1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Translate the completed AST to the LLVM IR.
//!
//! Some functions here, such as trans_block and trans_expr, return a value --
//! the result of the translation to LLVM -- while others, such as trans_fn,
//! trans_impl, and trans_item, are called only for the side effect of adding a
//! particular definition to the LLVM IR output we're producing.
//!
//! Hopefully useful general knowledge about trans:
//!
//!   * There's no way to find out the Ty type of a ValueRef.  Doing so
//!     would be "trying to get the eggs out of an omelette" (credit:
//!     pcwalton).  You can, instead, find out its TypeRef by calling val_ty,
//!     but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
//!     int) and rec(x=int, y=int, z=int) will have the same TypeRef.

#![allow(non_camel_case_types)]

pub use self::ValueOrigin::*;

use super::CrateTranslation;
use super::ModuleTranslation;

use back::link::mangle_exported_name;
use back::{link, abi};
use lint;
use llvm::{BasicBlockRef, Linkage, ValueRef, Vector, get_param};
use llvm;
use metadata::{csearch, encoder, loader};
use middle::astencode;
use middle::cfg;
use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem};
use middle::weak_lang_items;
use middle::subst::Substs;
use middle::ty::{self, Ty, ClosureTyper, type_is_simd, simd_size};
use session::config::{self, NoDebugInfo};
use session::Session;
use trans::_match;
use trans::adt;
use trans::attributes;
use trans::build::*;
use trans::builder::{Builder, noname};
use trans::callee;
use trans::cleanup::CleanupMethods;
use trans::cleanup;
use trans::closure;
use trans::common::{Block, C_bool, C_bytes_in_context, C_i32, C_int, C_integral};
use trans::common::{C_null, C_struct_in_context, C_u64, C_u8, C_undef};
use trans::common::{CrateContext, FunctionContext};
use trans::common::{Result, NodeIdAndSpan};
use trans::common::{node_id_type, return_type_is_void};
use trans::common::{type_is_immediate, type_is_zero_size, val_ty};
use trans::common;
use trans::consts;
use trans::context::SharedCrateContext;
use trans::controlflow;
use trans::datum;
use trans::debuginfo::{self, DebugLoc, ToDebugLoc};
use trans::declare;
use trans::expr;
use trans::foreign;
use trans::glue;
use trans::intrinsic;
use trans::machine;
use trans::machine::{llsize_of, llsize_of_real};
use trans::meth;
use trans::monomorphize;
use trans::tvec;
use trans::type_::Type;
use trans::type_of;
use trans::type_of::*;
use trans::value::Value;
use util::common::indenter;
use util::ppaux::{Repr, ty_to_string};
use util::sha2::Sha256;
use util::nodemap::NodeMap;

use arena::TypedArena;
use libc::c_uint;
use std::ffi::{CStr, CString};
use std::cell::{Cell, RefCell};
use std::collections::HashSet;
use std::mem;
use std::str;
use std::{i8, i16, i32, i64};
use syntax::abi::{Rust, RustCall, RustIntrinsic, Abi};
use syntax::ast_util::local_def;
use syntax::attr::AttrMetaMethods;
use syntax::attr;
use syntax::codemap::Span;
use syntax::parse::token::InternedString;
use syntax::visit::Visitor;
use syntax::visit;
use syntax::{ast, ast_util, ast_map};

thread_local! {
    static TASK_LOCAL_INSN_KEY: RefCell<Option<Vec<&'static str>>> = {
        RefCell::new(None)
    }
}

pub fn with_insn_ctxt<F>(blk: F) where
    F: FnOnce(&[&'static str]),
{
    TASK_LOCAL_INSN_KEY.with(move |slot| {
        slot.borrow().as_ref().map(move |s| blk(s));
    })
}

pub fn init_insn_ctxt() {
    TASK_LOCAL_INSN_KEY.with(|slot| {
        *slot.borrow_mut() = Some(Vec::new());
    });
}

pub struct _InsnCtxt {
    _cannot_construct_outside_of_this_module: ()
}

#[unsafe_destructor]
impl Drop for _InsnCtxt {
    fn drop(&mut self) {
        TASK_LOCAL_INSN_KEY.with(|slot| {
            match slot.borrow_mut().as_mut() {
                Some(ctx) => { ctx.pop(); }
                None => {}
            }
        })
    }
}

pub fn push_ctxt(s: &'static str) -> _InsnCtxt {
    debug!("new InsnCtxt: {}", s);
    TASK_LOCAL_INSN_KEY.with(|slot| {
        match slot.borrow_mut().as_mut() {
            Some(ctx) => ctx.push(s),
            None => {}
        }
    });
    _InsnCtxt { _cannot_construct_outside_of_this_module: () }
}

pub struct StatRecorder<'a, 'tcx: 'a> {
    ccx: &'a CrateContext<'a, 'tcx>,
    name: Option<String>,
    istart: usize,
}

impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
    pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String)
               -> StatRecorder<'a, 'tcx> {
        let istart = ccx.stats().n_llvm_insns.get();
        StatRecorder {
            ccx: ccx,
            name: Some(name),
            istart: istart,
        }
    }
}

#[unsafe_destructor]
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
    fn drop(&mut self) {
        if self.ccx.sess().trans_stats() {
            let iend = self.ccx.stats().n_llvm_insns.get();
            self.ccx.stats().fn_stats.borrow_mut().push((self.name.take().unwrap(),
                                                       iend - self.istart));
            self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
            // Reset LLVM insn count to avoid compound costs.
            self.ccx.stats().n_llvm_insns.set(self.istart);
        }
    }
}

fn get_extern_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fn_ty: Ty<'tcx>,
                                name: &str, did: ast::DefId) -> ValueRef {
    match ccx.externs().borrow().get(name) {
        Some(n) => return *n,
        None => ()
    }

    let f = declare::declare_rust_fn(ccx, name, fn_ty);

    let attrs = csearch::get_item_attrs(&ccx.sess().cstore, did);
    attributes::from_fn_attrs(ccx, &attrs[..], f);

    ccx.externs().borrow_mut().insert(name.to_string(), f);
    f
}

pub fn self_type_for_closure<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                       closure_id: ast::DefId,
                                       fn_ty: Ty<'tcx>)
                                       -> Ty<'tcx>
{
    let closure_kind = ccx.tcx().closure_kind(closure_id);
    match closure_kind {
        ty::FnClosureKind => {
            ty::mk_imm_rptr(ccx.tcx(), ccx.tcx().mk_region(ty::ReStatic), fn_ty)
        }
        ty::FnMutClosureKind => {
            ty::mk_mut_rptr(ccx.tcx(), ccx.tcx().mk_region(ty::ReStatic), fn_ty)
        }
        ty::FnOnceClosureKind => fn_ty
    }
}

pub fn kind_for_closure(ccx: &CrateContext, closure_id: ast::DefId) -> ty::ClosureKind {
    *ccx.tcx().closure_kinds.borrow().get(&closure_id).unwrap()
}

pub fn get_extern_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, did: ast::DefId,
                                  t: Ty<'tcx>) -> ValueRef {
    let name = csearch::get_symbol(&ccx.sess().cstore, did);
    let ty = type_of(ccx, t);
    match ccx.externs().borrow_mut().get(&name) {
        Some(n) => return *n,
        None => ()
    }
    // FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
    // FIXME(nagisa): investigate whether it can be changed into define_global
    let c = declare::declare_global(ccx, &name[..], ty);
    // Thread-local statics in some other crate need to *always* be linked
    // against in a thread-local fashion, so we need to be sure to apply the
    // thread-local attribute locally if it was present remotely. If we
    // don't do this then linker errors can be generated where the linker
    // complains that one object files has a thread local version of the
    // symbol and another one doesn't.
    for attr in &*ty::get_attrs(ccx.tcx(), did) {
        if attr.check_name("thread_local") {
            llvm::set_thread_local(c, true);
        }
    }
    ccx.externs().borrow_mut().insert(name.to_string(), c);
    return c;
}

fn require_alloc_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                info_ty: Ty<'tcx>, it: LangItem) -> ast::DefId {
    match bcx.tcx().lang_items.require(it) {
        Ok(id) => id,
        Err(s) => {
            bcx.sess().fatal(&format!("allocation of `{}` {}",
                                     bcx.ty_to_string(info_ty),
                                     s));
        }
    }
}

// The following malloc_raw_dyn* functions allocate a box to contain
// a given type, but with a potentially dynamic size.

pub fn malloc_raw_dyn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                  llty_ptr: Type,
                                  info_ty: Ty<'tcx>,
                                  size: ValueRef,
                                  align: ValueRef,
                                  debug_loc: DebugLoc)
                                  -> Result<'blk, 'tcx> {
    let _icx = push_ctxt("malloc_raw_exchange");

    // Allocate space:
    let r = callee::trans_lang_call(bcx,
        require_alloc_fn(bcx, info_ty, ExchangeMallocFnLangItem),
        &[size, align],
        None,
        debug_loc);

    Result::new(r.bcx, PointerCast(r.bcx, r.val, llty_ptr))
}


pub fn bin_op_to_icmp_predicate(ccx: &CrateContext, op: ast::BinOp_, signed: bool)
                                -> llvm::IntPredicate {
    match op {
        ast::BiEq => llvm::IntEQ,
        ast::BiNe => llvm::IntNE,
        ast::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
        ast::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
        ast::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
        ast::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
        op => {
            ccx.sess().bug(&format!("comparison_op_to_icmp_predicate: expected \
                                     comparison operator, found {:?}", op));
        }
    }
}

pub fn bin_op_to_fcmp_predicate(ccx: &CrateContext, op: ast::BinOp_)
                                -> llvm::RealPredicate {
    match op {
        ast::BiEq => llvm::RealOEQ,
        ast::BiNe => llvm::RealUNE,
        ast::BiLt => llvm::RealOLT,
        ast::BiLe => llvm::RealOLE,
        ast::BiGt => llvm::RealOGT,
        ast::BiGe => llvm::RealOGE,
        op => {
            ccx.sess().bug(&format!("comparison_op_to_fcmp_predicate: expected \
                                     comparison operator, found {:?}", op));
        }
    }
}

pub fn compare_scalar_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                        lhs: ValueRef,
                                        rhs: ValueRef,
                                        t: Ty<'tcx>,
                                        op: ast::BinOp_,
                                        debug_loc: DebugLoc)
                                        -> ValueRef {
    match t.sty {
        ty::ty_tup(ref tys) if tys.is_empty() => {
            // We don't need to do actual comparisons for nil.
            // () == () holds but () < () does not.
            match op {
                ast::BiEq | ast::BiLe | ast::BiGe => return C_bool(bcx.ccx(), true),
                ast::BiNe | ast::BiLt | ast::BiGt => return C_bool(bcx.ccx(), false),
                // refinements would be nice
                _ => bcx.sess().bug("compare_scalar_types: must be a comparison operator")
            }
        }
        ty::ty_bare_fn(..) | ty::ty_bool | ty::ty_uint(_) | ty::ty_char => {
            ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, false), lhs, rhs, debug_loc)
        }
        ty::ty_ptr(mt) if common::type_is_sized(bcx.tcx(), mt.ty) => {
            ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, false), lhs, rhs, debug_loc)
        }
        ty::ty_int(_) => {
            ICmp(bcx, bin_op_to_icmp_predicate(bcx.ccx(), op, true), lhs, rhs, debug_loc)
        }
        ty::ty_float(_) => {
            FCmp(bcx, bin_op_to_fcmp_predicate(bcx.ccx(), op), lhs, rhs, debug_loc)
        }
        // Should never get here, because t is scalar.
        _ => bcx.sess().bug("non-scalar type passed to compare_scalar_types")
    }
}

pub fn compare_simd_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                      lhs: ValueRef,
                                      rhs: ValueRef,
                                      t: Ty<'tcx>,
                                      op: ast::BinOp_,
                                      debug_loc: DebugLoc)
                                      -> ValueRef {
    let signed = match t.sty {
        ty::ty_float(_) => {
            // The comparison operators for floating point vectors are challenging.
            // LLVM outputs a `< size x i1 >`, but if we perform a sign extension
            // then bitcast to a floating point vector, the result will be `-NaN`
            // for each truth value. Because of this they are unsupported.
            bcx.sess().bug("compare_simd_types: comparison operators \
                            not supported for floating point SIMD types")
        },
        ty::ty_uint(_) => false,
        ty::ty_int(_) => true,
        _ => bcx.sess().bug("compare_simd_types: invalid SIMD type"),
    };

    let cmp = bin_op_to_icmp_predicate(bcx.ccx(), op, signed);
    // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
    // to get the correctly sized type. This will compile to a single instruction
    // once the IR is converted to assembly if the SIMD instruction is supported
    // by the target architecture.
    SExt(bcx, ICmp(bcx, cmp, lhs, rhs, debug_loc), val_ty(lhs))
}

