Diffusion sensitivity analysis term.
Definition: |
---|
\int_{\Omega} \left[ (\dvg \ul{\Vcal}) K_{ij} \nabla_i q\, \nabla_j p - K_{ij} (\nabla_j \ul{\Vcal} \nabla q) \nabla_i p - K_{ij} \nabla_j q (\nabla_i \ul{\Vcal} \nabla p)\right]
Call signature: |
---|
d_diffusion_sa | (material, parameter_q, parameter_p, parameter_v) |
Arguments: |
|
---|
Acoustic ‘layer’ term - derivatives in surface directions.
Definition: |
---|
\int_{\Gamma} c q\,\partial_\alpha p, \int_{\Gamma} c \partial_\alpha p\, q, \int_{\Gamma} c \partial_\alpha r\, s,\alpha = 1,\dots,N-1
Call signature: |
---|
dw_surface_lcouple | (material, virtual, state) |
(material, state, virtual) | |
(material, parameter_1, parameter_2) |
Arguments 1: |
|
---|---|
Arguments 2: |
|
Arguments 3: |
|
Acoustic ‘layer’ term - derivatives in surface directions.
Definition: |
---|
\int_{\Gamma} c \partial_\alpha \ul{q}\,\partial_\alpha \ul{p}, \alpha = 1,\dots,N-1
Call signature: |
---|
dw_surface_laplace | (material, virtual, state) |
(material, parameter_2, parameter_1) |
Arguments 1: |
|
---|---|
Arguments 2: |
|