1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Conversion from AST representation of types to the ty.rs
//! representation.  The main routine here is `ast_ty_to_ty()`: each use
//! is parameterized by an instance of `AstConv` and a `RegionScope`.
//!
//! The parameterization of `ast_ty_to_ty()` is because it behaves
//! somewhat differently during the collect and check phases,
//! particularly with respect to looking up the types of top-level
//! items.  In the collect phase, the crate context is used as the
//! `AstConv` instance; in this phase, the `get_item_type_scheme()`
//! function triggers a recursive call to `type_scheme_of_item()`
//! (note that `ast_ty_to_ty()` will detect recursive types and report
//! an error).  In the check phase, when the FnCtxt is used as the
//! `AstConv`, `get_item_type_scheme()` just looks up the item type in
//! `tcx.tcache` (using `ty::lookup_item_type`).
//!
//! The `RegionScope` trait controls what happens when the user does
//! not specify a region in some location where a region is required
//! (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
//! See the `rscope` module for more details.
//!
//! Unlike the `AstConv` trait, the region scope can change as we descend
//! the type.  This is to accommodate the fact that (a) fn types are binding
//! scopes and (b) the default region may change.  To understand case (a),
//! consider something like:
//!
//!   type foo = { x: &a.int, y: |&a.int| }
//!
//! The type of `x` is an error because there is no region `a` in scope.
//! In the type of `y`, however, region `a` is considered a bound region
//! as it does not already appear in scope.
//!
//! Case (b) says that if you have a type:
//!   type foo<'a> = ...;
//!   type bar = fn(&foo, &a.foo)
//! The fully expanded version of type bar is:
//!   type bar = fn(&'foo &, &a.foo<'a>)
//! Note that the self region for the `foo` defaulted to `&` in the first
//! case but `&a` in the second.  Basically, defaults that appear inside
//! an rptr (`&r.T`) use the region `r` that appears in the rptr.

use middle::astconv_util::{prim_ty_to_ty, check_path_args, NO_TPS, NO_REGIONS};
use middle::const_eval;
use middle::def;
use middle::implicator::object_region_bounds;
use middle::resolve_lifetime as rl;
use middle::privacy::{AllPublic, LastMod};
use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
use middle::traits;
use middle::ty::{self, RegionEscape, Ty};
use rscope::{self, UnelidableRscope, RegionScope, ElidableRscope, ExplicitRscope,
             ObjectLifetimeDefaultRscope, ShiftedRscope, BindingRscope};
use util::common::{ErrorReported, FN_OUTPUT_NAME};
use util::nodemap::FnvHashSet;
use util::ppaux::{self, Repr, UserString};

use std::iter::repeat;
use std::rc::Rc;
use std::slice;
use syntax::{abi, ast, ast_util};
use syntax::codemap::Span;
use syntax::parse::token;
use syntax::print::pprust;

pub trait AstConv<'tcx> {
    fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;

    /// Identify the type scheme for an item with a type, like a type
    /// alias, fn, or struct. This allows you to figure out the set of
    /// type parameters defined on the item.
    fn get_item_type_scheme(&self, span: Span, id: ast::DefId)
                            -> Result<ty::TypeScheme<'tcx>, ErrorReported>;

    /// Returns the `TraitDef` for a given trait. This allows you to
    /// figure out the set of type parameters defined on the trait.
    fn get_trait_def(&self, span: Span, id: ast::DefId)
                     -> Result<Rc<ty::TraitDef<'tcx>>, ErrorReported>;

    /// Ensure that the super-predicates for the trait with the given
    /// id are available and also for the transitive set of
    /// super-predicates.
    fn ensure_super_predicates(&self, span: Span, id: ast::DefId)
                               -> Result<(), ErrorReported>;

    /// Returns the set of bounds in scope for the type parameter with
    /// the given id.
    fn get_type_parameter_bounds(&self, span: Span, def_id: ast::NodeId)
                                 -> Result<Vec<ty::PolyTraitRef<'tcx>>, ErrorReported>;

    /// Returns true if the trait with id `trait_def_id` defines an
    /// associated type with the name `name`.
    fn trait_defines_associated_type_named(&self, trait_def_id: ast::DefId, name: ast::Name)
                                           -> bool;

    /// Return an (optional) substitution to convert bound type parameters that
    /// are in scope into free ones. This function should only return Some
    /// within a fn body.
    /// See ParameterEnvironment::free_substs for more information.
    fn get_free_substs(&self) -> Option<&Substs<'tcx>> {
        None
    }

    /// What type should we use when a type is omitted?
    fn ty_infer(&self, span: Span) -> Ty<'tcx>;

    /// Projecting an associated type from a (potentially)
    /// higher-ranked trait reference is more complicated, because of
    /// the possibility of late-bound regions appearing in the
    /// associated type binding. This is not legal in function
    /// signatures for that reason. In a function body, we can always
    /// handle it because we can use inference variables to remove the
    /// late-bound regions.
    fn projected_ty_from_poly_trait_ref(&self,
                                        span: Span,
                                        poly_trait_ref: ty::PolyTraitRef<'tcx>,
                                        item_name: ast::Name)
                                        -> Ty<'tcx>
    {
        if ty::binds_late_bound_regions(self.tcx(), &poly_trait_ref) {
            span_err!(self.tcx().sess, span, E0212,
                "cannot extract an associated type from a higher-ranked trait bound \
                 in this context");
            self.tcx().types.err
        } else {
            // no late-bound regions, we can just ignore the binder
            self.projected_ty(span, poly_trait_ref.0.clone(), item_name)
        }
    }

    /// Project an associated type from a non-higher-ranked trait reference.
    /// This is fairly straightforward and can be accommodated in any context.
    fn projected_ty(&self,
                    span: Span,
                    _trait_ref: Rc<ty::TraitRef<'tcx>>,
                    _item_name: ast::Name)
                    -> Ty<'tcx>;
}

pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
                            -> ty::Region {
    let r = match tcx.named_region_map.get(&lifetime.id) {
        None => {
            // should have been recorded by the `resolve_lifetime` pass
            tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
        }

        Some(&rl::DefStaticRegion) => {
            ty::ReStatic
        }

        Some(&rl::DefLateBoundRegion(debruijn, id)) => {
            ty::ReLateBound(debruijn, ty::BrNamed(ast_util::local_def(id), lifetime.name))
        }

        Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
            ty::ReEarlyBound(ty::EarlyBoundRegion {
                param_id: id,
                space: space,
                index: index,
                name: lifetime.name
            })
        }

        Some(&rl::DefFreeRegion(scope, id)) => {
            ty::ReFree(ty::FreeRegion {
                    scope: scope,
                    bound_region: ty::BrNamed(ast_util::local_def(id),
                                              lifetime.name)
                })
        }
    };

    debug!("ast_region_to_region(lifetime={} id={}) yields {}",
           lifetime.repr(tcx),
           lifetime.id,
           r.repr(tcx));

    r
}

pub fn opt_ast_region_to_region<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    default_span: Span,
    opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
{
    let r = match *opt_lifetime {
        Some(ref lifetime) => {
            ast_region_to_region(this.tcx(), lifetime)
        }

        None => {
            match rscope.anon_regions(default_span, 1) {
                Err(v) => {
                    debug!("optional region in illegal location");
                    span_err!(this.tcx().sess, default_span, E0106,
                        "missing lifetime specifier");
                    match v {
                        Some(v) => {
                            let mut m = String::new();
                            let len = v.len();
                            for (i, (name, n)) in v.into_iter().enumerate() {
                                let help_name = if name.is_empty() {
                                    format!("argument {}", i + 1)
                                } else {
                                    format!("`{}`", name)
                                };

                                m.push_str(&(if n == 1 {
                                    help_name
                                } else {
                                    format!("one of {}'s {} elided lifetimes", help_name, n)
                                })[..]);

                                if len == 2 && i == 0 {
                                    m.push_str(" or ");
                                } else if i + 2 == len {
                                    m.push_str(", or ");
                                } else if i + 1 != len {
                                    m.push_str(", ");
                                }
                            }
                            if len == 1 {
                                fileline_help!(this.tcx().sess, default_span,
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say which {} it is borrowed from",
                                    m);
                            } else if len == 0 {
                                fileline_help!(this.tcx().sess, default_span,
                                    "this function's return type contains a borrowed value, but \
                                     there is no value for it to be borrowed from");
                                fileline_help!(this.tcx().sess, default_span,
                                    "consider giving it a 'static lifetime");
                            } else {
                                fileline_help!(this.tcx().sess, default_span,
                                    "this function's return type contains a borrowed value, but \
                                     the signature does not say whether it is borrowed from {}",
                                    m);
                            }
                        }
                        None => {},
                    }
                    ty::ReStatic
                }

