1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! # Representation of Algebraic Data Types
//!
//! This module determines how to represent enums, structs, and tuples
//! based on their monomorphized types; it is responsible both for
//! choosing a representation and translating basic operations on
//! values of those types.  (Note: exporting the representations for
//! debuggers is handled in debuginfo.rs, not here.)
//!
//! Note that the interface treats everything as a general case of an
//! enum, so structs/tuples/etc. have one pseudo-variant with
//! discriminant 0; i.e., as if they were a univariant enum.
//!
//! Having everything in one place will enable improvements to data
//! structure representation; possibilities include:
//!
//! - User-specified alignment (e.g., cacheline-aligning parts of
//!   concurrently accessed data structures); LLVM can't represent this
//!   directly, so we'd have to insert padding fields in any structure
//!   that might contain one and adjust GEP indices accordingly.  See
//!   issue #4578.
//!
//! - Store nested enums' discriminants in the same word.  Rather, if
//!   some variants start with enums, and those enums representations
//!   have unused alignment padding between discriminant and body, the
//!   outer enum's discriminant can be stored there and those variants
//!   can start at offset 0.  Kind of fancy, and might need work to
//!   make copies of the inner enum type cooperate, but it could help
//!   with `Option` or `Result` wrapped around another enum.
//!
//! - Tagged pointers would be neat, but given that any type can be
//!   used unboxed and any field can have pointers (including mutable)
//!   taken to it, implementing them for Rust seems difficult.

#![allow(unsigned_negation)]

pub use self::Repr::*;

use std::rc::Rc;

use llvm::{ValueRef, True, IntEQ, IntNE};
use back::abi::FAT_PTR_ADDR;
use middle::subst;
use middle::ty::{self, Ty, ClosureTyper};
use middle::ty::Disr;
use syntax::ast;
use syntax::attr;
use syntax::attr::IntType;
use trans::_match;
use trans::build::*;
use trans::cleanup;
use trans::cleanup::CleanupMethods;
use trans::common::*;
use trans::datum;
use trans::debuginfo::DebugLoc;
use trans::machine;
use trans::monomorphize;
use trans::type_::Type;
use trans::type_of;
use util::ppaux::ty_to_string;

type Hint = attr::ReprAttr;

/// Representations.
#[derive(Eq, PartialEq, Debug)]
pub enum Repr<'tcx> {
    /// C-like enums; basically an int.
    CEnum(IntType, Disr, Disr), // discriminant range (signedness based on the IntType)
    /// Single-case variants, and structs/tuples/records.
    ///
    /// Structs with destructors need a dynamic destroyedness flag to
    /// avoid running the destructor too many times; this is included
    /// in the `Struct` if present.
    /// (The flag if nonzero, represents the initialization value to use;
    ///  if zero, then use no flag at all.)
    Univariant(Struct<'tcx>, u8),
    /// General-case enums: for each case there is a struct, and they
    /// all start with a field for the discriminant.
    ///
    /// Types with destructors need a dynamic destroyedness flag to
    /// avoid running the destructor too many times; the last argument
    /// indicates whether such a flag is present.
    /// (The flag, if nonzero, represents the initialization value to use;
    ///  if zero, then use no flag at all.)
    General(IntType, Vec<Struct<'tcx>>, u8),
    /// Two cases distinguished by a nullable pointer: the case with discriminant
    /// `nndiscr` must have single field which is known to be nonnull due to its type.
    /// The other case is known to be zero sized. Hence we represent the enum
    /// as simply a nullable pointer: if not null it indicates the `nndiscr` variant,
    /// otherwise it indicates the other case.
    RawNullablePointer {
        nndiscr: Disr,
        nnty: Ty<'tcx>,
        nullfields: Vec<Ty<'tcx>>
    },
    /// Two cases distinguished by a nullable pointer: the case with discriminant
    /// `nndiscr` is represented by the struct `nonnull`, where the `discrfield`th
    /// field is known to be nonnull due to its type; if that field is null, then
    /// it represents the other case, which is inhabited by at most one value
    /// (and all other fields are undefined/unused).
    ///
    /// For example, `std::option::Option` instantiated at a safe pointer type
    /// is represented such that `None` is a null pointer and `Some` is the
    /// identity function.
    StructWrappedNullablePointer {
        nonnull: Struct<'tcx>,
        nndiscr: Disr,
        discrfield: DiscrField,
        nullfields: Vec<Ty<'tcx>>,
    }
}

/// For structs, and struct-like parts of anything fancier.
#[derive(Eq, PartialEq, Debug)]
pub struct Struct<'tcx> {
    // If the struct is DST, then the size and alignment do not take into
    // account the unsized fields of the struct.
    pub size: u64,
    pub align: u32,
    pub sized: bool,
    pub packed: bool,
    pub fields: Vec<Ty<'tcx>>
}

/// Convenience for `represent_type`.  There should probably be more or
/// these, for places in trans where the `Ty` isn't directly
/// available.
pub fn represent_node<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                  node: ast::NodeId) -> Rc<Repr<'tcx>> {
    represent_type(bcx.ccx(), node_id_type(bcx, node))
}

/// Decides how to represent a given type.
pub fn represent_type<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                                t: Ty<'tcx>) -> Rc<Repr<'tcx>> {
    debug!("Representing: {}", ty_to_string(cx.tcx(), t));
    match cx.adt_reprs().borrow().get(&t) {
        Some(repr) => return repr.clone(),
        None => {}
    }

    let repr = Rc::new(represent_type_uncached(cx, t));
    debug!("Represented as: {:?}", repr);
    cx.adt_reprs().borrow_mut().insert(t, repr.clone());
    repr
}

macro_rules! repeat_u8_as_u32 {
    ($name:expr) => { (($name as u32) << 24 |
                       ($name as u32) << 16 |
                       ($name as u32) <<  8 |
                       ($name as u32)) }
}
macro_rules! repeat_u8_as_u64 {
    ($name:expr) => { ((repeat_u8_as_u32!($name) as u64) << 32 |
                       (repeat_u8_as_u32!($name) as u64)) }
}

