
                            self.subtype(ty_a1, ty_b)
                        });

                        // if that was successful, we have a coercion
                        match result {
                            Ok(_) => Some(ty_b),
                            Err(_) => None,
                        }
                    } else {
                        None
                    }
                }
                (_, &ty::ty_trait(_)) => {
                    assert!(self.unsizing_obligation.get().is_none());
                    self.unsizing_obligation.set(Some(a));
                    Some(ty_b)
                }
                (&ty::ty_struct(did_a, substs_a), &ty::ty_struct(did_b, substs_b))
                  if did_a == did_b => {
                    debug!("unsizing a struct");
                    // Try unsizing each type param in turn to see if we end up with ty_b.
                    let ty_substs_a = substs_a.types.get_slice(subst::TypeSpace);
                    let ty_substs_b = substs_b.types.get_slice(subst::TypeSpace);
                    assert!(ty_substs_a.len() == ty_substs_b.len());

                    let tps = ty_substs_a.iter().zip(ty_substs_b.iter()).enumerate();
                    for (i, (tp_a, tp_b)) in tps {
                        if self.subtype(*tp_a, *tp_b).is_ok() {
                            continue;
                        }
                        if let Some(new_tp) = self.unsize_ty(tp_a, tp_b) {
                            // Check that the whole types match.
                            let mut new_substs = substs_a.clone();
                            new_substs.types.get_mut_slice(subst::TypeSpace)[i] = new_tp;
                            let ty = ty::mk_struct(tcx, did_a, tcx.mk_substs(new_substs));
                            if self.subtype(ty, ty_b).is_err() {
                                debug!("Unsized type parameter '{}', but still \
                                        could not match types {} and {}",
                                        ppaux::ty_to_string(tcx, tp_a),
                                        ppaux::ty_to_string(tcx, ty),
                                        ppaux::ty_to_string(tcx, ty_b));
                                // We can only unsize a single type parameter, so
                                // if we unsize one and it doesn't give us the
                                // type we want, then we won't succeed later.
                                break;
                            }

                            return Some(ty);
                        }
                    }
                    None
                }
                _ => None
            }
        }))
    }

    fn coerce_from_fn_pointer(&self,
                           a: Ty<'tcx>,
                           fn_ty_a: &'tcx ty::BareFnTy<'tcx>,
                           b: Ty<'tcx>)
                           -> CoerceResult<'tcx>
    {
        /*!
         * Attempts to coerce from the type of a Rust function item
         * into a closure or a `proc`.
         */

        self.unpack_actual_value(b, |b| {
            debug!("coerce_from_fn_pointer(a={}, b={})",
                   a.repr(self.tcx()), b.repr(self.tcx()));

            if let ty::ty_bare_fn(None, fn_ty_b) = b.sty {
                match (fn_ty_a.unsafety, fn_ty_b.unsafety) {
                    (ast::Unsafety::Normal, ast::Unsafety::Unsafe) => {
                        let unsafe_a = self.tcx().safe_to_unsafe_fn_ty(fn_ty_a);
                        try!(self.subtype(unsafe_a, b));
                        return Ok(Some(ty::AdjustUnsafeFnPointer));
                    }
                    _ => {}
                }
            }
            self.subtype(a, b)
        })
    }

    fn coerce_from_fn_item(&self,
                           a: Ty<'tcx>,
                           fn_ty_a: &'tcx ty::BareFnTy<'tcx>,
                           b: Ty<'tcx>)
                           -> CoerceResult<'tcx> {
        /*!
         * Attempts to coerce from the type of a Rust function item
         * into a closure or a `proc`.
         */

        self.unpack_actual_value(b, |b| {
            debug!("coerce_from_fn_item(a={}, b={})",
                   a.repr(self.tcx()), b.repr(self.tcx()));

            match b.sty {
                ty::ty_bare_fn(None, _) => {
                    let a_fn_pointer = ty::mk_bare_fn(self.tcx(), None, fn_ty_a);
                    try!(self.subtype(a_fn_pointer, b));
                    Ok(Some(ty::AdjustReifyFnPointer))
                }
                _ => self.subtype(a, b)
            }
        })
    }

