Primitive Type slice [-] [+]

Utilities for slice manipulation

The slice module contains useful code to help work with slice values. Slices are a view into a block of memory represented as a pointer and a length.

fn main() { // slicing a Vec let vec = vec![1, 2, 3]; let int_slice = &vec[..]; // coercing an array to a slice let str_slice: &[&str] = &["one", "two", "three"]; }
// slicing a Vec
let vec = vec![1, 2, 3];
let int_slice = &vec[..];
// coercing an array to a slice
let str_slice: &[&str] = &["one", "two", "three"];

Slices are either mutable or shared. The shared slice type is &[T], while the mutable slice type is &mut [T], where T represents the element type. For example, you can mutate the block of memory that a mutable slice points to:

fn main() { let x = &mut [1, 2, 3]; x[1] = 7; assert_eq!(x, &[1, 7, 3]); }
let x = &mut [1, 2, 3];
x[1] = 7;
assert_eq!(x, &[1, 7, 3]);

Here are some of the things this module contains:

Structs

There are several structs that are useful for slices, such as Iter, which represents iteration over a slice.

Trait Implementations

There are several implementations of common traits for slices. Some examples include:

Iteration

The slices implement IntoIterator. The iterator yields references to the slice elements.

fn main() { let numbers = &[0, 1, 2]; for n in numbers { println!("{} is a number!", n); } }
let numbers = &[0, 1, 2];
for n in numbers {
    println!("{} is a number!", n);
}

The mutable slice yields mutable references to the elements:

fn main() { let mut scores = [7, 8, 9]; for score in &mut scores[..] { *score += 1; } }
let mut scores = [7, 8, 9];
for score in &mut scores[..] {
    *score += 1;
}

This iterator yields mutable references to the slice's elements, so while the element type of the slice is i32, the element type of the iterator is &mut i32.

Methods

impl<T> [T]

Allocating extension methods for slices.

fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering

Sorts the slice, in place, using compare to compare elements.

This sort is O(n log n) worst-case and stable, but allocates approximately 2 * n, where n is the length of self.

Examples

fn main() { let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]); }
let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);

fn move_from(&mut self, src: Vec<T>, start: usize, end: usize) -> usize

Consumes src and moves as many elements as it can into self from the range [start,end).

Returns the number of elements copied (the shorter of self.len() and end - start).

Arguments

  • src - A mutable vector of T
  • start - The index into src to start copying from
  • end - The index into src to stop copying from

Examples

#![feature(collections)] extern crate collections; fn main() { let mut a = [1, 2, 3, 4, 5]; let b = vec![6, 7, 8]; let num_moved = a.move_from(b, 0, 3); assert_eq!(num_moved, 3); assert!(a == [6, 7, 8, 4, 5]); }
let mut a = [1, 2, 3, 4, 5];
let b = vec![6, 7, 8];
let num_moved = a.move_from(b, 0, 3);
assert_eq!(num_moved, 3);
assert!(a == [6, 7, 8, 4, 5]);

fn split_at(&self, mid: usize) -> (&[T], &[T])

Divides one slice into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics if mid > len.

Examples

fn main() { let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2); }
let v = [10, 40, 30, 20, 50];
let (v1, v2) = v.split_at(2);
assert_eq!([10, 40], v1);
assert_eq!([30, 20, 50], v2);

fn iter(&self) -> Iter<T>

Returns an iterator over the slice.

fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred. The matched element is not contained in the subslices.

Examples

Print the slice split by numbers divisible by 3 (i.e. [10, 40], [20], [50]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.split(|num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once by numbers divisible by 3 (i.e. [10, 40], [20, 60, 50]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. [50], [10, 40, 30, 20]):

fn main() { let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); } }
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
    println!("{:?}", group);
}

fn windows(&self, size: usize) -> Windows<T>

Returns an iterator over all contiguous windows of length size. The windows overlap. If the slice is shorter than size, the iterator returns no values.

Panics

Panics if size is 0.

Example

Print the adjacent pairs of a slice (i.e. [1,2], [2,3], [3,4]):

fn main() { let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); } }
let v = &[1, 2, 3, 4];
for win in v.windows(2) {
    println!("{:?}", win);
}

fn chunks(&self, size: usize) -> Chunks<T>

Returns an iterator over size elements of the slice at a time. The chunks do not overlap. If size does not divide the length of the slice, then the last chunk will not have length size.

