sfepy.discrete.fem.fea module¶
-
class
sfepy.discrete.fem.fea.
Approximation
(name, interp, region, ig, is_surface=False)[source]¶ -
-
describe_geometry
(field, gtype, region, integral, return_mapping=False)[source]¶ Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings).
Notes
- volume mappings can be defined on a part of an element group, although the field has to be defined always on the whole group.
- surface mappings are defined on the surface region
- surface mappings require field order to be > 0
-
get_connectivity
(region, integration, is_trace=False)[source]¶ Return the DOF connectivity for the given geometry type.
Parameters: region : Region instance
The region, used to index surface and volume connectivities.
integration : one of (‘volume’, ‘plate’, ‘surface’, ‘surface_extra’)
The term integration type.
-
get_poly_space
(key, from_geometry=False)[source]¶ Get the polynomial space.
Parameters: key : ‘v’ or ‘s?’
The key denoting volume or surface.
from_geometry : bool
If True, return the polynomial space for affine geometrical interpolation.
Returns: ps : PolySpace instance
The polynomial space.
-
-
class
sfepy.discrete.fem.fea.
DiscontinuousApproximation
(name, interp, region, ig, is_surface=False)[source]¶
-
class
sfepy.discrete.fem.fea.
Interpolant
(name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False)[source]¶ A simple wrapper around PolySpace.
-
class
sfepy.discrete.fem.fea.
SurfaceInterpolant
(name, gel, space='H1', base='lagrange', approx_order=1, force_bubble=False)[source]¶ Like Interpolant, but for use with SurfaceField and SurfaceApproximation.