pub const DTOR_NEEDED: u8 = 0xd4;
pub const DTOR_NEEDED_U32: u32 = repeat_u8_as_u32!(DTOR_NEEDED);
pub const DTOR_NEEDED_U64: u64 = repeat_u8_as_u64!(DTOR_NEEDED);
#[allow(dead_code)]
pub fn dtor_needed_usize(ccx: &CrateContext) -> usize {
    match &ccx.tcx().sess.target.target.target_pointer_width[..] {
        "32" => DTOR_NEEDED_U32 as usize,
        "64" => DTOR_NEEDED_U64 as usize,
        tws => panic!("Unsupported target word size for int: {}", tws),
    }
}

pub const DTOR_DONE: u8 = 0x1d;
pub const DTOR_DONE_U32: u32 = repeat_u8_as_u32!(DTOR_DONE);
pub const DTOR_DONE_U64: u64 = repeat_u8_as_u64!(DTOR_DONE);
#[allow(dead_code)]
pub fn dtor_done_usize(ccx: &CrateContext) -> usize {
    match &ccx.tcx().sess.target.target.target_pointer_width[..] {
        "32" => DTOR_DONE_U32 as usize,
        "64" => DTOR_DONE_U64 as usize,
        tws => panic!("Unsupported target word size for int: {}", tws),
    }
}

fn dtor_to_init_u8(dtor: bool) -> u8 {
    if dtor { DTOR_NEEDED } else { 0 }
}

pub trait GetDtorType<'tcx> { fn dtor_type(&self) -> Ty<'tcx>; }
impl<'tcx> GetDtorType<'tcx> for ty::ctxt<'tcx> {
    fn dtor_type(&self) -> Ty<'tcx> { self.types.u8 }
}

fn dtor_active(flag: u8) -> bool {
    flag != 0
}

fn represent_type_uncached<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                                     t: Ty<'tcx>) -> Repr<'tcx> {
    match t.sty {
        ty::ty_tup(ref elems) => {
            Univariant(mk_struct(cx, &elems[..], false, t), 0)
        }
        ty::ty_struct(def_id, substs) => {
            let fields = ty::lookup_struct_fields(cx.tcx(), def_id);
            let mut ftys = fields.iter().map(|field| {
                let fty = ty::lookup_field_type(cx.tcx(), def_id, field.id, substs);
                monomorphize::normalize_associated_type(cx.tcx(), &fty)
            }).collect::<Vec<_>>();
            let packed = ty::lookup_packed(cx.tcx(), def_id);
            let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();
            if dtor { ftys.push(cx.tcx().dtor_type()); }

            Univariant(mk_struct(cx, &ftys[..], packed, t), dtor_to_init_u8(dtor))
        }
        ty::ty_closure(def_id, substs) => {
            let typer = NormalizingClosureTyper::new(cx.tcx());
            let upvars = typer.closure_upvars(def_id, substs).unwrap();
            let upvar_types = upvars.iter().map(|u| u.ty).collect::<Vec<_>>();
            Univariant(mk_struct(cx, &upvar_types[..], false, t), 0)
        }
        ty::ty_enum(def_id, substs) => {
            let cases = get_cases(cx.tcx(), def_id, substs);
            let hint = *ty::lookup_repr_hints(cx.tcx(), def_id).get(0)
                .unwrap_or(&attr::ReprAny);

            let dtor = ty::ty_dtor(cx.tcx(), def_id).has_drop_flag();

            if cases.is_empty() {
                // Uninhabitable; represent as unit
                // (Typechecking will reject discriminant-sizing attrs.)
                assert_eq!(hint, attr::ReprAny);
                let ftys = if dtor { vec!(cx.tcx().dtor_type()) } else { vec!() };
                return Univariant(mk_struct(cx, &ftys[..], false, t),
                                  dtor_to_init_u8(dtor));
            }

            if !dtor && cases.iter().all(|c| c.tys.is_empty()) {
                // All bodies empty -> intlike
                let discrs: Vec<u64> = cases.iter().map(|c| c.discr).collect();
                let bounds = IntBounds {
                    ulo: *discrs.iter().min().unwrap(),
                    uhi: *discrs.iter().max().unwrap(),
                    slo: discrs.iter().map(|n| *n as i64).min().unwrap(),
                    shi: discrs.iter().map(|n| *n as i64).max().unwrap()
                };
                return mk_cenum(cx, hint, &bounds);
            }

            // Since there's at least one
            // non-empty body, explicit discriminants should have
            // been rejected by a checker before this point.
            if !cases.iter().enumerate().all(|(i,c)| c.discr == (i as Disr)) {
                cx.sess().bug(&format!("non-C-like enum {} with specified \
                                      discriminants",
                                      ty::item_path_str(cx.tcx(),
                                                        def_id)));
            }

            if cases.len() == 1 {
                // Equivalent to a struct/tuple/newtype.
                // (Typechecking will reject discriminant-sizing attrs.)
                assert_eq!(hint, attr::ReprAny);
                let mut ftys = cases[0].tys.clone();
                if dtor { ftys.push(cx.tcx().dtor_type()); }
                return Univariant(mk_struct(cx, &ftys[..], false, t),
                                  dtor_to_init_u8(dtor));
            }

            if !dtor && cases.len() == 2 && hint == attr::ReprAny {
                // Nullable pointer optimization
                let mut discr = 0;
                while discr < 2 {
                    if cases[1 - discr].is_zerolen(cx, t) {
                        let st = mk_struct(cx, &cases[discr].tys,
                                           false, t);
                        match cases[discr].find_ptr(cx) {
                            Some(ref df) if df.len() == 1 && st.fields.len() == 1 => {
                                return RawNullablePointer {
                                    nndiscr: discr as Disr,
                                    nnty: st.fields[0],
                                    nullfields: cases[1 - discr].tys.clone()
                                };
                            }
                            Some(mut discrfield) => {
                                discrfield.push(0);
                                discrfield.reverse();
                                return StructWrappedNullablePointer {
                                    nndiscr: discr as Disr,
                                    nonnull: st,
                                    discrfield: discrfield,
                                    nullfields: cases[1 - discr].tys.clone()
                                };
                            }
                            None => {}
                        }
                    }
                    discr += 1;
                }
            }

            // The general case.
            assert!((cases.len() - 1) as i64 >= 0);
            let bounds = IntBounds { ulo: 0, uhi: (cases.len() - 1) as u64,
                                     slo: 0, shi: (cases.len() - 1) as i64 };
            let min_ity = range_to_inttype(cx, hint, &bounds);