Panics

Panics if size is 0.

Example

Print the slice two elements at a time (i.e. [1,2], [3,4], [5]):

fn main() { let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); } }
let v = &[1, 2, 3, 4, 5];
for win in v.chunks(2) {
    println!("{:?}", win);
}

fn get(&self, index: usize) -> Option<&T>

Returns the element of a slice at the given index, or None if the index is out of bounds.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3)); }
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(None, v.get(3));

fn first(&self) -> Option<&T>

Returns the first element of a slice, or None if it is empty.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first()); }
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());

fn tail(&self) -> &[T]

Returns all but the first element of a slice.

fn init(&self) -> &[T]

Returns all but the last element of a slice.

fn last(&self) -> Option<&T>

Returns the last element of a slice, or None if it is empty.

Examples

fn main() { let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last()); }
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());

unsafe fn get_unchecked(&self, index: usize) -> &T

Returns a pointer to the element at the given index, without doing bounds checking.

fn as_ptr(&self) -> *const T

Returns an unsafe pointer to the slice's buffer

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering

Binary search a sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is Less, Equal or Greater the desired target.

If a matching value is found then returns Ok, containing the index for the matched element; if no match is found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

#![feature(core)] fn main() { let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, }); }
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });

fn len(&self) -> usize

Returns the number of elements in the slice.

Example

fn main() { let a = [1, 2, 3]; assert_eq!(a.len(), 3); }
let a = [1, 2, 3];
assert_eq!(a.len(), 3);

fn is_empty(&self) -> bool

Returns true if the slice has a length of 0

Example

fn main() { let a = [1, 2, 3]; assert!(!a.is_empty()); }
let a = [1, 2, 3];
assert!(!a.is_empty());

fn get_mut(&mut self, index: usize) -> Option<&mut T>

Returns a mutable reference to the element at the given index, or None if the index is out of bounds

fn iter_mut(&mut self) -> IterMut<T>

Returns an iterator that allows modifying each value

fn first_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the first element of a slice, or None if it is empty

fn tail_mut(&mut self) -> &mut [T]

Returns all but the first element of a mutable slice

fn init_mut(&mut self) -> &mut [T]

Returns all but the last element of a mutable slice

fn last_mut(&mut self) -> Option<&mut T>

Returns a mutable pointer to the last item in the slice.

fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over mutable subslices separated by elements that match pred. The matched element is not contained in the subslices.

fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred, limited to returning at most n items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool

Returns an iterator over subslices separated by elements that match pred limited to returning at most n items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>

Returns an iterator over chunk_size elements of the slice at a time. The chunks are mutable and do not overlap. If chunk_size does not divide the length of the slice, then the last chunk will not have length chunk_size.

Panics

Panics if chunk_size is 0.

fn swap(&mut self, a: usize, b: usize)

Swaps two elements in a slice.

Arguments

  • a - The index of the first element
  • b - The index of the second element

Panics

Panics if a or b are out of bounds.

Example

fn main() { let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]); }
let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);

fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])

Divides one &mut into two at an index.

The first will contain all indices from [0, mid) (excluding the index mid itself) and the second will contain all indices from [mid, len) (excluding the index len itself).

Panics

Panics if mid > len.

Example

fn main() { let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); } }
let mut v = [1, 2, 3, 4, 5, 6];

// scoped to restrict the lifetime of the borrows
{
   let (left, right) = v.split_at_mut(0);
   assert!(left == []);
   assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(2);
    assert!(left == [1, 2]);
    assert!(right == [3, 4, 5, 6]);
}

{
    let (left, right) = v.split_at_mut(6);
    assert!(left == [1, 2, 3, 4, 5, 6]);
    assert!(right == []);
}

fn reverse(&mut self)

Reverse the order of elements in a slice, in place.

Example

fn main() { let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]); }
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);

unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T

Returns an unsafe mutable pointer to the element in index

fn as_mut_ptr(&mut self) -> *mut T

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

fn to_vec(&self) -> Vec<T> where T: Clone

Copies self into a new Vec.

fn permutations(&self) -> Permutations<T> where T: Clone

Creates an iterator that yields every possible permutation of the vector in succession.

Examples

#![feature(collections)] extern crate collections; fn main() { let v = [1, 2, 3]; let mut perms = v.permutations(); for p in perms { println!("{:?}", p); } }
let v = [1, 2, 3];
let mut perms = v.permutations();

for p in perms {
  println!("{:?}", p);
}

Iterating through permutations one by one.