                Ok(rs) => rs[0],
            }
        }
    };

    debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
            opt_lifetime.repr(this.tcx()),
            r.repr(this.tcx()));

    r
}

/// Given a path `path` that refers to an item `I` with the declared generics `decl_generics`,
/// returns an appropriate set of substitutions for this particular reference to `I`.
pub fn ast_path_substs_for_ty<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    param_mode: PathParamMode,
    decl_generics: &ty::Generics<'tcx>,
    item_segment: &ast::PathSegment)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    // ast_path_substs() is only called to convert paths that are
    // known to refer to traits, types, or structs. In these cases,
    // all type parameters defined for the item being referenced will
    // be in the TypeSpace or SelfSpace.
    //
    // Note: in the case of traits, the self parameter is also
    // defined, but we don't currently create a `type_param_def` for
    // `Self` because it is implicit.
    assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
    assert!(decl_generics.types.all(|d| d.space != FnSpace));

    let (regions, types, assoc_bindings) = match item_segment.parameters {
        ast::AngleBracketedParameters(ref data) => {
            convert_angle_bracketed_parameters(this, rscope, span, decl_generics, data)
        }
        ast::ParenthesizedParameters(ref data) => {
            span_err!(tcx.sess, span, E0214,
                "parenthesized parameters may only be used with a trait");
            convert_parenthesized_parameters(this, rscope, span, decl_generics, data)
        }
    };

    prohibit_projections(this.tcx(), &assoc_bindings);

    create_substs_for_ast_path(this,
                               span,
                               param_mode,
                               decl_generics,
                               None,
                               types,
                               regions)
}

#[derive(PartialEq, Eq)]
pub enum PathParamMode {
    // Any path in a type context.
    Explicit,
    // The `module::Type` in `module::Type::method` in an expression.
    Optional
}

fn create_region_substs<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    decl_generics: &ty::Generics<'tcx>,
    regions_provided: Vec<ty::Region>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    // If the type is parameterized by the this region, then replace this
    // region with the current anon region binding (in other words,
    // whatever & would get replaced with).
    let expected_num_region_params = decl_generics.regions.len(TypeSpace);
    let supplied_num_region_params = regions_provided.len();
    let regions = if expected_num_region_params == supplied_num_region_params {
        regions_provided
    } else {
        let anon_regions =
            rscope.anon_regions(span, expected_num_region_params);

        if supplied_num_region_params != 0 || anon_regions.is_err() {
            report_lifetime_number_error(tcx, span,
                                         supplied_num_region_params,
                                         expected_num_region_params);
        }

        match anon_regions {
            Ok(anon_regions) => anon_regions,
            Err(_) => (0..expected_num_region_params).map(|_| ty::ReStatic).collect()
        }
    };
    Substs::new_type(vec![], regions)
}

/// Given the type/region arguments provided to some path (along with
/// an implicit Self, if this is a trait reference) returns the complete
/// set of substitutions. This may involve applying defaulted type parameters.
///
/// Note that the type listing given here is *exactly* what the user provided.
///
/// The `region_substs` should be the result of `create_region_substs`
/// -- that is, a substitution with no types but the correct number of
/// regions.
fn create_substs_for_ast_path<'tcx>(
    this: &AstConv<'tcx>,
    span: Span,
    param_mode: PathParamMode,
    decl_generics: &ty::Generics<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    types_provided: Vec<Ty<'tcx>>,
    region_substs: Substs<'tcx>)
    -> Substs<'tcx>
{
    let tcx = this.tcx();

    debug!("create_substs_for_ast_path(decl_generics={}, self_ty={}, \
           types_provided={}, region_substs={}",
           decl_generics.repr(tcx), self_ty.repr(tcx), types_provided.repr(tcx),
           region_substs.repr(tcx));

    assert_eq!(region_substs.regions().len(TypeSpace), decl_generics.regions.len(TypeSpace));
    assert!(region_substs.types.is_empty());

    // Convert the type parameters supplied by the user.
    let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
    let formal_ty_param_count = ty_param_defs.len();
    let required_ty_param_count = ty_param_defs.iter()
                                               .take_while(|x| x.default.is_none())
                                               .count();

    // Fill with `ty_infer` if no params were specified, as long as
    // they were optional (e.g. paths inside expressions).
    let mut type_substs = if param_mode == PathParamMode::Optional &&
                             types_provided.is_empty() {
        (0..formal_ty_param_count).map(|_| this.ty_infer(span)).collect()
    } else {
        types_provided
    };

    let supplied_ty_param_count = type_substs.len();
    check_type_argument_count(this.tcx(), span, supplied_ty_param_count,
                              required_ty_param_count, formal_ty_param_count);

    if supplied_ty_param_count < required_ty_param_count {
        while type_substs.len() < required_ty_param_count {
            type_substs.push(tcx.types.err);
        }
    } else if supplied_ty_param_count > formal_ty_param_count {
        type_substs.truncate(formal_ty_param_count);
    }
    assert!(type_substs.len() >= required_ty_param_count &&
            type_substs.len() <= formal_ty_param_count);

    let mut substs = region_substs;
    substs.types.extend(TypeSpace, type_substs.into_iter());

    match self_ty {
        None => {
            // If no self-type is provided, it's still possible that
            // one was declared, because this could be an object type.
        }
        Some(ty) => {
            // If a self-type is provided, one should have been
            // "declared" (in other words, this should be a
            // trait-ref).
            assert!(decl_generics.types.get_self().is_some());
            substs.types.push(SelfSpace, ty);
        }
    }

    let actual_supplied_ty_param_count = substs.types.len(TypeSpace);
    for param in &ty_param_defs[actual_supplied_ty_param_count..] {
        if let Some(default) = param.default {
            // If we are converting an object type, then the
            // `Self` parameter is unknown. However, some of the
            // other type parameters may reference `Self` in their
            // defaults. This will lead to an ICE if we are not
            // careful!
            if self_ty.is_none() && ty::type_has_self(default) {
                tcx.sess.span_err(
                    span,
                    &format!("the type parameter `{}` must be explicitly specified \
                              in an object type because its default value `{}` references \
                              the type `Self`",
                             param.name.user_string(tcx),
                             default.user_string(tcx)));
                substs.types.push(TypeSpace, tcx.types.err);
            } else {
                // This is a default type parameter.
                let default = default.subst_spanned(tcx,
                                                    &substs,
                                                    Some(span));
                substs.types.push(TypeSpace, default);
            }
        } else {
            tcx.sess.span_bug(span, "extra parameter without default");
        }
    }

    substs
}

struct ConvertedBinding<'tcx> {
    item_name: ast::Name,
    ty: Ty<'tcx>,
    span: Span,
}

fn convert_angle_bracketed_parameters<'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
                                            span: Span,
                                            decl_generics: &ty::Generics<'tcx>,
                                            data: &ast::AngleBracketedParameterData)
                                            -> (Substs<'tcx>,
                                                Vec<Ty<'tcx>>,
                                                Vec<ConvertedBinding<'tcx>>)
{
    let regions: Vec<_> =
        data.lifetimes.iter()
                      .map(|l| ast_region_to_region(this.tcx(), l))
                      .collect();

    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, regions);

    let types: Vec<_> =
        data.types.iter()
                  .enumerate()
                  .map(|(i,t)| ast_ty_arg_to_ty(this, rscope, decl_generics,
                                                i, &region_substs, t))
                  .collect();

    let assoc_bindings: Vec<_> =
        data.bindings.iter()
                     .map(|b| ConvertedBinding { item_name: b.ident.name,
                                                 ty: ast_ty_to_ty(this, rscope, &*b.ty),
                                                 span: b.span })
                     .collect();

    (region_substs, types, assoc_bindings)
}

/// Returns the appropriate lifetime to use for any output lifetimes
/// (if one exists) and a vector of the (pattern, number of lifetimes)
/// corresponding to each input type/pattern.
fn find_implied_output_region(input_tys: &[Ty], input_pats: Vec<String>)
                              -> (Option<ty::Region>, Vec<(String, usize)>)
{
    let mut lifetimes_for_params: Vec<(String, usize)> = Vec::new();
    let mut possible_implied_output_region = None;

    for (input_type, input_pat) in input_tys.iter().zip(input_pats.into_iter()) {
        let mut accumulator = Vec::new();
        ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type);

        if accumulator.len() == 1 {
            // there's a chance that the unique lifetime of this
            // iteration will be the appropriate lifetime for output
            // parameters, so lets store it.
            possible_implied_output_region = Some(accumulator[0])
        }

        lifetimes_for_params.push((input_pat, accumulator.len()));
    }

    let implied_output_region =
        if lifetimes_for_params.iter().map(|&(_, n)| n).sum::<usize>() == 1 {
            assert!(possible_implied_output_region.is_some());
            possible_implied_output_region
        } else {
            None
        };
    (implied_output_region, lifetimes_for_params)
}

fn convert_ty_with_lifetime_elision<'tcx>(this: &AstConv<'tcx>,
                                          implied_output_region: Option<ty::Region>,
                                          param_lifetimes: Vec<(String, usize)>,
                                          ty: &ast::Ty)
                                          -> Ty<'tcx>
{
    match implied_output_region {
        Some(implied_output_region) => {
            let rb = ElidableRscope::new(implied_output_region);
            ast_ty_to_ty(this, &rb, ty)
        }
        None => {
            // All regions must be explicitly specified in the output
            // if the lifetime elision rules do not apply. This saves
            // the user from potentially-confusing errors.
            let rb = UnelidableRscope::new(param_lifetimes);
            ast_ty_to_ty(this, &rb, ty)
        }
    }
}

fn convert_parenthesized_parameters<'tcx>(this: &AstConv<'tcx>,
                                          rscope: &RegionScope,
                                          span: Span,
                                          decl_generics: &ty::Generics<'tcx>,
                                          data: &ast::ParenthesizedParameterData)
                                          -> (Substs<'tcx>,
                                              Vec<Ty<'tcx>>,
                                              Vec<ConvertedBinding<'tcx>>)
{
    let region_substs =
        create_region_substs(this, rscope, span, decl_generics, Vec::new());

    let binding_rscope = BindingRscope::new();
    let inputs =
        data.inputs.iter()
                   .map(|a_t| ast_ty_arg_to_ty(this, &binding_rscope, decl_generics,
                                               0, &region_substs, a_t))
                   .collect::<Vec<Ty<'tcx>>>();

    let input_params: Vec<_> = repeat(String::new()).take(inputs.len()).collect();
    let (implied_output_region,
         params_lifetimes) = find_implied_output_region(&*inputs, input_params);

    let input_ty = ty::mk_tup(this.tcx(), inputs);

    let (output, output_span) = match data.output {
        Some(ref output_ty) => {
            (convert_ty_with_lifetime_elision(this,
                                              implied_output_region,
                                              params_lifetimes,
                                              &**output_ty),
             output_ty.span)
        }
        None => {
            (ty::mk_nil(this.tcx()), data.span)
        }
    };

    let output_binding = ConvertedBinding {
        item_name: token::intern(FN_OUTPUT_NAME),
        ty: output,
        span: output_span
    };

