1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

/*

# Collect phase

The collect phase of type check has the job of visiting all items,
determining their type, and writing that type into the `tcx.tcache`
table.  Despite its name, this table does not really operate as a
*cache*, at least not for the types of items defined within the
current crate: we assume that after the collect phase, the types of
all local items will be present in the table.

Unlike most of the types that are present in Rust, the types computed
for each item are in fact type schemes. This means that they are
generic types that may have type parameters. TypeSchemes are
represented by an instance of `ty::TypeScheme`.  This combines the
core type along with a list of the bounds for each parameter. Type
parameters themselves are represented as `ty_param()` instances.

The phasing of type conversion is somewhat complicated. There is no
clear set of phases we can enforce (e.g., converting traits first,
then types, or something like that) because the user can introduce
arbitrary interdependencies. So instead we generally convert things
lazilly and on demand, and include logic that checks for cycles.
Demand is driven by calls to `AstConv::get_item_type_scheme` or
`AstConv::lookup_trait_def`.

Currently, we "convert" types and traits in three phases (note that
conversion only affects the types of items / enum variants / methods;
it does not e.g. compute the types of individual expressions):

0. Intrinsics
1. Trait definitions
2. Type definitions

Conversion itself is done by simply walking each of the items in turn
and invoking an appropriate function (e.g., `trait_def_of_item` or
`convert_item`). However, it is possible that while converting an
item, we may need to compute the *type scheme* or *trait definition*
for other items.

There are some shortcomings in this design:

- Before walking the set of supertraits for a given trait, you must
  call `ensure_super_predicates` on that trait def-id. Otherwise,
  `lookup_super_predicates` will result in ICEs.
- Because the type scheme includes defaults, cycles through type
  parameter defaults are illegal even if those defaults are never
  employed. This is not necessarily a bug.
- The phasing of trait definitions before type definitions does not
  seem to be necessary, sufficient, or particularly helpful, given that
  processing a trait definition can trigger processing a type def and
  vice versa. However, if I remove it, I get ICEs, so some more work is
  needed in that area. -nmatsakis

*/

use astconv::{self, AstConv, ty_of_arg, ast_ty_to_ty, ast_region_to_region};
use middle::def;
use constrained_type_params as ctp;
use middle::lang_items::SizedTraitLangItem;
use middle::free_region::FreeRegionMap;
use middle::region;
use middle::resolve_lifetime;
use middle::subst::{Substs, FnSpace, ParamSpace, SelfSpace, TypeSpace, VecPerParamSpace};
use middle::ty::{AsPredicate, ImplContainer, ImplOrTraitItemContainer, TraitContainer};
use middle::ty::{self, RegionEscape, ToPolyTraitRef, Ty, TypeScheme};
use middle::ty_fold::{self, TypeFolder, TypeFoldable};
use middle::infer;
use rscope::*;
use util::common::{ErrorReported, memoized};
use util::nodemap::{FnvHashMap, FnvHashSet};
use util::ppaux;
use util::ppaux::{Repr,UserString};
use write_ty_to_tcx;

use std::cell::RefCell;
use std::collections::HashSet;
use std::rc::Rc;

use syntax::abi;
use syntax::ast;
use syntax::ast_map;
use syntax::ast_util::local_def;
use syntax::codemap::Span;
use syntax::parse::token::special_idents;
use syntax::parse::token;
use syntax::ptr::P;
use syntax::visit;

///////////////////////////////////////////////////////////////////////////
// Main entry point

pub fn collect_item_types(tcx: &ty::ctxt) {
    let ccx = &CrateCtxt { tcx: tcx, stack: RefCell::new(Vec::new()) };

    let mut visitor = CollectTraitDefVisitor{ ccx: ccx };
    visit::walk_crate(&mut visitor, ccx.tcx.map.krate());

    let mut visitor = CollectItemTypesVisitor{ ccx: ccx };
    visit::walk_crate(&mut visitor, ccx.tcx.map.krate());
}

///////////////////////////////////////////////////////////////////////////

struct CrateCtxt<'a,'tcx:'a> {
    tcx: &'a ty::ctxt<'tcx>,

    // This stack is used to identify cycles in the user's source.
    // Note that these cycles can cross multiple items.
    stack: RefCell<Vec<AstConvRequest>>,
}

/// Context specific to some particular item. This is what implements
/// AstConv. It has information about the predicates that are defined
/// on the trait. Unfortunately, this predicate information is
/// available in various different forms at various points in the
/// process. So we can't just store a pointer to e.g. the AST or the
/// parsed ty form, we have to be more flexible. To this end, the
/// `ItemCtxt` is parameterized by a `GetTypeParameterBounds` object
/// that it uses to satisfy `get_type_parameter_bounds` requests.
/// This object might draw the information from the AST
/// (`ast::Generics`) or it might draw from a `ty::GenericPredicates`
/// or both (a tuple).
struct ItemCtxt<'a,'tcx:'a> {
    ccx: &'a CrateCtxt<'a,'tcx>,
    param_bounds: &'a (GetTypeParameterBounds<'tcx>+'a),
}

#[derive(Copy, Clone, PartialEq, Eq)]
enum AstConvRequest {
    GetItemTypeScheme(ast::DefId),
    GetTraitDef(ast::DefId),
    EnsureSuperPredicates(ast::DefId),
    GetTypeParameterBounds(ast::NodeId),
}

///////////////////////////////////////////////////////////////////////////
// First phase: just collect *trait definitions* -- basically, the set
// of type parameters and supertraits. This is information we need to
// know later when parsing field defs.

struct CollectTraitDefVisitor<'a, 'tcx: 'a> {
    ccx: &'a CrateCtxt<'a, 'tcx>
}

impl<'a, 'tcx, 'v> visit::Visitor<'v> for CollectTraitDefVisitor<'a, 'tcx> {
    fn visit_item(&mut self, i: &ast::Item) {
        match i.node {
            ast::ItemTrait(..) => {
                // computing the trait def also fills in the table
                let _ = trait_def_of_item(self.ccx, i);
            }
            _ => { }
        }

        visit::walk_item(self, i);
    }
}

///////////////////////////////////////////////////////////////////////////
// Second phase: collection proper.

struct CollectItemTypesVisitor<'a, 'tcx: 'a> {
    ccx: &'a CrateCtxt<'a, 'tcx>
}

impl<'a, 'tcx, 'v> visit::Visitor<'v> for CollectItemTypesVisitor<'a, 'tcx> {
    fn visit_item(&mut self, i: &ast::Item) {
        convert_item(self.ccx, i);
        visit::walk_item(self, i);
    }
    fn visit_foreign_item(&mut self, i: &ast::ForeignItem) {
        convert_foreign_item(self.ccx, i);
        visit::walk_foreign_item(self, i);
    }
}

///////////////////////////////////////////////////////////////////////////
// Utility types and common code for the above passes.

impl<'a,'tcx> CrateCtxt<'a,'tcx> {
    fn icx(&'a self, param_bounds: &'a GetTypeParameterBounds<'tcx>) -> ItemCtxt<'a,'tcx> {
        ItemCtxt { ccx: self, param_bounds: param_bounds }
    }

    fn method_ty(&self, method_id: ast::NodeId) -> Rc<ty::Method<'tcx>> {
        let def_id = local_def(method_id);
        match *self.tcx.impl_or_trait_items.borrow().get(&def_id).unwrap() {
            ty::MethodTraitItem(ref mty) => mty.clone(),
            ty::TypeTraitItem(..) => {
                self.tcx.sess.bug(&format!("method with id {} has the wrong type", method_id));
            }
        }
    }

    fn cycle_check<F,R>(&self,
                        span: Span,
                        request: AstConvRequest,
                        code: F)
                        -> Result<R,ErrorReported>
        where F: FnOnce() -> Result<R,ErrorReported>
    {
        {
            let mut stack = self.stack.borrow_mut();
            match stack.iter().enumerate().rev().find(|&(_, r)| *r == request) {
                None => { }
                Some((i, _)) => {
                    let cycle = &stack[i..];
                    self.report_cycle(span, cycle);
                    return Err(ErrorReported);
                }
            }
            stack.push(request);
        }

        let result = code();

        self.stack.borrow_mut().pop();
        result
    }

    fn report_cycle(&self,
                    span: Span,
                    cycle: &[AstConvRequest])
    {
        assert!(!cycle.is_empty());
        let tcx = self.tcx;

        tcx.sess.span_err(
            span,
            &format!("unsupported cyclic reference between types/traits detected"));

        match cycle[0] {
            AstConvRequest::GetItemTypeScheme(def_id) |
            AstConvRequest::GetTraitDef(def_id) => {
                tcx.sess.note(
                    &format!("the cycle begins when processing `{}`...",
                             ty::item_path_str(tcx, def_id)));
            }
            AstConvRequest::EnsureSuperPredicates(def_id) => {
                tcx.sess.note(
                    &format!("the cycle begins when computing the supertraits of `{}`...",
                             ty::item_path_str(tcx, def_id)));
            }
            AstConvRequest::GetTypeParameterBounds(id) => {
                let def = tcx.type_parameter_def(id);
                tcx.sess.note(
                    &format!("the cycle begins when computing the bounds \
                              for type parameter `{}`...",
                             def.name.user_string(tcx)));
            }
        }

        for request in cycle[1..].iter() {
            match *request {
                AstConvRequest::GetItemTypeScheme(def_id) |
                AstConvRequest::GetTraitDef(def_id) => {
                    tcx.sess.note(
                        &format!("...which then requires processing `{}`...",
                                 ty::item_path_str(tcx, def_id)));
                }
                AstConvRequest::EnsureSuperPredicates(def_id) => {
                    tcx.sess.note(
                        &format!("...which then requires computing the supertraits of `{}`...",
                                 ty::item_path_str(tcx, def_id)));
                }
                AstConvRequest::GetTypeParameterBounds(id) => {
                    let def = tcx.type_parameter_def(id);
                    tcx.sess.note(
                        &format!("...which then requires computing the bounds \
                                  for type parameter `{}`...",
                                 def.name.user_string(tcx)));
                }
            }
        }

        match cycle[0] {
            AstConvRequest::GetItemTypeScheme(def_id) |
            AstConvRequest::GetTraitDef(def_id) => {
                tcx.sess.note(
                    &format!("...which then again requires processing `{}`, completing the cycle.",
                             ty::item_path_str(tcx, def_id)));
            }
            AstConvRequest::EnsureSuperPredicates(def_id) => {
                tcx.sess.note(
                    &format!("...which then again requires computing the supertraits of `{}`, \
                              completing the cycle.",
                             ty::item_path_str(tcx, def_id)));
            }
            AstConvRequest::GetTypeParameterBounds(id) => {
                let def = tcx.type_parameter_def(id);
                tcx.sess.note(
                    &format!("...which then again requires computing the bounds \
                              for type parameter `{}`, completing the cycle.",
                             def.name.user_string(tcx)));
            }
        }
    }