            // Create the set of structs that represent each variant
            // Use the minimum integer type we figured out above
            let fields : Vec<_> = cases.iter().map(|c| {
                let mut ftys = vec!(ty_of_inttype(cx.tcx(), min_ity));
                ftys.push_all(&c.tys);
                if dtor { ftys.push(cx.tcx().dtor_type()); }
                mk_struct(cx, &ftys, false, t)
            }).collect();


            // Check to see if we should use a different type for the
            // discriminant. If the overall alignment of the type is
            // the same as the first field in each variant, we can safely use
            // an alignment-sized type.
            // We increase the size of the discriminant to avoid LLVM copying
            // padding when it doesn't need to. This normally causes unaligned
            // load/stores and excessive memcpy/memset operations. By using a
            // bigger integer size, LLVM can be sure about it's contents and
            // won't be so conservative.
            // This check is needed to avoid increasing the size of types when
            // the alignment of the first field is smaller than the overall
            // alignment of the type.
            let (_, align) = union_size_and_align(&fields);
            let mut use_align = true;
            for st in &fields {
                // Get the first non-zero-sized field
                let field = st.fields.iter().skip(1).filter(|ty| {
                    let t = type_of::sizing_type_of(cx, **ty);
                    machine::llsize_of_real(cx, t) != 0 ||
                    // This case is only relevant for zero-sized types with large alignment
                    machine::llalign_of_min(cx, t) != 1
                }).next();

                if let Some(field) = field {
                    let field_align = type_of::align_of(cx, *field);
                    if field_align != align {
                        use_align = false;
                        break;
                    }
                }
            }
            let ity = if use_align {
                // Use the overall alignment
                match align {
                    1 => attr::UnsignedInt(ast::TyU8),
                    2 => attr::UnsignedInt(ast::TyU16),
                    4 => attr::UnsignedInt(ast::TyU32),
                    8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
                        attr::UnsignedInt(ast::TyU64),
                    _ => min_ity // use min_ity as a fallback
                }
            } else {
                min_ity
            };

            let fields : Vec<_> = cases.iter().map(|c| {
                let mut ftys = vec!(ty_of_inttype(cx.tcx(), ity));
                ftys.push_all(&c.tys);
                if dtor { ftys.push(cx.tcx().dtor_type()); }
                mk_struct(cx, &ftys[..], false, t)
            }).collect();

            ensure_enum_fits_in_address_space(cx, &fields[..], t);

            General(ity, fields, dtor_to_init_u8(dtor))
        }
        _ => cx.sess().bug(&format!("adt::represent_type called on non-ADT type: {}",
                           ty_to_string(cx.tcx(), t)))
    }
}

// this should probably all be in ty
struct Case<'tcx> {
    discr: Disr,
    tys: Vec<Ty<'tcx>>
}

/// This represents the (GEP) indices to follow to get to the discriminant field
pub type DiscrField = Vec<usize>;

fn find_discr_field_candidate<'tcx>(tcx: &ty::ctxt<'tcx>,
                                    ty: Ty<'tcx>,
                                    mut path: DiscrField) -> Option<DiscrField> {
    match ty.sty {
        // Fat &T/&mut T/Box<T> i.e. T is [T], str, or Trait
        ty::ty_rptr(_, ty::mt { ty, .. }) | ty::ty_uniq(ty) if !type_is_sized(tcx, ty) => {
            path.push(FAT_PTR_ADDR);
            Some(path)
        },

        // Regular thin pointer: &T/&mut T/Box<T>
        ty::ty_rptr(..) | ty::ty_uniq(..) => Some(path),

        // Functions are just pointers
        ty::ty_bare_fn(..) => Some(path),

        // Is this the NonZero lang item wrapping a pointer or integer type?
        ty::ty_struct(did, substs) if Some(did) == tcx.lang_items.non_zero() => {
            let nonzero_fields = ty::lookup_struct_fields(tcx, did);
            assert_eq!(nonzero_fields.len(), 1);
            let nonzero_field = ty::lookup_field_type(tcx, did, nonzero_fields[0].id, substs);
            match nonzero_field.sty {
                ty::ty_ptr(..) | ty::ty_int(..) | ty::ty_uint(..) => {
                    path.push(0);
                    Some(path)
                },
                _ => None
            }
        },

        // Perhaps one of the fields of this struct is non-zero
        // let's recurse and find out
        ty::ty_struct(def_id, substs) => {
            let fields = ty::lookup_struct_fields(tcx, def_id);
            for (j, field) in fields.iter().enumerate() {
                let field_ty = ty::lookup_field_type(tcx, def_id, field.id, substs);
                if let Some(mut fpath) = find_discr_field_candidate(tcx, field_ty, path.clone()) {
                    fpath.push(j);
                    return Some(fpath);
                }
            }
            None
        },

        // Can we use one of the fields in this tuple?
        ty::ty_tup(ref tys) => {
            for (j, &ty) in tys.iter().enumerate() {
                if let Some(mut fpath) = find_discr_field_candidate(tcx, ty, path.clone()) {
                    fpath.push(j);
                    return Some(fpath);
                }
            }
            None
        },

        // Is this a fixed-size array of something non-zero
        // with at least one element?
        ty::ty_vec(ety, Some(d)) if d > 0 => {
            if let Some(mut vpath) = find_discr_field_candidate(tcx, ety, path) {
                vpath.push(0);
                Some(vpath)
            } else {
                None
            }
        },