    (region_substs, vec![input_ty], vec![output_binding])
}

pub fn instantiate_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    ast_trait_ref: &ast::PolyTraitRef,
    self_ty: Option<Ty<'tcx>>,
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    let trait_ref = &ast_trait_ref.trait_ref;
    let trait_def_id = trait_def_id(this, trait_ref);
    ast_path_to_poly_trait_ref(this,
                               rscope,
                               trait_ref.path.span,
                               PathParamMode::Explicit,
                               trait_def_id,
                               self_ty,
                               trait_ref.path.segments.last().unwrap(),
                               poly_projections)
}

/// Instantiates the path for the given trait reference, assuming that it's
/// bound to a valid trait type. Returns the def_id for the defining trait.
/// Fails if the type is a type other than a trait type.
///
/// If the `projections` argument is `None`, then assoc type bindings like `Foo<T=X>`
/// are disallowed. Otherwise, they are pushed onto the vector given.
pub fn instantiate_mono_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    trait_ref: &ast::TraitRef,
    self_ty: Option<Ty<'tcx>>)
    -> Rc<ty::TraitRef<'tcx>>
{
    let trait_def_id = trait_def_id(this, trait_ref);
    ast_path_to_mono_trait_ref(this,
                               rscope,
                               trait_ref.path.span,
                               PathParamMode::Explicit,
                               trait_def_id,
                               self_ty,
                               trait_ref.path.segments.last().unwrap())
}

fn trait_def_id<'tcx>(this: &AstConv<'tcx>, trait_ref: &ast::TraitRef) -> ast::DefId {
    let path = &trait_ref.path;
    match ::lookup_full_def(this.tcx(), path.span, trait_ref.ref_id) {
        def::DefTrait(trait_def_id) => trait_def_id,
        _ => {
            span_fatal!(this.tcx().sess, path.span, E0245, "`{}` is not a trait",
                        path.user_string(this.tcx()));
        }
    }
}

fn object_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    param_mode: PathParamMode,
    trait_def_id: ast::DefId,
    trait_segment: &ast::PathSegment,
    mut projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    ast_path_to_poly_trait_ref(this,
                               rscope,
                               span,
                               param_mode,
                               trait_def_id,
                               None,
                               trait_segment,
                               projections)
}

fn ast_path_to_poly_trait_ref<'a,'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    param_mode: PathParamMode,
    trait_def_id: ast::DefId,
    self_ty: Option<Ty<'tcx>>,
    trait_segment: &ast::PathSegment,
    poly_projections: &mut Vec<ty::PolyProjectionPredicate<'tcx>>)
    -> ty::PolyTraitRef<'tcx>
{
    // The trait reference introduces a binding level here, so
    // we need to shift the `rscope`. It'd be nice if we could
    // do away with this rscope stuff and work this knowledge
    // into resolve_lifetimes, as we do with non-omitted
    // lifetimes. Oh well, not there yet.
    let shifted_rscope = &ShiftedRscope::new(rscope);

    let (substs, assoc_bindings) =
        create_substs_for_ast_trait_ref(this,
                                        shifted_rscope,
                                        span,
                                        param_mode,
                                        trait_def_id,
                                        self_ty,
                                        trait_segment);
    let poly_trait_ref = ty::Binder(Rc::new(ty::TraitRef::new(trait_def_id, substs)));

    {
        let converted_bindings =
            assoc_bindings
            .iter()
            .filter_map(|binding| {
                // specify type to assert that error was already reported in Err case:
                let predicate: Result<_, ErrorReported> =
                    ast_type_binding_to_poly_projection_predicate(this,
                                                                  poly_trait_ref.clone(),
                                                                  self_ty,
                                                                  binding);
                predicate.ok() // ok to ignore Err() because ErrorReported (see above)
            });
        poly_projections.extend(converted_bindings);
    }

    poly_trait_ref
}

fn ast_path_to_mono_trait_ref<'a,'tcx>(this: &AstConv<'tcx>,
                                       rscope: &RegionScope,
                                       span: Span,
                                       param_mode: PathParamMode,
                                       trait_def_id: ast::DefId,
                                       self_ty: Option<Ty<'tcx>>,
                                       trait_segment: &ast::PathSegment)
                                       -> Rc<ty::TraitRef<'tcx>>
{
    let (substs, assoc_bindings) =
        create_substs_for_ast_trait_ref(this,
                                        rscope,
                                        span,
                                        param_mode,
                                        trait_def_id,
                                        self_ty,
                                        trait_segment);
    prohibit_projections(this.tcx(), &assoc_bindings);
    Rc::new(ty::TraitRef::new(trait_def_id, substs))
}

fn create_substs_for_ast_trait_ref<'a,'tcx>(this: &AstConv<'tcx>,
                                            rscope: &RegionScope,
                                            span: Span,
                                            param_mode: PathParamMode,
                                            trait_def_id: ast::DefId,
                                            self_ty: Option<Ty<'tcx>>,
                                            trait_segment: &ast::PathSegment)
                                            -> (&'tcx Substs<'tcx>, Vec<ConvertedBinding<'tcx>>)
{
    debug!("create_substs_for_ast_trait_ref(trait_segment={:?})",
           trait_segment);

    let trait_def = match this.get_trait_def(span, trait_def_id) {
        Ok(trait_def) => trait_def,
        Err(ErrorReported) => {
            // No convenient way to recover from a cycle here. Just bail. Sorry!
            this.tcx().sess.abort_if_errors();
            this.tcx().sess.bug("ErrorReported returned, but no errors reports?")
        }
    };

    let (regions, types, assoc_bindings) = match trait_segment.parameters {
        ast::AngleBracketedParameters(ref data) => {
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
            if !this.tcx().sess.features.borrow().unboxed_closures && trait_def.paren_sugar {
                span_err!(this.tcx().sess, span, E0215,
                                         "angle-bracket notation is not stable when \
                                         used with the `Fn` family of traits, use parentheses");
                fileline_help!(this.tcx().sess, span,
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

            convert_angle_bracketed_parameters(this, rscope, span, &trait_def.generics, data)
        }
        ast::ParenthesizedParameters(ref data) => {
            // For now, require that parenthetical notation be used
            // only with `Fn()` etc.
            if !this.tcx().sess.features.borrow().unboxed_closures && !trait_def.paren_sugar {
                span_err!(this.tcx().sess, span, E0216,
                                         "parenthetical notation is only stable when \
                                         used with the `Fn` family of traits");
                fileline_help!(this.tcx().sess, span,
                           "add `#![feature(unboxed_closures)]` to \
                            the crate attributes to enable");
            }

            convert_parenthesized_parameters(this, rscope, span, &trait_def.generics, data)
        }
    };

    let substs = create_substs_for_ast_path(this,
                                            span,
                                            param_mode,
                                            &trait_def.generics,
                                            self_ty,
                                            types,
                                            regions);

    (this.tcx().mk_substs(substs), assoc_bindings)
}

fn ast_type_binding_to_poly_projection_predicate<'tcx>(
    this: &AstConv<'tcx>,
    mut trait_ref: ty::PolyTraitRef<'tcx>,
    self_ty: Option<Ty<'tcx>>,
    binding: &ConvertedBinding<'tcx>)
    -> Result<ty::PolyProjectionPredicate<'tcx>, ErrorReported>
{
    let tcx = this.tcx();

    // Given something like `U : SomeTrait<T=X>`, we want to produce a
    // predicate like `<U as SomeTrait>::T = X`. This is somewhat
    // subtle in the event that `T` is defined in a supertrait of
    // `SomeTrait`, because in that case we need to upcast.
    //
    // That is, consider this case:
    //
    // ```
    // trait SubTrait : SuperTrait<int> { }
    // trait SuperTrait<A> { type T; }
    //
    // ... B : SubTrait<T=foo> ...
    // ```
    //
    // We want to produce `<B as SuperTrait<int>>::T == foo`.