    /// Loads the trait def for a given trait, returning ErrorReported if a cycle arises.
    fn get_trait_def(&self, trait_id: ast::DefId)
                     -> Rc<ty::TraitDef<'tcx>>
    {
        let tcx = self.tcx;

        if trait_id.krate != ast::LOCAL_CRATE {
            return ty::lookup_trait_def(tcx, trait_id)
        }

        let item = match tcx.map.get(trait_id.node) {
            ast_map::NodeItem(item) => item,
            _ => tcx.sess.bug(&format!("get_trait_def({}): not an item", trait_id.repr(tcx)))
        };

        trait_def_of_item(self, &*item)
    }

    /// Ensure that the (transitive) super predicates for
    /// `trait_def_id` are available. This will report a cycle error
    /// if a trait `X` (transitively) extends itself in some form.
    fn ensure_super_predicates(&self, span: Span, trait_def_id: ast::DefId)
                               -> Result<(), ErrorReported>
    {
        self.cycle_check(span, AstConvRequest::EnsureSuperPredicates(trait_def_id), || {
            let def_ids = ensure_super_predicates_step(self, trait_def_id);

            for def_id in def_ids {
                try!(self.ensure_super_predicates(span, def_id));
            }

            Ok(())
        })
    }
}

impl<'a,'tcx> ItemCtxt<'a,'tcx> {
    fn to_ty<RS:RegionScope>(&self, rs: &RS, ast_ty: &ast::Ty) -> Ty<'tcx> {
        ast_ty_to_ty(self, rs, ast_ty)
    }
}

impl<'a, 'tcx> AstConv<'tcx> for ItemCtxt<'a, 'tcx> {
    fn tcx(&self) -> &ty::ctxt<'tcx> { self.ccx.tcx }

    fn get_item_type_scheme(&self, span: Span, id: ast::DefId)
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>
    {
        self.ccx.cycle_check(span, AstConvRequest::GetItemTypeScheme(id), || {
            Ok(type_scheme_of_def_id(self.ccx, id))
        })
    }

    fn get_trait_def(&self, span: Span, id: ast::DefId)
                     -> Result<Rc<ty::TraitDef<'tcx>>, ErrorReported>
    {
        self.ccx.cycle_check(span, AstConvRequest::GetTraitDef(id), || {
            Ok(self.ccx.get_trait_def(id))
        })
    }

    fn ensure_super_predicates(&self,
                               span: Span,
                               trait_def_id: ast::DefId)
                               -> Result<(), ErrorReported>
    {
        debug!("ensure_super_predicates(trait_def_id={})",
               trait_def_id.repr(self.tcx()));

        self.ccx.ensure_super_predicates(span, trait_def_id)
    }


    fn get_type_parameter_bounds(&self,
                                 span: Span,
                                 node_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>
    {
        self.ccx.cycle_check(span, AstConvRequest::GetTypeParameterBounds(node_id), || {
            let v = self.param_bounds.get_type_parameter_bounds(self, span, node_id)
                                     .into_iter()
                                     .filter_map(|p| p.to_opt_poly_trait_ref())
                                     .collect();
            Ok(v)
        })
    }

    fn trait_defines_associated_type_named(&self,
                                           trait_def_id: ast::DefId,
                                           assoc_name: ast::Name)
                                           -> bool
    {
        if trait_def_id.krate == ast::LOCAL_CRATE {
            trait_defines_associated_type_named(self.ccx, trait_def_id.node, assoc_name)
        } else {
            let trait_def = ty::lookup_trait_def(self.tcx(), trait_def_id);
            trait_def.associated_type_names.contains(&assoc_name)
        }
    }

    fn ty_infer(&self, span: Span) -> Ty<'tcx> {
        span_err!(self.tcx().sess, span, E0121,
                  "the type placeholder `_` is not allowed within types on item signatures");
        self.tcx().types.err
    }

    fn projected_ty(&self,
                    _span: Span,
                    trait_ref: Rc<ty::TraitRef<'tcx>>,
                    item_name: ast::Name)
                    -> Ty<'tcx>
    {
        ty::mk_projection(self.tcx(), trait_ref, item_name)
    }
}

/// Interface used to find the bounds on a type parameter from within
/// an `ItemCtxt`. This allows us to use multiple kinds of sources.
trait GetTypeParameterBounds<'tcx> {
    fn get_type_parameter_bounds(&self,
                                 astconv: &AstConv<'tcx>,
                                 span: Span,
                                 node_id: ast::NodeId)
                                 -> Vec<ty::Predicate<'tcx>>;
}

/// Find bounds from both elements of the tuple.
impl<'a,'b,'tcx,A,B> GetTypeParameterBounds<'tcx> for (&'a A,&'b B)
    where A : GetTypeParameterBounds<'tcx>, B : GetTypeParameterBounds<'tcx>
{
    fn get_type_parameter_bounds(&self,
                                 astconv: &AstConv<'tcx>,
                                 span: Span,
                                 node_id: ast::NodeId)
                                 -> Vec<ty::Predicate<'tcx>>
    {
        let mut v = self.0.get_type_parameter_bounds(astconv, span, node_id);
        v.extend(self.1.get_type_parameter_bounds(astconv, span, node_id).into_iter());
        v
    }
}

/// Empty set of bounds.
impl<'tcx> GetTypeParameterBounds<'tcx> for () {
    fn get_type_parameter_bounds(&self,
                                 _astconv: &AstConv<'tcx>,
                                 _span: Span,
                                 _node_id: ast::NodeId)
                                 -> Vec<ty::Predicate<'tcx>>
    {
        Vec::new()
    }
}

/// Find bounds from the parsed and converted predicates.  This is
/// used when converting methods, because by that time the predicates
/// from the trait/impl have been fully converted.
impl<'tcx> GetTypeParameterBounds<'tcx> for ty::GenericPredicates<'tcx> {
    fn get_type_parameter_bounds(&self,
                                 astconv: &AstConv<'tcx>,
                                 _span: Span,
                                 node_id: ast::NodeId)
                                 -> Vec<ty::Predicate<'tcx>>
    {
        let def = astconv.tcx().type_parameter_def(node_id);

        self.predicates
            .iter()
            .filter(|predicate| {
                match **predicate {
                    ty::Predicate::Trait(ref data) => {
                        data.skip_binder().self_ty().is_param(def.space, def.index)
                    }
                    ty::Predicate::TypeOutlives(ref data) => {
                        data.skip_binder().0.is_param(def.space, def.index)
                    }
                    ty::Predicate::Equate(..) |
                    ty::Predicate::RegionOutlives(..) |
                    ty::Predicate::Projection(..) => {
                        false
                    }
                }
            })
            .cloned()
            .collect()
    }
}

/// Find bounds from ast::Generics. This requires scanning through the
/// AST. We do this to avoid having to convert *all* the bounds, which
/// would create artificial cycles. Instead we can only convert the
/// bounds for those a type parameter `X` if `X::Foo` is used.
impl<'tcx> GetTypeParameterBounds<'tcx> for ast::Generics {
    fn get_type_parameter_bounds(&self,
                                 astconv: &AstConv<'tcx>,
                                 _: Span,
                                 node_id: ast::NodeId)
                                 -> Vec<ty::Predicate<'tcx>>
    {
        // In the AST, bounds can derive from two places. Either
        // written inline like `<T:Foo>` or in a where clause like
        // `where T:Foo`.

        let def = astconv.tcx().type_parameter_def(node_id);
        let ty = ty::mk_param_from_def(astconv.tcx(), &def);

        let from_ty_params =
            self.ty_params
                .iter()
                .filter(|p| p.id == node_id)
                .flat_map(|p| p.bounds.iter())
                .flat_map(|b| predicates_from_bound(astconv, ty, b).into_iter());

        let from_where_clauses =
            self.where_clause
                .predicates
                .iter()
                .filter_map(|wp| match *wp {
                    ast::WherePredicate::BoundPredicate(ref bp) => Some(bp),
                    _ => None
                })
                .filter(|bp| is_param(astconv.tcx(), &bp.bounded_ty, node_id))
                .flat_map(|bp| bp.bounds.iter())
                .flat_map(|b| predicates_from_bound(astconv, ty, b).into_iter());

        from_ty_params.chain(from_where_clauses).collect()
    }
}

/// Tests whether this is the AST for a reference to the type
/// parameter with id `param_id`. We use this so as to avoid running
/// `ast_ty_to_ty`, because we want to avoid triggering an all-out
/// conversion of the type to avoid inducing unnecessary cycles.
fn is_param<'tcx>(tcx: &ty::ctxt<'tcx>,
                  ast_ty: &ast::Ty,
                  param_id: ast::NodeId)
                  -> bool
{
    if let ast::TyPath(None, _) = ast_ty.node {
        let path_res = *tcx.def_map.borrow().get(&ast_ty.id).unwrap();
        match path_res.base_def {
            def::DefSelfTy(Some(def_id), None) => {
                path_res.depth == 0 && def_id.node == param_id
            }
            def::DefTyParam(_, _, def_id, _) => {
                path_res.depth == 0 && def_id == local_def(param_id)
            }
            _ => {
                false
            }
        }
    } else {
        false
    }
}

fn get_enum_variant_types<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                    enum_scheme: ty::TypeScheme<'tcx>,
                                    enum_predicates: ty::GenericPredicates<'tcx>,
                                    variants: &[P<ast::Variant>]) {
    let tcx = ccx.tcx;
    let icx = ccx.icx(&enum_predicates);

    // Create a set of parameter types shared among all the variants.
    for variant in variants {
        let variant_def_id = local_def(variant.node.id);