        // Anything else is not a pointer
        _ => None
    }
}

impl<'tcx> Case<'tcx> {
    fn is_zerolen<'a>(&self, cx: &CrateContext<'a, 'tcx>, scapegoat: Ty<'tcx>) -> bool {
        mk_struct(cx, &self.tys, false, scapegoat).size == 0
    }

    fn find_ptr<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> Option<DiscrField> {
        for (i, &ty) in self.tys.iter().enumerate() {
            if let Some(mut path) = find_discr_field_candidate(cx.tcx(), ty, vec![]) {
                path.push(i);
                return Some(path);
            }
        }
        None
    }
}

fn get_cases<'tcx>(tcx: &ty::ctxt<'tcx>,
                   def_id: ast::DefId,
                   substs: &subst::Substs<'tcx>)
                   -> Vec<Case<'tcx>> {
    ty::enum_variants(tcx, def_id).iter().map(|vi| {
        let arg_tys = vi.args.iter().map(|&raw_ty| {
            monomorphize::apply_param_substs(tcx, substs, &raw_ty)
        }).collect();
        Case { discr: vi.disr_val, tys: arg_tys }
    }).collect()
}

fn mk_struct<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                       tys: &[Ty<'tcx>], packed: bool,
                       scapegoat: Ty<'tcx>)
                       -> Struct<'tcx> {
    let sized = tys.iter().all(|&ty| type_is_sized(cx.tcx(), ty));
    let lltys : Vec<Type> = if sized {
        tys.iter()
           .map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
    } else {
        tys.iter().filter(|&ty| type_is_sized(cx.tcx(), *ty))
           .map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
    };

    ensure_struct_fits_in_address_space(cx, &lltys[..], packed, scapegoat);

    let llty_rec = Type::struct_(cx, &lltys[..], packed);
    Struct {
        size: machine::llsize_of_alloc(cx, llty_rec),
        align: machine::llalign_of_min(cx, llty_rec),
        sized: sized,
        packed: packed,
        fields: tys.to_vec(),
    }
}

#[derive(Debug)]
struct IntBounds {
    slo: i64,
    shi: i64,
    ulo: u64,
    uhi: u64
}

fn mk_cenum<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                      hint: Hint, bounds: &IntBounds)
                      -> Repr<'tcx> {
    let it = range_to_inttype(cx, hint, bounds);
    match it {
        attr::SignedInt(_) => CEnum(it, bounds.slo as Disr, bounds.shi as Disr),
        attr::UnsignedInt(_) => CEnum(it, bounds.ulo, bounds.uhi)
    }
}

fn range_to_inttype(cx: &CrateContext, hint: Hint, bounds: &IntBounds) -> IntType {
    debug!("range_to_inttype: {:?} {:?}", hint, bounds);
    // Lists of sizes to try.  u64 is always allowed as a fallback.
    #[allow(non_upper_case_globals)]
    const choose_shortest: &'static [IntType] = &[
        attr::UnsignedInt(ast::TyU8), attr::SignedInt(ast::TyI8),
        attr::UnsignedInt(ast::TyU16), attr::SignedInt(ast::TyI16),
        attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];
    #[allow(non_upper_case_globals)]
    const at_least_32: &'static [IntType] = &[
        attr::UnsignedInt(ast::TyU32), attr::SignedInt(ast::TyI32)];

    let attempts;
    match hint {
        attr::ReprInt(span, ity) => {
            if !bounds_usable(cx, ity, bounds) {
                cx.sess().span_bug(span, "representation hint insufficient for discriminant range")
            }
            return ity;
        }
        attr::ReprExtern => {
            attempts = match &cx.sess().target.target.arch[..] {
                // WARNING: the ARM EABI has two variants; the one corresponding to `at_least_32`
                // appears to be used on Linux and NetBSD, but some systems may use the variant
                // corresponding to `choose_shortest`.  However, we don't run on those yet...?
                "arm" => at_least_32,
                _ => at_least_32,
            }
        }
        attr::ReprAny => {
            attempts = choose_shortest;
        },
        attr::ReprPacked => {
            cx.tcx().sess.bug("range_to_inttype: found ReprPacked on an enum");
        }
    }
    for &ity in attempts {
        if bounds_usable(cx, ity, bounds) {
            return ity;
        }
    }
    return attr::UnsignedInt(ast::TyU64);
}

pub fn ll_inttype(cx: &CrateContext, ity: IntType) -> Type {
    match ity {
        attr::SignedInt(t) => Type::int_from_ty(cx, t),
        attr::UnsignedInt(t) => Type::uint_from_ty(cx, t)
    }
}

fn bounds_usable(cx: &CrateContext, ity: IntType, bounds: &IntBounds) -> bool {
    debug!("bounds_usable: {:?} {:?}", ity, bounds);
    match ity {
        attr::SignedInt(_) => {
            let lllo = C_integral(ll_inttype(cx, ity), bounds.slo as u64, true);
            let llhi = C_integral(ll_inttype(cx, ity), bounds.shi as u64, true);
            bounds.slo == const_to_int(lllo) as i64 && bounds.shi == const_to_int(llhi) as i64
        }
        attr::UnsignedInt(_) => {
            let lllo = C_integral(ll_inttype(cx, ity), bounds.ulo, false);
            let llhi = C_integral(ll_inttype(cx, ity), bounds.uhi, false);
            bounds.ulo == const_to_uint(lllo) as u64 && bounds.uhi == const_to_uint(llhi) as u64
        }
    }
}

pub fn ty_of_inttype<'tcx>(tcx: &ty::ctxt<'tcx>, ity: IntType) -> Ty<'tcx> {
    match ity {
        attr::SignedInt(t) => ty::mk_mach_int(tcx, t),
        attr::UnsignedInt(t) => ty::mk_mach_uint(tcx, t)
    }
}

// LLVM doesn't like types that don't fit in the address space
fn ensure_struct_fits_in_address_space<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                                 fields: &[Type],
                                                 packed: bool,
                                                 scapegoat: Ty<'tcx>) {
    let mut offset = 0;
    for &llty in fields {
        // Invariant: offset < ccx.obj_size_bound() <= 1<<61
        if !packed {
            let type_align = machine::llalign_of_min(ccx, llty);
            offset = roundup(offset, type_align);
        }
        // type_align is a power-of-2, so still offset < ccx.obj_size_bound()
        // llsize_of_alloc(ccx, llty) is also less than ccx.obj_size_bound()
        // so the sum is less than 1<<62 (and therefore can't overflow).
        offset += machine::llsize_of_alloc(ccx, llty);

        if offset >= ccx.obj_size_bound() {
            ccx.report_overbig_object(scapegoat);
        }
    }
}

fn union_size_and_align(sts: &[Struct]) -> (machine::llsize, machine::llalign) {
    let size = sts.iter().map(|st| st.size).max().unwrap();
    let align = sts.iter().map(|st| st.align).max().unwrap();
    (roundup(size, align), align)
}

fn ensure_enum_fits_in_address_space<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                               fields: &[Struct],
                                               scapegoat: Ty<'tcx>) {
    let (total_size, _) = union_size_and_align(fields);

    if total_size >= ccx.obj_size_bound() {
        ccx.report_overbig_object(scapegoat);
    }
}