    // Simple case: X is defined in the current trait.
    if this.trait_defines_associated_type_named(trait_ref.def_id(), binding.item_name) {
        return Ok(ty::Binder(ty::ProjectionPredicate {      // <-------------------+
            projection_ty: ty::ProjectionTy {               //                     |
                trait_ref: trait_ref.skip_binder().clone(), // Binder moved here --+
                item_name: binding.item_name,
            },
            ty: binding.ty,
        }));
    }

    // Otherwise, we have to walk through the supertraits to find
    // those that do.  This is complicated by the fact that, for an
    // object type, the `Self` type is not present in the
    // substitutions (after all, it's being constructed right now),
    // but the `supertraits` iterator really wants one. To handle
    // this, we currently insert a dummy type and then remove it
    // later. Yuck.

    let dummy_self_ty = ty::mk_infer(tcx, ty::FreshTy(0));
    if self_ty.is_none() { // if converting for an object type
        let mut dummy_substs = trait_ref.skip_binder().substs.clone(); // binder moved here -+
        assert!(dummy_substs.self_ty().is_none());                     //                    |
        dummy_substs.types.push(SelfSpace, dummy_self_ty);             //                    |
        trait_ref = ty::Binder(Rc::new(ty::TraitRef::new(trait_ref.def_id(), // <------------+
                                                         tcx.mk_substs(dummy_substs))));
    }

    try!(this.ensure_super_predicates(binding.span, trait_ref.def_id()));

    let mut candidates: Vec<ty::PolyTraitRef> =
        traits::supertraits(tcx, trait_ref.clone())
        .filter(|r| this.trait_defines_associated_type_named(r.def_id(), binding.item_name))
        .collect();

    // If converting for an object type, then remove the dummy-ty from `Self` now.
    // Yuckety yuck.
    if self_ty.is_none() {
        for candidate in &mut candidates {
            let mut dummy_substs = candidate.0.substs.clone();
            assert!(dummy_substs.self_ty() == Some(dummy_self_ty));
            dummy_substs.types.pop(SelfSpace);
            *candidate = ty::Binder(Rc::new(ty::TraitRef::new(candidate.def_id(),
                                                              tcx.mk_substs(dummy_substs))));
        }
    }

    let candidate = try!(one_bound_for_assoc_type(tcx,
                                                  candidates,
                                                  &trait_ref.user_string(tcx),
                                                  &token::get_name(binding.item_name),
                                                  binding.span));

    Ok(ty::Binder(ty::ProjectionPredicate {             // <-------------------------+
        projection_ty: ty::ProjectionTy {               //                           |
            trait_ref: candidate.skip_binder().clone(), // binder is moved up here --+
            item_name: binding.item_name,
        },
        ty: binding.ty,
    }))
}

fn ast_path_to_ty<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    param_mode: PathParamMode,
    did: ast::DefId,
    item_segment: &ast::PathSegment)
    -> Ty<'tcx>
{
    let tcx = this.tcx();
    let (generics, decl_ty) = match this.get_item_type_scheme(span, did) {
        Ok(ty::TypeScheme { generics,  ty: decl_ty }) => {
            (generics, decl_ty)
        }
        Err(ErrorReported) => {
            return tcx.types.err;
        }
    };

    let substs = ast_path_substs_for_ty(this,
                                        rscope,
                                        span,
                                        param_mode,
                                        &generics,
                                        item_segment);

    // FIXME(#12938): This is a hack until we have full support for DST.
    if Some(did) == this.tcx().lang_items.owned_box() {
        assert_eq!(substs.types.len(TypeSpace), 1);
        return ty::mk_uniq(this.tcx(), *substs.types.get(TypeSpace, 0));
    }

    decl_ty.subst(this.tcx(), &substs)
}

type TraitAndProjections<'tcx> = (ty::PolyTraitRef<'tcx>, Vec<ty::PolyProjectionPredicate<'tcx>>);

fn ast_ty_to_trait_ref<'tcx>(this: &AstConv<'tcx>,
                             rscope: &RegionScope,
                             ty: &ast::Ty,
                             bounds: &[ast::TyParamBound])
                             -> Result<TraitAndProjections<'tcx>, ErrorReported>
{
    /*!
     * In a type like `Foo + Send`, we want to wait to collect the
     * full set of bounds before we make the object type, because we
     * need them to infer a region bound.  (For example, if we tried
     * made a type from just `Foo`, then it wouldn't be enough to
     * infer a 'static bound, and hence the user would get an error.)
     * So this function is used when we're dealing with a sum type to
     * convert the LHS. It only accepts a type that refers to a trait
     * name, and reports an error otherwise.
     */

    match ty.node {
        ast::TyPath(None, ref path) => {
            let def = match this.tcx().def_map.borrow().get(&ty.id) {
                Some(&def::PathResolution { base_def, depth: 0, .. }) => Some(base_def),
                _ => None
            };
            match def {
                Some(def::DefTrait(trait_def_id)) => {
                    let mut projection_bounds = Vec::new();
                    let trait_ref = object_path_to_poly_trait_ref(this,
                                                                  rscope,
                                                                  path.span,
                                                                  PathParamMode::Explicit,
                                                                  trait_def_id,
                                                                  path.segments.last().unwrap(),
                                                                  &mut projection_bounds);
                    Ok((trait_ref, projection_bounds))
                }
                _ => {
                    span_err!(this.tcx().sess, ty.span, E0172, "expected a reference to a trait");
                    Err(ErrorReported)
                }
            }
        }
        _ => {
            span_err!(this.tcx().sess, ty.span, E0178,
                      "expected a path on the left-hand side of `+`, not `{}`",
                      pprust::ty_to_string(ty));
            match ty.node {
                ast::TyRptr(None, ref mut_ty) => {
                    fileline_help!(this.tcx().sess, ty.span,
                               "perhaps you meant `&{}({} +{})`? (per RFC 438)",
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }
               ast::TyRptr(Some(ref lt), ref mut_ty) => {
                    fileline_help!(this.tcx().sess, ty.span,
                               "perhaps you meant `&{} {}({} +{})`? (per RFC 438)",
                               pprust::lifetime_to_string(lt),
                               ppaux::mutability_to_string(mut_ty.mutbl),
                               pprust::ty_to_string(&*mut_ty.ty),
                               pprust::bounds_to_string(bounds));
                }

                _ => {
                    fileline_help!(this.tcx().sess, ty.span,
                               "perhaps you forgot parentheses? (per RFC 438)");
                }
            }
            Err(ErrorReported)
        }
    }
}

fn trait_ref_to_object_type<'tcx>(this: &AstConv<'tcx>,
                                  rscope: &RegionScope,
                                  span: Span,
                                  trait_ref: ty::PolyTraitRef<'tcx>,
                                  projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
                                  bounds: &[ast::TyParamBound])
                                  -> Ty<'tcx>
{
    let existential_bounds = conv_existential_bounds(this,
                                                     rscope,
                                                     span,
                                                     trait_ref.clone(),
                                                     projection_bounds,
                                                     bounds);

    let result = make_object_type(this, span, trait_ref, existential_bounds);
    debug!("trait_ref_to_object_type: result={}",
           result.repr(this.tcx()));

    result
}

fn make_object_type<'tcx>(this: &AstConv<'tcx>,
                          span: Span,
                          principal: ty::PolyTraitRef<'tcx>,
                          bounds: ty::ExistentialBounds<'tcx>)
                          -> Ty<'tcx> {
    let tcx = this.tcx();
    let object = ty::TyTrait {
        principal: principal,
        bounds: bounds
    };
    let object_trait_ref =
        object.principal_trait_ref_with_self_ty(tcx, tcx.types.err);

    // ensure the super predicates and stop if we encountered an error
    if this.ensure_super_predicates(span, object.principal_def_id()).is_err() {
        return tcx.types.err;
    }

    let mut associated_types: FnvHashSet<(ast::DefId, ast::Name)> =
        traits::supertraits(tcx, object_trait_ref)
        .flat_map(|tr| {
            let trait_def = ty::lookup_trait_def(tcx, tr.def_id());
            trait_def.associated_type_names
                .clone()
                .into_iter()
                .map(move |associated_type_name| (tr.def_id(), associated_type_name))
        })
        .collect();

    for projection_bound in &object.bounds.projection_bounds {
        let pair = (projection_bound.0.projection_ty.trait_ref.def_id,
                    projection_bound.0.projection_ty.item_name);
        associated_types.remove(&pair);
    }

    for (trait_def_id, name) in associated_types {
        span_err!(tcx.sess, span, E0191,
            "the value of the associated type `{}` (from the trait `{}`) must be specified",
                    name.user_string(tcx),
                    ty::item_path_str(tcx, trait_def_id));
    }

    ty::mk_trait(tcx, object.principal, object.bounds)
}

fn report_ambiguous_associated_type(tcx: &ty::ctxt,
                                    span: Span,
                                    type_str: &str,
                                    trait_str: &str,
                                    name: &str) {
    span_err!(tcx.sess, span, E0223,
              "ambiguous associated type; specify the type using the syntax \
               `<{} as {}>::{}`",
              type_str, trait_str, name);
}

// Search for a bound on a type parameter which includes the associated item
// given by assoc_name. ty_param_node_id is the node id for the type parameter
// (which might be `Self`, but only if it is the `Self` of a trait, not an
// impl). This function will fail if there are no suitable bounds or there is
// any ambiguity.
fn find_bound_for_assoc_item<'tcx>(this: &AstConv<'tcx>,
                                   ty_param_node_id: ast::NodeId,
                                   assoc_name: ast::Name,
                                   span: Span)
                                   -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
{
    let tcx = this.tcx();

    let bounds = match this.get_type_parameter_bounds(span, ty_param_node_id) {
        Ok(v) => v,
        Err(ErrorReported) => {
            return Err(ErrorReported);
        }
    };

    // Ensure the super predicates and stop if we encountered an error.
    if bounds.iter().any(|b| this.ensure_super_predicates(span, b.def_id()).is_err()) {
        return Err(ErrorReported);
    }