        // Nullary enum constructors get turned into constants; n-ary enum
        // constructors get turned into functions.
        let result_ty = match variant.node.kind {
            ast::TupleVariantKind(ref args) if !args.is_empty() => {
                let rs = ExplicitRscope;
                let input_tys: Vec<_> = args.iter().map(|va| icx.to_ty(&rs, &*va.ty)).collect();
                ty::mk_ctor_fn(tcx, variant_def_id, &input_tys, enum_scheme.ty)
            }

            ast::TupleVariantKind(_) => {
                enum_scheme.ty
            }

            ast::StructVariantKind(ref struct_def) => {
                convert_struct(ccx, &**struct_def, enum_scheme.clone(),
                               enum_predicates.clone(), variant.node.id);
                enum_scheme.ty
            }
        };

        let variant_scheme = TypeScheme {
            generics: enum_scheme.generics.clone(),
            ty: result_ty
        };

        tcx.tcache.borrow_mut().insert(variant_def_id, variant_scheme.clone());
        tcx.predicates.borrow_mut().insert(variant_def_id, enum_predicates.clone());
        write_ty_to_tcx(tcx, variant.node.id, result_ty);
    }
}

fn convert_method<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                            container: ImplOrTraitItemContainer,
                            sig: &ast::MethodSig,
                            id: ast::NodeId,
                            ident: ast::Ident,
                            vis: ast::Visibility,
                            untransformed_rcvr_ty: Ty<'tcx>,
                            rcvr_ty_generics: &ty::Generics<'tcx>,
                            rcvr_ty_predicates: &ty::GenericPredicates<'tcx>) {
    let ty_generics = ty_generics_for_fn(ccx, &sig.generics, rcvr_ty_generics);

    let ty_generic_predicates =
        ty_generic_predicates_for_fn(ccx, &sig.generics, rcvr_ty_predicates);

    let (fty, explicit_self_category) =
        astconv::ty_of_method(&ccx.icx(&(rcvr_ty_predicates, &sig.generics)),
                              sig, untransformed_rcvr_ty);

    let def_id = local_def(id);
    let ty_method = ty::Method::new(ident.name,
                                    ty_generics,
                                    ty_generic_predicates,
                                    fty,
                                    explicit_self_category,
                                    vis,
                                    def_id,
                                    container,
                                    None);

    let fty = ty::mk_bare_fn(ccx.tcx, Some(def_id),
                             ccx.tcx.mk_bare_fn(ty_method.fty.clone()));
    debug!("method {} (id {}) has type {}",
            ident.repr(ccx.tcx), id, fty.repr(ccx.tcx));
    ccx.tcx.tcache.borrow_mut().insert(def_id,TypeScheme {
        generics: ty_method.generics.clone(),
        ty: fty
    });
    ccx.tcx.predicates.borrow_mut().insert(def_id, ty_method.predicates.clone());

    write_ty_to_tcx(ccx.tcx, id, fty);

    debug!("writing method type: def_id={:?} mty={}",
            def_id, ty_method.repr(ccx.tcx));

    ccx.tcx.impl_or_trait_items.borrow_mut().insert(def_id,
        ty::MethodTraitItem(Rc::new(ty_method)));
}

fn convert_field<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                           struct_generics: &ty::Generics<'tcx>,
                           struct_predicates: &ty::GenericPredicates<'tcx>,
                           v: &ast::StructField,
                           origin: ast::DefId)
                           -> ty::field_ty
{
    let tt = ccx.icx(struct_predicates).to_ty(&ExplicitRscope, &*v.node.ty);
    write_ty_to_tcx(ccx.tcx, v.node.id, tt);

    /* add the field to the tcache */
    ccx.tcx.tcache.borrow_mut().insert(local_def(v.node.id),
                                       ty::TypeScheme {
                                           generics: struct_generics.clone(),
                                           ty: tt
                                       });
    ccx.tcx.predicates.borrow_mut().insert(local_def(v.node.id),
                                           struct_predicates.clone());

    match v.node.kind {
        ast::NamedField(ident, visibility) => {
            ty::field_ty {
                name: ident.name,
                id: local_def(v.node.id),
                vis: visibility,
                origin: origin,
            }
        }
        ast::UnnamedField(visibility) => {
            ty::field_ty {
                name: special_idents::unnamed_field.name,
                id: local_def(v.node.id),
                vis: visibility,
                origin: origin,
            }
        }
    }
}

fn as_refsociated_type<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                     container: ImplOrTraitItemContainer,
                                     ident: ast::Ident,
                                     id: ast::NodeId,
                                     vis: ast::Visibility)
{
    let associated_type = Rc::new(ty::AssociatedType {
        name: ident.name,
        vis: vis,
        def_id: local_def(id),
        container: container
    });
    ccx.tcx.impl_or_trait_items.borrow_mut()
       .insert(local_def(id), ty::TypeTraitItem(associated_type));
}

fn convert_methods<'a,'tcx,'i,I>(ccx: &CrateCtxt<'a, 'tcx>,
                                 container: ImplOrTraitItemContainer,
                                 methods: I,
                                 untransformed_rcvr_ty: Ty<'tcx>,
                                 rcvr_ty_generics: &ty::Generics<'tcx>,
                                 rcvr_ty_predicates: &ty::GenericPredicates<'tcx>)
    where I: Iterator<Item=(&'i ast::MethodSig, ast::NodeId, ast::Ident, ast::Visibility, Span)>
{
    debug!("convert_methods(untransformed_rcvr_ty={}, rcvr_ty_generics={}, rcvr_ty_predicates={})",
           untransformed_rcvr_ty.repr(ccx.tcx),
           rcvr_ty_generics.repr(ccx.tcx),
           rcvr_ty_predicates.repr(ccx.tcx));

    let tcx = ccx.tcx;
    let mut seen_methods = FnvHashSet();
    for (sig, id, ident, vis, span) in methods {
        if !seen_methods.insert(ident.name) {
            span_err!(tcx.sess, span, E0201, "duplicate method");
        }

        convert_method(ccx,
                       container,
                       sig,
                       id,
                       ident,
                       vis,
                       untransformed_rcvr_ty,
                       rcvr_ty_generics,
                       rcvr_ty_predicates);
    }
}

fn ensure_no_ty_param_bounds(ccx: &CrateCtxt,
                                 span: Span,
                                 generics: &ast::Generics,
                                 thing: &'static str) {
    let mut warn = false;

    for ty_param in &*generics.ty_params {
        for bound in &*ty_param.bounds {
            match *bound {
                ast::TraitTyParamBound(..) => {
                    warn = true;
                }
                ast::RegionTyParamBound(..) => { }
            }
        }
    }

    if warn {
        // According to accepted RFC #XXX, we should
        // eventually accept these, but it will not be
        // part of this PR. Still, convert to warning to
        // make bootstrapping easier.
        span_warn!(ccx.tcx.sess, span, E0122,
                   "trait bounds are not (yet) enforced \
                   in {} definitions",
                   thing);
    }
}

fn convert_item(ccx: &CrateCtxt, it: &ast::Item) {
    let tcx = ccx.tcx;
    debug!("convert: item {} with id {}", token::get_ident(it.ident), it.id);
    match it.node {
        // These don't define types.
        ast::ItemExternCrate(_) | ast::ItemUse(_) |
        ast::ItemForeignMod(_) | ast::ItemMod(_) | ast::ItemMac(_) => {
        }
        ast::ItemEnum(ref enum_definition, _) => {
            let (scheme, predicates) = convert_typed_item(ccx, it);
            write_ty_to_tcx(tcx, it.id, scheme.ty);
            get_enum_variant_types(ccx,
                                   scheme,
                                   predicates,
                                   &enum_definition.variants);
        },
        ast::ItemDefaultImpl(_, ref ast_trait_ref) => {
            let trait_ref =
                astconv::instantiate_mono_trait_ref(&ccx.icx(&()),
                                                    &ExplicitRscope,
                                                    ast_trait_ref,
                                                    None);

            ty::record_trait_has_default_impl(tcx, trait_ref.def_id);

            tcx.impl_trait_refs.borrow_mut().insert(it.id, trait_ref);
        }
        ast::ItemImpl(_, _,
                      ref generics,
                      ref opt_trait_ref,
                      ref selfty,
                      ref impl_items) => {
            // Create generics from the generics specified in the impl head.

            debug!("convert: ast_generics={:?}", generics);
            let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
            let ty_predicates = ty_generic_predicates_for_type_or_impl(ccx, generics);

            debug!("convert: impl_bounds={:?}", ty_predicates);

            let selfty = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, &**selfty);
            write_ty_to_tcx(tcx, it.id, selfty);

            tcx.tcache.borrow_mut().insert(local_def(it.id),
                                           TypeScheme { generics: ty_generics.clone(),
                                                        ty: selfty });
            tcx.predicates.borrow_mut().insert(local_def(it.id),
                                               ty_predicates.clone());

            // If there is a trait reference, treat the methods as always public.
            // This is to work around some incorrect behavior in privacy checking:
            // when the method belongs to a trait, it should acquire the privacy
            // from the trait, not the impl. Forcing the visibility to be public
            // makes things sorta work.
            let parent_visibility = if opt_trait_ref.is_some() {
                ast::Public
            } else {
                it.vis
            };

            // Convert all the associated types.
            for impl_item in impl_items {
                match impl_item.node {
                    ast::TypeImplItem(ref ty) => {
                        if opt_trait_ref.is_none() {
                            span_err!(tcx.sess, impl_item.span, E0202,
                                              "associated items are not allowed in inherent impls");
                        }

                        as_refsociated_type(ccx, ImplContainer(local_def(it.id)),
                                                impl_item.ident, impl_item.id, impl_item.vis);

