sfepy.terms.terms_diffusion module¶
-
class
sfepy.terms.terms_diffusion.
ConvectVGradSTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Scalar gradient term with convective velocity.
Definition: \int_{\Omega} q (\ul{u} \cdot \nabla p)
Call signature: dw_convect_v_grad_s (virtual, state_v, state_s)
Arguments: - virtual : q
- state_v : \ul{u}
- state_s : p
-
arg_shapes
= [{'state_s': 1, 'virtual': (1, 'state_s'), 'state_v': 'D'}]¶
-
arg_types
= ('virtual', 'state_v', 'state_s')¶
-
function
()¶
-
name
= 'dw_convect_v_grad_s'¶
-
class
sfepy.terms.terms_diffusion.
DiffusionCoupling
(name, arg_str, integral, region, **kwargs)[source]¶ Diffusion copupling term with material parameter K_{j}.
Definition: \int_{\Omega} p K_{j} \nabla_j q
Call signature: dw_diffusion_coupling (material, virtual, state)
(material, state, virtual)
(material, parameter_1, parameter_2)
Arguments: - material : K_{j}
- virtual : q
- state : p
-
arg_shapes
= {'parameter_2': 1, 'state': 1, 'material': 'D, 1', 'parameter_1': 1, 'virtual': (1, 'state')}¶
-
arg_types
= (('material', 'virtual', 'state'), ('material', 'state', 'virtual'), ('material', 'parameter_1', 'parameter_2'))¶
-
modes
= ('weak0', 'weak1', 'eval')¶
-
name
= 'dw_diffusion_coupling'¶
-
class
sfepy.terms.terms_diffusion.
DiffusionRTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Diffusion-like term with material parameter K_{j} (to use on the right-hand side).
Definition: \int_{\Omega} K_{j} \nabla_j q
Call signature: dw_diffusion_r (material, virtual)
Arguments: - material : K_j
- virtual : q
-
arg_shapes
= {'material': 'D, 1', 'virtual': (1, None)}¶
-
arg_types
= ('material', 'virtual')¶
-
static
function
()¶
-
name
= 'dw_diffusion_r'¶
-
class
sfepy.terms.terms_diffusion.
DiffusionTerm
(name, arg_str, integral, region, **kwargs)[source]¶ General diffusion term with permeability K_{ij}. Can be evaluated. Can use derivatives.
Definition: \int_{\Omega} K_{ij} \nabla_i q \nabla_j p \mbox{ , } \int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r
Call signature: dw_diffusion (material, virtual, state)
(material, parameter_1, parameter_2)
Arguments 1: - material : K_{ij}
- virtual : q
- state : p
Arguments 2: - material : K_{ij}
- parameter_1 : \bar{p}
- parameter_2 : r
-
arg_shapes
= {'parameter_2': 1, 'state': 1, 'material': 'D, D', 'parameter_1': 1, 'virtual': (1, 'state')}¶
-
arg_types
= (('material', 'virtual', 'state'), ('material', 'parameter_1', 'parameter_2'))¶
-
modes
= ('weak', 'eval')¶
-
name
= 'dw_diffusion'¶
-
symbolic
= {'map': {'K': 'material', 'u': 'state'}, 'expression': 'div( K * grad( u ) )'}¶
-
class
sfepy.terms.terms_diffusion.
DiffusionVelocityTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Evaluate diffusion velocity.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: - \int_{\Omega} K_{ij} \nabla_j \bar{p}
\mbox{vector for } K \from \Ical_h: - \int_{T_K} K_{ij} \nabla_j \bar{p} / \int_{T_K} 1
- K_{ij} \nabla_j \bar{p}
Call signature: ev_diffusion_velocity (material, parameter)
Arguments: - material : K_{ij}
- parameter : \bar{p}
-
arg_shapes
= {'material': 'D, D', 'parameter': 1}¶
-
arg_types
= ('material', 'parameter')¶
-
name
= 'ev_diffusion_velocity'¶
-
class
sfepy.terms.terms_diffusion.
LaplaceTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Laplace term with c coefficient. Can be evaluated. Can use derivatives.
Definition: \int_{\Omega} c \nabla q \cdot \nabla p \mbox{ , } \int_{\Omega} c \nabla \bar{p} \cdot \nabla r
Call signature: dw_laplace (opt_material, virtual, state)
(opt_material, parameter_1, parameter_2)
Arguments 1: - material : c
- virtual : q
- state : p
Arguments 2: - material : c
- parameter_1 : \bar{p}
- parameter_2 : r
-
arg_shapes
= [{'opt_material': '1, 1', 'state': 1, 'parameter_1': 1, 'virtual': (1, 'state'), 'parameter_2': 1}, {'opt_material': None}]¶
-
arg_types
= (('opt_material', 'virtual', 'state'), ('opt_material', 'parameter_1', 'parameter_2'))¶
-
modes
= ('weak', 'eval')¶
-
name
= 'dw_laplace'¶
-
symbolic
= {'map': {'c': 'opt_material', 'u': 'state'}, 'expression': 'c * div( grad( u ) )'}¶
-
class
sfepy.terms.terms_diffusion.
SurfaceFluxOperatorTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Surface flux operator term.
Definition: \int_{\Gamma} q \ul{n} \cdot \ull{K} \cdot \nabla p
Call signature: dw_surface_flux (opt_material, virtual, state)
Arguments: - material : \ull{K}
- virtual : q
- state : p
-
arg_shapes
= [{'opt_material': 'D, D', 'state': 1, 'virtual': (1, 'state')}, {'opt_material': None}]¶
-
arg_types
= ('opt_material', 'virtual', 'state')¶
-
function
()¶
-
integration
= 'surface_extra'¶
-
name
= 'dw_surface_flux'¶
-
class
sfepy.terms.terms_diffusion.
SurfaceFluxTerm
(name, arg_str, integral, region, **kwargs)[source]¶ Surface flux term.
Supports ‘eval’, ‘el_avg’ and ‘el’ evaluation modes.
Definition: \int_{\Gamma} \ul{n} \cdot K_{ij} \nabla_j \bar{p}
\mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p}\ / \int_{T_K} 1
\mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p}
Call signature: d_surface_flux (material, parameter)
Arguments: - material: \ul{K}
- parameter: \bar{p},
-
arg_shapes
= {'material': 'D, D', 'parameter': 1}¶
-
arg_types
= ('material', 'parameter')¶
-
static
function
()¶
-
integration
= 'surface_extra'¶
-
name
= 'd_surface_flux'¶