    // Check that there is exactly one way to find an associated type with the
    // correct name.
    let suitable_bounds: Vec<_> =
        traits::transitive_bounds(tcx, &bounds)
        .filter(|b| this.trait_defines_associated_type_named(b.def_id(), assoc_name))
        .collect();

    let ty_param_name = tcx.type_parameter_def(ty_param_node_id).name;
    one_bound_for_assoc_type(tcx,
                             suitable_bounds,
                             &token::get_name(ty_param_name),
                             &token::get_name(assoc_name),
                             span)
}


// Checks that bounds contains exactly one element and reports appropriate
// errors otherwise.
fn one_bound_for_assoc_type<'tcx>(tcx: &ty::ctxt<'tcx>,
                                  bounds: Vec<ty::PolyTraitRef<'tcx>>,
                                  ty_param_name: &str,
                                  assoc_name: &str,
                                  span: Span)
    -> Result<ty::PolyTraitRef<'tcx>, ErrorReported>
{
    if bounds.is_empty() {
        span_err!(tcx.sess, span, E0220,
                  "associated type `{}` not found for `{}`",
                  assoc_name,
                  ty_param_name);
        return Err(ErrorReported);
    }

    if bounds.len() > 1 {
        span_err!(tcx.sess, span, E0221,
                  "ambiguous associated type `{}` in bounds of `{}`",
                  assoc_name,
                  ty_param_name);

        for bound in &bounds {
            span_note!(tcx.sess, span,
                       "associated type `{}` could derive from `{}`",
                       ty_param_name,
                       bound.user_string(tcx));
        }
    }

    Ok(bounds[0].clone())
}

// Create a type from a a path to an associated type.
// For a path A::B::C::D, ty and ty_path_def are the type and def for A::B::C
// and item_segment is the path segment for D. We return a type and a def for
// the whole path.
// Will fail except for T::A and Self::A; i.e., if ty/ty_path_def are not a type
// parameter or Self.
fn associated_path_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                   span: Span,
                                   ty: Ty<'tcx>,
                                   ty_path_def: def::Def,
                                   item_segment: &ast::PathSegment)
                                   -> (Ty<'tcx>, def::Def)
{
    let tcx = this.tcx();
    let assoc_name = item_segment.identifier.name;

    debug!("associated_path_def_to_ty: {}::{}", ty.repr(tcx), token::get_name(assoc_name));

    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);

    // Find the type of the associated item, and the trait where the associated
    // item is declared.
    let bound = match (&ty.sty, ty_path_def) {
        (_, def::DefSelfTy(Some(trait_did), Some((impl_id, _)))) => {
            // `Self` in an impl of a trait - we have a concrete self type and a
            // trait reference.
            match tcx.map.expect_item(impl_id).node {
                ast::ItemImpl(_, _, _, Some(ref trait_ref), _, _) => {
                    if this.ensure_super_predicates(span, trait_did).is_err() {
                        return (tcx.types.err, ty_path_def);
                    }

                    let trait_segment = &trait_ref.path.segments.last().unwrap();
                    let trait_ref = ast_path_to_mono_trait_ref(this,
                                                               &ExplicitRscope,
                                                               span,
                                                               PathParamMode::Explicit,
                                                               trait_did,
                                                               Some(ty),
                                                               trait_segment);

                    let candidates: Vec<ty::PolyTraitRef> =
                        traits::supertraits(tcx, ty::Binder(trait_ref.clone()))
                        .filter(|r| this.trait_defines_associated_type_named(r.def_id(),
                                                                             assoc_name))
                        .collect();

                    match one_bound_for_assoc_type(tcx,
                                                   candidates,
                                                   "Self",
                                                   &token::get_name(assoc_name),
                                                   span) {
                        Ok(bound) => bound,
                        Err(ErrorReported) => return (tcx.types.err, ty_path_def),
                    }
                }
                _ => unreachable!()
            }
        }
        (&ty::ty_param(_), def::DefTyParam(..)) |
        (&ty::ty_param(_), def::DefSelfTy(Some(_), None)) => {
            // A type parameter or Self, we need to find the associated item from
            // a bound.
            let ty_param_node_id = ty_path_def.local_node_id();
            match find_bound_for_assoc_item(this, ty_param_node_id, assoc_name, span) {
                Ok(bound) => bound,
                Err(ErrorReported) => return (tcx.types.err, ty_path_def),
            }
        }
        _ => {
            report_ambiguous_associated_type(tcx,
                                             span,
                                             &ty.user_string(tcx),
                                             "Trait",
                                             &token::get_name(assoc_name));
            return (tcx.types.err, ty_path_def);
        }
    };

    let trait_did = bound.0.def_id;
    let ty = this.projected_ty_from_poly_trait_ref(span, bound, assoc_name);

    let item_did = if trait_did.krate == ast::LOCAL_CRATE {
        // `ty::trait_items` used below requires information generated
        // by type collection, which may be in progress at this point.
        match tcx.map.expect_item(trait_did.node).node {
            ast::ItemTrait(_, _, _, ref trait_items) => {
                let item = trait_items.iter()
                                      .find(|i| i.ident.name == assoc_name)
                                      .expect("missing associated type");
                ast_util::local_def(item.id)
            }
            _ => unreachable!()
        }
    } else {
        let trait_items = ty::trait_items(tcx, trait_did);
        let item = trait_items.iter().find(|i| i.name() == assoc_name);
        item.expect("missing associated type").def_id()
    };

    (ty, def::DefAssociatedTy(trait_did, item_did))
}

fn qpath_to_ty<'tcx>(this: &AstConv<'tcx>,
                     rscope: &RegionScope,
                     span: Span,
                     param_mode: PathParamMode,
                     opt_self_ty: Option<Ty<'tcx>>,
                     trait_def_id: ast::DefId,
                     trait_segment: &ast::PathSegment,
                     item_segment: &ast::PathSegment)
                     -> Ty<'tcx>
{
    let tcx = this.tcx();

    check_path_args(tcx, slice::ref_slice(item_segment), NO_TPS | NO_REGIONS);

    let self_ty = if let Some(ty) = opt_self_ty {
        ty
    } else {
        let path_str = ty::item_path_str(tcx, trait_def_id);
        report_ambiguous_associated_type(tcx,
                                         span,
                                         "Type",
                                         &path_str,
                                         &token::get_ident(item_segment.identifier));
        return tcx.types.err;
    };

    debug!("qpath_to_ty: self_type={}", self_ty.repr(tcx));

    let trait_ref = ast_path_to_mono_trait_ref(this,
                                               rscope,
                                               span,
                                               param_mode,
                                               trait_def_id,
                                               Some(self_ty),
                                               trait_segment);

    debug!("qpath_to_ty: trait_ref={}", trait_ref.repr(tcx));

    this.projected_ty(span, trait_ref, item_segment.identifier.name)
}

/// Convert a type supplied as value for a type argument from AST into our
/// our internal representation. This is the same as `ast_ty_to_ty` but that
/// it applies the object lifetime default.
///
/// # Parameters
///
/// * `this`, `rscope`: the surrounding context
/// * `decl_generics`: the generics of the struct/enum/trait declaration being
///   referenced
/// * `index`: the index of the type parameter being instantiated from the list
///   (we assume it is in the `TypeSpace`)
/// * `region_substs`: a partial substitution consisting of
///   only the region type parameters being supplied to this type.
/// * `ast_ty`: the ast representation of the type being supplied
pub fn ast_ty_arg_to_ty<'tcx>(this: &AstConv<'tcx>,
                              rscope: &RegionScope,
                              decl_generics: &ty::Generics<'tcx>,
                              index: usize,
                              region_substs: &Substs<'tcx>,
                              ast_ty: &ast::Ty)
                              -> Ty<'tcx>
{
    let tcx = this.tcx();

    if let Some(def) = decl_generics.types.opt_get(TypeSpace, index) {
        let object_lifetime_default = def.object_lifetime_default.subst(tcx, region_substs);
        let rscope1 = &ObjectLifetimeDefaultRscope::new(rscope, object_lifetime_default);
        ast_ty_to_ty(this, rscope1, ast_ty)
    } else {
        ast_ty_to_ty(this, rscope, ast_ty)
    }
}