// Iterates through the elements of a structural type.
pub fn iter_structural_ty<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>,
                                         av: ValueRef,
                                         t: Ty<'tcx>,
                                         mut f: F)
                                         -> Block<'blk, 'tcx> where
    F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx>,
{
    let _icx = push_ctxt("iter_structural_ty");

    fn iter_variant<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>,
                                   repr: &adt::Repr<'tcx>,
                                   av: ValueRef,
                                   variant: &ty::VariantInfo<'tcx>,
                                   substs: &Substs<'tcx>,
                                   f: &mut F)
                                   -> Block<'blk, 'tcx> where
        F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx>,
    {
        let _icx = push_ctxt("iter_variant");
        let tcx = cx.tcx();
        let mut cx = cx;

        for (i, &arg) in variant.args.iter().enumerate() {
            let arg = monomorphize::apply_param_substs(tcx, substs, &arg);
            cx = f(cx, adt::trans_field_ptr(cx, repr, av, variant.disr_val, i), arg);
        }
        return cx;
    }

    let (data_ptr, info) = if common::type_is_sized(cx.tcx(), t) {
        (av, None)
    } else {
        let data = GEPi(cx, av, &[0, abi::FAT_PTR_ADDR]);
        let info = GEPi(cx, av, &[0, abi::FAT_PTR_EXTRA]);
        (Load(cx, data), Some(Load(cx, info)))
    };

    let mut cx = cx;
    match t.sty {
      ty::ty_struct(..) => {
          let repr = adt::represent_type(cx.ccx(), t);
          expr::with_field_tys(cx.tcx(), t, None, |discr, field_tys| {
              for (i, field_ty) in field_tys.iter().enumerate() {
                  let field_ty = field_ty.mt.ty;
                  let llfld_a = adt::trans_field_ptr(cx, &*repr, data_ptr, discr, i);

                  let val = if common::type_is_sized(cx.tcx(), field_ty) {
                      llfld_a
                  } else {
                      let scratch = datum::rvalue_scratch_datum(cx, field_ty, "__fat_ptr_iter");
                      Store(cx, llfld_a, GEPi(cx, scratch.val, &[0, abi::FAT_PTR_ADDR]));
                      Store(cx, info.unwrap(), GEPi(cx, scratch.val, &[0, abi::FAT_PTR_EXTRA]));
                      scratch.val
                  };
                  cx = f(cx, val, field_ty);
              }
          })
      }
      ty::ty_closure(def_id, substs) => {
          let repr = adt::represent_type(cx.ccx(), t);
          let typer = common::NormalizingClosureTyper::new(cx.tcx());
          let upvars = typer.closure_upvars(def_id, substs).unwrap();
          for (i, upvar) in upvars.iter().enumerate() {
              let llupvar = adt::trans_field_ptr(cx, &*repr, data_ptr, 0, i);
              cx = f(cx, llupvar, upvar.ty);
          }
      }
      ty::ty_vec(_, Some(n)) => {
        let (base, len) = tvec::get_fixed_base_and_len(cx, data_ptr, n);
        let unit_ty = ty::sequence_element_type(cx.tcx(), t);
        cx = tvec::iter_vec_raw(cx, base, unit_ty, len, f);
      }
      ty::ty_vec(_, None) | ty::ty_str => {
        let unit_ty = ty::sequence_element_type(cx.tcx(), t);
        cx = tvec::iter_vec_raw(cx, data_ptr, unit_ty, info.unwrap(), f);
      }
      ty::ty_tup(ref args) => {
          let repr = adt::represent_type(cx.ccx(), t);
          for (i, arg) in args.iter().enumerate() {
              let llfld_a = adt::trans_field_ptr(cx, &*repr, data_ptr, 0, i);
              cx = f(cx, llfld_a, *arg);
          }
      }
      ty::ty_enum(tid, substs) => {
          let fcx = cx.fcx;
          let ccx = fcx.ccx;

          let repr = adt::represent_type(ccx, t);
          let variants = ty::enum_variants(ccx.tcx(), tid);
          let n_variants = (*variants).len();

          // NB: we must hit the discriminant first so that structural
          // comparison know not to proceed when the discriminants differ.

          match adt::trans_switch(cx, &*repr, av) {
              (_match::Single, None) => {
                  cx = iter_variant(cx, &*repr, av, &*(*variants)[0],
                                    substs, &mut f);
              }
              (_match::Switch, Some(lldiscrim_a)) => {
                  cx = f(cx, lldiscrim_a, cx.tcx().types.isize);
                  let unr_cx = fcx.new_temp_block("enum-iter-unr");
                  Unreachable(unr_cx);
                  let llswitch = Switch(cx, lldiscrim_a, unr_cx.llbb,
                                        n_variants);
                  let next_cx = fcx.new_temp_block("enum-iter-next");

                  for variant in &(*variants) {
                      let variant_cx =
                          fcx.new_temp_block(
                              &format!("enum-iter-variant-{}",
                                      &variant.disr_val.to_string())
                              );
                      match adt::trans_case(cx, &*repr, variant.disr_val) {
                          _match::SingleResult(r) => {
                              AddCase(llswitch, r.val, variant_cx.llbb)
                          }
                          _ => ccx.sess().unimpl("value from adt::trans_case \
                                                  in iter_structural_ty")
                      }
                      let variant_cx =
                          iter_variant(variant_cx,
                                       &*repr,
                                       data_ptr,
                                       &**variant,
                                       substs,
                                       &mut f);
                      Br(variant_cx, next_cx.llbb, DebugLoc::None);
                  }
                  cx = next_cx;
              }
              _ => ccx.sess().unimpl("value from adt::trans_switch \
                                      in iter_structural_ty")
          }
      }
      _ => {
          cx.sess().unimpl(&format!("type in iter_structural_ty: {}",
                                   ty_to_string(cx.tcx(), t)))
      }
    }
    return cx;
}

pub fn cast_shift_expr_rhs(cx: Block,
                           op: ast::BinOp_,
                           lhs: ValueRef,
                           rhs: ValueRef)
                           -> ValueRef {
    cast_shift_rhs(op, lhs, rhs,
                   |a,b| Trunc(cx, a, b),
                   |a,b| ZExt(cx, a, b))
}

pub fn cast_shift_const_rhs(op: ast::BinOp_,
                            lhs: ValueRef, rhs: ValueRef) -> ValueRef {
    cast_shift_rhs(op, lhs, rhs,
                   |a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
                   |a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
}

fn cast_shift_rhs<F, G>(op: ast::BinOp_,
                        lhs: ValueRef,
                        rhs: ValueRef,
                        trunc: F,
                        zext: G)
                        -> ValueRef where
    F: FnOnce(ValueRef, Type) -> ValueRef,
    G: FnOnce(ValueRef, Type) -> ValueRef,
{
    // Shifts may have any size int on the rhs
    if ast_util::is_shift_binop(op) {
        let mut rhs_llty = val_ty(rhs);
        let mut lhs_llty = val_ty(lhs);
        if rhs_llty.kind() == Vector { rhs_llty = rhs_llty.element_type() }
        if lhs_llty.kind() == Vector { lhs_llty = lhs_llty.element_type() }
        let rhs_sz = rhs_llty.int_width();
        let lhs_sz = lhs_llty.int_width();
        if lhs_sz < rhs_sz {
            trunc(rhs, lhs_llty)
        } else if lhs_sz > rhs_sz {
            // FIXME (#1877: If shifting by negative
            // values becomes not undefined then this is wrong.
            zext(rhs, lhs_llty)
        } else {
            rhs
        }
    } else {
        rhs
    }
}

pub fn llty_and_min_for_signed_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
                                              val_t: Ty<'tcx>) -> (Type, u64) {
    match val_t.sty {
        ty::ty_int(t) => {
            let llty = Type::int_from_ty(cx.ccx(), t);
            let min = match t {
                ast::TyIs if llty == Type::i32(cx.ccx()) => i32::MIN as u64,
                ast::TyIs => i64::MIN as u64,
                ast::TyI8 => i8::MIN as u64,
                ast::TyI16 => i16::MIN as u64,
                ast::TyI32 => i32::MIN as u64,
                ast::TyI64 => i64::MIN as u64,
            };
            (llty, min)
        }
        _ => unreachable!(),
    }
}

pub fn fail_if_zero_or_overflows<'blk, 'tcx>(
                                cx: Block<'blk, 'tcx>,
                                call_info: NodeIdAndSpan,
                                divrem: ast::BinOp,
                                lhs: ValueRef,
                                rhs: ValueRef,
                                rhs_t: Ty<'tcx>)
                                -> Block<'blk, 'tcx> {
    let (zero_text, overflow_text) = if divrem.node == ast::BiDiv {
        ("attempted to divide by zero",
         "attempted to divide with overflow")
    } else {
        ("attempted remainder with a divisor of zero",
         "attempted remainder with overflow")
    };
    let debug_loc = call_info.debug_loc();

    let (is_zero, is_signed) = match rhs_t.sty {
        ty::ty_int(t) => {
            let zero = C_integral(Type::int_from_ty(cx.ccx(), t), 0, false);
            (ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), true)
        }
        ty::ty_uint(t) => {
            let zero = C_integral(Type::uint_from_ty(cx.ccx(), t), 0, false);
            (ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), false)
        }
        ty::ty_struct(_, _) if type_is_simd(cx.tcx(), rhs_t) => {
            let mut res = C_bool(cx.ccx(), false);
            for i in 0 .. simd_size(cx.tcx(), rhs_t) {
                res = Or(cx, res,
                         IsNull(cx,
                                ExtractElement(cx, rhs, C_int(cx.ccx(), i as i64))), debug_loc);
            }
            (res, false)
        }
        _ => {
            cx.sess().bug(&format!("fail-if-zero on unexpected type: {}",
                                  ty_to_string(cx.tcx(), rhs_t)));
        }
    };
    let bcx = with_cond(cx, is_zero, |bcx| {
        controlflow::trans_fail(bcx, call_info, InternedString::new(zero_text))
    });

    // To quote LLVM's documentation for the sdiv instruction:
    //
    //      Division by zero leads to undefined behavior. Overflow also leads
    //      to undefined behavior; this is a rare case, but can occur, for
    //      example, by doing a 32-bit division of -2147483648 by -1.
    //
    // In order to avoid undefined behavior, we perform runtime checks for
    // signed division/remainder which would trigger overflow. For unsigned
    // integers, no action beyond checking for zero need be taken.
    if is_signed {
        let (llty, min) = llty_and_min_for_signed_ty(cx, rhs_t);
        let minus_one = ICmp(bcx, llvm::IntEQ, rhs,
                             C_integral(llty, !0, false), debug_loc);
        with_cond(bcx, minus_one, |bcx| {
            let is_min = ICmp(bcx, llvm::IntEQ, lhs,
                              C_integral(llty, min, true), debug_loc);
            with_cond(bcx, is_min, |bcx| {
                controlflow::trans_fail(bcx,
                                        call_info,
                                        InternedString::new(overflow_text))
            })
        })
    } else {
        bcx
    }
}

pub fn trans_external_path<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                     did: ast::DefId, t: Ty<'tcx>) -> ValueRef {
    let name = csearch::get_symbol(&ccx.sess().cstore, did);
    match t.sty {
        ty::ty_bare_fn(_, ref fn_ty) => {
            match ccx.sess().target.target.adjust_abi(fn_ty.abi) {
                Rust | RustCall => {
                    get_extern_rust_fn(ccx, t, &name[..], did)
                }
                RustIntrinsic => {
                    ccx.sess().bug("unexpected intrinsic in trans_external_path")
                }
                _ => {
                    let llfn = foreign::register_foreign_item_fn(ccx, fn_ty.abi, t, &name[..]);
                    let attrs = csearch::get_item_attrs(&ccx.sess().cstore, did);
                    attributes::from_fn_attrs(ccx, &attrs, llfn);
                    llfn
                }
            }
        }
        _ => {
            get_extern_const(ccx, did, t)
        }
    }
}

pub fn invoke<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                          llfn: ValueRef,
                          llargs: &[ValueRef],
                          fn_ty: Ty<'tcx>,
                          debug_loc: DebugLoc)
                          -> (ValueRef, Block<'blk, 'tcx>) {
    let _icx = push_ctxt("invoke_");
    if bcx.unreachable.get() {
        return (C_null(Type::i8(bcx.ccx())), bcx);
    }

    let attributes = attributes::from_fn_type(bcx.ccx(), fn_ty);

    match bcx.opt_node_id {
        None => {
            debug!("invoke at ???");
        }
        Some(id) => {
            debug!("invoke at {}", bcx.tcx().map.node_to_string(id));
        }
    }

    if need_invoke(bcx) {
        debug!("invoking {} at {:?}", bcx.val_to_string(llfn), bcx.llbb);
        for &llarg in llargs {
            debug!("arg: {}", bcx.val_to_string(llarg));
        }
        let normal_bcx = bcx.fcx.new_temp_block("normal-return");
        let landing_pad = bcx.fcx.get_landing_pad();

        let llresult = Invoke(bcx,
                              llfn,
                              &llargs[..],
                              normal_bcx.llbb,
                              landing_pad,
                              Some(attributes),
                              debug_loc);
        return (llresult, normal_bcx);
    } else {
        debug!("calling {} at {:?}", bcx.val_to_string(llfn), bcx.llbb);
        for &llarg in llargs {
            debug!("arg: {}", bcx.val_to_string(llarg));
        }

        let llresult = Call(bcx,
                            llfn,
                            &llargs[..],
                            Some(attributes),
                            debug_loc);
        return (llresult, bcx);
    }
}

pub fn need_invoke(bcx: Block) -> bool {
    if bcx.sess().no_landing_pads() {
        return false;
    }