                        let typ = ccx.icx(&ty_predicates).to_ty(&ExplicitRscope, ty);
                        tcx.tcache.borrow_mut().insert(local_def(impl_item.id),
                                                       TypeScheme {
                                                           generics: ty::Generics::empty(),
                                                           ty: typ,
                                                       });
                        tcx.predicates.borrow_mut().insert(local_def(impl_item.id),
                                                           ty::GenericPredicates::empty());
                        write_ty_to_tcx(tcx, impl_item.id, typ);
                    }
                    ast::MethodImplItem(..) |
                    ast::MacImplItem(_) => {}
                }
            }

            let methods = impl_items.iter().filter_map(|ii| {
                match ii.node {
                    ast::MethodImplItem(ref sig, _) => {
                        // if the method specifies a visibility, use that, otherwise
                        // inherit the visibility from the impl (so `foo` in `pub impl
                        // { fn foo(); }` is public, but private in `priv impl { fn
                        // foo(); }`).
                        let method_vis = ii.vis.inherit_from(parent_visibility);
                        Some((sig, ii.id, ii.ident, method_vis, ii.span))
                    }
                    ast::TypeImplItem(_) |
                    ast::MacImplItem(_) => None
                }
            });
            convert_methods(ccx,
                            ImplContainer(local_def(it.id)),
                            methods,
                            selfty,
                            &ty_generics,
                            &ty_predicates);

            for impl_item in impl_items {
                match impl_item.node {
                    ast::MethodImplItem(ref sig, ref body) => {
                        let body_id = body.id;
                        check_method_self_type(ccx,
                                               &BindingRscope::new(),
                                               ccx.method_ty(impl_item.id),
                                               selfty,
                                               &sig.explicit_self,
                                               body_id);
                    }
                    ast::TypeImplItem(_) |
                    ast::MacImplItem(_) => {}
                }
            }

            if let Some(ref ast_trait_ref) = *opt_trait_ref {
                let trait_ref =
                    astconv::instantiate_mono_trait_ref(&ccx.icx(&ty_predicates),
                                                        &ExplicitRscope,
                                                        ast_trait_ref,
                                                        Some(selfty));

                tcx.impl_trait_refs.borrow_mut().insert(it.id, trait_ref);
            }

            enforce_impl_params_are_constrained(tcx,
                                                generics,
                                                local_def(it.id),
                                                impl_items);
        },
        ast::ItemTrait(_, _, _, ref trait_items) => {
            let trait_def = trait_def_of_item(ccx, it);
            let _: Result<(), ErrorReported> = // any error is already reported, can ignore
                ccx.ensure_super_predicates(it.span, local_def(it.id));
            convert_trait_predicates(ccx, it);
            let trait_predicates = ty::lookup_predicates(tcx, local_def(it.id));

            debug!("convert: trait_bounds={:?}", trait_predicates);

            // Convert all the associated types.
            for trait_item in trait_items {
                match trait_item.node {
                    ast::MethodTraitItem(..) => {}
                    ast::TypeTraitItem(..) => {
                        as_refsociated_type(ccx, TraitContainer(local_def(it.id)),
                                                trait_item.ident, trait_item.id, ast::Public);
                    }
                }
            };

            let methods = trait_items.iter().filter_map(|ti| {
                let sig = match ti.node {
                    ast::MethodTraitItem(ref sig, _) => sig,
                    ast::TypeTraitItem(..) => return None,
                };
                Some((sig, ti.id, ti.ident, ast::Inherited, ti.span))
            });

            // Run convert_methods on the trait methods.
            convert_methods(ccx,
                            TraitContainer(local_def(it.id)),
                            methods,
                            ty::mk_self_type(tcx),
                            &trait_def.generics,
                            &trait_predicates);

            // Add an entry mapping
            let trait_item_def_ids = Rc::new(trait_items.iter().map(|trait_item| {
                let def_id = local_def(trait_item.id);
                match trait_item.node {
                    ast::MethodTraitItem(..) => {
                        ty::MethodTraitItemId(def_id)
                    }
                    ast::TypeTraitItem(..) => {
                        ty::TypeTraitItemId(def_id)
                    }
                }
            }).collect());
            tcx.trait_item_def_ids.borrow_mut().insert(local_def(it.id), trait_item_def_ids);

            // This must be done after `collect_trait_methods` so that
            // we have a method type stored for every method.
            for trait_item in trait_items {
                let sig = match trait_item.node {
                    ast::MethodTraitItem(ref sig, _) => sig,
                    ast::TypeTraitItem(..) => continue
                };
                check_method_self_type(ccx,
                                       &BindingRscope::new(),
                                       ccx.method_ty(trait_item.id),
                                       ty::mk_self_type(tcx),
                                       &sig.explicit_self,
                                       it.id)
            }
        },
        ast::ItemStruct(ref struct_def, _) => {
            // Write the class type.
            let (scheme, predicates) = convert_typed_item(ccx, it);
            write_ty_to_tcx(tcx, it.id, scheme.ty);
            convert_struct(ccx, &**struct_def, scheme, predicates, it.id);
        },
        ast::ItemTy(_, ref generics) => {
            ensure_no_ty_param_bounds(ccx, it.span, generics, "type");
            let (scheme, _) = convert_typed_item(ccx, it);
            write_ty_to_tcx(tcx, it.id, scheme.ty);
        },
        _ => {
            // This call populates the type cache with the converted type
            // of the item in passing. All we have to do here is to write
            // it into the node type table.
            let (scheme, _) = convert_typed_item(ccx, it);
            write_ty_to_tcx(tcx, it.id, scheme.ty);
        },
    }
}

fn convert_struct<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                            struct_def: &ast::StructDef,
                            scheme: ty::TypeScheme<'tcx>,
                            predicates: ty::GenericPredicates<'tcx>,
                            id: ast::NodeId) {
    let tcx = ccx.tcx;

    // Write the type of each of the members and check for duplicate fields.
    let mut seen_fields: FnvHashMap<ast::Name, Span> = FnvHashMap();
    let field_tys = struct_def.fields.iter().map(|f| {
        let result = convert_field(ccx, &scheme.generics, &predicates, f, local_def(id));

        if result.name != special_idents::unnamed_field.name {
            let dup = match seen_fields.get(&result.name) {
                Some(prev_span) => {
                    span_err!(tcx.sess, f.span, E0124,
                              "field `{}` is already declared",
                              token::get_name(result.name));
                    span_note!(tcx.sess, *prev_span, "previously declared here");
                    true
                },
                None => false,
            };
            // FIXME(#6393) this whole dup thing is just to satisfy
            // the borrow checker :-(
            if !dup {
                seen_fields.insert(result.name, f.span);
            }
        }

        result
    }).collect();

    tcx.struct_fields.borrow_mut().insert(local_def(id), Rc::new(field_tys));

    let substs = mk_item_substs(ccx, &scheme.generics);
    let selfty = ty::mk_struct(tcx, local_def(id), tcx.mk_substs(substs));

    // If this struct is enum-like or tuple-like, create the type of its
    // constructor.
    match struct_def.ctor_id {
        None => {}
        Some(ctor_id) => {
            if struct_def.fields.is_empty() {
                // Enum-like.
                write_ty_to_tcx(tcx, ctor_id, selfty);

                tcx.tcache.borrow_mut().insert(local_def(ctor_id), scheme);
                tcx.predicates.borrow_mut().insert(local_def(ctor_id), predicates);
            } else if struct_def.fields[0].node.kind.is_unnamed() {
                // Tuple-like.
                let inputs: Vec<_> =
                    struct_def.fields
                              .iter()
                              .map(|field| tcx.tcache.borrow().get(&local_def(field.node.id))
                                                              .unwrap()
                                                              .ty)
                              .collect();
                let ctor_fn_ty = ty::mk_ctor_fn(tcx,
                                                local_def(ctor_id),
                                                &inputs[..],
                                                selfty);
                write_ty_to_tcx(tcx, ctor_id, ctor_fn_ty);
                tcx.tcache.borrow_mut().insert(local_def(ctor_id),
                                               TypeScheme {
                                                   generics: scheme.generics,
                                                   ty: ctor_fn_ty
                                               });
                tcx.predicates.borrow_mut().insert(local_def(ctor_id), predicates);
            }
        }
    }
}

/// Ensures that the super-predicates of the trait with def-id
/// trait_def_id are converted and stored. This does NOT ensure that
/// the transitive super-predicates are converted; that is the job of
/// the `ensure_super_predicates()` method in the `AstConv` impl
/// above. Returns a list of trait def-ids that must be ensured as
/// well to guarantee that the transitive superpredicates are
/// converted.
fn ensure_super_predicates_step(ccx: &CrateCtxt,
                                trait_def_id: ast::DefId)
                                -> Vec<ast::DefId>
{
    let tcx = ccx.tcx;

    debug!("ensure_super_predicates_step(trait_def_id={})", trait_def_id.repr(tcx));

    if trait_def_id.krate != ast::LOCAL_CRATE {
        // If this trait comes from an external crate, then all of the
        // supertraits it may depend on also must come from external
        // crates, and hence all of them already have their
        // super-predicates "converted" (and available from crate
        // meta-data), so there is no need to transitively test them.
        return Vec::new();
    }

    let superpredicates = tcx.super_predicates.borrow().get(&trait_def_id).cloned();
    let superpredicates = superpredicates.unwrap_or_else(|| {
        let trait_node_id = trait_def_id.node;

        let item = match ccx.tcx.map.get(trait_node_id) {
            ast_map::NodeItem(item) => item,
            _ => ccx.tcx.sess.bug(&format!("trait_node_id {} is not an item", trait_node_id))
        };

        let (generics, bounds) = match item.node {
            ast::ItemTrait(_, ref generics, ref supertraits, _) => (generics, supertraits),
            _ => tcx.sess.span_bug(item.span,
                                   "ensure_super_predicates_step invoked on non-trait"),
        };

        // In-scope when converting the superbounds for `Trait` are
        // that `Self:Trait` as well as any bounds that appear on the
        // generic types:
        let trait_def = trait_def_of_item(ccx, item);
        let self_predicate = ty::GenericPredicates {
            predicates: VecPerParamSpace::new(vec![],
                                              vec![trait_def.trait_ref.as_predicate()],
                                              vec![])
        };
        let scope = &(generics, &self_predicate);

        // Convert the bounds that follow the colon, e.g. `Bar+Zed` in `trait Foo : Bar+Zed`.
        let self_param_ty = ty::mk_self_type(tcx);
        let superbounds1 = compute_bounds(&ccx.icx(scope), self_param_ty, bounds,
                                          SizedByDefault::No, item.span);
        let superbounds1 = ty::predicates(tcx, self_param_ty, &superbounds1);

        // Convert any explicit superbounds in the where clause,
        // e.g. `trait Foo where Self : Bar`:
        let superbounds2 = generics.get_type_parameter_bounds(&ccx.icx(scope), item.span, item.id);