/// LLVM-level types are a little complicated.
///
/// C-like enums need to be actual ints, not wrapped in a struct,
/// because that changes the ABI on some platforms (see issue #10308).
///
/// For nominal types, in some cases, we need to use LLVM named structs
/// and fill in the actual contents in a second pass to prevent
/// unbounded recursion; see also the comments in `trans::type_of`.
pub fn type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, r: &Repr<'tcx>) -> Type {
    generic_type_of(cx, r, None, false, false)
}
// Pass dst=true if the type you are passing is a DST. Yes, we could figure
// this out, but if you call this on an unsized type without realising it, you
// are going to get the wrong type (it will not include the unsized parts of it).
pub fn sizing_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                                r: &Repr<'tcx>, dst: bool) -> Type {
    generic_type_of(cx, r, None, true, dst)
}
pub fn incomplete_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                                    r: &Repr<'tcx>, name: &str) -> Type {
    generic_type_of(cx, r, Some(name), false, false)
}
pub fn finish_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                                r: &Repr<'tcx>, llty: &mut Type) {
    match *r {
        CEnum(..) | General(..) | RawNullablePointer { .. } => { }
        Univariant(ref st, _) | StructWrappedNullablePointer { nonnull: ref st, .. } =>
            llty.set_struct_body(&struct_llfields(cx, st, false, false),
                                 st.packed)
    }
}

fn generic_type_of<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
                             r: &Repr<'tcx>,
                             name: Option<&str>,
                             sizing: bool,
                             dst: bool) -> Type {
    match *r {
        CEnum(ity, _, _) => ll_inttype(cx, ity),
        RawNullablePointer { nnty, .. } => type_of::sizing_type_of(cx, nnty),
        Univariant(ref st, _) | StructWrappedNullablePointer { nonnull: ref st, .. } => {
            match name {
                None => {
                    Type::struct_(cx, &struct_llfields(cx, st, sizing, dst),
                                  st.packed)
                }
                Some(name) => { assert_eq!(sizing, false); Type::named_struct(cx, name) }
            }
        }
        General(ity, ref sts, _) => {
            // We need a representation that has:
            // * The alignment of the most-aligned field
            // * The size of the largest variant (rounded up to that alignment)
            // * No alignment padding anywhere any variant has actual data
            //   (currently matters only for enums small enough to be immediate)
            // * The discriminant in an obvious place.
            //
            // So we start with the discriminant, pad it up to the alignment with
            // more of its own type, then use alignment-sized ints to get the rest
            // of the size.
            //
            // FIXME #10604: this breaks when vector types are present.
            let (size, align) = union_size_and_align(&sts[..]);
            let align_s = align as u64;
            assert_eq!(size % align_s, 0);
            let align_units = size / align_s - 1;

            let discr_ty = ll_inttype(cx, ity);
            let discr_size = machine::llsize_of_alloc(cx, discr_ty);
            let fill_ty = match align_s {
                1 => Type::array(&Type::i8(cx), align_units),
                2 => Type::array(&Type::i16(cx), align_units),
                4 => Type::array(&Type::i32(cx), align_units),
                8 if machine::llalign_of_min(cx, Type::i64(cx)) == 8 =>
                                 Type::array(&Type::i64(cx), align_units),
                a if a.count_ones() == 1 => Type::array(&Type::vector(&Type::i32(cx), a / 4),
                                                              align_units),
                _ => panic!("unsupported enum alignment: {}", align)
            };
            assert_eq!(machine::llalign_of_min(cx, fill_ty), align);
            assert_eq!(align_s % discr_size, 0);
            let fields = [discr_ty,
                          Type::array(&discr_ty, align_s / discr_size - 1),
                          fill_ty];
            match name {
                None => Type::struct_(cx, &fields[..], false),
                Some(name) => {
                    let mut llty = Type::named_struct(cx, name);
                    llty.set_struct_body(&fields[..], false);
                    llty
                }
            }
        }
    }
}

fn struct_llfields<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>, st: &Struct<'tcx>,
                             sizing: bool, dst: bool) -> Vec<Type> {
    if sizing {
        st.fields.iter().filter(|&ty| !dst || type_is_sized(cx.tcx(), *ty))
            .map(|&ty| type_of::sizing_type_of(cx, ty)).collect()
    } else {
        st.fields.iter().map(|&ty| type_of::in_memory_type_of(cx, ty)).collect()
    }
}

/// Obtain a representation of the discriminant sufficient to translate
/// destructuring; this may or may not involve the actual discriminant.
///
/// This should ideally be less tightly tied to `_match`.
pub fn trans_switch<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
                                r: &Repr<'tcx>, scrutinee: ValueRef)
                                -> (_match::BranchKind, Option<ValueRef>) {
    match *r {
        CEnum(..) | General(..) |
        RawNullablePointer { .. } | StructWrappedNullablePointer { .. } => {
            (_match::Switch, Some(trans_get_discr(bcx, r, scrutinee, None)))
        }
        Univariant(..) => {
            (_match::Single, None)
        }
    }
}



/// Obtain the actual discriminant of a value.
pub fn trans_get_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>,
                                   scrutinee: ValueRef, cast_to: Option<Type>)
    -> ValueRef {
    let signed;
    let val;
    debug!("trans_get_discr r: {:?}", r);
    match *r {
        CEnum(ity, min, max) => {
            val = load_discr(bcx, ity, scrutinee, min, max);
            signed = ity.is_signed();
        }
        General(ity, ref cases, _) => {
            let ptr = GEPi(bcx, scrutinee, &[0, 0]);
            val = load_discr(bcx, ity, ptr, 0, (cases.len() - 1) as Disr);
            signed = ity.is_signed();
        }
        Univariant(..) => {
            val = C_u8(bcx.ccx(), 0);
            signed = false;
        }
        RawNullablePointer { nndiscr, nnty, .. } =>  {
            let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
            let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
            val = ICmp(bcx, cmp, Load(bcx, scrutinee), C_null(llptrty), DebugLoc::None);
            signed = false;
        }
        StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
            val = struct_wrapped_nullable_bitdiscr(bcx, nndiscr, discrfield, scrutinee);
            signed = false;
        }
    }
    match cast_to {
        None => val,
        Some(llty) => if signed { SExt(bcx, val, llty) } else { ZExt(bcx, val, llty) }
    }
}

fn struct_wrapped_nullable_bitdiscr(bcx: Block, nndiscr: Disr, discrfield: &DiscrField,
                                    scrutinee: ValueRef) -> ValueRef {
    let llptrptr = GEPi(bcx, scrutinee, &discrfield[..]);
    let llptr = Load(bcx, llptrptr);
    let cmp = if nndiscr == 0 { IntEQ } else { IntNE };
    ICmp(bcx, cmp, llptr, C_null(val_ty(llptr)), DebugLoc::None)
}