    // Avoid using invoke if we are already inside a landing pad.
    if bcx.is_lpad {
        return false;
    }

    bcx.fcx.needs_invoke()
}

pub fn load_if_immediate<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
                                     v: ValueRef, t: Ty<'tcx>) -> ValueRef {
    let _icx = push_ctxt("load_if_immediate");
    if type_is_immediate(cx.ccx(), t) { return load_ty(cx, v, t); }
    return v;
}

/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values. Also handles various special cases where the type
/// gives us better information about what we are loading.
pub fn load_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
                           ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
    if cx.unreachable.get() || type_is_zero_size(cx.ccx(), t) {
        return C_undef(type_of::type_of(cx.ccx(), t));
    }

    let ptr = to_arg_ty_ptr(cx, ptr, t);

    if type_is_immediate(cx.ccx(), t) && type_of::type_of(cx.ccx(), t).is_aggregate() {
        return Load(cx, ptr);
    }

    unsafe {
        let global = llvm::LLVMIsAGlobalVariable(ptr);
        if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
            let val = llvm::LLVMGetInitializer(global);
            if !val.is_null() {
                return from_arg_ty(cx, val, t);
            }
        }
    }

    let val =  if ty::type_is_bool(t) {
        LoadRangeAssert(cx, ptr, 0, 2, llvm::False)
    } else if ty::type_is_char(t) {
        // a char is a Unicode codepoint, and so takes values from 0
        // to 0x10FFFF inclusive only.
        LoadRangeAssert(cx, ptr, 0, 0x10FFFF + 1, llvm::False)
    } else if (ty::type_is_region_ptr(t) || ty::type_is_unique(t))
        && !common::type_is_fat_ptr(cx.tcx(), t) {
            LoadNonNull(cx, ptr)
    } else {
        Load(cx, ptr)
    };

    from_arg_ty(cx, val, t)
}

/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
/// differs from the type used for SSA values.
pub fn store_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) {
    Store(cx, to_arg_ty(cx, v, t), to_arg_ty_ptr(cx, dst, t));
}

pub fn to_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
    if ty::type_is_bool(ty) {
        ZExt(bcx, val, Type::i8(bcx.ccx()))
    } else {
        val
    }
}

pub fn from_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
    if ty::type_is_bool(ty) {
        Trunc(bcx, val, Type::i1(bcx.ccx()))
    } else {
        val
    }
}

pub fn to_arg_ty_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ptr: ValueRef, ty: Ty<'tcx>) -> ValueRef {
    if type_is_immediate(bcx.ccx(), ty) && type_of::type_of(bcx.ccx(), ty).is_aggregate() {
        // We want to pass small aggregates as immediate values, but using an aggregate LLVM type
        // for this leads to bad optimizations, so its arg type is an appropriately sized integer
        // and we have to convert it
        BitCast(bcx, ptr, type_of::arg_type_of(bcx.ccx(), ty).ptr_to())
    } else {
        ptr
    }
}

pub fn init_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, local: &ast::Local)
                              -> Block<'blk, 'tcx> {
    debug!("init_local(bcx={}, local.id={})", bcx.to_str(), local.id);
    let _indenter = indenter();
    let _icx = push_ctxt("init_local");
    _match::store_local(bcx, local)
}

pub fn raw_block<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>,
                             is_lpad: bool,
                             llbb: BasicBlockRef)
                             -> Block<'blk, 'tcx> {
    common::BlockS::new(llbb, is_lpad, None, fcx)
}

pub fn with_cond<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
                                val: ValueRef,
                                f: F)
                                -> Block<'blk, 'tcx> where
    F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx>,
{
    let _icx = push_ctxt("with_cond");

    if bcx.unreachable.get() ||
            (common::is_const(val) && common::const_to_uint(val) == 0) {
        return bcx;
    }

    let fcx = bcx.fcx;
    let next_cx = fcx.new_temp_block("next");
    let cond_cx = fcx.new_temp_block("cond");
    CondBr(bcx, val, cond_cx.llbb, next_cx.llbb, DebugLoc::None);
    let after_cx = f(cond_cx);
    if !after_cx.terminated.get() {
        Br(after_cx, next_cx.llbb, DebugLoc::None);
    }
    next_cx
}

pub fn call_lifetime_start(cx: Block, ptr: ValueRef) {
    if cx.sess().opts.optimize == config::No {
        return;
    }

    let _icx = push_ctxt("lifetime_start");
    let ccx = cx.ccx();

    let llsize = C_u64(ccx, machine::llsize_of_alloc(ccx, val_ty(ptr).element_type()));
    let ptr = PointerCast(cx, ptr, Type::i8p(ccx));
    let lifetime_start = ccx.get_intrinsic(&"llvm.lifetime.start");
    Call(cx, lifetime_start, &[llsize, ptr], None, DebugLoc::None);
}

pub fn call_lifetime_end(cx: Block, ptr: ValueRef) {
    if cx.sess().opts.optimize == config::No {
        return;
    }

    let _icx = push_ctxt("lifetime_end");
    let ccx = cx.ccx();

    let llsize = C_u64(ccx, machine::llsize_of_alloc(ccx, val_ty(ptr).element_type()));
    let ptr = PointerCast(cx, ptr, Type::i8p(ccx));
    let lifetime_end = ccx.get_intrinsic(&"llvm.lifetime.end");
    Call(cx, lifetime_end, &[llsize, ptr], None, DebugLoc::None);
}

pub fn call_memcpy(cx: Block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef, align: u32) {
    let _icx = push_ctxt("call_memcpy");
    let ccx = cx.ccx();
    let key = match &ccx.sess().target.target.target_pointer_width[..] {
        "32" => "llvm.memcpy.p0i8.p0i8.i32",
        "64" => "llvm.memcpy.p0i8.p0i8.i64",
        tws => panic!("Unsupported target word size for memcpy: {}", tws),
    };
    let memcpy = ccx.get_intrinsic(&key);
    let src_ptr = PointerCast(cx, src, Type::i8p(ccx));
    let dst_ptr = PointerCast(cx, dst, Type::i8p(ccx));
    let size = IntCast(cx, n_bytes, ccx.int_type());
    let align = C_i32(ccx, align as i32);
    let volatile = C_bool(ccx, false);
    Call(cx, memcpy, &[dst_ptr, src_ptr, size, align, volatile], None, DebugLoc::None);
}

pub fn memcpy_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                             dst: ValueRef, src: ValueRef,
                             t: Ty<'tcx>) {
    let _icx = push_ctxt("memcpy_ty");
    let ccx = bcx.ccx();
    if ty::type_is_structural(t) {
        let llty = type_of::type_of(ccx, t);
        let llsz = llsize_of(ccx, llty);
        let llalign = type_of::align_of(ccx, t);
        call_memcpy(bcx, dst, src, llsz, llalign as u32);
    } else {
        store_ty(bcx, load_ty(bcx, src, t), dst, t);
    }
}

pub fn drop_done_fill_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
    if cx.unreachable.get() { return; }
    let _icx = push_ctxt("drop_done_fill_mem");
    let bcx = cx;
    memfill(&B(bcx), llptr, t, adt::DTOR_DONE);
}

pub fn init_zero_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
    if cx.unreachable.get() { return; }
    let _icx = push_ctxt("init_zero_mem");
    let bcx = cx;
    memfill(&B(bcx), llptr, t, 0);
}

// Always use this function instead of storing a constant byte to the memory
// in question. e.g. if you store a zero constant, LLVM will drown in vreg
// allocation for large data structures, and the generated code will be
// awful. (A telltale sign of this is large quantities of
// `mov [byte ptr foo],0` in the generated code.)
fn memfill<'a, 'tcx>(b: &Builder<'a, 'tcx>, llptr: ValueRef, ty: Ty<'tcx>, byte: u8) {
    let _icx = push_ctxt("memfill");
    let ccx = b.ccx;

    let llty = type_of::type_of(ccx, ty);

    let intrinsic_key = match &ccx.sess().target.target.target_pointer_width[..] {
        "32" => "llvm.memset.p0i8.i32",
        "64" => "llvm.memset.p0i8.i64",
        tws => panic!("Unsupported target word size for memset: {}", tws),
    };

    let llintrinsicfn = ccx.get_intrinsic(&intrinsic_key);
    let llptr = b.pointercast(llptr, Type::i8(ccx).ptr_to());
    let llzeroval = C_u8(ccx, byte as usize);
    let size = machine::llsize_of(ccx, llty);
    let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32);
    let volatile = C_bool(ccx, false);
    b.call(llintrinsicfn, &[llptr, llzeroval, size, align, volatile], None);
}

pub fn alloc_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>, name: &str) -> ValueRef {
    let _icx = push_ctxt("alloc_ty");
    let ccx = bcx.ccx();
    let ty = type_of::type_of(ccx, t);
    assert!(!ty::type_has_params(t));
    let val = alloca(bcx, ty, name);
    return val;
}

pub fn alloca(cx: Block, ty: Type, name: &str) -> ValueRef {
    let p = alloca_no_lifetime(cx, ty, name);
    call_lifetime_start(cx, p);
    p
}

pub fn alloca_no_lifetime(cx: Block, ty: Type, name: &str) -> ValueRef {
    let _icx = push_ctxt("alloca");
    if cx.unreachable.get() {
        unsafe {
            return llvm::LLVMGetUndef(ty.ptr_to().to_ref());
        }
    }
    debuginfo::clear_source_location(cx.fcx);
    Alloca(cx, ty, name)
}

// Creates the alloca slot which holds the pointer to the slot for the final return value
pub fn make_return_slot_pointer<'a, 'tcx>(fcx: &FunctionContext<'a, 'tcx>,
                                          output_type: Ty<'tcx>) -> ValueRef {
    let lloutputtype = type_of::type_of(fcx.ccx, output_type);

    // We create an alloca to hold a pointer of type `output_type`
    // which will hold the pointer to the right alloca which has the
    // final ret value
    if fcx.needs_ret_allocas {
        // Let's create the stack slot
        let slot = AllocaFcx(fcx, lloutputtype.ptr_to(), "llretslotptr");