// Check the base def in a PathResolution and convert it to a Ty. If there are
// associated types in the PathResolution, these will need to be seperately
// resolved.
fn base_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                        rscope: &RegionScope,
                        span: Span,
                        param_mode: PathParamMode,
                        def: &def::Def,
                        opt_self_ty: Option<Ty<'tcx>>,
                        base_segments: &[ast::PathSegment])
                        -> Ty<'tcx> {
    let tcx = this.tcx();

    match *def {
        def::DefTrait(trait_def_id) => {
            // N.B. this case overlaps somewhat with
            // TyObjectSum, see that fn for details
            let mut projection_bounds = Vec::new();

            let trait_ref = object_path_to_poly_trait_ref(this,
                                                          rscope,
                                                          span,
                                                          param_mode,
                                                          trait_def_id,
                                                          base_segments.last().unwrap(),
                                                          &mut projection_bounds);

            check_path_args(tcx, base_segments.init(), NO_TPS | NO_REGIONS);
            trait_ref_to_object_type(this,
                                     rscope,
                                     span,
                                     trait_ref,
                                     projection_bounds,
                                     &[])
        }
        def::DefTy(did, _) | def::DefStruct(did) => {
            check_path_args(tcx, base_segments.init(), NO_TPS | NO_REGIONS);
            ast_path_to_ty(this,
                           rscope,
                           span,
                           param_mode,
                           did,
                           base_segments.last().unwrap())
        }
        def::DefTyParam(space, index, _, name) => {
            check_path_args(tcx, base_segments, NO_TPS | NO_REGIONS);
            ty::mk_param(tcx, space, index, name)
        }
        def::DefSelfTy(_, Some((_, self_ty_id))) => {
            // Self in impl (we know the concrete type).
            check_path_args(tcx, base_segments, NO_TPS | NO_REGIONS);
            if let Some(&ty) = tcx.ast_ty_to_ty_cache.borrow().get(&self_ty_id) {
                ty
            } else {
                tcx.sess.span_bug(span, "self type has not been fully resolved")
            }
        }
        def::DefSelfTy(Some(_), None) => {
            // Self in trait.
            check_path_args(tcx, base_segments, NO_TPS | NO_REGIONS);
            ty::mk_self_type(tcx)
        }
        def::DefAssociatedTy(trait_did, _) => {
            check_path_args(tcx, &base_segments[..base_segments.len()-2], NO_TPS | NO_REGIONS);
            qpath_to_ty(this,
                        rscope,
                        span,
                        param_mode,
                        opt_self_ty,
                        trait_did,
                        &base_segments[base_segments.len()-2],
                        base_segments.last().unwrap())
        }
        def::DefMod(id) => {
            // Used as sentinel by callers to indicate the `<T>::A::B::C` form.
            // FIXME(#22519) This part of the resolution logic should be
            // avoided entirely for that form, once we stop needed a Def
            // for `associated_path_def_to_ty`.
            // Fixing this will also let use resolve <Self>::Foo the same way we
            // resolve Self::Foo, at the moment we can't resolve the former because
            // we don't have the trait information around, which is just sad.

            if !base_segments.is_empty() {
                span_err!(tcx.sess,
                          span,
                          E0247,
                          "found module name used as a type: {}",
                          tcx.map.node_to_string(id.node));
                return this.tcx().types.err;
            }

            opt_self_ty.expect("missing T in <T>::a::b::c")
        }
        def::DefPrimTy(prim_ty) => {
            prim_ty_to_ty(tcx, base_segments, prim_ty)
        }
        _ => {
            span_err!(tcx.sess, span, E0248,
                      "found value name used as a type: {:?}", *def);
            return this.tcx().types.err;
        }
    }
}

// Note that both base_segments and assoc_segments may be empty, although not at
// the same time.
pub fn finish_resolving_def_to_ty<'tcx>(this: &AstConv<'tcx>,
                                        rscope: &RegionScope,
                                        span: Span,
                                        param_mode: PathParamMode,
                                        def: &def::Def,
                                        opt_self_ty: Option<Ty<'tcx>>,
                                        base_segments: &[ast::PathSegment],
                                        assoc_segments: &[ast::PathSegment])
                                        -> Ty<'tcx> {
    let mut ty = base_def_to_ty(this,
                                rscope,
                                span,
                                param_mode,
                                def,
                                opt_self_ty,
                                base_segments);
    let mut def = *def;
    // If any associated type segments remain, attempt to resolve them.
    for segment in assoc_segments {
        if ty.sty == ty::ty_err {
            break;
        }
        // This is pretty bad (it will fail except for T::A and Self::A).
        let (a_ty, a_def) = associated_path_def_to_ty(this,
                                                      span,
                                                      ty,
                                                      def,
                                                      segment);
        ty = a_ty;
        def = a_def;
    }
    ty
}

/// Parses the programmer's textual representation of a type into our
/// internal notion of a type.
pub fn ast_ty_to_ty<'tcx>(this: &AstConv<'tcx>,
                          rscope: &RegionScope,
                          ast_ty: &ast::Ty)
                          -> Ty<'tcx>
{
    debug!("ast_ty_to_ty(ast_ty={})",
           ast_ty.repr(this.tcx()));

    let tcx = this.tcx();

    if let Some(&ty) = tcx.ast_ty_to_ty_cache.borrow().get(&ast_ty.id) {
        return ty;
    }

    let typ = match ast_ty.node {
        ast::TyVec(ref ty) => {
            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
        }
        ast::TyObjectSum(ref ty, ref bounds) => {
            match ast_ty_to_trait_ref(this, rscope, &**ty, bounds) {
                Ok((trait_ref, projection_bounds)) => {
                    trait_ref_to_object_type(this,
                                             rscope,
                                             ast_ty.span,
                                             trait_ref,
                                             projection_bounds,
                                             bounds)
                }
                Err(ErrorReported) => {
                    this.tcx().types.err
                }
            }
        }
        ast::TyPtr(ref mt) => {
            ty::mk_ptr(tcx, ty::mt {
                ty: ast_ty_to_ty(this, rscope, &*mt.ty),
                mutbl: mt.mutbl
            })
        }
        ast::TyRptr(ref region, ref mt) => {
            let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
            debug!("ty_rptr r={}", r.repr(this.tcx()));
            let rscope1 =
                &ObjectLifetimeDefaultRscope::new(
                    rscope,
                    Some(ty::ObjectLifetimeDefault::Specific(r)));
            let t = ast_ty_to_ty(this, rscope1, &*mt.ty);
            ty::mk_rptr(tcx, tcx.mk_region(r), ty::mt {ty: t, mutbl: mt.mutbl})
        }
        ast::TyTup(ref fields) => {
            let flds = fields.iter()
                             .map(|t| ast_ty_to_ty(this, rscope, &**t))
                             .collect();
            ty::mk_tup(tcx, flds)
        }
        ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
        ast::TyBareFn(ref bf) => {
            if bf.decl.variadic && bf.abi != abi::C {
                span_err!(tcx.sess, ast_ty.span, E0222,
                          "variadic function must have C calling convention");
            }
            let bare_fn = ty_of_bare_fn(this, bf.unsafety, bf.abi, &*bf.decl);
            ty::mk_bare_fn(tcx, None, tcx.mk_bare_fn(bare_fn))
        }
        ast::TyPolyTraitRef(ref bounds) => {
            conv_ty_poly_trait_ref(this, rscope, ast_ty.span, bounds)
        }
        ast::TyPath(ref maybe_qself, ref path) => {
            let path_res = if let Some(&d) = tcx.def_map.borrow().get(&ast_ty.id) {
                d
            } else if let Some(ast::QSelf { position: 0, .. }) = *maybe_qself {
                // Create some fake resolution that can't possibly be a type.
                def::PathResolution {
                    base_def: def::DefMod(ast_util::local_def(ast::CRATE_NODE_ID)),
                    last_private: LastMod(AllPublic),
                    depth: path.segments.len()
                }
            } else {
                tcx.sess.span_bug(ast_ty.span,
                                  &format!("unbound path {}", ast_ty.repr(tcx)))
            };
            let def = path_res.base_def;
            let base_ty_end = path.segments.len() - path_res.depth;
            let opt_self_ty = maybe_qself.as_ref().map(|qself| {
                ast_ty_to_ty(this, rscope, &qself.ty)
            });
            let ty = finish_resolving_def_to_ty(this,
                                                rscope,
                                                ast_ty.span,
                                                PathParamMode::Explicit,
                                                &def,
                                                opt_self_ty,
                                                &path.segments[..base_ty_end],
                                                &path.segments[base_ty_end..]);

            if path_res.depth != 0 && ty.sty != ty::ty_err {
                // Write back the new resolution.
                tcx.def_map.borrow_mut().insert(ast_ty.id, def::PathResolution {
                    base_def: def,
                    last_private: path_res.last_private,
                    depth: 0
                });
            }

            ty
        }
        ast::TyFixedLengthVec(ref ty, ref e) => {
            match const_eval::eval_const_expr_partial(tcx, &**e, Some(tcx.types.usize)) {
                Ok(r) => {
                    match r {
                        const_eval::const_int(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as usize)),
                        const_eval::const_uint(i) =>
                            ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
                                        Some(i as usize)),
                        _ => {
                            span_err!(tcx.sess, ast_ty.span, E0249,
                                      "expected constant expr for array length");
                            this.tcx().types.err
                        }
                    }
                }
                Err(ref r) => {
                    let subspan  =
                        ast_ty.span.lo <= r.span.lo && r.span.hi <= ast_ty.span.hi;
                    span_err!(tcx.sess, r.span, E0250,
                              "array length constant evaluation error: {}",
                              r.description());
                    if !subspan {
                        span_note!(tcx.sess, ast_ty.span, "for array length here")
                    }
                    this.tcx().types.err
                }
            }
        }
        ast::TyTypeof(ref _e) => {
            tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
        }
        ast::TyInfer => {
            // TyInfer also appears as the type of arguments or return
            // values in a ExprClosure, or as
            // the type of local variables. Both of these cases are
            // handled specially and will not descend into this routine.
            this.ty_infer(ast_ty.span)
        }
    };

    tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, typ);
    return typ;
}

pub fn ty_of_arg<'tcx>(this: &AstConv<'tcx>,
                       rscope: &RegionScope,
                       a: &ast::Arg,
                       expected_ty: Option<Ty<'tcx>>)
                       -> Ty<'tcx>
{
    match a.ty.node {
        ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
        ast::TyInfer => this.ty_infer(a.ty.span),
        _ => ast_ty_to_ty(this, rscope, &*a.ty),
    }
}