        // Combine the two lists to form the complete set of superbounds:
        let superbounds = superbounds1.into_iter().chain(superbounds2.into_iter()).collect();
        let superpredicates = ty::GenericPredicates {
            predicates: VecPerParamSpace::new(superbounds, vec![], vec![])
        };
        debug!("superpredicates for trait {} = {}",
               local_def(item.id).repr(ccx.tcx),
               superpredicates.repr(ccx.tcx));

        tcx.super_predicates.borrow_mut().insert(trait_def_id, superpredicates.clone());

        superpredicates
    });

    let def_ids: Vec<_> = superpredicates.predicates
                                         .iter()
                                         .filter_map(|p| p.to_opt_poly_trait_ref())
                                         .map(|tr| tr.def_id())
                                         .collect();

    debug!("ensure_super_predicates_step: def_ids={}", def_ids.repr(tcx));

    def_ids
}

fn trait_def_of_item<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                               it: &ast::Item)
                               -> Rc<ty::TraitDef<'tcx>>
{
    let def_id = local_def(it.id);
    let tcx = ccx.tcx;

    if let Some(def) = tcx.trait_defs.borrow().get(&def_id) {
        return def.clone();
    }

    let (unsafety, generics, items) = match it.node {
        ast::ItemTrait(unsafety, ref generics, _, ref items) => (unsafety, generics, items),
        _ => tcx.sess.span_bug(it.span, "trait_def_of_item invoked on non-trait"),
    };

    let paren_sugar = ty::has_attr(tcx, def_id, "rustc_paren_sugar");
    if paren_sugar && !ccx.tcx.sess.features.borrow().unboxed_closures {
        ccx.tcx.sess.span_err(
            it.span,
            "the `#[rustc_paren_sugar]` attribute is a temporary means of controlling \
             which traits can use parenthetical notation");
        fileline_help!(ccx.tcx.sess, it.span,
                   "add `#![feature(unboxed_closures)]` to \
                    the crate attributes to use it");
    }

    let substs = ccx.tcx.mk_substs(mk_trait_substs(ccx, generics));

    let ty_generics = ty_generics_for_trait(ccx, it.id, substs, generics);

    let associated_type_names: Vec<_> = items.iter().filter_map(|trait_item| {
        match trait_item.node {
            ast::MethodTraitItem(..) => None,
            ast::TypeTraitItem(..) => Some(trait_item.ident.name),
        }
    }).collect();

    let trait_ref = Rc::new(ty::TraitRef {
        def_id: def_id,
        substs: substs,
    });

    let trait_def = Rc::new(ty::TraitDef {
        paren_sugar: paren_sugar,
        unsafety: unsafety,
        generics: ty_generics,
        trait_ref: trait_ref,
        associated_type_names: associated_type_names,
    });

    tcx.trait_defs.borrow_mut().insert(def_id, trait_def.clone());

    return trait_def;

    fn mk_trait_substs<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                 generics: &ast::Generics)
                                 -> Substs<'tcx>
    {
        let tcx = ccx.tcx;

        // Creates a no-op substitution for the trait's type parameters.
        let regions =
            generics.lifetimes
                    .iter()
                    .enumerate()
                    .map(|(i, def)| ty::ReEarlyBound(ty::EarlyBoundRegion {
                        param_id: def.lifetime.id,
                        space: TypeSpace,
                        index: i as u32,
                        name: def.lifetime.name
                    }))
                    .collect();

        // Start with the generics in the type parameters...
        let types: Vec<_> =
            generics.ty_params
                    .iter()
                    .enumerate()
                    .map(|(i, def)| ty::mk_param(tcx, TypeSpace,
                                                 i as u32, def.ident.name))
                    .collect();

        // ...and also create the `Self` parameter.
        let self_ty = ty::mk_self_type(tcx);

        Substs::new_trait(types, regions, self_ty)
    }
}

fn trait_defines_associated_type_named(ccx: &CrateCtxt,
                                       trait_node_id: ast::NodeId,
                                       assoc_name: ast::Name)
                                       -> bool
{
    let item = match ccx.tcx.map.get(trait_node_id) {
        ast_map::NodeItem(item) => item,
        _ => ccx.tcx.sess.bug(&format!("trait_node_id {} is not an item", trait_node_id))
    };

    let trait_items = match item.node {
        ast::ItemTrait(_, _, _, ref trait_items) => trait_items,
        _ => ccx.tcx.sess.bug(&format!("trait_node_id {} is not a trait", trait_node_id))
    };

    trait_items.iter().any(|trait_item| {
        match trait_item.node {
            ast::TypeTraitItem(..) => trait_item.ident.name == assoc_name,
            ast::MethodTraitItem(..) => false,
        }
    })
}

fn convert_trait_predicates<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>, it: &ast::Item) {
    let tcx = ccx.tcx;
    let trait_def = trait_def_of_item(ccx, it);

    let def_id = local_def(it.id);

    let (generics, items) = match it.node {
        ast::ItemTrait(_, ref generics, _, ref items) => (generics, items),
        ref s => {
            tcx.sess.span_bug(
                it.span,
                &format!("trait_def_of_item invoked on {:?}", s));
        }
    };

    let super_predicates = ty::lookup_super_predicates(ccx.tcx, def_id);

    // `ty_generic_predicates` below will consider the bounds on the type
    // parameters (including `Self`) and the explicit where-clauses,
    // but to get the full set of predicates on a trait we need to add
    // in the supertrait bounds and anything declared on the
    // associated types.
    let mut base_predicates = super_predicates;

    // Add in a predicate that `Self:Trait` (where `Trait` is the
    // current trait).  This is needed for builtin bounds.
    let self_predicate = trait_def.trait_ref.to_poly_trait_ref().as_predicate();
    base_predicates.predicates.push(SelfSpace, self_predicate);

    // add in the explicit where-clauses
    let mut trait_predicates =
        ty_generic_predicates(ccx, TypeSpace, generics, &base_predicates);

    let assoc_predicates = predicates_for_associated_types(ccx,
                                                           generics,
                                                           &trait_predicates,
                                                           &trait_def.trait_ref,
                                                           items);
    trait_predicates.predicates.extend(TypeSpace, assoc_predicates.into_iter());

    let prev_predicates = tcx.predicates.borrow_mut().insert(def_id, trait_predicates);
    assert!(prev_predicates.is_none());

    return;

    fn predicates_for_associated_types<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                                 ast_generics: &ast::Generics,
                                                 trait_predicates: &ty::GenericPredicates<'tcx>,
                                                 self_trait_ref: &Rc<ty::TraitRef<'tcx>>,
                                                 trait_items: &[P<ast::TraitItem>])
                                                 -> Vec<ty::Predicate<'tcx>>
    {
        trait_items.iter().flat_map(|trait_item| {
            let bounds = match trait_item.node {
                ast::TypeTraitItem(ref bounds, _) => bounds,
                ast::MethodTraitItem(..) => {
                    return vec!().into_iter();
                }
            };

            let assoc_ty = ty::mk_projection(ccx.tcx,
                                             self_trait_ref.clone(),
                                             trait_item.ident.name);

            let bounds = compute_bounds(&ccx.icx(&(ast_generics, trait_predicates)),
                                        assoc_ty,
                                        bounds,
                                        SizedByDefault::Yes,
                                        trait_item.span);

            ty::predicates(ccx.tcx, assoc_ty, &bounds).into_iter()
        }).collect()
    }
}

fn type_scheme_of_def_id<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                  def_id: ast::DefId)
                                  -> ty::TypeScheme<'tcx>
{
    if def_id.krate != ast::LOCAL_CRATE {
        return ty::lookup_item_type(ccx.tcx, def_id);
    }

    match ccx.tcx.map.find(def_id.node) {
        Some(ast_map::NodeItem(item)) => {
            type_scheme_of_item(ccx, &*item)
        }
        Some(ast_map::NodeForeignItem(foreign_item)) => {
            let abi = ccx.tcx.map.get_foreign_abi(def_id.node);
            type_scheme_of_foreign_item(ccx, &*foreign_item, abi)
        }
        x => {
            ccx.tcx.sess.bug(&format!("unexpected sort of node \
                                            in get_item_type_scheme(): {:?}",
                                       x));
        }
    }
}

fn type_scheme_of_item<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                it: &ast::Item)
                                -> ty::TypeScheme<'tcx>
{
    memoized(&ccx.tcx.tcache,
             local_def(it.id),
             |_| compute_type_scheme_of_item(ccx, it))
}

fn compute_type_scheme_of_item<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                        it: &ast::Item)
                                        -> ty::TypeScheme<'tcx>
{
    let tcx = ccx.tcx;
    match it.node {
        ast::ItemStatic(ref t, _, _) | ast::ItemConst(ref t, _) => {
            let ty = ccx.icx(&()).to_ty(&ExplicitRscope, &**t);
            ty::TypeScheme { ty: ty, generics: ty::Generics::empty() }
        }
        ast::ItemFn(ref decl, unsafety, abi, ref generics, _) => {
            let ty_generics = ty_generics_for_fn(ccx, generics, &ty::Generics::empty());
            let tofd = astconv::ty_of_bare_fn(&ccx.icx(generics), unsafety, abi, &**decl);
            let ty = ty::mk_bare_fn(tcx, Some(local_def(it.id)), tcx.mk_bare_fn(tofd));
            ty::TypeScheme { ty: ty, generics: ty_generics }
        }
        ast::ItemTy(ref t, ref generics) => {
            let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
            let ty = ccx.icx(generics).to_ty(&ExplicitRscope, &**t);
            ty::TypeScheme { ty: ty, generics: ty_generics }
        }
        ast::ItemEnum(_, ref generics) => {
            // Create a new generic polytype.
            let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
            let substs = mk_item_substs(ccx, &ty_generics);
            let t = ty::mk_enum(tcx, local_def(it.id), tcx.mk_substs(substs));
            ty::TypeScheme { ty: t, generics: ty_generics }
        }
        ast::ItemStruct(_, ref generics) => {
            let ty_generics = ty_generics_for_type_or_impl(ccx, generics);
            let substs = mk_item_substs(ccx, &ty_generics);
            let t = ty::mk_struct(tcx, local_def(it.id), tcx.mk_substs(substs));
            ty::TypeScheme { ty: t, generics: ty_generics }
        }
        ast::ItemDefaultImpl(..) |
        ast::ItemTrait(..) |
        ast::ItemImpl(..) |
        ast::ItemMod(..) |
        ast::ItemForeignMod(..) |
        ast::ItemExternCrate(..) |
        ast::ItemUse(..) |
        ast::ItemMac(..) => {
            tcx.sess.span_bug(
                it.span,
                &format!("compute_type_scheme_of_item: unexpected item type: {:?}",
                         it.node));
        }
    }
}