        // and if we're using an out pointer, then store that in our newly made slot
        if type_of::return_uses_outptr(fcx.ccx, output_type) {
            let outptr = get_param(fcx.llfn, 0);

            let b = fcx.ccx.builder();
            b.position_before(fcx.alloca_insert_pt.get().unwrap());
            b.store(outptr, slot);
        }

        slot

    // But if there are no nested returns, we skip the indirection and have a single
    // retslot
    } else {
        if type_of::return_uses_outptr(fcx.ccx, output_type) {
            get_param(fcx.llfn, 0)
        } else {
            AllocaFcx(fcx, lloutputtype, "sret_slot")
        }
    }
}

struct FindNestedReturn {
    found: bool,
}

impl FindNestedReturn {
    fn new() -> FindNestedReturn {
        FindNestedReturn { found: false }
    }
}

impl<'v> Visitor<'v> for FindNestedReturn {
    fn visit_expr(&mut self, e: &ast::Expr) {
        match e.node {
            ast::ExprRet(..) => {
                self.found = true;
            }
            _ => visit::walk_expr(self, e)
        }
    }
}

fn build_cfg(tcx: &ty::ctxt, id: ast::NodeId) -> (ast::NodeId, Option<cfg::CFG>) {
    let blk = match tcx.map.find(id) {
        Some(ast_map::NodeItem(i)) => {
            match i.node {
                ast::ItemFn(_, _, _, _, ref blk) => {
                    blk
                }
                _ => tcx.sess.bug("unexpected item variant in has_nested_returns")
            }
        }
        Some(ast_map::NodeTraitItem(trait_item)) => {
            match trait_item.node {
                ast::MethodTraitItem(_, Some(ref body)) => body,
                ast::MethodTraitItem(_, None) => {
                    tcx.sess.bug("unexpected variant: required trait method \
                                  in has_nested_returns")
                }
                ast::TypeTraitItem(..) => {
                    tcx.sess.bug("unexpected variant: associated type trait item in \
                                  has_nested_returns")
                }
            }
        }
        Some(ast_map::NodeImplItem(impl_item)) => {
            match impl_item.node {
                ast::MethodImplItem(_, ref body) => body,
                ast::TypeImplItem(_) => {
                    tcx.sess.bug("unexpected variant: associated type impl item in \
                                  has_nested_returns")
                }
                ast::MacImplItem(_) => {
                    tcx.sess.bug("unexpected variant: unexpanded macro impl item in \
                                  has_nested_returns")
                }
            }
        }
        Some(ast_map::NodeExpr(e)) => {
            match e.node {
                ast::ExprClosure(_, _, ref blk) => blk,
                _ => tcx.sess.bug("unexpected expr variant in has_nested_returns")
            }
        }
        Some(ast_map::NodeVariant(..)) |
        Some(ast_map::NodeStructCtor(..)) => return (ast::DUMMY_NODE_ID, None),

        // glue, shims, etc
        None if id == ast::DUMMY_NODE_ID => return (ast::DUMMY_NODE_ID, None),

        _ => tcx.sess.bug(&format!("unexpected variant in has_nested_returns: {}",
                                   tcx.map.path_to_string(id)))
    };

    (blk.id, Some(cfg::CFG::new(tcx, blk)))
}

// Checks for the presence of "nested returns" in a function.
// Nested returns are when the inner expression of a return expression
// (the 'expr' in 'return expr') contains a return expression. Only cases
// where the outer return is actually reachable are considered. Implicit
// returns from the end of blocks are considered as well.
//
// This check is needed to handle the case where the inner expression is
// part of a larger expression that may have already partially-filled the
// return slot alloca. This can cause errors related to clean-up due to
// the clobbering of the existing value in the return slot.
fn has_nested_returns(tcx: &ty::ctxt, cfg: &cfg::CFG, blk_id: ast::NodeId) -> bool {
    for n in cfg.graph.depth_traverse(cfg.entry) {
        match tcx.map.find(n.id()) {
            Some(ast_map::NodeExpr(ex)) => {
                if let ast::ExprRet(Some(ref ret_expr)) = ex.node {
                    let mut visitor = FindNestedReturn::new();
                    visit::walk_expr(&mut visitor, &**ret_expr);
                    if visitor.found {
                        return true;
                    }
                }
            }
            Some(ast_map::NodeBlock(blk)) if blk.id == blk_id => {
                let mut visitor = FindNestedReturn::new();
                visit::walk_expr_opt(&mut visitor, &blk.expr);
                if visitor.found {
                    return true;
                }
            }
            _ => {}
        }
    }

    return false;
}

// NB: must keep 4 fns in sync:
//
//  - type_of_fn
//  - create_datums_for_fn_args.
//  - new_fn_ctxt
//  - trans_args
//
// Be warned! You must call `init_function` before doing anything with the
// returned function context.
pub fn new_fn_ctxt<'a, 'tcx>(ccx: &'a CrateContext<'a, 'tcx>,
                             llfndecl: ValueRef,
                             id: ast::NodeId,
                             has_env: bool,
                             output_type: ty::FnOutput<'tcx>,
                             param_substs: &'tcx Substs<'tcx>,
                             sp: Option<Span>,
                             block_arena: &'a TypedArena<common::BlockS<'a, 'tcx>>)
                             -> FunctionContext<'a, 'tcx> {
    common::validate_substs(param_substs);

    debug!("new_fn_ctxt(path={}, id={}, param_substs={})",
           if id == !0 {
               "".to_string()
           } else {
               ccx.tcx().map.path_to_string(id).to_string()
           },
           id, param_substs.repr(ccx.tcx()));

    let uses_outptr = match output_type {
        ty::FnConverging(output_type) => {
            let substd_output_type =
                monomorphize::apply_param_substs(ccx.tcx(), param_substs, &output_type);
            type_of::return_uses_outptr(ccx, substd_output_type)
        }
        ty::FnDiverging => false
    };
    let debug_context = debuginfo::create_function_debug_context(ccx, id, param_substs, llfndecl);
    let (blk_id, cfg) = build_cfg(ccx.tcx(), id);
    let nested_returns = if let Some(ref cfg) = cfg {
        has_nested_returns(ccx.tcx(), cfg, blk_id)
    } else {
        false
    };

    let mut fcx = FunctionContext {
          llfn: llfndecl,
          llenv: None,
          llretslotptr: Cell::new(None),
          param_env: ty::empty_parameter_environment(ccx.tcx()),
          alloca_insert_pt: Cell::new(None),
          llreturn: Cell::new(None),
          needs_ret_allocas: nested_returns,
          personality: Cell::new(None),
          caller_expects_out_pointer: uses_outptr,
          lllocals: RefCell::new(NodeMap()),
          llupvars: RefCell::new(NodeMap()),
          id: id,
          param_substs: param_substs,
          span: sp,
          block_arena: block_arena,
          ccx: ccx,
          debug_context: debug_context,
          scopes: RefCell::new(Vec::new()),
          cfg: cfg
    };

    if has_env {
        fcx.llenv = Some(get_param(fcx.llfn, fcx.env_arg_pos() as c_uint))
    }

    fcx
}

/// Performs setup on a newly created function, creating the entry scope block
/// and allocating space for the return pointer.
pub fn init_function<'a, 'tcx>(fcx: &'a FunctionContext<'a, 'tcx>,
                               skip_retptr: bool,
                               output: ty::FnOutput<'tcx>)
                               -> Block<'a, 'tcx> {
    let entry_bcx = fcx.new_temp_block("entry-block");

    // Use a dummy instruction as the insertion point for all allocas.
    // This is later removed in FunctionContext::cleanup.
    fcx.alloca_insert_pt.set(Some(unsafe {
        Load(entry_bcx, C_null(Type::i8p(fcx.ccx)));
        llvm::LLVMGetFirstInstruction(entry_bcx.llbb)
    }));

    if let ty::FnConverging(output_type) = output {
        // This shouldn't need to recompute the return type,
        // as new_fn_ctxt did it already.
        let substd_output_type = fcx.monomorphize(&output_type);
        if !return_type_is_void(fcx.ccx, substd_output_type) {
            // If the function returns nil/bot, there is no real return
            // value, so do not set `llretslotptr`.
            if !skip_retptr || fcx.caller_expects_out_pointer {
                // Otherwise, we normally allocate the llretslotptr, unless we
                // have been instructed to skip it for immediate return
                // values.
                fcx.llretslotptr.set(Some(make_return_slot_pointer(fcx, substd_output_type)));
            }
        }
    }

    entry_bcx
}

// NB: must keep 4 fns in sync:
//
//  - type_of_fn
//  - create_datums_for_fn_args.
//  - new_fn_ctxt
//  - trans_args

pub fn arg_kind<'a, 'tcx>(cx: &FunctionContext<'a, 'tcx>, t: Ty<'tcx>)
                          -> datum::Rvalue {
    use trans::datum::{ByRef, ByValue};

    datum::Rvalue {
        mode: if arg_is_indirect(cx.ccx, t) { ByRef } else { ByValue }
    }
}

// work around bizarre resolve errors
pub type RvalueDatum<'tcx> = datum::Datum<'tcx, datum::Rvalue>;

// create_datums_for_fn_args: creates rvalue datums for each of the
// incoming function arguments. These will later be stored into
// appropriate lvalue datums.
pub fn create_datums_for_fn_args<'a, 'tcx>(fcx: &FunctionContext<'a, 'tcx>,
                                           arg_tys: &[Ty<'tcx>])
                                           -> Vec<RvalueDatum<'tcx>> {
    let _icx = push_ctxt("create_datums_for_fn_args");

    // Return an array wrapping the ValueRefs that we get from `get_param` for
    // each argument into datums.
    arg_tys.iter().enumerate().map(|(i, &arg_ty)| {
        let llarg = get_param(fcx.llfn, fcx.arg_pos(i) as c_uint);
        datum::Datum::new(llarg, arg_ty, arg_kind(fcx, arg_ty))
    }).collect()
}

/// Creates rvalue datums for each of the incoming function arguments and
/// tuples the arguments. These will later be stored into appropriate lvalue
/// datums.
///
/// FIXME(pcwalton): Reduce the amount of code bloat this is responsible for.
fn create_datums_for_fn_args_under_call_abi<'blk, 'tcx>(
        mut bcx: Block<'blk, 'tcx>,
        arg_scope: cleanup::CustomScopeIndex,
        arg_tys: &[Ty<'tcx>])
        -> Vec<RvalueDatum<'tcx>> {
    let mut result = Vec::new();
    for (i, &arg_ty) in arg_tys.iter().enumerate() {
        if i < arg_tys.len() - 1 {
            // Regular argument.
            let llarg = get_param(bcx.fcx.llfn, bcx.fcx.arg_pos(i) as c_uint);
            result.push(datum::Datum::new(llarg, arg_ty, arg_kind(bcx.fcx,
                                                                  arg_ty)));
            continue
        }

        // This is the last argument. Tuple it.
        match arg_ty.sty {
            ty::ty_tup(ref tupled_arg_tys) => {
                let tuple_args_scope_id = cleanup::CustomScope(arg_scope);
                let tuple =
                    unpack_datum!(bcx,
                                  datum::lvalue_scratch_datum(bcx,
                                                              arg_ty,
                                                              "tupled_args",
                                                              tuple_args_scope_id,
                                                              (),
                                                              |(),
                                                               mut bcx,
                                                               llval| {
                        for (j, &tupled_arg_ty) in
                                    tupled_arg_tys.iter().enumerate() {
                            let llarg =
                                get_param(bcx.fcx.llfn,
                                          bcx.fcx.arg_pos(i + j) as c_uint);
                            let lldest = GEPi(bcx, llval, &[0, j]);
                            let datum = datum::Datum::new(
                                llarg,
                                tupled_arg_ty,
                                arg_kind(bcx.fcx, tupled_arg_ty));
                            bcx = datum.store_to(bcx, lldest);
                        }
                        bcx
                    }));
                let tuple = unpack_datum!(bcx,
                                          tuple.to_expr_datum()
                                               .to_rvalue_datum(bcx,
                                                                "argtuple"));
                result.push(tuple);
            }
            _ => {
                bcx.tcx().sess.bug("last argument of a function with \
                                    `rust-call` ABI isn't a tuple?!")
            }
        };

    }

    result
}

fn copy_args_to_allocas<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                    arg_scope: cleanup::CustomScopeIndex,
                                    args: &[ast::Arg],
                                    arg_datums: Vec<RvalueDatum<'tcx>>)
                                    -> Block<'blk, 'tcx> {
    debug!("copy_args_to_allocas");

    let _icx = push_ctxt("copy_args_to_allocas");
    let mut bcx = bcx;

    let arg_scope_id = cleanup::CustomScope(arg_scope);

    for (i, arg_datum) in arg_datums.into_iter().enumerate() {
        // For certain mode/type combinations, the raw llarg values are passed
        // by value.  However, within the fn body itself, we want to always
        // have all locals and arguments be by-ref so that we can cancel the
        // cleanup and for better interaction with LLVM's debug info.  So, if
        // the argument would be passed by value, we store it into an alloca.
        // This alloca should be optimized away by LLVM's mem-to-reg pass in
        // the event it's not truly needed.