#![feature(collections)] extern crate collections; fn main() { let v = [1, 2, 3]; let mut perms = v.permutations(); assert_eq!(Some(vec![1, 2, 3]), perms.next()); assert_eq!(Some(vec![1, 3, 2]), perms.next()); assert_eq!(Some(vec![3, 1, 2]), perms.next()); }
let v = [1, 2, 3];
let mut perms = v.permutations();

assert_eq!(Some(vec![1, 2, 3]), perms.next());
assert_eq!(Some(vec![1, 3, 2]), perms.next());
assert_eq!(Some(vec![3, 1, 2]), perms.next());

fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone

Copies as many elements from src as it can into self (the shorter of self.len() and src.len()). Returns the number of elements copied.

Example

#![feature(collections)] extern crate collections; fn main() { let mut dst = [0, 0, 0]; let src = [1, 2]; assert!(dst.clone_from_slice(&src) == 2); assert!(dst == [1, 2, 0]); let src2 = [3, 4, 5, 6]; assert!(dst.clone_from_slice(&src2) == 3); assert!(dst == [3, 4, 5]); }
let mut dst = [0, 0, 0];
let src = [1, 2];

assert!(dst.clone_from_slice(&src) == 2);
assert!(dst == [1, 2, 0]);

let src2 = [3, 4, 5, 6];
assert!(dst.clone_from_slice(&src2) == 3);
assert!(dst == [3, 4, 5]);

fn sort(&mut self) where T: Ord

Sorts the slice, in place.

This is equivalent to self.sort_by(|a, b| a.cmp(b)).

Examples

fn main() { let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]); }
let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);

Binary search a sorted slice for a given element.

If the value is found then Ok is returned, containing the index of the matching element; if the value is not found then Err is returned, containing the index where a matching element could be inserted while maintaining sorted order.

Example

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in [1,4].

#![feature(core)] fn main() { let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, }); }
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });

fn next_permutation(&mut self) -> bool where T: Ord

Mutates the slice to the next lexicographic permutation.

Returns true if successful and false if the slice is at the last-ordered permutation.

Example

#![feature(collections)] extern crate collections; fn main() { let v: &mut [_] = &mut [0, 1, 2]; v.next_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.next_permutation(); let b: &mut [_] = &mut [1, 0, 2]; assert!(v == b); }
let v: &mut [_] = &mut [0, 1, 2];
v.next_permutation();
let b: &mut [_] = &mut [0, 2, 1];
assert!(v == b);
v.next_permutation();
let b: &mut [_] = &mut [1, 0, 2];
assert!(v == b);

fn prev_permutation(&mut self) -> bool where T: Ord

Mutates the slice to the previous lexicographic permutation.

Returns true if successful and false if the slice is at the first-ordered permutation.

Example

#![feature(collections)] extern crate collections; fn main() { let v: &mut [_] = &mut [1, 0, 2]; v.prev_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.prev_permutation(); let b: &mut [_] = &mut [0, 1, 2]; assert!(v == b); }
let v: &mut [_] = &mut [1, 0, 2];
v.prev_permutation();
let b: &mut [_] = &mut [0, 2, 1];
assert!(v == b);
v.prev_permutation();
let b: &mut [_] = &mut [0, 1, 2];
assert!(v == b);

fn position_elem(&self, t: &T) -> Option<usize> where T: PartialEq

Find the first index containing a matching value.

fn rposition_elem(&self, t: &T) -> Option<usize> where T: PartialEq

Find the last index containing a matching value.

fn contains(&self, x: &T) -> bool where T: PartialEq

Returns true if the slice contains an element with the given value.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50)); }
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));

fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq

Returns true if needle is a prefix of the slice.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50])); }
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));

fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq

Returns true if needle is a suffix of the slice.

Examples

fn main() { let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30])); }
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));

fn into_vec(self: Box<Self>) -> Vec<T>

Converts self into a vector without clones or allocation.