struct SelfInfo<'a, 'tcx> {
    untransformed_self_ty: Ty<'tcx>,
    explicit_self: &'a ast::ExplicitSelf,
}

pub fn ty_of_method<'tcx>(this: &AstConv<'tcx>,
                          sig: &ast::MethodSig,
                          untransformed_self_ty: Ty<'tcx>)
                          -> (ty::BareFnTy<'tcx>, ty::ExplicitSelfCategory) {
    let self_info = Some(SelfInfo {
        untransformed_self_ty: untransformed_self_ty,
        explicit_self: &sig.explicit_self,
    });
    let (bare_fn_ty, optional_explicit_self_category) =
        ty_of_method_or_bare_fn(this,
                                sig.unsafety,
                                sig.abi,
                                self_info,
                                &sig.decl);
    (bare_fn_ty, optional_explicit_self_category.unwrap())
}

pub fn ty_of_bare_fn<'tcx>(this: &AstConv<'tcx>, unsafety: ast::Unsafety, abi: abi::Abi,
                                              decl: &ast::FnDecl) -> ty::BareFnTy<'tcx> {
    let (bare_fn_ty, _) = ty_of_method_or_bare_fn(this, unsafety, abi, None, decl);
    bare_fn_ty
}

fn ty_of_method_or_bare_fn<'a, 'tcx>(this: &AstConv<'tcx>,
                                     unsafety: ast::Unsafety,
                                     abi: abi::Abi,
                                     opt_self_info: Option<SelfInfo<'a, 'tcx>>,
                                     decl: &ast::FnDecl)
                                     -> (ty::BareFnTy<'tcx>, Option<ty::ExplicitSelfCategory>)
{
    debug!("ty_of_method_or_bare_fn");

    // New region names that appear inside of the arguments of the function
    // declaration are bound to that function type.
    let rb = rscope::BindingRscope::new();

    // `implied_output_region` is the region that will be assumed for any
    // region parameters in the return type. In accordance with the rules for
    // lifetime elision, we can determine it in two ways. First (determined
    // here), if self is by-reference, then the implied output region is the
    // region of the self parameter.
    let mut explicit_self_category_result = None;
    let (self_ty, mut implied_output_region) = match opt_self_info {
        None => (None, None),
        Some(self_info) => {
            // This type comes from an impl or trait; no late-bound
            // regions should be present.
            assert!(!self_info.untransformed_self_ty.has_escaping_regions());

            // Figure out and record the explicit self category.
            let explicit_self_category =
                determine_explicit_self_category(this, &rb, &self_info);
            explicit_self_category_result = Some(explicit_self_category);
            match explicit_self_category {
                ty::StaticExplicitSelfCategory => {
                    (None, None)
                }
                ty::ByValueExplicitSelfCategory => {
                    (Some(self_info.untransformed_self_ty), None)
                }
                ty::ByReferenceExplicitSelfCategory(region, mutability) => {
                    (Some(ty::mk_rptr(this.tcx(),
                                      this.tcx().mk_region(region),
                                      ty::mt {
                                        ty: self_info.untransformed_self_ty,
                                        mutbl: mutability
                                      })),
                     Some(region))
                }
                ty::ByBoxExplicitSelfCategory => {
                    (Some(ty::mk_uniq(this.tcx(), self_info.untransformed_self_ty)), None)
                }
            }
        }
    };

    // HACK(eddyb) replace the fake self type in the AST with the actual type.
    let input_params = if self_ty.is_some() {
        &decl.inputs[1..]
    } else {
        &decl.inputs[..]
    };
    let input_tys = input_params.iter().map(|a| ty_of_arg(this, &rb, a, None));
    let input_pats: Vec<String> = input_params.iter()
                                              .map(|a| pprust::pat_to_string(&*a.pat))
                                              .collect();
    let self_and_input_tys: Vec<Ty> =
        self_ty.into_iter().chain(input_tys).collect();


    // Second, if there was exactly one lifetime (either a substitution or a
    // reference) in the arguments, then any anonymous regions in the output
    // have that lifetime.
    let lifetimes_for_params = if implied_output_region.is_none() {
        let input_tys = if self_ty.is_some() {
            // Skip the first argument if `self` is present.
            &self_and_input_tys[1..]
        } else {
            &self_and_input_tys[..]
        };

        let (ior, lfp) = find_implied_output_region(input_tys, input_pats);
        implied_output_region = ior;
        lfp
    } else {
        vec![]
    };

    let output_ty = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer =>
            ty::FnConverging(this.ty_infer(output.span)),
        ast::Return(ref output) =>
            ty::FnConverging(convert_ty_with_lifetime_elision(this,
                                                              implied_output_region,
                                                              lifetimes_for_params,
                                                              &**output)),
        ast::DefaultReturn(..) => ty::FnConverging(ty::mk_nil(this.tcx())),
        ast::NoReturn(..) => ty::FnDiverging
    };

    (ty::BareFnTy {
        unsafety: unsafety,
        abi: abi,
        sig: ty::Binder(ty::FnSig {
            inputs: self_and_input_tys,
            output: output_ty,
            variadic: decl.variadic
        }),
    }, explicit_self_category_result)
}

fn determine_explicit_self_category<'a, 'tcx>(this: &AstConv<'tcx>,
                                              rscope: &RegionScope,
                                              self_info: &SelfInfo<'a, 'tcx>)
                                              -> ty::ExplicitSelfCategory
{
    return match self_info.explicit_self.node {
        ast::SelfStatic => ty::StaticExplicitSelfCategory,
        ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
        ast::SelfRegion(ref lifetime, mutability, _) => {
            let region =
                opt_ast_region_to_region(this,
                                         rscope,
                                         self_info.explicit_self.span,
                                         lifetime);
            ty::ByReferenceExplicitSelfCategory(region, mutability)
        }
        ast::SelfExplicit(ref ast_type, _) => {
            let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);

            // We wish to (for now) categorize an explicit self
            // declaration like `self: SomeType` into either `self`,
            // `&self`, `&mut self`, or `Box<self>`. We do this here
            // by some simple pattern matching. A more precise check
            // is done later in `check_method_self_type()`.
            //
            // Examples:
            //
            // ```
            // impl Foo for &T {
            //     // Legal declarations:
            //     fn method1(self: &&T); // ByReferenceExplicitSelfCategory
            //     fn method2(self: &T); // ByValueExplicitSelfCategory
            //     fn method3(self: Box<&T>); // ByBoxExplicitSelfCategory
            //
            //     // Invalid cases will be caught later by `check_method_self_type`:
            //     fn method_err1(self: &mut T); // ByReferenceExplicitSelfCategory
            // }
            // ```
            //
            // To do the check we just count the number of "modifiers"
            // on each type and compare them. If they are the same or
            // the impl has more, we call it "by value". Otherwise, we
            // look at the outermost modifier on the method decl and
            // call it by-ref, by-box as appropriate. For method1, for
            // example, the impl type has one modifier, but the method
            // type has two, so we end up with
            // ByReferenceExplicitSelfCategory.

            let impl_modifiers = count_modifiers(self_info.untransformed_self_ty);
            let method_modifiers = count_modifiers(explicit_type);

            debug!("determine_explicit_self_category(self_info.untransformed_self_ty={} \
                   explicit_type={} \
                   modifiers=({},{})",
                   self_info.untransformed_self_ty.repr(this.tcx()),
                   explicit_type.repr(this.tcx()),
                   impl_modifiers,
                   method_modifiers);

            if impl_modifiers >= method_modifiers {
                ty::ByValueExplicitSelfCategory
            } else {
                match explicit_type.sty {
                    ty::ty_rptr(r, mt) => ty::ByReferenceExplicitSelfCategory(*r, mt.mutbl),
                    ty::ty_uniq(_) => ty::ByBoxExplicitSelfCategory,
                    _ => ty::ByValueExplicitSelfCategory,
                }
            }
        }
    };

    fn count_modifiers(ty: Ty) -> usize {
        match ty.sty {
            ty::ty_rptr(_, mt) => count_modifiers(mt.ty) + 1,
            ty::ty_uniq(t) => count_modifiers(t) + 1,
            _ => 0,
        }
    }
}

pub fn ty_of_closure<'tcx>(
    this: &AstConv<'tcx>,
    unsafety: ast::Unsafety,
    decl: &ast::FnDecl,
    abi: abi::Abi,
    expected_sig: Option<ty::FnSig<'tcx>>)
    -> ty::ClosureTy<'tcx>
{
    debug!("ty_of_closure(expected_sig={})",
           expected_sig.repr(this.tcx()));

    // new region names that appear inside of the fn decl are bound to
    // that function type
    let rb = rscope::BindingRscope::new();

    let input_tys: Vec<_> = decl.inputs.iter().enumerate().map(|(i, a)| {
        let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
            // no guarantee that the correct number of expected args
            // were supplied
            if i < e.inputs.len() {
                Some(e.inputs[i])
            } else {
                None
            }
        });
        ty_of_arg(this, &rb, a, expected_arg_ty)
    }).collect();

    let expected_ret_ty = expected_sig.map(|e| e.output);

    let is_infer = match decl.output {
        ast::Return(ref output) if output.node == ast::TyInfer => true,
        ast::DefaultReturn(..) => true,
        _ => false
    };

    let output_ty = match decl.output {
        _ if is_infer && expected_ret_ty.is_some() =>
            expected_ret_ty.unwrap(),
        _ if is_infer =>
            ty::FnConverging(this.ty_infer(decl.output.span())),
        ast::Return(ref output) =>
            ty::FnConverging(ast_ty_to_ty(this, &rb, &**output)),
        ast::DefaultReturn(..) => unreachable!(),
        ast::NoReturn(..) => ty::FnDiverging
    };

    debug!("ty_of_closure: input_tys={}", input_tys.repr(this.tcx()));
    debug!("ty_of_closure: output_ty={}", output_ty.repr(this.tcx()));

    ty::ClosureTy {
        unsafety: unsafety,
        abi: abi,
        sig: ty::Binder(ty::FnSig {inputs: input_tys,
                                   output: output_ty,
                                   variadic: decl.variadic}),
    }
}