fn convert_typed_item<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                it: &ast::Item)
                                -> (ty::TypeScheme<'tcx>, ty::GenericPredicates<'tcx>)
{
    let tcx = ccx.tcx;

    let tag = type_scheme_of_item(ccx, it);
    let scheme = TypeScheme { generics: tag.generics, ty: tag.ty };
    let predicates = match it.node {
        ast::ItemStatic(..) | ast::ItemConst(..) => {
            ty::GenericPredicates::empty()
        }
        ast::ItemFn(_, _, _, ref ast_generics, _) => {
            ty_generic_predicates_for_fn(ccx, ast_generics, &ty::GenericPredicates::empty())
        }
        ast::ItemTy(_, ref generics) => {
            ty_generic_predicates_for_type_or_impl(ccx, generics)
        }
        ast::ItemEnum(_, ref generics) => {
            ty_generic_predicates_for_type_or_impl(ccx, generics)
        }
        ast::ItemStruct(_, ref generics) => {
            ty_generic_predicates_for_type_or_impl(ccx, generics)
        }
        ast::ItemDefaultImpl(..) |
        ast::ItemTrait(..) |
        ast::ItemExternCrate(..) |
        ast::ItemUse(..) |
        ast::ItemImpl(..) |
        ast::ItemMod(..) |
        ast::ItemForeignMod(..) |
        ast::ItemMac(..) => {
            tcx.sess.span_bug(
                it.span,
                &format!("compute_type_scheme_of_item: unexpected item type: {:?}",
                         it.node));
        }
    };

    let prev_predicates = tcx.predicates.borrow_mut().insert(local_def(it.id),
                                                             predicates.clone());
    assert!(prev_predicates.is_none());

    // Debugging aid.
    if ty::has_attr(tcx, local_def(it.id), "rustc_object_lifetime_default") {
        let object_lifetime_default_reprs: String =
            scheme.generics.types.iter()
                                 .map(|t| match t.object_lifetime_default {
                                     Some(ty::ObjectLifetimeDefault::Specific(r)) =>
                                         r.user_string(tcx),
                                     d =>
                                         d.repr(ccx.tcx),
                                 })
                                 .collect::<Vec<String>>()
                                 .connect(",");

        tcx.sess.span_err(it.span, &object_lifetime_default_reprs);
    }

    return (scheme, predicates);
}

fn type_scheme_of_foreign_item<'a, 'tcx>(
    ccx: &CrateCtxt<'a, 'tcx>,
    it: &ast::ForeignItem,
    abi: abi::Abi)
    -> ty::TypeScheme<'tcx>
{
    memoized(&ccx.tcx.tcache,
             local_def(it.id),
             |_| compute_type_scheme_of_foreign_item(ccx, it, abi))
}

fn compute_type_scheme_of_foreign_item<'a, 'tcx>(
    ccx: &CrateCtxt<'a, 'tcx>,
    it: &ast::ForeignItem,
    abi: abi::Abi)
    -> ty::TypeScheme<'tcx>
{
    match it.node {
        ast::ForeignItemFn(ref fn_decl, ref generics) => {
            compute_type_scheme_of_foreign_fn_decl(ccx, fn_decl, generics, abi)
        }
        ast::ForeignItemStatic(ref t, _) => {
            ty::TypeScheme {
                generics: ty::Generics::empty(),
                ty: ast_ty_to_ty(&ccx.icx(&()), &ExplicitRscope, t)
            }
        }
    }
}

fn convert_foreign_item<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                  it: &ast::ForeignItem)
{
    // For reasons I cannot fully articulate, I do so hate the AST
    // map, and I regard each time that I use it as a personal and
    // moral failing, but at the moment it seems like the only
    // convenient way to extract the ABI. - ndm
    let tcx = ccx.tcx;
    let abi = tcx.map.get_foreign_abi(it.id);

    let scheme = type_scheme_of_foreign_item(ccx, it, abi);
    write_ty_to_tcx(ccx.tcx, it.id, scheme.ty);

    let predicates = match it.node {
        ast::ForeignItemFn(_, ref generics) => {
            ty_generic_predicates_for_fn(ccx, generics, &ty::GenericPredicates::empty())
        }
        ast::ForeignItemStatic(..) => {
            ty::GenericPredicates::empty()
        }
    };

    let prev_predicates = tcx.predicates.borrow_mut().insert(local_def(it.id), predicates);
    assert!(prev_predicates.is_none());
}

fn ty_generics_for_type_or_impl<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                          generics: &ast::Generics)
                                          -> ty::Generics<'tcx> {
    ty_generics(ccx, TypeSpace, generics, &ty::Generics::empty())
}

fn ty_generic_predicates_for_type_or_impl<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                                   generics: &ast::Generics)
                                                   -> ty::GenericPredicates<'tcx>
{
    ty_generic_predicates(ccx, TypeSpace, generics, &ty::GenericPredicates::empty())
}

fn ty_generics_for_trait<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                                   trait_id: ast::NodeId,
                                   substs: &'tcx Substs<'tcx>,
                                   ast_generics: &ast::Generics)
                                   -> ty::Generics<'tcx>
{
    debug!("ty_generics_for_trait(trait_id={}, substs={})",
           local_def(trait_id).repr(ccx.tcx), substs.repr(ccx.tcx));

    let mut generics = ty_generics_for_type_or_impl(ccx, ast_generics);

    // Add in the self type parameter.
    //
    // Something of a hack: use the node id for the trait, also as
    // the node id for the Self type parameter.
    let param_id = trait_id;

    let def = ty::TypeParameterDef {
        space: SelfSpace,
        index: 0,
        name: special_idents::type_self.name,
        def_id: local_def(param_id),
        default: None,
        object_lifetime_default: None,
    };

    ccx.tcx.ty_param_defs.borrow_mut().insert(param_id, def.clone());

    generics.types.push(SelfSpace, def);

    return generics;
}

fn ty_generics_for_fn<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                               generics: &ast::Generics,
                               base_generics: &ty::Generics<'tcx>)
                               -> ty::Generics<'tcx>
{
    ty_generics(ccx, FnSpace, generics, base_generics)
}

fn ty_generic_predicates_for_fn<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                         generics: &ast::Generics,
                                         base_predicates: &ty::GenericPredicates<'tcx>)
                                         -> ty::GenericPredicates<'tcx>
{
    ty_generic_predicates(ccx, FnSpace, generics, base_predicates)
}

// Add the Sized bound, unless the type parameter is marked as `?Sized`.
fn add_unsized_bound<'tcx>(astconv: &AstConv<'tcx>,
                           bounds: &mut ty::BuiltinBounds,
                           ast_bounds: &[ast::TyParamBound],
                           span: Span)
{
    let tcx = astconv.tcx();

    // Try to find an unbound in bounds.
    let mut unbound = None;
    for ab in ast_bounds {
        if let &ast::TraitTyParamBound(ref ptr, ast::TraitBoundModifier::Maybe) = ab  {
            if unbound.is_none() {
                assert!(ptr.bound_lifetimes.is_empty());
                unbound = Some(ptr.trait_ref.clone());
            } else {
                span_err!(tcx.sess, span, E0203,
                          "type parameter has more than one relaxed default \
                                                bound, only one is supported");
            }
        }
    }

    let kind_id = tcx.lang_items.require(SizedTraitLangItem);
    match unbound {
        Some(ref tpb) => {
            // FIXME(#8559) currently requires the unbound to be built-in.
            let trait_def_id = ty::trait_ref_to_def_id(tcx, tpb);
            match kind_id {
                Ok(kind_id) if trait_def_id != kind_id => {
                    tcx.sess.span_warn(span,
                                       "default bound relaxed for a type parameter, but \
                                       this does nothing because the given bound is not \
                                       a default. Only `?Sized` is supported");
                    ty::try_add_builtin_trait(tcx, kind_id, bounds);
                }
                _ => {}
            }
        }
        _ if kind_id.is_ok() => {
            ty::try_add_builtin_trait(tcx, kind_id.unwrap(), bounds);
        }
        // No lang item for Sized, so we can't add it as a bound.
        None => {}
    }
}

/// Returns the early-bound lifetimes declared in this generics
/// listing.  For anything other than fns/methods, this is just all
/// the lifetimes that are declared. For fns or methods, we have to
/// screen out those that do not appear in any where-clauses etc using
/// `resolve_lifetime::early_bound_lifetimes`.
fn early_bound_lifetimes_from_generics(space: ParamSpace,
                                       ast_generics: &ast::Generics)
                                       -> Vec<ast::LifetimeDef>
{
    match space {
        SelfSpace | TypeSpace => ast_generics.lifetimes.to_vec(),
        FnSpace => resolve_lifetime::early_bound_lifetimes(ast_generics),
    }
}

fn ty_generic_predicates<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                  space: ParamSpace,
                                  ast_generics: &ast::Generics,
                                  base_predicates: &ty::GenericPredicates<'tcx>)
                                  -> ty::GenericPredicates<'tcx>
{
    let tcx = ccx.tcx;
    let mut result = base_predicates.clone();

    // Collect the predicates that were written inline by the user on each
    // type parameter (e.g., `<T:Foo>`).
    for (index, param) in ast_generics.ty_params.iter().enumerate() {
        let index = index as u32;
        let param_ty = ty::ParamTy::new(space, index, param.ident.name).to_ty(ccx.tcx);
        let bounds = compute_bounds(&ccx.icx(&(base_predicates, ast_generics)),
                                    param_ty,
                                    &param.bounds,
                                    SizedByDefault::Yes,
                                    param.span);
        let predicates = ty::predicates(ccx.tcx, param_ty, &bounds);
        result.predicates.extend(space, predicates.into_iter());
    }