        bcx = _match::store_arg(bcx, &*args[i].pat, arg_datum, arg_scope_id);
        debuginfo::create_argument_metadata(bcx, &args[i]);
    }

    bcx
}

// Ties up the llstaticallocas -> llloadenv -> lltop edges,
// and builds the return block.
pub fn finish_fn<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>,
                             last_bcx: Block<'blk, 'tcx>,
                             retty: ty::FnOutput<'tcx>,
                             ret_debug_loc: DebugLoc) {
    let _icx = push_ctxt("finish_fn");

    let ret_cx = match fcx.llreturn.get() {
        Some(llreturn) => {
            if !last_bcx.terminated.get() {
                Br(last_bcx, llreturn, DebugLoc::None);
            }
            raw_block(fcx, false, llreturn)
        }
        None => last_bcx
    };

    // This shouldn't need to recompute the return type,
    // as new_fn_ctxt did it already.
    let substd_retty = fcx.monomorphize(&retty);
    build_return_block(fcx, ret_cx, substd_retty, ret_debug_loc);

    debuginfo::clear_source_location(fcx);
    fcx.cleanup();
}

// Builds the return block for a function.
pub fn build_return_block<'blk, 'tcx>(fcx: &FunctionContext<'blk, 'tcx>,
                                      ret_cx: Block<'blk, 'tcx>,
                                      retty: ty::FnOutput<'tcx>,
                                      ret_debug_location: DebugLoc) {
    if fcx.llretslotptr.get().is_none() ||
       (!fcx.needs_ret_allocas && fcx.caller_expects_out_pointer) {
        return RetVoid(ret_cx, ret_debug_location);
    }

    let retslot = if fcx.needs_ret_allocas {
        Load(ret_cx, fcx.llretslotptr.get().unwrap())
    } else {
        fcx.llretslotptr.get().unwrap()
    };
    let retptr = Value(retslot);
    match retptr.get_dominating_store(ret_cx) {
        // If there's only a single store to the ret slot, we can directly return
        // the value that was stored and omit the store and the alloca
        Some(s) => {
            let retval = s.get_operand(0).unwrap().get();
            s.erase_from_parent();

            if retptr.has_no_uses() {
                retptr.erase_from_parent();
            }

            let retval = if retty == ty::FnConverging(fcx.ccx.tcx().types.bool) {
                Trunc(ret_cx, retval, Type::i1(fcx.ccx))
            } else {
                retval
            };

            if fcx.caller_expects_out_pointer {
                if let ty::FnConverging(retty) = retty {
                    store_ty(ret_cx, retval, get_param(fcx.llfn, 0), retty);
                }
                RetVoid(ret_cx, ret_debug_location)
            } else {
                Ret(ret_cx, retval, ret_debug_location)
            }
        }
        // Otherwise, copy the return value to the ret slot
        None => match retty {
            ty::FnConverging(retty) => {
                if fcx.caller_expects_out_pointer {
                    memcpy_ty(ret_cx, get_param(fcx.llfn, 0), retslot, retty);
                    RetVoid(ret_cx, ret_debug_location)
                } else {
                    Ret(ret_cx, load_ty(ret_cx, retslot, retty), ret_debug_location)
                }
            }
            ty::FnDiverging => {
                if fcx.caller_expects_out_pointer {
                    RetVoid(ret_cx, ret_debug_location)
                } else {
                    Ret(ret_cx, C_undef(Type::nil(fcx.ccx)), ret_debug_location)
                }
            }
        }
    }
}

/// Builds an LLVM function out of a source function.
///
/// If the function closes over its environment a closure will be returned.
pub fn trans_closure<'a, 'b, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                   decl: &ast::FnDecl,
                                   body: &ast::Block,
                                   llfndecl: ValueRef,
                                   param_substs: &'tcx Substs<'tcx>,
                                   fn_ast_id: ast::NodeId,
                                   _attributes: &[ast::Attribute],
                                   output_type: ty::FnOutput<'tcx>,
                                   abi: Abi,
                                   closure_env: closure::ClosureEnv<'b>) {
    ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);

    let _icx = push_ctxt("trans_closure");
    attributes::emit_uwtable(llfndecl, true);

    debug!("trans_closure(..., param_substs={})",
           param_substs.repr(ccx.tcx()));

    let has_env = match closure_env {
        closure::ClosureEnv::Closure(_) => true,
        closure::ClosureEnv::NotClosure => false,
    };

    let (arena, fcx): (TypedArena<_>, FunctionContext);
    arena = TypedArena::new();
    fcx = new_fn_ctxt(ccx,
                      llfndecl,
                      fn_ast_id,
                      has_env,
                      output_type,
                      param_substs,
                      Some(body.span),
                      &arena);
    let mut bcx = init_function(&fcx, false, output_type);

    // cleanup scope for the incoming arguments
    let fn_cleanup_debug_loc =
        debuginfo::get_cleanup_debug_loc_for_ast_node(ccx, fn_ast_id, body.span, true);
    let arg_scope = fcx.push_custom_cleanup_scope_with_debug_loc(fn_cleanup_debug_loc);

    let block_ty = node_id_type(bcx, body.id);

    // Set up arguments to the function.
    let monomorphized_arg_types =
        decl.inputs.iter()
                   .map(|arg| node_id_type(bcx, arg.id))
                   .collect::<Vec<_>>();
    let monomorphized_arg_types = match closure_env {
        closure::ClosureEnv::NotClosure => {
            monomorphized_arg_types
        }

        // Tuple up closure argument types for the "rust-call" ABI.
        closure::ClosureEnv::Closure(_) => {
            vec![ty::mk_tup(ccx.tcx(), monomorphized_arg_types)]
        }
    };
    for monomorphized_arg_type in &monomorphized_arg_types {
        debug!("trans_closure: monomorphized_arg_type: {}",
               ty_to_string(ccx.tcx(), *monomorphized_arg_type));
    }
    debug!("trans_closure: function lltype: {}",
           bcx.fcx.ccx.tn().val_to_string(bcx.fcx.llfn));

    let arg_datums = match closure_env {
        closure::ClosureEnv::NotClosure if abi == RustCall => {
            create_datums_for_fn_args_under_call_abi(bcx, arg_scope, &monomorphized_arg_types[..])
        }
        _ => {
            let arg_tys = untuple_arguments_if_necessary(ccx, &monomorphized_arg_types, abi);
            create_datums_for_fn_args(&fcx, &arg_tys)
        }
    };

    bcx = copy_args_to_allocas(bcx, arg_scope, &decl.inputs, arg_datums);

    bcx = closure_env.load(bcx, cleanup::CustomScope(arg_scope));

    // Up until here, IR instructions for this function have explicitly not been annotated with
    // source code location, so we don't step into call setup code. From here on, source location
    // emitting should be enabled.
    debuginfo::start_emitting_source_locations(&fcx);

    let dest = match fcx.llretslotptr.get() {
        Some(_) => expr::SaveIn(fcx.get_ret_slot(bcx, ty::FnConverging(block_ty), "iret_slot")),
        None => {
            assert!(type_is_zero_size(bcx.ccx(), block_ty));
            expr::Ignore
        }
    };

    // This call to trans_block is the place where we bridge between
    // translation calls that don't have a return value (trans_crate,
    // trans_mod, trans_item, et cetera) and those that do
    // (trans_block, trans_expr, et cetera).
    bcx = controlflow::trans_block(bcx, body, dest);

    match dest {
        expr::SaveIn(slot) if fcx.needs_ret_allocas => {
            Store(bcx, slot, fcx.llretslotptr.get().unwrap());
        }
        _ => {}
    }

    match fcx.llreturn.get() {
        Some(_) => {
            Br(bcx, fcx.return_exit_block(), DebugLoc::None);
            fcx.pop_custom_cleanup_scope(arg_scope);
        }
        None => {
            // Microoptimization writ large: avoid creating a separate
            // llreturn basic block
            bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope);
        }
    };

    // Put return block after all other blocks.
    // This somewhat improves single-stepping experience in debugger.
    unsafe {
        let llreturn = fcx.llreturn.get();
        if let Some(llreturn) = llreturn {
            llvm::LLVMMoveBasicBlockAfter(llreturn, bcx.llbb);
        }
    }

    let ret_debug_loc = DebugLoc::At(fn_cleanup_debug_loc.id,
                                     fn_cleanup_debug_loc.span);

    // Insert the mandatory first few basic blocks before lltop.
    finish_fn(&fcx, bcx, output_type, ret_debug_loc);
}

/// Creates an LLVM function corresponding to a source language function.
pub fn trans_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                          decl: &ast::FnDecl,
                          body: &ast::Block,
                          llfndecl: ValueRef,
                          param_substs: &'tcx Substs<'tcx>,
                          id: ast::NodeId,
                          attrs: &[ast::Attribute]) {
    let _s = StatRecorder::new(ccx, ccx.tcx().map.path_to_string(id).to_string());
    debug!("trans_fn(param_substs={})", param_substs.repr(ccx.tcx()));
    let _icx = push_ctxt("trans_fn");
    let fn_ty = ty::node_id_to_type(ccx.tcx(), id);
    let output_type = ty::erase_late_bound_regions(ccx.tcx(), &ty::ty_fn_ret(fn_ty));
    let abi = ty::ty_fn_abi(fn_ty);
    trans_closure(ccx, decl, body, llfndecl, param_substs, id, attrs, output_type, abi,
                  closure::ClosureEnv::NotClosure);
}

pub fn trans_enum_variant<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                    _enum_id: ast::NodeId,
                                    variant: &ast::Variant,
                                    _args: &[ast::VariantArg],
                                    disr: ty::Disr,
                                    param_substs: &'tcx Substs<'tcx>,
                                    llfndecl: ValueRef) {
    let _icx = push_ctxt("trans_enum_variant");

    trans_enum_variant_or_tuple_like_struct(
        ccx,
        variant.node.id,
        disr,
        param_substs,
        llfndecl);
}

pub fn trans_named_tuple_constructor<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
                                                 ctor_ty: Ty<'tcx>,
                                                 disr: ty::Disr,
                                                 args: callee::CallArgs,
                                                 dest: expr::Dest,
                                                 debug_loc: DebugLoc)
                                                 -> Result<'blk, 'tcx> {

    let ccx = bcx.fcx.ccx;
    let tcx = ccx.tcx();

    let result_ty = match ctor_ty.sty {
        ty::ty_bare_fn(_, ref bft) => {
            ty::erase_late_bound_regions(bcx.tcx(), &bft.sig.output()).unwrap()
        }
        _ => ccx.sess().bug(
            &format!("trans_enum_variant_constructor: \
                     unexpected ctor return type {}",
                     ctor_ty.repr(tcx)))
    };

    // Get location to store the result. If the user does not care about
    // the result, just make a stack slot
    let llresult = match dest {
        expr::SaveIn(d) => d,
        expr::Ignore => {
            if !type_is_zero_size(ccx, result_ty) {
                alloc_ty(bcx, result_ty, "constructor_result")
            } else {
                C_undef(type_of::type_of(ccx, result_ty))
            }
        }
    };

    if !type_is_zero_size(ccx, result_ty) {
        match args {
            callee::ArgExprs(exprs) => {
                let fields = exprs.iter().map(|x| &**x).enumerate().collect::<Vec<_>>();
                bcx = expr::trans_adt(bcx,
                                      result_ty,
                                      disr,
                                      &fields[..],
                                      None,
                                      expr::SaveIn(llresult),
                                      debug_loc);
            }
            _ => ccx.sess().bug("expected expr as arguments for variant/struct tuple constructor")
        }
    }

    // If the caller doesn't care about the result
    // drop the temporary we made
    let bcx = match dest {
        expr::SaveIn(_) => bcx,
        expr::Ignore => {
            let bcx = glue::drop_ty(bcx, llresult, result_ty, debug_loc);
            if !type_is_zero_size(ccx, result_ty) {
                call_lifetime_end(bcx, llresult);
            }
            bcx
        }
    };