/// Helper for cases where the discriminant is simply loaded.
fn load_discr(bcx: Block, ity: IntType, ptr: ValueRef, min: Disr, max: Disr)
    -> ValueRef {
    let llty = ll_inttype(bcx.ccx(), ity);
    assert_eq!(val_ty(ptr), llty.ptr_to());
    let bits = machine::llbitsize_of_real(bcx.ccx(), llty);
    assert!(bits <= 64);
    let  bits = bits as usize;
    let mask = (!0u64 >> (64 - bits)) as Disr;
    // For a (max) discr of -1, max will be `-1 as usize`, which overflows.
    // However, that is fine here (it would still represent the full range),
    if (max.wrapping_add(1)) & mask == min & mask {
        // i.e., if the range is everything.  The lo==hi case would be
        // rejected by the LLVM verifier (it would mean either an
        // empty set, which is impossible, or the entire range of the
        // type, which is pointless).
        Load(bcx, ptr)
    } else {
        // llvm::ConstantRange can deal with ranges that wrap around,
        // so an overflow on (max + 1) is fine.
        LoadRangeAssert(bcx, ptr, min, (max.wrapping_add(1)), /* signed: */ True)
    }
}

/// Yield information about how to dispatch a case of the
/// discriminant-like value returned by `trans_switch`.
///
/// This should ideally be less tightly tied to `_match`.
pub fn trans_case<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr, discr: Disr)
                              -> _match::OptResult<'blk, 'tcx> {
    match *r {
        CEnum(ity, _, _) => {
            _match::SingleResult(Result::new(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
                                                              discr as u64, true)))
        }
        General(ity, _, _) => {
            _match::SingleResult(Result::new(bcx, C_integral(ll_inttype(bcx.ccx(), ity),
                                                              discr as u64, true)))
        }
        Univariant(..) => {
            bcx.ccx().sess().bug("no cases for univariants or structs")
        }
        RawNullablePointer { .. } |
        StructWrappedNullablePointer { .. } => {
            assert!(discr == 0 || discr == 1);
            _match::SingleResult(Result::new(bcx, C_bool(bcx.ccx(), discr != 0)))
        }
    }
}

/// Set the discriminant for a new value of the given case of the given
/// representation.
pub fn trans_set_discr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>,
                                   val: ValueRef, discr: Disr) {
    match *r {
        CEnum(ity, min, max) => {
            assert_discr_in_range(ity, min, max, discr);
            Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
                  val)
        }
        General(ity, ref cases, dtor) => {
            if dtor_active(dtor) {
                let ptr = trans_field_ptr(bcx, r, val, discr,
                                          cases[discr as usize].fields.len() - 2);
                Store(bcx, C_u8(bcx.ccx(), DTOR_NEEDED as usize), ptr);
            }
            Store(bcx, C_integral(ll_inttype(bcx.ccx(), ity), discr as u64, true),
                  GEPi(bcx, val, &[0, 0]))
        }
        Univariant(ref st, dtor) => {
            assert_eq!(discr, 0);
            if dtor_active(dtor) {
                Store(bcx, C_u8(bcx.ccx(), DTOR_NEEDED as usize),
                    GEPi(bcx, val, &[0, st.fields.len() - 1]));
            }
        }
        RawNullablePointer { nndiscr, nnty, ..} => {
            if discr != nndiscr {
                let llptrty = type_of::sizing_type_of(bcx.ccx(), nnty);
                Store(bcx, C_null(llptrty), val)
            }
        }
        StructWrappedNullablePointer { nndiscr, ref discrfield, .. } => {
            if discr != nndiscr {
                let llptrptr = GEPi(bcx, val, &discrfield[..]);
                let llptrty = val_ty(llptrptr).element_type();
                Store(bcx, C_null(llptrty), llptrptr)
            }
        }
    }
}

fn assert_discr_in_range(ity: IntType, min: Disr, max: Disr, discr: Disr) {
    match ity {
        attr::UnsignedInt(_) => assert!(min <= discr && discr <= max),
        attr::SignedInt(_) => assert!(min as i64 <= discr as i64 && discr as i64 <= max as i64)
    }
}

/// The number of fields in a given case; for use when obtaining this
/// information from the type or definition is less convenient.
pub fn num_args(r: &Repr, discr: Disr) -> usize {
    match *r {
        CEnum(..) => 0,
        Univariant(ref st, dtor) => {
            assert_eq!(discr, 0);
            st.fields.len() - (if dtor_active(dtor) { 1 } else { 0 })
        }
        General(_, ref cases, dtor) => {
            cases[discr as usize].fields.len() - 1 - (if dtor_active(dtor) { 1 } else { 0 })
        }
        RawNullablePointer { nndiscr, ref nullfields, .. } => {
            if discr == nndiscr { 1 } else { nullfields.len() }
        }
        StructWrappedNullablePointer { ref nonnull, nndiscr,
                                       ref nullfields, .. } => {
            if discr == nndiscr { nonnull.fields.len() } else { nullfields.len() }
        }
    }
}