    // Collect the region predicates that were declared inline as
    // well. In the case of parameters declared on a fn or method, we
    // have to be careful to only iterate over early-bound regions.
    let early_lifetimes = early_bound_lifetimes_from_generics(space, ast_generics);
    for (index, param) in early_lifetimes.iter().enumerate() {
        let index = index as u32;
        let region =
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                param_id: param.lifetime.id,
                space: space,
                index: index,
                name: param.lifetime.name
            });
        for bound in &param.bounds {
            let bound_region = ast_region_to_region(ccx.tcx, bound);
            let outlives = ty::Binder(ty::OutlivesPredicate(region, bound_region));
            result.predicates.push(space, outlives.as_predicate());
        }
    }

    // Add in the bounds that appear in the where-clause
    let where_clause = &ast_generics.where_clause;
    for predicate in &where_clause.predicates {
        match predicate {
            &ast::WherePredicate::BoundPredicate(ref bound_pred) => {
                let ty = ast_ty_to_ty(&ccx.icx(&(base_predicates, ast_generics)),
                                      &ExplicitRscope,
                                      &*bound_pred.bounded_ty);

                for bound in &*bound_pred.bounds {
                    match bound {
                        &ast::TyParamBound::TraitTyParamBound(ref poly_trait_ref, _) => {
                            let mut projections = Vec::new();

                            let trait_ref =
                                conv_poly_trait_ref(&ccx.icx(&(base_predicates, ast_generics)),
                                                    ty,
                                                    poly_trait_ref,
                                                    &mut projections);

                            result.predicates.push(space, trait_ref.as_predicate());

                            for projection in &projections {
                                result.predicates.push(space, projection.as_predicate());
                            }
                        }

                        &ast::TyParamBound::RegionTyParamBound(ref lifetime) => {
                            let region = ast_region_to_region(tcx, lifetime);
                            let pred = ty::Binder(ty::OutlivesPredicate(ty, region));
                            result.predicates.push(space, ty::Predicate::TypeOutlives(pred))
                        }
                    }
                }
            }

            &ast::WherePredicate::RegionPredicate(ref region_pred) => {
                let r1 = ast_region_to_region(tcx, &region_pred.lifetime);
                for bound in &region_pred.bounds {
                    let r2 = ast_region_to_region(tcx, bound);
                    let pred = ty::Binder(ty::OutlivesPredicate(r1, r2));
                    result.predicates.push(space, ty::Predicate::RegionOutlives(pred))
                }
            }

            &ast::WherePredicate::EqPredicate(ref eq_pred) => {
                // FIXME(#20041)
                tcx.sess.span_bug(eq_pred.span,
                                    "Equality constraints are not yet \
                                        implemented (#20041)")
            }
        }
    }

    return result;
}

fn ty_generics<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                        space: ParamSpace,
                        ast_generics: &ast::Generics,
                        base_generics: &ty::Generics<'tcx>)
                        -> ty::Generics<'tcx>
{
    let tcx = ccx.tcx;
    let mut result = base_generics.clone();

    let early_lifetimes = early_bound_lifetimes_from_generics(space, ast_generics);
    for (i, l) in early_lifetimes.iter().enumerate() {
        let bounds = l.bounds.iter()
                             .map(|l| ast_region_to_region(tcx, l))
                             .collect();
        let def = ty::RegionParameterDef { name: l.lifetime.name,
                                           space: space,
                                           index: i as u32,
                                           def_id: local_def(l.lifetime.id),
                                           bounds: bounds };
        result.regions.push(space, def);
    }

    assert!(result.types.is_empty_in(space));

    // Now create the real type parameters.
    for i in 0..ast_generics.ty_params.len() {
        let def = get_or_create_type_parameter_def(ccx, ast_generics, space, i as u32);
        debug!("ty_generics: def for type param: {:?}, {:?}", def, space);
        result.types.push(space, def);
    }

    result
}

fn get_or_create_type_parameter_def<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                             ast_generics: &ast::Generics,
                                             space: ParamSpace,
                                             index: u32)
                                             -> ty::TypeParameterDef<'tcx>
{
    let param = &ast_generics.ty_params[index as usize];

    let tcx = ccx.tcx;
    match tcx.ty_param_defs.borrow().get(&param.id) {
        Some(d) => { return d.clone(); }
        None => { }
    }

    let default = match param.default {
        None => None,
        Some(ref path) => {
            let ty = ast_ty_to_ty(&ccx.icx(&()), &ExplicitRscope, &**path);
            let cur_idx = index;

            ty::walk_ty(ty, |t| {
                match t.sty {
                    ty::ty_param(p) => if p.idx > cur_idx {
                        span_err!(tcx.sess, path.span, E0128,
                                  "type parameters with a default cannot use \
                                   forward declared identifiers");
                        },
                        _ => {}
                    }
            });

            Some(ty)
        }
    };

    let object_lifetime_default =
        compute_object_lifetime_default(ccx, param.id,
                                        &param.bounds, &ast_generics.where_clause);

    let def = ty::TypeParameterDef {
        space: space,
        index: index,
        name: param.ident.name,
        def_id: local_def(param.id),
        default: default,
        object_lifetime_default: object_lifetime_default,
    };

    tcx.ty_param_defs.borrow_mut().insert(param.id, def.clone());

    def
}

/// Scan the bounds and where-clauses on a parameter to extract bounds
/// of the form `T:'a` so as to determine the `ObjectLifetimeDefault`.
/// This runs as part of computing the minimal type scheme, so we
/// intentionally avoid just asking astconv to convert all the where
/// clauses into a `ty::Predicate`. This is because that could induce
/// artificial cycles.
fn compute_object_lifetime_default<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                            param_id: ast::NodeId,
                                            param_bounds: &[ast::TyParamBound],
                                            where_clause: &ast::WhereClause)
                                            -> Option<ty::ObjectLifetimeDefault>
{
    let inline_bounds = from_bounds(ccx, param_bounds);
    let where_bounds = from_predicates(ccx, param_id, &where_clause.predicates);
    let all_bounds: HashSet<_> = inline_bounds.into_iter()
                                              .chain(where_bounds.into_iter())
                                              .collect();
    return if all_bounds.len() > 1 {
        Some(ty::ObjectLifetimeDefault::Ambiguous)
    } else {
        all_bounds.into_iter()
                  .next()
                  .map(ty::ObjectLifetimeDefault::Specific)
    };

    fn from_bounds<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                            bounds: &[ast::TyParamBound])
                            -> Vec<ty::Region>
    {
        bounds.iter()
              .filter_map(|bound| {
                  match *bound {
                      ast::TraitTyParamBound(..) =>
                          None,
                      ast::RegionTyParamBound(ref lifetime) =>
                          Some(astconv::ast_region_to_region(ccx.tcx, lifetime)),
                  }
              })
              .collect()
    }

    fn from_predicates<'a,'tcx>(ccx: &CrateCtxt<'a,'tcx>,
                                param_id: ast::NodeId,
                                predicates: &[ast::WherePredicate])
                                -> Vec<ty::Region>
    {
        predicates.iter()
                  .flat_map(|predicate| {
                      match *predicate {
                          ast::WherePredicate::BoundPredicate(ref data) => {
                              if data.bound_lifetimes.is_empty() &&
                                  is_param(ccx.tcx, &data.bounded_ty, param_id)
                              {
                                  from_bounds(ccx, &data.bounds).into_iter()
                              } else {
                                  Vec::new().into_iter()
                              }
                          }
                          ast::WherePredicate::RegionPredicate(..) |
                          ast::WherePredicate::EqPredicate(..) => {
                              Vec::new().into_iter()
                          }
                      }
                  })
                  .collect()
    }
}

enum SizedByDefault { Yes, No, }

/// Translate the AST's notion of ty param bounds (which are an enum consisting of a newtyped Ty or
/// a region) to ty's notion of ty param bounds, which can either be user-defined traits, or the
/// built-in trait (formerly known as kind): Send.
fn compute_bounds<'tcx>(astconv: &AstConv<'tcx>,
                        param_ty: ty::Ty<'tcx>,
                        ast_bounds: &[ast::TyParamBound],
                        sized_by_default: SizedByDefault,
                        span: Span)
                        -> ty::ParamBounds<'tcx>
{
    let mut param_bounds = conv_param_bounds(astconv,
                                             span,
                                             param_ty,
                                             ast_bounds);

    if let SizedByDefault::Yes = sized_by_default {
        add_unsized_bound(astconv,
                          &mut param_bounds.builtin_bounds,
                          ast_bounds,
                          span);
    }

    param_bounds.trait_bounds.sort_by(|a,b| a.def_id().cmp(&b.def_id()));

    param_bounds
}

/// Converts a specific TyParamBound from the AST into a set of
/// predicates that apply to the self-type. A vector is returned
/// because this can be anywhere from 0 predicates (`T:?Sized` adds no
/// predicates) to 1 (`T:Foo`) to many (`T:Bar<X=i32>` adds `T:Bar`
/// and `<T as Bar>::X == i32`).
fn predicates_from_bound<'tcx>(astconv: &AstConv<'tcx>,
                               param_ty: Ty<'tcx>,
                               bound: &ast::TyParamBound)
                               -> Vec<ty::Predicate<'tcx>>
{
    match *bound {
        ast::TraitTyParamBound(ref tr, ast::TraitBoundModifier::None) => {
            let mut projections = Vec::new();
            let pred = conv_poly_trait_ref(astconv, param_ty, tr, &mut projections);
            projections.into_iter()
                       .map(|p| p.as_predicate())
                       .chain(Some(pred.as_predicate()).into_iter())
                       .collect()
        }
        ast::RegionTyParamBound(ref lifetime) => {
            let region = ast_region_to_region(astconv.tcx(), lifetime);
            let pred = ty::Binder(ty::OutlivesPredicate(param_ty, region));
            vec![ty::Predicate::TypeOutlives(pred)]
        }
        ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {
            Vec::new()
        }
    }
}

fn conv_poly_trait_ref<'tcx>(astconv: &AstConv<'tcx>,
                             param_ty: Ty<'tcx>,
                             trait_ref: &ast::PolyTraitRef,
                             projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
                             -> ty::PolyTraitRef<'tcx>
{
    astconv::instantiate_poly_trait_ref(astconv,
                                        &ExplicitRscope,
                                        trait_ref,
                                        Some(param_ty),
                                        projections)
}