    Result::new(bcx, llresult)
}

pub fn trans_tuple_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                    _fields: &[ast::StructField],
                                    ctor_id: ast::NodeId,
                                    param_substs: &'tcx Substs<'tcx>,
                                    llfndecl: ValueRef) {
    let _icx = push_ctxt("trans_tuple_struct");

    trans_enum_variant_or_tuple_like_struct(
        ccx,
        ctor_id,
        0,
        param_substs,
        llfndecl);
}

fn trans_enum_variant_or_tuple_like_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                                     ctor_id: ast::NodeId,
                                                     disr: ty::Disr,
                                                     param_substs: &'tcx Substs<'tcx>,
                                                     llfndecl: ValueRef) {
    let ctor_ty = ty::node_id_to_type(ccx.tcx(), ctor_id);
    let ctor_ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &ctor_ty);

    let result_ty = match ctor_ty.sty {
        ty::ty_bare_fn(_, ref bft) => {
            ty::erase_late_bound_regions(ccx.tcx(), &bft.sig.output())
        }
        _ => ccx.sess().bug(
            &format!("trans_enum_variant_or_tuple_like_struct: \
                     unexpected ctor return type {}",
                    ty_to_string(ccx.tcx(), ctor_ty)))
    };

    let (arena, fcx): (TypedArena<_>, FunctionContext);
    arena = TypedArena::new();
    fcx = new_fn_ctxt(ccx, llfndecl, ctor_id, false, result_ty,
                      param_substs, None, &arena);
    let bcx = init_function(&fcx, false, result_ty);

    assert!(!fcx.needs_ret_allocas);

    let arg_tys =
        ty::erase_late_bound_regions(
            ccx.tcx(), &ty::ty_fn_args(ctor_ty));

    let arg_datums = create_datums_for_fn_args(&fcx, &arg_tys[..]);

    if !type_is_zero_size(fcx.ccx, result_ty.unwrap()) {
        let dest = fcx.get_ret_slot(bcx, result_ty, "eret_slot");
        let repr = adt::represent_type(ccx, result_ty.unwrap());
        for (i, arg_datum) in arg_datums.into_iter().enumerate() {
            let lldestptr = adt::trans_field_ptr(bcx,
                                                 &*repr,
                                                 dest,
                                                 disr,
                                                 i);
            arg_datum.store_to(bcx, lldestptr);
        }
        adt::trans_set_discr(bcx, &*repr, dest, disr);
    }

    finish_fn(&fcx, bcx, result_ty, DebugLoc::None);
}

fn enum_variant_size_lint(ccx: &CrateContext, enum_def: &ast::EnumDef, sp: Span, id: ast::NodeId) {
    let mut sizes = Vec::new(); // does no allocation if no pushes, thankfully

    let print_info = ccx.sess().print_enum_sizes();

    let levels = ccx.tcx().node_lint_levels.borrow();
    let lint_id = lint::LintId::of(lint::builtin::VARIANT_SIZE_DIFFERENCES);
    let lvlsrc = levels.get(&(id, lint_id));
    let is_allow = lvlsrc.map_or(true, |&(lvl, _)| lvl == lint::Allow);

    if is_allow && !print_info {
        // we're not interested in anything here
        return
    }

    let ty = ty::node_id_to_type(ccx.tcx(), id);
    let avar = adt::represent_type(ccx, ty);
    match *avar {
        adt::General(_, ref variants, _) => {
            for var in variants {
                let mut size = 0;
                for field in var.fields.iter().skip(1) {
                    // skip the discriminant
                    size += llsize_of_real(ccx, sizing_type_of(ccx, *field));
                }
                sizes.push(size);
            }
        },
        _ => { /* its size is either constant or unimportant */ }
    }

    let (largest, slargest, largest_index) = sizes.iter().enumerate().fold((0, 0, 0),
        |(l, s, li), (idx, &size)|
            if size > l {
                (size, l, idx)
            } else if size > s {
                (l, size, li)
            } else {
                (l, s, li)
            }
    );

    if print_info {
        let llty = type_of::sizing_type_of(ccx, ty);

        let sess = &ccx.tcx().sess;
        sess.span_note(sp, &*format!("total size: {} bytes", llsize_of_real(ccx, llty)));
        match *avar {
            adt::General(..) => {
                for (i, var) in enum_def.variants.iter().enumerate() {
                    ccx.tcx().sess.span_note(var.span,
                                             &*format!("variant data: {} bytes", sizes[i]));
                }
            }
            _ => {}
        }
    }

    // we only warn if the largest variant is at least thrice as large as
    // the second-largest.
    if !is_allow && largest > slargest * 3 && slargest > 0 {
        // Use lint::raw_emit_lint rather than sess.add_lint because the lint-printing
        // pass for the latter already ran.
        lint::raw_emit_lint(&ccx.tcx().sess, lint::builtin::VARIANT_SIZE_DIFFERENCES,
                            *lvlsrc.unwrap(), Some(sp),
                            &format!("enum variant is more than three times larger \
                                     ({} bytes) than the next largest (ignoring padding)",
                                    largest));

        ccx.sess().span_note(enum_def.variants[largest_index].span,
                             "this variant is the largest");
    }
}

pub struct TransItemVisitor<'a, 'tcx: 'a> {
    pub ccx: &'a CrateContext<'a, 'tcx>,
}

impl<'a, 'tcx, 'v> Visitor<'v> for TransItemVisitor<'a, 'tcx> {
    fn visit_item(&mut self, i: &ast::Item) {
        trans_item(self.ccx, i);
    }
}

pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
    // Use the names from src/llvm/docs/LangRef.rst here. Most types are only
    // applicable to variable declarations and may not really make sense for
    // Rust code in the first place but whitelist them anyway and trust that
    // the user knows what s/he's doing. Who knows, unanticipated use cases
    // may pop up in the future.
    //
    // ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
    // and don't have to be, LLVM treats them as no-ops.
    match name {
        "appending" => Some(llvm::AppendingLinkage),
        "available_externally" => Some(llvm::AvailableExternallyLinkage),
        "common" => Some(llvm::CommonLinkage),
        "extern_weak" => Some(llvm::ExternalWeakLinkage),
        "external" => Some(llvm::ExternalLinkage),
        "internal" => Some(llvm::InternalLinkage),
        "linkonce" => Some(llvm::LinkOnceAnyLinkage),
        "linkonce_odr" => Some(llvm::LinkOnceODRLinkage),
        "private" => Some(llvm::PrivateLinkage),
        "weak" => Some(llvm::WeakAnyLinkage),
        "weak_odr" => Some(llvm::WeakODRLinkage),
        _ => None,
    }
}


/// Enum describing the origin of an LLVM `Value`, for linkage purposes.
#[derive(Copy, Clone)]
pub enum ValueOrigin {
    /// The LLVM `Value` is in this context because the corresponding item was
    /// assigned to the current compilation unit.
    OriginalTranslation,
    /// The `Value`'s corresponding item was assigned to some other compilation
    /// unit, but the `Value` was translated in this context anyway because the
    /// item is marked `#[inline]`.
    InlinedCopy,
}

/// Set the appropriate linkage for an LLVM `ValueRef` (function or global).
/// If the `llval` is the direct translation of a specific Rust item, `id`
/// should be set to the `NodeId` of that item.  (This mapping should be
/// 1-to-1, so monomorphizations and drop/visit glue should have `id` set to
/// `None`.)  `llval_origin` indicates whether `llval` is the translation of an
/// item assigned to `ccx`'s compilation unit or an inlined copy of an item
/// assigned to a different compilation unit.
pub fn update_linkage(ccx: &CrateContext,
                      llval: ValueRef,
                      id: Option<ast::NodeId>,
                      llval_origin: ValueOrigin) {
    match llval_origin {
        InlinedCopy => {
            // `llval` is a translation of an item defined in a separate
            // compilation unit.  This only makes sense if there are at least
            // two compilation units.
            assert!(ccx.sess().opts.cg.codegen_units > 1);
            // `llval` is a copy of something defined elsewhere, so use
            // `AvailableExternallyLinkage` to avoid duplicating code in the
            // output.
            llvm::SetLinkage(llval, llvm::AvailableExternallyLinkage);
            return;
        },
        OriginalTranslation => {},
    }

    if let Some(id) = id {
        let item = ccx.tcx().map.get(id);
        if let ast_map::NodeItem(i) = item {
            if let Some(name) = attr::first_attr_value_str_by_name(&i.attrs, "linkage") {
                if let Some(linkage) = llvm_linkage_by_name(&name) {
                    llvm::SetLinkage(llval, linkage);
                } else {
                    ccx.sess().span_fatal(i.span, "invalid linkage specified");
                }
                return;
            }
        }
    }

    match id {
        Some(id) if ccx.reachable().contains(&id) => {
            llvm::SetLinkage(llval, llvm::ExternalLinkage);
        },
        _ => {
            // `id` does not refer to an item in `ccx.reachable`.
            if ccx.sess().opts.cg.codegen_units > 1 {
                llvm::SetLinkage(llval, llvm::ExternalLinkage);
            } else {
                llvm::SetLinkage(llval, llvm::InternalLinkage);
            }
        },
    }
}

pub fn trans_item(ccx: &CrateContext, item: &ast::Item) {
    let _icx = push_ctxt("trans_item");

    let from_external = ccx.external_srcs().borrow().contains_key(&item.id);

    match item.node {
      ast::ItemFn(ref decl, _fn_style, abi, ref generics, ref body) => {
        if !generics.is_type_parameterized() {
            let trans_everywhere = attr::requests_inline(&item.attrs);
            // Ignore `trans_everywhere` for cross-crate inlined items
            // (`from_external`).  `trans_item` will be called once for each
            // compilation unit that references the item, so it will still get
            // translated everywhere it's needed.
            for (ref ccx, is_origin) in ccx.maybe_iter(!from_external && trans_everywhere) {
                let llfn = get_item_val(ccx, item.id);
                let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
                if abi != Rust {
                    foreign::trans_rust_fn_with_foreign_abi(ccx, &**decl, &**body, &item.attrs,
                                                            llfn, empty_substs, item.id, None);
                } else {
                    trans_fn(ccx, &**decl, &**body, llfn, empty_substs, item.id, &item.attrs);
                }
                update_linkage(ccx, llfn, Some(item.id),
                               if is_origin { OriginalTranslation } else { InlinedCopy });

                if is_entry_fn(ccx.sess(), item.id) {
                    create_entry_wrapper(ccx, item.span, llfn);
                    // check for the #[rustc_error] annotation, which forces an
                    // error in trans. This is used to write compile-fail tests
                    // that actually test that compilation succeeds without
                    // reporting an error.
                    if ty::has_attr(ccx.tcx(), local_def(item.id), "rustc_error") {
                        ccx.tcx().sess.span_fatal(item.span, "compilation successful");
                    }
                }
            }
        }

        // Be sure to travel more than just one layer deep to catch nested
        // items in blocks and such.
        let mut v = TransItemVisitor{ ccx: ccx };
        v.visit_block(&**body);
      }
      ast::ItemImpl(_, _, ref generics, _, _, ref impl_items) => {
        meth::trans_impl(ccx,
                         item.ident,
                         &impl_items[..],
                         generics,
                         item.id);
      }
      ast::ItemMod(ref m) => {
        trans_mod(&ccx.rotate(), m);
      }
      ast::ItemEnum(ref enum_definition, ref gens) => {
        if gens.ty_params.is_empty() {
            // sizes only make sense for non-generic types

            enum_variant_size_lint(ccx, enum_definition, item.span, item.id);
        }
      }
      ast::ItemConst(_, ref expr) => {
          // Recurse on the expression to catch items in blocks
          let mut v = TransItemVisitor{ ccx: ccx };
          v.visit_expr(&**expr);
      }
      ast::ItemStatic(_, m, ref expr) => {
          // Recurse on the expression to catch items in blocks
          let mut v = TransItemVisitor{ ccx: ccx };
          v.visit_expr(&**expr);

          let g = consts::trans_static(ccx, m, item.id);
          update_linkage(ccx, g, Some(item.id), OriginalTranslation);

          // Do static_assert checking. It can't really be done much earlier
          // because we need to get the value of the bool out of LLVM
          if attr::contains_name(&item.attrs, "static_assert") {
              if !ty::type_is_bool(ty::expr_ty(ccx.tcx(), expr)) {
                  ccx.sess().span_fatal(expr.span,
                                        "can only have static_assert on a static \
                                         with type `bool`");
              }
              if m == ast::MutMutable {
                  ccx.sess().span_fatal(expr.span,
                                        "cannot have static_assert on a mutable \
                                         static");
              }

              let v = ccx.static_values().borrow().get(&item.id).unwrap().clone();
              unsafe {
                  if !(llvm::LLVMConstIntGetZExtValue(v) != 0) {
                      ccx.sess().span_fatal(expr.span, "static assertion failed");
                  }
              }
          }
      },
      ast::ItemForeignMod(ref foreign_mod) => {
        foreign::trans_foreign_mod(ccx, foreign_mod);
      }
      ast::ItemTrait(..) => {
        // Inside of this trait definition, we won't be actually translating any
        // functions, but the trait still needs to be walked. Otherwise default
        // methods with items will not get translated and will cause ICE's when
        // metadata time comes around.
        let mut v = TransItemVisitor{ ccx: ccx };
        visit::walk_item(&mut v, item);
      }
      _ => {/* fall through */ }
    }
}