Trait Implementations

impl<T> AsRef<[T]> for [T]

fn as_ref(&self) -> &[T]

impl<T> AsMut<[T]> for [T]

fn as_mut(&mut self) -> &mut [T]

impl<'a, 'b, A, B> PartialEq<[A; 0]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 0]) -> bool

fn ne(&self, other: &[A; 0]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 1]) -> bool

fn ne(&self, other: &[A; 1]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 2]) -> bool

fn ne(&self, other: &[A; 2]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 3]) -> bool

fn ne(&self, other: &[A; 3]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 4]) -> bool

fn ne(&self, other: &[A; 4]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 5]) -> bool

fn ne(&self, other: &[A; 5]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 6]) -> bool

fn ne(&self, other: &[A; 6]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 7]) -> bool

fn ne(&self, other: &[A; 7]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 8]) -> bool

fn ne(&self, other: &[A; 8]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 9]) -> bool

fn ne(&self, other: &[A; 9]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 10]) -> bool

fn ne(&self, other: &[A; 10]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 11]) -> bool

fn ne(&self, other: &[A; 11]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 12]) -> bool

fn ne(&self, other: &[A; 12]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 13]) -> bool

fn ne(&self, other: &[A; 13]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 14]) -> bool

fn ne(&self, other: &[A; 14]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 15]) -> bool

fn ne(&self, other: &[A; 15]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 16]) -> bool

fn ne(&self, other: &[A; 16]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 17]) -> bool

fn ne(&self, other: &[A; 17]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 18]) -> bool

fn ne(&self, other: &[A; 18]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 19]) -> bool

fn ne(&self, other: &[A; 19]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 20]) -> bool

fn ne(&self, other: &[A; 20]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 21]) -> bool

fn ne(&self, other: &[A; 21]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 22]) -> bool

fn ne(&self, other: &[A; 22]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 23]) -> bool

fn ne(&self, other: &[A; 23]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 24]) -> bool

fn ne(&self, other: &[A; 24]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 25]) -> bool

fn ne(&self, other: &[A; 25]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 26]) -> bool

fn ne(&self, other: &[A; 26]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 27]) -> bool

fn ne(&self, other: &[A; 27]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 28]) -> bool

fn ne(&self, other: &[A; 28]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 29]) -> bool

fn ne(&self, other: &[A; 29]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 30]) -> bool

fn ne(&self, other: &[A; 30]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 31]) -> bool

fn ne(&self, other: &[A; 31]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b mut [B] where B: PartialEq<A>

fn eq(&self, other: &[A; 32]) -> bool

fn ne(&self, other: &[A; 32]) -> bool

impl<T> Repr<Slice<T>> for [T]

impl<T> Index<usize> for [T]

type Output = T

fn index(&self, index: usize) -> &T

impl<T> IndexMut<usize> for [T]

fn index_mut(&mut self, index: usize) -> &mut T

impl<T> Index<Range<usize>> for [T]

type Output = [T]

fn index(&self, index: Range<usize>) -> &[T]

impl<T> Index<RangeTo<usize>> for [T]

type Output = [T]

fn index(&self, index: RangeTo<usize>) -> &[T]

impl<T> Index<RangeFrom<usize>> for [T]

type Output = [T]

fn index(&self, index: RangeFrom<usize>) -> &[T]

impl<T> Index<RangeFull> for [T]

type Output = [T]

fn index(&self, _index: RangeFull) -> &[T]

impl<T> IndexMut<Range<usize>> for [T]

fn index_mut(&mut self, index: Range<usize>) -> &mut [T]

impl<T> IndexMut<RangeTo<usize>> for [T]

fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [T]

impl<T> IndexMut<RangeFrom<usize>> for [T]

fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [T]

impl<T> IndexMut<RangeFull> for [T]

fn index_mut(&mut self, _index: RangeFull) -> &mut [T]

impl<'a, T> Default for &'a [T]

fn default() -> &'a [T]

impl<'a, T> IntoIterator for &'a [T]

type Item = &'a T

type IntoIter = Iter<'a, T>

fn into_iter(self) -> Iter<'a, T>

impl<'a, T> IntoIterator for &'a mut [T]

type Item = &'a mut T

type IntoIter = IterMut<'a, T>

fn into_iter(self) -> IterMut<'a, T>

impl MutableByteVector for [u8]

fn set_memory(&mut self, value: u8)

impl<A, B> PartialEq<[B]> for [A] where A: PartialEq<B>

fn eq(&self, other: &[B]) -> bool

fn ne(&self, other: &[B]) -> bool

impl<T> Eq for [T] where T: Eq

impl<T> Ord for [T] where T: Ord

fn cmp(&self, other: &[T]) -> Ordering

impl<T> PartialOrd<[T]> for [T] where T: PartialOrd<T>

fn partial_cmp(&self, other: &[T]) -> Option<Ordering>

fn lt(&self, other: &[T]) -> bool

fn le(&self, other: &[T]) -> bool

fn ge(&self, other: &[T]) -> bool

fn gt(&self, other: &[T]) -> bool

impl IntSliceExt<u8, i8> for [u8]