fn conv_param_bounds<'a,'tcx>(astconv: &AstConv<'tcx>,
                              span: Span,
                              param_ty: ty::Ty<'tcx>,
                              ast_bounds: &[ast::TyParamBound])
                              -> ty::ParamBounds<'tcx>
{
    let tcx = astconv.tcx();
    let astconv::PartitionedBounds {
        builtin_bounds,
        trait_bounds,
        region_bounds
    } = astconv::partition_bounds(tcx, span, &ast_bounds);

    let mut projection_bounds = Vec::new();

    let trait_bounds: Vec<ty::PolyTraitRef> =
        trait_bounds.iter()
                    .map(|bound| conv_poly_trait_ref(astconv,
                                                     param_ty,
                                                     *bound,
                                                     &mut projection_bounds))
                    .collect();

    let region_bounds: Vec<ty::Region> =
        region_bounds.into_iter()
                     .map(|r| ast_region_to_region(tcx, r))
                     .collect();

    ty::ParamBounds {
        region_bounds: region_bounds,
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        projection_bounds: projection_bounds,
    }
}

fn compute_type_scheme_of_foreign_fn_decl<'a, 'tcx>(
    ccx: &CrateCtxt<'a, 'tcx>,
    decl: &ast::FnDecl,
    ast_generics: &ast::Generics,
    abi: abi::Abi)
    -> ty::TypeScheme<'tcx>
{
    for i in decl.inputs.iter() {
        match (*i).pat.node {
            ast::PatIdent(_, _, _) => (),
            ast::PatWild(ast::PatWildSingle) => (),
            _ => {
                span_err!(ccx.tcx.sess, (*i).pat.span, E0130,
                          "patterns aren't allowed in foreign function declarations");
            }
        }
    }

    let ty_generics = ty_generics_for_fn(ccx, ast_generics, &ty::Generics::empty());

    let rb = BindingRscope::new();
    let input_tys = decl.inputs
                        .iter()
                        .map(|a| ty_of_arg(&ccx.icx(ast_generics), &rb, a, None))
                        .collect();

    let output = match decl.output {
        ast::Return(ref ty) =>
            ty::FnConverging(ast_ty_to_ty(&ccx.icx(ast_generics), &rb, &**ty)),
        ast::DefaultReturn(..) =>
            ty::FnConverging(ty::mk_nil(ccx.tcx)),
        ast::NoReturn(..) =>
            ty::FnDiverging
    };

    let t_fn = ty::mk_bare_fn(
        ccx.tcx,
        None,
        ccx.tcx.mk_bare_fn(ty::BareFnTy {
            abi: abi,
            unsafety: ast::Unsafety::Unsafe,
            sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                       output: output,
                                       variadic: decl.variadic}),
        }));

    ty::TypeScheme {
        generics: ty_generics,
        ty: t_fn
    }
}

fn mk_item_substs<'a, 'tcx>(ccx: &CrateCtxt<'a, 'tcx>,
                            ty_generics: &ty::Generics<'tcx>)
                            -> Substs<'tcx>
{
    let types =
        ty_generics.types.map(
            |def| ty::mk_param_from_def(ccx.tcx, def));

    let regions =
        ty_generics.regions.map(
            |def| def.to_early_bound_region());

    Substs::new(types, regions)
}

/// Verifies that the explicit self type of a method matches the impl
/// or trait. This is a bit weird but basically because right now we
/// don't handle the general case, but instead map it to one of
/// several pre-defined options using various heuristics, this method
/// comes back to check after the fact that explicit type the user
/// wrote actually matches what the pre-defined option said.
fn check_method_self_type<'a, 'tcx, RS:RegionScope>(
    ccx: &CrateCtxt<'a, 'tcx>,
    rs: &RS,
    method_type: Rc<ty::Method<'tcx>>,
    required_type: Ty<'tcx>,
    explicit_self: &ast::ExplicitSelf,
    body_id: ast::NodeId)
{
    let tcx = ccx.tcx;
    if let ast::SelfExplicit(ref ast_type, _) = explicit_self.node {
        let typ = ccx.icx(&method_type.predicates).to_ty(rs, &**ast_type);
        let base_type = match typ.sty {
            ty::ty_ptr(tm) | ty::ty_rptr(_, tm) => tm.ty,
            ty::ty_uniq(typ) => typ,
            _ => typ,
        };

        let body_scope = region::DestructionScopeData::new(body_id);

        // "Required type" comes from the trait definition. It may
        // contain late-bound regions from the method, but not the
        // trait (since traits only have early-bound region
        // parameters).
        assert!(!base_type.has_regions_escaping_depth(1));
        let required_type_free =
            liberate_early_bound_regions(
                tcx, body_scope,
                &ty::liberate_late_bound_regions(
                    tcx, body_scope, &ty::Binder(required_type)));

        // The "base type" comes from the impl. It too may have late-bound
        // regions from the method.
        assert!(!base_type.has_regions_escaping_depth(1));
        let base_type_free =
            liberate_early_bound_regions(
                tcx, body_scope,
                &ty::liberate_late_bound_regions(
                    tcx, body_scope, &ty::Binder(base_type)));

        debug!("required_type={} required_type_free={} \
                base_type={} base_type_free={}",
               required_type.repr(tcx),
               required_type_free.repr(tcx),
               base_type.repr(tcx),
               base_type_free.repr(tcx));

        let infcx = infer::new_infer_ctxt(tcx);
        drop(::require_same_types(tcx,
                                  Some(&infcx),
                                  false,
                                  explicit_self.span,
                                  base_type_free,
                                  required_type_free,
                                  || {
                format!("mismatched self type: expected `{}`",
                        ppaux::ty_to_string(tcx, required_type))
        }));

        // We could conceviably add more free-reion relations here,
        // but since this code is just concerned with checking that
        // the `&Self` types etc match up, it's not really necessary.
        // It would just allow people to be more approximate in some
        // cases. In any case, we can do it later as we feel the need;
        // I'd like this function to go away eventually.
        let free_regions = FreeRegionMap::new();

        infcx.resolve_regions_and_report_errors(&free_regions, body_id);
    }

    fn liberate_early_bound_regions<'tcx,T>(
        tcx: &ty::ctxt<'tcx>,
        scope: region::DestructionScopeData,
        value: &T)
        -> T
        where T : TypeFoldable<'tcx> + Repr<'tcx>
    {
        /*!
         * Convert early-bound regions into free regions; normally this is done by
         * applying the `free_substs` from the `ParameterEnvironment`, but this particular
         * method-self-type check is kind of hacky and done very early in the process,
         * before we really have a `ParameterEnvironment` to check.
         */

        ty_fold::fold_regions(tcx, value, |region, _| {
            match region {
                ty::ReEarlyBound(data) => {
                    let def_id = local_def(data.param_id);
                    ty::ReFree(ty::FreeRegion { scope: scope,
                                                bound_region: ty::BrNamed(def_id, data.name) })
                }
                _ => region
            }
        })
    }
}

/// Checks that all the type parameters on an impl
fn enforce_impl_params_are_constrained<'tcx>(tcx: &ty::ctxt<'tcx>,
                                             ast_generics: &ast::Generics,
                                             impl_def_id: ast::DefId,
                                             impl_items: &[P<ast::ImplItem>])
{
    let impl_scheme = ty::lookup_item_type(tcx, impl_def_id);
    let impl_predicates = ty::lookup_predicates(tcx, impl_def_id);
    let impl_trait_ref = ty::impl_trait_ref(tcx, impl_def_id);

    // The trait reference is an input, so find all type parameters
    // reachable from there, to start (if this is an inherent impl,
    // then just examine the self type).
    let mut input_parameters: HashSet<_> =
        ctp::parameters_for_type(impl_scheme.ty).into_iter().collect();
    if let Some(ref trait_ref) = impl_trait_ref {
        input_parameters.extend(ctp::parameters_for_trait_ref(trait_ref));
    }

    ctp::identify_constrained_type_params(tcx,
                                          impl_predicates.predicates.as_slice(),
                                          impl_trait_ref,
                                          &mut input_parameters);

    for (index, ty_param) in ast_generics.ty_params.iter().enumerate() {
        let param_ty = ty::ParamTy { space: TypeSpace,
                                     idx: index as u32,
                                     name: ty_param.ident.name };
        if !input_parameters.contains(&ctp::Parameter::Type(param_ty)) {
            report_unused_parameter(tcx, ty_param.span, "type", &param_ty.user_string(tcx));
        }
    }

    // Every lifetime used in an associated type must be constrained.

    let lifetimes_in_associated_types: HashSet<_> =
        impl_items.iter()
                  .filter_map(|item| match item.node {
                      ast::TypeImplItem(..) => Some(ty::node_id_to_type(tcx, item.id)),
                      ast::MethodImplItem(..) | ast::MacImplItem(..) => None,
                  })
                  .flat_map(|ty| ctp::parameters_for_type(ty).into_iter())
                  .filter_map(|p| match p {
                      ctp::Parameter::Type(_) => None,
                      ctp::Parameter::Region(r) => Some(r),
                  })
                  .collect();

    for (index, lifetime_def) in ast_generics.lifetimes.iter().enumerate() {
        let region = ty::EarlyBoundRegion { param_id: lifetime_def.lifetime.id,
                                            space: TypeSpace,
                                            index: index as u32,
                                            name: lifetime_def.lifetime.name };
        if
            lifetimes_in_associated_types.contains(&region) && // (*)
            !input_parameters.contains(&ctp::Parameter::Region(region))
        {
            report_unused_parameter(tcx, lifetime_def.lifetime.span,
                                    "lifetime", &region.name.user_string(tcx));
        }
    }

    // (*) This is a horrible concession to reality. I think it'd be
    // better to just ban unconstrianed lifetimes outright, but in
    // practice people do non-hygenic macros like:
    //
    // ```
    // macro_rules! __impl_slice_eq1 {
    //     ($Lhs: ty, $Rhs: ty, $Bound: ident) => {
    //         impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq<B> {
    //            ....
    //         }
    //     }
    // }
    // ```
    //
    // In a concession to backwards compatbility, we continue to
    // permit those, so long as the lifetimes aren't used in
    // associated types. I believe this is sound, because lifetimes
    // used elsewhere are not projected back out.
}

fn report_unused_parameter(tcx: &ty::ctxt,
                           span: Span,
                           kind: &str,
                           name: &str)
{
    span_err!(tcx.sess, span, E0207,
              "the {} parameter `{}` is not constrained by the \
               impl trait, self type, or predicates",
              kind, name);
}