// Translate a module. Doing this amounts to translating the items in the
// module; there ends up being no artifact (aside from linkage names) of
// separate modules in the compiled program.  That's because modules exist
// only as a convenience for humans working with the code, to organize names
// and control visibility.
pub fn trans_mod(ccx: &CrateContext, m: &ast::Mod) {
    let _icx = push_ctxt("trans_mod");
    for item in &m.items {
        trans_item(ccx, &**item);
    }
}


// only use this for foreign function ABIs and glue, use `register_fn` for Rust functions
pub fn register_fn_llvmty(ccx: &CrateContext,
                          sp: Span,
                          sym: String,
                          node_id: ast::NodeId,
                      cc: llvm::CallConv,
                          llfty: Type) -> ValueRef {
    debug!("register_fn_llvmty id={} sym={}", node_id, sym);

    let llfn = declare::define_fn(ccx, &sym[..], cc, llfty,
                                   ty::FnConverging(ty::mk_nil(ccx.tcx()))).unwrap_or_else(||{
        ccx.sess().span_fatal(sp, &format!("symbol `{}` is already defined", sym));
    });
    finish_register_fn(ccx, sym, node_id, llfn);
    llfn
}

fn finish_register_fn(ccx: &CrateContext, sym: String, node_id: ast::NodeId,
                      llfn: ValueRef) {
    ccx.item_symbols().borrow_mut().insert(node_id, sym);

    // The stack exhaustion lang item shouldn't have a split stack because
    // otherwise it would continue to be exhausted (bad), and both it and the
    // eh_personality functions need to be externally linkable.
    let def = ast_util::local_def(node_id);
    if ccx.tcx().lang_items.stack_exhausted() == Some(def) {
        attributes::split_stack(llfn, false);
        llvm::SetLinkage(llfn, llvm::ExternalLinkage);
    }
    if ccx.tcx().lang_items.eh_personality() == Some(def) {
        llvm::SetLinkage(llfn, llvm::ExternalLinkage);
    }
}

fn register_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                         sp: Span,
                         sym: String,
                         node_id: ast::NodeId,
                         node_type: Ty<'tcx>)
                         -> ValueRef {
    if let ty::ty_bare_fn(_, ref f) = node_type.sty {
        if f.abi != Rust && f.abi != RustCall {
            ccx.sess().span_bug(sp, &format!("only the `{}` or `{}` calling conventions are valid \
                                              for this function; `{}` was specified",
                                              Rust.name(), RustCall.name(), f.abi.name()));
        }
    } else {
        ccx.sess().span_bug(sp, "expected bare rust function")
    }

    let llfn = declare::define_rust_fn(ccx, &sym[..], node_type).unwrap_or_else(||{
        ccx.sess().span_fatal(sp, &format!("symbol `{}` is already defined", sym));
    });
    finish_register_fn(ccx, sym, node_id, llfn);
    llfn
}

pub fn is_entry_fn(sess: &Session, node_id: ast::NodeId) -> bool {
    match *sess.entry_fn.borrow() {
        Some((entry_id, _)) => node_id == entry_id,
        None => false
    }
}

/// Create the `main` function which will initialise the rust runtime and call users’ main
/// function.
pub fn create_entry_wrapper(ccx: &CrateContext,
                           sp: Span,
                           main_llfn: ValueRef) {
    let et = ccx.sess().entry_type.get().unwrap();
    match et {
        config::EntryMain => {
            create_entry_fn(ccx, sp, main_llfn, true);
        }
        config::EntryStart => create_entry_fn(ccx, sp, main_llfn, false),
        config::EntryNone => {}    // Do nothing.
    }

    fn create_entry_fn(ccx: &CrateContext,
                       sp: Span,
                       rust_main: ValueRef,
                       use_start_lang_item: bool) {
        let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()],
                               &ccx.int_type());

        let llfn = declare::define_cfn(ccx, "main", llfty,
                                       ty::mk_nil(ccx.tcx())).unwrap_or_else(||{
            ccx.sess().span_err(sp, "entry symbol `main` defined multiple times");
            // FIXME: We should be smart and show a better diagnostic here.
            ccx.sess().help("did you use #[no_mangle] on `fn main`? Use #[start] instead");
            ccx.sess().abort_if_errors();
            panic!();
        });

        // FIXME: #16581: Marking a symbol in the executable with `dllexport`
        // linkage forces MinGW's linker to output a `.reloc` section for ASLR
        if ccx.sess().target.target.options.is_like_windows {
            unsafe { llvm::LLVMRustSetDLLExportStorageClass(llfn) }
        }

        let llbb = unsafe {
            llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), llfn,
                                                "top\0".as_ptr() as *const _)
        };
        let bld = ccx.raw_builder();
        unsafe {
            llvm::LLVMPositionBuilderAtEnd(bld, llbb);

            debuginfo::insert_reference_to_gdb_debug_scripts_section_global(ccx);

            let (start_fn, args) = if use_start_lang_item {
                let start_def_id = match ccx.tcx().lang_items.require(StartFnLangItem) {
                    Ok(id) => id,
                    Err(s) => { ccx.sess().fatal(&s[..]); }
                };
                let start_fn = if start_def_id.krate == ast::LOCAL_CRATE {
                    get_item_val(ccx, start_def_id.node)
                } else {
                    let start_fn_type = csearch::get_type(ccx.tcx(),
                                                          start_def_id).ty;
                    trans_external_path(ccx, start_def_id, start_fn_type)
                };

                let args = {
                    let opaque_rust_main = llvm::LLVMBuildPointerCast(bld,
                        rust_main, Type::i8p(ccx).to_ref(),
                        "rust_main\0".as_ptr() as *const _);

                    vec!(
                        opaque_rust_main,
                        get_param(llfn, 0),
                        get_param(llfn, 1)
                     )
                };
                (start_fn, args)
            } else {
                debug!("using user-defined start fn");
                let args = vec!(
                    get_param(llfn, 0 as c_uint),
                    get_param(llfn, 1 as c_uint)
                );

                (rust_main, args)
            };

            let result = llvm::LLVMBuildCall(bld,
                                             start_fn,
                                             args.as_ptr(),
                                             args.len() as c_uint,
                                             noname());

            llvm::LLVMBuildRet(bld, result);
        }
    }
}

fn exported_name<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, id: ast::NodeId,
                           ty: Ty<'tcx>, attrs: &[ast::Attribute]) -> String {
    match ccx.external_srcs().borrow().get(&id) {
        Some(&did) => {
            let sym = csearch::get_symbol(&ccx.sess().cstore, did);
            debug!("found item {} in other crate...", sym);
            return sym;
        }
        None => {}
    }

    match attr::find_export_name_attr(ccx.sess().diagnostic(), attrs) {
        // Use provided name
        Some(name) => name.to_string(),
        _ => ccx.tcx().map.with_path(id, |path| {
            if attr::contains_name(attrs, "no_mangle") {
                // Don't mangle
                path.last().unwrap().to_string()
            } else {
                match weak_lang_items::link_name(attrs) {
                    Some(name) => name.to_string(),
                    None => {
                        // Usual name mangling
                        mangle_exported_name(ccx, path, ty, id)
                    }
                }
            }
        })
    }
}

fn contains_null(s: &str) -> bool {
    s.bytes().any(|b| b == 0)
}

pub fn get_item_val(ccx: &CrateContext, id: ast::NodeId) -> ValueRef {
    debug!("get_item_val(id=`{}`)", id);

    match ccx.item_vals().borrow().get(&id).cloned() {
        Some(v) => return v,
        None => {}
    }

    let item = ccx.tcx().map.get(id);
    debug!("get_item_val: id={} item={:?}", id, item);
    let val = match item {
        ast_map::NodeItem(i) => {
            let ty = ty::node_id_to_type(ccx.tcx(), i.id);
            let sym = || exported_name(ccx, id, ty, &i.attrs);

            let v = match i.node {
                ast::ItemStatic(_, _, ref expr) => {
                    // If this static came from an external crate, then
                    // we need to get the symbol from csearch instead of
                    // using the current crate's name/version
                    // information in the hash of the symbol
                    let sym = sym();
                    debug!("making {}", sym);

                    // We need the translated value here, because for enums the
                    // LLVM type is not fully determined by the Rust type.
                    let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
                    let (v, ty) = consts::const_expr(ccx, &**expr, empty_substs);
                    ccx.static_values().borrow_mut().insert(id, v);
                    unsafe {
                        // boolean SSA values are i1, but they have to be stored in i8 slots,
                        // otherwise some LLVM optimization passes don't work as expected
                        let llty = if ty::type_is_bool(ty) {
                            llvm::LLVMInt8TypeInContext(ccx.llcx())
                        } else {
                            llvm::LLVMTypeOf(v)
                        };

                        // FIXME(nagisa): probably should be declare_global, because no definition
                        // is happening here, but we depend on it being defined here from
                        // const::trans_static. This all logic should be replaced.
                        let g = declare::define_global(ccx, &sym[..],
                                                       Type::from_ref(llty)).unwrap_or_else(||{
                            ccx.sess().span_fatal(i.span, &format!("symbol `{}` is already defined",
                                                                   sym))
                        });

                        if attr::contains_name(&i.attrs,
                                               "thread_local") {
                            llvm::set_thread_local(g, true);
                        }
                        ccx.item_symbols().borrow_mut().insert(i.id, sym);
                        g
                    }
                }

                ast::ItemFn(_, _, abi, _, _) => {
                    let sym = sym();
                    let llfn = if abi == Rust {
                        register_fn(ccx, i.span, sym, i.id, ty)
                    } else {
                        foreign::register_rust_fn_with_foreign_abi(ccx, i.span, sym, i.id)
                    };
                    attributes::from_fn_attrs(ccx, &i.attrs, llfn);
                    llfn
                }

                _ => ccx.sess().bug("get_item_val: weird result in table")
            };

            match attr::first_attr_value_str_by_name(&i.attrs,
                                                     "link_section") {
                Some(sect) => {
                    if contains_null(&sect) {
                        ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`",
                                                 &sect));
                    }
                    unsafe {
                        let buf = CString::new(sect.as_bytes()).unwrap();
                        llvm::LLVMSetSection(v, buf.as_ptr());
                    }
                },
                None => ()
            }

            v
        }

        ast_map::NodeTraitItem(trait_item) => {
            debug!("get_item_val(): processing a NodeTraitItem");
            match trait_item.node {
                ast::MethodTraitItem(_, None) | ast::TypeTraitItem(..) => {
                    ccx.sess().span_bug(trait_item.span,
                        "unexpected variant: required trait method in get_item_val()");
                }
                ast::MethodTraitItem(_, Some(_)) => {
                    register_method(ccx, id, &trait_item.attrs, trait_item.span)
                }
            }
        }

        ast_map::NodeImplItem(impl_item) => {
            match impl_item.node {
                ast::MethodImplItem(..) => {
                    register_method(ccx, id, &impl_item.attrs, impl_item.span)
                }
                ast::TypeImplItem(_) => {
                    ccx.sess().span_bug(impl_item.span,
                        "unexpected variant: associated type in get_item_val()")
                }
                ast::MacImplItem(_) => {
                    ccx.sess().span_bug(impl_item.span,
                        "unexpected variant: unexpanded macro in get_item_val()")
                }
            }
        }

        ast_map::NodeForeignItem(ni) => {
            match ni.node {
                ast::ForeignItemFn(..) => {
                    let abi = ccx.tcx().map.get_foreign_abi(id);
                    let ty = ty::node_id_to_type(ccx.tcx(), ni.id);
                    let name = foreign::link_name(&*ni);
                    let llfn = foreign::register_foreign_item_fn(ccx, abi, ty, &name);
                    attributes::from_fn_attrs(ccx, &ni.attrs, llfn);
                    llfn
                }
                ast::ForeignItemStatic(..) => {
                    foreign::register_static(ccx, &*ni)
                }
            }
        }

        ast_map::NodeVariant(ref v) => {
            let llfn;
            let args = match v.node.kind {
                ast::TupleVariantKind(ref args) => args,
                ast::StructVariantKind(_) => {
                    ccx.sess().bug("struct variant kind unexpected in get_item_val")
                }
            };
            assert!(!args.is_empty());
            let ty = ty::node_id_to_type(ccx.tcx(), id);
            let parent = ccx.tcx().map.get_parent(id);
            let enm = ccx.tcx().map.expect_item(parent);
            let sym = exported_name(ccx,
                                    id,
                                    ty,
                                    &enm.attrs);

            llfn = match enm.node {
                ast::ItemEnum(_, _) => {
                    register_fn(ccx, (*v).span, sym, id, ty)
                }
                _ => ccx.sess().bug("NodeVariant, shouldn't happen")
            };
            attributes::inline(llfn, attributes::InlineAttr::Hint);
            llfn
        }

        ast_map::NodeStructCtor(struct_def) => {
            // Only register the constructor if this is a tuple-like struct.
            let ctor_id = match struct_def.ctor_id {
                None => {
                    ccx.sess().bug("attempt to register a constructor of \
                                    a non-tuple-like struct")
                }
                Some(ctor_id) => ctor_id,
            };
            let parent = ccx.tcx().map.get_parent(id);
            let struct_item = ccx.tcx().map.expect_item(parent);
            let ty = ty::node_id_to_type(ccx.tcx(), ctor_id);
            let sym = exported_name(ccx,
                                    id,
                                    ty,
                                    &struct_item.attrs);
            let llfn = register_fn(ccx, struct_item.span,
                                   sym, ctor_id, ty);
            attributes::inline(llfn, attributes::InlineAttr::Hint);
            llfn
        }

        ref variant => {
            ccx.sess().bug(&format!("get_item_val(): unexpected variant: {:?}",
                                   variant))
        }
    };