fn as_unsigned(&self) -> &[u8]

fn as_signed(&self) -> &[i8]

fn as_unsigned_mut(&mut self) -> &mut [u8]

fn as_signed_mut(&mut self) -> &mut [i8]

impl IntSliceExt<u8, i8> for [i8]

fn as_unsigned(&self) -> &[u8]

fn as_signed(&self) -> &[i8]

fn as_unsigned_mut(&mut self) -> &mut [u8]

fn as_signed_mut(&mut self) -> &mut [i8]

impl IntSliceExt<u16, i16> for [u16]

fn as_unsigned(&self) -> &[u16]

fn as_signed(&self) -> &[i16]

fn as_unsigned_mut(&mut self) -> &mut [u16]

fn as_signed_mut(&mut self) -> &mut [i16]

impl IntSliceExt<u16, i16> for [i16]

fn as_unsigned(&self) -> &[u16]

fn as_signed(&self) -> &[i16]

fn as_unsigned_mut(&mut self) -> &mut [u16]

fn as_signed_mut(&mut self) -> &mut [i16]

impl IntSliceExt<u32, i32> for [u32]

fn as_unsigned(&self) -> &[u32]

fn as_signed(&self) -> &[i32]

fn as_unsigned_mut(&mut self) -> &mut [u32]

fn as_signed_mut(&mut self) -> &mut [i32]

impl IntSliceExt<u32, i32> for [i32]

fn as_unsigned(&self) -> &[u32]

fn as_signed(&self) -> &[i32]

fn as_unsigned_mut(&mut self) -> &mut [u32]

fn as_signed_mut(&mut self) -> &mut [i32]

impl IntSliceExt<u64, i64> for [u64]

fn as_unsigned(&self) -> &[u64]

fn as_signed(&self) -> &[i64]

fn as_unsigned_mut(&mut self) -> &mut [u64]

fn as_signed_mut(&mut self) -> &mut [i64]

impl IntSliceExt<u64, i64> for [i64]

fn as_unsigned(&self) -> &[u64]

fn as_signed(&self) -> &[i64]

fn as_unsigned_mut(&mut self) -> &mut [u64]

fn as_signed_mut(&mut self) -> &mut [i64]

impl IntSliceExt<usize, isize> for [usize]

fn as_unsigned(&self) -> &[usize]

fn as_signed(&self) -> &[isize]

fn as_unsigned_mut(&mut self) -> &mut [usize]

fn as_signed_mut(&mut self) -> &mut [isize]

impl IntSliceExt<usize, isize> for [isize]

fn as_unsigned(&self) -> &[usize]

fn as_signed(&self) -> &[isize]

fn as_unsigned_mut(&mut self) -> &mut [usize]

fn as_signed_mut(&mut self) -> &mut [isize]

impl<'a, 'b> Pattern<'a> for &'b [char]

Searches for chars that are equal to any of the chars in the array

type Searcher = CharSliceSearcher<'a, 'b>

fn into_searcher(self, haystack: &'a str) -> CharSliceSearcher<'a, 'b>

fn is_contained_in(self, haystack: &'a str) -> bool

fn is_prefix_of(self, haystack: &'a str) -> bool

fn is_suffix_of(self, haystack: &'a str) -> bool where CharSliceSearcher<'a, 'b>: ReverseSearcher<'a>

impl<T> Hash for [T] where T: Hash

fn hash<H>(&self, state: &mut H) where H: Hasher

fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher

impl<T> Debug for [T] where T: Debug

fn fmt(&self, f: &mut Formatter) -> Result<(), Error>

impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T, Vec<T>> for [V]

fn concat(&self) -> Vec<T>

fn connect(&self, sep: &T) -> Vec<T>

impl<T: Clone> ToOwned for [T]

type Owned = Vec<T>

fn to_owned(&self) -> Vec<T>

impl<S: Borrow<str>> SliceConcatExt<str, String> for [S]

fn concat(&self) -> String

fn connect(&self, sep: &str) -> String

impl<'a, T> IntoCow<'a, [T]> for &'a [T] where T: Clone

fn into_cow(self) -> Cow<'a, [T]>