/// Access a field, at a point when the value's case is known.
pub fn trans_field_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>,
                                   val: ValueRef, discr: Disr, ix: usize) -> ValueRef {
    // Note: if this ever needs to generate conditionals (e.g., if we
    // decide to do some kind of cdr-coding-like non-unique repr
    // someday), it will need to return a possibly-new bcx as well.
    match *r {
        CEnum(..) => {
            bcx.ccx().sess().bug("element access in C-like enum")
        }
        Univariant(ref st, _dtor) => {
            assert_eq!(discr, 0);
            struct_field_ptr(bcx, st, val, ix, false)
        }
        General(_, ref cases, _) => {
            struct_field_ptr(bcx, &cases[discr as usize], val, ix + 1, true)
        }
        RawNullablePointer { nndiscr, ref nullfields, .. } |
        StructWrappedNullablePointer { nndiscr, ref nullfields, .. } if discr != nndiscr => {
            // The unit-like case might have a nonzero number of unit-like fields.
            // (e.d., Result of Either with (), as one side.)
            let ty = type_of::type_of(bcx.ccx(), nullfields[ix]);
            assert_eq!(machine::llsize_of_alloc(bcx.ccx(), ty), 0);
            // The contents of memory at this pointer can't matter, but use
            // the value that's "reasonable" in case of pointer comparison.
            PointerCast(bcx, val, ty.ptr_to())
        }
        RawNullablePointer { nndiscr, nnty, .. } => {
            assert_eq!(ix, 0);
            assert_eq!(discr, nndiscr);
            let ty = type_of::type_of(bcx.ccx(), nnty);
            PointerCast(bcx, val, ty.ptr_to())
        }
        StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
            assert_eq!(discr, nndiscr);
            struct_field_ptr(bcx, nonnull, val, ix, false)
        }
    }
}

pub fn struct_field_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, st: &Struct<'tcx>, val: ValueRef,
                                    ix: usize, needs_cast: bool) -> ValueRef {
    let val = if needs_cast {
        let ccx = bcx.ccx();
        let fields = st.fields.iter().map(|&ty| type_of::type_of(ccx, ty)).collect::<Vec<_>>();
        let real_ty = Type::struct_(ccx, &fields[..], st.packed);
        PointerCast(bcx, val, real_ty.ptr_to())
    } else {
        val
    };

    GEPi(bcx, val, &[0, ix])
}

pub fn fold_variants<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
                                    r: &Repr<'tcx>,
                                    value: ValueRef,
                                    mut f: F)
                                    -> Block<'blk, 'tcx> where
    F: FnMut(Block<'blk, 'tcx>, &Struct<'tcx>, ValueRef) -> Block<'blk, 'tcx>,
{
    let fcx = bcx.fcx;
    match *r {
        Univariant(ref st, _) => {
            f(bcx, st, value)
        }
        General(ity, ref cases, _) => {
            let ccx = bcx.ccx();
            let unr_cx = fcx.new_temp_block("enum-variant-iter-unr");
            Unreachable(unr_cx);

            let discr_val = trans_get_discr(bcx, r, value, None);
            let llswitch = Switch(bcx, discr_val, unr_cx.llbb, cases.len());
            let bcx_next = fcx.new_temp_block("enum-variant-iter-next");

            for (discr, case) in cases.iter().enumerate() {
                let mut variant_cx = fcx.new_temp_block(
                    &format!("enum-variant-iter-{}", &discr.to_string())
                );
                let rhs_val = C_integral(ll_inttype(ccx, ity), discr as u64, true);
                AddCase(llswitch, rhs_val, variant_cx.llbb);

                let fields = case.fields.iter().map(|&ty|
                    type_of::type_of(bcx.ccx(), ty)).collect::<Vec<_>>();
                let real_ty = Type::struct_(ccx, &fields[..], case.packed);
                let variant_value = PointerCast(variant_cx, value, real_ty.ptr_to());

                variant_cx = f(variant_cx, case, variant_value);
                Br(variant_cx, bcx_next.llbb, DebugLoc::None);
            }

            bcx_next
        }
        _ => unreachable!()
    }
}

/// Access the struct drop flag, if present.
pub fn trans_drop_flag_ptr<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>, r: &Repr<'tcx>, val: ValueRef)
                                       -> datum::DatumBlock<'blk, 'tcx, datum::Expr>
{
    let tcx = bcx.tcx();
    let ptr_ty = ty::mk_imm_ptr(bcx.tcx(), tcx.dtor_type());
    match *r {
        Univariant(ref st, dtor) if dtor_active(dtor) => {
            let flag_ptr = GEPi(bcx, val, &[0, st.fields.len() - 1]);
            datum::immediate_rvalue_bcx(bcx, flag_ptr, ptr_ty).to_expr_datumblock()
        }
        General(_, _, dtor) if dtor_active(dtor) => {
            let fcx = bcx.fcx;
            let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
            let scratch = unpack_datum!(bcx, datum::lvalue_scratch_datum(
                bcx, tcx.dtor_type(), "drop_flag",
                cleanup::CustomScope(custom_cleanup_scope), (), |_, bcx, _| bcx
            ));
            bcx = fold_variants(bcx, r, val, |variant_cx, st, value| {
                let ptr = struct_field_ptr(variant_cx, st, value, (st.fields.len() - 1), false);
                datum::Datum::new(ptr, ptr_ty, datum::Rvalue::new(datum::ByRef))
                    .store_to(variant_cx, scratch.val)
            });
            let expr_datum = scratch.to_expr_datum();
            fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
            datum::DatumBlock::new(bcx, expr_datum)
        }
        _ => bcx.ccx().sess().bug("tried to get drop flag of non-droppable type")
    }
}

