Hyperelastic bulk penalty term. Stress \tau_{ij} = K(J-1)\; J \delta_{ij}.
Definition: |
---|
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
Call signature: |
---|
dw_ul_bulk_penalty | (material, virtual, state) |
Arguments: |
|
---|
Hyperelastic bulk pressure term. Stress S_{ij} = -p J \delta_{ij}.
Definition: |
---|
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
Call signature: |
---|
dw_ul_bulk_pressure | (virtual, state, state_p) |
Arguments: |
|
---|
Compressibility term for the updated Lagrangian formulation
Definition: |
---|
\int_{\Omega} 1\over \gamma p \, q
Call signature: |
---|
dw_ul_compressible | (material, virtual, state, parameter_u) |
Arguments: |
|
---|
Base class for all hyperelastic terms in UL formulation family.
The subclasses should have the following static method attributes: - stress_function() (the stress) - tan_mod_function() (the tangent modulus)
The common (family) data are cached in the evaluate cache of state variable.
Hyperelastic Mooney-Rivlin term.
Definition: |
---|
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
Call signature: |
---|
dw_ul_he_mooney_rivlin | (material, virtual, state) |
Arguments: |
|
---|
Hyperelastic neo-Hookean term. Effective stress \tau_{ij} = \mu J^{-\frac{2}{3}}(b_{ij} - \frac{1}{3}b_{kk}\delta_{ij}).
Definition: |
---|
\int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J
Call signature: |
---|
dw_ul_he_neohook | (material, virtual, state) |
Arguments: |
|
---|
Volume term (weak form) in the updated Lagrangian formulation.
Definition: |
---|
\begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array}
Call signature: |
---|
dw_ul_volume | (virtual, state) |
Arguments: |
|
---|