    // All LLVM globals and functions are initially created as external-linkage
    // declarations.  If `trans_item`/`trans_fn` later turns the declaration
    // into a definition, it adjusts the linkage then (using `update_linkage`).
    //
    // The exception is foreign items, which have their linkage set inside the
    // call to `foreign::register_*` above.  We don't touch the linkage after
    // that (`foreign::trans_foreign_mod` doesn't adjust the linkage like the
    // other item translation functions do).

    ccx.item_vals().borrow_mut().insert(id, val);
    val
}

fn register_method(ccx: &CrateContext, id: ast::NodeId,
                   attrs: &[ast::Attribute], span: Span) -> ValueRef {
    let mty = ty::node_id_to_type(ccx.tcx(), id);

    let sym = exported_name(ccx, id, mty, &attrs);

    if let ty::ty_bare_fn(_, ref f) = mty.sty {
        let llfn = if f.abi == Rust || f.abi == RustCall {
            register_fn(ccx, span, sym, id, mty)
        } else {
            foreign::register_rust_fn_with_foreign_abi(ccx, span, sym, id)
        };
        attributes::from_fn_attrs(ccx, &attrs, llfn);
        return llfn;
    } else {
        ccx.sess().span_bug(span, "expected bare rust function");
    }
}

pub fn crate_ctxt_to_encode_parms<'a, 'tcx>(cx: &'a SharedCrateContext<'tcx>,
                                            ie: encoder::EncodeInlinedItem<'a>)
                                            -> encoder::EncodeParams<'a, 'tcx> {
    encoder::EncodeParams {
        diag: cx.sess().diagnostic(),
        tcx: cx.tcx(),
        reexports: cx.export_map(),
        item_symbols: cx.item_symbols(),
        link_meta: cx.link_meta(),
        cstore: &cx.sess().cstore,
        encode_inlined_item: ie,
        reachable: cx.reachable(),
    }
}

pub fn write_metadata(cx: &SharedCrateContext, krate: &ast::Crate) -> Vec<u8> {
    use flate;

    let any_library = cx.sess().crate_types.borrow().iter().any(|ty| {
        *ty != config::CrateTypeExecutable
    });
    if !any_library {
        return Vec::new()
    }

    let encode_inlined_item: encoder::EncodeInlinedItem =
        Box::new(|ecx, rbml_w, ii| astencode::encode_inlined_item(ecx, rbml_w, ii));

    let encode_parms = crate_ctxt_to_encode_parms(cx, encode_inlined_item);
    let metadata = encoder::encode_metadata(encode_parms, krate);
    let mut compressed = encoder::metadata_encoding_version.to_vec();
    compressed.push_all(&flate::deflate_bytes(&metadata));
    let llmeta = C_bytes_in_context(cx.metadata_llcx(), &compressed[..]);
    let llconst = C_struct_in_context(cx.metadata_llcx(), &[llmeta], false);
    let name = format!("rust_metadata_{}_{}",
                       cx.link_meta().crate_name,
                       cx.link_meta().crate_hash);
    let buf = CString::new(name).unwrap();
    let llglobal = unsafe {
        llvm::LLVMAddGlobal(cx.metadata_llmod(), val_ty(llconst).to_ref(),
                            buf.as_ptr())
    };
    unsafe {
        llvm::LLVMSetInitializer(llglobal, llconst);
        let name = loader::meta_section_name(cx.sess().target.target.options.is_like_osx);
        let name = CString::new(name).unwrap();
        llvm::LLVMSetSection(llglobal, name.as_ptr())
    }
    return metadata;
}

/// Find any symbols that are defined in one compilation unit, but not declared
/// in any other compilation unit.  Give these symbols internal linkage.
fn internalize_symbols(cx: &SharedCrateContext, reachable: &HashSet<String>) {
    unsafe {
        let mut declared = HashSet::new();

        let iter_globals = |llmod| {
            ValueIter {
                cur: llvm::LLVMGetFirstGlobal(llmod),
                step: llvm::LLVMGetNextGlobal,
            }
        };

        let iter_functions = |llmod| {
            ValueIter {
                cur: llvm::LLVMGetFirstFunction(llmod),
                step: llvm::LLVMGetNextFunction,
            }
        };

        // Collect all external declarations in all compilation units.
        for ccx in cx.iter() {
            for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
                let linkage = llvm::LLVMGetLinkage(val);
                // We only care about external declarations (not definitions)
                // and available_externally definitions.
                if !(linkage == llvm::ExternalLinkage as c_uint &&
                     llvm::LLVMIsDeclaration(val) != 0) &&
                   !(linkage == llvm::AvailableExternallyLinkage as c_uint) {
                    continue
                }

                let name = CStr::from_ptr(llvm::LLVMGetValueName(val))
                                .to_bytes().to_vec();
                declared.insert(name);
            }
        }

        // Examine each external definition.  If the definition is not used in
        // any other compilation unit, and is not reachable from other crates,
        // then give it internal linkage.
        for ccx in cx.iter() {
            for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
                // We only care about external definitions.
                if !(llvm::LLVMGetLinkage(val) == llvm::ExternalLinkage as c_uint &&
                     llvm::LLVMIsDeclaration(val) == 0) {
                    continue
                }

                let name = CStr::from_ptr(llvm::LLVMGetValueName(val))
                                .to_bytes().to_vec();
                if !declared.contains(&name) &&
                   !reachable.contains(str::from_utf8(&name).unwrap()) {
                    llvm::SetLinkage(val, llvm::InternalLinkage);
                }
            }
        }
    }


    struct ValueIter {
        cur: ValueRef,
        step: unsafe extern "C" fn(ValueRef) -> ValueRef,
    }

    impl Iterator for ValueIter {
        type Item = ValueRef;

        fn next(&mut self) -> Option<ValueRef> {
            let old = self.cur;
            if !old.is_null() {
                self.cur = unsafe {
                    let step: unsafe extern "C" fn(ValueRef) -> ValueRef =
                        mem::transmute_copy(&self.step);
                    step(old)
                };
                Some(old)
            } else {
                None
            }
        }
    }
}

pub fn trans_crate<'tcx>(analysis: ty::CrateAnalysis<'tcx>)
                         -> (ty::ctxt<'tcx>, CrateTranslation) {
    let ty::CrateAnalysis { ty_cx: tcx, export_map, reachable, name, .. } = analysis;
    let krate = tcx.map.krate();

    let check_overflow = if let Some(v) = tcx.sess.opts.debugging_opts.force_overflow_checks {
        v
    } else {
        tcx.sess.opts.debug_assertions
    };

    let check_dropflag = if let Some(v) = tcx.sess.opts.debugging_opts.force_dropflag_checks {
        v
    } else {
        tcx.sess.opts.debug_assertions
    };

    // Before we touch LLVM, make sure that multithreading is enabled.
    unsafe {
        use std::sync::{Once, ONCE_INIT};
        static INIT: Once = ONCE_INIT;
        static mut POISONED: bool = false;
        INIT.call_once(|| {
            if llvm::LLVMStartMultithreaded() != 1 {
                // use an extra bool to make sure that all future usage of LLVM
                // cannot proceed despite the Once not running more than once.
                POISONED = true;
            }
        });

        if POISONED {
            tcx.sess.bug("couldn't enable multi-threaded LLVM");
        }
    }

    let link_meta = link::build_link_meta(&tcx.sess, krate, name);

    let codegen_units = tcx.sess.opts.cg.codegen_units;
    let shared_ccx = SharedCrateContext::new(&link_meta.crate_name,
                                             codegen_units,
                                             tcx,
                                             export_map,
                                             Sha256::new(),
                                             link_meta.clone(),
                                             reachable,
                                             check_overflow,
                                             check_dropflag);

    {
        let ccx = shared_ccx.get_ccx(0);

        // First, verify intrinsics.
        intrinsic::check_intrinsics(&ccx);

        // Next, translate the module.
        {
            let _icx = push_ctxt("text");
            trans_mod(&ccx, &krate.module);
        }
    }

    for ccx in shared_ccx.iter() {
        if ccx.sess().opts.debuginfo != NoDebugInfo {
            debuginfo::finalize(&ccx);
        }
    }

    // Translate the metadata.
    let metadata = write_metadata(&shared_ccx, krate);

    if shared_ccx.sess().trans_stats() {
        let stats = shared_ccx.stats();
        println!("--- trans stats ---");
        println!("n_glues_created: {}", stats.n_glues_created.get());
        println!("n_null_glues: {}", stats.n_null_glues.get());
        println!("n_real_glues: {}", stats.n_real_glues.get());

        println!("n_fns: {}", stats.n_fns.get());
        println!("n_monos: {}", stats.n_monos.get());
        println!("n_inlines: {}", stats.n_inlines.get());
        println!("n_closures: {}", stats.n_closures.get());
        println!("fn stats:");
        stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
            insns_b.cmp(&insns_a)
        });
        for tuple in &*stats.fn_stats.borrow() {
            match *tuple {
                (ref name, insns) => {
                    println!("{} insns, {}", insns, *name);
                }
            }
        }
    }
    if shared_ccx.sess().count_llvm_insns() {
        for (k, v) in &*shared_ccx.stats().llvm_insns.borrow() {
            println!("{:7} {}", *v, *k);
        }
    }

    let modules = shared_ccx.iter()
        .map(|ccx| ModuleTranslation { llcx: ccx.llcx(), llmod: ccx.llmod() })
        .collect();

    let mut reachable: Vec<String> = shared_ccx.reachable().iter().filter_map(|id| {
        shared_ccx.item_symbols().borrow().get(id).map(|s| s.to_string())
    }).collect();

    // For the purposes of LTO, we add to the reachable set all of the upstream
    // reachable extern fns. These functions are all part of the public ABI of
    // the final product, so LTO needs to preserve them.
    shared_ccx.sess().cstore.iter_crate_data(|cnum, _| {
        let syms = csearch::get_reachable_extern_fns(&shared_ccx.sess().cstore, cnum);
        reachable.extend(syms.into_iter().map(|did| {
            csearch::get_symbol(&shared_ccx.sess().cstore, did)
        }));
    });

    // Make sure that some other crucial symbols are not eliminated from the
    // module. This includes the main function, the crate map (used for debug
    // log settings and I/O), and finally the curious rust_stack_exhausted
    // symbol. This symbol is required for use by the libmorestack library that
    // we link in, so we must ensure that this symbol is not internalized (if
    // defined in the crate).
    reachable.push("main".to_string());
    reachable.push("rust_stack_exhausted".to_string());

    // referenced from .eh_frame section on some platforms
    reachable.push("rust_eh_personality".to_string());
    // referenced from rt/rust_try.ll
    reachable.push("rust_eh_personality_catch".to_string());

    if codegen_units > 1 {
        internalize_symbols(&shared_ccx, &reachable.iter().cloned().collect());
    }

    let metadata_module = ModuleTranslation {
        llcx: shared_ccx.metadata_llcx(),
        llmod: shared_ccx.metadata_llmod(),
    };
    let formats = shared_ccx.tcx().dependency_formats.borrow().clone();
    let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");

    let translation = CrateTranslation {
        modules: modules,
        metadata_module: metadata_module,
        link: link_meta,
        metadata: metadata,
        reachable: reachable,
        crate_formats: formats,
        no_builtins: no_builtins,
    };

    (shared_ccx.take_tcx(), translation)
}