    fn coerce_unsafe_ptr(&self,
                         a: Ty<'tcx>,
                         b: Ty<'tcx>,
                         mutbl_b: ast::Mutability)
                         -> CoerceResult<'tcx> {
        debug!("coerce_unsafe_ptr(a={}, b={})",
               a.repr(self.tcx()),
               b.repr(self.tcx()));

        let mt_a = match a.sty {
            ty::ty_rptr(_, mt) | ty::ty_ptr(mt) => mt,
            _ => {
                return self.subtype(a, b);
            }
        };

        // Check that the types which they point at are compatible.
        let a_unsafe = ty::mk_ptr(self.tcx(), ty::mt{ mutbl: mutbl_b, ty: mt_a.ty });
        try!(self.subtype(a_unsafe, b));
        try!(coerce_mutbls(mt_a.mutbl, mutbl_b));

        // Although references and unsafe ptrs have the same
        // representation, we still register an AutoDerefRef so that
        // regionck knows that the region for `a` must be valid here.
        Ok(Some(AdjustDerefRef(AutoDerefRef {
            autoderefs: 1,
            autoref: Some(ty::AutoUnsafe(mutbl_b)),
            unsize: None
        })))
    }
}

pub fn mk_assignty<'a, 'tcx>(fcx: &FnCtxt<'a, 'tcx>,
                             expr: &ast::Expr,
                             a: Ty<'tcx>,
                             b: Ty<'tcx>)
                             -> RelateResult<'tcx, ()> {
    debug!("mk_assignty({} -> {})", a.repr(fcx.tcx()), b.repr(fcx.tcx()));
    let (adjustment, unsizing_obligation) = try!(indent(|| {
        fcx.infcx().commit_if_ok(|_| {
            let coerce = Coerce {
                fcx: fcx,
                origin: infer::ExprAssignable(expr.span),
                unsizing_obligation: Cell::new(None)
            };
            Ok((try!(coerce.coerce(expr, a, b)),
                coerce.unsizing_obligation.get()))
        })
    }));

    if let Some(AdjustDerefRef(auto)) = adjustment {
        if let (Some(source), Some(target)) = (unsizing_obligation, auto.unsize) {
            let target = ty::deref(target, true)
                            .expect("coercion: unsizing got non-pointer target type").ty;
            let target = ty::struct_tail(fcx.tcx(), target);
            if let ty::ty_trait(ref ty_trait) = target.sty {
                vtable::check_object_safety(fcx.tcx(), ty_trait, expr.span);

                // If the type is `Foo+'a`, ensures that the type
                // being cast to `Foo+'a` implements `Foo`:
                vtable::register_object_cast_obligations(fcx,
                                                         expr.span,
                                                         ty_trait,
                                                         source);

                // If the type is `Foo+'a`, ensures that the type
                // being cast to `Foo+'a` outlives `'a`:
                let cause = traits::ObligationCause {
                    span: expr.span,
                    body_id: fcx.body_id,
                    code: traits::ObjectCastObligation(source)
                };
                fcx.register_region_obligation(source, ty_trait.bounds.region_bound, cause);
            }
        }
    }

    if let Some(adjustment) = adjustment {
        debug!("Success, coerced with {}", adjustment.repr(fcx.tcx()));
        fcx.write_adjustment(expr.id, adjustment);
    }
    Ok(())
}

fn coerce_mutbls<'tcx>(from_mutbl: ast::Mutability,
                       to_mutbl: ast::Mutability)
                       -> CoerceResult<'tcx> {
    match (from_mutbl, to_mutbl) {
        (ast::MutMutable, ast::MutMutable) |
        (ast::MutImmutable, ast::MutImmutable) |
        (ast::MutMutable, ast::MutImmutable) => Ok(None),
        (ast::MutImmutable, ast::MutMutable) => Err(ty::terr_mutability)
    }
}