/// Construct a constant value, suitable for initializing a
/// GlobalVariable, given a case and constant values for its fields.
/// Note that this may have a different LLVM type (and different
/// alignment!) from the representation's `type_of`, so it needs a
/// pointer cast before use.
///
/// The LLVM type system does not directly support unions, and only
/// pointers can be bitcast, so a constant (and, by extension, the
/// GlobalVariable initialized by it) will have a type that can vary
/// depending on which case of an enum it is.
///
/// To understand the alignment situation, consider `enum E { V64(u64),
/// V32(u32, u32) }` on Windows.  The type has 8-byte alignment to
/// accommodate the u64, but `V32(x, y)` would have LLVM type `{i32,
/// i32, i32}`, which is 4-byte aligned.
///
/// Currently the returned value has the same size as the type, but
/// this could be changed in the future to avoid allocating unnecessary
/// space after values of shorter-than-maximum cases.
pub fn trans_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, r: &Repr<'tcx>, discr: Disr,
                             vals: &[ValueRef]) -> ValueRef {
    match *r {
        CEnum(ity, min, max) => {
            assert_eq!(vals.len(), 0);
            assert_discr_in_range(ity, min, max, discr);
            C_integral(ll_inttype(ccx, ity), discr as u64, true)
        }
        General(ity, ref cases, _) => {
            let case = &cases[discr as usize];
            let (max_sz, _) = union_size_and_align(&cases[..]);
            let lldiscr = C_integral(ll_inttype(ccx, ity), discr as u64, true);
            let mut f = vec![lldiscr];
            f.push_all(vals);
            let mut contents = build_const_struct(ccx, case, &f[..]);
            contents.push_all(&[padding(ccx, max_sz - case.size)]);
            C_struct(ccx, &contents[..], false)
        }
        Univariant(ref st, _dro) => {
            assert!(discr == 0);
            let contents = build_const_struct(ccx, st, vals);
            C_struct(ccx, &contents[..], st.packed)
        }
        RawNullablePointer { nndiscr, nnty, .. } => {
            if discr == nndiscr {
                assert_eq!(vals.len(), 1);
                vals[0]
            } else {
                C_null(type_of::sizing_type_of(ccx, nnty))
            }
        }
        StructWrappedNullablePointer { ref nonnull, nndiscr, .. } => {
            if discr == nndiscr {
                C_struct(ccx, &build_const_struct(ccx,
                                                 nonnull,
                                                 vals),
                         false)
            } else {
                let vals = nonnull.fields.iter().map(|&ty| {
                    // Always use null even if it's not the `discrfield`th
                    // field; see #8506.
                    C_null(type_of::sizing_type_of(ccx, ty))
                }).collect::<Vec<ValueRef>>();
                C_struct(ccx, &build_const_struct(ccx,
                                                 nonnull,
                                                 &vals[..]),
                         false)
            }
        }
    }
}

/// Compute struct field offsets relative to struct begin.
fn compute_struct_field_offsets<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                          st: &Struct<'tcx>) -> Vec<u64> {
    let mut offsets = vec!();

    let mut offset = 0;
    for &ty in &st.fields {
        let llty = type_of::sizing_type_of(ccx, ty);
        if !st.packed {
            let type_align = type_of::align_of(ccx, ty);
            offset = roundup(offset, type_align);
        }
        offsets.push(offset);
        offset += machine::llsize_of_alloc(ccx, llty);
    }
    assert_eq!(st.fields.len(), offsets.len());
    offsets
}

/// Building structs is a little complicated, because we might need to
/// insert padding if a field's value is less aligned than its type.
///
/// Continuing the example from `trans_const`, a value of type `(u32,
/// E)` should have the `E` at offset 8, but if that field's
/// initializer is 4-byte aligned then simply translating the tuple as
/// a two-element struct will locate it at offset 4, and accesses to it
/// will read the wrong memory.
fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
                                st: &Struct<'tcx>, vals: &[ValueRef])
                                -> Vec<ValueRef> {
    assert_eq!(vals.len(), st.fields.len());

    let target_offsets = compute_struct_field_offsets(ccx, st);

    // offset of current value
    let mut offset = 0;
    let mut cfields = Vec::new();
    for (&val, &target_offset) in vals.iter().zip(target_offsets.iter()) {
        if !st.packed {
            let val_align = machine::llalign_of_min(ccx, val_ty(val));
            offset = roundup(offset, val_align);
        }
        if offset != target_offset {
            cfields.push(padding(ccx, target_offset - offset));
            offset = target_offset;
        }
        assert!(!is_undef(val));
        cfields.push(val);
        offset += machine::llsize_of_alloc(ccx, val_ty(val));
    }

    assert!(st.sized && offset <= st.size);
    if offset != st.size {
        cfields.push(padding(ccx, st.size - offset));
    }

    cfields
}

fn padding(ccx: &CrateContext, size: u64) -> ValueRef {
    C_undef(Type::array(&Type::i8(ccx), size))
}

// FIXME this utility routine should be somewhere more general
#[inline]
fn roundup(x: u64, a: u32) -> u64 { let a = a as u64; ((x + (a - 1)) / a) * a }

/// Get the discriminant of a constant value.
pub fn const_get_discrim(ccx: &CrateContext, r: &Repr, val: ValueRef) -> Disr {
    match *r {
        CEnum(ity, _, _) => {
            match ity {
                attr::SignedInt(..) => const_to_int(val) as Disr,
                attr::UnsignedInt(..) => const_to_uint(val) as Disr
            }
        }
        General(ity, _, _) => {
            match ity {
                attr::SignedInt(..) => const_to_int(const_get_elt(ccx, val, &[0])) as Disr,
                attr::UnsignedInt(..) => const_to_uint(const_get_elt(ccx, val, &[0])) as Disr
            }
        }
        Univariant(..) => 0,
        RawNullablePointer { .. } | StructWrappedNullablePointer { .. } => {
            ccx.sess().bug("const discrim access of non c-like enum")
        }
    }
}

/// Extract a field of a constant value, as appropriate for its
/// representation.
///
/// (Not to be confused with `common::const_get_elt`, which operates on
/// raw LLVM-level structs and arrays.)
pub fn const_get_field(ccx: &CrateContext, r: &Repr, val: ValueRef,
                       _discr: Disr, ix: usize) -> ValueRef {
    match *r {
        CEnum(..) => ccx.sess().bug("element access in C-like enum const"),
        Univariant(..) => const_struct_field(ccx, val, ix),
        General(..) => const_struct_field(ccx, val, ix + 1),
        RawNullablePointer { .. } => {
            assert_eq!(ix, 0);
            val
        },
        StructWrappedNullablePointer{ .. } => const_struct_field(ccx, val, ix)
    }
}

/// Extract field of struct-like const, skipping our alignment padding.
fn const_struct_field(ccx: &CrateContext, val: ValueRef, ix: usize) -> ValueRef {
    // Get the ix-th non-undef element of the struct.
    let mut real_ix = 0; // actual position in the struct
    let mut ix = ix; // logical index relative to real_ix
    let mut field;
    loop {
        loop {
            field = const_get_elt(ccx, val, &[real_ix]);
            if !is_undef(field) {
                break;
            }
            real_ix = real_ix + 1;
        }
        if ix == 0 {
            return field;
        }
        ix = ix - 1;
        real_ix = real_ix + 1;
    }
}