/// Given an existential type like `Foo+'a+Bar`, this routine converts the `'a` and `Bar` intos an
/// `ExistentialBounds` struct. The `main_trait_refs` argument specifies the `Foo` -- it is absent
/// for closures. Eventually this should all be normalized, I think, so that there is no "main
/// trait ref" and instead we just have a flat list of bounds as the existential type.
fn conv_existential_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>,
    ast_bounds: &[ast::TyParamBound])
    -> ty::ExistentialBounds<'tcx>
{
    let partitioned_bounds =
        partition_bounds(this.tcx(), span, ast_bounds);

    conv_existential_bounds_from_partitioned_bounds(
        this, rscope, span, principal_trait_ref, projection_bounds, partitioned_bounds)
}

fn conv_ty_poly_trait_ref<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    ast_bounds: &[ast::TyParamBound])
    -> Ty<'tcx>
{
    let mut partitioned_bounds = partition_bounds(this.tcx(), span, &ast_bounds[..]);

    let mut projection_bounds = Vec::new();
    let main_trait_bound = if !partitioned_bounds.trait_bounds.is_empty() {
        let trait_bound = partitioned_bounds.trait_bounds.remove(0);
        instantiate_poly_trait_ref(this,
                                   rscope,
                                   trait_bound,
                                   None,
                                   &mut projection_bounds)
    } else {
        span_err!(this.tcx().sess, span, E0224,
                  "at least one non-builtin trait is required for an object type");
        return this.tcx().types.err;
    };

    let bounds =
        conv_existential_bounds_from_partitioned_bounds(this,
                                                        rscope,
                                                        span,
                                                        main_trait_bound.clone(),
                                                        projection_bounds,
                                                        partitioned_bounds);

    make_object_type(this, span, main_trait_bound, bounds)
}

pub fn conv_existential_bounds_from_partitioned_bounds<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    mut projection_bounds: Vec<ty::PolyProjectionPredicate<'tcx>>, // Empty for boxed closures
    partitioned_bounds: PartitionedBounds)
    -> ty::ExistentialBounds<'tcx>
{
    let PartitionedBounds { builtin_bounds,
                            trait_bounds,
                            region_bounds } =
        partitioned_bounds;

    if !trait_bounds.is_empty() {
        let b = &trait_bounds[0];
        span_err!(this.tcx().sess, b.trait_ref.path.span, E0225,
                  "only the builtin traits can be used as closure or object bounds");
    }

    let region_bound = compute_object_lifetime_bound(this,
                                                     rscope,
                                                     span,
                                                     &region_bounds,
                                                     principal_trait_ref,
                                                     builtin_bounds);

    ty::sort_bounds_list(&mut projection_bounds);

    ty::ExistentialBounds {
        region_bound: region_bound,
        builtin_bounds: builtin_bounds,
        projection_bounds: projection_bounds,
    }
}

/// Given the bounds on an object, determines what single region bound
/// (if any) we can use to summarize this type. The basic idea is that we will use the bound the
/// user provided, if they provided one, and otherwise search the supertypes of trait bounds for
/// region bounds. It may be that we can derive no bound at all, in which case we return `None`.
fn compute_object_lifetime_bound<'tcx>(
    this: &AstConv<'tcx>,
    rscope: &RegionScope,
    span: Span,
    explicit_region_bounds: &[&ast::Lifetime],
    principal_trait_ref: ty::PolyTraitRef<'tcx>,
    builtin_bounds: ty::BuiltinBounds)
    -> ty::Region
{
    let tcx = this.tcx();

    debug!("compute_opt_region_bound(explicit_region_bounds={:?}, \
           principal_trait_ref={}, builtin_bounds={})",
           explicit_region_bounds,
           principal_trait_ref.repr(tcx),
           builtin_bounds.repr(tcx));

    if explicit_region_bounds.len() > 1 {
        span_err!(tcx.sess, explicit_region_bounds[1].span, E0226,
            "only a single explicit lifetime bound is permitted");
    }

    if !explicit_region_bounds.is_empty() {
        // Explicitly specified region bound. Use that.
        let r = explicit_region_bounds[0];
        return ast_region_to_region(tcx, r);
    }

    if let Err(ErrorReported) = this.ensure_super_predicates(span,principal_trait_ref.def_id()) {
        return ty::ReStatic;
    }

    // No explicit region bound specified. Therefore, examine trait
    // bounds and see if we can derive region bounds from those.
    let derived_region_bounds =
        object_region_bounds(tcx, &principal_trait_ref, builtin_bounds);

    // If there are no derived region bounds, then report back that we
    // can find no region bound.
    if derived_region_bounds.is_empty() {
        match rscope.object_lifetime_default(span) {
            Some(r) => { return r; }
            None => {
                span_err!(this.tcx().sess, span, E0228,
                          "the lifetime bound for this object type cannot be deduced \
                           from context; please supply an explicit bound");
                return ty::ReStatic;
            }
        }
    }

    // If any of the derived region bounds are 'static, that is always
    // the best choice.
    if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
        return ty::ReStatic;
    }

    // Determine whether there is exactly one unique region in the set
    // of derived region bounds. If so, use that. Otherwise, report an
    // error.
    let r = derived_region_bounds[0];
    if derived_region_bounds[1..].iter().any(|r1| r != *r1) {
        span_err!(tcx.sess, span, E0227,
                  "ambiguous lifetime bound, explicit lifetime bound required");
    }
    return r;
}

pub struct PartitionedBounds<'a> {
    pub builtin_bounds: ty::BuiltinBounds,
    pub trait_bounds: Vec<&'a ast::PolyTraitRef>,
    pub region_bounds: Vec<&'a ast::Lifetime>,
}

/// Divides a list of bounds from the AST into three groups: builtin bounds (Copy, Sized etc),
/// general trait bounds, and region bounds.
pub fn partition_bounds<'a>(tcx: &ty::ctxt,
                            _span: Span,
                            ast_bounds: &'a [ast::TyParamBound])
                            -> PartitionedBounds<'a>
{
    let mut builtin_bounds = ty::empty_builtin_bounds();
    let mut region_bounds = Vec::new();
    let mut trait_bounds = Vec::new();
    for ast_bound in ast_bounds {
        match *ast_bound {
            ast::TraitTyParamBound(ref b, ast::TraitBoundModifier::None) => {
                match ::lookup_full_def(tcx, b.trait_ref.path.span, b.trait_ref.ref_id) {
                    def::DefTrait(trait_did) => {
                        if ty::try_add_builtin_trait(tcx,
                                                     trait_did,
                                                     &mut builtin_bounds) {
                            let segments = &b.trait_ref.path.segments;
                            let parameters = &segments[segments.len() - 1].parameters;
                            if !parameters.types().is_empty() {
                                check_type_argument_count(tcx, b.trait_ref.path.span,
                                                          parameters.types().len(), 0, 0);
                            }
                            if !parameters.lifetimes().is_empty() {
                                report_lifetime_number_error(tcx, b.trait_ref.path.span,
                                                             parameters.lifetimes().len(), 0);
                            }
                            continue; // success
                        }
                    }
                    _ => {
                        // Not a trait? that's an error, but it'll get
                        // reported later.
                    }
                }
                trait_bounds.push(b);
            }
            ast::TraitTyParamBound(_, ast::TraitBoundModifier::Maybe) => {}
            ast::RegionTyParamBound(ref l) => {
                region_bounds.push(l);
            }
        }
    }

    PartitionedBounds {
        builtin_bounds: builtin_bounds,
        trait_bounds: trait_bounds,
        region_bounds: region_bounds,
    }
}

fn prohibit_projections<'tcx>(tcx: &ty::ctxt<'tcx>,
                              bindings: &[ConvertedBinding<'tcx>])
{
    for binding in bindings.iter().take(1) {
        span_err!(tcx.sess, binding.span, E0229,
            "associated type bindings are not allowed here");
    }
}

fn check_type_argument_count(tcx: &ty::ctxt, span: Span, supplied: usize,
                             required: usize, accepted: usize) {
    if supplied < required {
        let expected = if required < accepted {
            "expected at least"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0243,
                  "wrong number of type arguments: {} {}, found {}",
                  expected, required, supplied);
    } else if supplied > accepted {
        let expected = if required < accepted {
            "expected at most"
        } else {
            "expected"
        };
        span_err!(tcx.sess, span, E0244,
                  "wrong number of type arguments: {} {}, found {}",
                  expected,
                  accepted,
                  supplied);
    }
}

fn report_lifetime_number_error(tcx: &ty::ctxt, span: Span, number: usize, expected: usize) {
    span_err!(tcx.sess, span, E0107,
              "wrong number of lifetime parameters: expected {}, found {}",
              expected, number);
}